Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v4.10.11
 
   1/*
   2 * kernel/workqueue.c - generic async execution with shared worker pool
   3 *
   4 * Copyright (C) 2002		Ingo Molnar
   5 *
   6 *   Derived from the taskqueue/keventd code by:
   7 *     David Woodhouse <dwmw2@infradead.org>
   8 *     Andrew Morton
   9 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10 *     Theodore Ts'o <tytso@mit.edu>
  11 *
  12 * Made to use alloc_percpu by Christoph Lameter.
  13 *
  14 * Copyright (C) 2010		SUSE Linux Products GmbH
  15 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  16 *
  17 * This is the generic async execution mechanism.  Work items as are
  18 * executed in process context.  The worker pool is shared and
  19 * automatically managed.  There are two worker pools for each CPU (one for
  20 * normal work items and the other for high priority ones) and some extra
  21 * pools for workqueues which are not bound to any specific CPU - the
  22 * number of these backing pools is dynamic.
  23 *
  24 * Please read Documentation/workqueue.txt for details.
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kernel.h>
  29#include <linux/sched.h>
  30#include <linux/init.h>
 
  31#include <linux/signal.h>
  32#include <linux/completion.h>
  33#include <linux/workqueue.h>
  34#include <linux/slab.h>
  35#include <linux/cpu.h>
  36#include <linux/notifier.h>
  37#include <linux/kthread.h>
  38#include <linux/hardirq.h>
  39#include <linux/mempolicy.h>
  40#include <linux/freezer.h>
  41#include <linux/kallsyms.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
 
 
 
 
 
 
  51
  52#include "workqueue_internal.h"
  53
  54enum {
  55	/*
  56	 * worker_pool flags
  57	 *
  58	 * A bound pool is either associated or disassociated with its CPU.
  59	 * While associated (!DISASSOCIATED), all workers are bound to the
  60	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  61	 * is in effect.
  62	 *
  63	 * While DISASSOCIATED, the cpu may be offline and all workers have
  64	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  65	 * be executing on any CPU.  The pool behaves as an unbound one.
  66	 *
  67	 * Note that DISASSOCIATED should be flipped only while holding
  68	 * attach_mutex to avoid changing binding state while
  69	 * worker_attach_to_pool() is in progress.
 
 
 
  70	 */
 
 
  71	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
 
 
  72
 
  73	/* worker flags */
  74	WORKER_DIE		= 1 << 1,	/* die die die */
  75	WORKER_IDLE		= 1 << 2,	/* is idle */
  76	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  77	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  78	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  79	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  80
  81	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  82				  WORKER_UNBOUND | WORKER_REBOUND,
 
 
 
 
 
  83
 
  84	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
  85
  86	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
  87	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
  88
  89	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  90	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  91
  92	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  93						/* call for help after 10ms
  94						   (min two ticks) */
  95	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
  96	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
  97
  98	/*
  99	 * Rescue workers are used only on emergencies and shared by
 100	 * all cpus.  Give MIN_NICE.
 101	 */
 102	RESCUER_NICE_LEVEL	= MIN_NICE,
 103	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 104
 105	WQ_NAME_LEN		= 24,
 106};
 107
 108/*
 
 
 
 
 
 
 
 
 109 * Structure fields follow one of the following exclusion rules.
 110 *
 111 * I: Modifiable by initialization/destruction paths and read-only for
 112 *    everyone else.
 113 *
 114 * P: Preemption protected.  Disabling preemption is enough and should
 115 *    only be modified and accessed from the local cpu.
 116 *
 117 * L: pool->lock protected.  Access with pool->lock held.
 118 *
 119 * X: During normal operation, modification requires pool->lock and should
 120 *    be done only from local cpu.  Either disabling preemption on local
 121 *    cpu or grabbing pool->lock is enough for read access.  If
 122 *    POOL_DISASSOCIATED is set, it's identical to L.
 123 *
 124 * A: pool->attach_mutex protected.
 
 
 
 
 
 
 125 *
 126 * PL: wq_pool_mutex protected.
 127 *
 128 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
 129 *
 130 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 131 *
 132 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 133 *      sched-RCU for reads.
 134 *
 135 * WQ: wq->mutex protected.
 136 *
 137 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
 
 
 
 138 *
 139 * MD: wq_mayday_lock protected.
 
 
 140 */
 141
 142/* struct worker is defined in workqueue_internal.h */
 143
 144struct worker_pool {
 145	spinlock_t		lock;		/* the pool lock */
 146	int			cpu;		/* I: the associated cpu */
 147	int			node;		/* I: the associated node ID */
 148	int			id;		/* I: pool ID */
 149	unsigned int		flags;		/* X: flags */
 150
 151	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 
 
 
 
 
 
 
 
 
 152
 153	struct list_head	worklist;	/* L: list of pending works */
 154	int			nr_workers;	/* L: total number of workers */
 155
 156	/* nr_idle includes the ones off idle_list for rebinding */
 157	int			nr_idle;	/* L: currently idle ones */
 158
 159	struct list_head	idle_list;	/* X: list of idle workers */
 160	struct timer_list	idle_timer;	/* L: worker idle timeout */
 161	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
 
 
 162
 163	/* a workers is either on busy_hash or idle_list, or the manager */
 164	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 165						/* L: hash of busy workers */
 166
 167	/* see manage_workers() for details on the two manager mutexes */
 168	struct mutex		manager_arb;	/* manager arbitration */
 169	struct worker		*manager;	/* L: purely informational */
 170	struct mutex		attach_mutex;	/* attach/detach exclusion */
 171	struct list_head	workers;	/* A: attached workers */
 
 172	struct completion	*detach_completion; /* all workers detached */
 173
 174	struct ida		worker_ida;	/* worker IDs for task name */
 175
 176	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 177	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 178	int			refcnt;		/* PL: refcnt for unbound pools */
 179
 180	/*
 181	 * The current concurrency level.  As it's likely to be accessed
 182	 * from other CPUs during try_to_wake_up(), put it in a separate
 183	 * cacheline.
 184	 */
 185	atomic_t		nr_running ____cacheline_aligned_in_smp;
 186
 187	/*
 188	 * Destruction of pool is sched-RCU protected to allow dereferences
 189	 * from get_work_pool().
 190	 */
 191	struct rcu_head		rcu;
 192} ____cacheline_aligned_in_smp;
 193
 194/*
 195 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196 * of work_struct->data are used for flags and the remaining high bits
 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 198 * number of flag bits.
 199 */
 200struct pool_workqueue {
 201	struct worker_pool	*pool;		/* I: the associated pool */
 202	struct workqueue_struct *wq;		/* I: the owning workqueue */
 203	int			work_color;	/* L: current color */
 204	int			flush_color;	/* L: flushing color */
 205	int			refcnt;		/* L: reference count */
 206	int			nr_in_flight[WORK_NR_COLORS];
 207						/* L: nr of in_flight works */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208	int			nr_active;	/* L: nr of active works */
 209	int			max_active;	/* L: max active works */
 210	struct list_head	delayed_works;	/* L: delayed works */
 211	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 212	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 213
 
 
 214	/*
 215	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
 216	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
 217	 * itself is also sched-RCU protected so that the first pwq can be
 218	 * determined without grabbing wq->mutex.
 219	 */
 220	struct work_struct	unbound_release_work;
 221	struct rcu_head		rcu;
 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 223
 224/*
 225 * Structure used to wait for workqueue flush.
 226 */
 227struct wq_flusher {
 228	struct list_head	list;		/* WQ: list of flushers */
 229	int			flush_color;	/* WQ: flush color waiting for */
 230	struct completion	done;		/* flush completion */
 231};
 232
 233struct wq_device;
 234
 235/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236 * The externally visible workqueue.  It relays the issued work items to
 237 * the appropriate worker_pool through its pool_workqueues.
 238 */
 239struct workqueue_struct {
 240	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 241	struct list_head	list;		/* PR: list of all workqueues */
 242
 243	struct mutex		mutex;		/* protects this wq */
 244	int			work_color;	/* WQ: current work color */
 245	int			flush_color;	/* WQ: current flush color */
 246	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 247	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 248	struct list_head	flusher_queue;	/* WQ: flush waiters */
 249	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 250
 251	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 252	struct worker		*rescuer;	/* I: rescue worker */
 253
 254	int			nr_drainers;	/* WQ: drain in progress */
 255	int			saved_max_active; /* WQ: saved pwq max_active */
 
 
 
 
 
 256
 257	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 258	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
 259
 260#ifdef CONFIG_SYSFS
 261	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 262#endif
 263#ifdef CONFIG_LOCKDEP
 
 
 264	struct lockdep_map	lockdep_map;
 265#endif
 266	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 267
 268	/*
 269	 * Destruction of workqueue_struct is sched-RCU protected to allow
 270	 * walking the workqueues list without grabbing wq_pool_mutex.
 271	 * This is used to dump all workqueues from sysrq.
 272	 */
 273	struct rcu_head		rcu;
 274
 275	/* hot fields used during command issue, aligned to cacheline */
 276	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 277	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 278	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 279};
 280
 281static struct kmem_cache *pwq_cache;
 
 
 
 
 
 
 
 
 
 282
 283static cpumask_var_t *wq_numa_possible_cpumask;
 284					/* possible CPUs of each node */
 
 
 
 
 
 
 285
 286static bool wq_disable_numa;
 287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 
 
 
 
 
 
 
 
 
 
 
 288
 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 292
 293static bool wq_online;			/* can kworkers be created yet? */
 
 294
 295static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
 296
 297/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 298static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 
 
 
 299
 300static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 301static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 
 
 
 302
 303static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 304static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 305
 306/* PL: allowable cpus for unbound wqs and work items */
 307static cpumask_var_t wq_unbound_cpumask;
 308
 
 
 
 
 
 
 
 
 
 309/* CPU where unbound work was last round robin scheduled from this CPU */
 310static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 311
 312/*
 313 * Local execution of unbound work items is no longer guaranteed.  The
 314 * following always forces round-robin CPU selection on unbound work items
 315 * to uncover usages which depend on it.
 316 */
 317#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 318static bool wq_debug_force_rr_cpu = true;
 319#else
 320static bool wq_debug_force_rr_cpu = false;
 321#endif
 322module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 323
 
 
 
 
 
 
 
 
 324/* the per-cpu worker pools */
 325static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 
 326
 327static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 328
 329/* PL: hash of all unbound pools keyed by pool->attrs */
 330static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 331
 332/* I: attributes used when instantiating standard unbound pools on demand */
 333static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 334
 335/* I: attributes used when instantiating ordered pools on demand */
 336static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 337
 338struct workqueue_struct *system_wq __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 339EXPORT_SYMBOL(system_wq);
 340struct workqueue_struct *system_highpri_wq __read_mostly;
 341EXPORT_SYMBOL_GPL(system_highpri_wq);
 342struct workqueue_struct *system_long_wq __read_mostly;
 343EXPORT_SYMBOL_GPL(system_long_wq);
 344struct workqueue_struct *system_unbound_wq __read_mostly;
 345EXPORT_SYMBOL_GPL(system_unbound_wq);
 346struct workqueue_struct *system_freezable_wq __read_mostly;
 347EXPORT_SYMBOL_GPL(system_freezable_wq);
 348struct workqueue_struct *system_power_efficient_wq __read_mostly;
 349EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 350struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 351EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 
 
 
 
 352
 353static int worker_thread(void *__worker);
 354static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 
 
 355
 356#define CREATE_TRACE_POINTS
 357#include <trace/events/workqueue.h>
 358
 359#define assert_rcu_or_pool_mutex()					\
 360	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 361			 !lockdep_is_held(&wq_pool_mutex),		\
 362			 "sched RCU or wq_pool_mutex should be held")
 363
 364#define assert_rcu_or_wq_mutex(wq)					\
 365	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 366			 !lockdep_is_held(&wq->mutex),			\
 367			 "sched RCU or wq->mutex should be held")
 368
 369#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 370	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
 371			 !lockdep_is_held(&wq->mutex) &&		\
 372			 !lockdep_is_held(&wq_pool_mutex),		\
 373			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
 
 
 
 
 
 374
 375#define for_each_cpu_worker_pool(pool, cpu)				\
 376	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 377	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 378	     (pool)++)
 379
 380/**
 381 * for_each_pool - iterate through all worker_pools in the system
 382 * @pool: iteration cursor
 383 * @pi: integer used for iteration
 384 *
 385 * This must be called either with wq_pool_mutex held or sched RCU read
 386 * locked.  If the pool needs to be used beyond the locking in effect, the
 387 * caller is responsible for guaranteeing that the pool stays online.
 388 *
 389 * The if/else clause exists only for the lockdep assertion and can be
 390 * ignored.
 391 */
 392#define for_each_pool(pool, pi)						\
 393	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 394		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 395		else
 396
 397/**
 398 * for_each_pool_worker - iterate through all workers of a worker_pool
 399 * @worker: iteration cursor
 400 * @pool: worker_pool to iterate workers of
 401 *
 402 * This must be called with @pool->attach_mutex.
 403 *
 404 * The if/else clause exists only for the lockdep assertion and can be
 405 * ignored.
 406 */
 407#define for_each_pool_worker(worker, pool)				\
 408	list_for_each_entry((worker), &(pool)->workers, node)		\
 409		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
 410		else
 411
 412/**
 413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 414 * @pwq: iteration cursor
 415 * @wq: the target workqueue
 416 *
 417 * This must be called either with wq->mutex held or sched RCU read locked.
 418 * If the pwq needs to be used beyond the locking in effect, the caller is
 419 * responsible for guaranteeing that the pwq stays online.
 420 *
 421 * The if/else clause exists only for the lockdep assertion and can be
 422 * ignored.
 423 */
 424#define for_each_pwq(pwq, wq)						\
 425	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
 426		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
 427		else
 428
 429#ifdef CONFIG_DEBUG_OBJECTS_WORK
 430
 431static struct debug_obj_descr work_debug_descr;
 432
 433static void *work_debug_hint(void *addr)
 434{
 435	return ((struct work_struct *) addr)->func;
 436}
 437
 438static bool work_is_static_object(void *addr)
 439{
 440	struct work_struct *work = addr;
 441
 442	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 443}
 444
 445/*
 446 * fixup_init is called when:
 447 * - an active object is initialized
 448 */
 449static bool work_fixup_init(void *addr, enum debug_obj_state state)
 450{
 451	struct work_struct *work = addr;
 452
 453	switch (state) {
 454	case ODEBUG_STATE_ACTIVE:
 455		cancel_work_sync(work);
 456		debug_object_init(work, &work_debug_descr);
 457		return true;
 458	default:
 459		return false;
 460	}
 461}
 462
 463/*
 464 * fixup_free is called when:
 465 * - an active object is freed
 466 */
 467static bool work_fixup_free(void *addr, enum debug_obj_state state)
 468{
 469	struct work_struct *work = addr;
 470
 471	switch (state) {
 472	case ODEBUG_STATE_ACTIVE:
 473		cancel_work_sync(work);
 474		debug_object_free(work, &work_debug_descr);
 475		return true;
 476	default:
 477		return false;
 478	}
 479}
 480
 481static struct debug_obj_descr work_debug_descr = {
 482	.name		= "work_struct",
 483	.debug_hint	= work_debug_hint,
 484	.is_static_object = work_is_static_object,
 485	.fixup_init	= work_fixup_init,
 486	.fixup_free	= work_fixup_free,
 487};
 488
 489static inline void debug_work_activate(struct work_struct *work)
 490{
 491	debug_object_activate(work, &work_debug_descr);
 492}
 493
 494static inline void debug_work_deactivate(struct work_struct *work)
 495{
 496	debug_object_deactivate(work, &work_debug_descr);
 497}
 498
 499void __init_work(struct work_struct *work, int onstack)
 500{
 501	if (onstack)
 502		debug_object_init_on_stack(work, &work_debug_descr);
 503	else
 504		debug_object_init(work, &work_debug_descr);
 505}
 506EXPORT_SYMBOL_GPL(__init_work);
 507
 508void destroy_work_on_stack(struct work_struct *work)
 509{
 510	debug_object_free(work, &work_debug_descr);
 511}
 512EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 513
 514void destroy_delayed_work_on_stack(struct delayed_work *work)
 515{
 516	destroy_timer_on_stack(&work->timer);
 517	debug_object_free(&work->work, &work_debug_descr);
 518}
 519EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 520
 521#else
 522static inline void debug_work_activate(struct work_struct *work) { }
 523static inline void debug_work_deactivate(struct work_struct *work) { }
 524#endif
 525
 526/**
 527 * worker_pool_assign_id - allocate ID and assing it to @pool
 528 * @pool: the pool pointer of interest
 529 *
 530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 531 * successfully, -errno on failure.
 532 */
 533static int worker_pool_assign_id(struct worker_pool *pool)
 534{
 535	int ret;
 536
 537	lockdep_assert_held(&wq_pool_mutex);
 538
 539	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 540			GFP_KERNEL);
 541	if (ret >= 0) {
 542		pool->id = ret;
 543		return 0;
 544	}
 545	return ret;
 546}
 547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548/**
 549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 550 * @wq: the target workqueue
 551 * @node: the node ID
 552 *
 553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 554 * read locked.
 555 * If the pwq needs to be used beyond the locking in effect, the caller is
 556 * responsible for guaranteeing that the pwq stays online.
 557 *
 558 * Return: The unbound pool_workqueue for @node.
 559 */
 560static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 561						  int node)
 562{
 563	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 564
 565	/*
 566	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 567	 * delayed item is pending.  The plan is to keep CPU -> NODE
 568	 * mapping valid and stable across CPU on/offlines.  Once that
 569	 * happens, this workaround can be removed.
 570	 */
 571	if (unlikely(node == NUMA_NO_NODE))
 572		return wq->dfl_pwq;
 573
 574	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 575}
 576
 577static unsigned int work_color_to_flags(int color)
 578{
 579	return color << WORK_STRUCT_COLOR_SHIFT;
 580}
 581
 582static int get_work_color(struct work_struct *work)
 583{
 584	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 585		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 586}
 587
 588static int work_next_color(int color)
 589{
 590	return (color + 1) % WORK_NR_COLORS;
 591}
 592
 593/*
 594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 595 * contain the pointer to the queued pwq.  Once execution starts, the flag
 596 * is cleared and the high bits contain OFFQ flags and pool ID.
 597 *
 598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 599 * and clear_work_data() can be used to set the pwq, pool or clear
 600 * work->data.  These functions should only be called while the work is
 601 * owned - ie. while the PENDING bit is set.
 602 *
 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 604 * corresponding to a work.  Pool is available once the work has been
 605 * queued anywhere after initialization until it is sync canceled.  pwq is
 606 * available only while the work item is queued.
 607 *
 608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 609 * canceled.  While being canceled, a work item may have its PENDING set
 610 * but stay off timer and worklist for arbitrarily long and nobody should
 611 * try to steal the PENDING bit.
 612 */
 613static inline void set_work_data(struct work_struct *work, unsigned long data,
 614				 unsigned long flags)
 615{
 616	WARN_ON_ONCE(!work_pending(work));
 617	atomic_long_set(&work->data, data | flags | work_static(work));
 618}
 619
 620static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 621			 unsigned long extra_flags)
 622{
 623	set_work_data(work, (unsigned long)pwq,
 624		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 625}
 626
 627static void set_work_pool_and_keep_pending(struct work_struct *work,
 628					   int pool_id)
 629{
 630	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 631		      WORK_STRUCT_PENDING);
 632}
 633
 634static void set_work_pool_and_clear_pending(struct work_struct *work,
 635					    int pool_id)
 636{
 637	/*
 638	 * The following wmb is paired with the implied mb in
 639	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 640	 * here are visible to and precede any updates by the next PENDING
 641	 * owner.
 642	 */
 643	smp_wmb();
 644	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 
 645	/*
 646	 * The following mb guarantees that previous clear of a PENDING bit
 647	 * will not be reordered with any speculative LOADS or STORES from
 648	 * work->current_func, which is executed afterwards.  This possible
 649	 * reordering can lead to a missed execution on attempt to qeueue
 650	 * the same @work.  E.g. consider this case:
 651	 *
 652	 *   CPU#0                         CPU#1
 653	 *   ----------------------------  --------------------------------
 654	 *
 655	 * 1  STORE event_indicated
 656	 * 2  queue_work_on() {
 657	 * 3    test_and_set_bit(PENDING)
 658	 * 4 }                             set_..._and_clear_pending() {
 659	 * 5                                 set_work_data() # clear bit
 660	 * 6                                 smp_mb()
 661	 * 7                               work->current_func() {
 662	 * 8				      LOAD event_indicated
 663	 *				   }
 664	 *
 665	 * Without an explicit full barrier speculative LOAD on line 8 can
 666	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 667	 * CPU#0 observes the PENDING bit is still set and new execution of
 668	 * a @work is not queued in a hope, that CPU#1 will eventually
 669	 * finish the queued @work.  Meanwhile CPU#1 does not see
 670	 * event_indicated is set, because speculative LOAD was executed
 671	 * before actual STORE.
 672	 */
 673	smp_mb();
 674}
 675
 676static void clear_work_data(struct work_struct *work)
 677{
 678	smp_wmb();	/* see set_work_pool_and_clear_pending() */
 679	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 680}
 681
 682static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 683{
 684	unsigned long data = atomic_long_read(&work->data);
 685
 686	if (data & WORK_STRUCT_PWQ)
 687		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 688	else
 689		return NULL;
 690}
 691
 692/**
 693 * get_work_pool - return the worker_pool a given work was associated with
 694 * @work: the work item of interest
 695 *
 696 * Pools are created and destroyed under wq_pool_mutex, and allows read
 697 * access under sched-RCU read lock.  As such, this function should be
 698 * called under wq_pool_mutex or with preemption disabled.
 699 *
 700 * All fields of the returned pool are accessible as long as the above
 701 * mentioned locking is in effect.  If the returned pool needs to be used
 702 * beyond the critical section, the caller is responsible for ensuring the
 703 * returned pool is and stays online.
 704 *
 705 * Return: The worker_pool @work was last associated with.  %NULL if none.
 706 */
 707static struct worker_pool *get_work_pool(struct work_struct *work)
 708{
 709	unsigned long data = atomic_long_read(&work->data);
 710	int pool_id;
 711
 712	assert_rcu_or_pool_mutex();
 713
 714	if (data & WORK_STRUCT_PWQ)
 715		return ((struct pool_workqueue *)
 716			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 717
 718	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 719	if (pool_id == WORK_OFFQ_POOL_NONE)
 720		return NULL;
 721
 722	return idr_find(&worker_pool_idr, pool_id);
 723}
 724
 725/**
 726 * get_work_pool_id - return the worker pool ID a given work is associated with
 727 * @work: the work item of interest
 728 *
 729 * Return: The worker_pool ID @work was last associated with.
 730 * %WORK_OFFQ_POOL_NONE if none.
 731 */
 732static int get_work_pool_id(struct work_struct *work)
 733{
 734	unsigned long data = atomic_long_read(&work->data);
 735
 736	if (data & WORK_STRUCT_PWQ)
 737		return ((struct pool_workqueue *)
 738			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 739
 740	return data >> WORK_OFFQ_POOL_SHIFT;
 741}
 742
 743static void mark_work_canceling(struct work_struct *work)
 744{
 745	unsigned long pool_id = get_work_pool_id(work);
 746
 747	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 748	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 749}
 750
 751static bool work_is_canceling(struct work_struct *work)
 752{
 753	unsigned long data = atomic_long_read(&work->data);
 754
 755	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 756}
 757
 758/*
 759 * Policy functions.  These define the policies on how the global worker
 760 * pools are managed.  Unless noted otherwise, these functions assume that
 761 * they're being called with pool->lock held.
 762 */
 763
 764static bool __need_more_worker(struct worker_pool *pool)
 765{
 766	return !atomic_read(&pool->nr_running);
 767}
 768
 769/*
 770 * Need to wake up a worker?  Called from anything but currently
 771 * running workers.
 772 *
 773 * Note that, because unbound workers never contribute to nr_running, this
 774 * function will always return %true for unbound pools as long as the
 775 * worklist isn't empty.
 776 */
 777static bool need_more_worker(struct worker_pool *pool)
 778{
 779	return !list_empty(&pool->worklist) && __need_more_worker(pool);
 780}
 781
 782/* Can I start working?  Called from busy but !running workers. */
 783static bool may_start_working(struct worker_pool *pool)
 784{
 785	return pool->nr_idle;
 786}
 787
 788/* Do I need to keep working?  Called from currently running workers. */
 789static bool keep_working(struct worker_pool *pool)
 790{
 791	return !list_empty(&pool->worklist) &&
 792		atomic_read(&pool->nr_running) <= 1;
 793}
 794
 795/* Do we need a new worker?  Called from manager. */
 796static bool need_to_create_worker(struct worker_pool *pool)
 797{
 798	return need_more_worker(pool) && !may_start_working(pool);
 799}
 800
 801/* Do we have too many workers and should some go away? */
 802static bool too_many_workers(struct worker_pool *pool)
 803{
 804	bool managing = mutex_is_locked(&pool->manager_arb);
 805	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 806	int nr_busy = pool->nr_workers - nr_idle;
 807
 808	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 809}
 810
 811/*
 812 * Wake up functions.
 813 */
 814
 815/* Return the first idle worker.  Safe with preemption disabled */
 816static struct worker *first_idle_worker(struct worker_pool *pool)
 817{
 818	if (unlikely(list_empty(&pool->idle_list)))
 819		return NULL;
 820
 821	return list_first_entry(&pool->idle_list, struct worker, entry);
 822}
 823
 824/**
 825 * wake_up_worker - wake up an idle worker
 826 * @pool: worker pool to wake worker from
 827 *
 828 * Wake up the first idle worker of @pool.
 829 *
 830 * CONTEXT:
 831 * spin_lock_irq(pool->lock).
 832 */
 833static void wake_up_worker(struct worker_pool *pool)
 834{
 835	struct worker *worker = first_idle_worker(pool);
 836
 837	if (likely(worker))
 838		wake_up_process(worker->task);
 839}
 840
 841/**
 842 * wq_worker_waking_up - a worker is waking up
 843 * @task: task waking up
 844 * @cpu: CPU @task is waking up to
 845 *
 846 * This function is called during try_to_wake_up() when a worker is
 847 * being awoken.
 848 *
 849 * CONTEXT:
 850 * spin_lock_irq(rq->lock)
 851 */
 852void wq_worker_waking_up(struct task_struct *task, int cpu)
 853{
 854	struct worker *worker = kthread_data(task);
 855
 856	if (!(worker->flags & WORKER_NOT_RUNNING)) {
 857		WARN_ON_ONCE(worker->pool->cpu != cpu);
 858		atomic_inc(&worker->pool->nr_running);
 859	}
 860}
 861
 862/**
 863 * wq_worker_sleeping - a worker is going to sleep
 864 * @task: task going to sleep
 865 *
 866 * This function is called during schedule() when a busy worker is
 867 * going to sleep.  Worker on the same cpu can be woken up by
 868 * returning pointer to its task.
 869 *
 870 * CONTEXT:
 871 * spin_lock_irq(rq->lock)
 872 *
 873 * Return:
 874 * Worker task on @cpu to wake up, %NULL if none.
 875 */
 876struct task_struct *wq_worker_sleeping(struct task_struct *task)
 877{
 878	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
 879	struct worker_pool *pool;
 880
 881	/*
 882	 * Rescuers, which may not have all the fields set up like normal
 883	 * workers, also reach here, let's not access anything before
 884	 * checking NOT_RUNNING.
 885	 */
 886	if (worker->flags & WORKER_NOT_RUNNING)
 887		return NULL;
 888
 889	pool = worker->pool;
 890
 891	/* this can only happen on the local cpu */
 892	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
 893		return NULL;
 894
 895	/*
 896	 * The counterpart of the following dec_and_test, implied mb,
 897	 * worklist not empty test sequence is in insert_work().
 898	 * Please read comment there.
 899	 *
 900	 * NOT_RUNNING is clear.  This means that we're bound to and
 901	 * running on the local cpu w/ rq lock held and preemption
 902	 * disabled, which in turn means that none else could be
 903	 * manipulating idle_list, so dereferencing idle_list without pool
 904	 * lock is safe.
 905	 */
 906	if (atomic_dec_and_test(&pool->nr_running) &&
 907	    !list_empty(&pool->worklist))
 908		to_wakeup = first_idle_worker(pool);
 909	return to_wakeup ? to_wakeup->task : NULL;
 910}
 911
 912/**
 913 * worker_set_flags - set worker flags and adjust nr_running accordingly
 914 * @worker: self
 915 * @flags: flags to set
 916 *
 917 * Set @flags in @worker->flags and adjust nr_running accordingly.
 918 *
 919 * CONTEXT:
 920 * spin_lock_irq(pool->lock)
 921 */
 922static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 923{
 924	struct worker_pool *pool = worker->pool;
 925
 926	WARN_ON_ONCE(worker->task != current);
 927
 928	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 929	if ((flags & WORKER_NOT_RUNNING) &&
 930	    !(worker->flags & WORKER_NOT_RUNNING)) {
 931		atomic_dec(&pool->nr_running);
 932	}
 933
 934	worker->flags |= flags;
 935}
 936
 937/**
 938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 939 * @worker: self
 940 * @flags: flags to clear
 941 *
 942 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 943 *
 944 * CONTEXT:
 945 * spin_lock_irq(pool->lock)
 946 */
 947static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 948{
 949	struct worker_pool *pool = worker->pool;
 950	unsigned int oflags = worker->flags;
 951
 952	WARN_ON_ONCE(worker->task != current);
 953
 954	worker->flags &= ~flags;
 955
 956	/*
 957	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 958	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 959	 * of multiple flags, not a single flag.
 960	 */
 961	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 962		if (!(worker->flags & WORKER_NOT_RUNNING))
 963			atomic_inc(&pool->nr_running);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964}
 965
 966/**
 967 * find_worker_executing_work - find worker which is executing a work
 968 * @pool: pool of interest
 969 * @work: work to find worker for
 970 *
 971 * Find a worker which is executing @work on @pool by searching
 972 * @pool->busy_hash which is keyed by the address of @work.  For a worker
 973 * to match, its current execution should match the address of @work and
 974 * its work function.  This is to avoid unwanted dependency between
 975 * unrelated work executions through a work item being recycled while still
 976 * being executed.
 977 *
 978 * This is a bit tricky.  A work item may be freed once its execution
 979 * starts and nothing prevents the freed area from being recycled for
 980 * another work item.  If the same work item address ends up being reused
 981 * before the original execution finishes, workqueue will identify the
 982 * recycled work item as currently executing and make it wait until the
 983 * current execution finishes, introducing an unwanted dependency.
 984 *
 985 * This function checks the work item address and work function to avoid
 986 * false positives.  Note that this isn't complete as one may construct a
 987 * work function which can introduce dependency onto itself through a
 988 * recycled work item.  Well, if somebody wants to shoot oneself in the
 989 * foot that badly, there's only so much we can do, and if such deadlock
 990 * actually occurs, it should be easy to locate the culprit work function.
 991 *
 992 * CONTEXT:
 993 * spin_lock_irq(pool->lock).
 994 *
 995 * Return:
 996 * Pointer to worker which is executing @work if found, %NULL
 997 * otherwise.
 998 */
 999static struct worker *find_worker_executing_work(struct worker_pool *pool,
1000						 struct work_struct *work)
1001{
1002	struct worker *worker;
1003
1004	hash_for_each_possible(pool->busy_hash, worker, hentry,
1005			       (unsigned long)work)
1006		if (worker->current_work == work &&
1007		    worker->current_func == work->func)
1008			return worker;
1009
1010	return NULL;
1011}
1012
1013/**
1014 * move_linked_works - move linked works to a list
1015 * @work: start of series of works to be scheduled
1016 * @head: target list to append @work to
1017 * @nextp: out parameter for nested worklist walking
1018 *
1019 * Schedule linked works starting from @work to @head.  Work series to
1020 * be scheduled starts at @work and includes any consecutive work with
1021 * WORK_STRUCT_LINKED set in its predecessor.
1022 *
1023 * If @nextp is not NULL, it's updated to point to the next work of
1024 * the last scheduled work.  This allows move_linked_works() to be
1025 * nested inside outer list_for_each_entry_safe().
1026 *
1027 * CONTEXT:
1028 * spin_lock_irq(pool->lock).
1029 */
1030static void move_linked_works(struct work_struct *work, struct list_head *head,
1031			      struct work_struct **nextp)
1032{
1033	struct work_struct *n;
1034
1035	/*
1036	 * Linked worklist will always end before the end of the list,
1037	 * use NULL for list head.
1038	 */
1039	list_for_each_entry_safe_from(work, n, NULL, entry) {
1040		list_move_tail(&work->entry, head);
1041		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042			break;
1043	}
1044
1045	/*
1046	 * If we're already inside safe list traversal and have moved
1047	 * multiple works to the scheduled queue, the next position
1048	 * needs to be updated.
1049	 */
1050	if (nextp)
1051		*nextp = n;
1052}
1053
1054/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055 * get_pwq - get an extra reference on the specified pool_workqueue
1056 * @pwq: pool_workqueue to get
1057 *
1058 * Obtain an extra reference on @pwq.  The caller should guarantee that
1059 * @pwq has positive refcnt and be holding the matching pool->lock.
1060 */
1061static void get_pwq(struct pool_workqueue *pwq)
1062{
1063	lockdep_assert_held(&pwq->pool->lock);
1064	WARN_ON_ONCE(pwq->refcnt <= 0);
1065	pwq->refcnt++;
1066}
1067
1068/**
1069 * put_pwq - put a pool_workqueue reference
1070 * @pwq: pool_workqueue to put
1071 *
1072 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1073 * destruction.  The caller should be holding the matching pool->lock.
1074 */
1075static void put_pwq(struct pool_workqueue *pwq)
1076{
1077	lockdep_assert_held(&pwq->pool->lock);
1078	if (likely(--pwq->refcnt))
1079		return;
1080	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081		return;
1082	/*
1083	 * @pwq can't be released under pool->lock, bounce to
1084	 * pwq_unbound_release_workfn().  This never recurses on the same
1085	 * pool->lock as this path is taken only for unbound workqueues and
1086	 * the release work item is scheduled on a per-cpu workqueue.  To
1087	 * avoid lockdep warning, unbound pool->locks are given lockdep
1088	 * subclass of 1 in get_unbound_pool().
1089	 */
1090	schedule_work(&pwq->unbound_release_work);
1091}
1092
1093/**
1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095 * @pwq: pool_workqueue to put (can be %NULL)
1096 *
1097 * put_pwq() with locking.  This function also allows %NULL @pwq.
1098 */
1099static void put_pwq_unlocked(struct pool_workqueue *pwq)
1100{
1101	if (pwq) {
1102		/*
1103		 * As both pwqs and pools are sched-RCU protected, the
1104		 * following lock operations are safe.
1105		 */
1106		spin_lock_irq(&pwq->pool->lock);
1107		put_pwq(pwq);
1108		spin_unlock_irq(&pwq->pool->lock);
1109	}
1110}
1111
1112static void pwq_activate_delayed_work(struct work_struct *work)
1113{
1114	struct pool_workqueue *pwq = get_work_pwq(work);
 
1115
 
 
 
 
 
 
1116	trace_workqueue_activate_work(work);
1117	if (list_empty(&pwq->pool->worklist))
1118		pwq->pool->watchdog_ts = jiffies;
1119	move_linked_works(work, &pwq->pool->worklist, NULL);
1120	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121	pwq->nr_active++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122}
1123
1124static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
 
 
 
 
 
 
 
 
1125{
1126	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1127						    struct work_struct, entry);
 
 
 
 
 
 
 
 
 
 
1128
1129	pwq_activate_delayed_work(work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130}
1131
1132/**
1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134 * @pwq: pwq of interest
1135 * @color: color of work which left the queue
1136 *
1137 * A work either has completed or is removed from pending queue,
1138 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1139 *
 
 
 
 
 
1140 * CONTEXT:
1141 * spin_lock_irq(pool->lock).
1142 */
1143static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1144{
1145	/* uncolored work items don't participate in flushing or nr_active */
1146	if (color == WORK_NO_COLOR)
1147		goto out_put;
1148
1149	pwq->nr_in_flight[color]--;
 
1150
1151	pwq->nr_active--;
1152	if (!list_empty(&pwq->delayed_works)) {
1153		/* one down, submit a delayed one */
1154		if (pwq->nr_active < pwq->max_active)
1155			pwq_activate_first_delayed(pwq);
1156	}
1157
1158	/* is flush in progress and are we at the flushing tip? */
1159	if (likely(pwq->flush_color != color))
1160		goto out_put;
1161
1162	/* are there still in-flight works? */
1163	if (pwq->nr_in_flight[color])
1164		goto out_put;
1165
1166	/* this pwq is done, clear flush_color */
1167	pwq->flush_color = -1;
1168
1169	/*
1170	 * If this was the last pwq, wake up the first flusher.  It
1171	 * will handle the rest.
1172	 */
1173	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174		complete(&pwq->wq->first_flusher->done);
1175out_put:
1176	put_pwq(pwq);
1177}
1178
1179/**
1180 * try_to_grab_pending - steal work item from worklist and disable irq
1181 * @work: work item to steal
1182 * @is_dwork: @work is a delayed_work
1183 * @flags: place to store irq state
1184 *
1185 * Try to grab PENDING bit of @work.  This function can handle @work in any
1186 * stable state - idle, on timer or on worklist.
1187 *
1188 * Return:
 
 
1189 *  1		if @work was pending and we successfully stole PENDING
1190 *  0		if @work was idle and we claimed PENDING
1191 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1192 *  -ENOENT	if someone else is canceling @work, this state may persist
1193 *		for arbitrarily long
 
1194 *
1195 * Note:
1196 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1197 * interrupted while holding PENDING and @work off queue, irq must be
1198 * disabled on entry.  This, combined with delayed_work->timer being
1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1200 *
1201 * On successful return, >= 0, irq is disabled and the caller is
1202 * responsible for releasing it using local_irq_restore(*@flags).
1203 *
1204 * This function is safe to call from any context including IRQ handler.
1205 */
1206static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207			       unsigned long *flags)
1208{
1209	struct worker_pool *pool;
1210	struct pool_workqueue *pwq;
1211
1212	local_irq_save(*flags);
1213
1214	/* try to steal the timer if it exists */
1215	if (is_dwork) {
1216		struct delayed_work *dwork = to_delayed_work(work);
1217
1218		/*
1219		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1220		 * guaranteed that the timer is not queued anywhere and not
1221		 * running on the local CPU.
1222		 */
1223		if (likely(del_timer(&dwork->timer)))
1224			return 1;
1225	}
1226
1227	/* try to claim PENDING the normal way */
1228	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229		return 0;
1230
 
1231	/*
1232	 * The queueing is in progress, or it is already queued. Try to
1233	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1234	 */
1235	pool = get_work_pool(work);
1236	if (!pool)
1237		goto fail;
1238
1239	spin_lock(&pool->lock);
1240	/*
1241	 * work->data is guaranteed to point to pwq only while the work
1242	 * item is queued on pwq->wq, and both updating work->data to point
1243	 * to pwq on queueing and to pool on dequeueing are done under
1244	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1245	 * points to pwq which is associated with a locked pool, the work
1246	 * item is currently queued on that pool.
1247	 */
1248	pwq = get_work_pwq(work);
1249	if (pwq && pwq->pool == pool) {
 
 
1250		debug_work_deactivate(work);
1251
1252		/*
1253		 * A delayed work item cannot be grabbed directly because
1254		 * it might have linked NO_COLOR work items which, if left
1255		 * on the delayed_list, will confuse pwq->nr_active
 
 
 
 
1256		 * management later on and cause stall.  Make sure the work
1257		 * item is activated before grabbing.
1258		 */
1259		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1260			pwq_activate_delayed_work(work);
1261
1262		list_del_init(&work->entry);
1263		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1264
1265		/* work->data points to pwq iff queued, point to pool */
1266		set_work_pool_and_keep_pending(work, pool->id);
 
 
 
 
1267
1268		spin_unlock(&pool->lock);
 
 
 
 
1269		return 1;
1270	}
1271	spin_unlock(&pool->lock);
1272fail:
1273	local_irq_restore(*flags);
 
1274	if (work_is_canceling(work))
1275		return -ENOENT;
1276	cpu_relax();
1277	return -EAGAIN;
1278}
1279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280/**
1281 * insert_work - insert a work into a pool
1282 * @pwq: pwq @work belongs to
1283 * @work: work to insert
1284 * @head: insertion point
1285 * @extra_flags: extra WORK_STRUCT_* flags to set
1286 *
1287 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1288 * work_struct flags.
1289 *
1290 * CONTEXT:
1291 * spin_lock_irq(pool->lock).
1292 */
1293static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294			struct list_head *head, unsigned int extra_flags)
1295{
1296	struct worker_pool *pool = pwq->pool;
 
 
 
1297
1298	/* we own @work, set data and link */
1299	set_work_pwq(work, pwq, extra_flags);
1300	list_add_tail(&work->entry, head);
1301	get_pwq(pwq);
1302
1303	/*
1304	 * Ensure either wq_worker_sleeping() sees the above
1305	 * list_add_tail() or we see zero nr_running to avoid workers lying
1306	 * around lazily while there are works to be processed.
1307	 */
1308	smp_mb();
1309
1310	if (__need_more_worker(pool))
1311		wake_up_worker(pool);
1312}
1313
1314/*
1315 * Test whether @work is being queued from another work executing on the
1316 * same workqueue.
1317 */
1318static bool is_chained_work(struct workqueue_struct *wq)
1319{
1320	struct worker *worker;
1321
1322	worker = current_wq_worker();
1323	/*
1324	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1325	 * I'm @worker, it's safe to dereference it without locking.
1326	 */
1327	return worker && worker->current_pwq->wq == wq;
1328}
1329
1330/*
1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1333 * avoid perturbing sensitive tasks.
1334 */
1335static int wq_select_unbound_cpu(int cpu)
1336{
1337	static bool printed_dbg_warning;
1338	int new_cpu;
1339
1340	if (likely(!wq_debug_force_rr_cpu)) {
1341		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342			return cpu;
1343	} else if (!printed_dbg_warning) {
1344		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345		printed_dbg_warning = true;
1346	}
1347
1348	if (cpumask_empty(wq_unbound_cpumask))
1349		return cpu;
1350
1351	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353	if (unlikely(new_cpu >= nr_cpu_ids)) {
1354		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355		if (unlikely(new_cpu >= nr_cpu_ids))
1356			return cpu;
1357	}
1358	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1359
1360	return new_cpu;
1361}
1362
1363static void __queue_work(int cpu, struct workqueue_struct *wq,
1364			 struct work_struct *work)
1365{
1366	struct pool_workqueue *pwq;
1367	struct worker_pool *last_pool;
1368	struct list_head *worklist;
1369	unsigned int work_flags;
1370	unsigned int req_cpu = cpu;
1371
1372	/*
1373	 * While a work item is PENDING && off queue, a task trying to
1374	 * steal the PENDING will busy-loop waiting for it to either get
1375	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1376	 * happen with IRQ disabled.
1377	 */
1378	WARN_ON_ONCE(!irqs_disabled());
1379
1380	debug_work_activate(work);
1381
1382	/* if draining, only works from the same workqueue are allowed */
1383	if (unlikely(wq->flags & __WQ_DRAINING) &&
1384	    WARN_ON_ONCE(!is_chained_work(wq)))
 
 
 
 
1385		return;
 
1386retry:
1387	if (req_cpu == WORK_CPU_UNBOUND)
1388		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1389
1390	/* pwq which will be used unless @work is executing elsewhere */
1391	if (!(wq->flags & WQ_UNBOUND))
1392		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1393	else
1394		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
 
 
 
 
 
1395
1396	/*
1397	 * If @work was previously on a different pool, it might still be
1398	 * running there, in which case the work needs to be queued on that
1399	 * pool to guarantee non-reentrancy.
1400	 */
1401	last_pool = get_work_pool(work);
1402	if (last_pool && last_pool != pwq->pool) {
1403		struct worker *worker;
1404
1405		spin_lock(&last_pool->lock);
1406
1407		worker = find_worker_executing_work(last_pool, work);
1408
1409		if (worker && worker->current_pwq->wq == wq) {
1410			pwq = worker->current_pwq;
 
 
1411		} else {
1412			/* meh... not running there, queue here */
1413			spin_unlock(&last_pool->lock);
1414			spin_lock(&pwq->pool->lock);
1415		}
1416	} else {
1417		spin_lock(&pwq->pool->lock);
1418	}
1419
1420	/*
1421	 * pwq is determined and locked.  For unbound pools, we could have
1422	 * raced with pwq release and it could already be dead.  If its
1423	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1424	 * without another pwq replacing it in the numa_pwq_tbl or while
1425	 * work items are executing on it, so the retrying is guaranteed to
1426	 * make forward-progress.
1427	 */
1428	if (unlikely(!pwq->refcnt)) {
1429		if (wq->flags & WQ_UNBOUND) {
1430			spin_unlock(&pwq->pool->lock);
1431			cpu_relax();
1432			goto retry;
1433		}
1434		/* oops */
1435		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436			  wq->name, cpu);
1437	}
1438
1439	/* pwq determined, queue */
1440	trace_workqueue_queue_work(req_cpu, pwq, work);
1441
1442	if (WARN_ON(!list_empty(&work->entry))) {
1443		spin_unlock(&pwq->pool->lock);
1444		return;
1445	}
1446
1447	pwq->nr_in_flight[pwq->work_color]++;
1448	work_flags = work_color_to_flags(pwq->work_color);
1449
1450	if (likely(pwq->nr_active < pwq->max_active)) {
 
 
 
 
 
 
 
 
1451		trace_workqueue_activate_work(work);
1452		pwq->nr_active++;
1453		worklist = &pwq->pool->worklist;
1454		if (list_empty(worklist))
1455			pwq->pool->watchdog_ts = jiffies;
1456	} else {
1457		work_flags |= WORK_STRUCT_DELAYED;
1458		worklist = &pwq->delayed_works;
1459	}
1460
1461	insert_work(pwq, work, worklist, work_flags);
1462
1463	spin_unlock(&pwq->pool->lock);
1464}
1465
1466/**
1467 * queue_work_on - queue work on specific cpu
1468 * @cpu: CPU number to execute work on
1469 * @wq: workqueue to use
1470 * @work: work to queue
1471 *
1472 * We queue the work to a specific CPU, the caller must ensure it
1473 * can't go away.
 
 
 
1474 *
1475 * Return: %false if @work was already on a queue, %true otherwise.
1476 */
1477bool queue_work_on(int cpu, struct workqueue_struct *wq,
1478		   struct work_struct *work)
1479{
1480	bool ret = false;
1481	unsigned long flags;
1482
1483	local_irq_save(flags);
1484
1485	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1486		__queue_work(cpu, wq, work);
1487		ret = true;
1488	}
1489
1490	local_irq_restore(flags);
1491	return ret;
1492}
1493EXPORT_SYMBOL(queue_work_on);
1494
1495void delayed_work_timer_fn(unsigned long __data)
 
 
 
 
 
 
 
 
 
1496{
1497	struct delayed_work *dwork = (struct delayed_work *)__data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1498
1499	/* should have been called from irqsafe timer with irq already off */
1500	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1501}
1502EXPORT_SYMBOL(delayed_work_timer_fn);
1503
1504static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1505				struct delayed_work *dwork, unsigned long delay)
1506{
1507	struct timer_list *timer = &dwork->timer;
1508	struct work_struct *work = &dwork->work;
1509
1510	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1511		     timer->data != (unsigned long)dwork);
1512	WARN_ON_ONCE(timer_pending(timer));
1513	WARN_ON_ONCE(!list_empty(&work->entry));
1514
1515	/*
1516	 * If @delay is 0, queue @dwork->work immediately.  This is for
1517	 * both optimization and correctness.  The earliest @timer can
1518	 * expire is on the closest next tick and delayed_work users depend
1519	 * on that there's no such delay when @delay is 0.
1520	 */
1521	if (!delay) {
1522		__queue_work(cpu, wq, &dwork->work);
1523		return;
1524	}
1525
1526	timer_stats_timer_set_start_info(&dwork->timer);
1527
1528	dwork->wq = wq;
1529	dwork->cpu = cpu;
1530	timer->expires = jiffies + delay;
1531
1532	if (unlikely(cpu != WORK_CPU_UNBOUND))
 
 
 
 
1533		add_timer_on(timer, cpu);
1534	else
1535		add_timer(timer);
 
 
 
 
1536}
1537
1538/**
1539 * queue_delayed_work_on - queue work on specific CPU after delay
1540 * @cpu: CPU number to execute work on
1541 * @wq: workqueue to use
1542 * @dwork: work to queue
1543 * @delay: number of jiffies to wait before queueing
1544 *
1545 * Return: %false if @work was already on a queue, %true otherwise.  If
1546 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1547 * execution.
1548 */
1549bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1550			   struct delayed_work *dwork, unsigned long delay)
1551{
1552	struct work_struct *work = &dwork->work;
1553	bool ret = false;
1554	unsigned long flags;
1555
1556	/* read the comment in __queue_work() */
1557	local_irq_save(flags);
1558
1559	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1560		__queue_delayed_work(cpu, wq, dwork, delay);
1561		ret = true;
1562	}
1563
1564	local_irq_restore(flags);
1565	return ret;
1566}
1567EXPORT_SYMBOL(queue_delayed_work_on);
1568
1569/**
1570 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1571 * @cpu: CPU number to execute work on
1572 * @wq: workqueue to use
1573 * @dwork: work to queue
1574 * @delay: number of jiffies to wait before queueing
1575 *
1576 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1577 * modify @dwork's timer so that it expires after @delay.  If @delay is
1578 * zero, @work is guaranteed to be scheduled immediately regardless of its
1579 * current state.
1580 *
1581 * Return: %false if @dwork was idle and queued, %true if @dwork was
1582 * pending and its timer was modified.
1583 *
1584 * This function is safe to call from any context including IRQ handler.
1585 * See try_to_grab_pending() for details.
1586 */
1587bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1588			 struct delayed_work *dwork, unsigned long delay)
1589{
1590	unsigned long flags;
1591	int ret;
1592
1593	do {
1594		ret = try_to_grab_pending(&dwork->work, true, &flags);
 
1595	} while (unlikely(ret == -EAGAIN));
1596
1597	if (likely(ret >= 0)) {
1598		__queue_delayed_work(cpu, wq, dwork, delay);
1599		local_irq_restore(flags);
1600	}
1601
1602	/* -ENOENT from try_to_grab_pending() becomes %true */
1603	return ret;
1604}
1605EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1606
1607/**
1608 * worker_enter_idle - enter idle state
1609 * @worker: worker which is entering idle state
1610 *
1611 * @worker is entering idle state.  Update stats and idle timer if
1612 * necessary.
1613 *
1614 * LOCKING:
1615 * spin_lock_irq(pool->lock).
1616 */
1617static void worker_enter_idle(struct worker *worker)
1618{
1619	struct worker_pool *pool = worker->pool;
1620
1621	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1622	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1623			 (worker->hentry.next || worker->hentry.pprev)))
1624		return;
1625
1626	/* can't use worker_set_flags(), also called from create_worker() */
1627	worker->flags |= WORKER_IDLE;
1628	pool->nr_idle++;
1629	worker->last_active = jiffies;
1630
1631	/* idle_list is LIFO */
1632	list_add(&worker->entry, &pool->idle_list);
1633
1634	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1635		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1636
1637	/*
1638	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1639	 * pool->lock between setting %WORKER_UNBOUND and zapping
1640	 * nr_running, the warning may trigger spuriously.  Check iff
1641	 * unbind is not in progress.
1642	 */
1643	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1644		     pool->nr_workers == pool->nr_idle &&
1645		     atomic_read(&pool->nr_running));
1646}
1647
1648/**
1649 * worker_leave_idle - leave idle state
1650 * @worker: worker which is leaving idle state
1651 *
1652 * @worker is leaving idle state.  Update stats.
1653 *
1654 * LOCKING:
1655 * spin_lock_irq(pool->lock).
 
