Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 * Generic waiting primitives.
  3 *
  4 * (C) 2004 Nadia Yvette Chambers, Oracle
  5 */
  6#include <linux/init.h>
  7#include <linux/export.h>
  8#include <linux/sched.h>
  9#include <linux/mm.h>
 10#include <linux/wait.h>
 11#include <linux/hash.h>
 12#include <linux/kthread.h>
 13
 14void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
 15{
 16	spin_lock_init(&q->lock);
 17	lockdep_set_class_and_name(&q->lock, key, name);
 18	INIT_LIST_HEAD(&q->task_list);
 19}
 20
 21EXPORT_SYMBOL(__init_waitqueue_head);
 22
 23void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
 24{
 25	unsigned long flags;
 26
 27	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
 28	spin_lock_irqsave(&q->lock, flags);
 29	__add_wait_queue(q, wait);
 30	spin_unlock_irqrestore(&q->lock, flags);
 31}
 32EXPORT_SYMBOL(add_wait_queue);
 33
 34void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
 35{
 36	unsigned long flags;
 37
 38	wait->flags |= WQ_FLAG_EXCLUSIVE;
 39	spin_lock_irqsave(&q->lock, flags);
 40	__add_wait_queue_tail(q, wait);
 41	spin_unlock_irqrestore(&q->lock, flags);
 42}
 43EXPORT_SYMBOL(add_wait_queue_exclusive);
 44
 45void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
 46{
 47	unsigned long flags;
 48
 49	spin_lock_irqsave(&q->lock, flags);
 50	__remove_wait_queue(q, wait);
 51	spin_unlock_irqrestore(&q->lock, flags);
 
 52}
 53EXPORT_SYMBOL(remove_wait_queue);
 
 
 
 
 54
 
 
 
 
 
 55
 56/*
 57 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 58 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
 59 * number) then we wake all the non-exclusive tasks and one exclusive task.
 
 
 
 
 60 *
 61 * There are circumstances in which we can try to wake a task which has already
 62 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
 63 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 64 */
 65static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
 66			int nr_exclusive, int wake_flags, void *key)
 67{
 68	wait_queue_t *curr, *next;
 
 
 
 
 69
 70	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
 
 
 
 71		unsigned flags = curr->flags;
 
 72
 73		if (curr->func(curr, mode, wake_flags, key) &&
 74				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
 
 
 75			break;
 76	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 77}
 78
 79/**
 80 * __wake_up - wake up threads blocked on a waitqueue.
 81 * @q: the waitqueue
 82 * @mode: which threads
 83 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 84 * @key: is directly passed to the wakeup function
 85 *
 86 * It may be assumed that this function implies a write memory barrier before
 87 * changing the task state if and only if any tasks are woken up.
 
 88 */
 89void __wake_up(wait_queue_head_t *q, unsigned int mode,
 90			int nr_exclusive, void *key)
 91{
 92	unsigned long flags;
 93
 94	spin_lock_irqsave(&q->lock, flags);
 95	__wake_up_common(q, mode, nr_exclusive, 0, key);
 96	spin_unlock_irqrestore(&q->lock, flags);
 97}
 98EXPORT_SYMBOL(__wake_up);
 99
 
 
 
 
 