 
1656 */
1657static void worker_leave_idle(struct worker *worker)
1658{
1659	struct worker_pool *pool = worker->pool;
1660
1661	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1662		return;
1663	worker_clr_flags(worker, WORKER_IDLE);
1664	pool->nr_idle--;
1665	list_del_init(&worker->entry);
 
 
1666}
 
1667
1668static struct worker *alloc_worker(int node)
1669{
1670	struct worker *worker;
1671
1672	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1673	if (worker) {
1674		INIT_LIST_HEAD(&worker->entry);
1675		INIT_LIST_HEAD(&worker->scheduled);
1676		INIT_LIST_HEAD(&worker->node);
1677		/* on creation a worker is in !idle && prep state */
1678		worker->flags = WORKER_PREP;
1679	}
1680	return worker;
1681}
1682
 
 
 
 
 
 
 
 
1683/**
1684 * worker_attach_to_pool() - attach a worker to a pool
1685 * @worker: worker to be attached
1686 * @pool: the target pool
1687 *
1688 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1689 * cpu-binding of @worker are kept coordinated with the pool across
1690 * cpu-[un]hotplugs.
1691 */
1692static void worker_attach_to_pool(struct worker *worker,
1693				   struct worker_pool *pool)
1694{
1695	mutex_lock(&pool->attach_mutex);
1696
1697	/*
1698	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1699	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
 
1700	 */
1701	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1702
1703	/*
1704	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1705	 * stable across this function.  See the comments above the
1706	 * flag definition for details.
1707	 */
1708	if (pool->flags & POOL_DISASSOCIATED)
1709		worker->flags |= WORKER_UNBOUND;
 
 
 
 
 
 
 
1710
1711	list_add_tail(&worker->node, &pool->workers);
 
1712
1713	mutex_unlock(&pool->attach_mutex);
1714}
1715
1716/**
1717 * worker_detach_from_pool() - detach a worker from its pool
1718 * @worker: worker which is attached to its pool
1719 * @pool: the pool @worker is attached to
1720 *
1721 * Undo the attaching which had been done in worker_attach_to_pool().  The
1722 * caller worker shouldn't access to the pool after detached except it has
1723 * other reference to the pool.
1724 */
1725static void worker_detach_from_pool(struct worker *worker,
1726				    struct worker_pool *pool)
1727{
 
1728	struct completion *detach_completion = NULL;
1729
1730	mutex_lock(&pool->attach_mutex);
 
 
 
 
 
1731	list_del(&worker->node);
1732	if (list_empty(&pool->workers))
 
 
1733		detach_completion = pool->detach_completion;
1734	mutex_unlock(&pool->attach_mutex);
1735
1736	/* clear leftover flags without pool->lock after it is detached */
1737	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1738
1739	if (detach_completion)
1740		complete(detach_completion);
1741}
1742
1743/**
1744 * create_worker - create a new workqueue worker
1745 * @pool: pool the new worker will belong to
1746 *
1747 * Create and start a new worker which is attached to @pool.
1748 *
1749 * CONTEXT:
1750 * Might sleep.  Does GFP_KERNEL allocations.
1751 *
1752 * Return:
1753 * Pointer to the newly created worker.
1754 */
1755static struct worker *create_worker(struct worker_pool *pool)
1756{
1757	struct worker *worker = NULL;
1758	int id = -1;
1759	char id_buf[16];
1760
1761	/* ID is needed to determine kthread name */
1762	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1763	if (id < 0)
1764		goto fail;
 
 
 
1765
1766	worker = alloc_worker(pool->node);
1767	if (!worker)
 
1768		goto fail;
 
1769
1770	worker->pool = pool;
1771	worker->id = id;
1772
1773	if (pool->cpu >= 0)
1774		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1775			 pool->attrs->nice < 0  ? "H" : "");
1776	else
1777		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
 
1778
1779	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1780					      "kworker/%s", id_buf);
1781	if (IS_ERR(worker->task))
1782		goto fail;
 
 
 
 
 
 
 
 
1783
1784	set_user_nice(worker->task, pool->attrs->nice);
1785	kthread_bind_mask(worker->task, pool->attrs->cpumask);
 
1786
1787	/* successful, attach the worker to the pool */
1788	worker_attach_to_pool(worker, pool);
1789
1790	/* start the newly created worker */
1791	spin_lock_irq(&pool->lock);
 
1792	worker->pool->nr_workers++;
1793	worker_enter_idle(worker);
1794	wake_up_process(worker->task);
1795	spin_unlock_irq(&pool->lock);
 
 
 
 
 
 
 
 
1796
1797	return worker;
1798
1799fail:
1800	if (id >= 0)
1801		ida_simple_remove(&pool->worker_ida, id);
1802	kfree(worker);
1803	return NULL;
1804}
1805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1806/**
1807 * destroy_worker - destroy a workqueue worker
1808 * @worker: worker to be destroyed
 
1809 *
1810 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1811 * be idle.
1812 *
1813 * CONTEXT:
1814 * spin_lock_irq(pool->lock).
1815 */
1816static void destroy_worker(struct worker *worker)
1817{
1818	struct worker_pool *pool = worker->pool;
1819
1820	lockdep_assert_held(&pool->lock);
 
1821
1822	/* sanity check frenzy */
1823	if (WARN_ON(worker->current_work) ||
1824	    WARN_ON(!list_empty(&worker->scheduled)) ||
1825	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1826		return;
1827
1828	pool->nr_workers--;
1829	pool->nr_idle--;
1830
1831	list_del_init(&worker->entry);
1832	worker->flags |= WORKER_DIE;
1833	wake_up_process(worker->task);
 
 
1834}
1835
1836static void idle_worker_timeout(unsigned long __pool)
 
 
 
 
 
 
 
 
 
 
1837{
1838	struct worker_pool *pool = (void *)__pool;
 
 
 
 
1839
1840	spin_lock_irq(&pool->lock);
1841
1842	while (too_many_workers(pool)) {
1843		struct worker *worker;
1844		unsigned long expires;
1845
1846		/* idle_list is kept in LIFO order, check the last one */
1847		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1848		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1849
1850		if (time_before(jiffies, expires)) {
1851			mod_timer(&pool->idle_timer, expires);
1852			break;
1853		}
1854
1855		destroy_worker(worker);
1856	}
1857
1858	spin_unlock_irq(&pool->lock);
 
 
1859}
1860
1861static void send_mayday(struct work_struct *work)
1862{
1863	struct pool_workqueue *pwq = get_work_pwq(work);
1864	struct workqueue_struct *wq = pwq->wq;
1865
1866	lockdep_assert_held(&wq_mayday_lock);
1867
1868	if (!wq->rescuer)
1869		return;
1870
1871	/* mayday mayday mayday */
1872	if (list_empty(&pwq->mayday_node)) {
1873		/*
1874		 * If @pwq is for an unbound wq, its base ref may be put at
1875		 * any time due to an attribute change.  Pin @pwq until the
1876		 * rescuer is done with it.
1877		 */
1878		get_pwq(pwq);
1879		list_add_tail(&pwq->mayday_node, &wq->maydays);
1880		wake_up_process(wq->rescuer->task);
 
1881	}
1882}
1883
1884static void pool_mayday_timeout(unsigned long __pool)
1885{
1886	struct worker_pool *pool = (void *)__pool;
1887	struct work_struct *work;
1888
1889	spin_lock_irq(&pool->lock);
1890	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1891
1892	if (need_to_create_worker(pool)) {
1893		/*
1894		 * We've been trying to create a new worker but
1895		 * haven't been successful.  We might be hitting an
1896		 * allocation deadlock.  Send distress signals to
1897		 * rescuers.
1898		 */
1899		list_for_each_entry(work, &pool->worklist, entry)
1900			send_mayday(work);
1901	}
1902
1903	spin_unlock(&wq_mayday_lock);
1904	spin_unlock_irq(&pool->lock);
1905
1906	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1907}
1908
1909/**
1910 * maybe_create_worker - create a new worker if necessary
1911 * @pool: pool to create a new worker for
1912 *
1913 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1914 * have at least one idle worker on return from this function.  If
1915 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1916 * sent to all rescuers with works scheduled on @pool to resolve
1917 * possible allocation deadlock.
1918 *
1919 * On return, need_to_create_worker() is guaranteed to be %false and
1920 * may_start_working() %true.
1921 *
1922 * LOCKING:
1923 * spin_lock_irq(pool->lock) which may be released and regrabbed
1924 * multiple times.  Does GFP_KERNEL allocations.  Called only from
1925 * manager.
1926 */
1927static void maybe_create_worker(struct worker_pool *pool)
1928__releases(&pool->lock)
1929__acquires(&pool->lock)
1930{
1931restart:
1932	spin_unlock_irq(&pool->lock);
1933
1934	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1935	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1936
1937	while (true) {
1938		if (create_worker(pool) || !need_to_create_worker(pool))
1939			break;
1940
1941		schedule_timeout_interruptible(CREATE_COOLDOWN);
1942
1943		if (!need_to_create_worker(pool))
1944			break;
1945	}
1946
1947	del_timer_sync(&pool->mayday_timer);
1948	spin_lock_irq(&pool->lock);
1949	/*
1950	 * This is necessary even after a new worker was just successfully
1951	 * created as @pool->lock was dropped and the new worker might have
1952	 * already become busy.
1953	 */
1954	if (need_to_create_worker(pool))
1955		goto restart;
1956}
1957
1958/**
1959 * manage_workers - manage worker pool
1960 * @worker: self
1961 *
1962 * Assume the manager role and manage the worker pool @worker belongs
1963 * to.  At any given time, there can be only zero or one manager per
1964 * pool.  The exclusion is handled automatically by this function.
1965 *
1966 * The caller can safely start processing works on false return.  On
1967 * true return, it's guaranteed that need_to_create_worker() is false
1968 * and may_start_working() is true.
1969 *
1970 * CONTEXT:
1971 * spin_lock_irq(pool->lock) which may be released and regrabbed
1972 * multiple times.  Does GFP_KERNEL allocations.
1973 *
1974 * Return:
1975 * %false if the pool doesn't need management and the caller can safely
1976 * start processing works, %true if management function was performed and
1977 * the conditions that the caller verified before calling the function may
1978 * no longer be true.
1979 */
1980static bool manage_workers(struct worker *worker)
1981{
1982	struct worker_pool *pool = worker->pool;
1983
1984	/*
1985	 * Anyone who successfully grabs manager_arb wins the arbitration
1986	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
1987	 * failure while holding pool->lock reliably indicates that someone
1988	 * else is managing the pool and the worker which failed trylock
1989	 * can proceed to executing work items.  This means that anyone
1990	 * grabbing manager_arb is responsible for actually performing
1991	 * manager duties.  If manager_arb is grabbed and released without
1992	 * actual management, the pool may stall indefinitely.
1993	 */
1994	if (!mutex_trylock(&pool->manager_arb))
1995		return false;
 
 
1996	pool->manager = worker;
1997
1998	maybe_create_worker(pool);
1999
2000	pool->manager = NULL;
2001	mutex_unlock(&pool->manager_arb);
 
2002	return true;
2003}
2004
2005/**
2006 * process_one_work - process single work
2007 * @worker: self
2008 * @work: work to process
2009 *
2010 * Process @work.  This function contains all the logics necessary to
2011 * process a single work including synchronization against and
2012 * interaction with other workers on the same cpu, queueing and
2013 * flushing.  As long as context requirement is met, any worker can
2014 * call this function to process a work.
2015 *
2016 * CONTEXT:
2017 * spin_lock_irq(pool->lock) which is released and regrabbed.
2018 */
2019static void process_one_work(struct worker *worker, struct work_struct *work)
2020__releases(&pool->lock)
2021__acquires(&pool->lock)
2022{
2023	struct pool_workqueue *pwq = get_work_pwq(work);
2024	struct worker_pool *pool = worker->pool;
2025	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2026	int work_color;
2027	struct worker *collision;
2028#ifdef CONFIG_LOCKDEP
2029	/*
2030	 * It is permissible to free the struct work_struct from
2031	 * inside the function that is called from it, this we need to
2032	 * take into account for lockdep too.  To avoid bogus "held
2033	 * lock freed" warnings as well as problems when looking into
2034	 * work->lockdep_map, make a copy and use that here.
2035	 */
2036	struct lockdep_map lockdep_map;
2037
2038	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2039#endif
2040	/* ensure we're on the correct CPU */
2041	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2042		     raw_smp_processor_id() != pool->cpu);
2043
2044	/*
2045	 * A single work shouldn't be executed concurrently by
2046	 * multiple workers on a single cpu.  Check whether anyone is
2047	 * already processing the work.  If so, defer the work to the
2048	 * currently executing one.
2049	 */
2050	collision = find_worker_executing_work(pool, work);
2051	if (unlikely(collision)) {
2052		move_linked_works(work, &collision->scheduled, NULL);
2053		return;
2054	}
2055
2056	/* claim and dequeue */
2057	debug_work_deactivate(work);
2058	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2059	worker->current_work = work;
2060	worker->current_func = work->func;
2061	worker->current_pwq = pwq;
2062	work_color = get_work_color(work);
 
 
 
 
 
 
 
 
 
2063
2064	list_del_init(&work->entry);
2065
2066	/*
2067	 * CPU intensive works don't participate in concurrency management.
2068	 * They're the scheduler's responsibility.  This takes @worker out
2069	 * of concurrency management and the next code block will chain
2070	 * execution of the pending work items.
2071	 */
2072	if (unlikely(cpu_intensive))
2073		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2074
2075	/*
2076	 * Wake up another worker if necessary.  The condition is always
2077	 * false for normal per-cpu workers since nr_running would always
2078	 * be >= 1 at this point.  This is used to chain execution of the
2079	 * pending work items for WORKER_NOT_RUNNING workers such as the
2080	 * UNBOUND and CPU_INTENSIVE ones.
2081	 */
2082	if (need_more_worker(pool))
2083		wake_up_worker(pool);
2084
2085	/*
2086	 * Record the last pool and clear PENDING which should be the last
2087	 * update to @work.  Also, do this inside @pool->lock so that
2088	 * PENDING and queued state changes happen together while IRQ is
2089	 * disabled.
2090	 */
2091	set_work_pool_and_clear_pending(work, pool->id);
2092
2093	spin_unlock_irq(&pool->lock);
 
2094
2095	lock_map_acquire_read(&pwq->wq->lockdep_map);
 
 
 
 
2096	lock_map_acquire(&lockdep_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097	trace_workqueue_execute_start(work);
2098	worker->current_func(work);
2099	/*
2100	 * While we must be careful to not use "work" after this, the trace
2101	 * point will only record its address.
2102	 */
2103	trace_workqueue_execute_end(work);
 
2104	lock_map_release(&lockdep_map);
2105	lock_map_release(&pwq->wq->lockdep_map);
 
2106
2107	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2108		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2109		       "     last function: %pf\n",
2110		       current->comm, preempt_count(), task_pid_nr(current),
 
 
 
 
2111		       worker->current_func);
2112		debug_show_held_locks(current);
2113		dump_stack();
2114	}
2115
2116	/*
2117	 * The following prevents a kworker from hogging CPU on !PREEMPT
2118	 * kernels, where a requeueing work item waiting for something to
2119	 * happen could deadlock with stop_machine as such work item could
2120	 * indefinitely requeue itself while all other CPUs are trapped in
2121	 * stop_machine. At the same time, report a quiescent RCU state so
2122	 * the same condition doesn't freeze RCU.
2123	 */
2124	cond_resched_rcu_qs();
 
2125
2126	spin_lock_irq(&pool->lock);
 
 
 
 
 
 
 
2127
2128	/* clear cpu intensive status */
2129	if (unlikely(cpu_intensive))
2130		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2131
2132	/* we're done with it, release */
2133	hash_del(&worker->hentry);
2134	worker->current_work = NULL;
2135	worker->current_func = NULL;
2136	worker->current_pwq = NULL;
2137	worker->desc_valid = false;
2138	pwq_dec_nr_in_flight(pwq, work_color);
 
 
2139}
2140
2141/**
2142 * process_scheduled_works - process scheduled works
2143 * @worker: self
2144 *
2145 * Process all scheduled works.  Please note that the scheduled list
2146 * may change while processing a work, so this function repeatedly
2147 * fetches a work from the top and executes it.
2148 *
2149 * CONTEXT:
2150 * spin_lock_irq(pool->lock) which may be released and regrabbed
2151 * multiple times.
2152 */
2153static void process_scheduled_works(struct worker *worker)
2154{
2155	while (!list_empty(&worker->scheduled)) {
2156		struct work_struct *work = list_first_entry(&worker->scheduled,
2157						struct work_struct, entry);
 
 
 
 
 
 
2158		process_one_work(worker, work);
2159	}
2160}
2161
 
 
 
 
 
 
 
 
 
 
2162/**
2163 * worker_thread - the worker thread function
2164 * @__worker: self
2165 *
2166 * The worker thread function.  All workers belong to a worker_pool -
2167 * either a per-cpu one or dynamic unbound one.  These workers process all
2168 * work items regardless of their specific target workqueue.  The only
2169 * exception is work items which belong to workqueues with a rescuer which
2170 * will be explained in rescuer_thread().
2171 *
2172 * Return: 0
2173 */
2174static int worker_thread(void *__worker)
2175{
2176	struct worker *worker = __worker;
2177	struct worker_pool *pool = worker->pool;
2178
2179	/* tell the scheduler that this is a workqueue worker */
2180	worker->task->flags |= PF_WQ_WORKER;
2181woke_up:
2182	spin_lock_irq(&pool->lock);
2183
2184	/* am I supposed to die? */
2185	if (unlikely(worker->flags & WORKER_DIE)) {
2186		spin_unlock_irq(&pool->lock);
2187		WARN_ON_ONCE(!list_empty(&worker->entry));
2188		worker->task->flags &= ~PF_WQ_WORKER;
2189
2190		set_task_comm(worker->task, "kworker/dying");
2191		ida_simple_remove(&pool->worker_ida, worker->id);
2192		worker_detach_from_pool(worker, pool);
 
2193		kfree(worker);
2194		return 0;
2195	}
2196
2197	worker_leave_idle(worker);
2198recheck:
2199	/* no more worker necessary? */
2200	if (!need_more_worker(pool))
2201		goto sleep;
2202
2203	/* do we need to manage? */
2204	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2205		goto recheck;
2206
2207	/*
2208	 * ->scheduled list can only be filled while a worker is
2209	 * preparing to process a work or actually processing it.
2210	 * Make sure nobody diddled with it while I was sleeping.
2211	 */
2212	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2213
2214	/*
2215	 * Finish PREP stage.  We're guaranteed to have at least one idle
2216	 * worker or that someone else has already assumed the manager
2217	 * role.  This is where @worker starts participating in concurrency
2218	 * management if applicable and concurrency management is restored
2219	 * after being rebound.  See rebind_workers() for details.
2220	 */
2221	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2222
2223	do {
2224		struct work_struct *work =
2225			list_first_entry(&pool->worklist,
2226					 struct work_struct, entry);
2227
2228		pool->watchdog_ts = jiffies;
2229
2230		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2231			/* optimization path, not strictly necessary */
2232			process_one_work(worker, work);
2233			if (unlikely(!list_empty(&worker->scheduled)))
2234				process_scheduled_works(worker);
2235		} else {
2236			move_linked_works(work, &worker->scheduled, NULL);
2237			process_scheduled_works(worker);
2238		}
2239	} while (keep_working(pool));
2240
2241	worker_set_flags(worker, WORKER_PREP);
2242sleep:
2243	/*
2244	 * pool->lock is held and there's no work to process and no need to
2245	 * manage, sleep.  Workers are woken up only while holding
2246	 * pool->lock or from local cpu, so setting the current state
2247	 * before releasing pool->lock is enough to prevent losing any
2248	 * event.
2249	 */
2250	worker_enter_idle(worker);
2251	__set_current_state(TASK_INTERRUPTIBLE);
2252	spin_unlock_irq(&pool->lock);
2253	schedule();
2254	goto woke_up;
2255}
2256
2257/**
2258 * rescuer_thread - the rescuer thread function
2259 * @__rescuer: self
2260 *
2261 * Workqueue rescuer thread function.  There's one rescuer for each
2262 * workqueue which has WQ_MEM_RECLAIM set.
2263 *
2264 * Regular work processing on a pool may block trying to create a new
2265 * worker which uses GFP_KERNEL allocation which has slight chance of
2266 * developing into deadlock if some works currently on the same queue
2267 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2268 * the problem rescuer solves.
2269 *
2270 * When such condition is possible, the pool summons rescuers of all
2271 * workqueues which have works queued on the pool and let them process
2272 * those works so that forward progress can be guaranteed.
2273 *
2274 * This should happen rarely.
2275 *
2276 * Return: 0
2277 */
2278static int rescuer_thread(void *__rescuer)
2279{
2280	struct worker *rescuer = __rescuer;
2281	struct workqueue_struct *wq = rescuer->rescue_wq;
2282	struct list_head *scheduled = &rescuer->scheduled;
2283	bool should_stop;
2284
2285	set_user_nice(current, RESCUER_NICE_LEVEL);
2286
2287	/*
2288	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2289	 * doesn't participate in concurrency management.
2290	 */
2291	rescuer->task->flags |= PF_WQ_WORKER;
2292repeat:
2293	set_current_state(TASK_INTERRUPTIBLE);
2294
2295	/*
2296	 * By the time the rescuer is requested to stop, the workqueue
2297	 * shouldn't have any work pending, but @wq->maydays may still have
2298	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2299	 * all the work items before the rescuer got to them.  Go through
2300	 * @wq->maydays processing before acting on should_stop so that the
2301	 * list is always empty on exit.
2302	 */
2303	should_stop = kthread_should_stop();
2304
2305	/* see whether any pwq is asking for help */
2306	spin_lock_irq(&wq_mayday_lock);
2307
2308	while (!list_empty(&wq->maydays)) {
2309		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2310					struct pool_workqueue, mayday_node);
2311		struct worker_pool *pool = pwq->pool;
2312		struct work_struct *work, *n;
2313		bool first = true;
2314
2315		__set_current_state(TASK_RUNNING);
2316		list_del_init(&pwq->mayday_node);
2317
2318		spin_unlock_irq(&wq_mayday_lock);
2319
2320		worker_attach_to_pool(rescuer, pool);
2321
2322		spin_lock_irq(&pool->lock);
2323		rescuer->pool = pool;
2324
2325		/*
2326		 * Slurp in all works issued via this workqueue and
2327		 * process'em.
2328		 */
2329		WARN_ON_ONCE(!list_empty(scheduled));
2330		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2331			if (get_work_pwq(work) == pwq) {
2332				if (first)
2333					pool->watchdog_ts = jiffies;
2334				move_linked_works(work, scheduled, &n);
2335			}
2336			first = false;
2337		}
2338
2339		if (!list_empty(scheduled)) {
2340			process_scheduled_works(rescuer);
2341
2342			/*
2343			 * The above execution of rescued work items could
2344			 * have created more to rescue through
2345			 * pwq_activate_first_delayed() or chained
2346			 * queueing.  Let's put @pwq back on mayday list so
2347			 * that such back-to-back work items, which may be
2348			 * being used to relieve memory pressure, don't
2349			 * incur MAYDAY_INTERVAL delay inbetween.
2350			 */
2351			if (need_to_create_worker(pool)) {
2352				spin_lock(&wq_mayday_lock);
2353				get_pwq(pwq);
2354				list_move_tail(&pwq->mayday_node, &wq->maydays);
2355				spin_unlock(&wq_mayday_lock);
 
 
 
 
 
 
2356			}
2357		}
2358
2359		/*
2360		 * Put the reference grabbed by send_mayday().  @pool won't
2361		 * go away while we're still attached to it.
2362		 */
2363		put_pwq(pwq);
2364
2365		/*
2366		 * Leave this pool.  If need_more_worker() is %true, notify a
2367		 * regular worker; otherwise, we end up with 0 concurrency
2368		 * and stalling the execution.
2369		 */
2370		if (need_more_worker(pool))
2371			wake_up_worker(pool);
2372
2373		rescuer->pool = NULL;
2374		spin_unlock_irq(&pool->lock);
2375
2376		worker_detach_from_pool(rescuer, pool);
2377
2378		spin_lock_irq(&wq_mayday_lock);
2379	}
2380
2381	spin_unlock_irq(&wq_mayday_lock);
2382
2383	if (should_stop) {
2384		__set_current_state(TASK_RUNNING);
2385		rescuer->task->flags &= ~PF_WQ_WORKER;
2386		return 0;
2387	}
2388
2389	/* rescuers should never participate in concurrency management */
2390	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2391	schedule();
2392	goto repeat;
2393}
2394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2395/**
2396 * check_flush_dependency - check for flush dependency sanity
2397 * @target_wq: workqueue being flushed
2398 * @target_work: work item being flushed (NULL for workqueue flushes)
2399 *
2400 * %current is trying to flush the whole @target_wq or @target_work on it.
2401 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2402 * reclaiming memory or running on a workqueue which doesn't have
2403 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2404 * a deadlock.
2405 */
2406static void check_flush_dependency(struct workqueue_struct *target_wq,
2407				   struct work_struct *target_work)
2408{
2409	work_func_t target_func = target_work ? target_work->func : NULL;
2410	struct worker *worker;
2411
2412	if (target_wq->flags & WQ_MEM_RECLAIM)
2413		return;
2414
2415	worker = current_wq_worker();
2416
2417	WARN_ONCE(current->flags & PF_MEMALLOC,
2418		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2419		  current->pid, current->comm, target_wq->name, target_func);
2420	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2421			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2422		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2423		  worker->current_pwq->wq->name, worker->current_func,
2424		  target_wq->name, target_func);
2425}
2426
2427struct wq_barrier {
2428	struct work_struct	work;
2429	struct completion	done;
2430	struct task_struct	*task;	/* purely informational */
2431};
2432
2433static void wq_barrier_func(struct work_struct *work)
2434{
2435	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2436	complete(&barr->done);
2437}
2438
2439/**
2440 * insert_wq_barrier - insert a barrier work
2441 * @pwq: pwq to insert barrier into
2442 * @barr: wq_barrier to insert
2443 * @target: target work to attach @barr to
2444 * @worker: worker currently executing @target, NULL if @target is not executing
2445 *
2446 * @barr is linked to @target such that @barr is completed only after
2447 * @target finishes execution.  Please note that the ordering
2448 * guarantee is observed only with respect to @target and on the local
2449 * cpu.
2450 *
2451 * Currently, a queued barrier can't be canceled.  This is because
2452 * try_to_grab_pending() can't determine whether the work to be
2453 * grabbed is at the head of the queue and thus can't clear LINKED
2454 * flag of the previous work while there must be a valid next work
2455 * after a work with LINKED flag set.
2456 *
2457 * Note that when @worker is non-NULL, @target may be modified
2458 * underneath us, so we can't reliably determine pwq from @target.
2459 *
2460 * CONTEXT:
2461 * spin_lock_irq(pool->lock).
2462 */
2463static void insert_wq_barrier(struct pool_workqueue *pwq,
2464			      struct wq_barrier *barr,
2465			      struct work_struct *target, struct worker *worker)
2466{
 
 
 
2467	struct list_head *head;
2468	unsigned int linked = 0;
2469
2470	/*
2471	 * debugobject calls are safe here even with pool->lock locked
2472	 * as we know for sure that this will not trigger any of the
2473	 * checks and call back into the fixup functions where we
2474	 * might deadlock.
 
 
 
 
2475	 */
2476	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
 
2477	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2478	init_completion(&barr->done);
 
 
2479	barr->task = current;
2480
 
 
 
2481	/*
2482	 * If @target is currently being executed, schedule the
2483	 * barrier to the worker; otherwise, put it after @target.
2484	 */
2485	if (worker)
2486		head = worker->scheduled.next;
2487	else {
 
2488		unsigned long *bits = work_data_bits(target);
2489
2490		head = target->entry.next;
2491		/* there can already be other linked works, inherit and set */
2492		linked = *bits & WORK_STRUCT_LINKED;
 
2493		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2494	}
2495
2496	debug_work_activate(&barr->work);
2497	insert_work(pwq, &barr->work, head,
2498		    work_color_to_flags(WORK_NO_COLOR) | linked);
 
2499}
2500
2501/**
2502 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2503 * @wq: workqueue being flushed
2504 * @flush_color: new flush color, < 0 for no-op
2505 * @work_color: new work color, < 0 for no-op
2506 *
2507 * Prepare pwqs for workqueue flushing.
2508 *
2509 * If @flush_color is non-negative, flush_color on all pwqs should be
2510 * -1.  If no pwq has in-flight commands at the specified color, all
2511 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2512 * has in flight commands, its pwq->flush_color is set to
2513 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2514 * wakeup logic is armed and %true is returned.
2515 *
2516 * The caller should have initialized @wq->first_flusher prior to
2517 * calling this function with non-negative @flush_color.  If
2518 * @flush_color is negative, no flush color update is done and %false
2519 * is returned.
2520 *
2521 * If @work_color is non-negative, all pwqs should have the same
2522 * work_color which is previous to @work_color and all will be
2523 * advanced to @work_color.
2524 *
2525 * CONTEXT:
2526 * mutex_lock(wq->mutex).
2527 *
2528 * Return:
2529 * %true if @flush_color >= 0 and there's something to flush.  %false
2530 * otherwise.
2531 */
2532static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2533				      int flush_color, int work_color)
2534{
2535	bool wait = false;
2536	struct pool_workqueue *pwq;
2537
2538	if (flush_color >= 0) {
2539		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2540		atomic_set(&wq->nr_pwqs_to_flush, 1);
2541	}
2542
2543	for_each_pwq(pwq, wq) {
2544		struct worker_pool *pool = pwq->pool;
2545
2546		spin_lock_irq(&pool->lock);
2547
2548		if (flush_color >= 0) {
2549			WARN_ON_ONCE(pwq->flush_color != -1);
2550
2551			if (pwq->nr_in_flight[flush_color]) {
2552				pwq->flush_color = flush_color;
2553				atomic_inc(&wq->nr_pwqs_to_flush);
2554				wait = true;
2555			}
2556		}
2557
2558		if (work_color >= 0) {
2559			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2560			pwq->work_color = work_color;
2561		}
2562
2563		spin_unlock_irq(&pool->lock);
2564	}
2565
2566	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2567		complete(&wq->first_flusher->done);
2568
2569	return wait;
2570}
2571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2572/**
2573 * flush_workqueue - ensure that any scheduled work has run to completion.
2574 * @wq: workqueue to flush
2575 *
2576 * This function sleeps until all work items which were queued on entry
2577 * have finished execution, but it is not livelocked by new incoming ones.
2578 */
2579void flush_workqueue(struct workqueue_struct *wq)
2580{
2581	struct wq_flusher this_flusher = {
2582		.list = LIST_HEAD_INIT(this_flusher.list),
2583		.flush_color = -1,
2584		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2585	};
2586	int next_color;
2587
2588	if (WARN_ON(!wq_online))
2589		return;
2590
2591	lock_map_acquire(&wq->lockdep_map);
2592	lock_map_release(&wq->lockdep_map);
2593
2594	mutex_lock(&wq->mutex);
2595
2596	/*
2597	 * Start-to-wait phase
2598	 */
2599	next_color = work_next_color(wq->work_color);
2600
2601	if (next_color != wq->flush_color) {
2602		/*
2603		 * Color space is not full.  The current work_color
2604		 * becomes our flush_color and work_color is advanced
2605		 * by one.
2606		 */
2607		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2608		this_flusher.flush_color = wq->work_color;
2609		wq->work_color = next_color;
2610
2611		if (!wq->first_flusher) {
2612			/* no flush in progress, become the first flusher */
2613			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2614
2615			wq->first_flusher = &this_flusher;
2616
2617			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2618						       wq->work_color)) {
2619				/* nothing to flush, done */
2620				wq->flush_color = next_color;
2621				wq->first_flusher = NULL;
2622				goto out_unlock;
2623			}
2624		} else {
2625			/* wait in queue */
2626			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2627			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2628			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2629		}
2630	} else {
2631		/*
2632		 * Oops, color space is full, wait on overflow queue.
2633		 * The next flush completion will assign us
2634		 * flush_color and transfer to flusher_queue.
2635		 */
2636		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2637	}
2638
2639	check_flush_dependency(wq, NULL);
2640
2641	mutex_unlock(&wq->mutex);
2642
2643	wait_for_completion(&this_flusher.done);
2644
2645	/*
2646	 * Wake-up-and-cascade phase
2647	 *
2648	 * First flushers are responsible for cascading flushes and
2649	 * handling overflow.  Non-first flushers can simply return.
2650	 */
2651	if (wq->first_flusher != &this_flusher)
2652		return;
2653
2654	mutex_lock(&wq->mutex);
2655
2656	/* we might have raced, check again with mutex held */
2657	if (wq->first_flusher != &this_flusher)
2658		goto out_unlock;
2659
2660	wq->first_flusher = NULL;
2661
2662	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2663	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2664
2665	while (true) {
2666		struct wq_flusher *next, *tmp;
2667
2668		/* complete all the flushers sharing the current flush color */
2669		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2670			if (next->flush_color != wq->flush_color)
2671				break;
2672			list_del_init(&next->list);
2673			complete(&next->done);
2674		}
2675
2676		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2677			     wq->flush_color != work_next_color(wq->work_color));
2678
2679		/* this flush_color is finished, advance by one */
2680		wq->flush_color = work_next_color(wq->flush_color);
2681
2682		/* one color has been freed, handle overflow queue */
2683		if (!list_empty(&wq->flusher_overflow)) {
2684			/*
2685			 * Assign the same color to all overflowed
2686			 * flushers, advance work_color and append to
2687			 * flusher_queue.  This is the start-to-wait
2688			 * phase for these overflowed flushers.
2689			 */
2690			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2691				tmp->flush_color = wq->work_color;
2692
2693			wq->work_color = work_next_color(wq->work_color);
2694
2695			list_splice_tail_init(&wq->flusher_overflow,
2696					      &wq->flusher_queue);
2697			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2698		}
2699
2700		if (list_empty(&wq->flusher_queue)) {
2701			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2702			break;
2703		}
2704
2705		/*
2706		 * Need to flush more colors.  Make the next flusher
2707		 * the new first flusher and arm pwqs.
2708		 */
2709		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2710		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2711
2712		list_del_init(&next->list);
2713		wq->first_flusher = next;
2714
2715		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2716			break;
2717
2718		/*
2719		 * Meh... this color is already done, clear first
2720		 * flusher and repeat cascading.
2721		 */
2722		wq->first_flusher = NULL;
2723	}
2724
2725out_unlock:
2726	mutex_unlock(&wq->mutex);
2727}
2728EXPORT_SYMBOL(flush_workqueue);
2729
2730/**
2731 * drain_workqueue - drain a workqueue
2732 * @wq: workqueue to drain
2733 *
2734 * Wait until the workqueue becomes empty.  While draining is in progress,
2735 * only chain queueing is allowed.  IOW, only currently pending or running
2736 * work items on @wq can queue further work items on it.  @wq is flushed
2737 * repeatedly until it becomes empty.  The number of flushing is determined
2738 * by the depth of chaining and should be relatively short.  Whine if it
2739 * takes too long.
2740 */
2741void drain_workqueue(struct workqueue_struct *wq)
2742{
2743	unsigned int flush_cnt = 0;
2744	struct pool_workqueue *pwq;
2745
2746	/*
2747	 * __queue_work() needs to test whether there are drainers, is much
2748	 * hotter than drain_workqueue() and already looks at @wq->flags.
2749	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2750	 */
2751	mutex_lock(&wq->mutex);
2752	if (!wq->nr_drainers++)
2753		wq->flags |= __WQ_DRAINING;
2754	mutex_unlock(&wq->mutex);
2755reflush:
2756	flush_workqueue(wq);
2757
2758	mutex_lock(&wq->mutex);
2759
2760	for_each_pwq(pwq, wq) {
2761		bool drained;
2762
2763		spin_lock_irq(&pwq->pool->lock);
2764		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2765		spin_unlock_irq(&pwq->pool->lock);
2766
2767		if (drained)
2768			continue;
2769
2770		if (++flush_cnt == 10 ||
2771		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2772			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2773				wq->name, flush_cnt);
2774
2775		mutex_unlock(&wq->mutex);
2776		goto reflush;
2777	}
2778
2779	if (!--wq->nr_drainers)
2780		wq->flags &= ~__WQ_DRAINING;
2781	mutex_unlock(&wq->mutex);
2782}
2783EXPORT_SYMBOL_GPL(drain_workqueue);
2784
2785static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
 
2786{
2787	struct worker *worker = NULL;
2788	struct worker_pool *pool;
2789	struct pool_workqueue *pwq;
 
2790
2791	might_sleep();
2792
2793	local_irq_disable();
2794	pool = get_work_pool(work);
2795	if (!pool) {
2796		local_irq_enable();
2797		return false;
2798	}
2799
2800	spin_lock(&pool->lock);
2801	/* see the comment in try_to_grab_pending() with the same code */
2802	pwq = get_work_pwq(work);
2803	if (pwq) {
2804		if (unlikely(pwq->pool != pool))
2805			goto already_gone;
2806	} else {
2807		worker = find_worker_executing_work(pool, work);
2808		if (!worker)
2809			goto already_gone;
2810		pwq = worker->current_pwq;
2811	}
2812
2813	check_flush_dependency(pwq->wq, work);
 
2814
2815	insert_wq_barrier(pwq, barr, work, worker);
2816	spin_unlock_irq(&pool->lock);
 
 
2817
2818	/*
2819	 * If @max_active is 1 or rescuer is in use, flushing another work
2820	 * item on the same workqueue may lead to deadlock.  Make sure the
2821	 * flusher is not running on the same workqueue by verifying write
2822	 * access.
 
 
 
2823	 */
2824	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2825		lock_map_acquire(&pwq->wq->lockdep_map);
2826	else
2827		lock_map_acquire_read(&pwq->wq->lockdep_map);
2828	lock_map_release(&pwq->wq->lockdep_map);
2829
 
2830	return true;
2831already_gone:
2832	spin_unlock_irq(&pool->lock);
 
2833	return false;
2834}
2835
2836/**
2837 * flush_work - wait for a work to finish executing the last queueing instance
2838 * @work: the work to flush
2839 *
2840 * Wait until @work has finished execution.  @work is guaranteed to be idle
2841 * on return if it hasn't been requeued since flush started.
2842 *
2843 * Return:
2844 * %true if flush_work() waited for the work to finish execution,
2845 * %false if it was already idle.
2846 */
2847bool flush_work(struct work_struct *work)
2848{
2849	struct wq_barrier barr;
2850
2851	if (WARN_ON(!wq_online))
2852		return false;
2853
2854	lock_map_acquire(&work->lockdep_map);
2855	lock_map_release(&work->lockdep_map);
2856
2857	if (start_flush_work(work, &barr)) {
2858		wait_for_completion(&barr.done);
2859		destroy_work_on_stack(&barr.work);
2860		return true;
2861	} else {
2862		return false;
2863	}
2864}
2865EXPORT_SYMBOL_GPL(flush_work);
2866
2867struct cwt_wait {
2868	wait_queue_t		wait;
2869	struct work_struct	*work;
2870};
2871
2872static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2873{
2874	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2875
2876	if (cwait->work != key)
2877		return 0;
2878	return autoremove_wake_function(wait, mode, sync, key);
2879}
2880
2881static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2882{
2883	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2884	unsigned long flags;
2885	int ret;
2886
2887	do {
2888		ret = try_to_grab_pending(work, is_dwork, &flags);
2889		/*
2890		 * If someone else is already canceling, wait for it to
2891		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2892		 * because we may get scheduled between @work's completion
2893		 * and the other canceling task resuming and clearing
2894		 * CANCELING - flush_work() will return false immediately
2895		 * as @work is no longer busy, try_to_grab_pending() will
2896		 * return -ENOENT as @work is still being canceled and the
2897		 * other canceling task won't be able to clear CANCELING as
2898		 * we're hogging the CPU.
2899		 *
2900		 * Let's wait for completion using a waitqueue.  As this
2901		 * may lead to the thundering herd problem, use a custom
2902		 * wake function which matches @work along with exclusive
2903		 * wait and wakeup.
2904		 */
2905		if (unlikely(ret == -ENOENT)) {
2906			struct cwt_wait cwait;
2907
2908			init_wait(&cwait.wait);
2909			cwait.wait.func = cwt_wakefn;
2910			cwait.work = work;
2911
2912			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2913						  TASK_UNINTERRUPTIBLE);
2914			if (work_is_canceling(work))
2915				schedule();
2916			finish_wait(&cancel_waitq, &cwait.wait);
2917		}
2918	} while (unlikely(ret < 0));
2919
2920	/* tell other tasks trying to grab @work to back off */
2921	mark_work_canceling(work);
2922	local_irq_restore(flags);
2923
2924	/*
2925	 * This allows canceling during early boot.  We know that @work
2926	 * isn't executing.
2927	 */
2928	if (wq_online)
2929		flush_work(work);
2930
2931	clear_work_data(work);
2932
2933	/*
2934	 * Paired with prepare_to_wait() above so that either
2935	 * waitqueue_active() is visible here or !work_is_canceling() is
2936	 * visible there.
2937	 */
2938	smp_mb();
2939	if (waitqueue_active(&cancel_waitq))
2940		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2941
2942	return ret;
2943}
2944
2945/**
2946 * cancel_work_sync - cancel a work and wait for it to finish
2947 * @work: the work to cancel
2948 *
2949 * Cancel @work and wait for its execution to finish.  This function
2950 * can be used even if the work re-queues itself or migrates to
2951 * another workqueue.  On return from this function, @work is
2952 * guaranteed to be not pending or executing on any CPU.
2953 *
2954 * cancel_work_sync(&delayed_work->work) must not be used for
2955 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2956 *
2957 * The caller must ensure that the workqueue on which @work was last
2958 * queued can't be destroyed before this function returns.
2959 *
2960 * Return:
2961 * %true if @work was pending, %false otherwise.
 
2962 */
2963bool cancel_work_sync(struct work_struct *work)
2964{
2965	return __cancel_work_timer(work, false);
2966}
2967EXPORT_SYMBOL_GPL(cancel_work_sync);
2968
2969/**
2970 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2971 * @dwork: the delayed work to flush
2972 *
2973 * Delayed timer is cancelled and the pending work is queued for
2974 * immediate execution.  Like flush_work(), this function only
2975 * considers the last queueing instance of @dwork.
2976 *
2977 * Return:
2978 * %true if flush_work() waited for the work to finish execution,
2979 * %false if it was already idle.
2980 */
2981bool flush_delayed_work(struct delayed_work *dwork)
2982{
2983	local_irq_disable();
2984	if (del_timer_sync(&dwork->timer))
2985		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2986	local_irq_enable();
2987	return flush_work(&dwork->work);
2988}
2989EXPORT_SYMBOL(flush_delayed_work);
2990
2991static bool __cancel_work(struct work_struct *work, bool is_dwork)
 
 
 
 
 
 
 
 
2992{
2993	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
2994	int ret;
2995
2996	do {
2997		ret = try_to_grab_pending(work, is_dwork, &flags);
2998	} while (unlikely(ret == -EAGAIN));
2999
3000	if (unlikely(ret < 0))
3001		return false;
3002
3003	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3004	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3005	return ret;
3006}
3007
3008/*
3009 * See cancel_delayed_work()
3010 */
3011bool cancel_work(struct work_struct *work)
3012{
3013	return __cancel_work(work, false);
3014}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3015
3016/**
3017 * cancel_delayed_work - cancel a delayed work
3018 * @dwork: delayed_work to cancel
3019 *
3020 * Kill off a pending delayed_work.
3021 *
3022 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3023 * pending.
3024 *
3025 * Note:
3026 * The work callback function may still be running on return, unless
3027 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3028 * use cancel_delayed_work_sync() to wait on it.
3029 *
3030 * This function is safe to call from any context including IRQ handler.
3031 */
3032bool cancel_delayed_work(struct delayed_work *dwork)
3033{
3034	return __cancel_work(&dwork->work, true);
3035}
3036EXPORT_SYMBOL(cancel_delayed_work);
3037
3038/**
3039 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3040 * @dwork: the delayed work cancel
3041 *
3042 * This is cancel_work_sync() for delayed works.
3043 *
3044 * Return:
3045 * %true if @dwork was pending, %false otherwise.
3046 */
3047bool cancel_delayed_work_sync(struct delayed_work *dwork)
3048{
3049	return __cancel_work_timer(&dwork->work, true);
3050}
3051EXPORT_SYMBOL(cancel_delayed_work_sync);
3052
3053/**
3054 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3055 * @func: the function to call
3056 *
3057 * schedule_on_each_cpu() executes @func on each online CPU using the
3058 * system workqueue and blocks until all CPUs have completed.
3059 * schedule_on_each_cpu() is very slow.
3060 *
3061 * Return:
3062 * 0 on success, -errno on failure.
3063 */
3064int schedule_on_each_cpu(work_func_t func)
3065{
3066	int cpu;
3067	struct work_struct __percpu *works;
3068
3069	works = alloc_percpu(struct work_struct);
3070	if (!works)
3071		return -ENOMEM;
3072
3073	get_online_cpus();
3074
3075	for_each_online_cpu(cpu) {
3076		struct work_struct *work = per_cpu_ptr(works, cpu);
3077
3078		INIT_WORK(work, func);
3079		schedule_work_on(cpu, work);
3080	}
3081
3082	for_each_online_cpu(cpu)
3083		flush_work(per_cpu_ptr(works, cpu));
3084
3085	put_online_cpus();
3086	free_percpu(works);
3087	return 0;
3088}
3089
3090/**
3091 * execute_in_process_context - reliably execute the routine with user context
3092 * @fn:		the function to execute
3093 * @ew:		guaranteed storage for the execute work structure (must
3094 *		be available when the work executes)
3095 *
3096 * Executes the function immediately if process context is available,
3097 * otherwise schedules the function for delayed execution.
3098 *
3099 * Return:	0 - function was executed
3100 *		1 - function was scheduled for execution
3101 */
3102int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3103{
3104	if (!in_interrupt()) {
3105		fn(&ew->work);
3106		return 0;
3107	}
3108
3109	INIT_WORK(&ew->work, fn);
3110	schedule_work(&ew->work);
3111
3112	return 1;
3113}
3114EXPORT_SYMBOL_GPL(execute_in_process_context);
3115
3116/**
3117 * free_workqueue_attrs - free a workqueue_attrs
3118 * @attrs: workqueue_attrs to free
3119 *
3120 * Undo alloc_workqueue_attrs().
3121 */
3122void free_workqueue_attrs(struct workqueue_attrs *attrs)
3123{
3124	if (attrs) {
3125		free_cpumask_var(attrs->cpumask);
 
3126		kfree(attrs);
3127	}
3128}
3129
3130/**
3131 * alloc_workqueue_attrs - allocate a workqueue_attrs
3132 * @gfp_mask: allocation mask to use
3133 *
3134 * Allocate a new workqueue_attrs, initialize with default settings and
3135 * return it.
3136 *
3137 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3138 */
3139struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3140{
3141	struct workqueue_attrs *attrs;
3142
3143	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3144	if (!attrs)
3145		goto fail;
3146	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
 
 
3147		goto fail;
3148
3149	cpumask_copy(attrs->cpumask, cpu_possible_mask);
 
3150	return attrs;
3151fail:
3152	free_workqueue_attrs(attrs);
3153	return NULL;
3154}
3155
3156static void copy_workqueue_attrs(struct workqueue_attrs *to,
3157				 const struct workqueue_attrs *from)
3158{
3159	to->nice = from->nice;
3160	cpumask_copy(to->cpumask, from->cpumask);
 
 
 
3161	/*
3162	 * Unlike hash and equality test, this function doesn't ignore
3163	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3164	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3165	 */
3166	to->no_numa = from->no_numa;
 
 
 
 
 
 
 
 
 
 
 
3167}
3168
3169/* hash value of the content of @attr */
3170static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3171{
3172	u32 hash = 0;
3173
3174	hash = jhash_1word(attrs->nice, hash);
3175	hash = jhash(cpumask_bits(attrs->cpumask),
3176		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
 
 
 
3177	return hash;
3178}
3179
3180/* content equality test */
3181static bool wqattrs_equal(const struct workqueue_attrs *a,
3182			  const struct workqueue_attrs *b)
3183{
3184	if (a->nice != b->nice)
3185		return false;
3186	if (!cpumask_equal(a->cpumask, b->cpumask))
3187		return false;
 
 
 
 
3188	return true;
3189}
3190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3191/**
3192 * init_worker_pool - initialize a newly zalloc'd worker_pool
3193 * @pool: worker_pool to initialize
3194 *
3195 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3196 *
3197 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3198 * inside @pool proper are initialized and put_unbound_pool() can be called
3199 * on @pool safely to release it.
3200 */
3201static int init_worker_pool(struct worker_pool *pool)
3202{
3203	spin_lock_init(&pool->lock);
3204	pool->id = -1;
3205	pool->cpu = -1;
3206	pool->node = NUMA_NO_NODE;
3207	pool->flags |= POOL_DISASSOCIATED;
3208	pool->watchdog_ts = jiffies;
3209	INIT_LIST_HEAD(&pool->worklist);
3210	INIT_LIST_HEAD(&pool->idle_list);
3211	hash_init(pool->busy_hash);
3212
3213	init_timer_deferrable(&pool->idle_timer);
3214	pool->idle_timer.function = idle_worker_timeout;
3215	pool->idle_timer.data = (unsigned long)pool;
3216
3217	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3218		    (unsigned long)pool);
3219
3220	mutex_init(&pool->manager_arb);
3221	mutex_init(&pool->attach_mutex);
3222	INIT_LIST_HEAD(&pool->workers);
 
3223
3224	ida_init(&pool->worker_ida);
3225	INIT_HLIST_NODE(&pool->hash_node);
3226	pool->refcnt = 1;
3227
3228	/* shouldn't fail above this point */
3229	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3230	if (!pool->attrs)
3231		return -ENOMEM;
 
 
 
3232	return 0;
3233}
3234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3235static void rcu_free_wq(struct rcu_head *rcu)
3236{
3237	struct workqueue_struct *wq =
3238		container_of(rcu, struct workqueue_struct, rcu);
3239
3240	if (!(wq->flags & WQ_UNBOUND))
3241		free_percpu(wq->cpu_pwqs);
3242	else
3243		free_workqueue_attrs(wq->unbound_attrs);
3244
3245	kfree(wq->rescuer);
 
 
3246	kfree(wq);
3247}
3248
3249static void rcu_free_pool(struct rcu_head *rcu)
3250{
3251	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3252
3253	ida_destroy(&pool->worker_ida);
3254	free_workqueue_attrs(pool->attrs);
3255	kfree(pool);
3256}
3257
3258/**
3259 * put_unbound_pool - put a worker_pool
3260 * @pool: worker_pool to put
3261 *
3262 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3263 * safe manner.  get_unbound_pool() calls this function on its failure path
3264 * and this function should be able to release pools which went through,
3265 * successfully or not, init_worker_pool().
3266 *
3267 * Should be called with wq_pool_mutex held.
3268 */
3269static void put_unbound_pool(struct worker_pool *pool)
3270{
3271	DECLARE_COMPLETION_ONSTACK(detach_completion);
3272	struct worker *worker;
 
3273
3274	lockdep_assert_held(&wq_pool_mutex);
3275
3276	if (--pool->refcnt)
3277		return;
3278
3279	/* sanity checks */
3280	if (WARN_ON(!(pool->cpu < 0)) ||
3281	    WARN_ON(!list_empty(&pool->worklist)))
3282		return;
3283
3284	/* release id and unhash */
3285	if (pool->id >= 0)
3286		idr_remove(&worker_pool_idr, pool->id);
3287	hash_del(&pool->hash_node);
3288
3289	/*
3290	 * Become the manager and destroy all workers.  Grabbing
3291	 * manager_arb prevents @pool's workers from blocking on
3292	 * attach_mutex.
 