100/*
101 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
102 */
103void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
104{
105	__wake_up_common(q, mode, nr, 0, NULL);
106}
107EXPORT_SYMBOL_GPL(__wake_up_locked);
108
109void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
110{
111	__wake_up_common(q, mode, 1, 0, key);
112}
113EXPORT_SYMBOL_GPL(__wake_up_locked_key);
114
115/**
116 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
117 * @q: the waitqueue
118 * @mode: which threads
119 * @nr_exclusive: how many wake-one or wake-many threads to wake up
120 * @key: opaque value to be passed to wakeup targets
121 *
122 * The sync wakeup differs that the waker knows that it will schedule
123 * away soon, so while the target thread will be woken up, it will not
124 * be migrated to another CPU - ie. the two threads are 'synchronized'
125 * with each other. This can prevent needless bouncing between CPUs.
126 *
127 * On UP it can prevent extra preemption.
128 *
129 * It may be assumed that this function implies a write memory barrier before
130 * changing the task state if and only if any tasks are woken up.
131 */
132void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
133			int nr_exclusive, void *key)
134{
135	unsigned long flags;
136	int wake_flags = 1; /* XXX WF_SYNC */
137
138	if (unlikely(!q))
139		return;
140
141	if (unlikely(nr_exclusive != 1))
142		wake_flags = 0;
143
144	spin_lock_irqsave(&q->lock, flags);
145	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
146	spin_unlock_irqrestore(&q->lock, flags);
147}
148EXPORT_SYMBOL_GPL(__wake_up_sync_key);
149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150/*
151 * __wake_up_sync - see __wake_up_sync_key()
152 */
153void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
154{
155	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
156}
157EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
158
 
 
 
 
 
 
 
159/*
160 * Note: we use "set_current_state()" _after_ the wait-queue add,
161 * because we need a memory barrier there on SMP, so that any
162 * wake-function that tests for the wait-queue being active
163 * will be guaranteed to see waitqueue addition _or_ subsequent
164 * tests in this thread will see the wakeup having taken place.
165 *
166 * The spin_unlock() itself is semi-permeable and only protects
167 * one way (it only protects stuff inside the critical region and
168 * stops them from bleeding out - it would still allow subsequent
169 * loads to move into the critical region).
170 */
171void
172prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
173{
174	unsigned long flags;
175
176	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
177	spin_lock_irqsave(&q->lock, flags);
178	if (list_empty(&wait->task_list))
179		__add_wait_queue(q, wait);
180	set_current_state(state);
181	spin_unlock_irqrestore(&q->lock, flags);
182}
183EXPORT_SYMBOL(prepare_to_wait);
184
185void
186prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
 
187{
188	unsigned long flags;
 
189
190	wait->flags |= WQ_FLAG_EXCLUSIVE;
191	spin_lock_irqsave(&q->lock, flags);
192	if (list_empty(&wait->task_list))
193		__add_wait_queue_tail(q, wait);
 
 
194	set_current_state(state);
195	spin_unlock_irqrestore(&q->lock, flags);
 
196}
197EXPORT_SYMBOL(prepare_to_wait_exclusive);
198
199void init_wait_entry(wait_queue_t *wait, int flags)
200{
201	wait->flags = flags;
202	wait->private = current;
203	wait->func = autoremove_wake_function;
204	INIT_LIST_HEAD(&wait->task_list);
205}
206EXPORT_SYMBOL(init_wait_entry);
207
208long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
209{
210	unsigned long flags;
211	long ret = 0;
212
213	spin_lock_irqsave(&q->lock, flags);
214	if (unlikely(signal_pending_state(state, current))) {
215		/*
216		 * Exclusive waiter must not fail if it was selected by wakeup,
217		 * it should "consume" the condition we were waiting for.
218		 *
219		 * The caller will recheck the condition and return success if
220		 * we were already woken up, we can not miss the event because
221		 * wakeup locks/unlocks the same q->lock.
222		 *
223		 * But we need to ensure that set-condition + wakeup after that
224		 * can't see us, it should wake up another exclusive waiter if
225		 * we fail.
226		 */
227		list_del_init(&wait->task_list);
228		ret = -ERESTARTSYS;
229	} else {
230		if (list_empty(&wait->task_list)) {
231			if (wait->flags & WQ_FLAG_EXCLUSIVE)
232				__add_wait_queue_tail(q, wait);
233			else
234				__add_wait_queue(q, wait);
235		}
236		set_current_state(state);
237	}
238	spin_unlock_irqrestore(&q->lock, flags);
239
240	return ret;
241}
242EXPORT_SYMBOL(prepare_to_wait_event);
243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244/**
245 * finish_wait - clean up after waiting in a queue
246 * @q: waitqueue waited on
247 * @wait: wait descriptor
248 *
249 * Sets current thread back to running state and removes
250 * the wait descriptor from the given waitqueue if still
251 * queued.
252 */
253void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
254{
255	unsigned long flags;
256
257	__set_current_state(TASK_RUNNING);
258	/*
259	 * We can check for list emptiness outside the lock
260	 * IFF:
261	 *  - we use the "careful" check that verifies both
262	 *    the next and prev pointers, so that there cannot
263	 *    be any half-pending updates in progress on other
264	 *    CPU's that we haven't seen yet (and that might
265	 *    still change the stack area.
266	 * and
267	 *  - all other users take the lock (ie we can only
268	 *    have _one_ other CPU that looks at or modifies
269	 *    the list).
270	 */
271	if (!list_empty_careful(&wait->task_list)) {
272		spin_lock_irqsave(&q->lock, flags);
273		list_del_init(&wait->task_list);
274		spin_unlock_irqrestore(&q->lock, flags);
275	}
276}
277EXPORT_SYMBOL(finish_wait);
278
279int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
280{
281	int ret = default_wake_function(wait, mode, sync, key);
282
283	if (ret)
284		list_del_init(&wait->task_list);
 