 
 
 
 
 
 
 
3293	 */
3294	mutex_lock(&pool->manager_arb);
 
 
 
 
 
 
 
 
 
 
 
 
 
3295
3296	spin_lock_irq(&pool->lock);
3297	while ((worker = first_idle_worker(pool)))
3298		destroy_worker(worker);
3299	WARN_ON(pool->nr_workers || pool->nr_idle);
3300	spin_unlock_irq(&pool->lock);
3301
3302	mutex_lock(&pool->attach_mutex);
3303	if (!list_empty(&pool->workers))
 
3304		pool->detach_completion = &detach_completion;
3305	mutex_unlock(&pool->attach_mutex);
3306
3307	if (pool->detach_completion)
3308		wait_for_completion(pool->detach_completion);
3309
3310	mutex_unlock(&pool->manager_arb);
3311
3312	/* shut down the timers */
3313	del_timer_sync(&pool->idle_timer);
 
3314	del_timer_sync(&pool->mayday_timer);
3315
3316	/* sched-RCU protected to allow dereferences from get_work_pool() */
3317	call_rcu_sched(&pool->rcu, rcu_free_pool);
3318}
3319
3320/**
3321 * get_unbound_pool - get a worker_pool with the specified attributes
3322 * @attrs: the attributes of the worker_pool to get
3323 *
3324 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3325 * reference count and return it.  If there already is a matching
3326 * worker_pool, it will be used; otherwise, this function attempts to
3327 * create a new one.
3328 *
3329 * Should be called with wq_pool_mutex held.
3330 *
3331 * Return: On success, a worker_pool with the same attributes as @attrs.
3332 * On failure, %NULL.
3333 */
3334static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3335{
 
3336	u32 hash = wqattrs_hash(attrs);
3337	struct worker_pool *pool;
3338	int node;
3339	int target_node = NUMA_NO_NODE;
3340
3341	lockdep_assert_held(&wq_pool_mutex);
3342
3343	/* do we already have a matching pool? */
3344	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3345		if (wqattrs_equal(pool->attrs, attrs)) {
3346			pool->refcnt++;
3347			return pool;
3348		}
3349	}
3350
3351	/* if cpumask is contained inside a NUMA node, we belong to that node */
3352	if (wq_numa_enabled) {
3353		for_each_node(node) {
3354			if (cpumask_subset(attrs->cpumask,
3355					   wq_numa_possible_cpumask[node])) {
3356				target_node = node;
3357				break;
3358			}
3359		}
3360	}
3361
3362	/* nope, create a new one */
3363	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3364	if (!pool || init_worker_pool(pool) < 0)
3365		goto fail;
3366
3367	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3368	copy_workqueue_attrs(pool->attrs, attrs);
3369	pool->node = target_node;
3370
3371	/*
3372	 * no_numa isn't a worker_pool attribute, always clear it.  See
3373	 * 'struct workqueue_attrs' comments for detail.
3374	 */
3375	pool->attrs->no_numa = false;
3376
3377	if (worker_pool_assign_id(pool) < 0)
3378		goto fail;
3379
3380	/* create and start the initial worker */
3381	if (wq_online && !create_worker(pool))
3382		goto fail;
3383
3384	/* install */
3385	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3386
3387	return pool;
3388fail:
3389	if (pool)
3390		put_unbound_pool(pool);
3391	return NULL;
3392}
3393
3394static void rcu_free_pwq(struct rcu_head *rcu)
3395{
3396	kmem_cache_free(pwq_cache,
3397			container_of(rcu, struct pool_workqueue, rcu));
3398}
3399
3400/*
3401 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3402 * and needs to be destroyed.
3403 */
3404static void pwq_unbound_release_workfn(struct work_struct *work)
3405{
3406	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3407						  unbound_release_work);
3408	struct workqueue_struct *wq = pwq->wq;
3409	struct worker_pool *pool = pwq->pool;
3410	bool is_last;
3411
3412	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3413		return;
3414
3415	mutex_lock(&wq->mutex);
3416	list_del_rcu(&pwq->pwqs_node);
3417	is_last = list_empty(&wq->pwqs);
3418	mutex_unlock(&wq->mutex);
3419
3420	mutex_lock(&wq_pool_mutex);
3421	put_unbound_pool(pool);
3422	mutex_unlock(&wq_pool_mutex);
3423
3424	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3425
3426	/*
3427	 * If we're the last pwq going away, @wq is already dead and no one
3428	 * is gonna access it anymore.  Schedule RCU free.
3429	 */
3430	if (is_last)
3431		call_rcu_sched(&wq->rcu, rcu_free_wq);
3432}
 
3433
3434/**
3435 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3436 * @pwq: target pool_workqueue
3437 *
3438 * If @pwq isn't freezing, set @pwq->max_active to the associated
3439 * workqueue's saved_max_active and activate delayed work items
3440 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3441 */
3442static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3443{
3444	struct workqueue_struct *wq = pwq->wq;
3445	bool freezable = wq->flags & WQ_FREEZABLE;
3446	unsigned long flags;
3447
3448	/* for @wq->saved_max_active */
3449	lockdep_assert_held(&wq->mutex);
3450
3451	/* fast exit for non-freezable wqs */
3452	if (!freezable && pwq->max_active == wq->saved_max_active)
3453		return;
 
 
3454
3455	/* this function can be called during early boot w/ irq disabled */
3456	spin_lock_irqsave(&pwq->pool->lock, flags);
 
3457
3458	/*
3459	 * During [un]freezing, the caller is responsible for ensuring that
3460	 * this function is called at least once after @workqueue_freezing
3461	 * is updated and visible.
3462	 */
3463	if (!freezable || !workqueue_freezing) {
3464		pwq->max_active = wq->saved_max_active;
3465
3466		while (!list_empty(&pwq->delayed_works) &&
3467		       pwq->nr_active < pwq->max_active)
3468			pwq_activate_first_delayed(pwq);
3469
3470		/*
3471		 * Need to kick a worker after thawed or an unbound wq's
3472		 * max_active is bumped.  It's a slow path.  Do it always.
3473		 */
3474		wake_up_worker(pwq->pool);
3475	} else {
3476		pwq->max_active = 0;
3477	}
3478
3479	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3480}
3481
3482/* initialize newly alloced @pwq which is associated with @wq and @pool */
3483static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3484		     struct worker_pool *pool)
3485{
3486	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3487
3488	memset(pwq, 0, sizeof(*pwq));
3489
3490	pwq->pool = pool;
3491	pwq->wq = wq;
3492	pwq->flush_color = -1;
3493	pwq->refcnt = 1;
3494	INIT_LIST_HEAD(&pwq->delayed_works);
 
3495	INIT_LIST_HEAD(&pwq->pwqs_node);
3496	INIT_LIST_HEAD(&pwq->mayday_node);
3497	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3498}
3499
3500/* sync @pwq with the current state of its associated wq and link it */
3501static void link_pwq(struct pool_workqueue *pwq)
3502{
3503	struct workqueue_struct *wq = pwq->wq;
3504
3505	lockdep_assert_held(&wq->mutex);
3506
3507	/* may be called multiple times, ignore if already linked */
3508	if (!list_empty(&pwq->pwqs_node))
3509		return;
3510
3511	/* set the matching work_color */
3512	pwq->work_color = wq->work_color;
3513
3514	/* sync max_active to the current setting */
3515	pwq_adjust_max_active(pwq);
3516
3517	/* link in @pwq */
3518	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3519}
3520
3521/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3522static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3523					const struct workqueue_attrs *attrs)
3524{
3525	struct worker_pool *pool;
3526	struct pool_workqueue *pwq;
3527
3528	lockdep_assert_held(&wq_pool_mutex);
3529
3530	pool = get_unbound_pool(attrs);
3531	if (!pool)
3532		return NULL;
3533
3534	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3535	if (!pwq) {
3536		put_unbound_pool(pool);
3537		return NULL;
3538	}
3539
3540	init_pwq(pwq, wq, pool);
3541	return pwq;
3542}
3543
3544/**
3545 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3546 * @attrs: the wq_attrs of the default pwq of the target workqueue
3547 * @node: the target NUMA node
3548 * @cpu_going_down: if >= 0, the CPU to consider as offline
3549 * @cpumask: outarg, the resulting cpumask
3550 *
3551 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3552 * @cpu_going_down is >= 0, that cpu is considered offline during
3553 * calculation.  The result is stored in @cpumask.
3554 *
3555 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3556 * enabled and @node has online CPUs requested by @attrs, the returned
3557 * cpumask is the intersection of the possible CPUs of @node and
3558 * @attrs->cpumask.
3559 *
3560 * The caller is responsible for ensuring that the cpumask of @node stays
3561 * stable.
3562 *
3563 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3564 * %false if equal.
3565 */
3566static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3567				 int cpu_going_down, cpumask_t *cpumask)
3568{
3569	if (!wq_numa_enabled || attrs->no_numa)
3570		goto use_dfl;
3571
3572	/* does @node have any online CPUs @attrs wants? */
3573	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
 
3574	if (cpu_going_down >= 0)
3575		cpumask_clear_cpu(cpu_going_down, cpumask);
3576
3577	if (cpumask_empty(cpumask))
3578		goto use_dfl;
 
 
3579
3580	/* yeap, return possible CPUs in @node that @attrs wants */
3581	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3582	return !cpumask_equal(cpumask, attrs->cpumask);
3583
3584use_dfl:
3585	cpumask_copy(cpumask, attrs->cpumask);
3586	return false;
3587}
3588
3589/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3590static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3591						   int node,
3592						   struct pool_workqueue *pwq)
3593{
 
3594	struct pool_workqueue *old_pwq;
3595
3596	lockdep_assert_held(&wq_pool_mutex);
3597	lockdep_assert_held(&wq->mutex);
3598
3599	/* link_pwq() can handle duplicate calls */
3600	link_pwq(pwq);
3601
3602	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3603	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3604	return old_pwq;
3605}
3606
3607/* context to store the prepared attrs & pwqs before applying */
3608struct apply_wqattrs_ctx {
3609	struct workqueue_struct	*wq;		/* target workqueue */
3610	struct workqueue_attrs	*attrs;		/* attrs to apply */
3611	struct list_head	list;		/* queued for batching commit */
3612	struct pool_workqueue	*dfl_pwq;
3613	struct pool_workqueue	*pwq_tbl[];
3614};
3615
3616/* free the resources after success or abort */
3617static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3618{
3619	if (ctx) {
3620		int node;
3621
3622		for_each_node(node)
3623			put_pwq_unlocked(ctx->pwq_tbl[node]);
3624		put_pwq_unlocked(ctx->dfl_pwq);
3625
3626		free_workqueue_attrs(ctx->attrs);
3627
3628		kfree(ctx);
3629	}
3630}
3631
3632/* allocate the attrs and pwqs for later installation */
3633static struct apply_wqattrs_ctx *
3634apply_wqattrs_prepare(struct workqueue_struct *wq,
3635		      const struct workqueue_attrs *attrs)
 
3636{
3637	struct apply_wqattrs_ctx *ctx;
3638	struct workqueue_attrs *new_attrs, *tmp_attrs;
3639	int node;
3640
3641	lockdep_assert_held(&wq_pool_mutex);
3642
3643	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3644		      GFP_KERNEL);
 
3645
3646	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3647	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3648	if (!ctx || !new_attrs || !tmp_attrs)
3649		goto out_free;
3650
3651	/*
3652	 * Calculate the attrs of the default pwq.
3653	 * If the user configured cpumask doesn't overlap with the
3654	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3655	 */
3656	copy_workqueue_attrs(new_attrs, attrs);
3657	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3658	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3659		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3660
3661	/*
3662	 * We may create multiple pwqs with differing cpumasks.  Make a
3663	 * copy of @new_attrs which will be modified and used to obtain
3664	 * pools.
3665	 */
3666	copy_workqueue_attrs(tmp_attrs, new_attrs);
3667
3668	/*
3669	 * If something goes wrong during CPU up/down, we'll fall back to
3670	 * the default pwq covering whole @attrs->cpumask.  Always create
3671	 * it even if we don't use it immediately.
3672	 */
 
 
 
3673	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3674	if (!ctx->dfl_pwq)
3675		goto out_free;
3676
3677	for_each_node(node) {
3678		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3679			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3680			if (!ctx->pwq_tbl[node])
3681				goto out_free;
3682		} else {
3683			ctx->dfl_pwq->refcnt++;
3684			ctx->pwq_tbl[node] = ctx->dfl_pwq;
 
 
 
 
 
3685		}
3686	}
3687
3688	/* save the user configured attrs and sanitize it. */
3689	copy_workqueue_attrs(new_attrs, attrs);
3690	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
 
3691	ctx->attrs = new_attrs;
3692
 
 
 
 
 
 
 
 
 
3693	ctx->wq = wq;
3694	free_workqueue_attrs(tmp_attrs);
3695	return ctx;
3696
3697out_free:
3698	free_workqueue_attrs(tmp_attrs);
3699	free_workqueue_attrs(new_attrs);
3700	apply_wqattrs_cleanup(ctx);
3701	return NULL;
3702}
3703
3704/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3705static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3706{
3707	int node;
3708
3709	/* all pwqs have been created successfully, let's install'em */
3710	mutex_lock(&ctx->wq->mutex);
3711
3712	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3713
3714	/* save the previous pwq and install the new one */
3715	for_each_node(node)
3716		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3717							  ctx->pwq_tbl[node]);
3718
3719	/* @dfl_pwq might not have been used, ensure it's linked */
3720	link_pwq(ctx->dfl_pwq);
3721	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
 
 
 
 
 
3722
3723	mutex_unlock(&ctx->wq->mutex);
3724}
3725
3726static void apply_wqattrs_lock(void)
3727{
3728	/* CPUs should stay stable across pwq creations and installations */
3729	get_online_cpus();
3730	mutex_lock(&wq_pool_mutex);
3731}
3732
3733static void apply_wqattrs_unlock(void)
3734{
3735	mutex_unlock(&wq_pool_mutex);
3736	put_online_cpus();
3737}
3738
3739static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3740					const struct workqueue_attrs *attrs)
3741{
3742	struct apply_wqattrs_ctx *ctx;
3743
3744	/* only unbound workqueues can change attributes */
3745	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3746		return -EINVAL;
3747
3748	/* creating multiple pwqs breaks ordering guarantee */
3749	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3750		return -EINVAL;
3751
3752	ctx = apply_wqattrs_prepare(wq, attrs);
3753	if (!ctx)
3754		return -ENOMEM;
3755
3756	/* the ctx has been prepared successfully, let's commit it */
3757	apply_wqattrs_commit(ctx);
3758	apply_wqattrs_cleanup(ctx);
3759
3760	return 0;
3761}
3762
3763/**
3764 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3765 * @wq: the target workqueue
3766 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3767 *
3768 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3769 * machines, this function maps a separate pwq to each NUMA node with
3770 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3771 * NUMA node it was issued on.  Older pwqs are released as in-flight work
3772 * items finish.  Note that a work item which repeatedly requeues itself
3773 * back-to-back will stay on its current pwq.
3774 *
3775 * Performs GFP_KERNEL allocations.
3776 *
 
 
3777 * Return: 0 on success and -errno on failure.
3778 */
3779int apply_workqueue_attrs(struct workqueue_struct *wq,
3780			  const struct workqueue_attrs *attrs)
3781{
3782	int ret;
3783
3784	apply_wqattrs_lock();
 
 
3785	ret = apply_workqueue_attrs_locked(wq, attrs);
3786	apply_wqattrs_unlock();
3787
3788	return ret;
3789}
3790
3791/**
3792 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3793 * @wq: the target workqueue
3794 * @cpu: the CPU coming up or going down
 
3795 * @online: whether @cpu is coming up or going down
3796 *
3797 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3798 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3799 * @wq accordingly.
3800 *
3801 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3802 * falls back to @wq->dfl_pwq which may not be optimal but is always
3803 * correct.
3804 *
3805 * Note that when the last allowed CPU of a NUMA node goes offline for a
3806 * workqueue with a cpumask spanning multiple nodes, the workers which were
3807 * already executing the work items for the workqueue will lose their CPU
3808 * affinity and may execute on any CPU.  This is similar to how per-cpu
3809 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3810 * affinity, it's the user's responsibility to flush the work item from
3811 * CPU_DOWN_PREPARE.
3812 */
3813static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3814				   bool online)
3815{
3816	int node = cpu_to_node(cpu);
3817	int cpu_off = online ? -1 : cpu;
3818	struct pool_workqueue *old_pwq = NULL, *pwq;
3819	struct workqueue_attrs *target_attrs;
3820	cpumask_t *cpumask;
3821
3822	lockdep_assert_held(&wq_pool_mutex);
3823
3824	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3825	    wq->unbound_attrs->no_numa)
3826		return;
3827
3828	/*
3829	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3830	 * Let's use a preallocated one.  The following buf is protected by
3831	 * CPU hotplug exclusion.
3832	 */
3833	target_attrs = wq_update_unbound_numa_attrs_buf;
3834	cpumask = target_attrs->cpumask;
3835
3836	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3837	pwq = unbound_pwq_by_node(wq, node);
3838
3839	/*
3840	 * Let's determine what needs to be done.  If the target cpumask is
3841	 * different from the default pwq's, we need to compare it to @pwq's
3842	 * and create a new one if they don't match.  If the target cpumask
3843	 * equals the default pwq's, the default pwq should be used.
3844	 */
3845	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3846		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3847			return;
3848	} else {
3849		goto use_dfl_pwq;
3850	}
3851
3852	/* create a new pwq */
3853	pwq = alloc_unbound_pwq(wq, target_attrs);
3854	if (!pwq) {
3855		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3856			wq->name);
3857		goto use_dfl_pwq;
3858	}
3859
3860	/* Install the new pwq. */
3861	mutex_lock(&wq->mutex);
3862	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3863	goto out_unlock;
3864
3865use_dfl_pwq:
3866	mutex_lock(&wq->mutex);
3867	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3868	get_pwq(wq->dfl_pwq);
3869	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3870	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
 
3871out_unlock:
3872	mutex_unlock(&wq->mutex);
3873	put_pwq_unlocked(old_pwq);
3874}
3875
3876static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3877{
3878	bool highpri = wq->flags & WQ_HIGHPRI;
3879	int cpu, ret;
3880
3881	if (!(wq->flags & WQ_UNBOUND)) {
3882		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3883		if (!wq->cpu_pwqs)
3884			return -ENOMEM;
3885
 
3886		for_each_possible_cpu(cpu) {
3887			struct pool_workqueue *pwq =
3888				per_cpu_ptr(wq->cpu_pwqs, cpu);
3889			struct worker_pool *cpu_pools =
3890				per_cpu(cpu_worker_pools, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
3891
3892			init_pwq(pwq, wq, &cpu_pools[highpri]);
3893
3894			mutex_lock(&wq->mutex);
3895			link_pwq(pwq);
3896			mutex_unlock(&wq->mutex);
3897		}
3898		return 0;
3899	} else if (wq->flags & __WQ_ORDERED) {
 
 
 
 
 
3900		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3901		/* there should only be single pwq for ordering guarantee */
3902		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3903			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
 
3904		     "ordering guarantee broken for workqueue %s\n", wq->name);
3905		return ret;
3906	} else {
3907		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3908	}
 
3909}
3910
3911static int wq_clamp_max_active(int max_active, unsigned int flags,
3912			       const char *name)
3913{
3914	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3915
3916	if (max_active < 1 || max_active > lim)
3917		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3918			max_active, name, 1, lim);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3919
3920	return clamp_val(max_active, 1, lim);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3921}
3922
3923struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3924					       unsigned int flags,
3925					       int max_active,
3926					       struct lock_class_key *key,
3927					       const char *lock_name, ...)
3928{
3929	size_t tbl_size = 0;
3930	va_list args;
3931	struct workqueue_struct *wq;
3932	struct pool_workqueue *pwq;
 
 
 
 
 
 
 
 
3933
3934	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3935	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3936		flags |= WQ_UNBOUND;
3937
3938	/* allocate wq and format name */
3939	if (flags & WQ_UNBOUND)
3940		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
 
 
3941
3942	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3943	if (!wq)
3944		return NULL;
3945
3946	if (flags & WQ_UNBOUND) {
3947		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3948		if (!wq->unbound_attrs)
3949			goto err_free_wq;
3950	}
3951
3952	va_start(args, lock_name);
3953	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3954	va_end(args);
3955
3956	max_active = max_active ?: WQ_DFL_ACTIVE;
3957	max_active = wq_clamp_max_active(max_active, flags, wq->name);
 
 
 
 
 
 
 
 
 
 
 
 
3958
3959	/* init wq */
3960	wq->flags = flags;
3961	wq->saved_max_active = max_active;
 
 
 
3962	mutex_init(&wq->mutex);
3963	atomic_set(&wq->nr_pwqs_to_flush, 0);
3964	INIT_LIST_HEAD(&wq->pwqs);
3965	INIT_LIST_HEAD(&wq->flusher_queue);
3966	INIT_LIST_HEAD(&wq->flusher_overflow);
3967	INIT_LIST_HEAD(&wq->maydays);
3968
3969	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3970	INIT_LIST_HEAD(&wq->list);
3971
3972	if (alloc_and_link_pwqs(wq) < 0)
3973		goto err_free_wq;
3974
3975	/*
3976	 * Workqueues which may be used during memory reclaim should
3977	 * have a rescuer to guarantee forward progress.
3978	 */
3979	if (flags & WQ_MEM_RECLAIM) {
3980		struct worker *rescuer;
3981
3982		rescuer = alloc_worker(NUMA_NO_NODE);
3983		if (!rescuer)
3984			goto err_destroy;
3985
3986		rescuer->rescue_wq = wq;
3987		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3988					       wq->name);
3989		if (IS_ERR(rescuer->task)) {
3990			kfree(rescuer);
3991			goto err_destroy;
3992		}
3993
3994		wq->rescuer = rescuer;
3995		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3996		wake_up_process(rescuer->task);
3997	}
3998
3999	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4000		goto err_destroy;
4001
4002	/*
4003	 * wq_pool_mutex protects global freeze state and workqueues list.
4004	 * Grab it, adjust max_active and add the new @wq to workqueues
4005	 * list.
4006	 */
4007	mutex_lock(&wq_pool_mutex);
4008
4009	mutex_lock(&wq->mutex);
4010	for_each_pwq(pwq, wq)
4011		pwq_adjust_max_active(pwq);
4012	mutex_unlock(&wq->mutex);
4013
4014	list_add_tail_rcu(&wq->list, &workqueues);
4015
4016	mutex_unlock(&wq_pool_mutex);
4017
4018	return wq;
4019
 
 
 
 
 
 
4020err_free_wq:
4021	free_workqueue_attrs(wq->unbound_attrs);
4022	kfree(wq);
4023	return NULL;
4024err_destroy:
4025	destroy_workqueue(wq);
4026	return NULL;
4027}
4028EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4029
4030/**
4031 * destroy_workqueue - safely terminate a workqueue
4032 * @wq: target workqueue
4033 *
4034 * Safely destroy a workqueue. All work currently pending will be done first.
4035 */
4036void destroy_workqueue(struct workqueue_struct *wq)
4037{
4038	struct pool_workqueue *pwq;
4039	int node;
 
 
 
 
 
 
 
 
 
 
 
4040
4041	/* drain it before proceeding with destruction */
4042	drain_workqueue(wq);
4043
4044	/* sanity checks */
4045	mutex_lock(&wq->mutex);
4046	for_each_pwq(pwq, wq) {
4047		int i;
4048
4049		for (i = 0; i < WORK_NR_COLORS; i++) {
4050			if (WARN_ON(pwq->nr_in_flight[i])) {
4051				mutex_unlock(&wq->mutex);
4052				show_workqueue_state();
4053				return;
4054			}
4055		}
 
 
4056
4057		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4058		    WARN_ON(pwq->nr_active) ||
4059		    WARN_ON(!list_empty(&pwq->delayed_works))) {
 
 
 
 
 
 
 
 
 
 
4060			mutex_unlock(&wq->mutex);
4061			show_workqueue_state();
 
4062			return;
4063		}
 
4064	}
4065	mutex_unlock(&wq->mutex);
4066
4067	/*
4068	 * wq list is used to freeze wq, remove from list after
4069	 * flushing is complete in case freeze races us.
4070	 */
4071	mutex_lock(&wq_pool_mutex);
4072	list_del_rcu(&wq->list);
4073	mutex_unlock(&wq_pool_mutex);
4074
4075	workqueue_sysfs_unregister(wq);
 
 
 
 
 
4076
4077	if (wq->rescuer)
4078		kthread_stop(wq->rescuer->task);
 
 
4079
4080	if (!(wq->flags & WQ_UNBOUND)) {
4081		/*
4082		 * The base ref is never dropped on per-cpu pwqs.  Directly
4083		 * schedule RCU free.
4084		 */
4085		call_rcu_sched(&wq->rcu, rcu_free_wq);
4086	} else {
4087		/*
4088		 * We're the sole accessor of @wq at this point.  Directly
4089		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4090		 * @wq will be freed when the last pwq is released.
4091		 */
4092		for_each_node(node) {
4093			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4094			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4095			put_pwq_unlocked(pwq);
4096		}
4097
4098		/*
4099		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4100		 * put.  Don't access it afterwards.
4101		 */
4102		pwq = wq->dfl_pwq;
4103		wq->dfl_pwq = NULL;
4104		put_pwq_unlocked(pwq);
4105	}
4106}
4107EXPORT_SYMBOL_GPL(destroy_workqueue);
4108
4109/**
4110 * workqueue_set_max_active - adjust max_active of a workqueue
4111 * @wq: target workqueue
4112 * @max_active: new max_active value.
4113 *
4114 * Set max_active of @wq to @max_active.
 
4115 *
4116 * CONTEXT:
4117 * Don't call from IRQ context.
4118 */
4119void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4120{
4121	struct pool_workqueue *pwq;
4122
 
4123	/* disallow meddling with max_active for ordered workqueues */
4124	if (WARN_ON(wq->flags & __WQ_ORDERED))
4125		return;
4126
4127	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4128
4129	mutex_lock(&wq->mutex);
4130
4131	wq->saved_max_active = max_active;
 
 
4132
4133	for_each_pwq(pwq, wq)
4134		pwq_adjust_max_active(pwq);
4135
4136	mutex_unlock(&wq->mutex);
4137}
4138EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4139
4140/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4141 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4142 *
4143 * Determine whether %current is a workqueue rescuer.  Can be used from
4144 * work functions to determine whether it's being run off the rescuer task.
4145 *
4146 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4147 */
4148bool current_is_workqueue_rescuer(void)
4149{
4150	struct worker *worker = current_wq_worker();
4151
4152	return worker && worker->rescue_wq;
4153}
4154
4155/**
4156 * workqueue_congested - test whether a workqueue is congested
4157 * @cpu: CPU in question
4158 * @wq: target workqueue
4159 *
4160 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4161 * no synchronization around this function and the test result is
4162 * unreliable and only useful as advisory hints or for debugging.
4163 *
4164 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4165 * Note that both per-cpu and unbound workqueues may be associated with
4166 * multiple pool_workqueues which have separate congested states.  A
4167 * workqueue being congested on one CPU doesn't mean the workqueue is also
4168 * contested on other CPUs / NUMA nodes.
 
4169 *
4170 * Return:
4171 * %true if congested, %false otherwise.
4172 */
4173bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4174{
4175	struct pool_workqueue *pwq;
4176	bool ret;
4177
4178	rcu_read_lock_sched();
 
4179
4180	if (cpu == WORK_CPU_UNBOUND)
4181		cpu = smp_processor_id();
4182
4183	if (!(wq->flags & WQ_UNBOUND))
4184		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4185	else
4186		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4187
4188	ret = !list_empty(&pwq->delayed_works);
4189	rcu_read_unlock_sched();
4190
4191	return ret;
4192}
4193EXPORT_SYMBOL_GPL(workqueue_congested);
4194
4195/**
4196 * work_busy - test whether a work is currently pending or running
4197 * @work: the work to be tested
4198 *
4199 * Test whether @work is currently pending or running.  There is no
4200 * synchronization around this function and the test result is
4201 * unreliable and only useful as advisory hints or for debugging.
4202 *
4203 * Return:
4204 * OR'd bitmask of WORK_BUSY_* bits.
4205 */
4206unsigned int work_busy(struct work_struct *work)
4207{
4208	struct worker_pool *pool;
4209	unsigned long flags;
4210	unsigned int ret = 0;
4211
4212	if (work_pending(work))
4213		ret |= WORK_BUSY_PENDING;
4214
4215	local_irq_save(flags);
4216	pool = get_work_pool(work);
4217	if (pool) {
4218		spin_lock(&pool->lock);
4219		if (find_worker_executing_work(pool, work))
4220			ret |= WORK_BUSY_RUNNING;
4221		spin_unlock(&pool->lock);
4222	}
4223	local_irq_restore(flags);
4224
4225	return ret;
4226}
4227EXPORT_SYMBOL_GPL(work_busy);
4228
4229/**
4230 * set_worker_desc - set description for the current work item
4231 * @fmt: printf-style format string
4232 * @...: arguments for the format string
4233 *
4234 * This function can be called by a running work function to describe what
4235 * the work item is about.  If the worker task gets dumped, this
4236 * information will be printed out together to help debugging.  The
4237 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4238 */
4239void set_worker_desc(const char *fmt, ...)
4240{
4241	struct worker *worker = current_wq_worker();
4242	va_list args;
4243
4244	if (worker) {
4245		va_start(args, fmt);
4246		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4247		va_end(args);
4248		worker->desc_valid = true;
4249	}
4250}
 
4251
4252/**
4253 * print_worker_info - print out worker information and description
4254 * @log_lvl: the log level to use when printing
4255 * @task: target task
4256 *
4257 * If @task is a worker and currently executing a work item, print out the
4258 * name of the workqueue being serviced and worker description set with
4259 * set_worker_desc() by the currently executing work item.
4260 *
4261 * This function can be safely called on any task as long as the
4262 * task_struct itself is accessible.  While safe, this function isn't
4263 * synchronized and may print out mixups or garbages of limited length.
4264 */
4265void print_worker_info(const char *log_lvl, struct task_struct *task)
4266{
4267	work_func_t *fn = NULL;
4268	char name[WQ_NAME_LEN] = { };
4269	char desc[WORKER_DESC_LEN] = { };
4270	struct pool_workqueue *pwq = NULL;
4271	struct workqueue_struct *wq = NULL;
4272	bool desc_valid = false;
4273	struct worker *worker;
4274
4275	if (!(task->flags & PF_WQ_WORKER))
4276		return;
4277
4278	/*
4279	 * This function is called without any synchronization and @task
4280	 * could be in any state.  Be careful with dereferences.
4281	 */
4282	worker = kthread_probe_data(task);
4283
4284	/*
4285	 * Carefully copy the associated workqueue's workfn and name.  Keep
4286	 * the original last '\0' in case the original contains garbage.
4287	 */
4288	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4289	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4290	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4291	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4292
4293	/* copy worker description */
4294	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4295	if (desc_valid)
4296		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4297
4298	if (fn || name[0] || desc[0]) {
4299		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4300		if (desc[0])
4301			pr_cont(" (%s)", desc);
4302		pr_cont("\n");
4303	}
4304}
4305
4306static void pr_cont_pool_info(struct worker_pool *pool)
4307{
4308	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4309	if (pool->node != NUMA_NO_NODE)
4310		pr_cont(" node=%d", pool->node);
4311	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4312}
4313
4314static void pr_cont_work(bool comma, struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4315{
4316	if (work->func == wq_barrier_func) {
4317		struct wq_barrier *barr;
4318
4319		barr = container_of(work, struct wq_barrier, work);
4320
 
4321		pr_cont("%s BAR(%d)", comma ? "," : "",
4322			task_pid_nr(barr->task));
4323	} else {
4324		pr_cont("%s %pf", comma ? "," : "", work->func);
 
 
4325	}
4326}
4327
4328static void show_pwq(struct pool_workqueue *pwq)
4329{
 
4330	struct worker_pool *pool = pwq->pool;
4331	struct work_struct *work;
4332	struct worker *worker;
4333	bool has_in_flight = false, has_pending = false;
4334	int bkt;
4335
4336	pr_info("  pwq %d:", pool->id);
4337	pr_cont_pool_info(pool);
4338
4339	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
 
4340		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4341
4342	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4343		if (worker->current_pwq == pwq) {
4344			has_in_flight = true;
4345			break;
4346		}
4347	}
4348	if (has_in_flight) {
4349		bool comma = false;
4350
4351		pr_info("    in-flight:");
4352		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4353			if (worker->current_pwq != pwq)
4354				continue;
4355
4356			pr_cont("%s %d%s:%pf", comma ? "," : "",
4357				task_pid_nr(worker->task),
4358				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4359				worker->current_func);
4360			list_for_each_entry(work, &worker->scheduled, entry)
4361				pr_cont_work(false, work);
 
4362			comma = true;
4363		}
4364		pr_cont("\n");
4365	}
4366
4367	list_for_each_entry(work, &pool->worklist, entry) {
4368		if (get_work_pwq(work) == pwq) {
4369			has_pending = true;
4370			break;
4371		}
4372	}
4373	if (has_pending) {
4374		bool comma = false;
4375
4376		pr_info("    pending:");
4377		list_for_each_entry(work, &pool->worklist, entry) {
4378			if (get_work_pwq(work) != pwq)
4379				continue;
4380
4381			pr_cont_work(comma, work);
4382			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4383		}
 
4384		pr_cont("\n");
4385	}
4386
4387	if (!list_empty(&pwq->delayed_works)) {
4388		bool comma = false;
4389
4390		pr_info("    delayed:");
4391		list_for_each_entry(work, &pwq->delayed_works, entry) {
4392			pr_cont_work(comma, work);
4393			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4394		}
 
4395		pr_cont("\n");
4396	}
4397}
4398
4399/**
4400 * show_workqueue_state - dump workqueue state
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4401 *
4402 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4403 * all busy workqueues and pools.
4404 */
4405void show_workqueue_state(void)
4406{
4407	struct workqueue_struct *wq;
4408	struct worker_pool *pool;
4409	unsigned long flags;
4410	int pi;
4411
4412	rcu_read_lock_sched();
4413
4414	pr_info("Showing busy workqueues and worker pools:\n");
4415
4416	list_for_each_entry_rcu(wq, &workqueues, list) {
4417		struct pool_workqueue *pwq;
4418		bool idle = true;
4419
4420		for_each_pwq(pwq, wq) {
4421			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4422				idle = false;
4423				break;
4424			}
4425		}
4426		if (idle)
4427			continue;
4428
4429		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
 
 
 
 
 
 
 
 
4430
4431		for_each_pwq(pwq, wq) {
4432			spin_lock_irqsave(&pwq->pool->lock, flags);
4433			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4434				show_pwq(pwq);
4435			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4436		}
 
 
4437	}
4438
4439	for_each_pool(pool, pi) {
4440		struct worker *worker;
4441		bool first = true;
4442
4443		spin_lock_irqsave(&pool->lock, flags);
4444		if (pool->nr_workers == pool->nr_idle)
4445			goto next_pool;
4446
4447		pr_info("pool %d:", pool->id);
4448		pr_cont_pool_info(pool);
4449		pr_cont(" hung=%us workers=%d",
4450			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4451			pool->nr_workers);
4452		if (pool->manager)
4453			pr_cont(" manager: %d",
4454				task_pid_nr(pool->manager->task));
4455		list_for_each_entry(worker, &pool->idle_list, entry) {
4456			pr_cont(" %s%d", first ? "idle: " : "",
4457				task_pid_nr(worker->task));
4458			first = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4459		}
4460		pr_cont("\n");
4461	next_pool:
4462		spin_unlock_irqrestore(&pool->lock, flags);
4463	}
4464
4465	rcu_read_unlock_sched();
4466}
4467
 
 
4468/*
4469 * CPU hotplug.
4470 *
4471 * There are two challenges in supporting CPU hotplug.  Firstly, there
4472 * are a lot of assumptions on strong associations among work, pwq and
4473 * pool which make migrating pending and scheduled works very
4474 * difficult to implement without impacting hot paths.  Secondly,
4475 * worker pools serve mix of short, long and very long running works making
4476 * blocked draining impractical.
4477 *
4478 * This is solved by allowing the pools to be disassociated from the CPU
4479 * running as an unbound one and allowing it to be reattached later if the
4480 * cpu comes back online.
4481 */
4482
4483static void wq_unbind_fn(struct work_struct *work)
4484{
4485	int cpu = smp_processor_id();
4486	struct worker_pool *pool;
4487	struct worker *worker;
4488
4489	for_each_cpu_worker_pool(pool, cpu) {
4490		mutex_lock(&pool->attach_mutex);
4491		spin_lock_irq(&pool->lock);
4492
4493		/*
4494		 * We've blocked all attach/detach operations. Make all workers
4495		 * unbound and set DISASSOCIATED.  Before this, all workers
4496		 * except for the ones which are still executing works from
4497		 * before the last CPU down must be on the cpu.  After
4498		 * this, they may become diasporas.
 
4499		 */
4500		for_each_pool_worker(worker, pool)
4501			worker->flags |= WORKER_UNBOUND;
4502
4503		pool->flags |= POOL_DISASSOCIATED;
4504
4505		spin_unlock_irq(&pool->lock);
4506		mutex_unlock(&pool->attach_mutex);
4507
4508		/*
4509		 * Call schedule() so that we cross rq->lock and thus can
4510		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4511		 * This is necessary as scheduler callbacks may be invoked
4512		 * from other cpus.
4513		 */
4514		schedule();
4515
4516		/*
4517		 * Sched callbacks are disabled now.  Zap nr_running.
4518		 * After this, nr_running stays zero and need_more_worker()
4519		 * and keep_working() are always true as long as the
4520		 * worklist is not empty.  This pool now behaves as an
4521		 * unbound (in terms of concurrency management) pool which
4522		 * are served by workers tied to the pool.
4523		 */
4524		atomic_set(&pool->nr_running, 0);
4525
4526		/*
4527		 * With concurrency management just turned off, a busy
4528		 * worker blocking could lead to lengthy stalls.  Kick off
4529		 * unbound chain execution of currently pending work items.
4530		 */
4531		spin_lock_irq(&pool->lock);
4532		wake_up_worker(pool);
4533		spin_unlock_irq(&pool->lock);
 
 
 
 
 
4534	}
4535}
4536
4537/**
4538 * rebind_workers - rebind all workers of a pool to the associated CPU
4539 * @pool: pool of interest
4540 *
4541 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4542 */
4543static void rebind_workers(struct worker_pool *pool)
4544{
4545	struct worker *worker;
4546
4547	lockdep_assert_held(&pool->attach_mutex);
4548
4549	/*
4550	 * Restore CPU affinity of all workers.  As all idle workers should
4551	 * be on the run-queue of the associated CPU before any local
4552	 * wake-ups for concurrency management happen, restore CPU affinity
4553	 * of all workers first and then clear UNBOUND.  As we're called
4554	 * from CPU_ONLINE, the following shouldn't fail.
4555	 */
4556	for_each_pool_worker(worker, pool)
 
4557		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4558						  pool->attrs->cpumask) < 0);
4559
4560	spin_lock_irq(&pool->lock);
4561
4562	/*
4563	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4564	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
4565	 * being reworked and this can go away in time.
4566	 */
4567	if (!(pool->flags & POOL_DISASSOCIATED)) {
4568		spin_unlock_irq(&pool->lock);
4569		return;
4570	}
4571
 
 
4572	pool->flags &= ~POOL_DISASSOCIATED;
4573
4574	for_each_pool_worker(worker, pool) {
4575		unsigned int worker_flags = worker->flags;
4576
4577		/*
4578		 * A bound idle worker should actually be on the runqueue
4579		 * of the associated CPU for local wake-ups targeting it to
4580		 * work.  Kick all idle workers so that they migrate to the
4581		 * associated CPU.  Doing this in the same loop as
4582		 * replacing UNBOUND with REBOUND is safe as no worker will
4583		 * be bound before @pool->lock is released.
4584		 */
4585		if (worker_flags & WORKER_IDLE)
4586			wake_up_process(worker->task);
4587
4588		/*
4589		 * We want to clear UNBOUND but can't directly call
4590		 * worker_clr_flags() or adjust nr_running.  Atomically
4591		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4592		 * @worker will clear REBOUND using worker_clr_flags() when
4593		 * it initiates the next execution cycle thus restoring
4594		 * concurrency management.  Note that when or whether
4595		 * @worker clears REBOUND doesn't affect correctness.
4596		 *
4597		 * ACCESS_ONCE() is necessary because @worker->flags may be
4598		 * tested without holding any lock in
4599		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4600		 * fail incorrectly leading to premature concurrency
4601		 * management operations.
4602		 */
4603		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4604		worker_flags |= WORKER_REBOUND;
4605		worker_flags &= ~WORKER_UNBOUND;
4606		ACCESS_ONCE(worker->flags) = worker_flags;
4607	}
4608
4609	spin_unlock_irq(&pool->lock);
4610}
4611
4612/**
4613 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4614 * @pool: unbound pool of interest
4615 * @cpu: the CPU which is coming up
4616 *
4617 * An unbound pool may end up with a cpumask which doesn't have any online
4618 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4619 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4620 * online CPU before, cpus_allowed of all its workers should be restored.
4621 */
4622static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4623{
4624	static cpumask_t cpumask;
4625	struct worker *worker;
4626
4627	lockdep_assert_held(&pool->attach_mutex);
4628
4629	/* is @cpu allowed for @pool? */
4630	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4631		return;
4632
4633	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4634
4635	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4636	for_each_pool_worker(worker, pool)
4637		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4638}
4639
4640int workqueue_prepare_cpu(unsigned int cpu)
4641{
4642	struct worker_pool *pool;
4643
4644	for_each_cpu_worker_pool(pool, cpu) {
4645		if (pool->nr_workers)
4646			continue;
4647		if (!create_worker(pool))
4648			return -ENOMEM;
4649	}
4650	return 0;
4651}
4652
4653int workqueue_online_cpu(unsigned int cpu)
4654{
4655	struct worker_pool *pool;
4656	struct workqueue_struct *wq;
4657	int pi;
4658
4659	mutex_lock(&wq_pool_mutex);
4660
4661	for_each_pool(pool, pi) {
4662		mutex_lock(&pool->attach_mutex);
 
 
4663
 
4664		if (pool->cpu == cpu)
4665			rebind_workers(pool);
4666		else if (pool->cpu < 0)
4667			restore_unbound_workers_cpumask(pool, cpu);
4668
4669		mutex_unlock(&pool->attach_mutex);
4670	}
4671
4672	/* update NUMA affinity of unbound workqueues */
4673	list_for_each_entry(wq, &workqueues, list)
4674		wq_update_unbound_numa(wq, cpu, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
4675
4676	mutex_unlock(&wq_pool_mutex);
4677	return 0;
4678}
4679
4680int workqueue_offline_cpu(unsigned int cpu)
4681{
4682	struct work_struct unbind_work;
4683	struct workqueue_struct *wq;
4684
4685	/* unbinding per-cpu workers should happen on the local CPU */
4686	INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4687	queue_work_on(cpu, system_highpri_wq, &unbind_work);
4688
4689	/* update NUMA affinity of unbound workqueues */
 
 
4690	mutex_lock(&wq_pool_mutex);
4691	list_for_each_entry(wq, &workqueues, list)
4692		wq_update_unbound_numa(wq, cpu, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
4693	mutex_unlock(&wq_pool_mutex);
4694
4695	/* wait for per-cpu unbinding to finish */
4696	flush_work(&unbind_work);
4697	destroy_work_on_stack(&unbind_work);
4698	return 0;
4699}
4700
4701#ifdef CONFIG_SMP
4702
4703struct work_for_cpu {
4704	struct work_struct work;
4705	long (*fn)(void *);
4706	void *arg;
4707	long ret;
4708};
4709
4710static void work_for_cpu_fn(struct work_struct *work)
4711{
4712	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4713
4714	wfc->ret = wfc->fn(wfc->arg);
4715}
4716
4717/**
4718 * work_on_cpu - run a function in thread context on a particular cpu
4719 * @cpu: the cpu to run on
4720 * @fn: the function to run
4721 * @arg: the function arg
 
4722 *
4723 * It is up to the caller to ensure that the cpu doesn't go offline.
4724 * The caller must not hold any locks which would prevent @fn from completing.
4725 *
4726 * Return: The value @fn returns.
4727 */
4728long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
 
4729{
4730	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4731
4732	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4733	schedule_work_on(cpu, &wfc.work);
4734	flush_work(&wfc.work);
4735	destroy_work_on_stack(&wfc.work);
4736	return wfc.ret;
4737}
4738EXPORT_SYMBOL_GPL(work_on_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4739#endif /* CONFIG_SMP */
4740
4741#ifdef CONFIG_FREEZER
4742
4743/**
4744 * freeze_workqueues_begin - begin freezing workqueues
4745 *
4746 * Start freezing workqueues.  After this function returns, all freezable
4747 * workqueues will queue new works to their delayed_works list instead of
4748 * pool->worklist.
4749 *
4750 * CONTEXT:
4751 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4752 */
4753void freeze_workqueues_begin(void)
4754{
4755	struct workqueue_struct *wq;
4756	struct pool_workqueue *pwq;
4757
4758	mutex_lock(&wq_pool_mutex);
4759
4760	WARN_ON_ONCE(workqueue_freezing);
4761	workqueue_freezing = true;
4762
4763	list_for_each_entry(wq, &workqueues, list) {
4764		mutex_lock(&wq->mutex);
4765		for_each_pwq(pwq, wq)
4766			pwq_adjust_max_active(pwq);
4767		mutex_unlock(&wq->mutex);
4768	}
4769
4770	mutex_unlock(&wq_pool_mutex);
4771}
4772
4773/**
4774 * freeze_workqueues_busy - are freezable workqueues still busy?
4775 *
4776 * Check whether freezing is complete.  This function must be called
4777 * between freeze_workqueues_begin() and thaw_workqueues().
4778 *
4779 * CONTEXT:
4780 * Grabs and releases wq_pool_mutex.
4781 *
4782 * Return:
4783 * %true if some freezable workqueues are still busy.  %false if freezing
4784 * is complete.
4785 */
4786bool freeze_workqueues_busy(void)
4787{
4788	bool busy = false;
4789	struct workqueue_struct *wq;
4790	struct pool_workqueue *pwq;
4791
4792	mutex_lock(&wq_pool_mutex);
4793
4794	WARN_ON_ONCE(!workqueue_freezing);
4795
4796	list_for_each_entry(wq, &workqueues, list) {
4797		if (!(wq->flags & WQ_FREEZABLE))
4798			continue;
4799		/*
4800		 * nr_active is monotonically decreasing.  It's safe
4801		 * to peek without lock.
4802		 */
4803		rcu_read_lock_sched();
4804		for_each_pwq(pwq, wq) {
4805			WARN_ON_ONCE(pwq->nr_active < 0);
4806			if (pwq->nr_active) {
4807				busy = true;
4808				rcu_read_unlock_sched();
4809				goto out_unlock;
4810			}
4811		}
4812		rcu_read_unlock_sched();
4813	}
4814out_unlock:
4815	mutex_unlock(&wq_pool_mutex);
4816	return busy;
4817}
4818
4819/**
4820 * thaw_workqueues - thaw workqueues
4821 *
4822 * Thaw workqueues.  Normal queueing is restored and all collected
4823 * frozen works are transferred to their respective pool worklists.
4824 *
4825 * CONTEXT:
4826 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4827 */
4828void thaw_workqueues(void)
4829{
4830	struct workqueue_struct *wq;
4831	struct pool_workqueue *pwq;
4832
4833	mutex_lock(&wq_pool_mutex);
4834
4835	if (!workqueue_freezing)
4836		goto out_unlock;
4837
4838	workqueue_freezing = false;
4839
4840	/* restore max_active and repopulate worklist */
4841	list_for_each_entry(wq, &workqueues, list) {
4842		mutex_lock(&wq->mutex);
4843		for_each_pwq(pwq, wq)
4844			pwq_adjust_max_active(pwq);
4845		mutex_unlock(&wq->mutex);
4846	}
4847
4848out_unlock:
4849	mutex_unlock(&wq_pool_mutex);
4850}
4851#endif /* CONFIG_FREEZER */
4852
4853static int workqueue_apply_unbound_cpumask(void)
4854{
4855	LIST_HEAD(ctxs);
4856	int ret = 0;
4857	struct workqueue_struct *wq;
4858	struct apply_wqattrs_ctx *ctx, *n;
4859
4860	lockdep_assert_held(&wq_pool_mutex);
4861
4862	list_for_each_entry(wq, &workqueues, list) {
4863		if (!(wq->flags & WQ_UNBOUND))
4864			continue;
4865		/* creating multiple pwqs breaks ordering guarantee */
4866		if (wq->flags & __WQ_ORDERED)
4867			continue;
4868
4869		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4870		if (!ctx) {
4871			ret = -ENOMEM;
4872			break;
4873		}
4874
4875		list_add_tail(&ctx->list, &ctxs);
4876	}
4877
4878	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4879		if (!ret)
4880			apply_wqattrs_commit(ctx);
4881		apply_wqattrs_cleanup(ctx);
4882	}
4883
 
 
 
 
 
4884	return ret;
4885}
4886
4887/**
4888 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4889 *  @cpumask: the cpumask to set
4890 *
4891 *  The low-level workqueues cpumask is a global cpumask that limits
4892 *  the affinity of all unbound workqueues.  This function check the @cpumask
4893 *  and apply it to all unbound workqueues and updates all pwqs of them.
4894 *
4895 *  Retun:	0	- Success
4896 *  		-EINVAL	- Invalid @cpumask
4897 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4898 */
4899int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4900{
4901	int ret = -EINVAL;
4902	cpumask_var_t saved_cpumask;
4903
4904	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4905		return -ENOMEM;
4906
4907	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4908	if (!cpumask_empty(cpumask)) {
4909		apply_wqattrs_lock();
4910
4911		/* save the old wq_unbound_cpumask. */
4912		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4913
4914		/* update wq_unbound_cpumask at first and apply it to wqs. */
4915		cpumask_copy(wq_unbound_cpumask, cpumask);
4916		ret = workqueue_apply_unbound_cpumask();
4917
4918		/* restore the wq_unbound_cpumask when failed. */
4919		if (ret < 0)
4920			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
 
 
 
4921
4922		apply_wqattrs_unlock();
 
 
 
 
 
 
 
 
 
 
 
4923	}
 
 
4924
4925	free_cpumask_var(saved_cpumask);
4926	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4927}
4928
 
 
 
 
 
 
 
 
 
 
 
 
4929#ifdef CONFIG_SYSFS
4930/*
4931 * Workqueues with WQ_SYSFS flag set is visible to userland via
4932 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4933 * following attributes.
4934 *
4935 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4936 *  max_active	RW int	: maximum number of in-flight work items
4937 *
4938 * Unbound workqueues have the following extra attributes.
4939 *
4940 *  id		RO int	: the associated pool ID
4941 *  nice	RW int	: nice value of the workers
4942 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 
4943 */
4944struct wq_device {
4945	struct workqueue_struct		*wq;
4946	struct device			dev;
4947};
4948
4949static struct workqueue_struct *dev_to_wq(struct device *dev)
4950{
4951	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4952
4953	return wq_dev->wq;
4954}
4955
4956static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4957			    char *buf)
4958{
4959	struct workqueue_struct *wq = dev_to_wq(dev);
4960
4961	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4962}
4963static DEVICE_ATTR_RO(per_cpu);
4964
4965static ssize_t max_active_show(struct device *dev,
4966			       struct device_attribute *attr, char *buf)
4967{
4968	struct workqueue_struct *wq = dev_to_wq(dev);
4969
4970	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4971}
4972
4973static ssize_t max_active_store(struct device *dev,
4974				struct device_attribute *attr, const char *buf,
4975				size_t count)
4976{
4977	struct workqueue_struct *wq = dev_to_wq(dev);
4978	int val;
4979
4980	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4981		return -EINVAL;
4982
4983	workqueue_set_max_active(wq, val);
4984	return count;
4985}
4986static DEVICE_ATTR_RW(max_active);
4987
4988static struct attribute *wq_sysfs_attrs[] = {
4989	&dev_attr_per_cpu.attr,
4990	&dev_attr_max_active.attr,
4991	NULL,
4992};
4993ATTRIBUTE_GROUPS(wq_sysfs);
4994
4995static ssize_t wq_pool_ids_show(struct device *dev,
4996				struct device_attribute *attr, char *buf)
4997{
4998	struct workqueue_struct *wq = dev_to_wq(dev);
4999	const char *delim = "";
5000	int node, written = 0;
5001
5002	rcu_read_lock_sched();
5003	for_each_node(node) {
5004		written += scnprintf(buf + written, PAGE_SIZE - written,
5005				     "%s%d:%d", delim, node,
5006				     unbound_pwq_by_node(wq, node)->pool->id);
5007		delim = " ";
5008	}
5009	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5010	rcu_read_unlock_sched();
5011
5012	return written;
 