285	return ret;
286}
287EXPORT_SYMBOL(autoremove_wake_function);
288
289static inline bool is_kthread_should_stop(void)
290{
291	return (current->flags & PF_KTHREAD) && kthread_should_stop();
292}
293
294/*
295 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
296 *
297 * add_wait_queue(&wq, &wait);
298 * for (;;) {
299 *     if (condition)
300 *         break;
301 *
302 *     p->state = mode;				condition = true;
303 *     smp_mb(); // A				smp_wmb(); // C
304 *     if (!wait->flags & WQ_FLAG_WOKEN)	wait->flags |= WQ_FLAG_WOKEN;
305 *         schedule()				try_to_wake_up();
306 *     p->state = TASK_RUNNING;		    ~~~~~~~~~~~~~~~~~~
307 *     wait->flags &= ~WQ_FLAG_WOKEN;		condition = true;
308 *     smp_mb() // B				smp_wmb(); // C
309 *						wait->flags |= WQ_FLAG_WOKEN;
310 * }
311 * remove_wait_queue(&wq, &wait);
312 *
 
 
 
 
 
 
 
 
 
313 */
314long wait_woken(wait_queue_t *wait, unsigned mode, long timeout)
315{
316	set_current_state(mode); /* A */
317	/*
318	 * The above implies an smp_mb(), which matches with the smp_wmb() from
319	 * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
320	 * also observe all state before the wakeup.
 