 
 
5013}
5014
5015static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5016			    char *buf)
5017{
5018	struct workqueue_struct *wq = dev_to_wq(dev);
5019	int written;
5020
5021	mutex_lock(&wq->mutex);
5022	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5023	mutex_unlock(&wq->mutex);
5024
5025	return written;
5026}
5027
5028/* prepare workqueue_attrs for sysfs store operations */
5029static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5030{
5031	struct workqueue_attrs *attrs;
5032
5033	lockdep_assert_held(&wq_pool_mutex);
5034
5035	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5036	if (!attrs)
5037		return NULL;
5038
5039	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5040	return attrs;
5041}
5042
5043static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5044			     const char *buf, size_t count)
5045{
5046	struct workqueue_struct *wq = dev_to_wq(dev);
5047	struct workqueue_attrs *attrs;
5048	int ret = -ENOMEM;
5049
5050	apply_wqattrs_lock();
5051
5052	attrs = wq_sysfs_prep_attrs(wq);
5053	if (!attrs)
5054		goto out_unlock;
5055
5056	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5057	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5058		ret = apply_workqueue_attrs_locked(wq, attrs);
5059	else
5060		ret = -EINVAL;
5061
5062out_unlock:
5063	apply_wqattrs_unlock();
5064	free_workqueue_attrs(attrs);
5065	return ret ?: count;
5066}
5067
5068static ssize_t wq_cpumask_show(struct device *dev,
5069			       struct device_attribute *attr, char *buf)
5070{
5071	struct workqueue_struct *wq = dev_to_wq(dev);
5072	int written;
5073
5074	mutex_lock(&wq->mutex);
5075	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5076			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5077	mutex_unlock(&wq->mutex);
5078	return written;
5079}
5080
5081static ssize_t wq_cpumask_store(struct device *dev,
5082				struct device_attribute *attr,
5083				const char *buf, size_t count)
5084{
5085	struct workqueue_struct *wq = dev_to_wq(dev);
5086	struct workqueue_attrs *attrs;
5087	int ret = -ENOMEM;
5088
5089	apply_wqattrs_lock();
5090
5091	attrs = wq_sysfs_prep_attrs(wq);
5092	if (!attrs)
5093		goto out_unlock;
5094
5095	ret = cpumask_parse(buf, attrs->cpumask);
5096	if (!ret)
5097		ret = apply_workqueue_attrs_locked(wq, attrs);
5098
5099out_unlock:
5100	apply_wqattrs_unlock();
5101	free_workqueue_attrs(attrs);
5102	return ret ?: count;
5103}
5104
5105static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5106			    char *buf)
5107{
5108	struct workqueue_struct *wq = dev_to_wq(dev);
5109	int written;
5110
5111	mutex_lock(&wq->mutex);
5112	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5113			    !wq->unbound_attrs->no_numa);
 
 
 
 
 
5114	mutex_unlock(&wq->mutex);
5115
5116	return written;
5117}
5118
5119static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5120			     const char *buf, size_t count)
 
5121{
5122	struct workqueue_struct *wq = dev_to_wq(dev);
5123	struct workqueue_attrs *attrs;
5124	int v, ret = -ENOMEM;
5125
5126	apply_wqattrs_lock();
 
 
5127
 
5128	attrs = wq_sysfs_prep_attrs(wq);
5129	if (!attrs)
5130		goto out_unlock;
5131
5132	ret = -EINVAL;
5133	if (sscanf(buf, "%d", &v) == 1) {
5134		attrs->no_numa = !v;
5135		ret = apply_workqueue_attrs_locked(wq, attrs);
5136	}
 
 
 
 
5137
5138out_unlock:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5139	apply_wqattrs_unlock();
5140	free_workqueue_attrs(attrs);
5141	return ret ?: count;
5142}
5143
5144static struct device_attribute wq_sysfs_unbound_attrs[] = {
5145	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5146	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5147	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5148	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
 
5149	__ATTR_NULL,
5150};
5151
5152static struct bus_type wq_subsys = {
5153	.name				= "workqueue",
5154	.dev_groups			= wq_sysfs_groups,
5155};
5156
5157static ssize_t wq_unbound_cpumask_show(struct device *dev,
5158		struct device_attribute *attr, char *buf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5159{
5160	int written;
5161
5162	mutex_lock(&wq_pool_mutex);
5163	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5164			    cpumask_pr_args(wq_unbound_cpumask));
5165	mutex_unlock(&wq_pool_mutex);
5166
5167	return written;
5168}
5169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5170static ssize_t wq_unbound_cpumask_store(struct device *dev,
5171		struct device_attribute *attr, const char *buf, size_t count)
5172{
5173	cpumask_var_t cpumask;
5174	int ret;
5175
5176	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5177		return -ENOMEM;
5178
5179	ret = cpumask_parse(buf, cpumask);
5180	if (!ret)
5181		ret = workqueue_set_unbound_cpumask(cpumask);
5182
5183	free_cpumask_var(cpumask);
5184	return ret ? ret : count;
5185}
5186
5187static struct device_attribute wq_sysfs_cpumask_attr =
5188	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5189	       wq_unbound_cpumask_store);
 
 
 
 
5190
5191static int __init wq_sysfs_init(void)
5192{
 
5193	int err;
5194
5195	err = subsys_virtual_register(&wq_subsys, NULL);
5196	if (err)
5197		return err;
5198
5199	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
 
 
 
 
 
 
 
 
 
 
 
5200}
5201core_initcall(wq_sysfs_init);
5202
5203static void wq_device_release(struct device *dev)
5204{
5205	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5206
5207	kfree(wq_dev);
5208}
5209
5210/**
5211 * workqueue_sysfs_register - make a workqueue visible in sysfs
5212 * @wq: the workqueue to register
5213 *
5214 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5215 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5216 * which is the preferred method.
5217 *
5218 * Workqueue user should use this function directly iff it wants to apply
5219 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5220 * apply_workqueue_attrs() may race against userland updating the
5221 * attributes.
5222 *
5223 * Return: 0 on success, -errno on failure.
5224 */
5225int workqueue_sysfs_register(struct workqueue_struct *wq)
5226{
5227	struct wq_device *wq_dev;
5228	int ret;
5229
5230	/*
5231	 * Adjusting max_active or creating new pwqs by applying
5232	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5233	 * workqueues.
5234	 */
5235	if (WARN_ON(wq->flags & __WQ_ORDERED))
5236		return -EINVAL;
5237
5238	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5239	if (!wq_dev)
5240		return -ENOMEM;
5241
5242	wq_dev->wq = wq;
5243	wq_dev->dev.bus = &wq_subsys;
5244	wq_dev->dev.release = wq_device_release;
5245	dev_set_name(&wq_dev->dev, "%s", wq->name);
5246
5247	/*
5248	 * unbound_attrs are created separately.  Suppress uevent until
5249	 * everything is ready.
5250	 */
5251	dev_set_uevent_suppress(&wq_dev->dev, true);
5252
5253	ret = device_register(&wq_dev->dev);
5254	if (ret) {
5255		kfree(wq_dev);
5256		wq->wq_dev = NULL;
5257		return ret;
5258	}
5259
5260	if (wq->flags & WQ_UNBOUND) {
5261		struct device_attribute *attr;
5262
5263		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5264			ret = device_create_file(&wq_dev->dev, attr);
5265			if (ret) {
5266				device_unregister(&wq_dev->dev);
5267				wq->wq_dev = NULL;
5268				return ret;
5269			}
5270		}
5271	}
5272
5273	dev_set_uevent_suppress(&wq_dev->dev, false);
5274	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5275	return 0;
5276}
5277
5278/**
5279 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5280 * @wq: the workqueue to unregister
5281 *
5282 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5283 */
5284static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5285{
5286	struct wq_device *wq_dev = wq->wq_dev;
5287
5288	if (!wq->wq_dev)
5289		return;
5290
5291	wq->wq_dev = NULL;
5292	device_unregister(&wq_dev->dev);
5293}
5294#else	/* CONFIG_SYSFS */
5295static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5296#endif	/* CONFIG_SYSFS */
5297
5298/*
5299 * Workqueue watchdog.
5300 *
5301 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5302 * flush dependency, a concurrency managed work item which stays RUNNING
5303 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5304 * usual warning mechanisms don't trigger and internal workqueue state is
5305 * largely opaque.
5306 *
5307 * Workqueue watchdog monitors all worker pools periodically and dumps
5308 * state if some pools failed to make forward progress for a while where
5309 * forward progress is defined as the first item on ->worklist changing.
5310 *
5311 * This mechanism is controlled through the kernel parameter
5312 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5313 * corresponding sysfs parameter file.
5314 */
5315#ifdef CONFIG_WQ_WATCHDOG
5316
5317static void wq_watchdog_timer_fn(unsigned long data);
5318
5319static unsigned long wq_watchdog_thresh = 30;
5320static struct timer_list wq_watchdog_timer =
5321	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5322
5323static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5324static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5326static void wq_watchdog_reset_touched(void)
5327{
5328	int cpu;
5329
5330	wq_watchdog_touched = jiffies;
5331	for_each_possible_cpu(cpu)
5332		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5333}
5334
5335static void wq_watchdog_timer_fn(unsigned long data)
5336{
5337	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5338	bool lockup_detected = false;
 
 
5339	struct worker_pool *pool;
5340	int pi;
5341
5342	if (!thresh)
5343		return;
5344
5345	rcu_read_lock();
5346
5347	for_each_pool(pool, pi) {
5348		unsigned long pool_ts, touched, ts;
5349
 
5350		if (list_empty(&pool->worklist))
5351			continue;
5352
 
 
 
 
 
 
5353		/* get the latest of pool and touched timestamps */
 
 
 
 
5354		pool_ts = READ_ONCE(pool->watchdog_ts);
5355		touched = READ_ONCE(wq_watchdog_touched);
5356
5357		if (time_after(pool_ts, touched))
5358			ts = pool_ts;
5359		else
5360			ts = touched;
5361
5362		if (pool->cpu >= 0) {
5363			unsigned long cpu_touched =
5364				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5365						  pool->cpu));
5366			if (time_after(cpu_touched, ts))
5367				ts = cpu_touched;
5368		}
5369
5370		/* did we stall? */
5371		if (time_after(jiffies, ts + thresh)) {
5372			lockup_detected = true;
 
 
 
 
5373			pr_emerg("BUG: workqueue lockup - pool");
5374			pr_cont_pool_info(pool);
5375			pr_cont(" stuck for %us!\n",
5376				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5377		}
 
 
5378	}
5379
5380	rcu_read_unlock();
5381
5382	if (lockup_detected)
5383		show_workqueue_state();
 
 
 
5384
5385	wq_watchdog_reset_touched();
5386	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5387}
5388
5389void wq_watchdog_touch(int cpu)
5390{
5391	if (cpu >= 0)
5392		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5393	else
5394		wq_watchdog_touched = jiffies;
5395}
5396
5397static void wq_watchdog_set_thresh(unsigned long thresh)
5398{
5399	wq_watchdog_thresh = 0;
5400	del_timer_sync(&wq_watchdog_timer);
5401
5402	if (thresh) {
5403		wq_watchdog_thresh = thresh;
5404		wq_watchdog_reset_touched();
5405		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5406	}
5407}
5408
5409static int wq_watchdog_param_set_thresh(const char *val,
5410					const struct kernel_param *kp)
5411{
5412	unsigned long thresh;
5413	int ret;
5414
5415	ret = kstrtoul(val, 0, &thresh);
5416	if (ret)
5417		return ret;
5418
5419	if (system_wq)
5420		wq_watchdog_set_thresh(thresh);
5421	else
5422		wq_watchdog_thresh = thresh;
5423
5424	return 0;
5425}
5426
5427static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5428	.set	= wq_watchdog_param_set_thresh,
5429	.get	= param_get_ulong,
5430};
5431
5432module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5433		0644);
5434
5435static void wq_watchdog_init(void)
5436{
 
5437	wq_watchdog_set_thresh(wq_watchdog_thresh);
5438}
5439
5440#else	/* CONFIG_WQ_WATCHDOG */
5441
5442static inline void wq_watchdog_init(void) { }
5443
5444#endif	/* CONFIG_WQ_WATCHDOG */
5445
5446static void __init wq_numa_init(void)
5447{
5448	cpumask_var_t *tbl;
5449	int node, cpu;
5450
5451	if (num_possible_nodes() <= 1)
5452		return;
 
 
5453
5454	if (wq_disable_numa) {
5455		pr_info("workqueue: NUMA affinity support disabled\n");
 
 
 
5456		return;
5457	}
5458
5459	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5460	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5461
5462	/*
5463	 * We want masks of possible CPUs of each node which isn't readily
5464	 * available.  Build one from cpu_to_node() which should have been
5465	 * fully initialized by now.
5466	 */
5467	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5468	BUG_ON(!tbl);
5469
5470	for_each_node(node)
5471		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5472				node_online(node) ? node : NUMA_NO_NODE));
5473
5474	for_each_possible_cpu(cpu) {
5475		node = cpu_to_node(cpu);
5476		if (WARN_ON(node == NUMA_NO_NODE)) {
5477			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5478			/* happens iff arch is bonkers, let's just proceed */
5479			return;
5480		}
5481		cpumask_set_cpu(cpu, tbl[node]);
5482	}
5483
5484	wq_numa_possible_cpumask = tbl;
5485	wq_numa_enabled = true;
 
 
5486}
5487
5488/**
5489 * workqueue_init_early - early init for workqueue subsystem
5490 *
5491 * This is the first half of two-staged workqueue subsystem initialization
5492 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5493 * idr are up.  It sets up all the data structures and system workqueues
5494 * and allows early boot code to create workqueues and queue/cancel work
5495 * items.  Actual work item execution starts only after kthreads can be
5496 * created and scheduled right before early initcalls.
5497 */
5498int __init workqueue_init_early(void)
5499{
 
5500	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
 
 
5501	int i, cpu;
5502
5503	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5504
5505	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
 
 
 
5506	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
 
 
 
 
 
 
5507
5508	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5509
5510	/* initialize CPU pools */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5511	for_each_possible_cpu(cpu) {
5512		struct worker_pool *pool;
5513
5514		i = 0;
5515		for_each_cpu_worker_pool(pool, cpu) {
5516			BUG_ON(init_worker_pool(pool));
5517			pool->cpu = cpu;
5518			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5519			pool->attrs->nice = std_nice[i++];
5520			pool->node = cpu_to_node(cpu);
5521
5522			/* alloc pool ID */
5523			mutex_lock(&wq_pool_mutex);
5524			BUG_ON(worker_pool_assign_id(pool));
5525			mutex_unlock(&wq_pool_mutex);
5526		}
 
 
 
 
5527	}
5528
5529	/* create default unbound and ordered wq attrs */
5530	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5531		struct workqueue_attrs *attrs;
5532
5533		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5534		attrs->nice = std_nice[i];
5535		unbound_std_wq_attrs[i] = attrs;
5536
5537		/*
5538		 * An ordered wq should have only one pwq as ordering is
5539		 * guaranteed by max_active which is enforced by pwqs.
5540		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5541		 */
5542		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5543		attrs->nice = std_nice[i];
5544		attrs->no_numa = true;
5545		ordered_wq_attrs[i] = attrs;
5546	}
5547
5548	system_wq = alloc_workqueue("events", 0, 0);
5549	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5550	system_long_wq = alloc_workqueue("events_long", 0, 0);
5551	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5552					    WQ_UNBOUND_MAX_ACTIVE);
5553	system_freezable_wq = alloc_workqueue("events_freezable",
5554					      WQ_FREEZABLE, 0);
5555	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5556					      WQ_POWER_EFFICIENT, 0);
5557	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5558					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5559					      0);
 
 
 
5560	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5561	       !system_unbound_wq || !system_freezable_wq ||
5562	       !system_power_efficient_wq ||
5563	       !system_freezable_power_efficient_wq);
 
 
5564
5565	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5566}
5567
5568/**
5569 * workqueue_init - bring workqueue subsystem fully online
5570 *
5571 * This is the latter half of two-staged workqueue subsystem initialization
5572 * and invoked as soon as kthreads can be created and scheduled.
5573 * Workqueues have been created and work items queued on them, but there
5574 * are no kworkers executing the work items yet.  Populate the worker pools
5575 * with the initial workers and enable future kworker creations.
5576 */
5577int __init workqueue_init(void)
5578{
5579	struct workqueue_struct *wq;
5580	struct worker_pool *pool;
5581	int cpu, bkt;
5582
5583	/*
5584	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5585	 * CPU to node mapping may not be available that early on some
5586	 * archs such as power and arm64.  As per-cpu pools created
5587	 * previously could be missing node hint and unbound pools NUMA
5588	 * affinity, fix them up.
5589	 */
5590	wq_numa_init();
5591
5592	mutex_lock(&wq_pool_mutex);
5593
 
 
 
 
5594	for_each_possible_cpu(cpu) {
5595		for_each_cpu_worker_pool(pool, cpu) {
 
 
5596			pool->node = cpu_to_node(cpu);
5597		}
5598	}
5599
5600	list_for_each_entry(wq, &workqueues, list)
5601		wq_update_unbound_numa(wq, smp_processor_id(), true);
 
 
 
5602
5603	mutex_unlock(&wq_pool_mutex);
5604
5605	/* create the initial workers */
 
 
 
 
 
 
 
 
 
5606	for_each_online_cpu(cpu) {
5607		for_each_cpu_worker_pool(pool, cpu) {
5608			pool->flags &= ~POOL_DISASSOCIATED;
5609			BUG_ON(!create_worker(pool));
5610		}
5611	}
5612
5613	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5614		BUG_ON(!create_worker(pool));
5615
5616	wq_online = true;
5617	wq_watchdog_init();
 
5618
5619	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5620}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/workqueue.c - generic async execution with shared worker pool
   4 *
   5 * Copyright (C) 2002		Ingo Molnar
   6 *
   7 *   Derived from the taskqueue/keventd code by:
   8 *     David Woodhouse <dwmw2@infradead.org>
   9 *     Andrew Morton
  10 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  11 *     Theodore Ts'o <tytso@mit.edu>
  12 *
  13 * Made to use alloc_percpu by Christoph Lameter.
  14 *
  15 * Copyright (C) 2010		SUSE Linux Products GmbH
  16 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  17 *
  18 * This is the generic async execution mechanism.  Work items as are
  19 * executed in process context.  The worker pool is shared and
  20 * automatically managed.  There are two worker pools for each CPU (one for
  21 * normal work items and the other for high priority ones) and some extra
  22 * pools for workqueues which are not bound to any specific CPU - the
  23 * number of these backing pools is dynamic.
  24 *
  25 * Please read Documentation/core-api/workqueue.rst for details.
  26 */
  27
  28#include <linux/export.h>
  29#include <linux/kernel.h>
  30#include <linux/sched.h>
  31#include <linux/init.h>
  32#include <linux/interrupt.h>
  33#include <linux/signal.h>
  34#include <linux/completion.h>
  35#include <linux/workqueue.h>
  36#include <linux/slab.h>
  37#include <linux/cpu.h>
  38#include <linux/notifier.h>
  39#include <linux/kthread.h>
  40#include <linux/hardirq.h>
  41#include <linux/mempolicy.h>
  42#include <linux/freezer.h>
 
  43#include <linux/debug_locks.h>
  44#include <linux/lockdep.h>
  45#include <linux/idr.h>
  46#include <linux/jhash.h>
  47#include <linux/hashtable.h>
  48#include <linux/rculist.h>
  49#include <linux/nodemask.h>
  50#include <linux/moduleparam.h>
  51#include <linux/uaccess.h>
  52#include <linux/sched/isolation.h>
  53#include <linux/sched/debug.h>
  54#include <linux/nmi.h>
  55#include <linux/kvm_para.h>
  56#include <linux/delay.h>
  57#include <linux/irq_work.h>
  58
  59#include "workqueue_internal.h"
  60
  61enum worker_pool_flags {
  62	/*
  63	 * worker_pool flags
  64	 *
  65	 * A bound pool is either associated or disassociated with its CPU.
  66	 * While associated (!DISASSOCIATED), all workers are bound to the
  67	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  68	 * is in effect.
  69	 *
  70	 * While DISASSOCIATED, the cpu may be offline and all workers have
  71	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  72	 * be executing on any CPU.  The pool behaves as an unbound one.
  73	 *
  74	 * Note that DISASSOCIATED should be flipped only while holding
  75	 * wq_pool_attach_mutex to avoid changing binding state while
  76	 * worker_attach_to_pool() is in progress.
  77	 *
  78	 * As there can only be one concurrent BH execution context per CPU, a
  79	 * BH pool is per-CPU and always DISASSOCIATED.
  80	 */
  81	POOL_BH			= 1 << 0,	/* is a BH pool */
  82	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
  83	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  84	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
  85};
  86
  87enum worker_flags {
  88	/* worker flags */
  89	WORKER_DIE		= 1 << 1,	/* die die die */
  90	WORKER_IDLE		= 1 << 2,	/* is idle */
  91	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  92	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  93	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  94	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  95
  96	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  97				  WORKER_UNBOUND | WORKER_REBOUND,
  98};
  99
 100enum work_cancel_flags {
 101	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
 102};
 103
 104enum wq_internal_consts {
 105	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
 106
 107	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
 108	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
 109
 110	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
 111	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
 112
 113	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
 114						/* call for help after 10ms
 115						   (min two ticks) */
 116	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
 117	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
 118
 119	/*
 120	 * Rescue workers are used only on emergencies and shared by
 121	 * all cpus.  Give MIN_NICE.
 122	 */
 123	RESCUER_NICE_LEVEL	= MIN_NICE,
 124	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 125
 126	WQ_NAME_LEN		= 32,
 127};
 128
 129/*
 130 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
 131 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
 132 * msecs_to_jiffies() can't be an initializer.
 133 */
 134#define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
 135#define BH_WORKER_RESTARTS	10
 136
 137/*
 138 * Structure fields follow one of the following exclusion rules.
 139 *
 140 * I: Modifiable by initialization/destruction paths and read-only for
 141 *    everyone else.
 142 *
 143 * P: Preemption protected.  Disabling preemption is enough and should
 144 *    only be modified and accessed from the local cpu.
 145 *
 146 * L: pool->lock protected.  Access with pool->lock held.
 147 *
 148 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
 149 *     reads.
 
 
 150 *
 151 * K: Only modified by worker while holding pool->lock. Can be safely read by
 152 *    self, while holding pool->lock or from IRQ context if %current is the
 153 *    kworker.
 154 *
 155 * S: Only modified by worker self.
 156 *
 157 * A: wq_pool_attach_mutex protected.
 158 *
 159 * PL: wq_pool_mutex protected.
 160 *
 161 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
 162 *
 163 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 164 *
 165 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 166 *      RCU for reads.
 167 *
 168 * WQ: wq->mutex protected.
 169 *
 170 * WR: wq->mutex protected for writes.  RCU protected for reads.
 171 *
 172 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
 173 *     with READ_ONCE() without locking.
 174 *
 175 * MD: wq_mayday_lock protected.
 176 *
 177 * WD: Used internally by the watchdog.
 178 */
 179
 180/* struct worker is defined in workqueue_internal.h */
 181
 182struct worker_pool {
 183	raw_spinlock_t		lock;		/* the pool lock */
 184	int			cpu;		/* I: the associated cpu */
 185	int			node;		/* I: the associated node ID */
 186	int			id;		/* I: pool ID */
 187	unsigned int		flags;		/* L: flags */
 188
 189	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 190	bool			cpu_stall;	/* WD: stalled cpu bound pool */
 191
 192	/*
 193	 * The counter is incremented in a process context on the associated CPU
 194	 * w/ preemption disabled, and decremented or reset in the same context
 195	 * but w/ pool->lock held. The readers grab pool->lock and are
 196	 * guaranteed to see if the counter reached zero.
 197	 */
 198	int			nr_running;
 199
 200	struct list_head	worklist;	/* L: list of pending works */
 
 201
 202	int			nr_workers;	/* L: total number of workers */
 203	int			nr_idle;	/* L: currently idle workers */
 204
 205	struct list_head	idle_list;	/* L: list of idle workers */
 206	struct timer_list	idle_timer;	/* L: worker idle timeout */
 207	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
 208
 209	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
 210
 211	/* a workers is either on busy_hash or idle_list, or the manager */
 212	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 213						/* L: hash of busy workers */
 214
 
 
 215	struct worker		*manager;	/* L: purely informational */
 
 216	struct list_head	workers;	/* A: attached workers */
 217	struct list_head        dying_workers;  /* A: workers about to die */
 218	struct completion	*detach_completion; /* all workers detached */
 219
 220	struct ida		worker_ida;	/* worker IDs for task name */
 221
 222	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 223	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 224	int			refcnt;		/* PL: refcnt for unbound pools */
 225
 226	/*
 227	 * Destruction of pool is RCU protected to allow dereferences
 
 
 
 
 
 
 
 228	 * from get_work_pool().
 229	 */
 230	struct rcu_head		rcu;
 231};
 232
 233/*
 234 * Per-pool_workqueue statistics. These can be monitored using
 235 * tools/workqueue/wq_monitor.py.
 236 */
 237enum pool_workqueue_stats {
 238	PWQ_STAT_STARTED,	/* work items started execution */
 239	PWQ_STAT_COMPLETED,	/* work items completed execution */
 240	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
 241	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
 242	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
 243	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
 244	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
 245	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
 246
 247	PWQ_NR_STATS,
 248};
 249
 250/*
 251 * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
 252 * of work_struct->data are used for flags and the remaining high bits
 253 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 254 * number of flag bits.
 255 */
 256struct pool_workqueue {
 257	struct worker_pool	*pool;		/* I: the associated pool */
 258	struct workqueue_struct *wq;		/* I: the owning workqueue */
 259	int			work_color;	/* L: current color */
 260	int			flush_color;	/* L: flushing color */
 261	int			refcnt;		/* L: reference count */
 262	int			nr_in_flight[WORK_NR_COLORS];
 263						/* L: nr of in_flight works */
 264	bool			plugged;	/* L: execution suspended */
 265
 266	/*
 267	 * nr_active management and WORK_STRUCT_INACTIVE:
 268	 *
 269	 * When pwq->nr_active >= max_active, new work item is queued to
 270	 * pwq->inactive_works instead of pool->worklist and marked with
 271	 * WORK_STRUCT_INACTIVE.
 272	 *
 273	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
 274	 * nr_active and all work items in pwq->inactive_works are marked with
 275	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
 276	 * in pwq->inactive_works. Some of them are ready to run in
 277	 * pool->worklist or worker->scheduled. Those work itmes are only struct
 278	 * wq_barrier which is used for flush_work() and should not participate
 279	 * in nr_active. For non-barrier work item, it is marked with
 280	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
 281	 */
 282	int			nr_active;	/* L: nr of active works */
 283	struct list_head	inactive_works;	/* L: inactive works */
 284	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
 285	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 286	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 287
 288	u64			stats[PWQ_NR_STATS];
 289
 290	/*
 291	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
 292	 * and pwq_release_workfn() for details. pool_workqueue itself is also
 293	 * RCU protected so that the first pwq can be determined without
 294	 * grabbing wq->mutex.
 295	 */
 296	struct kthread_work	release_work;
 297	struct rcu_head		rcu;
 298} __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
 299
 300/*
 301 * Structure used to wait for workqueue flush.
 302 */
 303struct wq_flusher {
 304	struct list_head	list;		/* WQ: list of flushers */
 305	int			flush_color;	/* WQ: flush color waiting for */
 306	struct completion	done;		/* flush completion */
 307};
 308
 309struct wq_device;
 310
 311/*
 312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
 313 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
 314 * As sharing a single nr_active across multiple sockets can be very expensive,
 315 * the counting and enforcement is per NUMA node.
 316 *
 317 * The following struct is used to enforce per-node max_active. When a pwq wants
 318 * to start executing a work item, it should increment ->nr using
 319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
 320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
 321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
 322 * round-robin order.
 323 */
 324struct wq_node_nr_active {
 325	int			max;		/* per-node max_active */
 326	atomic_t		nr;		/* per-node nr_active */
 327	raw_spinlock_t		lock;		/* nests inside pool locks */
 328	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
 329};
 330
 331/*
 332 * The externally visible workqueue.  It relays the issued work items to
 333 * the appropriate worker_pool through its pool_workqueues.
 334 */
 335struct workqueue_struct {
 336	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 337	struct list_head	list;		/* PR: list of all workqueues */
 338
 339	struct mutex		mutex;		/* protects this wq */
 340	int			work_color;	/* WQ: current work color */
 341	int			flush_color;	/* WQ: current flush color */
 342	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 343	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 344	struct list_head	flusher_queue;	/* WQ: flush waiters */
 345	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 346
 347	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 348	struct worker		*rescuer;	/* MD: rescue worker */
 349
 350	int			nr_drainers;	/* WQ: drain in progress */
 351
 352	/* See alloc_workqueue() function comment for info on min/max_active */
 353	int			max_active;	/* WO: max active works */
 354	int			min_active;	/* WO: min active works */
 355	int			saved_max_active; /* WQ: saved max_active */
 356	int			saved_min_active; /* WQ: saved min_active */
 357
 358	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 359	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
 360
 361#ifdef CONFIG_SYSFS
 362	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 363#endif
 364#ifdef CONFIG_LOCKDEP
 365	char			*lock_name;
 366	struct lock_class_key	key;
 367	struct lockdep_map	lockdep_map;
 368#endif
 369	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 370
 371	/*
 372	 * Destruction of workqueue_struct is RCU protected to allow walking
 373	 * the workqueues list without grabbing wq_pool_mutex.
 374	 * This is used to dump all workqueues from sysrq.
 375	 */
 376	struct rcu_head		rcu;
 377
 378	/* hot fields used during command issue, aligned to cacheline */
 379	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 380	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
 381	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
 382};
 383
 384/*
 385 * Each pod type describes how CPUs should be grouped for unbound workqueues.
 386 * See the comment above workqueue_attrs->affn_scope.
 387 */
 388struct wq_pod_type {
 389	int			nr_pods;	/* number of pods */
 390	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
 391	int			*pod_node;	/* pod -> node */
 392	int			*cpu_pod;	/* cpu -> pod */
 393};
 394
 395static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
 396	[WQ_AFFN_DFL]		= "default",
 397	[WQ_AFFN_CPU]		= "cpu",
 398	[WQ_AFFN_SMT]		= "smt",
 399	[WQ_AFFN_CACHE]		= "cache",
 400	[WQ_AFFN_NUMA]		= "numa",
 401	[WQ_AFFN_SYSTEM]	= "system",
 402};
 403
 404/*
 405 * Per-cpu work items which run for longer than the following threshold are
 406 * automatically considered CPU intensive and excluded from concurrency
 407 * management to prevent them from noticeably delaying other per-cpu work items.
 408 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
 409 * The actual value is initialized in wq_cpu_intensive_thresh_init().
 410 */
 411static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
 412module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
 413#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
 414static unsigned int wq_cpu_intensive_warning_thresh = 4;
 415module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
 416#endif
 417
 418/* see the comment above the definition of WQ_POWER_EFFICIENT */
 419static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 420module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 421
 422static bool wq_online;			/* can kworkers be created yet? */
 423static bool wq_topo_initialized __read_mostly = false;
 424
 425static struct kmem_cache *pwq_cache;
 426
 427static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
 428static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
 429
 430/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
 431static struct workqueue_attrs *wq_update_pod_attrs_buf;
 432
 433static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 434static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
 435static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 436/* wait for manager to go away */
 437static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
 438
 439static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 440static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 441
 442/* PL&A: allowable cpus for unbound wqs and work items */
 443static cpumask_var_t wq_unbound_cpumask;
 444
 445/* PL: user requested unbound cpumask via sysfs */
 446static cpumask_var_t wq_requested_unbound_cpumask;
 447
 448/* PL: isolated cpumask to be excluded from unbound cpumask */
 449static cpumask_var_t wq_isolated_cpumask;
 450
 451/* for further constrain wq_unbound_cpumask by cmdline parameter*/
 452static struct cpumask wq_cmdline_cpumask __initdata;
 453
 454/* CPU where unbound work was last round robin scheduled from this CPU */
 455static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 456
 457/*
 458 * Local execution of unbound work items is no longer guaranteed.  The
 459 * following always forces round-robin CPU selection on unbound work items
 460 * to uncover usages which depend on it.
 461 */
 462#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 463static bool wq_debug_force_rr_cpu = true;
 464#else
 465static bool wq_debug_force_rr_cpu = false;
 466#endif
 467module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 468
 469/* to raise softirq for the BH worker pools on other CPUs */
 470static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS],
 471				     bh_pool_irq_works);
 472
 473/* the BH worker pools */
 474static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
 475				     bh_worker_pools);
 476
 477/* the per-cpu worker pools */
 478static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
 479				     cpu_worker_pools);
 480
 481static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 482
 483/* PL: hash of all unbound pools keyed by pool->attrs */
 484static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 485
 486/* I: attributes used when instantiating standard unbound pools on demand */
 487static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 488
 489/* I: attributes used when instantiating ordered pools on demand */
 490static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 491
 492/*
 493 * Used to synchronize multiple cancel_sync attempts on the same work item. See
 494 * work_grab_pending() and __cancel_work_sync().
 495 */
 496static DECLARE_WAIT_QUEUE_HEAD(wq_cancel_waitq);
 497
 498/*
 499 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
 500 * process context while holding a pool lock. Bounce to a dedicated kthread
 501 * worker to avoid A-A deadlocks.
 502 */
 503static struct kthread_worker *pwq_release_worker __ro_after_init;
 504
 505struct workqueue_struct *system_wq __ro_after_init;
 506EXPORT_SYMBOL(system_wq);
 507struct workqueue_struct *system_highpri_wq __ro_after_init;
 508EXPORT_SYMBOL_GPL(system_highpri_wq);
 509struct workqueue_struct *system_long_wq __ro_after_init;
 510EXPORT_SYMBOL_GPL(system_long_wq);
 511struct workqueue_struct *system_unbound_wq __ro_after_init;
 512EXPORT_SYMBOL_GPL(system_unbound_wq);
 513struct workqueue_struct *system_freezable_wq __ro_after_init;
 514EXPORT_SYMBOL_GPL(system_freezable_wq);
 515struct workqueue_struct *system_power_efficient_wq __ro_after_init;
 516EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 517struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
 518EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 519struct workqueue_struct *system_bh_wq;
 520EXPORT_SYMBOL_GPL(system_bh_wq);
 521struct workqueue_struct *system_bh_highpri_wq;
 522EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
 523
 524static int worker_thread(void *__worker);
 525static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 526static void show_pwq(struct pool_workqueue *pwq);
 527static void show_one_worker_pool(struct worker_pool *pool);
 528
 529#define CREATE_TRACE_POINTS
 530#include <trace/events/workqueue.h>
 531
 532#define assert_rcu_or_pool_mutex()					\
 533	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
 534			 !lockdep_is_held(&wq_pool_mutex),		\
 535			 "RCU or wq_pool_mutex should be held")
 
 
 
 
 
 536
 537#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 538	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
 539			 !lockdep_is_held(&wq->mutex) &&		\
 540			 !lockdep_is_held(&wq_pool_mutex),		\
 541			 "RCU, wq->mutex or wq_pool_mutex should be held")
 542
 543#define for_each_bh_worker_pool(pool, cpu)				\
 544	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
 545	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 546	     (pool)++)
 547
 548#define for_each_cpu_worker_pool(pool, cpu)				\
 549	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 550	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 551	     (pool)++)
 552
 553/**
 554 * for_each_pool - iterate through all worker_pools in the system
 555 * @pool: iteration cursor
 556 * @pi: integer used for iteration
 557 *
 558 * This must be called either with wq_pool_mutex held or RCU read
 559 * locked.  If the pool needs to be used beyond the locking in effect, the
 560 * caller is responsible for guaranteeing that the pool stays online.
 561 *
 562 * The if/else clause exists only for the lockdep assertion and can be
 563 * ignored.
 564 */
 565#define for_each_pool(pool, pi)						\
 566	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 567		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 568		else
 569
 570/**
 571 * for_each_pool_worker - iterate through all workers of a worker_pool
 572 * @worker: iteration cursor
 573 * @pool: worker_pool to iterate workers of
 574 *
 575 * This must be called with wq_pool_attach_mutex.
 576 *
 577 * The if/else clause exists only for the lockdep assertion and can be
 578 * ignored.
 579 */
 580#define for_each_pool_worker(worker, pool)				\
 581	list_for_each_entry((worker), &(pool)->workers, node)		\
 582		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
 583		else
 584
 585/**
 586 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 587 * @pwq: iteration cursor
 588 * @wq: the target workqueue
 589 *
 590 * This must be called either with wq->mutex held or RCU read locked.
 591 * If the pwq needs to be used beyond the locking in effect, the caller is
 592 * responsible for guaranteeing that the pwq stays online.
 593 *
 594 * The if/else clause exists only for the lockdep assertion and can be
 595 * ignored.
 596 */
 597#define for_each_pwq(pwq, wq)						\
 598	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
 599				 lockdep_is_held(&(wq->mutex)))
 
 600
 601#ifdef CONFIG_DEBUG_OBJECTS_WORK
 602
 603static const struct debug_obj_descr work_debug_descr;
 604
 605static void *work_debug_hint(void *addr)
 606{
 607	return ((struct work_struct *) addr)->func;
 608}
 609
 610static bool work_is_static_object(void *addr)
 611{
 612	struct work_struct *work = addr;
 613
 614	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 615}
 616
 617/*
 618 * fixup_init is called when:
 619 * - an active object is initialized
 620 */
 621static bool work_fixup_init(void *addr, enum debug_obj_state state)
 622{
 623	struct work_struct *work = addr;
 624
 625	switch (state) {
 626	case ODEBUG_STATE_ACTIVE:
 627		cancel_work_sync(work);
 628		debug_object_init(work, &work_debug_descr);
 629		return true;
 630	default:
 631		return false;
 632	}
 633}
 634
 635/*
 636 * fixup_free is called when:
 637 * - an active object is freed
 638 */
 639static bool work_fixup_free(void *addr, enum debug_obj_state state)
 640{
 641	struct work_struct *work = addr;
 642
 643	switch (state) {
 644	case ODEBUG_STATE_ACTIVE:
 645		cancel_work_sync(work);
 646		debug_object_free(work, &work_debug_descr);
 647		return true;
 648	default:
 649		return false;
 650	}
 651}
 652
 653static const struct debug_obj_descr work_debug_descr = {
 654	.name		= "work_struct",
 655	.debug_hint	= work_debug_hint,
 656	.is_static_object = work_is_static_object,
 657	.fixup_init	= work_fixup_init,
 658	.fixup_free	= work_fixup_free,
 659};
 660
 661static inline void debug_work_activate(struct work_struct *work)
 662{
 663	debug_object_activate(work, &work_debug_descr);
 664}
 665
 666static inline void debug_work_deactivate(struct work_struct *work)
 667{
 668	debug_object_deactivate(work, &work_debug_descr);
 669}
 670
 671void __init_work(struct work_struct *work, int onstack)
 672{
 673	if (onstack)
 674		debug_object_init_on_stack(work, &work_debug_descr);
 675	else
 676		debug_object_init(work, &work_debug_descr);
 677}
 678EXPORT_SYMBOL_GPL(__init_work);
 679
 680void destroy_work_on_stack(struct work_struct *work)
 681{
 682	debug_object_free(work, &work_debug_descr);
 683}
 684EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 685
 686void destroy_delayed_work_on_stack(struct delayed_work *work)
 687{
 688	destroy_timer_on_stack(&work->timer);
 689	debug_object_free(&work->work, &work_debug_descr);
 690}
 691EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 692
 693#else
 694static inline void debug_work_activate(struct work_struct *work) { }
 695static inline void debug_work_deactivate(struct work_struct *work) { }
 696#endif
 697
 698/**
 699 * worker_pool_assign_id - allocate ID and assign it to @pool
 700 * @pool: the pool pointer of interest
 701 *
 702 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 703 * successfully, -errno on failure.
 704 */
 705static int worker_pool_assign_id(struct worker_pool *pool)
 706{
 707	int ret;
 708
 709	lockdep_assert_held(&wq_pool_mutex);
 710
 711	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 712			GFP_KERNEL);
 713	if (ret >= 0) {
 714		pool->id = ret;
 715		return 0;
 716	}
 717	return ret;
 718}
 719
 720static struct pool_workqueue __rcu **
 721unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
 722{
 723       if (cpu >= 0)
 724               return per_cpu_ptr(wq->cpu_pwq, cpu);
 725       else
 726               return &wq->dfl_pwq;
 727}
 728
 729/* @cpu < 0 for dfl_pwq */
 730static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
 731{
 732	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
 733				     lockdep_is_held(&wq_pool_mutex) ||
 734				     lockdep_is_held(&wq->mutex));
 735}
 736
 737/**
 738 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
 739 * @wq: workqueue of interest
 
 740 *
 741 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
 742 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
 743 * default pwq is always mapped to the pool with the current effective cpumask.
 
 
 
 744 */
 745static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
 
 746{
 747	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
 
 
 
 
 
 
 
 
 
 
 
 748}
 749
 750static unsigned int work_color_to_flags(int color)
 751{
 752	return color << WORK_STRUCT_COLOR_SHIFT;
 753}
 754
 755static int get_work_color(unsigned long work_data)
 756{
 757	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
 758		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 759}
 760
 761static int work_next_color(int color)
 762{
 763	return (color + 1) % WORK_NR_COLORS;
 764}
 765
 766/*
 767 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 768 * contain the pointer to the queued pwq.  Once execution starts, the flag
 769 * is cleared and the high bits contain OFFQ flags and pool ID.
 770 *
 771 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
 772 * can be used to set the pwq, pool or clear work->data. These functions should
 773 * only be called while the work is owned - ie. while the PENDING bit is set.
 
 774 *
 775 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 776 * corresponding to a work.  Pool is available once the work has been
 777 * queued anywhere after initialization until it is sync canceled.  pwq is
 778 * available only while the work item is queued.
 779 *
 780 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 781 * canceled.  While being canceled, a work item may have its PENDING set
 782 * but stay off timer and worklist for arbitrarily long and nobody should
 783 * try to steal the PENDING bit.
 784 */
 785static inline void set_work_data(struct work_struct *work, unsigned long data)
 
 786{
 787	WARN_ON_ONCE(!work_pending(work));
 788	atomic_long_set(&work->data, data | work_static(work));
 789}
 790
 791static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 792			 unsigned long flags)
 793{
 794	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
 795		      WORK_STRUCT_PWQ | flags);
 796}
 797
 798static void set_work_pool_and_keep_pending(struct work_struct *work,
 799					   int pool_id, unsigned long flags)
 800{
 801	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
 802		      WORK_STRUCT_PENDING | flags);
 803}
 804
 805static void set_work_pool_and_clear_pending(struct work_struct *work,
 806					    int pool_id, unsigned long flags)
 807{
 808	/*
 809	 * The following wmb is paired with the implied mb in
 810	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 811	 * here are visible to and precede any updates by the next PENDING
 812	 * owner.
 813	 */
 814	smp_wmb();
 815	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
 816		      flags);
 817	/*
 818	 * The following mb guarantees that previous clear of a PENDING bit
 819	 * will not be reordered with any speculative LOADS or STORES from
 820	 * work->current_func, which is executed afterwards.  This possible
 821	 * reordering can lead to a missed execution on attempt to queue
 822	 * the same @work.  E.g. consider this case:
 823	 *
 824	 *   CPU#0                         CPU#1
 825	 *   ----------------------------  --------------------------------
 826	 *
 827	 * 1  STORE event_indicated
 828	 * 2  queue_work_on() {
 829	 * 3    test_and_set_bit(PENDING)
 830	 * 4 }                             set_..._and_clear_pending() {
 831	 * 5                                 set_work_data() # clear bit
 832	 * 6                                 smp_mb()
 833	 * 7                               work->current_func() {
 834	 * 8				      LOAD event_indicated
 835	 *				   }
 836	 *
 837	 * Without an explicit full barrier speculative LOAD on line 8 can
 838	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 839	 * CPU#0 observes the PENDING bit is still set and new execution of
 840	 * a @work is not queued in a hope, that CPU#1 will eventually
 841	 * finish the queued @work.  Meanwhile CPU#1 does not see
 842	 * event_indicated is set, because speculative LOAD was executed
 843	 * before actual STORE.
 844	 */
 845	smp_mb();
 846}
 847
 848static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
 849{
 850	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
 
 851}
 852
 853static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 854{
 855	unsigned long data = atomic_long_read(&work->data);
 856
 857	if (data & WORK_STRUCT_PWQ)
 858		return work_struct_pwq(data);
 859	else
 860		return NULL;
 861}
 862
 863/**
 864 * get_work_pool - return the worker_pool a given work was associated with
 865 * @work: the work item of interest
 866 *
 867 * Pools are created and destroyed under wq_pool_mutex, and allows read
 868 * access under RCU read lock.  As such, this function should be
 869 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
 870 *
 871 * All fields of the returned pool are accessible as long as the above
 872 * mentioned locking is in effect.  If the returned pool needs to be used
 873 * beyond the critical section, the caller is responsible for ensuring the
 874 * returned pool is and stays online.
 875 *
 876 * Return: The worker_pool @work was last associated with.  %NULL if none.
 877 */
 878static struct worker_pool *get_work_pool(struct work_struct *work)
 879{
 880	unsigned long data = atomic_long_read(&work->data);
 881	int pool_id;
 882
 883	assert_rcu_or_pool_mutex();
 884
 885	if (data & WORK_STRUCT_PWQ)
 886		return work_struct_pwq(data)->pool;
 
 887
 888	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 889	if (pool_id == WORK_OFFQ_POOL_NONE)
 890		return NULL;
 891
 892	return idr_find(&worker_pool_idr, pool_id);
 893}
 894
 895/**
 896 * get_work_pool_id - return the worker pool ID a given work is associated with
 897 * @work: the work item of interest
 898 *
 899 * Return: The worker_pool ID @work was last associated with.
 900 * %WORK_OFFQ_POOL_NONE if none.
 901 */
 902static int get_work_pool_id(struct work_struct *work)
 903{
 904	unsigned long data = atomic_long_read(&work->data);
 905
 906	if (data & WORK_STRUCT_PWQ)
 907		return work_struct_pwq(data)->pool->id;
 
 908
 909	return data >> WORK_OFFQ_POOL_SHIFT;
 910}
 911
 912static void mark_work_canceling(struct work_struct *work)
 913{
 914	unsigned long pool_id = get_work_pool_id(work);
 915
 916	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 917	set_work_data(work, pool_id | WORK_STRUCT_PENDING | WORK_OFFQ_CANCELING);
 918}
 919
 920static bool work_is_canceling(struct work_struct *work)
 921{
 922	unsigned long data = atomic_long_read(&work->data);
 923
 924	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 925}
 926
 927/*
 928 * Policy functions.  These define the policies on how the global worker
 929 * pools are managed.  Unless noted otherwise, these functions assume that
 930 * they're being called with pool->lock held.
 931 */
 932
 
 
 
 
 
 933/*
 934 * Need to wake up a worker?  Called from anything but currently
 935 * running workers.
 936 *
 937 * Note that, because unbound workers never contribute to nr_running, this
 938 * function will always return %true for unbound pools as long as the
 939 * worklist isn't empty.
 940 */
 941static bool need_more_worker(struct worker_pool *pool)
 942{
 943	return !list_empty(&pool->worklist) && !pool->nr_running;
 944}
 945
 946/* Can I start working?  Called from busy but !running workers. */
 947static bool may_start_working(struct worker_pool *pool)
 948{
 949	return pool->nr_idle;
 950}
 951
 952/* Do I need to keep working?  Called from currently running workers. */
 953static bool keep_working(struct worker_pool *pool)
 954{
 955	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
 
 956}
 957
 958/* Do we need a new worker?  Called from manager. */
 959static bool need_to_create_worker(struct worker_pool *pool)
 960{
 961	return need_more_worker(pool) && !may_start_working(pool);
 962}
 963
 964/* Do we have too many workers and should some go away? */
 965static bool too_many_workers(struct worker_pool *pool)
 966{
 967	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
 968	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 969	int nr_busy = pool->nr_workers - nr_idle;
 970
 971	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 972}
 973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974/**
 975 * worker_set_flags - set worker flags and adjust nr_running accordingly
 976 * @worker: self
 977 * @flags: flags to set
 978 *
 979 * Set @flags in @worker->flags and adjust nr_running accordingly.
 
 
 
 980 */
 981static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 982{
 983	struct worker_pool *pool = worker->pool;
 984
 985	lockdep_assert_held(&pool->lock);
 986
 987	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 988	if ((flags & WORKER_NOT_RUNNING) &&
 989	    !(worker->flags & WORKER_NOT_RUNNING)) {
 990		pool->nr_running--;
 991	}
 992
 993	worker->flags |= flags;
 994}
 995
 996/**
 997 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 998 * @worker: self
 999 * @flags: flags to clear
1000 *
1001 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 
 
 
1002 */
1003static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1004{
1005	struct worker_pool *pool = worker->pool;
1006	unsigned int oflags = worker->flags;
1007
1008	lockdep_assert_held(&pool->lock);
1009
1010	worker->flags &= ~flags;
1011
1012	/*
1013	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1014	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1015	 * of multiple flags, not a single flag.
1016	 */
1017	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1018		if (!(worker->flags & WORKER_NOT_RUNNING))
1019			pool->nr_running++;
1020}
1021
1022/* Return the first idle worker.  Called with pool->lock held. */
1023static struct worker *first_idle_worker(struct worker_pool *pool)
1024{
1025	if (unlikely(list_empty(&pool->idle_list)))
1026		return NULL;
1027
1028	return list_first_entry(&pool->idle_list, struct worker, entry);
1029}
1030
1031/**
1032 * worker_enter_idle - enter idle state
1033 * @worker: worker which is entering idle state
1034 *
1035 * @worker is entering idle state.  Update stats and idle timer if
1036 * necessary.
1037 *
1038 * LOCKING:
1039 * raw_spin_lock_irq(pool->lock).
1040 */
1041static void worker_enter_idle(struct worker *worker)
1042{
1043	struct worker_pool *pool = worker->pool;
1044
1045	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1046	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1047			 (worker->hentry.next || worker->hentry.pprev)))
1048		return;
1049
1050	/* can't use worker_set_flags(), also called from create_worker() */
1051	worker->flags |= WORKER_IDLE;
1052	pool->nr_idle++;
1053	worker->last_active = jiffies;
1054
1055	/* idle_list is LIFO */
1056	list_add(&worker->entry, &pool->idle_list);
1057
1058	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1059		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1060
1061	/* Sanity check nr_running. */
1062	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1063}
1064
1065/**
1066 * worker_leave_idle - leave idle state
1067 * @worker: worker which is leaving idle state
1068 *
1069 * @worker is leaving idle state.  Update stats.
1070 *
1071 * LOCKING:
1072 * raw_spin_lock_irq(pool->lock).
1073 */
1074static void worker_leave_idle(struct worker *worker)
1075{
1076	struct worker_pool *pool = worker->pool;
1077
1078	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1079		return;
1080	worker_clr_flags(worker, WORKER_IDLE);
1081	pool->nr_idle--;
1082	list_del_init(&worker->entry);
1083}
1084
1085/**
1086 * find_worker_executing_work - find worker which is executing a work
1087 * @pool: pool of interest
1088 * @work: work to find worker for
1089 *
1090 * Find a worker which is executing @work on @pool by searching
1091 * @pool->busy_hash which is keyed by the address of @work.  For a worker
1092 * to match, its current execution should match the address of @work and
1093 * its work function.  This is to avoid unwanted dependency between
1094 * unrelated work executions through a work item being recycled while still
1095 * being executed.
1096 *
1097 * This is a bit tricky.  A work item may be freed once its execution
1098 * starts and nothing prevents the freed area from being recycled for
1099 * another work item.  If the same work item address ends up being reused
1100 * before the original execution finishes, workqueue will identify the
1101 * recycled work item as currently executing and make it wait until the
1102 * current execution finishes, introducing an unwanted dependency.
1103 *
1104 * This function checks the work item address and work function to avoid
1105 * false positives.  Note that this isn't complete as one may construct a
1106 * work function which can introduce dependency onto itself through a
1107 * recycled work item.  Well, if somebody wants to shoot oneself in the
1108 * foot that badly, there's only so much we can do, and if such deadlock
1109 * actually occurs, it should be easy to locate the culprit work function.
1110 *
1111 * CONTEXT:
1112 * raw_spin_lock_irq(pool->lock).
1113 *
1114 * Return:
1115 * Pointer to worker which is executing @work if found, %NULL
1116 * otherwise.
1117 */
1118static struct worker *find_worker_executing_work(struct worker_pool *pool,
1119						 struct work_struct *work)
1120{
1121	struct worker *worker;
1122
1123	hash_for_each_possible(pool->busy_hash, worker, hentry,
1124			       (unsigned long)work)
1125		if (worker->current_work == work &&
1126		    worker->current_func == work->func)
1127			return worker;
1128
1129	return NULL;
1130}
1131
1132/**
1133 * move_linked_works - move linked works to a list
1134 * @work: start of series of works to be scheduled
1135 * @head: target list to append @work to
1136 * @nextp: out parameter for nested worklist walking
1137 *
1138 * Schedule linked works starting from @work to @head. Work series to be
1139 * scheduled starts at @work and includes any consecutive work with
1140 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1141 * @nextp.
 
 
 
1142 *
1143 * CONTEXT:
1144 * raw_spin_lock_irq(pool->lock).
1145 */
1146static void move_linked_works(struct work_struct *work, struct list_head *head,
1147			      struct work_struct **nextp)
1148{
1149	struct work_struct *n;
1150
1151	/*
1152	 * Linked worklist will always end before the end of the list,
1153	 * use NULL for list head.
1154	 */
1155	list_for_each_entry_safe_from(work, n, NULL, entry) {
1156		list_move_tail(&work->entry, head);
1157		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1158			break;
1159	}
1160
1161	/*
1162	 * If we're already inside safe list traversal and have moved
1163	 * multiple works to the scheduled queue, the next position
1164	 * needs to be updated.
1165	 */
1166	if (nextp)
1167		*nextp = n;
1168}
1169
1170/**
1171 * assign_work - assign a work item and its linked work items to a worker
1172 * @work: work to assign
1173 * @worker: worker to assign to
1174 * @nextp: out parameter for nested worklist walking
1175 *
1176 * Assign @work and its linked work items to @worker. If @work is already being
1177 * executed by another worker in the same pool, it'll be punted there.
1178 *
1179 * If @nextp is not NULL, it's updated to point to the next work of the last
1180 * scheduled work. This allows assign_work() to be nested inside
1181 * list_for_each_entry_safe().
1182 *
1183 * Returns %true if @work was successfully assigned to @worker. %false if @work
1184 * was punted to another worker already executing it.
1185 */
1186static bool assign_work(struct work_struct *work, struct worker *worker,
1187			struct work_struct **nextp)
1188{
1189	struct worker_pool *pool = worker->pool;
1190	struct worker *collision;
1191
1192	lockdep_assert_held(&pool->lock);
1193
1194	/*
1195	 * A single work shouldn't be executed concurrently by multiple workers.
1196	 * __queue_work() ensures that @work doesn't jump to a different pool
1197	 * while still running in the previous pool. Here, we should ensure that
1198	 * @work is not executed concurrently by multiple workers from the same
1199	 * pool. Check whether anyone is already processing the work. If so,
1200	 * defer the work to the currently executing one.
1201	 */
1202	collision = find_worker_executing_work(pool, work);
1203	if (unlikely(collision)) {
1204		move_linked_works(work, &collision->scheduled, nextp);
1205		return false;
1206	}
1207
1208	move_linked_works(work, &worker->scheduled, nextp);
1209	return true;
1210}
1211
1212static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1213{
1214	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1215
1216	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1217}
1218
1219static void kick_bh_pool(struct worker_pool *pool)
1220{
1221#ifdef CONFIG_SMP
1222	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1223	if (unlikely(pool->cpu != smp_processor_id() &&
1224		     !(pool->flags & POOL_BH_DRAINING))) {
1225		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1226		return;
1227	}
1228#endif
1229	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1230		raise_softirq_irqoff(HI_SOFTIRQ);
1231	else
1232		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1233}
1234
1235/**
1236 * kick_pool - wake up an idle worker if necessary
1237 * @pool: pool to kick
1238 *
1239 * @pool may have pending work items. Wake up worker if necessary. Returns
1240 * whether a worker was woken up.
1241 */
1242static bool kick_pool(struct worker_pool *pool)
1243{
1244	struct worker *worker = first_idle_worker(pool);
1245	struct task_struct *p;
1246
1247	lockdep_assert_held(&pool->lock);
1248
1249	if (!need_more_worker(pool) || !worker)
1250		return false;
1251
1252	if (pool->flags & POOL_BH) {
1253		kick_bh_pool(pool);
1254		return true;
1255	}
1256
1257	p = worker->task;
1258
1259#ifdef CONFIG_SMP
1260	/*
1261	 * Idle @worker is about to execute @work and waking up provides an
1262	 * opportunity to migrate @worker at a lower cost by setting the task's
1263	 * wake_cpu field. Let's see if we want to move @worker to improve
1264	 * execution locality.
1265	 *
1266	 * We're waking the worker that went idle the latest and there's some
1267	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1268	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1269	 * optimization and the race window is narrow, let's leave as-is for
1270	 * now. If this becomes pronounced, we can skip over workers which are
1271	 * still on cpu when picking an idle worker.
1272	 *
1273	 * If @pool has non-strict affinity, @worker might have ended up outside
1274	 * its affinity scope. Repatriate.
1275	 */
1276	if (!pool->attrs->affn_strict &&
1277	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1278		struct work_struct *work = list_first_entry(&pool->worklist,
1279						struct work_struct, entry);
1280		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1281							  cpu_online_mask);
1282		if (wake_cpu < nr_cpu_ids) {
1283			p->wake_cpu = wake_cpu;
1284			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1285		}
1286	}
1287#endif
1288	wake_up_process(p);
1289	return true;
1290}
1291
1292#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1293
1294/*
1295 * Concurrency-managed per-cpu work items that hog CPU for longer than
1296 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1297 * which prevents them from stalling other concurrency-managed work items. If a
1298 * work function keeps triggering this mechanism, it's likely that the work item
1299 * should be using an unbound workqueue instead.
1300 *
1301 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1302 * and report them so that they can be examined and converted to use unbound
1303 * workqueues as appropriate. To avoid flooding the console, each violating work
1304 * function is tracked and reported with exponential backoff.
1305 */
1306#define WCI_MAX_ENTS 128
1307
1308struct wci_ent {
1309	work_func_t		func;
1310	atomic64_t		cnt;
1311	struct hlist_node	hash_node;
1312};
1313
1314static struct wci_ent wci_ents[WCI_MAX_ENTS];
1315static int wci_nr_ents;
1316static DEFINE_RAW_SPINLOCK(wci_lock);
1317static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1318
1319static struct wci_ent *wci_find_ent(work_func_t func)
1320{
1321	struct wci_ent *ent;
1322
1323	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1324				   (unsigned long)func) {
1325		if (ent->func == func)
1326			return ent;
1327	}
1328	return NULL;
1329}
1330
1331static void wq_cpu_intensive_report(work_func_t func)
1332{
1333	struct wci_ent *ent;
1334
1335restart:
1336	ent = wci_find_ent(func);
1337	if (ent) {
1338		u64 cnt;
1339
1340		/*
1341		 * Start reporting from the warning_thresh and back off
1342		 * exponentially.
1343		 */
1344		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1345		if (wq_cpu_intensive_warning_thresh &&
1346		    cnt >= wq_cpu_intensive_warning_thresh &&
1347		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1348			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1349					ent->func, wq_cpu_intensive_thresh_us,
1350					atomic64_read(&ent->cnt));
1351		return;
1352	}
1353
1354	/*
1355	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1356	 * is exhausted, something went really wrong and we probably made enough
1357	 * noise already.
1358	 */
1359	if (wci_nr_ents >= WCI_MAX_ENTS)
1360		return;
1361
1362	raw_spin_lock(&wci_lock);
1363
1364	if (wci_nr_ents >= WCI_MAX_ENTS) {
1365		raw_spin_unlock(&wci_lock);
1366		return;
1367	}
1368
1369	if (wci_find_ent(func)) {
1370		raw_spin_unlock(&wci_lock);
1371		goto restart;
1372	}
1373
1374	ent = &wci_ents[wci_nr_ents++];
1375	ent->func = func;
1376	atomic64_set(&ent->cnt, 0);
1377	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1378
1379	raw_spin_unlock(&wci_lock);
1380
1381	goto restart;
1382}
1383
1384#else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1385static void wq_cpu_intensive_report(work_func_t func) {}
1386#endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1387
1388/**
1389 * wq_worker_running - a worker is running again
1390 * @task: task waking up
1391 *
1392 * This function is called when a worker returns from schedule()
1393 */
1394void wq_worker_running(struct task_struct *task)
1395{
1396	struct worker *worker = kthread_data(task);
1397
1398	if (!READ_ONCE(worker->sleeping))
1399		return;
1400
1401	/*
1402	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1403	 * and the nr_running increment below, we may ruin the nr_running reset
1404	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1405	 * pool. Protect against such race.
1406	 */
1407	preempt_disable();
1408	if (!(worker->flags & WORKER_NOT_RUNNING))
1409		worker->pool->nr_running++;
1410	preempt_enable();
1411
1412	/*
1413	 * CPU intensive auto-detection cares about how long a work item hogged
1414	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1415	 */
1416	worker->current_at = worker->task->se.sum_exec_runtime;
1417
1418	WRITE_ONCE(worker->sleeping, 0);
1419}
1420
1421/**
1422 * wq_worker_sleeping - a worker is going to sleep
1423 * @task: task going to sleep
1424 *
1425 * This function is called from schedule() when a busy worker is
1426 * going to sleep.
1427 */
1428void wq_worker_sleeping(struct task_struct *task)
1429{
1430	struct worker *worker = kthread_data(task);
1431	struct worker_pool *pool;
1432
1433	/*
1434	 * Rescuers, which may not have all the fields set up like normal
1435	 * workers, also reach here, let's not access anything before
1436	 * checking NOT_RUNNING.
1437	 */
1438	if (worker->flags & WORKER_NOT_RUNNING)
1439		return;
1440
1441	pool = worker->pool;
1442
1443	/* Return if preempted before wq_worker_running() was reached */
1444	if (READ_ONCE(worker->sleeping))
1445		return;
1446
1447	WRITE_ONCE(worker->sleeping, 1);
1448	raw_spin_lock_irq(&pool->lock);
1449
1450	/*
1451	 * Recheck in case unbind_workers() preempted us. We don't
1452	 * want to decrement nr_running after the worker is unbound
1453	 * and nr_running has been reset.
1454	 */
1455	if (worker->flags & WORKER_NOT_RUNNING) {
1456		raw_spin_unlock_irq(&pool->lock);
1457		return;
1458	}
1459
1460	pool->nr_running--;
1461	if (kick_pool(pool))
1462		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1463
1464	raw_spin_unlock_irq(&pool->lock);
1465}
1466
1467/**
1468 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1469 * @task: task currently running
1470 *
1471 * Called from scheduler_tick(). We're in the IRQ context and the current
1472 * worker's fields which follow the 'K' locking rule can be accessed safely.
1473 */
1474void wq_worker_tick(struct task_struct *task)
1475{
1476	struct worker *worker = kthread_data(task);
1477	struct pool_workqueue *pwq = worker->current_pwq;
1478	struct worker_pool *pool = worker->pool;
1479
1480	if (!pwq)
1481		return;
1482
1483	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1484
1485	if (!wq_cpu_intensive_thresh_us)
1486		return;
1487
1488	/*
1489	 * If the current worker is concurrency managed and hogged the CPU for
1490	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1491	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1492	 *
1493	 * Set @worker->sleeping means that @worker is in the process of
1494	 * switching out voluntarily and won't be contributing to
1495	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1496	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1497	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1498	 * We probably want to make this prettier in the future.
1499	 */
1500	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1501	    worker->task->se.sum_exec_runtime - worker->current_at <
1502	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1503		return;
1504
1505	raw_spin_lock(&pool->lock);
1506
1507	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1508	wq_cpu_intensive_report(worker->current_func);
1509	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1510
1511	if (kick_pool(pool))
1512		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1513
1514	raw_spin_unlock(&pool->lock);
1515}
1516
1517/**
1518 * wq_worker_last_func - retrieve worker's last work function
1519 * @task: Task to retrieve last work function of.
1520 *
1521 * Determine the last function a worker executed. This is called from
1522 * the scheduler to get a worker's last known identity.
1523 *
1524 * CONTEXT:
1525 * raw_spin_lock_irq(rq->lock)
1526 *
1527 * This function is called during schedule() when a kworker is going
1528 * to sleep. It's used by psi to identify aggregation workers during
1529 * dequeuing, to allow periodic aggregation to shut-off when that
1530 * worker is the last task in the system or cgroup to go to sleep.
1531 *
1532 * As this function doesn't involve any workqueue-related locking, it
1533 * only returns stable values when called from inside the scheduler's
1534 * queuing and dequeuing paths, when @task, which must be a kworker,
1535 * is guaranteed to not be processing any works.
1536 *
1537 * Return:
1538 * The last work function %current executed as a worker, NULL if it
1539 * hasn't executed any work yet.
1540 */
1541work_func_t wq_worker_last_func(struct task_struct *task)
1542{
1543	struct worker *worker = kthread_data(task);
1544
1545	return worker->last_func;
1546}
1547
1548/**
1549 * wq_node_nr_active - Determine wq_node_nr_active to use
1550 * @wq: workqueue of interest
1551 * @node: NUMA node, can be %NUMA_NO_NODE
1552 *
1553 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1554 *
1555 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1556 *
1557 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1558 *
1559 * - Otherwise, node_nr_active[@node].
1560 */
1561static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1562						   int node)
1563{
1564	if (!(wq->flags & WQ_UNBOUND))
1565		return NULL;
1566
1567	if (node == NUMA_NO_NODE)
1568		node = nr_node_ids;
1569
1570	return wq->node_nr_active[node];
1571}
1572
1573/**
1574 * wq_update_node_max_active - Update per-node max_actives to use
1575 * @wq: workqueue to update
1576 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1577 *
1578 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1579 * distributed among nodes according to the proportions of numbers of online
1580 * cpus. The result is always between @wq->min_active and max_active.
1581 */
1582static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1583{
1584	struct cpumask *effective = unbound_effective_cpumask(wq);
1585	int min_active = READ_ONCE(wq->min_active);
1586	int max_active = READ_ONCE(wq->max_active);
1587	int total_cpus, node;
1588
1589	lockdep_assert_held(&wq->mutex);
1590
1591	if (!wq_topo_initialized)
1592		return;
1593
1594	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1595		off_cpu = -1;
1596
1597	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1598	if (off_cpu >= 0)
1599		total_cpus--;
1600
1601	/* If all CPUs of the wq get offline, use the default values */
1602	if (unlikely(!total_cpus)) {
1603		for_each_node(node)
1604			wq_node_nr_active(wq, node)->max = min_active;
1605
1606		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1607		return;
1608	}
1609
1610	for_each_node(node) {
1611		int node_cpus;
1612
1613		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1614		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1615			node_cpus--;
1616
1617		wq_node_nr_active(wq, node)->max =
1618			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1619			      min_active, max_active);
1620	}
1621
1622	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1623}
1624
1625/**
1626 * get_pwq - get an extra reference on the specified pool_workqueue
1627 * @pwq: pool_workqueue to get
1628 *
1629 * Obtain an extra reference on @pwq.  The caller should guarantee that
1630 * @pwq has positive refcnt and be holding the matching pool->lock.
1631 */
1632static void get_pwq(struct pool_workqueue *pwq)
1633{
1634	lockdep_assert_held(&pwq->pool->lock);
1635	WARN_ON_ONCE(pwq->refcnt <= 0);
1636	pwq->refcnt++;
1637}
1638
1639/**
1640 * put_pwq - put a pool_workqueue reference
1641 * @pwq: pool_workqueue to put
1642 *
1643 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1644 * destruction.  The caller should be holding the matching pool->lock.
1645 */
1646static void put_pwq(struct pool_workqueue *pwq)
1647{
1648	lockdep_assert_held(&pwq->pool->lock);
1649	if (likely(--pwq->refcnt))
1650		return;
 
 
1651	/*
1652	 * @pwq can't be released under pool->lock, bounce to a dedicated
1653	 * kthread_worker to avoid A-A deadlocks.
 
 
 
 
1654	 */
1655	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1656}
1657
1658/**
1659 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1660 * @pwq: pool_workqueue to put (can be %NULL)
1661 *
1662 * put_pwq() with locking.  This function also allows %NULL @pwq.
1663 */
1664static void put_pwq_unlocked(struct pool_workqueue *pwq)
1665{
1666	if (pwq) {
1667		/*
1668		 * As both pwqs and pools are RCU protected, the
1669		 * following lock operations are safe.
1670		 */
1671		raw_spin_lock_irq(&pwq->pool->lock);
1672		put_pwq(pwq);
1673		raw_spin_unlock_irq(&pwq->pool->lock);
1674	}
1675}
1676
1677static bool pwq_is_empty(struct pool_workqueue *pwq)
1678{
1679	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1680}
1681
1682static void __pwq_activate_work(struct pool_workqueue *pwq,
1683				struct work_struct *work)
1684{
1685	unsigned long *wdb = work_data_bits(work);
1686
1687	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1688	trace_workqueue_activate_work(work);
1689	if (list_empty(&pwq->pool->worklist))
1690		pwq->pool->watchdog_ts = jiffies;
1691	move_linked_works(work, &pwq->pool->worklist, NULL);
1692	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1693}
1694
1695/**
1696 * pwq_activate_work - Activate a work item if inactive
1697 * @pwq: pool_workqueue @work belongs to
1698 * @work: work item to activate
1699 *
1700 * Returns %true if activated. %false if already active.
1701 */
1702static bool pwq_activate_work(struct pool_workqueue *pwq,
1703			      struct work_struct *work)
1704{
1705	struct worker_pool *pool = pwq->pool;
1706	struct wq_node_nr_active *nna;
1707
1708	lockdep_assert_held(&pool->lock);
1709
1710	if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1711		return false;
1712
1713	nna = wq_node_nr_active(pwq->wq, pool->node);
1714	if (nna)
1715		atomic_inc(&nna->nr);
1716
1717	pwq->nr_active++;
1718	__pwq_activate_work(pwq, work);
1719	return true;
1720}
1721
1722static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1723{
1724	int max = READ_ONCE(nna->max);
1725
1726	while (true) {
1727		int old, tmp;
1728
1729		old = atomic_read(&nna->nr);
1730		if (old >= max)
1731			return false;
1732		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1733		if (tmp == old)
1734			return true;
1735	}
1736}
1737
1738/**
1739 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1740 * @pwq: pool_workqueue of interest
1741 * @fill: max_active may have increased, try to increase concurrency level
1742 *
1743 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1744 * successfully obtained. %false otherwise.
1745 */
1746static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1747{
1748	struct workqueue_struct *wq = pwq->wq;
1749	struct worker_pool *pool = pwq->pool;
1750	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1751	bool obtained = false;
1752
1753	lockdep_assert_held(&pool->lock);
1754
1755	if (!nna) {
1756		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1757		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1758		goto out;
1759	}
1760
1761	if (unlikely(pwq->plugged))
1762		return false;
1763
1764	/*
1765	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1766	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1767	 * concurrency level. Don't jump the line.
1768	 *
1769	 * We need to ignore the pending test after max_active has increased as
1770	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1771	 * increase it. This is indicated by @fill.
1772	 */
1773	if (!list_empty(&pwq->pending_node) && likely(!fill))
1774		goto out;
1775
1776	obtained = tryinc_node_nr_active(nna);
1777	if (obtained)
1778		goto out;
1779
1780	/*
1781	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1782	 * and try again. The smp_mb() is paired with the implied memory barrier
1783	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1784	 * we see the decremented $nna->nr or they see non-empty
1785	 * $nna->pending_pwqs.
1786	 */
1787	raw_spin_lock(&nna->lock);
1788
1789	if (list_empty(&pwq->pending_node))
1790		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1791	else if (likely(!fill))
1792		goto out_unlock;
1793
1794	smp_mb();
1795
1796	obtained = tryinc_node_nr_active(nna);
1797
1798	/*
1799	 * If @fill, @pwq might have already been pending. Being spuriously
1800	 * pending in cold paths doesn't affect anything. Let's leave it be.
1801	 */
1802	if (obtained && likely(!fill))
1803		list_del_init(&pwq->pending_node);
1804
1805out_unlock:
1806	raw_spin_unlock(&nna->lock);
1807out:
1808	if (obtained)
1809		pwq->nr_active++;
1810	return obtained;
1811}
1812
1813/**
1814 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1815 * @pwq: pool_workqueue of interest
1816 * @fill: max_active may have increased, try to increase concurrency level
1817 *
1818 * Activate the first inactive work item of @pwq if available and allowed by
1819 * max_active limit.
1820 *
1821 * Returns %true if an inactive work item has been activated. %false if no
1822 * inactive work item is found or max_active limit is reached.
1823 */
1824static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1825{
1826	struct work_struct *work =
1827		list_first_entry_or_null(&pwq->inactive_works,
1828					 struct work_struct, entry);
1829
1830	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1831		__pwq_activate_work(pwq, work);
1832		return true;
1833	} else {
1834		return false;
1835	}
1836}
1837
1838/**
1839 * unplug_oldest_pwq - unplug the oldest pool_workqueue
1840 * @wq: workqueue_struct where its oldest pwq is to be unplugged
1841 *
1842 * This function should only be called for ordered workqueues where only the
1843 * oldest pwq is unplugged, the others are plugged to suspend execution to
1844 * ensure proper work item ordering::
1845 *
1846 *    dfl_pwq --------------+     [P] - plugged
1847 *                          |
1848 *                          v
1849 *    pwqs -> A -> B [P] -> C [P] (newest)
1850 *            |    |        |
1851 *            1    3        5
1852 *            |    |        |
1853 *            2    4        6
1854 *
1855 * When the oldest pwq is drained and removed, this function should be called
1856 * to unplug the next oldest one to start its work item execution. Note that
1857 * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1858 * the list is the oldest.
1859 */
1860static void unplug_oldest_pwq(struct workqueue_struct *wq)
1861{
1862	struct pool_workqueue *pwq;
1863
1864	lockdep_assert_held(&wq->mutex);
1865
1866	/* Caller should make sure that pwqs isn't empty before calling */
1867	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1868				       pwqs_node);
1869	raw_spin_lock_irq(&pwq->pool->lock);
1870	if (pwq->plugged) {
1871		pwq->plugged = false;
1872		if (pwq_activate_first_inactive(pwq, true))
1873			kick_pool(pwq->pool);
1874	}
1875	raw_spin_unlock_irq(&pwq->pool->lock);
1876}
1877
1878/**
1879 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1880 * @nna: wq_node_nr_active to activate a pending pwq for
1881 * @caller_pool: worker_pool the caller is locking
1882 *
1883 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1884 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1885 */
1886static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1887				      struct worker_pool *caller_pool)
1888{
1889	struct worker_pool *locked_pool = caller_pool;
1890	struct pool_workqueue *pwq;
1891	struct work_struct *work;
1892
1893	lockdep_assert_held(&caller_pool->lock);
1894
1895	raw_spin_lock(&nna->lock);
1896retry:
1897	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1898				       struct pool_workqueue, pending_node);
1899	if (!pwq)
1900		goto out_unlock;
1901
1902	/*
1903	 * If @pwq is for a different pool than @locked_pool, we need to lock
1904	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1905	 * / lock dance. For that, we also need to release @nna->lock as it's
1906	 * nested inside pool locks.
1907	 */
1908	if (pwq->pool != locked_pool) {
1909		raw_spin_unlock(&locked_pool->lock);
1910		locked_pool = pwq->pool;
1911		if (!raw_spin_trylock(&locked_pool->lock)) {
1912			raw_spin_unlock(&nna->lock);
1913			raw_spin_lock(&locked_pool->lock);
1914			raw_spin_lock(&nna->lock);
1915			goto retry;
1916		}
1917	}
1918
1919	/*
1920	 * $pwq may not have any inactive work items due to e.g. cancellations.
1921	 * Drop it from pending_pwqs and see if there's another one.
1922	 */
1923	work = list_first_entry_or_null(&pwq->inactive_works,
1924					struct work_struct, entry);
1925	if (!work) {
1926		list_del_init(&pwq->pending_node);
1927		goto retry;
1928	}
1929
1930	/*
1931	 * Acquire an nr_active count and activate the inactive work item. If
1932	 * $pwq still has inactive work items, rotate it to the end of the
1933	 * pending_pwqs so that we round-robin through them. This means that
1934	 * inactive work items are not activated in queueing order which is fine
1935	 * given that there has never been any ordering across different pwqs.
1936	 */
1937	if (likely(tryinc_node_nr_active(nna))) {
1938		pwq->nr_active++;
1939		__pwq_activate_work(pwq, work);
1940
1941		if (list_empty(&pwq->inactive_works))
1942			list_del_init(&pwq->pending_node);
1943		else
1944			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1945
1946		/* if activating a foreign pool, make sure it's running */
1947		if (pwq->pool != caller_pool)
1948			kick_pool(pwq->pool);
1949	}
1950
1951out_unlock:
1952	raw_spin_unlock(&nna->lock);
1953	if (locked_pool != caller_pool) {
1954		raw_spin_unlock(&locked_pool->lock);
1955		raw_spin_lock(&caller_pool->lock);
1956	}
1957}
1958
1959/**
1960 * pwq_dec_nr_active - Retire an active count
1961 * @pwq: pool_workqueue of interest
1962 *
1963 * Decrement @pwq's nr_active and try to activate the first inactive work item.
1964 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1965 */
1966static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1967{
1968	struct worker_pool *pool = pwq->pool;
1969	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1970
1971	lockdep_assert_held(&pool->lock);
1972
1973	/*
1974	 * @pwq->nr_active should be decremented for both percpu and unbound
1975	 * workqueues.
1976	 */
1977	pwq->nr_active--;
1978
1979	/*
1980	 * For a percpu workqueue, it's simple. Just need to kick the first
1981	 * inactive work item on @pwq itself.
1982	 */
1983	if (!nna) {
1984		pwq_activate_first_inactive(pwq, false);
1985		return;
1986	}
1987
1988	/*
1989	 * If @pwq is for an unbound workqueue, it's more complicated because
1990	 * multiple pwqs and pools may be sharing the nr_active count. When a
1991	 * pwq needs to wait for an nr_active count, it puts itself on
1992	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1993	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1994	 * guarantee that either we see non-empty pending_pwqs or they see
1995	 * decremented $nna->nr.
1996	 *
1997	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1998	 * max_active gets updated. However, it is guaranteed to be equal to or
1999	 * larger than @pwq->wq->min_active which is above zero unless freezing.
2000	 * This maintains the forward progress guarantee.
2001	 */
2002	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
2003		return;
2004
2005	if (!list_empty(&nna->pending_pwqs))
2006		node_activate_pending_pwq(nna, pool);
2007}
2008
2009/**
2010 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
2011 * @pwq: pwq of interest
2012 * @work_data: work_data of work which left the queue
2013 *
2014 * A work either has completed or is removed from pending queue,
2015 * decrement nr_in_flight of its pwq and handle workqueue flushing.
2016 *
2017 * NOTE:
2018 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
2019 * and thus should be called after all other state updates for the in-flight
2020 * work item is complete.
2021 *
2022 * CONTEXT:
2023 * raw_spin_lock_irq(pool->lock).
2024 */
2025static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
2026{
2027	int color = get_work_color(work_data);
 
 
2028
2029	if (!(work_data & WORK_STRUCT_INACTIVE))
2030		pwq_dec_nr_active(pwq);
2031
2032	pwq->nr_in_flight[color]--;
 
 
 
 
 
2033
2034	/* is flush in progress and are we at the flushing tip? */
2035	if (likely(pwq->flush_color != color))
2036		goto out_put;
2037
2038	/* are there still in-flight works? */
2039	if (pwq->nr_in_flight[color])
2040		goto out_put;
2041
2042	/* this pwq is done, clear flush_color */
2043	pwq->flush_color = -1;
2044
2045	/*
2046	 * If this was the last pwq, wake up the first flusher.  It
2047	 * will handle the rest.
2048	 */
2049	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2050		complete(&pwq->wq->first_flusher->done);
2051out_put:
2052	put_pwq(pwq);
2053}
2054
2055/**
2056 * try_to_grab_pending - steal work item from worklist and disable irq
2057 * @work: work item to steal
2058 * @cflags: %WORK_CANCEL_ flags
2059 * @irq_flags: place to store irq state
2060 *
2061 * Try to grab PENDING bit of @work.  This function can handle @work in any
2062 * stable state - idle, on timer or on worklist.
2063 *
2064 * Return:
2065 *
2066 *  ========	================================================================
2067 *  1		if @work was pending and we successfully stole PENDING
2068 *  0		if @work was idle and we claimed PENDING
2069 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2070 *  -ENOENT	if someone else is canceling @work, this state may persist
2071 *		for arbitrarily long
2072 *  ========	================================================================
2073 *
2074 * Note:
2075 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2076 * interrupted while holding PENDING and @work off queue, irq must be
2077 * disabled on entry.  This, combined with delayed_work->timer being
2078 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2079 *
2080 * On successful return, >= 0, irq is disabled and the caller is
2081 * responsible for releasing it using local_irq_restore(*@irq_flags).
2082 *
2083 * This function is safe to call from any context including IRQ handler.
2084 */
2085static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2086			       unsigned long *irq_flags)
2087{
2088	struct worker_pool *pool;
2089	struct pool_workqueue *pwq;
2090
2091	local_irq_save(*irq_flags);
2092
2093	/* try to steal the timer if it exists */
2094	if (cflags & WORK_CANCEL_DELAYED) {
2095		struct delayed_work *dwork = to_delayed_work(work);
2096
2097		/*
2098		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2099		 * guaranteed that the timer is not queued anywhere and not
2100		 * running on the local CPU.
2101		 */
2102		if (likely(del_timer(&dwork->timer)))
2103			return 1;
2104	}
2105
2106	/* try to claim PENDING the normal way */
2107	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2108		return 0;
2109
2110	rcu_read_lock();
2111	/*
2112	 * The queueing is in progress, or it is already queued. Try to
2113	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2114	 */
2115	pool = get_work_pool(work);
2116	if (!pool)
2117		goto fail;
2118
2119	raw_spin_lock(&pool->lock);
2120	/*
2121	 * work->data is guaranteed to point to pwq only while the work
2122	 * item is queued on pwq->wq, and both updating work->data to point
2123	 * to pwq on queueing and to pool on dequeueing are done under
2124	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2125	 * points to pwq which is associated with a locked pool, the work
2126	 * item is currently queued on that pool.
2127	 */
2128	pwq = get_work_pwq(work);
2129	if (pwq && pwq->pool == pool) {
2130		unsigned long work_data;
2131
2132		debug_work_deactivate(work);
2133
2134		/*
2135		 * A cancelable inactive work item must be in the
2136		 * pwq->inactive_works since a queued barrier can't be
2137		 * canceled (see the comments in insert_wq_barrier()).
2138		 *
2139		 * An inactive work item cannot be grabbed directly because
2140		 * it might have linked barrier work items which, if left
2141		 * on the inactive_works list, will confuse pwq->nr_active
2142		 * management later on and cause stall.  Make sure the work
2143		 * item is activated before grabbing.
2144		 */
2145		pwq_activate_work(pwq, work);
 
2146
2147		list_del_init(&work->entry);
 
2148
2149		/*
2150		 * work->data points to pwq iff queued. Let's point to pool. As
2151		 * this destroys work->data needed by the next step, stash it.
2152		 */
2153		work_data = *work_data_bits(work);
2154		set_work_pool_and_keep_pending(work, pool->id, 0);
2155
2156		/* must be the last step, see the function comment */
2157		pwq_dec_nr_in_flight(pwq, work_data);
2158
2159		raw_spin_unlock(&pool->lock);
2160		rcu_read_unlock();
2161		return 1;
2162	}
2163	raw_spin_unlock(&pool->lock);
2164fail:
2165	rcu_read_unlock();
2166	local_irq_restore(*irq_flags);
2167	if (work_is_canceling(work))
2168		return -ENOENT;
2169	cpu_relax();
2170	return -EAGAIN;
2171}
2172
2173struct cwt_wait {
2174	wait_queue_entry_t	wait;
2175	struct work_struct	*work;
2176};
2177
2178static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2179{
2180	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2181
2182	if (cwait->work != key)
2183		return 0;
2184	return autoremove_wake_function(wait, mode, sync, key);
2185}
2186
2187/**
2188 * work_grab_pending - steal work item from worklist and disable irq
2189 * @work: work item to steal
2190 * @cflags: %WORK_CANCEL_ flags
2191 * @irq_flags: place to store IRQ state
2192 *
2193 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2194 * or on worklist.
2195 *
2196 * Must be called in process context. IRQ is disabled on return with IRQ state
2197 * stored in *@irq_flags. The caller is responsible for re-enabling it using
2198 * local_irq_restore().
2199 *
2200 * Returns %true if @work was pending. %false if idle.
2201 */
2202static bool work_grab_pending(struct work_struct *work, u32 cflags,
2203			      unsigned long *irq_flags)
2204{
2205	struct cwt_wait cwait;
2206	int ret;
2207
2208	might_sleep();
2209repeat:
2210	ret = try_to_grab_pending(work, cflags, irq_flags);
2211	if (likely(ret >= 0))
2212		return ret;
2213	if (ret != -ENOENT)
2214		goto repeat;
2215
2216	/*
2217	 * Someone is already canceling. Wait for it to finish. flush_work()
2218	 * doesn't work for PREEMPT_NONE because we may get woken up between
2219	 * @work's completion and the other canceling task resuming and clearing
2220	 * CANCELING - flush_work() will return false immediately as @work is no
2221	 * longer busy, try_to_grab_pending() will return -ENOENT as @work is
2222	 * still being canceled and the other canceling task won't be able to
2223	 * clear CANCELING as we're hogging the CPU.
2224	 *
2225	 * Let's wait for completion using a waitqueue. As this may lead to the
2226	 * thundering herd problem, use a custom wake function which matches
2227	 * @work along with exclusive wait and wakeup.
2228	 */
2229	init_wait(&cwait.wait);
2230	cwait.wait.func = cwt_wakefn;
2231	cwait.work = work;
2232
2233	prepare_to_wait_exclusive(&wq_cancel_waitq, &cwait.wait,
2234				  TASK_UNINTERRUPTIBLE);
2235	if (work_is_canceling(work))
2236		schedule();
2237	finish_wait(&wq_cancel_waitq, &cwait.wait);
2238
2239	goto repeat;
2240}
2241
2242/**
2243 * insert_work - insert a work into a pool
2244 * @pwq: pwq @work belongs to
2245 * @work: work to insert
2246 * @head: insertion point
2247 * @extra_flags: extra WORK_STRUCT_* flags to set
2248 *
2249 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2250 * work_struct flags.
2251 *
2252 * CONTEXT:
2253 * raw_spin_lock_irq(pool->lock).
2254 */
2255static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2256			struct list_head *head, unsigned int extra_flags)
2257{
2258	debug_work_activate(work);
2259
2260	/* record the work call stack in order to print it in KASAN reports */
2261	kasan_record_aux_stack_noalloc(work);
2262
2263	/* we own @work, set data and link */
2264	set_work_pwq(work, pwq, extra_flags);
2265	list_add_tail(&work->entry, head);
2266	get_pwq(pwq);
 
 
 
 
 
 
 
 
 
 
2267}
2268
2269/*
2270 * Test whether @work is being queued from another work executing on the
2271 * same workqueue.
2272 */
2273static bool is_chained_work(struct workqueue_struct *wq)
2274{
2275	struct worker *worker;
2276
2277	worker = current_wq_worker();
2278	/*
2279	 * Return %true iff I'm a worker executing a work item on @wq.  If
2280	 * I'm @worker, it's safe to dereference it without locking.
2281	 */
2282	return worker && worker->current_pwq->wq == wq;
2283}
2284
2285/*
2286 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2287 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2288 * avoid perturbing sensitive tasks.
2289 */
2290static int wq_select_unbound_cpu(int cpu)
2291{
 
2292	int new_cpu;
2293
2294	if (likely(!wq_debug_force_rr_cpu)) {
2295		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2296			return cpu;
2297	} else {
2298		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
 
2299	}
2300
 
 
 
2301	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2302	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2303	if (unlikely(new_cpu >= nr_cpu_ids)) {
2304		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2305		if (unlikely(new_cpu >= nr_cpu_ids))
2306			return cpu;
2307	}
2308	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2309
2310	return new_cpu;
2311}
2312
2313static void __queue_work(int cpu, struct workqueue_struct *wq,
2314			 struct work_struct *work)
2315{
2316	struct pool_workqueue *pwq;
2317	struct worker_pool *last_pool, *pool;
 
2318	unsigned int work_flags;
2319	unsigned int req_cpu = cpu;
2320
2321	/*
2322	 * While a work item is PENDING && off queue, a task trying to
2323	 * steal the PENDING will busy-loop waiting for it to either get
2324	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2325	 * happen with IRQ disabled.
2326	 */
2327	lockdep_assert_irqs_disabled();
 
 
2328
2329	/*
2330	 * For a draining wq, only works from the same workqueue are
2331	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2332	 * queues a new work item to a wq after destroy_workqueue(wq).
2333	 */
2334	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2335		     WARN_ON_ONCE(!is_chained_work(wq))))
2336		return;
2337	rcu_read_lock();
2338retry:
 
 
 
2339	/* pwq which will be used unless @work is executing elsewhere */
2340	if (req_cpu == WORK_CPU_UNBOUND) {
2341		if (wq->flags & WQ_UNBOUND)
2342			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2343		else
2344			cpu = raw_smp_processor_id();
2345	}
2346
2347	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2348	pool = pwq->pool;
2349
2350	/*
2351	 * If @work was previously on a different pool, it might still be
2352	 * running there, in which case the work needs to be queued on that
2353	 * pool to guarantee non-reentrancy.
2354	 */
2355	last_pool = get_work_pool(work);
2356	if (last_pool && last_pool != pool) {
2357		struct worker *worker;
2358
2359		raw_spin_lock(&last_pool->lock);
2360
2361		worker = find_worker_executing_work(last_pool, work);
2362
2363		if (worker && worker->current_pwq->wq == wq) {
2364			pwq = worker->current_pwq;
2365			pool = pwq->pool;
2366			WARN_ON_ONCE(pool != last_pool);
2367		} else {
2368			/* meh... not running there, queue here */
2369			raw_spin_unlock(&last_pool->lock);
2370			raw_spin_lock(&pool->lock);
2371		}
2372	} else {
2373		raw_spin_lock(&pool->lock);
2374	}
2375
2376	/*
2377	 * pwq is determined and locked. For unbound pools, we could have raced
2378	 * with pwq release and it could already be dead. If its refcnt is zero,
2379	 * repeat pwq selection. Note that unbound pwqs never die without
2380	 * another pwq replacing it in cpu_pwq or while work items are executing
2381	 * on it, so the retrying is guaranteed to make forward-progress.
 
2382	 */
2383	if (unlikely(!pwq->refcnt)) {
2384		if (wq->flags & WQ_UNBOUND) {
2385			raw_spin_unlock(&pool->lock);
2386			cpu_relax();
2387			goto retry;
2388		}
2389		/* oops */
2390		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2391			  wq->name, cpu);
2392	}
2393
2394	/* pwq determined, queue */
2395	trace_workqueue_queue_work(req_cpu, pwq, work);
2396
2397	if (WARN_ON(!list_empty(&work->entry)))
2398		goto out;
 
 
2399
2400	pwq->nr_in_flight[pwq->work_color]++;
2401	work_flags = work_color_to_flags(pwq->work_color);
2402
2403	/*
2404	 * Limit the number of concurrently active work items to max_active.
2405	 * @work must also queue behind existing inactive work items to maintain
2406	 * ordering when max_active changes. See wq_adjust_max_active().
2407	 */
2408	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2409		if (list_empty(&pool->worklist))
2410			pool->watchdog_ts = jiffies;
2411
2412		trace_workqueue_activate_work(work);
2413		insert_work(pwq, work, &pool->worklist, work_flags);
2414		kick_pool(pool);
 
 
2415	} else {
2416		work_flags |= WORK_STRUCT_INACTIVE;
2417		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2418	}
2419
2420out:
2421	raw_spin_unlock(&pool->lock);
2422	rcu_read_unlock();
2423}
2424
2425/**
2426 * queue_work_on - queue work on specific cpu
2427 * @cpu: CPU number to execute work on
2428 * @wq: workqueue to use
2429 * @work: work to queue
2430 *
2431 * We queue the work to a specific CPU, the caller must ensure it
2432 * can't go away.  Callers that fail to ensure that the specified
2433 * CPU cannot go away will execute on a randomly chosen CPU.
2434 * But note well that callers specifying a CPU that never has been
2435 * online will get a splat.
2436 *
2437 * Return: %false if @work was already on a queue, %true otherwise.
2438 */
2439bool queue_work_on(int cpu, struct workqueue_struct *wq,
2440		   struct work_struct *work)
2441{
2442	bool ret = false;
2443	unsigned long irq_flags;
2444
2445	local_irq_save(irq_flags);
2446
2447	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2448		__queue_work(cpu, wq, work);
2449		ret = true;
2450	}
2451
2452	local_irq_restore(irq_flags);
2453	return ret;
2454}
2455EXPORT_SYMBOL(queue_work_on);
2456
2457/**
2458 * select_numa_node_cpu - Select a CPU based on NUMA node
2459 * @node: NUMA node ID that we want to select a CPU from
2460 *
2461 * This function will attempt to find a "random" cpu available on a given
2462 * node. If there are no CPUs available on the given node it will return
2463 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2464 * available CPU if we need to schedule this work.
2465 */
2466static int select_numa_node_cpu(int node)
2467{
2468	int cpu;
2469
2470	/* Delay binding to CPU if node is not valid or online */
2471	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2472		return WORK_CPU_UNBOUND;
2473
2474	/* Use local node/cpu if we are already there */
2475	cpu = raw_smp_processor_id();
2476	if (node == cpu_to_node(cpu))
2477		return cpu;
2478
2479	/* Use "random" otherwise know as "first" online CPU of node */
2480	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2481
2482	/* If CPU is valid return that, otherwise just defer */
2483	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2484}
2485
2486/**
2487 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2488 * @node: NUMA node that we are targeting the work for
2489 * @wq: workqueue to use
2490 * @work: work to queue
2491 *
2492 * We queue the work to a "random" CPU within a given NUMA node. The basic
2493 * idea here is to provide a way to somehow associate work with a given
2494 * NUMA node.
2495 *
2496 * This function will only make a best effort attempt at getting this onto
2497 * the right NUMA node. If no node is requested or the requested node is
2498 * offline then we just fall back to standard queue_work behavior.
2499 *
2500 * Currently the "random" CPU ends up being the first available CPU in the
2501 * intersection of cpu_online_mask and the cpumask of the node, unless we
2502 * are running on the node. In that case we just use the current CPU.
2503 *
2504 * Return: %false if @work was already on a queue, %true otherwise.
2505 */
2506bool queue_work_node(int node, struct workqueue_struct *wq,
2507		     struct work_struct *work)
2508{
2509	unsigned long irq_flags;
2510	bool ret = false;
2511
2512	/*
2513	 * This current implementation is specific to unbound workqueues.
2514	 * Specifically we only return the first available CPU for a given
2515	 * node instead of cycling through individual CPUs within the node.
2516	 *
2517	 * If this is used with a per-cpu workqueue then the logic in
2518	 * workqueue_select_cpu_near would need to be updated to allow for
2519	 * some round robin type logic.
2520	 */
2521	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2522
2523	local_irq_save(irq_flags);
2524
2525	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2526		int cpu = select_numa_node_cpu(node);
2527
2528		__queue_work(cpu, wq, work);
2529		ret = true;
2530	}
2531
2532	local_irq_restore(irq_flags);
2533	return ret;
2534}
2535EXPORT_SYMBOL_GPL(queue_work_node);
2536
2537void delayed_work_timer_fn(struct timer_list *t)
2538{
2539	struct delayed_work *dwork = from_timer(dwork, t, timer);
2540
2541	/* should have been called from irqsafe timer with irq already off */
2542	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2543}
2544EXPORT_SYMBOL(delayed_work_timer_fn);
2545
2546static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2547				struct delayed_work *dwork, unsigned long delay)
2548{
2549	struct timer_list *timer = &dwork->timer;
2550	struct work_struct *work = &dwork->work;
2551
2552	WARN_ON_ONCE(!wq);
2553	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2554	WARN_ON_ONCE(timer_pending(timer));
2555	WARN_ON_ONCE(!list_empty(&work->entry));
2556
2557	/*
2558	 * If @delay is 0, queue @dwork->work immediately.  This is for
2559	 * both optimization and correctness.  The earliest @timer can
2560	 * expire is on the closest next tick and delayed_work users depend
2561	 * on that there's no such delay when @delay is 0.
2562	 */
2563	if (!delay) {
2564		__queue_work(cpu, wq, &dwork->work);
2565		return;
2566	}
2567
 
 
2568	dwork->wq = wq;
2569	dwork->cpu = cpu;
2570	timer->expires = jiffies + delay;
2571
2572	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2573		/* If the current cpu is a housekeeping cpu, use it. */
2574		cpu = smp_processor_id();
2575		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2576			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2577		add_timer_on(timer, cpu);
2578	} else {
2579		if (likely(cpu == WORK_CPU_UNBOUND))
2580			add_timer_global(timer);
2581		else
2582			add_timer_on(timer, cpu);
2583	}
2584}
2585
2586/**
2587 * queue_delayed_work_on - queue work on specific CPU after delay
2588 * @cpu: CPU number to execute work on
2589 * @wq: workqueue to use
2590 * @dwork: work to queue
2591 * @delay: number of jiffies to wait before queueing
2592 *
2593 * Return: %false if @work was already on a queue, %true otherwise.  If
2594 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2595 * execution.
2596 */
2597bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2598			   struct delayed_work *dwork, unsigned long delay)
2599{
2600	struct work_struct *work = &dwork->work;
2601	bool ret = false;
2602	unsigned long irq_flags;
2603
2604	/* read the comment in __queue_work() */
2605	local_irq_save(irq_flags);
2606
2607	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2608		__queue_delayed_work(cpu, wq, dwork, delay);
2609		ret = true;
2610	}
2611
2612	local_irq_restore(irq_flags);
2613	return ret;
2614}
2615EXPORT_SYMBOL(queue_delayed_work_on);
2616
2617/**
2618 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2619 * @cpu: CPU number to execute work on
2620 * @wq: workqueue to use
2621 * @dwork: work to queue
2622 * @delay: number of jiffies to wait before queueing
2623 *
2624 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2625 * modify @dwork's timer so that it expires after @delay.  If @delay is
2626 * zero, @work is guaranteed to be scheduled immediately regardless of its
2627 * current state.
2628 *
2629 * Return: %false if @dwork was idle and queued, %true if @dwork was
2630 * pending and its timer was modified.
2631 *
2632 * This function is safe to call from any context including IRQ handler.
2633 * See try_to_grab_pending() for details.
2634 */
2635bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2636			 struct delayed_work *dwork, unsigned long delay)
2637{
2638	unsigned long irq_flags;
2639	int ret;
2640
2641	do {
2642		ret = try_to_grab_pending(&dwork->work, WORK_CANCEL_DELAYED,
2643					  &irq_flags);
2644	} while (unlikely(ret == -EAGAIN));
2645
2646	if (likely(ret >= 0)) {
2647		__queue_delayed_work(cpu, wq, dwork, delay);
2648		local_irq_restore(irq_flags);
2649	}
2650
2651	/* -ENOENT from try_to_grab_pending() becomes %true */
2652	return ret;
2653}
2654EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2655
2656static void rcu_work_rcufn(struct rcu_head *rcu)
 
 
 
 
 
 
 
 
 
 
2657{
2658	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2659
2660	/* read the comment in __queue_work() */
2661	local_irq_disable();
2662	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2663	local_irq_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2664}
2665
2666/**
2667 * queue_rcu_work - queue work after a RCU grace period
2668 * @wq: workqueue to use
2669 * @rwork: work to queue
 
2670 *
2671 * Return: %false if @rwork was already pending, %true otherwise.  Note
2672 * that a full RCU grace period is guaranteed only after a %true return.
2673 * While @rwork is guaranteed to be executed after a %false return, the
2674 * execution may happen before a full RCU grace period has passed.
2675 */
2676bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2677{
2678	struct work_struct *work = &rwork->work;
2679
2680	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2681		rwork->wq = wq;
2682		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2683		return true;
2684	}
2685
2686	return false;
2687}
2688EXPORT_SYMBOL(queue_rcu_work);
2689
2690static struct worker *alloc_worker(int node)
2691{
2692	struct worker *worker;
2693
2694	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2695	if (worker) {
2696		INIT_LIST_HEAD(&worker->entry);
2697		INIT_LIST_HEAD(&worker->scheduled);
2698		INIT_LIST_HEAD(&worker->node);
2699		/* on creation a worker is in !idle && prep state */
2700		worker->flags = WORKER_PREP;
2701	}
2702	return worker;
2703}
2704
2705static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2706{
2707	if (pool->cpu < 0 && pool->attrs->affn_strict)
2708		return pool->attrs->__pod_cpumask;
2709	else
2710		return pool->attrs->cpumask;
2711}
2712
2713/**
2714 * worker_attach_to_pool() - attach a worker to a pool
2715 * @worker: worker to be attached
2716 * @pool: the target pool
2717 *
2718 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2719 * cpu-binding of @worker are kept coordinated with the pool across
2720 * cpu-[un]hotplugs.
2721 */
2722static void worker_attach_to_pool(struct worker *worker,
2723				  struct worker_pool *pool)
2724{
2725	mutex_lock(&wq_pool_attach_mutex);
2726
2727	/*
2728	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2729	 * across this function. See the comments above the flag definition for
2730	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2731	 */
2732	if (pool->flags & POOL_DISASSOCIATED) {
 
 
 
 
 
 
 