321	 */
322	if (!(wait->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
 
323		timeout = schedule_timeout(timeout);
324	__set_current_state(TASK_RUNNING);
325
326	/*
327	 * The below implies an smp_mb(), it too pairs with the smp_wmb() from
328	 * woken_wake_function() such that we must either observe the wait
329	 * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
330	 * an event.
331	 */
332	smp_store_mb(wait->flags, wait->flags & ~WQ_FLAG_WOKEN); /* B */
333
334	return timeout;
335}
336EXPORT_SYMBOL(wait_woken);
337
338int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
339{
340	/*
341	 * Although this function is called under waitqueue lock, LOCK
342	 * doesn't imply write barrier and the users expects write
343	 * barrier semantics on wakeup functions.  The following
344	 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
345	 * and is paired with smp_store_mb() in wait_woken().
346	 */
347	smp_wmb(); /* C */
348	wait->flags |= WQ_FLAG_WOKEN;
349
350	return default_wake_function(wait, mode, sync, key);
351}
352EXPORT_SYMBOL(woken_wake_function);
353
354int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
355{
356	struct wait_bit_key *key = arg;
357	struct wait_bit_queue *wait_bit
358		= container_of(wait, struct wait_bit_queue, wait);
359
360	if (wait_bit->key.flags != key->flags ||
361			wait_bit->key.bit_nr != key->bit_nr ||
362			test_bit(key->bit_nr, key->flags))
363		return 0;
364	else
365		return autoremove_wake_function(wait, mode, sync, key);
366}
367EXPORT_SYMBOL(wake_bit_function);
368
369/*
370 * To allow interruptible waiting and asynchronous (i.e. nonblocking)
371 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
372 * permitted return codes. Nonzero return codes halt waiting and return.
373 */
374int __sched
375__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
376	      wait_bit_action_f *action, unsigned mode)
377{
378	int ret = 0;
379
380	do {
381		prepare_to_wait(wq, &q->wait, mode);
382		if (test_bit(q->key.bit_nr, q->key.flags))
383			ret = (*action)(&q->key, mode);
384	} while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
385	finish_wait(wq, &q->wait);
386	return ret;
387}
388EXPORT_SYMBOL(__wait_on_bit);
389
390int __sched out_of_line_wait_on_bit(void *word, int bit,
391				    wait_bit_action_f *action, unsigned mode)
392{
393	wait_queue_head_t *wq = bit_waitqueue(word, bit);
394	DEFINE_WAIT_BIT(wait, word, bit);
395
396	return __wait_on_bit(wq, &wait, action, mode);
397}
398EXPORT_SYMBOL(out_of_line_wait_on_bit);
399
400int __sched out_of_line_wait_on_bit_timeout(
401	void *word, int bit, wait_bit_action_f *action,
402	unsigned mode, unsigned long timeout)
403{
404	wait_queue_head_t *wq = bit_waitqueue(word, bit);
405	DEFINE_WAIT_BIT(wait, word, bit);
406
407	wait.key.timeout = jiffies + timeout;
408	return __wait_on_bit(wq, &wait, action, mode);
409}
410EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
411
412int __sched
413__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
414			wait_bit_action_f *action, unsigned mode)
415{
416	int ret = 0;
417
418	for (;;) {
419		prepare_to_wait_exclusive(wq, &q->wait, mode);
420		if (test_bit(q->key.bit_nr, q->key.flags)) {
421			ret = action(&q->key, mode);
422			/*
423			 * See the comment in prepare_to_wait_event().
424			 * finish_wait() does not necessarily takes wq->lock,
425			 * but test_and_set_bit() implies mb() which pairs with
426			 * smp_mb__after_atomic() before wake_up_page().
427			 */
428			if (ret)
429				finish_wait(wq, &q->wait);
430		}
431		if (!test_and_set_bit(q->key.bit_nr, q->key.flags)) {
432			if (!ret)
433				finish_wait(wq, &q->wait);
434			return 0;
435		} else if (ret) {
436			return ret;
437		}
438	}
439}
440EXPORT_SYMBOL(__wait_on_bit_lock);
441
442int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
443					 wait_bit_action_f *action, unsigned mode)
444{
445	wait_queue_head_t *wq = bit_waitqueue(word, bit);
446	DEFINE_WAIT_BIT(wait, word, bit);
447
448	return __wait_on_bit_lock(wq, &wait, action, mode);
449}
450EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
451
452void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
453{
454	struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
455	if (waitqueue_active(wq))
456		__wake_up(wq, TASK_NORMAL, 1, &key);
457}
458EXPORT_SYMBOL(__wake_up_bit);
459
460/**
461 * wake_up_bit - wake up a waiter on a bit
462 * @word: the word being waited on, a kernel virtual address
463 * @bit: the bit of the word being waited on
464 *
465 * There is a standard hashed waitqueue table for generic use. This
466 * is the part of the hashtable's accessor API that wakes up waiters
467 * on a bit. For instance, if one were to have waiters on a bitflag,
468 * one would call wake_up_bit() after clearing the bit.
469 *
470 * In order for this to function properly, as it uses waitqueue_active()
471 * internally, some kind of memory barrier must be done prior to calling
472 * this. Typically, this will be smp_mb__after_atomic(), but in some
473 * cases where bitflags are manipulated non-atomically under a lock, one
474 * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
475 * because spin_unlock() does not guarantee a memory barrier.
476 */
477void wake_up_bit(void *word, int bit)
478{
479	__wake_up_bit(bit_waitqueue(word, bit), word, bit);
480}
481EXPORT_SYMBOL(wake_up_bit);
482
483/*
484 * Manipulate the atomic_t address to produce a better bit waitqueue table hash
485 * index (we're keying off bit -1, but that would produce a horrible hash
486 * value).
487 */
488static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
489{
490	if (BITS_PER_LONG == 64) {
491		unsigned long q = (unsigned long)p;
492		return bit_waitqueue((void *)(q & ~1), q & 1);
493	}
494	return bit_waitqueue(p, 0);
495}
496
497static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
498				  void *arg)
499{
500	struct wait_bit_key *key = arg;
501	struct wait_bit_queue *wait_bit
502		= container_of(wait, struct wait_bit_queue, wait);
503	atomic_t *val = key->flags;
504
505	if (wait_bit->key.flags != key->flags ||
506	    wait_bit->key.bit_nr != key->bit_nr ||
507	    atomic_read(val) != 0)
508		return 0;
509	return autoremove_wake_function(wait, mode, sync, key);
510}
511
512/*
513 * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
514 * the actions of __wait_on_atomic_t() are permitted return codes.  Nonzero
515 * return codes halt waiting and return.
516 */
517static __sched
518int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
519		       int (*action)(atomic_t *), unsigned mode)
520{
521	atomic_t *val;
522	int ret = 0;
523
524	do {
525		prepare_to_wait(wq, &q->wait, mode);
526		val = q->key.flags;
527		if (atomic_read(val) == 0)
528			break;
529		ret = (*action)(val);
530	} while (!ret && atomic_read(val) != 0);
531	finish_wait(wq, &q->wait);
532	return ret;
533}
534
535#define DEFINE_WAIT_ATOMIC_T(name, p)					\
536	struct wait_bit_queue name = {					\
537		.key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p),		\
538		.wait	= {						\
539			.private	= current,			\
540			.func		= wake_atomic_t_function,	\
541			.task_list	=				\
542				LIST_HEAD_INIT((name).wait.task_list),	\
543		},							\
544	}
545
546__sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
547					 unsigned mode)
548{
549	wait_queue_head_t *wq = atomic_t_waitqueue(p);
550	DEFINE_WAIT_ATOMIC_T(wait, p);
551
552	return __wait_on_atomic_t(wq, &wait, action, mode);
553}
554EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
555
556/**
557 * wake_up_atomic_t - Wake up a waiter on a atomic_t
558 * @p: The atomic_t being waited on, a kernel virtual address
559 *
560 * Wake up anyone waiting for the atomic_t to go to zero.
561 *
562 * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
563 * check is done by the waiter's wake function, not the by the waker itself).
564 */
565void wake_up_atomic_t(atomic_t *p)
566{
567	__wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
568}
569EXPORT_SYMBOL(wake_up_atomic_t);
570
571__sched int bit_wait(struct wait_bit_key *word, int mode)
572{
573	schedule();
574	if (signal_pending_state(mode, current))
575		return -EINTR;
576	return 0;
577}
578EXPORT_SYMBOL(bit_wait);
579
580__sched int bit_wait_io(struct wait_bit_key *word, int mode)
581{
582	io_schedule();
583	if (signal_pending_state(mode, current))
584		return -EINTR;
585	return 0;
586}
587EXPORT_SYMBOL(bit_wait_io);
588
589__sched int bit_wait_timeout(struct wait_bit_key *word, int mode)
590{
591	unsigned long now = READ_ONCE(jiffies);
592	if (time_after_eq(now, word->timeout))
593		return -EAGAIN;
594	schedule_timeout(word->timeout - now);
595	if (signal_pending_state(mode, current))
596		return -EINTR;
597	return 0;
598}
599EXPORT_SYMBOL_GPL(bit_wait_timeout);
600
601__sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode)
602{
603	unsigned long now = READ_ONCE(jiffies);
604	if (time_after_eq(now, word->timeout))
605		return -EAGAIN;
606	io_schedule_timeout(word->timeout - now);
607	if (signal_pending_state(mode, current))
608		return -EINTR;
609	return 0;
610}
611EXPORT_SYMBOL_GPL(bit_wait_io_timeout);
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Generic waiting primitives.
  4 *
  5 * (C) 2004 Nadia Yvette Chambers, Oracle
  6 */
  7
  8void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key)
  9{
 10	spin_lock_init(&wq_head->lock);
 11	lockdep_set_class_and_name(&wq_head->lock, key, name);
 12	INIT_LIST_HEAD(&wq_head->head);
 