2733		worker->flags |= WORKER_UNBOUND;
2734	} else {
2735		WARN_ON_ONCE(pool->flags & POOL_BH);
2736		kthread_set_per_cpu(worker->task, pool->cpu);
2737	}
2738
2739	if (worker->rescue_wq)
2740		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2741
2742	list_add_tail(&worker->node, &pool->workers);
2743	worker->pool = pool;
2744
2745	mutex_unlock(&wq_pool_attach_mutex);
2746}
2747
2748/**
2749 * worker_detach_from_pool() - detach a worker from its pool
2750 * @worker: worker which is attached to its pool
 
2751 *
2752 * Undo the attaching which had been done in worker_attach_to_pool().  The
2753 * caller worker shouldn't access to the pool after detached except it has
2754 * other reference to the pool.
2755 */
2756static void worker_detach_from_pool(struct worker *worker)
 
2757{
2758	struct worker_pool *pool = worker->pool;
2759	struct completion *detach_completion = NULL;
2760
2761	/* there is one permanent BH worker per CPU which should never detach */
2762	WARN_ON_ONCE(pool->flags & POOL_BH);
2763
2764	mutex_lock(&wq_pool_attach_mutex);
2765
2766	kthread_set_per_cpu(worker->task, -1);
2767	list_del(&worker->node);
2768	worker->pool = NULL;
2769
2770	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2771		detach_completion = pool->detach_completion;
2772	mutex_unlock(&wq_pool_attach_mutex);
2773
2774	/* clear leftover flags without pool->lock after it is detached */
2775	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2776
2777	if (detach_completion)
2778		complete(detach_completion);
2779}
2780
2781/**
2782 * create_worker - create a new workqueue worker
2783 * @pool: pool the new worker will belong to
2784 *
2785 * Create and start a new worker which is attached to @pool.
2786 *
2787 * CONTEXT:
2788 * Might sleep.  Does GFP_KERNEL allocations.
2789 *
2790 * Return:
2791 * Pointer to the newly created worker.
2792 */
2793static struct worker *create_worker(struct worker_pool *pool)
2794{
2795	struct worker *worker;
2796	int id;
2797	char id_buf[23];
2798
2799	/* ID is needed to determine kthread name */
2800	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2801	if (id < 0) {
2802		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2803			    ERR_PTR(id));
2804		return NULL;
2805	}
2806
2807	worker = alloc_worker(pool->node);
2808	if (!worker) {
2809		pr_err_once("workqueue: Failed to allocate a worker\n");
2810		goto fail;
2811	}
2812
 
2813	worker->id = id;
2814
2815	if (!(pool->flags & POOL_BH)) {
2816		if (pool->cpu >= 0)
2817			snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2818				 pool->attrs->nice < 0  ? "H" : "");
2819		else
2820			snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2821
2822		worker->task = kthread_create_on_node(worker_thread, worker,
2823					pool->node, "kworker/%s", id_buf);
2824		if (IS_ERR(worker->task)) {
2825			if (PTR_ERR(worker->task) == -EINTR) {
2826				pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2827				       id_buf);
2828			} else {
2829				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2830					    worker->task);
2831			}
2832			goto fail;
2833		}
2834
2835		set_user_nice(worker->task, pool->attrs->nice);
2836		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2837	}
2838
2839	/* successful, attach the worker to the pool */
2840	worker_attach_to_pool(worker, pool);
2841
2842	/* start the newly created worker */
2843	raw_spin_lock_irq(&pool->lock);
2844
2845	worker->pool->nr_workers++;
2846	worker_enter_idle(worker);
2847
2848	/*
2849	 * @worker is waiting on a completion in kthread() and will trigger hung
2850	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2851	 * wake it up explicitly.
2852	 */
2853	if (worker->task)
2854		wake_up_process(worker->task);
2855
2856	raw_spin_unlock_irq(&pool->lock);
2857
2858	return worker;
2859
2860fail:
2861	ida_free(&pool->worker_ida, id);
 
2862	kfree(worker);
2863	return NULL;
2864}
2865
2866static void unbind_worker(struct worker *worker)
2867{
2868	lockdep_assert_held(&wq_pool_attach_mutex);
2869
2870	kthread_set_per_cpu(worker->task, -1);
2871	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2872		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2873	else
2874		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2875}
2876
2877static void wake_dying_workers(struct list_head *cull_list)
2878{
2879	struct worker *worker, *tmp;
2880
2881	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2882		list_del_init(&worker->entry);
2883		unbind_worker(worker);
2884		/*
2885		 * If the worker was somehow already running, then it had to be
2886		 * in pool->idle_list when set_worker_dying() happened or we
2887		 * wouldn't have gotten here.
2888		 *
2889		 * Thus, the worker must either have observed the WORKER_DIE
2890		 * flag, or have set its state to TASK_IDLE. Either way, the
2891		 * below will be observed by the worker and is safe to do
2892		 * outside of pool->lock.
2893		 */
2894		wake_up_process(worker->task);
2895	}
2896}
2897
2898/**
2899 * set_worker_dying - Tag a worker for destruction
2900 * @worker: worker to be destroyed
2901 * @list: transfer worker away from its pool->idle_list and into list
2902 *
2903 * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2904 * should be idle.
2905 *
2906 * CONTEXT:
2907 * raw_spin_lock_irq(pool->lock).
2908 */
2909static void set_worker_dying(struct worker *worker, struct list_head *list)
2910{
2911	struct worker_pool *pool = worker->pool;
2912
2913	lockdep_assert_held(&pool->lock);
2914	lockdep_assert_held(&wq_pool_attach_mutex);
2915
2916	/* sanity check frenzy */
2917	if (WARN_ON(worker->current_work) ||
2918	    WARN_ON(!list_empty(&worker->scheduled)) ||
2919	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2920		return;
2921
2922	pool->nr_workers--;
2923	pool->nr_idle--;
2924
 
2925	worker->flags |= WORKER_DIE;
2926
2927	list_move(&worker->entry, list);
2928	list_move(&worker->node, &pool->dying_workers);
2929}
2930
2931/**
2932 * idle_worker_timeout - check if some idle workers can now be deleted.
2933 * @t: The pool's idle_timer that just expired
2934 *
2935 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2936 * worker_leave_idle(), as a worker flicking between idle and active while its
2937 * pool is at the too_many_workers() tipping point would cause too much timer
2938 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2939 * it expire and re-evaluate things from there.
2940 */
2941static void idle_worker_timeout(struct timer_list *t)
2942{
2943	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2944	bool do_cull = false;
2945
2946	if (work_pending(&pool->idle_cull_work))
2947		return;
2948
2949	raw_spin_lock_irq(&pool->lock);
2950
2951	if (too_many_workers(pool)) {
2952		struct worker *worker;
2953		unsigned long expires;
2954
2955		/* idle_list is kept in LIFO order, check the last one */
2956		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2957		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2958		do_cull = !time_before(jiffies, expires);
2959
2960		if (!do_cull)
2961			mod_timer(&pool->idle_timer, expires);
2962	}
2963	raw_spin_unlock_irq(&pool->lock);
2964
2965	if (do_cull)
2966		queue_work(system_unbound_wq, &pool->idle_cull_work);
2967}
2968
2969/**
2970 * idle_cull_fn - cull workers that have been idle for too long.
2971 * @work: the pool's work for handling these idle workers
2972 *
2973 * This goes through a pool's idle workers and gets rid of those that have been
2974 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2975 *
2976 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2977 * culled, so this also resets worker affinity. This requires a sleepable
2978 * context, hence the split between timer callback and work item.
2979 */
2980static void idle_cull_fn(struct work_struct *work)
2981{
2982	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2983	LIST_HEAD(cull_list);
2984
2985	/*
2986	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2987	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2988	 * path. This is required as a previously-preempted worker could run after
2989	 * set_worker_dying() has happened but before wake_dying_workers() did.
2990	 */
2991	mutex_lock(&wq_pool_attach_mutex);
2992	raw_spin_lock_irq(&pool->lock);
2993
2994	while (too_many_workers(pool)) {
2995		struct worker *worker;
2996		unsigned long expires;
2997
2998		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2999		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
3000
3001		if (time_before(jiffies, expires)) {
3002			mod_timer(&pool->idle_timer, expires);
3003			break;
3004		}
3005
3006		set_worker_dying(worker, &cull_list);
3007	}
3008
3009	raw_spin_unlock_irq(&pool->lock);
3010	wake_dying_workers(&cull_list);
3011	mutex_unlock(&wq_pool_attach_mutex);
3012}
3013
3014static void send_mayday(struct work_struct *work)
3015{
3016	struct pool_workqueue *pwq = get_work_pwq(work);
3017	struct workqueue_struct *wq = pwq->wq;
3018
3019	lockdep_assert_held(&wq_mayday_lock);
3020
3021	if (!wq->rescuer)
3022		return;
3023
3024	/* mayday mayday mayday */
3025	if (list_empty(&pwq->mayday_node)) {
3026		/*
3027		 * If @pwq is for an unbound wq, its base ref may be put at
3028		 * any time due to an attribute change.  Pin @pwq until the
3029		 * rescuer is done with it.
3030		 */
3031		get_pwq(pwq);
3032		list_add_tail(&pwq->mayday_node, &wq->maydays);
3033		wake_up_process(wq->rescuer->task);
3034		pwq->stats[PWQ_STAT_MAYDAY]++;
3035	}
3036}
3037
3038static void pool_mayday_timeout(struct timer_list *t)
3039{
3040	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
3041	struct work_struct *work;
3042
3043	raw_spin_lock_irq(&pool->lock);
3044	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3045
3046	if (need_to_create_worker(pool)) {
3047		/*
3048		 * We've been trying to create a new worker but
3049		 * haven't been successful.  We might be hitting an
3050		 * allocation deadlock.  Send distress signals to
3051		 * rescuers.
3052		 */
3053		list_for_each_entry(work, &pool->worklist, entry)
3054			send_mayday(work);
3055	}
3056
3057	raw_spin_unlock(&wq_mayday_lock);
3058	raw_spin_unlock_irq(&pool->lock);
3059
3060	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3061}
3062
3063/**
3064 * maybe_create_worker - create a new worker if necessary
3065 * @pool: pool to create a new worker for
3066 *
3067 * Create a new worker for @pool if necessary.  @pool is guaranteed to
3068 * have at least one idle worker on return from this function.  If
3069 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3070 * sent to all rescuers with works scheduled on @pool to resolve
3071 * possible allocation deadlock.
3072 *
3073 * On return, need_to_create_worker() is guaranteed to be %false and
3074 * may_start_working() %true.
3075 *
3076 * LOCKING:
3077 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3078 * multiple times.  Does GFP_KERNEL allocations.  Called only from
3079 * manager.
3080 */
3081static void maybe_create_worker(struct worker_pool *pool)
3082__releases(&pool->lock)
3083__acquires(&pool->lock)
3084{
3085restart:
3086	raw_spin_unlock_irq(&pool->lock);
3087
3088	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3089	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3090
3091	while (true) {
3092		if (create_worker(pool) || !need_to_create_worker(pool))
3093			break;
3094
3095		schedule_timeout_interruptible(CREATE_COOLDOWN);
3096
3097		if (!need_to_create_worker(pool))
3098			break;
3099	}
3100
3101	del_timer_sync(&pool->mayday_timer);
3102	raw_spin_lock_irq(&pool->lock);
3103	/*
3104	 * This is necessary even after a new worker was just successfully
3105	 * created as @pool->lock was dropped and the new worker might have
3106	 * already become busy.
3107	 */
3108	if (need_to_create_worker(pool))
3109		goto restart;
3110}
3111
3112/**
3113 * manage_workers - manage worker pool
3114 * @worker: self
3115 *
3116 * Assume the manager role and manage the worker pool @worker belongs
3117 * to.  At any given time, there can be only zero or one manager per
3118 * pool.  The exclusion is handled automatically by this function.
3119 *
3120 * The caller can safely start processing works on false return.  On
3121 * true return, it's guaranteed that need_to_create_worker() is false
3122 * and may_start_working() is true.
3123 *
3124 * CONTEXT:
3125 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3126 * multiple times.  Does GFP_KERNEL allocations.
3127 *
3128 * Return:
3129 * %false if the pool doesn't need management and the caller can safely
3130 * start processing works, %true if management function was performed and
3131 * the conditions that the caller verified before calling the function may
3132 * no longer be true.
3133 */
3134static bool manage_workers(struct worker *worker)
3135{
3136	struct worker_pool *pool = worker->pool;
3137
3138	if (pool->flags & POOL_MANAGER_ACTIVE)
 
 
 
 
 
 
 
 
 
 
3139		return false;
3140
3141	pool->flags |= POOL_MANAGER_ACTIVE;
3142	pool->manager = worker;
3143
3144	maybe_create_worker(pool);
3145
3146	pool->manager = NULL;
3147	pool->flags &= ~POOL_MANAGER_ACTIVE;
3148	rcuwait_wake_up(&manager_wait);
3149	return true;
3150}
3151
3152/**
3153 * process_one_work - process single work
3154 * @worker: self
3155 * @work: work to process
3156 *
3157 * Process @work.  This function contains all the logics necessary to
3158 * process a single work including synchronization against and
3159 * interaction with other workers on the same cpu, queueing and
3160 * flushing.  As long as context requirement is met, any worker can
3161 * call this function to process a work.
3162 *
3163 * CONTEXT:
3164 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3165 */
3166static void process_one_work(struct worker *worker, struct work_struct *work)
3167__releases(&pool->lock)
3168__acquires(&pool->lock)
3169{
3170	struct pool_workqueue *pwq = get_work_pwq(work);
3171	struct worker_pool *pool = worker->pool;
3172	unsigned long work_data;
3173	int lockdep_start_depth, rcu_start_depth;
3174	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3175#ifdef CONFIG_LOCKDEP
3176	/*
3177	 * It is permissible to free the struct work_struct from
3178	 * inside the function that is called from it, this we need to
3179	 * take into account for lockdep too.  To avoid bogus "held
3180	 * lock freed" warnings as well as problems when looking into
3181	 * work->lockdep_map, make a copy and use that here.
3182	 */
3183	struct lockdep_map lockdep_map;
3184
3185	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3186#endif
3187	/* ensure we're on the correct CPU */
3188	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3189		     raw_smp_processor_id() != pool->cpu);
3190
 
 
 
 
 
 
 
 
 
 
 
 
3191	/* claim and dequeue */
3192	debug_work_deactivate(work);
3193	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3194	worker->current_work = work;
3195	worker->current_func = work->func;
3196	worker->current_pwq = pwq;
3197	if (worker->task)
3198		worker->current_at = worker->task->se.sum_exec_runtime;
3199	work_data = *work_data_bits(work);
3200	worker->current_color = get_work_color(work_data);
3201
3202	/*
3203	 * Record wq name for cmdline and debug reporting, may get
3204	 * overridden through set_worker_desc().
3205	 */
3206	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3207
3208	list_del_init(&work->entry);
3209
3210	/*
3211	 * CPU intensive works don't participate in concurrency management.
3212	 * They're the scheduler's responsibility.  This takes @worker out
3213	 * of concurrency management and the next code block will chain
3214	 * execution of the pending work items.
3215	 */
3216	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3217		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3218
3219	/*
3220	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3221	 * since nr_running would always be >= 1 at this point. This is used to
3222	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3223	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
 
3224	 */
3225	kick_pool(pool);
 
3226
3227	/*
3228	 * Record the last pool and clear PENDING which should be the last
3229	 * update to @work.  Also, do this inside @pool->lock so that
3230	 * PENDING and queued state changes happen together while IRQ is
3231	 * disabled.
3232	 */
3233	set_work_pool_and_clear_pending(work, pool->id, 0);
3234
3235	pwq->stats[PWQ_STAT_STARTED]++;
3236	raw_spin_unlock_irq(&pool->lock);
3237
3238	rcu_start_depth = rcu_preempt_depth();
3239	lockdep_start_depth = lockdep_depth(current);
3240	/* see drain_dead_softirq_workfn() */
3241	if (!bh_draining)
3242		lock_map_acquire(&pwq->wq->lockdep_map);
3243	lock_map_acquire(&lockdep_map);
3244	/*
3245	 * Strictly speaking we should mark the invariant state without holding
3246	 * any locks, that is, before these two lock_map_acquire()'s.
3247	 *
3248	 * However, that would result in:
3249	 *
3250	 *   A(W1)
3251	 *   WFC(C)
3252	 *		A(W1)
3253	 *		C(C)
3254	 *
3255	 * Which would create W1->C->W1 dependencies, even though there is no
3256	 * actual deadlock possible. There are two solutions, using a
3257	 * read-recursive acquire on the work(queue) 'locks', but this will then
3258	 * hit the lockdep limitation on recursive locks, or simply discard
3259	 * these locks.
3260	 *
3261	 * AFAICT there is no possible deadlock scenario between the
3262	 * flush_work() and complete() primitives (except for single-threaded
3263	 * workqueues), so hiding them isn't a problem.
3264	 */
3265	lockdep_invariant_state(true);
3266	trace_workqueue_execute_start(work);
3267	worker->current_func(work);
3268	/*
3269	 * While we must be careful to not use "work" after this, the trace
3270	 * point will only record its address.
3271	 */
3272	trace_workqueue_execute_end(work, worker->current_func);
3273	pwq->stats[PWQ_STAT_COMPLETED]++;
3274	lock_map_release(&lockdep_map);
3275	if (!bh_draining)
3276		lock_map_release(&pwq->wq->lockdep_map);
3277
3278	if (unlikely((worker->task && in_atomic()) ||
3279		     lockdep_depth(current) != lockdep_start_depth ||
3280		     rcu_preempt_depth() != rcu_start_depth)) {
3281		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3282		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3283		       current->comm, task_pid_nr(current), preempt_count(),
3284		       lockdep_start_depth, lockdep_depth(current),
3285		       rcu_start_depth, rcu_preempt_depth(),
3286		       worker->current_func);
3287		debug_show_held_locks(current);
3288		dump_stack();
3289	}
3290
3291	/*
3292	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3293	 * kernels, where a requeueing work item waiting for something to
3294	 * happen could deadlock with stop_machine as such work item could
3295	 * indefinitely requeue itself while all other CPUs are trapped in
3296	 * stop_machine. At the same time, report a quiescent RCU state so
3297	 * the same condition doesn't freeze RCU.
3298	 */
3299	if (worker->task)
3300		cond_resched();
3301
3302	raw_spin_lock_irq(&pool->lock);
3303
3304	/*
3305	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3306	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3307	 * wq_cpu_intensive_thresh_us. Clear it.
3308	 */
3309	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3310
3311	/* tag the worker for identification in schedule() */
3312	worker->last_func = worker->current_func;
 
3313
3314	/* we're done with it, release */
3315	hash_del(&worker->hentry);
3316	worker->current_work = NULL;
3317	worker->current_func = NULL;
3318	worker->current_pwq = NULL;
3319	worker->current_color = INT_MAX;
3320
3321	/* must be the last step, see the function comment */
3322	pwq_dec_nr_in_flight(pwq, work_data);
3323}
3324
3325/**
3326 * process_scheduled_works - process scheduled works
3327 * @worker: self
3328 *
3329 * Process all scheduled works.  Please note that the scheduled list
3330 * may change while processing a work, so this function repeatedly
3331 * fetches a work from the top and executes it.
3332 *
3333 * CONTEXT:
3334 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3335 * multiple times.
3336 */
3337static void process_scheduled_works(struct worker *worker)
3338{
3339	struct work_struct *work;
3340	bool first = true;
3341
3342	while ((work = list_first_entry_or_null(&worker->scheduled,
3343						struct work_struct, entry))) {
3344		if (first) {
3345			worker->pool->watchdog_ts = jiffies;
3346			first = false;
3347		}
3348		process_one_work(worker, work);
3349	}
3350}
3351
3352static void set_pf_worker(bool val)
3353{
3354	mutex_lock(&wq_pool_attach_mutex);
3355	if (val)
3356		current->flags |= PF_WQ_WORKER;
3357	else
3358		current->flags &= ~PF_WQ_WORKER;
3359	mutex_unlock(&wq_pool_attach_mutex);
3360}
3361
3362/**
3363 * worker_thread - the worker thread function
3364 * @__worker: self
3365 *
3366 * The worker thread function.  All workers belong to a worker_pool -
3367 * either a per-cpu one or dynamic unbound one.  These workers process all
3368 * work items regardless of their specific target workqueue.  The only
3369 * exception is work items which belong to workqueues with a rescuer which
3370 * will be explained in rescuer_thread().
3371 *
3372 * Return: 0
3373 */
3374static int worker_thread(void *__worker)
3375{
3376	struct worker *worker = __worker;
3377	struct worker_pool *pool = worker->pool;
3378
3379	/* tell the scheduler that this is a workqueue worker */
3380	set_pf_worker(true);
3381woke_up:
3382	raw_spin_lock_irq(&pool->lock);
3383
3384	/* am I supposed to die? */
3385	if (unlikely(worker->flags & WORKER_DIE)) {
3386		raw_spin_unlock_irq(&pool->lock);
3387		set_pf_worker(false);
 
3388
3389		set_task_comm(worker->task, "kworker/dying");
3390		ida_free(&pool->worker_ida, worker->id);
3391		worker_detach_from_pool(worker);
3392		WARN_ON_ONCE(!list_empty(&worker->entry));
3393		kfree(worker);
3394		return 0;
3395	}
3396
3397	worker_leave_idle(worker);
3398recheck:
3399	/* no more worker necessary? */
3400	if (!need_more_worker(pool))
3401		goto sleep;
3402
3403	/* do we need to manage? */
3404	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3405		goto recheck;
3406
3407	/*
3408	 * ->scheduled list can only be filled while a worker is
3409	 * preparing to process a work or actually processing it.
3410	 * Make sure nobody diddled with it while I was sleeping.
3411	 */
3412	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3413
3414	/*
3415	 * Finish PREP stage.  We're guaranteed to have at least one idle
3416	 * worker or that someone else has already assumed the manager
3417	 * role.  This is where @worker starts participating in concurrency
3418	 * management if applicable and concurrency management is restored
3419	 * after being rebound.  See rebind_workers() for details.
3420	 */
3421	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3422
3423	do {
3424		struct work_struct *work =
3425			list_first_entry(&pool->worklist,
3426					 struct work_struct, entry);
3427
3428		if (assign_work(work, worker, NULL))
 
 
 
 
 
 
 
 
3429			process_scheduled_works(worker);
 
3430	} while (keep_working(pool));
3431
3432	worker_set_flags(worker, WORKER_PREP);
3433sleep:
3434	/*
3435	 * pool->lock is held and there's no work to process and no need to
3436	 * manage, sleep.  Workers are woken up only while holding
3437	 * pool->lock or from local cpu, so setting the current state
3438	 * before releasing pool->lock is enough to prevent losing any
3439	 * event.
3440	 */
3441	worker_enter_idle(worker);
3442	__set_current_state(TASK_IDLE);
3443	raw_spin_unlock_irq(&pool->lock);
3444	schedule();
3445	goto woke_up;
3446}
3447
3448/**
3449 * rescuer_thread - the rescuer thread function
3450 * @__rescuer: self
3451 *
3452 * Workqueue rescuer thread function.  There's one rescuer for each
3453 * workqueue which has WQ_MEM_RECLAIM set.
3454 *
3455 * Regular work processing on a pool may block trying to create a new
3456 * worker which uses GFP_KERNEL allocation which has slight chance of
3457 * developing into deadlock if some works currently on the same queue
3458 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3459 * the problem rescuer solves.
3460 *
3461 * When such condition is possible, the pool summons rescuers of all
3462 * workqueues which have works queued on the pool and let them process
3463 * those works so that forward progress can be guaranteed.
3464 *
3465 * This should happen rarely.
3466 *
3467 * Return: 0
3468 */
3469static int rescuer_thread(void *__rescuer)
3470{
3471	struct worker *rescuer = __rescuer;
3472	struct workqueue_struct *wq = rescuer->rescue_wq;
 
3473	bool should_stop;
3474
3475	set_user_nice(current, RESCUER_NICE_LEVEL);
3476
3477	/*
3478	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3479	 * doesn't participate in concurrency management.
3480	 */
3481	set_pf_worker(true);
3482repeat:
3483	set_current_state(TASK_IDLE);
3484
3485	/*
3486	 * By the time the rescuer is requested to stop, the workqueue
3487	 * shouldn't have any work pending, but @wq->maydays may still have
3488	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3489	 * all the work items before the rescuer got to them.  Go through
3490	 * @wq->maydays processing before acting on should_stop so that the
3491	 * list is always empty on exit.
3492	 */
3493	should_stop = kthread_should_stop();
3494
3495	/* see whether any pwq is asking for help */
3496	raw_spin_lock_irq(&wq_mayday_lock);
3497
3498	while (!list_empty(&wq->maydays)) {
3499		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3500					struct pool_workqueue, mayday_node);
3501		struct worker_pool *pool = pwq->pool;
3502		struct work_struct *work, *n;
 
3503
3504		__set_current_state(TASK_RUNNING);
3505		list_del_init(&pwq->mayday_node);
3506
3507		raw_spin_unlock_irq(&wq_mayday_lock);
3508
3509		worker_attach_to_pool(rescuer, pool);
3510
3511		raw_spin_lock_irq(&pool->lock);
 
3512
3513		/*
3514		 * Slurp in all works issued via this workqueue and
3515		 * process'em.
3516		 */
3517		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3518		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3519			if (get_work_pwq(work) == pwq &&
3520			    assign_work(work, rescuer, &n))
3521				pwq->stats[PWQ_STAT_RESCUED]++;
 
 
 
3522		}
3523
3524		if (!list_empty(&rescuer->scheduled)) {
3525			process_scheduled_works(rescuer);
3526
3527			/*
3528			 * The above execution of rescued work items could
3529			 * have created more to rescue through
3530			 * pwq_activate_first_inactive() or chained
3531			 * queueing.  Let's put @pwq back on mayday list so
3532			 * that such back-to-back work items, which may be
3533			 * being used to relieve memory pressure, don't
3534			 * incur MAYDAY_INTERVAL delay inbetween.
3535			 */
3536			if (pwq->nr_active && need_to_create_worker(pool)) {
3537				raw_spin_lock(&wq_mayday_lock);
3538				/*
3539				 * Queue iff we aren't racing destruction
3540				 * and somebody else hasn't queued it already.
3541				 */
3542				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3543					get_pwq(pwq);
3544					list_add_tail(&pwq->mayday_node, &wq->maydays);
3545				}
3546				raw_spin_unlock(&wq_mayday_lock);
3547			}
3548		}
3549
3550		/*
3551		 * Put the reference grabbed by send_mayday().  @pool won't
3552		 * go away while we're still attached to it.
3553		 */
3554		put_pwq(pwq);
3555
3556		/*
3557		 * Leave this pool. Notify regular workers; otherwise, we end up
3558		 * with 0 concurrency and stalling the execution.
 
3559		 */
3560		kick_pool(pool);
 
3561
3562		raw_spin_unlock_irq(&pool->lock);
 
3563
3564		worker_detach_from_pool(rescuer);
3565
3566		raw_spin_lock_irq(&wq_mayday_lock);
3567	}
3568
3569	raw_spin_unlock_irq(&wq_mayday_lock);
3570
3571	if (should_stop) {
3572		__set_current_state(TASK_RUNNING);
3573		set_pf_worker(false);
3574		return 0;
3575	}
3576
3577	/* rescuers should never participate in concurrency management */
3578	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3579	schedule();
3580	goto repeat;
3581}
3582
3583static void bh_worker(struct worker *worker)
3584{
3585	struct worker_pool *pool = worker->pool;
3586	int nr_restarts = BH_WORKER_RESTARTS;
3587	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3588
3589	raw_spin_lock_irq(&pool->lock);
3590	worker_leave_idle(worker);
3591
3592	/*
3593	 * This function follows the structure of worker_thread(). See there for
3594	 * explanations on each step.
3595	 */
3596	if (!need_more_worker(pool))
3597		goto done;
3598
3599	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3600	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3601
3602	do {
3603		struct work_struct *work =
3604			list_first_entry(&pool->worklist,
3605					 struct work_struct, entry);
3606
3607		if (assign_work(work, worker, NULL))
3608			process_scheduled_works(worker);
3609	} while (keep_working(pool) &&
3610		 --nr_restarts && time_before(jiffies, end));
3611
3612	worker_set_flags(worker, WORKER_PREP);
3613done:
3614	worker_enter_idle(worker);
3615	kick_pool(pool);
3616	raw_spin_unlock_irq(&pool->lock);
3617}
3618
3619/*
3620 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3621 *
3622 * This is currently called from tasklet[_hi]action() and thus is also called
3623 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3624 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3625 * can be dropped.
3626 *
3627 * After full conversion, we'll add worker->softirq_action, directly use the
3628 * softirq action and obtain the worker pointer from the softirq_action pointer.
3629 */
3630void workqueue_softirq_action(bool highpri)
3631{
3632	struct worker_pool *pool =
3633		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3634	if (need_more_worker(pool))
3635		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3636}
3637
3638struct wq_drain_dead_softirq_work {
3639	struct work_struct	work;
3640	struct worker_pool	*pool;
3641	struct completion	done;
3642};
3643
3644static void drain_dead_softirq_workfn(struct work_struct *work)
3645{
3646	struct wq_drain_dead_softirq_work *dead_work =
3647		container_of(work, struct wq_drain_dead_softirq_work, work);
3648	struct worker_pool *pool = dead_work->pool;
3649	bool repeat;
3650
3651	/*
3652	 * @pool's CPU is dead and we want to execute its still pending work
3653	 * items from this BH work item which is running on a different CPU. As
3654	 * its CPU is dead, @pool can't be kicked and, as work execution path
3655	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3656	 * @pool with %POOL_BH_DRAINING for the special treatments.
3657	 */
3658	raw_spin_lock_irq(&pool->lock);
3659	pool->flags |= POOL_BH_DRAINING;
3660	raw_spin_unlock_irq(&pool->lock);
3661
3662	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3663
3664	raw_spin_lock_irq(&pool->lock);
3665	pool->flags &= ~POOL_BH_DRAINING;
3666	repeat = need_more_worker(pool);
3667	raw_spin_unlock_irq(&pool->lock);
3668
3669	/*
3670	 * bh_worker() might hit consecutive execution limit and bail. If there
3671	 * still are pending work items, reschedule self and return so that we
3672	 * don't hog this CPU's BH.
3673	 */
3674	if (repeat) {
3675		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3676			queue_work(system_bh_highpri_wq, work);
3677		else
3678			queue_work(system_bh_wq, work);
3679	} else {
3680		complete(&dead_work->done);
3681	}
3682}
3683
3684/*
3685 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3686 * possible to allocate dead_work per CPU and avoid flushing. However, then we
3687 * have to worry about draining overlapping with CPU coming back online or
3688 * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3689 * on). Let's keep it simple and drain them synchronously. These are BH work
3690 * items which shouldn't be requeued on the same pool. Shouldn't take long.
3691 */
3692void workqueue_softirq_dead(unsigned int cpu)
3693{
3694	int i;
3695
3696	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3697		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3698		struct wq_drain_dead_softirq_work dead_work;
3699
3700		if (!need_more_worker(pool))
3701			continue;
3702
3703		INIT_WORK(&dead_work.work, drain_dead_softirq_workfn);
3704		dead_work.pool = pool;
3705		init_completion(&dead_work.done);
3706
3707		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3708			queue_work(system_bh_highpri_wq, &dead_work.work);
3709		else
3710			queue_work(system_bh_wq, &dead_work.work);
3711
3712		wait_for_completion(&dead_work.done);
3713	}
3714}
3715
3716/**
3717 * check_flush_dependency - check for flush dependency sanity
3718 * @target_wq: workqueue being flushed
3719 * @target_work: work item being flushed (NULL for workqueue flushes)
3720 *
3721 * %current is trying to flush the whole @target_wq or @target_work on it.
3722 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3723 * reclaiming memory or running on a workqueue which doesn't have
3724 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3725 * a deadlock.
3726 */
3727static void check_flush_dependency(struct workqueue_struct *target_wq,
3728				   struct work_struct *target_work)
3729{
3730	work_func_t target_func = target_work ? target_work->func : NULL;
3731	struct worker *worker;
3732
3733	if (target_wq->flags & WQ_MEM_RECLAIM)
3734		return;
3735
3736	worker = current_wq_worker();
3737
3738	WARN_ONCE(current->flags & PF_MEMALLOC,
3739		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3740		  current->pid, current->comm, target_wq->name, target_func);
3741	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3742			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3743		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3744		  worker->current_pwq->wq->name, worker->current_func,
3745		  target_wq->name, target_func);
3746}
3747
3748struct wq_barrier {
3749	struct work_struct	work;
3750	struct completion	done;
3751	struct task_struct	*task;	/* purely informational */
3752};
3753
3754static void wq_barrier_func(struct work_struct *work)
3755{
3756	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3757	complete(&barr->done);
3758}
3759
3760/**
3761 * insert_wq_barrier - insert a barrier work
3762 * @pwq: pwq to insert barrier into
3763 * @barr: wq_barrier to insert
3764 * @target: target work to attach @barr to
3765 * @worker: worker currently executing @target, NULL if @target is not executing
3766 *
3767 * @barr is linked to @target such that @barr is completed only after
3768 * @target finishes execution.  Please note that the ordering
3769 * guarantee is observed only with respect to @target and on the local
3770 * cpu.
3771 *
3772 * Currently, a queued barrier can't be canceled.  This is because
3773 * try_to_grab_pending() can't determine whether the work to be
3774 * grabbed is at the head of the queue and thus can't clear LINKED
3775 * flag of the previous work while there must be a valid next work
3776 * after a work with LINKED flag set.
3777 *
3778 * Note that when @worker is non-NULL, @target may be modified
3779 * underneath us, so we can't reliably determine pwq from @target.
3780 *
3781 * CONTEXT:
3782 * raw_spin_lock_irq(pool->lock).
3783 */
3784static void insert_wq_barrier(struct pool_workqueue *pwq,
3785			      struct wq_barrier *barr,
3786			      struct work_struct *target, struct worker *worker)
3787{
3788	static __maybe_unused struct lock_class_key bh_key, thr_key;
3789	unsigned int work_flags = 0;
3790	unsigned int work_color;
3791	struct list_head *head;
 
3792
3793	/*
3794	 * debugobject calls are safe here even with pool->lock locked
3795	 * as we know for sure that this will not trigger any of the
3796	 * checks and call back into the fixup functions where we
3797	 * might deadlock.
3798	 *
3799	 * BH and threaded workqueues need separate lockdep keys to avoid
3800	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3801	 * usage".
3802	 */
3803	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3804			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3805	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3806
3807	init_completion_map(&barr->done, &target->lockdep_map);
3808
3809	barr->task = current;
3810
3811	/* The barrier work item does not participate in nr_active. */
3812	work_flags |= WORK_STRUCT_INACTIVE;
3813
3814	/*
3815	 * If @target is currently being executed, schedule the
3816	 * barrier to the worker; otherwise, put it after @target.
3817	 */
3818	if (worker) {
3819		head = worker->scheduled.next;
3820		work_color = worker->current_color;
3821	} else {
3822		unsigned long *bits = work_data_bits(target);
3823
3824		head = target->entry.next;
3825		/* there can already be other linked works, inherit and set */
3826		work_flags |= *bits & WORK_STRUCT_LINKED;
3827		work_color = get_work_color(*bits);
3828		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3829	}
3830
3831	pwq->nr_in_flight[work_color]++;
3832	work_flags |= work_color_to_flags(work_color);
3833
3834	insert_work(pwq, &barr->work, head, work_flags);
3835}
3836
3837/**
3838 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3839 * @wq: workqueue being flushed
3840 * @flush_color: new flush color, < 0 for no-op
3841 * @work_color: new work color, < 0 for no-op
3842 *
3843 * Prepare pwqs for workqueue flushing.
3844 *
3845 * If @flush_color is non-negative, flush_color on all pwqs should be
3846 * -1.  If no pwq has in-flight commands at the specified color, all
3847 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3848 * has in flight commands, its pwq->flush_color is set to
3849 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3850 * wakeup logic is armed and %true is returned.
3851 *
3852 * The caller should have initialized @wq->first_flusher prior to
3853 * calling this function with non-negative @flush_color.  If
3854 * @flush_color is negative, no flush color update is done and %false
3855 * is returned.
3856 *
3857 * If @work_color is non-negative, all pwqs should have the same
3858 * work_color which is previous to @work_color and all will be
3859 * advanced to @work_color.
3860 *
3861 * CONTEXT:
3862 * mutex_lock(wq->mutex).
3863 *
3864 * Return:
3865 * %true if @flush_color >= 0 and there's something to flush.  %false
3866 * otherwise.
3867 */
3868static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3869				      int flush_color, int work_color)
3870{
3871	bool wait = false;
3872	struct pool_workqueue *pwq;
3873
3874	if (flush_color >= 0) {
3875		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3876		atomic_set(&wq->nr_pwqs_to_flush, 1);
3877	}
3878
3879	for_each_pwq(pwq, wq) {
3880		struct worker_pool *pool = pwq->pool;
3881
3882		raw_spin_lock_irq(&pool->lock);
3883
3884		if (flush_color >= 0) {
3885			WARN_ON_ONCE(pwq->flush_color != -1);
3886
3887			if (pwq->nr_in_flight[flush_color]) {
3888				pwq->flush_color = flush_color;
3889				atomic_inc(&wq->nr_pwqs_to_flush);
3890				wait = true;
3891			}
3892		}
3893
3894		if (work_color >= 0) {
3895			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3896			pwq->work_color = work_color;
3897		}
3898
3899		raw_spin_unlock_irq(&pool->lock);
3900	}
3901
3902	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3903		complete(&wq->first_flusher->done);
3904
3905	return wait;
3906}
3907
3908static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3909{
3910#ifdef CONFIG_LOCKDEP
3911	if (wq->flags & WQ_BH)
3912		local_bh_disable();
3913
3914	lock_map_acquire(&wq->lockdep_map);
3915	lock_map_release(&wq->lockdep_map);
3916
3917	if (wq->flags & WQ_BH)
3918		local_bh_enable();
3919#endif
3920}
3921
3922static void touch_work_lockdep_map(struct work_struct *work,
3923				   struct workqueue_struct *wq)
3924{
3925#ifdef CONFIG_LOCKDEP
3926	if (wq->flags & WQ_BH)
3927		local_bh_disable();
3928
3929	lock_map_acquire(&work->lockdep_map);
3930	lock_map_release(&work->lockdep_map);
3931
3932	if (wq->flags & WQ_BH)
3933		local_bh_enable();
3934#endif
3935}
3936
3937/**
3938 * __flush_workqueue - ensure that any scheduled work has run to completion.
3939 * @wq: workqueue to flush
3940 *
3941 * This function sleeps until all work items which were queued on entry
3942 * have finished execution, but it is not livelocked by new incoming ones.
3943 */
3944void __flush_workqueue(struct workqueue_struct *wq)
3945{
3946	struct wq_flusher this_flusher = {
3947		.list = LIST_HEAD_INIT(this_flusher.list),
3948		.flush_color = -1,
3949		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3950	};
3951	int next_color;
3952
3953	if (WARN_ON(!wq_online))
3954		return;
3955
3956	touch_wq_lockdep_map(wq);
 
3957
3958	mutex_lock(&wq->mutex);
3959
3960	/*
3961	 * Start-to-wait phase
3962	 */
3963	next_color = work_next_color(wq->work_color);
3964
3965	if (next_color != wq->flush_color) {
3966		/*
3967		 * Color space is not full.  The current work_color
3968		 * becomes our flush_color and work_color is advanced
3969		 * by one.
3970		 */
3971		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3972		this_flusher.flush_color = wq->work_color;
3973		wq->work_color = next_color;
3974
3975		if (!wq->first_flusher) {
3976			/* no flush in progress, become the first flusher */
3977			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3978
3979			wq->first_flusher = &this_flusher;
3980
3981			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3982						       wq->work_color)) {
3983				/* nothing to flush, done */
3984				wq->flush_color = next_color;
3985				wq->first_flusher = NULL;
3986				goto out_unlock;
3987			}
3988		} else {
3989			/* wait in queue */
3990			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3991			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3992			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3993		}
3994	} else {
3995		/*
3996		 * Oops, color space is full, wait on overflow queue.
3997		 * The next flush completion will assign us
3998		 * flush_color and transfer to flusher_queue.
3999		 */
4000		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
4001	}
4002
4003	check_flush_dependency(wq, NULL);
4004
4005	mutex_unlock(&wq->mutex);
4006
4007	wait_for_completion(&this_flusher.done);
4008
4009	/*
4010	 * Wake-up-and-cascade phase
4011	 *
4012	 * First flushers are responsible for cascading flushes and
4013	 * handling overflow.  Non-first flushers can simply return.
4014	 */
4015	if (READ_ONCE(wq->first_flusher) != &this_flusher)
4016		return;
4017
4018	mutex_lock(&wq->mutex);
4019
4020	/* we might have raced, check again with mutex held */
4021	if (wq->first_flusher != &this_flusher)
4022		goto out_unlock;
4023
4024	WRITE_ONCE(wq->first_flusher, NULL);
4025
4026	WARN_ON_ONCE(!list_empty(&this_flusher.list));
4027	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4028
4029	while (true) {
4030		struct wq_flusher *next, *tmp;
4031
4032		/* complete all the flushers sharing the current flush color */
4033		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4034			if (next->flush_color != wq->flush_color)
4035				break;
4036			list_del_init(&next->list);
4037			complete(&next->done);
4038		}
4039
4040		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4041			     wq->flush_color != work_next_color(wq->work_color));
4042
4043		/* this flush_color is finished, advance by one */
4044		wq->flush_color = work_next_color(wq->flush_color);
4045
4046		/* one color has been freed, handle overflow queue */
4047		if (!list_empty(&wq->flusher_overflow)) {
4048			/*
4049			 * Assign the same color to all overflowed
4050			 * flushers, advance work_color and append to
4051			 * flusher_queue.  This is the start-to-wait
4052			 * phase for these overflowed flushers.
4053			 */
4054			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4055				tmp->flush_color = wq->work_color;
4056
4057			wq->work_color = work_next_color(wq->work_color);
4058
4059			list_splice_tail_init(&wq->flusher_overflow,
4060					      &wq->flusher_queue);
4061			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4062		}
4063
4064		if (list_empty(&wq->flusher_queue)) {
4065			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4066			break;
4067		}
4068
4069		/*
4070		 * Need to flush more colors.  Make the next flusher
4071		 * the new first flusher and arm pwqs.
4072		 */
4073		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4074		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4075
4076		list_del_init(&next->list);
4077		wq->first_flusher = next;
4078
4079		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4080			break;
4081
4082		/*
4083		 * Meh... this color is already done, clear first
4084		 * flusher and repeat cascading.
4085		 */
4086		wq->first_flusher = NULL;
4087	}
4088
4089out_unlock:
4090	mutex_unlock(&wq->mutex);
4091}
4092EXPORT_SYMBOL(__flush_workqueue);
4093
4094/**
4095 * drain_workqueue - drain a workqueue
4096 * @wq: workqueue to drain
4097 *
4098 * Wait until the workqueue becomes empty.  While draining is in progress,
4099 * only chain queueing is allowed.  IOW, only currently pending or running
4100 * work items on @wq can queue further work items on it.  @wq is flushed
4101 * repeatedly until it becomes empty.  The number of flushing is determined
4102 * by the depth of chaining and should be relatively short.  Whine if it
4103 * takes too long.
4104 */
4105void drain_workqueue(struct workqueue_struct *wq)
4106{
4107	unsigned int flush_cnt = 0;
4108	struct pool_workqueue *pwq;
4109
4110	/*
4111	 * __queue_work() needs to test whether there are drainers, is much
4112	 * hotter than drain_workqueue() and already looks at @wq->flags.
4113	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4114	 */
4115	mutex_lock(&wq->mutex);
4116	if (!wq->nr_drainers++)
4117		wq->flags |= __WQ_DRAINING;
4118	mutex_unlock(&wq->mutex);
4119reflush:
4120	__flush_workqueue(wq);
4121
4122	mutex_lock(&wq->mutex);
4123
4124	for_each_pwq(pwq, wq) {
4125		bool drained;
4126
4127		raw_spin_lock_irq(&pwq->pool->lock);
4128		drained = pwq_is_empty(pwq);
4129		raw_spin_unlock_irq(&pwq->pool->lock);
4130
4131		if (drained)
4132			continue;
4133
4134		if (++flush_cnt == 10 ||
4135		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4136			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4137				wq->name, __func__, flush_cnt);
4138
4139		mutex_unlock(&wq->mutex);
4140		goto reflush;
4141	}
4142
4143	if (!--wq->nr_drainers)
4144		wq->flags &= ~__WQ_DRAINING;
4145	mutex_unlock(&wq->mutex);
4146}
4147EXPORT_SYMBOL_GPL(drain_workqueue);
4148
4149static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4150			     bool from_cancel)
4151{
4152	struct worker *worker = NULL;
4153	struct worker_pool *pool;
4154	struct pool_workqueue *pwq;
4155	struct workqueue_struct *wq;
4156
4157	might_sleep();
4158
4159	rcu_read_lock();
4160	pool = get_work_pool(work);
4161	if (!pool) {
4162		rcu_read_unlock();
4163		return false;
4164	}
4165
4166	raw_spin_lock_irq(&pool->lock);
4167	/* see the comment in try_to_grab_pending() with the same code */
4168	pwq = get_work_pwq(work);
4169	if (pwq) {
4170		if (unlikely(pwq->pool != pool))
4171			goto already_gone;
4172	} else {
4173		worker = find_worker_executing_work(pool, work);
4174		if (!worker)
4175			goto already_gone;
4176		pwq = worker->current_pwq;
4177	}
4178
4179	wq = pwq->wq;
4180	check_flush_dependency(wq, work);
4181
4182	insert_wq_barrier(pwq, barr, work, worker);
4183	raw_spin_unlock_irq(&pool->lock);
4184
4185	touch_work_lockdep_map(work, wq);
4186
4187	/*
4188	 * Force a lock recursion deadlock when using flush_work() inside a
4189	 * single-threaded or rescuer equipped workqueue.
4190	 *
4191	 * For single threaded workqueues the deadlock happens when the work
4192	 * is after the work issuing the flush_work(). For rescuer equipped
4193	 * workqueues the deadlock happens when the rescuer stalls, blocking
4194	 * forward progress.
4195	 */
4196	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4197		touch_wq_lockdep_map(wq);
 
 
 
4198
4199	rcu_read_unlock();
4200	return true;
4201already_gone:
4202	raw_spin_unlock_irq(&pool->lock);
4203	rcu_read_unlock();
4204	return false;
4205}
4206
4207static bool __flush_work(struct work_struct *work, bool from_cancel)
 
 
 
 
 
 
 
 
 
 
 
4208{
4209	struct wq_barrier barr;
4210
4211	if (WARN_ON(!wq_online))
4212		return false;
4213
4214	if (WARN_ON(!work->func))
4215		return false;
4216
4217	if (start_flush_work(work, &barr, from_cancel)) {
4218		wait_for_completion(&barr.done);
4219		destroy_work_on_stack(&barr.work);
4220		return true;
4221	} else {
4222		return false;
4223	}
4224}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4225
4226/**
4227 * flush_work - wait for a work to finish executing the last queueing instance
4228 * @work: the work to flush
 
 
 
 
 
 
 
 
4229 *
4230 * Wait until @work has finished execution.  @work is guaranteed to be idle
4231 * on return if it hasn't been requeued since flush started.
4232 *
4233 * Return:
4234 * %true if flush_work() waited for the work to finish execution,
4235 * %false if it was already idle.
4236 */
4237bool flush_work(struct work_struct *work)
4238{
4239	return __flush_work(work, false);
4240}
4241EXPORT_SYMBOL_GPL(flush_work);
4242
4243/**
4244 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4245 * @dwork: the delayed work to flush
4246 *
4247 * Delayed timer is cancelled and the pending work is queued for
4248 * immediate execution.  Like flush_work(), this function only
4249 * considers the last queueing instance of @dwork.
4250 *
4251 * Return:
4252 * %true if flush_work() waited for the work to finish execution,
4253 * %false if it was already idle.
4254 */
4255bool flush_delayed_work(struct delayed_work *dwork)
4256{
4257	local_irq_disable();
4258	if (del_timer_sync(&dwork->timer))
4259		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4260	local_irq_enable();
4261	return flush_work(&dwork->work);
4262}
4263EXPORT_SYMBOL(flush_delayed_work);
4264
4265/**
4266 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4267 * @rwork: the rcu work to flush
4268 *
4269 * Return:
4270 * %true if flush_rcu_work() waited for the work to finish execution,
4271 * %false if it was already idle.
4272 */
4273bool flush_rcu_work(struct rcu_work *rwork)
4274{
4275	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4276		rcu_barrier();
4277		flush_work(&rwork->work);
4278		return true;
4279	} else {
4280		return flush_work(&rwork->work);
4281	}
4282}
4283EXPORT_SYMBOL(flush_rcu_work);
4284
4285static bool __cancel_work(struct work_struct *work, u32 cflags)
4286{
4287	unsigned long irq_flags;
4288	int ret;
4289
4290	do {
4291		ret = try_to_grab_pending(work, cflags, &irq_flags);
4292	} while (unlikely(ret == -EAGAIN));
4293
4294	if (unlikely(ret < 0))
4295		return false;
4296
4297	set_work_pool_and_clear_pending(work, get_work_pool_id(work), 0);
4298	local_irq_restore(irq_flags);
4299	return ret;
4300}
4301
4302static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4303{
4304	unsigned long irq_flags;
4305	bool ret;
4306
4307	/* claim @work and tell other tasks trying to grab @work to back off */
4308	ret = work_grab_pending(work, cflags, &irq_flags);
4309	mark_work_canceling(work);
4310	local_irq_restore(irq_flags);
4311
4312	/*
4313	 * Skip __flush_work() during early boot when we know that @work isn't
4314	 * executing. This allows canceling during early boot.
4315	 */
4316	if (wq_online)
4317		__flush_work(work, true);
4318
4319	/*
4320	 * smp_mb() at the end of set_work_pool_and_clear_pending() is paired
4321	 * with prepare_to_wait() above so that either waitqueue_active() is
4322	 * visible here or !work_is_canceling() is visible there.
4323	 */
4324	set_work_pool_and_clear_pending(work, WORK_OFFQ_POOL_NONE, 0);
4325
4326	if (waitqueue_active(&wq_cancel_waitq))
4327		__wake_up(&wq_cancel_waitq, TASK_NORMAL, 1, work);
4328
4329	return ret;
4330}
4331
4332/*
4333 * See cancel_delayed_work()
4334 */
4335bool cancel_work(struct work_struct *work)
4336{
4337	return __cancel_work(work, 0);
4338}
4339EXPORT_SYMBOL(cancel_work);
4340
4341/**
4342 * cancel_work_sync - cancel a work and wait for it to finish
4343 * @work: the work to cancel
4344 *
4345 * Cancel @work and wait for its execution to finish.  This function
4346 * can be used even if the work re-queues itself or migrates to
4347 * another workqueue.  On return from this function, @work is
4348 * guaranteed to be not pending or executing on any CPU.
4349 *
4350 * cancel_work_sync(&delayed_work->work) must not be used for
4351 * delayed_work's.  Use cancel_delayed_work_sync() instead.
4352 *
4353 * The caller must ensure that the workqueue on which @work was last
4354 * queued can't be destroyed before this function returns.
4355 *
4356 * Return:
4357 * %true if @work was pending, %false otherwise.
4358 */
4359bool cancel_work_sync(struct work_struct *work)
4360{
4361	return __cancel_work_sync(work, 0);
4362}
4363EXPORT_SYMBOL_GPL(cancel_work_sync);
4364
4365/**
4366 * cancel_delayed_work - cancel a delayed work
4367 * @dwork: delayed_work to cancel
4368 *
4369 * Kill off a pending delayed_work.
4370 *
4371 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4372 * pending.
4373 *
4374 * Note:
4375 * The work callback function may still be running on return, unless
4376 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4377 * use cancel_delayed_work_sync() to wait on it.
4378 *
4379 * This function is safe to call from any context including IRQ handler.
4380 */
4381bool cancel_delayed_work(struct delayed_work *dwork)
4382{
4383	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4384}
4385EXPORT_SYMBOL(cancel_delayed_work);
4386
4387/**
4388 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4389 * @dwork: the delayed work cancel
4390 *
4391 * This is cancel_work_sync() for delayed works.
4392 *
4393 * Return:
4394 * %true if @dwork was pending, %false otherwise.
4395 */
4396bool cancel_delayed_work_sync(struct delayed_work *dwork)
4397{
4398	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4399}
4400EXPORT_SYMBOL(cancel_delayed_work_sync);
4401
4402/**
4403 * schedule_on_each_cpu - execute a function synchronously on each online CPU
4404 * @func: the function to call
4405 *
4406 * schedule_on_each_cpu() executes @func on each online CPU using the
4407 * system workqueue and blocks until all CPUs have completed.
4408 * schedule_on_each_cpu() is very slow.
4409 *
4410 * Return:
4411 * 0 on success, -errno on failure.
4412 */
4413int schedule_on_each_cpu(work_func_t func)
4414{
4415	int cpu;
4416	struct work_struct __percpu *works;
4417
4418	works = alloc_percpu(struct work_struct);
4419	if (!works)
4420		return -ENOMEM;
4421
4422	cpus_read_lock();
4423
4424	for_each_online_cpu(cpu) {
4425		struct work_struct *work = per_cpu_ptr(works, cpu);
4426
4427		INIT_WORK(work, func);
4428		schedule_work_on(cpu, work);
4429	}
4430
4431	for_each_online_cpu(cpu)
4432		flush_work(per_cpu_ptr(works, cpu));
4433
4434	cpus_read_unlock();
4435	free_percpu(works);
4436	return 0;
4437}
4438
4439/**
4440 * execute_in_process_context - reliably execute the routine with user context
4441 * @fn:		the function to execute
4442 * @ew:		guaranteed storage for the execute work structure (must
4443 *		be available when the work executes)
4444 *
4445 * Executes the function immediately if process context is available,
4446 * otherwise schedules the function for delayed execution.
4447 *
4448 * Return:	0 - function was executed
4449 *		1 - function was scheduled for execution
4450 */
4451int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4452{
4453	if (!in_interrupt()) {
4454		fn(&ew->work);
4455		return 0;
4456	}
4457
4458	INIT_WORK(&ew->work, fn);
4459	schedule_work(&ew->work);
4460
4461	return 1;
4462}
4463EXPORT_SYMBOL_GPL(execute_in_process_context);
4464
4465/**
4466 * free_workqueue_attrs - free a workqueue_attrs
4467 * @attrs: workqueue_attrs to free
4468 *
4469 * Undo alloc_workqueue_attrs().
4470 */
4471void free_workqueue_attrs(struct workqueue_attrs *attrs)
4472{
4473	if (attrs) {
4474		free_cpumask_var(attrs->cpumask);
4475		free_cpumask_var(attrs->__pod_cpumask);
4476		kfree(attrs);
4477	}
4478}
4479
4480/**
4481 * alloc_workqueue_attrs - allocate a workqueue_attrs
 