 
 
 
 
 
 
 13}
 14
 15EXPORT_SYMBOL(__init_waitqueue_head);
 16
 17void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 18{
 19	unsigned long flags;
 20
 21	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
 22	spin_lock_irqsave(&wq_head->lock, flags);
 23	__add_wait_queue(wq_head, wq_entry);
 24	spin_unlock_irqrestore(&wq_head->lock, flags);
 25}
 26EXPORT_SYMBOL(add_wait_queue);
 27
 28void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 29{
 30	unsigned long flags;
 31
 32	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
 33	spin_lock_irqsave(&wq_head->lock, flags);
 34	__add_wait_queue_entry_tail(wq_head, wq_entry);
 35	spin_unlock_irqrestore(&wq_head->lock, flags);
 36}
 37EXPORT_SYMBOL(add_wait_queue_exclusive);
 38
 39void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 40{
 41	unsigned long flags;
 42
 43	wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY;
 44	spin_lock_irqsave(&wq_head->lock, flags);
 45	__add_wait_queue(wq_head, wq_entry);
 46	spin_unlock_irqrestore(&wq_head->lock, flags);
 47}
 48EXPORT_SYMBOL_GPL(add_wait_queue_priority);
 49
 50void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 51{
 52	unsigned long flags;
 53
 54	spin_lock_irqsave(&wq_head->lock, flags);
 55	__remove_wait_queue(wq_head, wq_entry);
 56	spin_unlock_irqrestore(&wq_head->lock, flags);
 57}
 58EXPORT_SYMBOL(remove_wait_queue);
 59
 60/*
 61 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 62 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
 63 * number) then we wake that number of exclusive tasks, and potentially all
 64 * the non-exclusive tasks. Normally, exclusive tasks will be at the end of
 65 * the list and any non-exclusive tasks will be woken first. A priority task
 66 * may be at the head of the list, and can consume the event without any other
 67 * tasks being woken.
 68 *
 69 * There are circumstances in which we can try to wake a task which has already
 70 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
 71 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 72 */
 73static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode,
 74			int nr_exclusive, int wake_flags, void *key)
 75{
 76	wait_queue_entry_t *curr, *next;
 77
 78	lockdep_assert_held(&wq_head->lock);
 79
 80	curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry);
 81
 82	if (&curr->entry == &wq_head->head)
 83		return nr_exclusive;
 84
 85	list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) {
 86		unsigned flags = curr->flags;
 87		int ret;
 88
 89		ret = curr->func(curr, mode, wake_flags, key);
 90		if (ret < 0)
 91			break;
 92		if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
 93			break;
 94	}
 95
 96	return nr_exclusive;
 97}
 98
 99static int __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode,
100			int nr_exclusive, int wake_flags, void *key)
101{
102	unsigned long flags;
103	int remaining;
104
105	spin_lock_irqsave(&wq_head->lock, flags);
106	remaining = __wake_up_common(wq_head, mode, nr_exclusive, wake_flags,
107			key);
108	spin_unlock_irqrestore(&wq_head->lock, flags);
109
110	return nr_exclusive - remaining;
111}
112
113/**
114 * __wake_up - wake up threads blocked on a waitqueue.
115 * @wq_head: the waitqueue
116 * @mode: which threads
117 * @nr_exclusive: how many wake-one or wake-many threads to wake up
118 * @key: is directly passed to the wakeup function
119 *
120 * If this function wakes up a task, it executes a full memory barrier
121 * before accessing the task state.  Returns the number of exclusive
122 * tasks that were awaken.
123 */
124int __wake_up(struct wait_queue_head *wq_head, unsigned int mode,
125	      int nr_exclusive, void *key)
126{
127	return __wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key);
 
 
 
 
128}
129EXPORT_SYMBOL(__wake_up);
130
131void __wake_up_on_current_cpu(struct wait_queue_head *wq_head, unsigned int mode, void *key)
132{
133	__wake_up_common_lock(wq_head, mode, 1, WF_CURRENT_CPU, key);
134}
135
136/*
137 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
138 */
139void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr)
140{
141	__wake_up_common(wq_head, mode, nr, 0, NULL);
142}
143EXPORT_SYMBOL_GPL(__wake_up_locked);
144
145void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key)
146{
147	__wake_up_common(wq_head, mode, 1, 0, key);
148}
149EXPORT_SYMBOL_GPL(__wake_up_locked_key);
150
151/**
152 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
153 * @wq_head: the waitqueue
154 * @mode: which threads
 
155 * @key: opaque value to be passed to wakeup targets
156 *
157 * The sync wakeup differs that the waker knows that it will schedule
158 * away soon, so while the target thread will be woken up, it will not
159 * be migrated to another CPU - ie. the two threads are 'synchronized'
160 * with each other. This can prevent needless bouncing between CPUs.
161 *
162 * On UP it can prevent extra preemption.
163 *
164 * If this function wakes up a task, it executes a full memory barrier before
165 * accessing the task state.
166 */
167void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode,
168			void *key)
169{
170	if (unlikely(!wq_head))
 
 
 
171		return;
172
173	__wake_up_common_lock(wq_head, mode, 1, WF_SYNC, key);
 
 
 
 
 