4482 *
4483 * Allocate a new workqueue_attrs, initialize with default settings and
4484 * return it.
4485 *
4486 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4487 */
4488struct workqueue_attrs *alloc_workqueue_attrs(void)
4489{
4490	struct workqueue_attrs *attrs;
4491
4492	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4493	if (!attrs)
4494		goto fail;
4495	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4496		goto fail;
4497	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4498		goto fail;
4499
4500	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4501	attrs->affn_scope = WQ_AFFN_DFL;
4502	return attrs;
4503fail:
4504	free_workqueue_attrs(attrs);
4505	return NULL;
4506}
4507
4508static void copy_workqueue_attrs(struct workqueue_attrs *to,
4509				 const struct workqueue_attrs *from)
4510{
4511	to->nice = from->nice;
4512	cpumask_copy(to->cpumask, from->cpumask);
4513	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4514	to->affn_strict = from->affn_strict;
4515
4516	/*
4517	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4518	 * fields as copying is used for both pool and wq attrs. Instead,
4519	 * get_unbound_pool() explicitly clears the fields.
4520	 */
4521	to->affn_scope = from->affn_scope;
4522	to->ordered = from->ordered;
4523}
4524
4525/*
4526 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4527 * comments in 'struct workqueue_attrs' definition.
4528 */
4529static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4530{
4531	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4532	attrs->ordered = false;
4533}
4534
4535/* hash value of the content of @attr */
4536static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4537{
4538	u32 hash = 0;
4539
4540	hash = jhash_1word(attrs->nice, hash);
4541	hash = jhash(cpumask_bits(attrs->cpumask),
4542		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4543	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4544		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4545	hash = jhash_1word(attrs->affn_strict, hash);
4546	return hash;
4547}
4548
4549/* content equality test */
4550static bool wqattrs_equal(const struct workqueue_attrs *a,
4551			  const struct workqueue_attrs *b)
4552{
4553	if (a->nice != b->nice)
4554		return false;
4555	if (!cpumask_equal(a->cpumask, b->cpumask))
4556		return false;
4557	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4558		return false;
4559	if (a->affn_strict != b->affn_strict)
4560		return false;
4561	return true;
4562}
4563
4564/* Update @attrs with actually available CPUs */
4565static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4566				      const cpumask_t *unbound_cpumask)
4567{
4568	/*
4569	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4570	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4571	 * @unbound_cpumask.
4572	 */
4573	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4574	if (unlikely(cpumask_empty(attrs->cpumask)))
4575		cpumask_copy(attrs->cpumask, unbound_cpumask);
4576}
4577
4578/* find wq_pod_type to use for @attrs */
4579static const struct wq_pod_type *
4580wqattrs_pod_type(const struct workqueue_attrs *attrs)
4581{
4582	enum wq_affn_scope scope;
4583	struct wq_pod_type *pt;
4584
4585	/* to synchronize access to wq_affn_dfl */
4586	lockdep_assert_held(&wq_pool_mutex);
4587
4588	if (attrs->affn_scope == WQ_AFFN_DFL)
4589		scope = wq_affn_dfl;
4590	else
4591		scope = attrs->affn_scope;
4592
4593	pt = &wq_pod_types[scope];
4594
4595	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4596	    likely(pt->nr_pods))
4597		return pt;
4598
4599	/*
4600	 * Before workqueue_init_topology(), only SYSTEM is available which is
4601	 * initialized in workqueue_init_early().
4602	 */
4603	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4604	BUG_ON(!pt->nr_pods);
4605	return pt;
4606}
4607
4608/**
4609 * init_worker_pool - initialize a newly zalloc'd worker_pool
4610 * @pool: worker_pool to initialize
4611 *
4612 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4613 *
4614 * Return: 0 on success, -errno on failure.  Even on failure, all fields
4615 * inside @pool proper are initialized and put_unbound_pool() can be called
4616 * on @pool safely to release it.
4617 */
4618static int init_worker_pool(struct worker_pool *pool)
4619{
4620	raw_spin_lock_init(&pool->lock);
4621	pool->id = -1;
4622	pool->cpu = -1;
4623	pool->node = NUMA_NO_NODE;
4624	pool->flags |= POOL_DISASSOCIATED;
4625	pool->watchdog_ts = jiffies;
4626	INIT_LIST_HEAD(&pool->worklist);
4627	INIT_LIST_HEAD(&pool->idle_list);
4628	hash_init(pool->busy_hash);
4629
4630	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4631	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
 
4632
4633	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
 
4634
 
 
4635	INIT_LIST_HEAD(&pool->workers);
4636	INIT_LIST_HEAD(&pool->dying_workers);
4637
4638	ida_init(&pool->worker_ida);
4639	INIT_HLIST_NODE(&pool->hash_node);
4640	pool->refcnt = 1;
4641
4642	/* shouldn't fail above this point */
4643	pool->attrs = alloc_workqueue_attrs();
4644	if (!pool->attrs)
4645		return -ENOMEM;
4646
4647	wqattrs_clear_for_pool(pool->attrs);
4648
4649	return 0;
4650}
4651
4652#ifdef CONFIG_LOCKDEP
4653static void wq_init_lockdep(struct workqueue_struct *wq)
4654{
4655	char *lock_name;
4656
4657	lockdep_register_key(&wq->key);
4658	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4659	if (!lock_name)
4660		lock_name = wq->name;
4661
4662	wq->lock_name = lock_name;
4663	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4664}
4665
4666static void wq_unregister_lockdep(struct workqueue_struct *wq)
4667{
4668	lockdep_unregister_key(&wq->key);
4669}
4670
4671static void wq_free_lockdep(struct workqueue_struct *wq)
4672{
4673	if (wq->lock_name != wq->name)
4674		kfree(wq->lock_name);
4675}
4676#else
4677static void wq_init_lockdep(struct workqueue_struct *wq)
4678{
4679}
4680
4681static void wq_unregister_lockdep(struct workqueue_struct *wq)
4682{
4683}
4684
4685static void wq_free_lockdep(struct workqueue_struct *wq)
4686{
4687}
4688#endif
4689
4690static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4691{
4692	int node;
4693
4694	for_each_node(node) {
4695		kfree(nna_ar[node]);
4696		nna_ar[node] = NULL;
4697	}
4698
4699	kfree(nna_ar[nr_node_ids]);
4700	nna_ar[nr_node_ids] = NULL;
4701}
4702
4703static void init_node_nr_active(struct wq_node_nr_active *nna)
4704{
4705	nna->max = WQ_DFL_MIN_ACTIVE;
4706	atomic_set(&nna->nr, 0);
4707	raw_spin_lock_init(&nna->lock);
4708	INIT_LIST_HEAD(&nna->pending_pwqs);
4709}
4710
4711/*
4712 * Each node's nr_active counter will be accessed mostly from its own node and
4713 * should be allocated in the node.
4714 */
4715static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4716{
4717	struct wq_node_nr_active *nna;
4718	int node;
4719
4720	for_each_node(node) {
4721		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4722		if (!nna)
4723			goto err_free;
4724		init_node_nr_active(nna);
4725		nna_ar[node] = nna;
4726	}
4727
4728	/* [nr_node_ids] is used as the fallback */
4729	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4730	if (!nna)
4731		goto err_free;
4732	init_node_nr_active(nna);
4733	nna_ar[nr_node_ids] = nna;
4734
4735	return 0;
4736
4737err_free:
4738	free_node_nr_active(nna_ar);
4739	return -ENOMEM;
4740}
4741
4742static void rcu_free_wq(struct rcu_head *rcu)
4743{
4744	struct workqueue_struct *wq =
4745		container_of(rcu, struct workqueue_struct, rcu);
4746
4747	if (wq->flags & WQ_UNBOUND)
4748		free_node_nr_active(wq->node_nr_active);
 
 
4749
4750	wq_free_lockdep(wq);
4751	free_percpu(wq->cpu_pwq);
4752	free_workqueue_attrs(wq->unbound_attrs);
4753	kfree(wq);
4754}
4755
4756static void rcu_free_pool(struct rcu_head *rcu)
4757{
4758	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4759
4760	ida_destroy(&pool->worker_ida);
4761	free_workqueue_attrs(pool->attrs);
4762	kfree(pool);
4763}
4764
4765/**
4766 * put_unbound_pool - put a worker_pool
4767 * @pool: worker_pool to put
4768 *
4769 * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4770 * safe manner.  get_unbound_pool() calls this function on its failure path
4771 * and this function should be able to release pools which went through,
4772 * successfully or not, init_worker_pool().
4773 *
4774 * Should be called with wq_pool_mutex held.
4775 */
4776static void put_unbound_pool(struct worker_pool *pool)
4777{
4778	DECLARE_COMPLETION_ONSTACK(detach_completion);
4779	struct worker *worker;
4780	LIST_HEAD(cull_list);
4781
4782	lockdep_assert_held(&wq_pool_mutex);
4783
4784	if (--pool->refcnt)
4785		return;
4786
4787	/* sanity checks */
4788	if (WARN_ON(!(pool->cpu < 0)) ||
4789	    WARN_ON(!list_empty(&pool->worklist)))
4790		return;
4791
4792	/* release id and unhash */
4793	if (pool->id >= 0)
4794		idr_remove(&worker_pool_idr, pool->id);
4795	hash_del(&pool->hash_node);
4796
4797	/*
4798	 * Become the manager and destroy all workers.  This prevents
4799	 * @pool's workers from blocking on attach_mutex.  We're the last
4800	 * manager and @pool gets freed with the flag set.
4801	 *
4802	 * Having a concurrent manager is quite unlikely to happen as we can
4803	 * only get here with
4804	 *   pwq->refcnt == pool->refcnt == 0
4805	 * which implies no work queued to the pool, which implies no worker can
4806	 * become the manager. However a worker could have taken the role of
4807	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4808	 * drops pool->lock
4809	 */
4810	while (true) {
4811		rcuwait_wait_event(&manager_wait,
4812				   !(pool->flags & POOL_MANAGER_ACTIVE),
4813				   TASK_UNINTERRUPTIBLE);
4814
4815		mutex_lock(&wq_pool_attach_mutex);
4816		raw_spin_lock_irq(&pool->lock);
4817		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4818			pool->flags |= POOL_MANAGER_ACTIVE;
4819			break;
4820		}
4821		raw_spin_unlock_irq(&pool->lock);
4822		mutex_unlock(&wq_pool_attach_mutex);
4823	}
4824
 
4825	while ((worker = first_idle_worker(pool)))
4826		set_worker_dying(worker, &cull_list);
4827	WARN_ON(pool->nr_workers || pool->nr_idle);
4828	raw_spin_unlock_irq(&pool->lock);
4829
4830	wake_dying_workers(&cull_list);
4831
4832	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4833		pool->detach_completion = &detach_completion;
4834	mutex_unlock(&wq_pool_attach_mutex);
4835
4836	if (pool->detach_completion)
4837		wait_for_completion(pool->detach_completion);
4838
 
 
4839	/* shut down the timers */
4840	del_timer_sync(&pool->idle_timer);
4841	cancel_work_sync(&pool->idle_cull_work);
4842	del_timer_sync(&pool->mayday_timer);
4843
4844	/* RCU protected to allow dereferences from get_work_pool() */
4845	call_rcu(&pool->rcu, rcu_free_pool);
4846}
4847
4848/**
4849 * get_unbound_pool - get a worker_pool with the specified attributes
4850 * @attrs: the attributes of the worker_pool to get
4851 *
4852 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4853 * reference count and return it.  If there already is a matching
4854 * worker_pool, it will be used; otherwise, this function attempts to
4855 * create a new one.
4856 *
4857 * Should be called with wq_pool_mutex held.
4858 *
4859 * Return: On success, a worker_pool with the same attributes as @attrs.
4860 * On failure, %NULL.
4861 */
4862static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4863{
4864	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4865	u32 hash = wqattrs_hash(attrs);
4866	struct worker_pool *pool;
4867	int pod, node = NUMA_NO_NODE;
 
4868
4869	lockdep_assert_held(&wq_pool_mutex);
4870
4871	/* do we already have a matching pool? */
4872	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4873		if (wqattrs_equal(pool->attrs, attrs)) {
4874			pool->refcnt++;
4875			return pool;
4876		}
4877	}
4878
4879	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4880	for (pod = 0; pod < pt->nr_pods; pod++) {
4881		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4882			node = pt->pod_node[pod];
4883			break;
 
 
 
4884		}
4885	}
4886
4887	/* nope, create a new one */
4888	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4889	if (!pool || init_worker_pool(pool) < 0)
4890		goto fail;
4891
4892	pool->node = node;
4893	copy_workqueue_attrs(pool->attrs, attrs);
4894	wqattrs_clear_for_pool(pool->attrs);
 
 
 
 
 
 
4895
4896	if (worker_pool_assign_id(pool) < 0)
4897		goto fail;
4898
4899	/* create and start the initial worker */
4900	if (wq_online && !create_worker(pool))
4901		goto fail;
4902
4903	/* install */
4904	hash_add(unbound_pool_hash, &pool->hash_node, hash);
4905
4906	return pool;
4907fail:
4908	if (pool)
4909		put_unbound_pool(pool);
4910	return NULL;
4911}
4912
4913static void rcu_free_pwq(struct rcu_head *rcu)
4914{
4915	kmem_cache_free(pwq_cache,
4916			container_of(rcu, struct pool_workqueue, rcu));
4917}
4918
4919/*
4920 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4921 * refcnt and needs to be destroyed.
4922 */
4923static void pwq_release_workfn(struct kthread_work *work)
4924{
4925	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4926						  release_work);
4927	struct workqueue_struct *wq = pwq->wq;
4928	struct worker_pool *pool = pwq->pool;
4929	bool is_last = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4930
4931	/*
4932	 * When @pwq is not linked, it doesn't hold any reference to the
4933	 * @wq, and @wq is invalid to access.
4934	 */
4935	if (!list_empty(&pwq->pwqs_node)) {
4936		mutex_lock(&wq->mutex);
4937		list_del_rcu(&pwq->pwqs_node);
4938		is_last = list_empty(&wq->pwqs);
4939
4940		/*
4941		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
4942		 */
4943		if (!is_last && (wq->flags & __WQ_ORDERED))
4944			unplug_oldest_pwq(wq);
 
 
 
 
 
 
 
 
4945
4946		mutex_unlock(&wq->mutex);
4947	}
4948
4949	if (wq->flags & WQ_UNBOUND) {
4950		mutex_lock(&wq_pool_mutex);
4951		put_unbound_pool(pool);
4952		mutex_unlock(&wq_pool_mutex);
4953	}
4954
4955	if (!list_empty(&pwq->pending_node)) {
4956		struct wq_node_nr_active *nna =
4957			wq_node_nr_active(pwq->wq, pwq->pool->node);
4958
4959		raw_spin_lock_irq(&nna->lock);
4960		list_del_init(&pwq->pending_node);
4961		raw_spin_unlock_irq(&nna->lock);
4962	}
 
 
 
4963
4964	call_rcu(&pwq->rcu, rcu_free_pwq);
 
 
4965
4966	/*
4967	 * If we're the last pwq going away, @wq is already dead and no one
4968	 * is gonna access it anymore.  Schedule RCU free.
4969	 */
4970	if (is_last) {
4971		wq_unregister_lockdep(wq);
4972		call_rcu(&wq->rcu, rcu_free_wq);
4973	}
 
 
4974}
4975
4976/* initialize newly allocated @pwq which is associated with @wq and @pool */
4977static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4978		     struct worker_pool *pool)
4979{
4980	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
4981
4982	memset(pwq, 0, sizeof(*pwq));
4983
4984	pwq->pool = pool;
4985	pwq->wq = wq;
4986	pwq->flush_color = -1;
4987	pwq->refcnt = 1;
4988	INIT_LIST_HEAD(&pwq->inactive_works);
4989	INIT_LIST_HEAD(&pwq->pending_node);
4990	INIT_LIST_HEAD(&pwq->pwqs_node);
4991	INIT_LIST_HEAD(&pwq->mayday_node);
4992	kthread_init_work(&pwq->release_work, pwq_release_workfn);
4993}
4994
4995/* sync @pwq with the current state of its associated wq and link it */
4996static void link_pwq(struct pool_workqueue *pwq)
4997{
4998	struct workqueue_struct *wq = pwq->wq;
4999
5000	lockdep_assert_held(&wq->mutex);
5001
5002	/* may be called multiple times, ignore if already linked */
5003	if (!list_empty(&pwq->pwqs_node))
5004		return;
5005
5006	/* set the matching work_color */
5007	pwq->work_color = wq->work_color;
5008
 
 
 
5009	/* link in @pwq */
5010	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5011}
5012
5013/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5014static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5015					const struct workqueue_attrs *attrs)
5016{
5017	struct worker_pool *pool;
5018	struct pool_workqueue *pwq;
5019
5020	lockdep_assert_held(&wq_pool_mutex);
5021
5022	pool = get_unbound_pool(attrs);
5023	if (!pool)
5024		return NULL;
5025
5026	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5027	if (!pwq) {
5028		put_unbound_pool(pool);
5029		return NULL;
5030	}
5031
5032	init_pwq(pwq, wq, pool);
5033	return pwq;
5034}
5035
5036/**
5037 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5038 * @attrs: the wq_attrs of the default pwq of the target workqueue
5039 * @cpu: the target CPU
5040 * @cpu_going_down: if >= 0, the CPU to consider as offline
 
5041 *
5042 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
5043 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
5044 * The result is stored in @attrs->__pod_cpumask.
5045 *
5046 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5047 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5048 * intersection of the possible CPUs of @pod and @attrs->cpumask.
 
5049 *
5050 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
 
 
 
 
5051 */
5052static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
5053				int cpu_going_down)
5054{
5055	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5056	int pod = pt->cpu_pod[cpu];
5057
5058	/* does @pod have any online CPUs @attrs wants? */
5059	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5060	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
5061	if (cpu_going_down >= 0)
5062		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
5063
5064	if (cpumask_empty(attrs->__pod_cpumask)) {
5065		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5066		return;
5067	}
5068
5069	/* yeap, return possible CPUs in @pod that @attrs wants */
5070	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
 
5071
5072	if (cpumask_empty(attrs->__pod_cpumask))
5073		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
5074				"possible intersect\n");
5075}
5076
5077/* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
5078static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5079					int cpu, struct pool_workqueue *pwq)
 
5080{
5081	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5082	struct pool_workqueue *old_pwq;
5083
5084	lockdep_assert_held(&wq_pool_mutex);
5085	lockdep_assert_held(&wq->mutex);
5086
5087	/* link_pwq() can handle duplicate calls */
5088	link_pwq(pwq);
5089
5090	old_pwq = rcu_access_pointer(*slot);
5091	rcu_assign_pointer(*slot, pwq);
5092	return old_pwq;
5093}
5094
5095/* context to store the prepared attrs & pwqs before applying */
5096struct apply_wqattrs_ctx {
5097	struct workqueue_struct	*wq;		/* target workqueue */
5098	struct workqueue_attrs	*attrs;		/* attrs to apply */
5099	struct list_head	list;		/* queued for batching commit */
5100	struct pool_workqueue	*dfl_pwq;
5101	struct pool_workqueue	*pwq_tbl[];
5102};
5103
5104/* free the resources after success or abort */
5105static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5106{
5107	if (ctx) {
5108		int cpu;
5109
5110		for_each_possible_cpu(cpu)
5111			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5112		put_pwq_unlocked(ctx->dfl_pwq);
5113
5114		free_workqueue_attrs(ctx->attrs);
5115
5116		kfree(ctx);
5117	}
5118}
5119
5120/* allocate the attrs and pwqs for later installation */
5121static struct apply_wqattrs_ctx *
5122apply_wqattrs_prepare(struct workqueue_struct *wq,
5123		      const struct workqueue_attrs *attrs,
5124		      const cpumask_var_t unbound_cpumask)
5125{
5126	struct apply_wqattrs_ctx *ctx;
5127	struct workqueue_attrs *new_attrs;
5128	int cpu;
5129
5130	lockdep_assert_held(&wq_pool_mutex);
5131
5132	if (WARN_ON(attrs->affn_scope < 0 ||
5133		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5134		return ERR_PTR(-EINVAL);
5135
5136	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
 
 
 
5137
5138	new_attrs = alloc_workqueue_attrs();
5139	if (!ctx || !new_attrs)
5140		goto out_free;
 
 
 
 
 
 
 
 
 
 
 
 
 
5141
5142	/*
5143	 * If something goes wrong during CPU up/down, we'll fall back to
5144	 * the default pwq covering whole @attrs->cpumask.  Always create
5145	 * it even if we don't use it immediately.
5146	 */
5147	copy_workqueue_attrs(new_attrs, attrs);
5148	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5149	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5150	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5151	if (!ctx->dfl_pwq)
5152		goto out_free;
5153
5154	for_each_possible_cpu(cpu) {
5155		if (new_attrs->ordered) {
 
 
 
 
5156			ctx->dfl_pwq->refcnt++;
5157			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5158		} else {
5159			wq_calc_pod_cpumask(new_attrs, cpu, -1);
5160			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5161			if (!ctx->pwq_tbl[cpu])
5162				goto out_free;
5163		}
5164	}
5165
5166	/* save the user configured attrs and sanitize it. */
5167	copy_workqueue_attrs(new_attrs, attrs);
5168	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5169	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5170	ctx->attrs = new_attrs;
5171
5172	/*
5173	 * For initialized ordered workqueues, there should only be one pwq
5174	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5175	 * of newly queued work items until execution of older work items in
5176	 * the old pwq's have completed.
5177	 */
5178	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5179		ctx->dfl_pwq->plugged = true;
5180
5181	ctx->wq = wq;
 
5182	return ctx;
5183
5184out_free:
 
5185	free_workqueue_attrs(new_attrs);
5186	apply_wqattrs_cleanup(ctx);
5187	return ERR_PTR(-ENOMEM);
5188}
5189
5190/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5191static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5192{
5193	int cpu;
5194
5195	/* all pwqs have been created successfully, let's install'em */
5196	mutex_lock(&ctx->wq->mutex);
5197
5198	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5199
5200	/* save the previous pwqs and install the new ones */
5201	for_each_possible_cpu(cpu)
5202		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5203							ctx->pwq_tbl[cpu]);
5204	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5205
5206	/* update node_nr_active->max */
5207	wq_update_node_max_active(ctx->wq, -1);
5208
5209	/* rescuer needs to respect wq cpumask changes */
5210	if (ctx->wq->rescuer)
5211		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5212				     unbound_effective_cpumask(ctx->wq));
5213
5214	mutex_unlock(&ctx->wq->mutex);
5215}
5216
 
 
 
 
 
 
 
 
 
 
 
 
 
5217static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5218					const struct workqueue_attrs *attrs)
5219{
5220	struct apply_wqattrs_ctx *ctx;
5221
5222	/* only unbound workqueues can change attributes */
5223	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5224		return -EINVAL;
5225
5226	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5227	if (IS_ERR(ctx))
5228		return PTR_ERR(ctx);
 
 
 
 
5229
5230	/* the ctx has been prepared successfully, let's commit it */
5231	apply_wqattrs_commit(ctx);
5232	apply_wqattrs_cleanup(ctx);
5233
5234	return 0;
5235}
5236
5237/**
5238 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5239 * @wq: the target workqueue
5240 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5241 *
5242 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5243 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5244 * work items are affine to the pod it was issued on. Older pwqs are released as
5245 * in-flight work items finish. Note that a work item which repeatedly requeues
5246 * itself back-to-back will stay on its current pwq.
 
5247 *
5248 * Performs GFP_KERNEL allocations.
5249 *
5250 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
5251 *
5252 * Return: 0 on success and -errno on failure.
5253 */
5254int apply_workqueue_attrs(struct workqueue_struct *wq,
5255			  const struct workqueue_attrs *attrs)
5256{
5257	int ret;
5258
5259	lockdep_assert_cpus_held();
5260
5261	mutex_lock(&wq_pool_mutex);
5262	ret = apply_workqueue_attrs_locked(wq, attrs);
5263	mutex_unlock(&wq_pool_mutex);
5264
5265	return ret;
5266}
5267
5268/**
5269 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
5270 * @wq: the target workqueue
5271 * @cpu: the CPU to update pool association for
5272 * @hotplug_cpu: the CPU coming up or going down
5273 * @online: whether @cpu is coming up or going down
5274 *
5275 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5276 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
5277 * @wq accordingly.
5278 *
5279 *
5280 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5281 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5282 *
5283 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5284 * with a cpumask spanning multiple pods, the workers which were already
5285 * executing the work items for the workqueue will lose their CPU affinity and
5286 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5287 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5288 * responsibility to flush the work item from CPU_DOWN_PREPARE.
 
5289 */
5290static void wq_update_pod(struct workqueue_struct *wq, int cpu,
5291			  int hotplug_cpu, bool online)
5292{
5293	int off_cpu = online ? -1 : hotplug_cpu;
 
5294	struct pool_workqueue *old_pwq = NULL, *pwq;
5295	struct workqueue_attrs *target_attrs;
 
5296
5297	lockdep_assert_held(&wq_pool_mutex);
5298
5299	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
 
5300		return;
5301
5302	/*
5303	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5304	 * Let's use a preallocated one.  The following buf is protected by
5305	 * CPU hotplug exclusion.
5306	 */
5307	target_attrs = wq_update_pod_attrs_buf;
 
5308
5309	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5310	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5311
5312	/* nothing to do if the target cpumask matches the current pwq */
5313	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
5314	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5315		return;
 
 
 
 
 
 
 
 
5316
5317	/* create a new pwq */
5318	pwq = alloc_unbound_pwq(wq, target_attrs);
5319	if (!pwq) {
5320		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5321			wq->name);
5322		goto use_dfl_pwq;
5323	}
5324
5325	/* Install the new pwq. */
5326	mutex_lock(&wq->mutex);
5327	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5328	goto out_unlock;
5329
5330use_dfl_pwq:
5331	mutex_lock(&wq->mutex);
5332	pwq = unbound_pwq(wq, -1);
5333	raw_spin_lock_irq(&pwq->pool->lock);
5334	get_pwq(pwq);
5335	raw_spin_unlock_irq(&pwq->pool->lock);
5336	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5337out_unlock:
5338	mutex_unlock(&wq->mutex);
5339	put_pwq_unlocked(old_pwq);
5340}
5341
5342static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5343{
5344	bool highpri = wq->flags & WQ_HIGHPRI;
5345	int cpu, ret;
5346
5347	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5348	if (!wq->cpu_pwq)
5349		goto enomem;
 
5350
5351	if (!(wq->flags & WQ_UNBOUND)) {
5352		for_each_possible_cpu(cpu) {
5353			struct pool_workqueue **pwq_p;
5354			struct worker_pool __percpu *pools;
5355			struct worker_pool *pool;
5356
5357			if (wq->flags & WQ_BH)
5358				pools = bh_worker_pools;
5359			else
5360				pools = cpu_worker_pools;
5361
5362			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5363			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5364
5365			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5366						       pool->node);
5367			if (!*pwq_p)
5368				goto enomem;
5369
5370			init_pwq(*pwq_p, wq, pool);
5371
5372			mutex_lock(&wq->mutex);
5373			link_pwq(*pwq_p);
5374			mutex_unlock(&wq->mutex);
5375		}
5376		return 0;
5377	}
5378
5379	cpus_read_lock();
5380	if (wq->flags & __WQ_ORDERED) {
5381		struct pool_workqueue *dfl_pwq;
5382
5383		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5384		/* there should only be single pwq for ordering guarantee */
5385		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5386		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5387			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5388		     "ordering guarantee broken for workqueue %s\n", wq->name);
 
5389	} else {
5390		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
5391	}
5392	cpus_read_unlock();
5393
5394	/* for unbound pwq, flush the pwq_release_worker ensures that the
5395	 * pwq_release_workfn() completes before calling kfree(wq).
5396	 */
5397	if (ret)
5398		kthread_flush_worker(pwq_release_worker);
5399
5400	return ret;
5401
5402enomem:
5403	if (wq->cpu_pwq) {
5404		for_each_possible_cpu(cpu) {
5405			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5406
5407			if (pwq)
5408				kmem_cache_free(pwq_cache, pwq);
5409		}
5410		free_percpu(wq->cpu_pwq);
5411		wq->cpu_pwq = NULL;
5412	}
5413	return -ENOMEM;
5414}
5415
5416static int wq_clamp_max_active(int max_active, unsigned int flags,
5417			       const char *name)
5418{
5419	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
 
 
5420		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5421			max_active, name, 1, WQ_MAX_ACTIVE);
5422
5423	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5424}
5425
5426/*
5427 * Workqueues which may be used during memory reclaim should have a rescuer
5428 * to guarantee forward progress.
5429 */
5430static int init_rescuer(struct workqueue_struct *wq)
5431{
5432	struct worker *rescuer;
5433	int ret;
5434
5435	if (!(wq->flags & WQ_MEM_RECLAIM))
5436		return 0;
5437
5438	rescuer = alloc_worker(NUMA_NO_NODE);
5439	if (!rescuer) {
5440		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5441		       wq->name);
5442		return -ENOMEM;
5443	}
5444
5445	rescuer->rescue_wq = wq;
5446	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
5447	if (IS_ERR(rescuer->task)) {
5448		ret = PTR_ERR(rescuer->task);
5449		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5450		       wq->name, ERR_PTR(ret));
5451		kfree(rescuer);
5452		return ret;
5453	}
5454
5455	wq->rescuer = rescuer;
5456	if (wq->flags & WQ_UNBOUND)
5457		kthread_bind_mask(rescuer->task, wq_unbound_cpumask);
5458	else
5459		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5460	wake_up_process(rescuer->task);
5461
5462	return 0;
5463}
5464
5465/**
5466 * wq_adjust_max_active - update a wq's max_active to the current setting
5467 * @wq: target workqueue
5468 *
5469 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5470 * activate inactive work items accordingly. If @wq is freezing, clear
5471 * @wq->max_active to zero.
5472 */
5473static void wq_adjust_max_active(struct workqueue_struct *wq)
5474{
5475	bool activated;
5476	int new_max, new_min;
5477
5478	lockdep_assert_held(&wq->mutex);
5479
5480	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5481		new_max = 0;
5482		new_min = 0;
5483	} else {
5484		new_max = wq->saved_max_active;
5485		new_min = wq->saved_min_active;
5486	}
5487
5488	if (wq->max_active == new_max && wq->min_active == new_min)
5489		return;
5490
5491	/*
5492	 * Update @wq->max/min_active and then kick inactive work items if more
5493	 * active work items are allowed. This doesn't break work item ordering
5494	 * because new work items are always queued behind existing inactive
5495	 * work items if there are any.
5496	 */
5497	WRITE_ONCE(wq->max_active, new_max);
5498	WRITE_ONCE(wq->min_active, new_min);
5499
5500	if (wq->flags & WQ_UNBOUND)
5501		wq_update_node_max_active(wq, -1);
5502
5503	if (new_max == 0)
5504		return;
5505
5506	/*
5507	 * Round-robin through pwq's activating the first inactive work item
5508	 * until max_active is filled.
5509	 */
5510	do {
5511		struct pool_workqueue *pwq;
5512
5513		activated = false;
5514		for_each_pwq(pwq, wq) {
5515			unsigned long irq_flags;
5516
5517			/* can be called during early boot w/ irq disabled */
5518			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5519			if (pwq_activate_first_inactive(pwq, true)) {
5520				activated = true;
5521				kick_pool(pwq->pool);
5522			}
5523			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5524		}
5525	} while (activated);
5526}
5527
5528__printf(1, 4)
5529struct workqueue_struct *alloc_workqueue(const char *fmt,
5530					 unsigned int flags,
5531					 int max_active, ...)
 
5532{
 
5533	va_list args;
5534	struct workqueue_struct *wq;
5535	size_t wq_size;
5536	int name_len;
5537
5538	if (flags & WQ_BH) {
5539		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5540			return NULL;
5541		if (WARN_ON_ONCE(max_active))
5542			return NULL;
5543	}
5544
5545	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5546	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5547		flags |= WQ_UNBOUND;
5548
5549	/* allocate wq and format name */
5550	if (flags & WQ_UNBOUND)
5551		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5552	else
5553		wq_size = sizeof(*wq);
5554
5555	wq = kzalloc(wq_size, GFP_KERNEL);
5556	if (!wq)
5557		return NULL;
5558
5559	if (flags & WQ_UNBOUND) {
5560		wq->unbound_attrs = alloc_workqueue_attrs();
5561		if (!wq->unbound_attrs)
5562			goto err_free_wq;
5563	}
5564
5565	va_start(args, max_active);
5566	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5567	va_end(args);
5568
5569	if (name_len >= WQ_NAME_LEN)
5570		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5571			     wq->name);
5572
5573	if (flags & WQ_BH) {
5574		/*
5575		 * BH workqueues always share a single execution context per CPU
5576		 * and don't impose any max_active limit.
5577		 */
5578		max_active = INT_MAX;
5579	} else {
5580		max_active = max_active ?: WQ_DFL_ACTIVE;
5581		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5582	}
5583
5584	/* init wq */
5585	wq->flags = flags;
5586	wq->max_active = max_active;
5587	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5588	wq->saved_max_active = wq->max_active;
5589	wq->saved_min_active = wq->min_active;
5590	mutex_init(&wq->mutex);
5591	atomic_set(&wq->nr_pwqs_to_flush, 0);
5592	INIT_LIST_HEAD(&wq->pwqs);
5593	INIT_LIST_HEAD(&wq->flusher_queue);
5594	INIT_LIST_HEAD(&wq->flusher_overflow);
5595	INIT_LIST_HEAD(&wq->maydays);
5596
5597	wq_init_lockdep(wq);
5598	INIT_LIST_HEAD(&wq->list);
5599
5600	if (flags & WQ_UNBOUND) {
5601		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5602			goto err_unreg_lockdep;
5603	}
 
 
 
 
 
 
 
 
 
5604
5605	if (alloc_and_link_pwqs(wq) < 0)
5606		goto err_free_node_nr_active;
 
 
 
 
 
5607
5608	if (wq_online && init_rescuer(wq) < 0)
5609		goto err_destroy;
 
 
5610
5611	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5612		goto err_destroy;
5613
5614	/*
5615	 * wq_pool_mutex protects global freeze state and workqueues list.
5616	 * Grab it, adjust max_active and add the new @wq to workqueues
5617	 * list.
5618	 */
5619	mutex_lock(&wq_pool_mutex);
5620
5621	mutex_lock(&wq->mutex);
5622	wq_adjust_max_active(wq);
 
5623	mutex_unlock(&wq->mutex);
5624
5625	list_add_tail_rcu(&wq->list, &workqueues);
5626
5627	mutex_unlock(&wq_pool_mutex);
5628
5629	return wq;
5630
5631err_free_node_nr_active:
5632	if (wq->flags & WQ_UNBOUND)
5633		free_node_nr_active(wq->node_nr_active);
5634err_unreg_lockdep:
5635	wq_unregister_lockdep(wq);
5636	wq_free_lockdep(wq);
5637err_free_wq:
5638	free_workqueue_attrs(wq->unbound_attrs);
5639	kfree(wq);
5640	return NULL;
5641err_destroy:
5642	destroy_workqueue(wq);
5643	return NULL;
5644}
5645EXPORT_SYMBOL_GPL(alloc_workqueue);
5646
5647static bool pwq_busy(struct pool_workqueue *pwq)
5648{
5649	int i;
5650
5651	for (i = 0; i < WORK_NR_COLORS; i++)
5652		if (pwq->nr_in_flight[i])
5653			return true;
5654
5655	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5656		return true;
5657	if (!pwq_is_empty(pwq))
5658		return true;
5659
5660	return false;
5661}
5662
5663/**
5664 * destroy_workqueue - safely terminate a workqueue
5665 * @wq: target workqueue
5666 *
5667 * Safely destroy a workqueue. All work currently pending will be done first.
5668 */
5669void destroy_workqueue(struct workqueue_struct *wq)
5670{
5671	struct pool_workqueue *pwq;
5672	int cpu;
5673
5674	/*
5675	 * Remove it from sysfs first so that sanity check failure doesn't
5676	 * lead to sysfs name conflicts.
5677	 */
5678	workqueue_sysfs_unregister(wq);
5679
5680	/* mark the workqueue destruction is in progress */
5681	mutex_lock(&wq->mutex);
5682	wq->flags |= __WQ_DESTROYING;
5683	mutex_unlock(&wq->mutex);
5684
5685	/* drain it before proceeding with destruction */
5686	drain_workqueue(wq);
5687
5688	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5689	if (wq->rescuer) {
5690		struct worker *rescuer = wq->rescuer;
 
5691
5692		/* this prevents new queueing */
5693		raw_spin_lock_irq(&wq_mayday_lock);
5694		wq->rescuer = NULL;
5695		raw_spin_unlock_irq(&wq_mayday_lock);
5696
5697		/* rescuer will empty maydays list before exiting */
5698		kthread_stop(rescuer->task);
5699		kfree(rescuer);
5700	}
5701
5702	/*
5703	 * Sanity checks - grab all the locks so that we wait for all
5704	 * in-flight operations which may do put_pwq().
5705	 */
5706	mutex_lock(&wq_pool_mutex);
5707	mutex_lock(&wq->mutex);
5708	for_each_pwq(pwq, wq) {
5709		raw_spin_lock_irq(&pwq->pool->lock);
5710		if (WARN_ON(pwq_busy(pwq))) {
5711			pr_warn("%s: %s has the following busy pwq\n",
5712				__func__, wq->name);
5713			show_pwq(pwq);
5714			raw_spin_unlock_irq(&pwq->pool->lock);
5715			mutex_unlock(&wq->mutex);
5716			mutex_unlock(&wq_pool_mutex);
5717			show_one_workqueue(wq);
5718			return;
5719		}
5720		raw_spin_unlock_irq(&pwq->pool->lock);
5721	}
5722	mutex_unlock(&wq->mutex);
5723
5724	/*
5725	 * wq list is used to freeze wq, remove from list after
5726	 * flushing is complete in case freeze races us.
5727	 */
 
5728	list_del_rcu(&wq->list);
5729	mutex_unlock(&wq_pool_mutex);
5730
5731	/*
5732	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5733	 * to put the base refs. @wq will be auto-destroyed from the last
5734	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5735	 */
5736	rcu_read_lock();
5737
5738	for_each_possible_cpu(cpu) {
5739		put_pwq_unlocked(unbound_pwq(wq, cpu));
5740		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5741	}
5742
5743	put_pwq_unlocked(unbound_pwq(wq, -1));
5744	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5745
5746	rcu_read_unlock();
 
 
 
 
 
 
 
5747}
5748EXPORT_SYMBOL_GPL(destroy_workqueue);
5749
5750/**
5751 * workqueue_set_max_active - adjust max_active of a workqueue
5752 * @wq: target workqueue
5753 * @max_active: new max_active value.
5754 *
5755 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5756 * comment.
5757 *
5758 * CONTEXT:
5759 * Don't call from IRQ context.
5760 */
5761void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5762{
5763	/* max_active doesn't mean anything for BH workqueues */
5764	if (WARN_ON(wq->flags & WQ_BH))
5765		return;
5766	/* disallow meddling with max_active for ordered workqueues */
5767	if (WARN_ON(wq->flags & __WQ_ORDERED))
5768		return;
5769
5770	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5771
5772	mutex_lock(&wq->mutex);
5773
5774	wq->saved_max_active = max_active;
5775	if (wq->flags & WQ_UNBOUND)
5776		wq->saved_min_active = min(wq->saved_min_active, max_active);
5777
5778	wq_adjust_max_active(wq);
 
5779
5780	mutex_unlock(&wq->mutex);
5781}
5782EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5783
5784/**
5785 * workqueue_set_min_active - adjust min_active of an unbound workqueue
5786 * @wq: target unbound workqueue
5787 * @min_active: new min_active value
5788 *
5789 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5790 * unbound workqueue is not guaranteed to be able to process max_active
5791 * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5792 * able to process min_active number of interdependent work items which is
5793 * %WQ_DFL_MIN_ACTIVE by default.
5794 *
5795 * Use this function to adjust the min_active value between 0 and the current
5796 * max_active.
5797 */
5798void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5799{
5800	/* min_active is only meaningful for non-ordered unbound workqueues */
5801	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5802		    WQ_UNBOUND))
5803		return;
5804
5805	mutex_lock(&wq->mutex);
5806	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5807	wq_adjust_max_active(wq);
5808	mutex_unlock(&wq->mutex);
5809}
5810
5811/**
5812 * current_work - retrieve %current task's work struct
5813 *
5814 * Determine if %current task is a workqueue worker and what it's working on.
5815 * Useful to find out the context that the %current task is running in.
5816 *
5817 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5818 */
5819struct work_struct *current_work(void)
5820{
5821	struct worker *worker = current_wq_worker();
5822
5823	return worker ? worker->current_work : NULL;
5824}
5825EXPORT_SYMBOL(current_work);
5826
5827/**
5828 * current_is_workqueue_rescuer - is %current workqueue rescuer?
5829 *
5830 * Determine whether %current is a workqueue rescuer.  Can be used from
5831 * work functions to determine whether it's being run off the rescuer task.
5832 *
5833 * Return: %true if %current is a workqueue rescuer. %false otherwise.
5834 */
5835bool current_is_workqueue_rescuer(void)
5836{
5837	struct worker *worker = current_wq_worker();
5838
5839	return worker && worker->rescue_wq;
5840}
5841
5842/**
5843 * workqueue_congested - test whether a workqueue is congested
5844 * @cpu: CPU in question
5845 * @wq: target workqueue
5846 *
5847 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
5848 * no synchronization around this function and the test result is
5849 * unreliable and only useful as advisory hints or for debugging.
5850 *
5851 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5852 *
5853 * With the exception of ordered workqueues, all workqueues have per-cpu
5854 * pool_workqueues, each with its own congested state. A workqueue being
5855 * congested on one CPU doesn't mean that the workqueue is contested on any
5856 * other CPUs.
5857 *
5858 * Return:
5859 * %true if congested, %false otherwise.
5860 */
5861bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5862{
5863	struct pool_workqueue *pwq;
5864	bool ret;
5865
5866	rcu_read_lock();
5867	preempt_disable();
5868
5869	if (cpu == WORK_CPU_UNBOUND)
5870		cpu = smp_processor_id();
5871
5872	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5873	ret = !list_empty(&pwq->inactive_works);
 
 
5874
5875	preempt_enable();
5876	rcu_read_unlock();
5877
5878	return ret;
5879}
5880EXPORT_SYMBOL_GPL(workqueue_congested);
5881
5882/**
5883 * work_busy - test whether a work is currently pending or running
5884 * @work: the work to be tested
5885 *
5886 * Test whether @work is currently pending or running.  There is no
5887 * synchronization around this function and the test result is
5888 * unreliable and only useful as advisory hints or for debugging.
5889 *
5890 * Return:
5891 * OR'd bitmask of WORK_BUSY_* bits.
5892 */
5893unsigned int work_busy(struct work_struct *work)
5894{
5895	struct worker_pool *pool;
5896	unsigned long irq_flags;
5897	unsigned int ret = 0;
5898
5899	if (work_pending(work))
5900		ret |= WORK_BUSY_PENDING;
5901
5902	rcu_read_lock();
5903	pool = get_work_pool(work);
5904	if (pool) {
5905		raw_spin_lock_irqsave(&pool->lock, irq_flags);
5906		if (find_worker_executing_work(pool, work))
5907			ret |= WORK_BUSY_RUNNING;
5908		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
5909	}
5910	rcu_read_unlock();
5911
5912	return ret;
5913}
5914EXPORT_SYMBOL_GPL(work_busy);
5915
5916/**
5917 * set_worker_desc - set description for the current work item
5918 * @fmt: printf-style format string
5919 * @...: arguments for the format string
5920 *
5921 * This function can be called by a running work function to describe what
5922 * the work item is about.  If the worker task gets dumped, this
5923 * information will be printed out together to help debugging.  The
5924 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5925 */
5926void set_worker_desc(const char *fmt, ...)
5927{
5928	struct worker *worker = current_wq_worker();
5929	va_list args;
5930
5931	if (worker) {
5932		va_start(args, fmt);
5933		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5934		va_end(args);
 
5935	}
5936}
5937EXPORT_SYMBOL_GPL(set_worker_desc);
5938
5939/**
5940 * print_worker_info - print out worker information and description
5941 * @log_lvl: the log level to use when printing
5942 * @task: target task
5943 *
5944 * If @task is a worker and currently executing a work item, print out the
5945 * name of the workqueue being serviced and worker description set with
5946 * set_worker_desc() by the currently executing work item.
5947 *
5948 * This function can be safely called on any task as long as the
5949 * task_struct itself is accessible.  While safe, this function isn't
5950 * synchronized and may print out mixups or garbages of limited length.
5951 */
5952void print_worker_info(const char *log_lvl, struct task_struct *task)
5953{
5954	work_func_t *fn = NULL;
5955	char name[WQ_NAME_LEN] = { };
5956	char desc[WORKER_DESC_LEN] = { };
5957	struct pool_workqueue *pwq = NULL;
5958	struct workqueue_struct *wq = NULL;
 
5959	struct worker *worker;
5960
5961	if (!(task->flags & PF_WQ_WORKER))
5962		return;
5963
5964	/*
5965	 * This function is called without any synchronization and @task
5966	 * could be in any state.  Be careful with dereferences.
5967	 */
5968	worker = kthread_probe_data(task);
5969
5970	/*
5971	 * Carefully copy the associated workqueue's workfn, name and desc.
5972	 * Keep the original last '\0' in case the original is garbage.
5973	 */
5974	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5975	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5976	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5977	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5978	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
 
 
 
 
5979
5980	if (fn || name[0] || desc[0]) {
5981		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5982		if (strcmp(name, desc))
5983			pr_cont(" (%s)", desc);
5984		pr_cont("\n");
5985	}
5986}
5987
5988static void pr_cont_pool_info(struct worker_pool *pool)
5989{
5990	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5991	if (pool->node != NUMA_NO_NODE)
5992		pr_cont(" node=%d", pool->node);
5993	pr_cont(" flags=0x%x", pool->flags);
5994	if (pool->flags & POOL_BH)
5995		pr_cont(" bh%s",
5996			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
5997	else
5998		pr_cont(" nice=%d", pool->attrs->nice);
5999}
6000
6001static void pr_cont_worker_id(struct worker *worker)
6002{
6003	struct worker_pool *pool = worker->pool;
6004
6005	if (pool->flags & WQ_BH)
6006		pr_cont("bh%s",
6007			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6008	else
6009		pr_cont("%d%s", task_pid_nr(worker->task),
6010			worker->rescue_wq ? "(RESCUER)" : "");
6011}
6012
6013struct pr_cont_work_struct {
6014	bool comma;
6015	work_func_t func;
6016	long ctr;
6017};
6018
6019static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6020{
6021	if (!pcwsp->ctr)
6022		goto out_record;
6023	if (func == pcwsp->func) {
6024		pcwsp->ctr++;
6025		return;
6026	}
6027	if (pcwsp->ctr == 1)
6028		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6029	else
6030		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6031	pcwsp->ctr = 0;
6032out_record:
6033	if ((long)func == -1L)
6034		return;
6035	pcwsp->comma = comma;
6036	pcwsp->func = func;
6037	pcwsp->ctr = 1;
6038}
6039
6040static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6041{
6042	if (work->func == wq_barrier_func) {
6043		struct wq_barrier *barr;
6044
6045		barr = container_of(work, struct wq_barrier, work);
6046
6047		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6048		pr_cont("%s BAR(%d)", comma ? "," : "",
6049			task_pid_nr(barr->task));
6050	} else {
6051		if (!comma)
6052			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6053		pr_cont_work_flush(comma, work->func, pcwsp);
6054	}
6055}
6056
6057static void show_pwq(struct pool_workqueue *pwq)
6058{
6059	struct pr_cont_work_struct pcws = { .ctr = 0, };
6060	struct worker_pool *pool = pwq->pool;
6061	struct work_struct *work;
6062	struct worker *worker;
6063	bool has_in_flight = false, has_pending = false;
6064	int bkt;
6065
6066	pr_info("  pwq %d:", pool->id);
6067	pr_cont_pool_info(pool);
6068
6069	pr_cont(" active=%d refcnt=%d%s\n",
6070		pwq->nr_active, pwq->refcnt,
6071		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6072
6073	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6074		if (worker->current_pwq == pwq) {
6075			has_in_flight = true;
6076			break;
6077		}
6078	}
6079	if (has_in_flight) {
6080		bool comma = false;
6081
6082		pr_info("    in-flight:");
6083		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6084			if (worker->current_pwq != pwq)
6085				continue;
6086
6087			pr_cont(" %s", comma ? "," : "");
6088			pr_cont_worker_id(worker);
6089			pr_cont(":%ps", worker->current_func);
 
6090			list_for_each_entry(work, &worker->scheduled, entry)
6091				pr_cont_work(false, work, &pcws);
6092			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6093			comma = true;
6094		}
6095		pr_cont("\n");
6096	}
6097
6098	list_for_each_entry(work, &pool->worklist, entry) {
6099		if (get_work_pwq(work) == pwq) {
6100			has_pending = true;
6101			break;
6102		}
6103	}
6104	if (has_pending) {
6105		bool comma = false;
6106
6107		pr_info("    pending:");
6108		list_for_each_entry(work, &pool->worklist, entry) {
6109			if (get_work_pwq(work) != pwq)
6110				continue;
6111
6112			pr_cont_work(comma, work, &pcws);
6113			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6114		}
6115		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6116		pr_cont("\n");
6117	}
6118
6119	if (!list_empty(&pwq->inactive_works)) {
6120		bool comma = false;
6121
6122		pr_info("    inactive:");
6123		list_for_each_entry(work, &pwq->inactive_works, entry) {
6124			pr_cont_work(comma, work, &pcws);
6125			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6126		}
6127		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6128		pr_cont("\n");
6129	}
6130}
6131
6132/**
6133 * show_one_workqueue - dump state of specified workqueue
6134 * @wq: workqueue whose state will be printed
6135 */
6136void show_one_workqueue(struct workqueue_struct *wq)
6137{
6138	struct pool_workqueue *pwq;
6139	bool idle = true;
6140	unsigned long irq_flags;
6141
6142	for_each_pwq(pwq, wq) {
6143		if (!pwq_is_empty(pwq)) {
6144			idle = false;
6145			break;
6146		}
6147	}
6148	if (idle) /* Nothing to print for idle workqueue */
6149		return;
6150
6151	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6152
6153	for_each_pwq(pwq, wq) {
6154		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6155		if (!pwq_is_empty(pwq)) {
6156			/*
6157			 * Defer printing to avoid deadlocks in console
6158			 * drivers that queue work while holding locks
6159			 * also taken in their write paths.
6160			 */
6161			printk_deferred_enter();
6162			show_pwq(pwq);
6163			printk_deferred_exit();
6164		}
6165		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6166		/*
6167		 * We could be printing a lot from atomic context, e.g.
6168		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6169		 * hard lockup.
6170		 */
6171		touch_nmi_watchdog();
6172	}
6173
6174}
6175
6176/**
6177 * show_one_worker_pool - dump state of specified worker pool
6178 * @pool: worker pool whose state will be printed
6179 */
6180static void show_one_worker_pool(struct worker_pool *pool)
6181{
6182	struct worker *worker;
6183	bool first = true;
6184	unsigned long irq_flags;
6185	unsigned long hung = 0;
6186
6187	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6188	if (pool->nr_workers == pool->nr_idle)
6189		goto next_pool;
6190
6191	/* How long the first pending work is waiting for a worker. */
6192	if (!list_empty(&pool->worklist))
6193		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6194
6195	/*
6196	 * Defer printing to avoid deadlocks in console drivers that
6197	 * queue work while holding locks also taken in their write
6198	 * paths.
6199	 */
6200	printk_deferred_enter();
6201	pr_info("pool %d:", pool->id);
6202	pr_cont_pool_info(pool);
6203	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6204	if (pool->manager)
6205		pr_cont(" manager: %d",
6206			task_pid_nr(pool->manager->task));
6207	list_for_each_entry(worker, &pool->idle_list, entry) {
6208		pr_cont(" %s", first ? "idle: " : "");
6209		pr_cont_worker_id(worker);
6210		first = false;
6211	}
6212	pr_cont("\n");
6213	printk_deferred_exit();
6214next_pool:
6215	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6216	/*
6217	 * We could be printing a lot from atomic context, e.g.
6218	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6219	 * hard lockup.
6220	 */
6221	touch_nmi_watchdog();
6222
6223}
6224
6225/**
6226 * show_all_workqueues - dump workqueue state
6227 *
6228 * Called from a sysrq handler and prints out all busy workqueues and pools.
 
6229 */
6230void show_all_workqueues(void)
6231{
6232	struct workqueue_struct *wq;
6233	struct worker_pool *pool;
 
6234	int pi;
6235
6236	rcu_read_lock();
6237
6238	pr_info("Showing busy workqueues and worker pools:\n");
6239
6240	list_for_each_entry_rcu(wq, &workqueues, list)
6241		show_one_workqueue(wq);
 
6242
6243	for_each_pool(pool, pi)
6244		show_one_worker_pool(pool);
6245
6246	rcu_read_unlock();
6247}
 
 
 
6248
6249/**
6250 * show_freezable_workqueues - dump freezable workqueue state
6251 *
6252 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6253 * still busy.
6254 */
6255void show_freezable_workqueues(void)
6256{
6257	struct workqueue_struct *wq;
6258
6259	rcu_read_lock();
6260
6261	pr_info("Showing freezable workqueues that are still busy:\n");
6262
6263	list_for_each_entry_rcu(wq, &workqueues, list) {
6264		if (!(wq->flags & WQ_FREEZABLE))
6265			continue;
6266		show_one_workqueue(wq);
6267	}
6268
6269	rcu_read_unlock();
6270}
 
6271
6272/* used to show worker information through /proc/PID/{comm,stat,status} */
6273void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6274{
6275	int off;
6276
6277	/* always show the actual comm */
6278	off = strscpy(buf, task->comm, size);
6279	if (off < 0)
6280		return;
6281
6282	/* stabilize PF_WQ_WORKER and worker pool association */
6283	mutex_lock(&wq_pool_attach_mutex);
6284
6285	if (task->flags & PF_WQ_WORKER) {
6286		struct worker *worker = kthread_data(task);
6287		struct worker_pool *pool = worker->pool;
6288
6289		if (pool) {
6290			raw_spin_lock_irq(&pool->lock);
6291			/*
6292			 * ->desc tracks information (wq name or
6293			 * set_worker_desc()) for the latest execution.  If
6294			 * current, prepend '+', otherwise '-'.
6295			 */
6296			if (worker->desc[0] != '\0') {
6297				if (worker->current_work)
6298					scnprintf(buf + off, size - off, "+%s",
6299						  worker->desc);
6300				else
6301					scnprintf(buf + off, size - off, "-%s",
6302						  worker->desc);
6303			}
6304			raw_spin_unlock_irq(&pool->lock);
6305		}
 
 
 
6306	}
6307
6308	mutex_unlock(&wq_pool_attach_mutex);
6309}
6310
6311#ifdef CONFIG_SMP
6312
6313/*
6314 * CPU hotplug.
6315 *
6316 * There are two challenges in supporting CPU hotplug.  Firstly, there
6317 * are a lot of assumptions on strong associations among work, pwq and
6318 * pool which make migrating pending and scheduled works very
6319 * difficult to implement without impacting hot paths.  Secondly,
6320 * worker pools serve mix of short, long and very long running works making
6321 * blocked draining impractical.
6322 *
6323 * This is solved by allowing the pools to be disassociated from the CPU
6324 * running as an unbound one and allowing it to be reattached later if the
6325 * cpu comes back online.
6326 */
6327
6328static void unbind_workers(int cpu)
6329{
 
6330	struct worker_pool *pool;
6331	struct worker *worker;
6332
6333	for_each_cpu_worker_pool(pool, cpu) {
6334		mutex_lock(&wq_pool_attach_mutex);
6335		raw_spin_lock_irq(&pool->lock);
6336
6337		/*
6338		 * We've blocked all attach/detach operations. Make all workers
6339		 * unbound and set DISASSOCIATED.  Before this, all workers
6340		 * must be on the cpu.  After this, they may become diasporas.
6341		 * And the preemption disabled section in their sched callbacks
6342		 * are guaranteed to see WORKER_UNBOUND since the code here
6343		 * is on the same cpu.
6344		 */
6345		for_each_pool_worker(worker, pool)
6346			worker->flags |= WORKER_UNBOUND;
6347
6348		pool->flags |= POOL_DISASSOCIATED;
6349
 
 
 
6350		/*
6351		 * The handling of nr_running in sched callbacks are disabled
6352		 * now.  Zap nr_running.  After this, nr_running stays zero and
6353		 * need_more_worker() and keep_working() are always true as
6354		 * long as the worklist is not empty.  This pool now behaves as
6355		 * an unbound (in terms of concurrency management) pool which
 
 
 
 
 
 
 
 
6356		 * are served by workers tied to the pool.
6357		 */
6358		pool->nr_running = 0;
6359
6360		/*
6361		 * With concurrency management just turned off, a busy
6362		 * worker blocking could lead to lengthy stalls.  Kick off
6363		 * unbound chain execution of currently pending work items.
6364		 */
6365		kick_pool(pool);
6366
6367		raw_spin_unlock_irq(&pool->lock);
6368
6369		for_each_pool_worker(worker, pool)
6370			unbind_worker(worker);
6371
6372		mutex_unlock(&wq_pool_attach_mutex);
6373	}
6374}
6375
6376/**
6377 * rebind_workers - rebind all workers of a pool to the associated CPU
6378 * @pool: pool of interest
6379 *
6380 * @pool->cpu is coming online.  Rebind all workers to the CPU.
6381 */
6382static void rebind_workers(struct worker_pool *pool)
6383{
6384	struct worker *worker;
6385
6386	lockdep_assert_held(&wq_pool_attach_mutex);
6387
6388	/*
6389	 * Restore CPU affinity of all workers.  As all idle workers should
6390	 * be on the run-queue of the associated CPU before any local
6391	 * wake-ups for concurrency management happen, restore CPU affinity
6392	 * of all workers first and then clear UNBOUND.  As we're called
6393	 * from CPU_ONLINE, the following shouldn't fail.
6394	 */
6395	for_each_pool_worker(worker, pool) {
6396		kthread_set_per_cpu(worker->task, pool->cpu);
6397		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6398						  pool_allowed_cpus(pool)) < 0);
 
 
 
 
 
 
 
 
 
 
 
6399	}
6400
6401	raw_spin_lock_irq(&pool->lock);
6402
6403	pool->flags &= ~POOL_DISASSOCIATED;
6404
6405	for_each_pool_worker(worker, pool) {
6406		unsigned int worker_flags = worker->flags;
6407
6408		/*
 
 
 
 
 
 
 
 
 
 
 
6409		 * We want to clear UNBOUND but can't directly call
6410		 * worker_clr_flags() or adjust nr_running.  Atomically
6411		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6412		 * @worker will clear REBOUND using worker_clr_flags() when
6413		 * it initiates the next execution cycle thus restoring
6414		 * concurrency management.  Note that when or whether
6415		 * @worker clears REBOUND doesn't affect correctness.
6416		 *
6417		 * WRITE_ONCE() is necessary because @worker->flags may be
6418		 * tested without holding any lock in
6419		 * wq_worker_running().  Without it, NOT_RUNNING test may
6420		 * fail incorrectly leading to premature concurrency
6421		 * management operations.
6422		 */
6423		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6424		worker_flags |= WORKER_REBOUND;
6425		worker_flags &= ~WORKER_UNBOUND;
6426		WRITE_ONCE(worker->flags, worker_flags);
6427	}
6428
6429	raw_spin_unlock_irq(&pool->lock);
6430}
6431
6432/**
6433 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6434 * @pool: unbound pool of interest
6435 * @cpu: the CPU which is coming up
6436 *
6437 * An unbound pool may end up with a cpumask which doesn't have any online
6438 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6439 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6440 * online CPU before, cpus_allowed of all its workers should be restored.
6441 */
6442static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6443{
6444	static cpumask_t cpumask;
6445	struct worker *worker;
6446
6447	lockdep_assert_held(&wq_pool_attach_mutex);
6448
6449	/* is @cpu allowed for @pool? */
6450	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6451		return;
6452
6453	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6454
6455	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6456	for_each_pool_worker(worker, pool)
6457		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6458}
6459
6460int workqueue_prepare_cpu(unsigned int cpu)
6461{
6462	struct worker_pool *pool;
6463
6464	for_each_cpu_worker_pool(pool, cpu) {
6465		if (pool->nr_workers)
6466			continue;
6467		if (!create_worker(pool))
6468			return -ENOMEM;
6469	}
6470	return 0;
6471}
6472
6473int workqueue_online_cpu(unsigned int cpu)
6474{
6475	struct worker_pool *pool;
6476	struct workqueue_struct *wq;
6477	int pi;
6478
6479	mutex_lock(&wq_pool_mutex);
6480
6481	for_each_pool(pool, pi) {
6482		/* BH pools aren't affected by hotplug */
6483		if (pool->flags & POOL_BH)
6484			continue;
6485
6486		mutex_lock(&wq_pool_attach_mutex);
6487		if (pool->cpu == cpu)
6488			rebind_workers(pool);
6489		else if (pool->cpu < 0)
6490			restore_unbound_workers_cpumask(pool, cpu);
6491		mutex_unlock(&wq_pool_attach_mutex);
 
6492	}
6493
6494	/* update pod affinity of unbound workqueues */
6495	list_for_each_entry(wq, &workqueues, list) {
6496		struct workqueue_attrs *attrs = wq->unbound_attrs;
6497
6498		if (attrs) {
6499			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6500			int tcpu;
6501
6502			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6503				wq_update_pod(wq, tcpu, cpu, true);
6504
6505			mutex_lock(&wq->mutex);
6506			wq_update_node_max_active(wq, -1);
6507			mutex_unlock(&wq->mutex);
6508		}
6509	}
6510
6511	mutex_unlock(&wq_pool_mutex);
6512	return 0;
6513}
6514
6515int workqueue_offline_cpu(unsigned int cpu)
6516{
 
6517	struct workqueue_struct *wq;
6518
6519	/* unbinding per-cpu workers should happen on the local CPU */
6520	if (WARN_ON(cpu != smp_processor_id()))
6521		return -1;
6522
6523	unbind_workers(cpu);
6524
6525	/* update pod affinity of unbound workqueues */
6526	mutex_lock(&wq_pool_mutex);
6527	list_for_each_entry(wq, &workqueues, list) {
6528		struct workqueue_attrs *attrs = wq->unbound_attrs;
6529
6530		if (attrs) {
6531			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6532			int tcpu;
6533
6534			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6535				wq_update_pod(wq, tcpu, cpu, false);
6536
6537			mutex_lock(&wq->mutex);
6538			wq_update_node_max_active(wq, cpu);
6539			mutex_unlock(&wq->mutex);
6540		}
6541	}
6542	mutex_unlock(&wq_pool_mutex);
6543
 
 
 
6544	return 0;
6545}
6546
 
 
6547struct work_for_cpu {
6548	struct work_struct work;
6549	long (*fn)(void *);
6550	void *arg;
6551	long ret;
6552};
6553
6554static void work_for_cpu_fn(struct work_struct *work)
6555{
6556	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6557
6558	wfc->ret = wfc->fn(wfc->arg);
6559}
6560
6561/**
6562 * work_on_cpu_key - run a function in thread context on a particular cpu
6563 * @cpu: the cpu to run on
6564 * @fn: the function to run
6565 * @arg: the function arg
6566 * @key: The lock class key for lock debugging purposes
6567 *
6568 * It is up to the caller to ensure that the cpu doesn't go offline.
6569 * The caller must not hold any locks which would prevent @fn from completing.
6570 *
6571 * Return: The value @fn returns.
6572 */
6573long work_on_cpu_key(int cpu, long (*fn)(void *),
6574		     void *arg, struct lock_class_key *key)
6575{
6576	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6577
6578	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6579	schedule_work_on(cpu, &wfc.work);
6580	flush_work(&wfc.work);
6581	destroy_work_on_stack(&wfc.work);
6582	return wfc.ret;
6583}
6584EXPORT_SYMBOL_GPL(work_on_cpu_key);
6585
6586/**
6587 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6588 * @cpu: the cpu to run on
6589 * @fn:  the function to run
6590 * @arg: the function argument
6591 * @key: The lock class key for lock debugging purposes
6592 *
6593 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6594 * any locks which would prevent @fn from completing.
6595 *
6596 * Return: The value @fn returns.
6597 */
6598long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6599			  void *arg, struct lock_class_key *key)
6600{
6601	long ret = -ENODEV;
6602
6603	cpus_read_lock();
6604	if (cpu_online(cpu))
6605		ret = work_on_cpu_key(cpu, fn, arg, key);
6606	cpus_read_unlock();
6607	return ret;
6608}
6609EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6610#endif /* CONFIG_SMP */
6611
6612#ifdef CONFIG_FREEZER
6613
6614/**
6615 * freeze_workqueues_begin - begin freezing workqueues
6616 *
6617 * Start freezing workqueues.  After this function returns, all freezable
6618 * workqueues will queue new works to their inactive_works list instead of
6619 * pool->worklist.
6620 *
6621 * CONTEXT:
6622 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6623 */
6624void freeze_workqueues_begin(void)
6625{
6626	struct workqueue_struct *wq;
 
6627
6628	mutex_lock(&wq_pool_mutex);
6629
6630	WARN_ON_ONCE(workqueue_freezing);
6631	workqueue_freezing = true;
6632
6633	list_for_each_entry(wq, &workqueues, list) {
6634		mutex_lock(&wq->mutex);
6635		wq_adjust_max_active(wq);
 
6636		mutex_unlock(&wq->mutex);
6637	}
6638
6639	mutex_unlock(&wq_pool_mutex);
6640}
6641
6642/**
6643 * freeze_workqueues_busy - are freezable workqueues still busy?
6644 *
6645 * Check whether freezing is complete.  This function must be called
6646 * between freeze_workqueues_begin() and thaw_workqueues().
6647 *
6648 * CONTEXT:
6649 * Grabs and releases wq_pool_mutex.
6650 *
6651 * Return:
6652 * %true if some freezable workqueues are still busy.  %false if freezing
6653 * is complete.
6654 */
6655bool freeze_workqueues_busy(void)
6656{
6657	bool busy = false;
6658	struct workqueue_struct *wq;
6659	struct pool_workqueue *pwq;
6660
6661	mutex_lock(&wq_pool_mutex);
6662
6663	WARN_ON_ONCE(!workqueue_freezing);
6664
6665	list_for_each_entry(wq, &workqueues, list) {
6666		if (!(wq->flags & WQ_FREEZABLE))
6667			continue;
6668		/*
6669		 * nr_active is monotonically decreasing.  It's safe
6670		 * to peek without lock.
6671		 */
6672		rcu_read_lock();
6673		for_each_pwq(pwq, wq) {
6674			WARN_ON_ONCE(pwq->nr_active < 0);
6675			if (pwq->nr_active) {
6676				busy = true;
6677				rcu_read_unlock();
6678				goto out_unlock;
6679			}
6680		}
6681		rcu_read_unlock();
6682	}
6683out_unlock:
6684	mutex_unlock(&wq_pool_mutex);
6685	return busy;
6686}
6687
6688/**
6689 * thaw_workqueues - thaw workqueues
6690 *
6691 * Thaw workqueues.  Normal queueing is restored and all collected
6692 * frozen works are transferred to their respective pool worklists.
6693 *
6694 * CONTEXT:
6695 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6696 */
6697void thaw_workqueues(void)
6698{
6699	struct workqueue_struct *wq;
 
6700
6701	mutex_lock(&wq_pool_mutex);
6702
6703	if (!workqueue_freezing)
6704		goto out_unlock;
6705
6706	workqueue_freezing = false;
6707
6708	/* restore max_active and repopulate worklist */
6709	list_for_each_entry(wq, &workqueues, list) {
6710		mutex_lock(&wq->mutex);
6711		wq_adjust_max_active(wq);
 
6712		mutex_unlock(&wq->mutex);
6713	}
6714
6715out_unlock:
6716	mutex_unlock(&wq_pool_mutex);
6717}
6718#endif /* CONFIG_FREEZER */
6719
6720static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6721{
6722	LIST_HEAD(ctxs);
6723	int ret = 0;
6724	struct workqueue_struct *wq;
6725	struct apply_wqattrs_ctx *ctx, *n;
6726
6727	lockdep_assert_held(&wq_pool_mutex);
6728
6729	list_for_each_entry(wq, &workqueues, list) {
6730		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
 
 
 
6731			continue;
6732
6733		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6734		if (IS_ERR(ctx)) {
6735			ret = PTR_ERR(ctx);
6736			break;
6737		}
6738
6739		list_add_tail(&ctx->list, &ctxs);
6740	}
6741
6742	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6743		if (!ret)
6744			apply_wqattrs_commit(ctx);
6745		apply_wqattrs_cleanup(ctx);
6746	}
6747
6748	if (!ret) {
6749		mutex_lock(&wq_pool_attach_mutex);
6750		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6751		mutex_unlock(&wq_pool_attach_mutex);
6752	}
6753	return ret;
6754}
6755
6756/**
6757 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6758 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6759 *
6760 * This function can be called from cpuset code to provide a set of isolated
6761 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6762 * either cpus_read_lock or cpus_write_lock.
 
 
 
 
6763 */
6764int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6765{
6766	cpumask_var_t cpumask;
6767	int ret = 0;
6768
6769	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6770		return -ENOMEM;
6771
6772	lockdep_assert_cpus_held();
6773	mutex_lock(&wq_pool_mutex);
 
6774
6775	/* Save the current isolated cpumask & export it via sysfs */
6776	cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6777
6778	/*
6779	 * If the operation fails, it will fall back to
6780	 * wq_requested_unbound_cpumask which is initially set to
6781	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6782	 * by any subsequent write to workqueue/cpumask sysfs file.
6783	 */
6784	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6785		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6786	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6787		ret = workqueue_apply_unbound_cpumask(cpumask);
6788
6789	mutex_unlock(&wq_pool_mutex);
6790	free_cpumask_var(cpumask);
6791	return ret;
6792}
6793
6794static int parse_affn_scope(const char *val)
6795{
6796	int i;
6797
6798	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6799		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6800			return i;
6801	}
6802	return -EINVAL;
6803}
6804
6805static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6806{
6807	struct workqueue_struct *wq;
6808	int affn, cpu;
6809
6810	affn = parse_affn_scope(val);
6811	if (affn < 0)
6812		return affn;
6813	if (affn == WQ_AFFN_DFL)
6814		return -EINVAL;
6815
6816	cpus_read_lock();
6817	mutex_lock(&wq_pool_mutex);
6818
6819	wq_affn_dfl = affn;
6820
6821	list_for_each_entry(wq, &workqueues, list) {
6822		for_each_online_cpu(cpu) {
6823			wq_update_pod(wq, cpu, cpu, true);
6824		}
6825	}
6826
6827	mutex_unlock(&wq_pool_mutex);
6828	cpus_read_unlock();
6829
6830	return 0;
6831}
6832
6833static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6834{
6835	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6836}
6837
6838static const struct kernel_param_ops wq_affn_dfl_ops = {
6839	.set	= wq_affn_dfl_set,
6840	.get	= wq_affn_dfl_get,
6841};
6842
6843module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6844
6845#ifdef CONFIG_SYSFS
6846/*
6847 * Workqueues with WQ_SYSFS flag set is visible to userland via
6848 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
6849 * following attributes.
6850 *
6851 *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
6852 *  max_active		RW int	: maximum number of in-flight work items
6853 *
6854 * Unbound workqueues have the following extra attributes.
6855 *
6856 *  nice		RW int	: nice value of the workers
6857 *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
6858 *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
6859 *  affinity_strict	RW bool : worker CPU affinity is strict
6860 */
6861struct wq_device {
6862	struct workqueue_struct		*wq;
6863	struct device			dev;
6864};
6865
6866static struct workqueue_struct *dev_to_wq(struct device *dev)
6867{
6868	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6869
6870	return wq_dev->wq;
6871}
6872
6873static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6874			    char *buf)
6875{
6876	struct workqueue_struct *wq = dev_to_wq(dev);
6877
6878	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6879}
6880static DEVICE_ATTR_RO(per_cpu);
6881
6882static ssize_t max_active_show(struct device *dev,
6883			       struct device_attribute *attr, char *buf)
6884{
6885	struct workqueue_struct *wq = dev_to_wq(dev);
6886
6887	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6888}
6889
6890static ssize_t max_active_store(struct device *dev,
6891				struct device_attribute *attr, const char *buf,
6892				size_t count)
6893{
6894	struct workqueue_struct *wq = dev_to_wq(dev);
6895	int val;
6896
6897	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6898		return -EINVAL;
6899
6900	workqueue_set_max_active(wq, val);
6901	return count;
6902}
6903static DEVICE_ATTR_RW(max_active);
6904
6905static struct attribute *wq_sysfs_attrs[] = {
6906	&dev_attr_per_cpu.attr,
6907	&dev_attr_max_active.attr,
6908	NULL,
6909};
6910ATTRIBUTE_GROUPS(wq_sysfs);
6911
6912static void apply_wqattrs_lock(void)
 
6913{
6914	/* CPUs should stay stable across pwq creations and installations */
6915	cpus_read_lock();
6916	mutex_lock(&wq_pool_mutex);
6917}
 
 
 
 
 
 
 
 
 
6918
6919static void apply_wqattrs_unlock(void)
6920{
6921	mutex_unlock(&wq_pool_mutex);
6922	cpus_read_unlock();
6923}
6924
6925static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
6926			    char *buf)
6927{
6928	struct workqueue_struct *wq = dev_to_wq(dev);
6929	int written;
6930
6931	mutex_lock(&wq->mutex);
6932	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
6933	mutex_unlock(&wq->mutex);
6934
6935	return written;
6936}
6937
6938/* prepare workqueue_attrs for sysfs store operations */
6939static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6940{
6941	struct workqueue_attrs *attrs;
6942
6943	lockdep_assert_held(&wq_pool_mutex);
6944
6945	attrs = alloc_workqueue_attrs();
6946	if (!attrs)
6947		return NULL;
6948
6949	copy_workqueue_attrs(attrs, wq->unbound_attrs);
6950	return attrs;
6951}
6952
6953static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6954			     const char *buf, size_t count)
6955{
6956	struct workqueue_struct *wq = dev_to_wq(dev);
6957	struct workqueue_attrs *attrs;
6958	int ret = -ENOMEM;
6959
6960	apply_wqattrs_lock();
6961
6962	attrs = wq_sysfs_prep_attrs(wq);
6963	if (!attrs)
6964		goto out_unlock;
6965
6966	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6967	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6968		ret = apply_workqueue_attrs_locked(wq, attrs);
6969	else
6970		ret = -EINVAL;
6971
6972out_unlock:
6973	apply_wqattrs_unlock();
6974	free_workqueue_attrs(attrs);
6975	return ret ?: count;
6976}
6977
6978static ssize_t wq_cpumask_show(struct device *dev,
6979			       struct device_attribute *attr, char *buf)
6980{
6981	struct workqueue_struct *wq = dev_to_wq(dev);
6982	int written;
6983
6984	mutex_lock(&wq->mutex);
6985	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6986			    cpumask_pr_args(wq->unbound_attrs->cpumask));
6987	mutex_unlock(&wq->mutex);
6988	return written;
6989}
6990
6991static ssize_t wq_cpumask_store(struct device *dev,
6992				struct device_attribute *attr,
6993				const char *buf, size_t count)
6994{
6995	struct workqueue_struct *wq = dev_to_wq(dev);
6996	struct workqueue_attrs *attrs;
6997	int ret = -ENOMEM;
6998
6999	apply_wqattrs_lock();
7000
7001	attrs = wq_sysfs_prep_attrs(wq);
7002	if (!attrs)
7003		goto out_unlock;
7004
7005	ret = cpumask_parse(buf, attrs->cpumask);
7006	if (!ret)
7007		ret = apply_workqueue_attrs_locked(wq, attrs);
7008
7009out_unlock:
7010	apply_wqattrs_unlock();
7011	free_workqueue_attrs(attrs);
7012	return ret ?: count;
7013}
7014
7015static ssize_t wq_affn_scope_show(struct device *dev,
7016				  struct device_attribute *attr, char *buf)
7017{
7018	struct workqueue_struct *wq = dev_to_wq(dev);
7019	int written;
7020
7021	mutex_lock(&wq->mutex);
7022	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7023		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7024				    wq_affn_names[WQ_AFFN_DFL],
7025				    wq_affn_names[wq_affn_dfl]);
7026	else
7027		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7028				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7029	mutex_unlock(&wq->mutex);
7030
7031	return written;
7032}
7033
7034static ssize_t wq_affn_scope_store(struct device *dev,
7035				   struct device_attribute *attr,
7036				   const char *buf, size_t count)
7037{
7038	struct workqueue_struct *wq = dev_to_wq(dev);
7039	struct workqueue_attrs *attrs;
7040	int affn, ret = -ENOMEM;
7041
7042	affn = parse_affn_scope(buf);
7043	if (affn < 0)
7044		return affn;
7045
7046	apply_wqattrs_lock();
7047	attrs = wq_sysfs_prep_attrs(wq);
7048	if (attrs) {
7049		attrs->affn_scope = affn;
 
 
 
 
7050		ret = apply_workqueue_attrs_locked(wq, attrs);
7051	}
7052	apply_wqattrs_unlock();
7053	free_workqueue_attrs(attrs);
7054	return ret ?: count;
7055}
7056
7057static ssize_t wq_affinity_strict_show(struct device *dev,
7058				       struct device_attribute *attr, char *buf)
7059{
7060	struct workqueue_struct *wq = dev_to_wq(dev);
7061
7062	return scnprintf(buf, PAGE_SIZE, "%d\n",
7063			 wq->unbound_attrs->affn_strict);
7064}
7065
7066static ssize_t wq_affinity_strict_store(struct device *dev,
7067					struct device_attribute *attr,
7068					const char *buf, size_t count)
7069{
7070	struct workqueue_struct *wq = dev_to_wq(dev);
7071	struct workqueue_attrs *attrs;
7072	int v, ret = -ENOMEM;
7073
7074	if (sscanf(buf, "%d", &v) != 1)
7075		return -EINVAL;
7076
7077	apply_wqattrs_lock();
7078	attrs = wq_sysfs_prep_attrs(wq);
7079	if (attrs) {
7080		attrs->affn_strict = (bool)v;
7081		ret = apply_workqueue_attrs_locked(wq, attrs);
7082	}
7083	apply_wqattrs_unlock();
7084	free_workqueue_attrs(attrs);
7085	return ret ?: count;
7086}
7087
7088static struct device_attribute wq_sysfs_unbound_attrs[] = {
 
7089	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7090	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7091	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7092	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7093	__ATTR_NULL,
7094};
7095
7096static const struct bus_type wq_subsys = {
7097	.name				= "workqueue",
7098	.dev_groups			= wq_sysfs_groups,
7099};
7100
7101/**
7102 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7103 *  @cpumask: the cpumask to set
7104 *
7105 *  The low-level workqueues cpumask is a global cpumask that limits
7106 *  the affinity of all unbound workqueues.  This function check the @cpumask
7107 *  and apply it to all unbound workqueues and updates all pwqs of them.
7108 *
7109 *  Return:	0	- Success
7110 *		-EINVAL	- Invalid @cpumask
7111 *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7112 */
7113static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7114{
7115	int ret = -EINVAL;
7116
7117	/*
7118	 * Not excluding isolated cpus on purpose.
7119	 * If the user wishes to include them, we allow that.
7120	 */
7121	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7122	if (!cpumask_empty(cpumask)) {
7123		apply_wqattrs_lock();
7124		cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7125		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
7126			ret = 0;
7127			goto out_unlock;
7128		}
7129
7130		ret = workqueue_apply_unbound_cpumask(cpumask);
7131
7132out_unlock:
7133		apply_wqattrs_unlock();
7134	}
7135
7136	return ret;
7137}
7138
7139static ssize_t __wq_cpumask_show(struct device *dev,
7140		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7141{
7142	int written;
7143
7144	mutex_lock(&wq_pool_mutex);
7145	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
 
7146	mutex_unlock(&wq_pool_mutex);
7147
7148	return written;
7149}
7150
7151static ssize_t wq_unbound_cpumask_show(struct device *dev,
7152		struct device_attribute *attr, char *buf)
7153{
7154	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7155}
7156
7157static ssize_t wq_requested_cpumask_show(struct device *dev,
7158		struct device_attribute *attr, char *buf)
7159{
7160	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7161}
7162
7163static ssize_t wq_isolated_cpumask_show(struct device *dev,
7164		struct device_attribute *attr, char *buf)
7165{
7166	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7167}
7168
7169static ssize_t wq_unbound_cpumask_store(struct device *dev,
7170		struct device_attribute *attr, const char *buf, size_t count)
7171{
7172	cpumask_var_t cpumask;
7173	int ret;
7174
7175	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7176		return -ENOMEM;
7177
7178	ret = cpumask_parse(buf, cpumask);
7179	if (!ret)
7180		ret = workqueue_set_unbound_cpumask(cpumask);
7181
7182	free_cpumask_var(cpumask);
7183	return ret ? ret : count;
7184}
7185
7186static struct device_attribute wq_sysfs_cpumask_attrs[] = {
7187	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
7188	       wq_unbound_cpumask_store),
7189	__ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
7190	__ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
7191	__ATTR_NULL,
7192};
7193
7194static int __init wq_sysfs_init(void)
7195{
7196	struct device *dev_root;
7197	int err;
7198
7199	err = subsys_virtual_register(&wq_subsys, NULL);
7200	if (err)
7201		return err;
7202
7203	dev_root = bus_get_dev_root(&wq_subsys);
7204	if (dev_root) {
7205		struct device_attribute *attr;
7206
7207		for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
7208			err = device_create_file(dev_root, attr);
7209			if (err)
7210				break;
7211		}
7212		put_device(dev_root);
7213	}
7214	return err;
7215}
7216core_initcall(wq_sysfs_init);
7217
7218static void wq_device_release(struct device *dev)
7219{
7220	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7221
7222	kfree(wq_dev);
7223}
7224
7225/**
7226 * workqueue_sysfs_register - make a workqueue visible in sysfs
7227 * @wq: the workqueue to register
7228 *
7229 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7230 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7231 * which is the preferred method.
7232 *
7233 * Workqueue user should use this function directly iff it wants to apply
7234 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7235 * apply_workqueue_attrs() may race against userland updating the
7236 * attributes.
7237 *
7238 * Return: 0 on success, -errno on failure.
7239 */
7240int workqueue_sysfs_register(struct workqueue_struct *wq)
7241{
7242	struct wq_device *wq_dev;
7243	int ret;
7244
7245	/*
7246	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7247	 * ordered workqueues.
 
7248	 */
7249	if (WARN_ON(wq->flags & __WQ_ORDERED))
7250		return -EINVAL;
7251
7252	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7253	if (!wq_dev)
7254		return -ENOMEM;
7255
7256	wq_dev->wq = wq;
7257	wq_dev->dev.bus = &wq_subsys;
7258	wq_dev->dev.release = wq_device_release;
7259	dev_set_name(&wq_dev->dev, "%s", wq->name);
7260
7261	/*
7262	 * unbound_attrs are created separately.  Suppress uevent until
7263	 * everything is ready.
7264	 */
7265	dev_set_uevent_suppress(&wq_dev->dev, true);
7266
7267	ret = device_register(&wq_dev->dev);
7268	if (ret) {
7269		put_device(&wq_dev->dev);
7270		wq->wq_dev = NULL;
7271		return ret;
7272	}
7273
7274	if (wq->flags & WQ_UNBOUND) {
7275		struct device_attribute *attr;
7276
7277		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7278			ret = device_create_file(&wq_dev->dev, attr);
7279			if (ret) {
7280				device_unregister(&wq_dev->dev);
7281				wq->wq_dev = NULL;
7282				return ret;
7283			}
7284		}
7285	}
7286
7287	dev_set_uevent_suppress(&wq_dev->dev, false);
7288	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7289	return 0;
7290}
7291
7292/**
7293 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7294 * @wq: the workqueue to unregister
7295 *
7296 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7297 */
7298static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7299{
7300	struct wq_device *wq_dev = wq->wq_dev;
7301
7302	if (!wq->wq_dev)
7303		return;
7304
7305	wq->wq_dev = NULL;
7306	device_unregister(&wq_dev->dev);
7307}
7308#else	/* CONFIG_SYSFS */
7309static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7310#endif	/* CONFIG_SYSFS */
7311
7312/*
7313 * Workqueue watchdog.
7314 *
7315 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7316 * flush dependency, a concurrency managed work item which stays RUNNING
7317 * indefinitely.  Workqueue stalls can be very difficult to debug as the
7318 * usual warning mechanisms don't trigger and internal workqueue state is
7319 * largely opaque.
7320 *
7321 * Workqueue watchdog monitors all worker pools periodically and dumps
7322 * state if some pools failed to make forward progress for a while where
7323 * forward progress is defined as the first item on ->worklist changing.
7324 *
7325 * This mechanism is controlled through the kernel parameter
7326 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7327 * corresponding sysfs parameter file.
7328 */
7329#ifdef CONFIG_WQ_WATCHDOG
7330
 
 
7331static unsigned long wq_watchdog_thresh = 30;
7332static struct timer_list wq_watchdog_timer;
 
7333
7334static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7335static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7336
7337/*
7338 * Show workers that might prevent the processing of pending work items.
7339 * The only candidates are CPU-bound workers in the running state.
7340 * Pending work items should be handled by another idle worker
7341 * in all other situations.
7342 */
7343static void show_cpu_pool_hog(struct worker_pool *pool)
7344{
7345	struct worker *worker;
7346	unsigned long irq_flags;
7347	int bkt;
7348
7349	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7350
7351	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7352		if (task_is_running(worker->task)) {
7353			/*
7354			 * Defer printing to avoid deadlocks in console
7355			 * drivers that queue work while holding locks
7356			 * also taken in their write paths.
7357			 */
7358			printk_deferred_enter();
7359
7360			pr_info("pool %d:\n", pool->id);
7361			sched_show_task(worker->task);
7362
7363			printk_deferred_exit();
7364		}
7365	}
7366
7367	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7368}
7369
7370static void show_cpu_pools_hogs(void)
7371{
7372	struct worker_pool *pool;
7373	int pi;
7374
7375	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7376
7377	rcu_read_lock();
7378
7379	for_each_pool(pool, pi) {
7380		if (pool->cpu_stall)
7381			show_cpu_pool_hog(pool);
7382
7383	}
7384
7385	rcu_read_unlock();
7386}
7387
7388static void wq_watchdog_reset_touched(void)
7389{
7390	int cpu;
7391
7392	wq_watchdog_touched = jiffies;
7393	for_each_possible_cpu(cpu)
7394		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7395}
7396
7397static void wq_watchdog_timer_fn(struct timer_list *unused)
7398{
7399	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7400	bool lockup_detected = false;
7401	bool cpu_pool_stall = false;
7402	unsigned long now = jiffies;
7403	struct worker_pool *pool;
7404	int pi;
7405
7406	if (!thresh)
7407		return;
7408
7409	rcu_read_lock();
7410
7411	for_each_pool(pool, pi) {
7412		unsigned long pool_ts, touched, ts;
7413
7414		pool->cpu_stall = false;
7415		if (list_empty(&pool->worklist))
7416			continue;
7417
7418		/*
7419		 * If a virtual machine is stopped by the host it can look to
7420		 * the watchdog like a stall.
7421		 */
7422		kvm_check_and_clear_guest_paused();
7423
7424		/* get the latest of pool and touched timestamps */
7425		if (pool->cpu >= 0)
7426			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7427		else
7428			touched = READ_ONCE(wq_watchdog_touched);
7429		pool_ts = READ_ONCE(pool->watchdog_ts);
 
7430
7431		if (time_after(pool_ts, touched))
7432			ts = pool_ts;
7433		else
7434			ts = touched;
7435
 
 
 
 
 
 
 
 
7436		/* did we stall? */
7437		if (time_after(now, ts + thresh)) {
7438			lockup_detected = true;
7439			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7440				pool->cpu_stall = true;
7441				cpu_pool_stall = true;
7442			}
7443			pr_emerg("BUG: workqueue lockup - pool");
7444			pr_cont_pool_info(pool);
7445			pr_cont(" stuck for %us!\n",
7446				jiffies_to_msecs(now - pool_ts) / 1000);
7447		}
7448
7449
7450	}
7451
7452	rcu_read_unlock();
7453
7454	if (lockup_detected)
7455		show_all_workqueues();
7456
7457	if (cpu_pool_stall)
7458		show_cpu_pools_hogs();
7459
7460	wq_watchdog_reset_touched();
7461	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7462}
7463
7464notrace void wq_watchdog_touch(int cpu)
7465{
7466	if (cpu >= 0)
7467		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7468
7469	wq_watchdog_touched = jiffies;
7470}
7471
7472static void wq_watchdog_set_thresh(unsigned long thresh)
7473{
7474	wq_watchdog_thresh = 0;
7475	del_timer_sync(&wq_watchdog_timer);
7476
7477	if (thresh) {
7478		wq_watchdog_thresh = thresh;
7479		wq_watchdog_reset_touched();
7480		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7481	}
7482}
7483
7484static int wq_watchdog_param_set_thresh(const char *val,
7485					const struct kernel_param *kp)
7486{
7487	unsigned long thresh;
7488	int ret;
7489
7490	ret = kstrtoul(val, 0, &thresh);
7491	if (ret)
7492		return ret;
7493
7494	if (system_wq)
7495		wq_watchdog_set_thresh(thresh);
7496	else
7497		wq_watchdog_thresh = thresh;
7498
7499	return 0;
7500}
7501
7502static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7503	.set	= wq_watchdog_param_set_thresh,
7504	.get	= param_get_ulong,
7505};
7506
7507module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7508		0644);
7509
7510static void wq_watchdog_init(void)
7511{
7512	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7513	wq_watchdog_set_thresh(wq_watchdog_thresh);
7514}
7515
7516#else	/* CONFIG_WQ_WATCHDOG */
7517
7518static inline void wq_watchdog_init(void) { }
7519
7520#endif	/* CONFIG_WQ_WATCHDOG */
7521
7522static void bh_pool_kick_normal(struct irq_work *irq_work)
7523{
7524	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7525}
7526
7527static void bh_pool_kick_highpri(struct irq_work *irq_work)
7528{
7529	raise_softirq_irqoff(HI_SOFTIRQ);
7530}
7531
7532static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7533{
7534	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7535		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7536			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7537		return;
7538	}
7539
7540	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7541}
 
 
 
 
 
 
 
 
 
 
 
 
7542
7543static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7544{
7545	BUG_ON(init_worker_pool(pool));
7546	pool->cpu = cpu;
7547	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7548	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7549	pool->attrs->nice = nice;
7550	pool->attrs->affn_strict = true;
7551	pool->node = cpu_to_node(cpu);
7552
7553	/* alloc pool ID */
7554	mutex_lock(&wq_pool_mutex);
7555	BUG_ON(worker_pool_assign_id(pool));
7556	mutex_unlock(&wq_pool_mutex);
7557}
7558
7559/**
7560 * workqueue_init_early - early init for workqueue subsystem
7561 *
7562 * This is the first step of three-staged workqueue subsystem initialization and
7563 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7564 * up. It sets up all the data structures and system workqueues and allows early
7565 * boot code to create workqueues and queue/cancel work items. Actual work item
7566 * execution starts only after kthreads can be created and scheduled right
7567 * before early initcalls.
7568 */
7569void __init workqueue_init_early(void)
7570{
7571	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7572	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7573	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7574						       bh_pool_kick_highpri };
7575	int i, cpu;
7576
7577	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7578
7579	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7580	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7581	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7582
7583	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7584	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7585	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7586	if (!cpumask_empty(&wq_cmdline_cpumask))
7587		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7588
7589	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7590
7591	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7592
7593	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7594	BUG_ON(!wq_update_pod_attrs_buf);
7595
7596	/*
7597	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7598	 * This allows workqueue items to be moved to HK CPUs.
7599	 */
7600	if (housekeeping_enabled(HK_TYPE_TICK))
7601		wq_power_efficient = true;
7602
7603	/* initialize WQ_AFFN_SYSTEM pods */
7604	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7605	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7606	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7607	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7608
7609	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7610
7611	pt->nr_pods = 1;
7612	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7613	pt->pod_node[0] = NUMA_NO_NODE;
7614	pt->cpu_pod[0] = 0;
7615
7616	/* initialize BH and CPU pools */
7617	for_each_possible_cpu(cpu) {
7618		struct worker_pool *pool;
7619
7620		i = 0;
7621		for_each_bh_worker_pool(pool, cpu) {
7622			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7623			pool->flags |= POOL_BH;
7624			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7625			i++;
 
 
 
 
 
 
7626		}
7627
7628		i = 0;
7629		for_each_cpu_worker_pool(pool, cpu)
7630			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7631	}
7632
7633	/* create default unbound and ordered wq attrs */
7634	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7635		struct workqueue_attrs *attrs;
7636
7637		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7638		attrs->nice = std_nice[i];
7639		unbound_std_wq_attrs[i] = attrs;
7640
7641		/*
7642		 * An ordered wq should have only one pwq as ordering is
7643		 * guaranteed by max_active which is enforced by pwqs.
 
7644		 */
7645		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7646		attrs->nice = std_nice[i];
7647		attrs->ordered = true;
7648		ordered_wq_attrs[i] = attrs;
7649	}
7650
7651	system_wq = alloc_workqueue("events", 0, 0);
7652	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7653	system_long_wq = alloc_workqueue("events_long", 0, 0);
7654	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7655					    WQ_MAX_ACTIVE);
7656	system_freezable_wq = alloc_workqueue("events_freezable",
7657					      WQ_FREEZABLE, 0);
7658	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7659					      WQ_POWER_EFFICIENT, 0);
7660	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7661					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7662					      0);
7663	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7664	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7665					       WQ_BH | WQ_HIGHPRI, 0);
7666	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7667	       !system_unbound_wq || !system_freezable_wq ||
7668	       !system_power_efficient_wq ||
7669	       !system_freezable_power_efficient_wq ||
7670	       !system_bh_wq || !system_bh_highpri_wq);
7671}
7672
7673static void __init wq_cpu_intensive_thresh_init(void)
7674{
7675	unsigned long thresh;
7676	unsigned long bogo;
7677
7678	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7679	BUG_ON(IS_ERR(pwq_release_worker));
7680
7681	/* if the user set it to a specific value, keep it */
7682	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7683		return;
7684
7685	/*
7686	 * The default of 10ms is derived from the fact that most modern (as of
7687	 * 2023) processors can do a lot in 10ms and that it's just below what
7688	 * most consider human-perceivable. However, the kernel also runs on a
7689	 * lot slower CPUs including microcontrollers where the threshold is way
7690	 * too low.
7691	 *
7692	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7693	 * This is by no means accurate but it doesn't have to be. The mechanism
7694	 * is still useful even when the threshold is fully scaled up. Also, as
7695	 * the reports would usually be applicable to everyone, some machines
7696	 * operating on longer thresholds won't significantly diminish their
7697	 * usefulness.
7698	 */
7699	thresh = 10 * USEC_PER_MSEC;
7700
7701	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7702	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7703	if (bogo < 4000)
7704		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7705
7706	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7707		 loops_per_jiffy, bogo, thresh);
7708
7709	wq_cpu_intensive_thresh_us = thresh;
7710}
7711
7712/**
7713 * workqueue_init - bring workqueue subsystem fully online
7714 *
7715 * This is the second step of three-staged workqueue subsystem initialization
7716 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7717 * been created and work items queued on them, but there are no kworkers
7718 * executing the work items yet. Populate the worker pools with the initial
7719 * workers and enable future kworker creations.
7720 */
7721void __init workqueue_init(void)
7722{
7723	struct workqueue_struct *wq;
7724	struct worker_pool *pool;
7725	int cpu, bkt;
7726
7727	wq_cpu_intensive_thresh_init();
 
 
 
 
 
 
 
7728
7729	mutex_lock(&wq_pool_mutex);
7730
7731	/*
7732	 * Per-cpu pools created earlier could be missing node hint. Fix them
7733	 * up. Also, create a rescuer for workqueues that requested it.
7734	 */
7735	for_each_possible_cpu(cpu) {
7736		for_each_bh_worker_pool(pool, cpu)
7737			pool->node = cpu_to_node(cpu);
7738		for_each_cpu_worker_pool(pool, cpu)
7739			pool->node = cpu_to_node(cpu);
 
7740	}
7741
7742	list_for_each_entry(wq, &workqueues, list) {
7743		WARN(init_rescuer(wq),
7744		     "workqueue: failed to create early rescuer for %s",
7745		     wq->name);
7746	}
7747
7748	mutex_unlock(&wq_pool_mutex);
7749
7750	/*
7751	 * Create the initial workers. A BH pool has one pseudo worker that
7752	 * represents the shared BH execution context and thus doesn't get
7753	 * affected by hotplug events. Create the BH pseudo workers for all
7754	 * possible CPUs here.
7755	 */
7756	for_each_possible_cpu(cpu)
7757		for_each_bh_worker_pool(pool, cpu)
7758			BUG_ON(!create_worker(pool));
7759
7760	for_each_online_cpu(cpu) {
7761		for_each_cpu_worker_pool(pool, cpu) {
7762			pool->flags &= ~POOL_DISASSOCIATED;
7763			BUG_ON(!create_worker(pool));
7764		}
7765	}
7766
7767	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7768		BUG_ON(!create_worker(pool));
7769
7770	wq_online = true;
7771	wq_watchdog_init();
7772}
7773
7774/*
7775 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7776 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7777 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7778 */
7779static void __init init_pod_type(struct wq_pod_type *pt,
7780				 bool (*cpus_share_pod)(int, int))
7781{
7782	int cur, pre, cpu, pod;
7783
7784	pt->nr_pods = 0;
7785
7786	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7787	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7788	BUG_ON(!pt->cpu_pod);
7789
7790	for_each_possible_cpu(cur) {
7791		for_each_possible_cpu(pre) {
7792			if (pre >= cur) {
7793				pt->cpu_pod[cur] = pt->nr_pods++;
7794				break;
7795			}
7796			if (cpus_share_pod(cur, pre)) {
7797				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7798				break;
7799			}
7800		}
7801	}
7802
7803	/* init the rest to match @pt->cpu_pod[] */
7804	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7805	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7806	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7807
7808	for (pod = 0; pod < pt->nr_pods; pod++)
7809		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7810
7811	for_each_possible_cpu(cpu) {
7812		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7813		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7814	}
7815}
7816
7817static bool __init cpus_dont_share(int cpu0, int cpu1)
7818{
7819	return false;
7820}
7821
7822static bool __init cpus_share_smt(int cpu0, int cpu1)
7823{
7824#ifdef CONFIG_SCHED_SMT
7825	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7826#else
7827	return false;
7828#endif
7829}
7830
7831static bool __init cpus_share_numa(int cpu0, int cpu1)
7832{
7833	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7834}
7835
7836/**
7837 * workqueue_init_topology - initialize CPU pods for unbound workqueues
7838 *
7839 * This is the third step of three-staged workqueue subsystem initialization and
7840 * invoked after SMP and topology information are fully initialized. It
7841 * initializes the unbound CPU pods accordingly.
7842 */
7843void __init workqueue_init_topology(void)
7844{
7845	struct workqueue_struct *wq;
7846	int cpu;
7847
7848	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7849	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7850	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7851	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7852
7853	wq_topo_initialized = true;
7854
7855	mutex_lock(&wq_pool_mutex);
7856
7857	/*
7858	 * Workqueues allocated earlier would have all CPUs sharing the default
7859	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7860	 * combinations to apply per-pod sharing.
7861	 */
7862	list_for_each_entry(wq, &workqueues, list) {
7863		for_each_online_cpu(cpu)
7864			wq_update_pod(wq, cpu, cpu, true);
7865		if (wq->flags & WQ_UNBOUND) {
7866			mutex_lock(&wq->mutex);
7867			wq_update_node_max_active(wq, -1);
7868			mutex_unlock(&wq->mutex);
7869		}
7870	}
7871
7872	mutex_unlock(&wq_pool_mutex);
7873}
7874
7875void __warn_flushing_systemwide_wq(void)
7876{
7877	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7878	dump_stack();
7879}
7880EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
7881
7882static int __init workqueue_unbound_cpus_setup(char *str)
7883{
7884	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7885		cpumask_clear(&wq_cmdline_cpumask);
7886		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7887	}
7888
7889	return 1;
7890}
7891__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);