174}
175EXPORT_SYMBOL_GPL(__wake_up_sync_key);
176
177/**
178 * __wake_up_locked_sync_key - wake up a thread blocked on a locked waitqueue.
179 * @wq_head: the waitqueue
180 * @mode: which threads
181 * @key: opaque value to be passed to wakeup targets
182 *
183 * The sync wakeup differs in that the waker knows that it will schedule
184 * away soon, so while the target thread will be woken up, it will not
185 * be migrated to another CPU - ie. the two threads are 'synchronized'
186 * with each other. This can prevent needless bouncing between CPUs.
187 *
188 * On UP it can prevent extra preemption.
189 *
190 * If this function wakes up a task, it executes a full memory barrier before
191 * accessing the task state.
192 */
193void __wake_up_locked_sync_key(struct wait_queue_head *wq_head,
194			       unsigned int mode, void *key)
195{
196        __wake_up_common(wq_head, mode, 1, WF_SYNC, key);
197}
198EXPORT_SYMBOL_GPL(__wake_up_locked_sync_key);
199
200/*
201 * __wake_up_sync - see __wake_up_sync_key()
202 */
203void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode)
204{
205	__wake_up_sync_key(wq_head, mode, NULL);
206}
207EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
208
209void __wake_up_pollfree(struct wait_queue_head *wq_head)
210{
211	__wake_up(wq_head, TASK_NORMAL, 0, poll_to_key(EPOLLHUP | POLLFREE));
212	/* POLLFREE must have cleared the queue. */
213	WARN_ON_ONCE(waitqueue_active(wq_head));
214}
215
216/*
217 * Note: we use "set_current_state()" _after_ the wait-queue add,
218 * because we need a memory barrier there on SMP, so that any
219 * wake-function that tests for the wait-queue being active
220 * will be guaranteed to see waitqueue addition _or_ subsequent
221 * tests in this thread will see the wakeup having taken place.
222 *
223 * The spin_unlock() itself is semi-permeable and only protects
224 * one way (it only protects stuff inside the critical region and
225 * stops them from bleeding out - it would still allow subsequent
226 * loads to move into the critical region).
227 */
228void
229prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
230{
231	unsigned long flags;
232
233	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
234	spin_lock_irqsave(&wq_head->lock, flags);
235	if (list_empty(&wq_entry->entry))
236		__add_wait_queue(wq_head, wq_entry);
237	set_current_state(state);
238	spin_unlock_irqrestore(&wq_head->lock, flags);
239}
240EXPORT_SYMBOL(prepare_to_wait);
241
242/* Returns true if we are the first waiter in the queue, false otherwise. */
243bool
244prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
245{
246	unsigned long flags;
247	bool was_empty = false;
248
249	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
250	spin_lock_irqsave(&wq_head->lock, flags);
251	if (list_empty(&wq_entry->entry)) {
252		was_empty = list_empty(&wq_head->head);
253		__add_wait_queue_entry_tail(wq_head, wq_entry);
254	}
255	set_current_state(state);
256	spin_unlock_irqrestore(&wq_head->lock, flags);
257	return was_empty;
258}
259EXPORT_SYMBOL(prepare_to_wait_exclusive);
260
261void init_wait_entry(struct wait_queue_entry *wq_entry, int flags)
262{
263	wq_entry->flags = flags;
264	wq_entry->private = current;
265	wq_entry->func = autoremove_wake_function;
266	INIT_LIST_HEAD(&wq_entry->entry);
267}
268EXPORT_SYMBOL(init_wait_entry);
269
270long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
271{
272	unsigned long flags;
273	long ret = 0;
274
275	spin_lock_irqsave(&wq_head->lock, flags);
276	if (signal_pending_state(state, current)) {
277		/*
278		 * Exclusive waiter must not fail if it was selected by wakeup,
279		 * it should "consume" the condition we were waiting for.
280		 *
281		 * The caller will recheck the condition and return success if
282		 * we were already woken up, we can not miss the event because
283		 * wakeup locks/unlocks the same wq_head->lock.
284		 *
285		 * But we need to ensure that set-condition + wakeup after that
286		 * can't see us, it should wake up another exclusive waiter if
287		 * we fail.
288		 */
289		list_del_init(&wq_entry->entry);
290		ret = -ERESTARTSYS;
291	} else {
292		if (list_empty(&wq_entry->entry)) {
293			if (wq_entry->flags & WQ_FLAG_EXCLUSIVE)
294				__add_wait_queue_entry_tail(wq_head, wq_entry);
295			else
296				__add_wait_queue(wq_head, wq_entry);
297		}
298		set_current_state(state);
299	}
300	spin_unlock_irqrestore(&wq_head->lock, flags);
301
302	return ret;
303}
304EXPORT_SYMBOL(prepare_to_wait_event);
305
306/*
307 * Note! These two wait functions are entered with the
308 * wait-queue lock held (and interrupts off in the _irq
309 * case), so there is no race with testing the wakeup
310 * condition in the caller before they add the wait
311 * entry to the wake queue.
312 */
313int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait)
314{
315	if (likely(list_empty(&wait->entry)))
316		__add_wait_queue_entry_tail(wq, wait);
317
318	set_current_state(TASK_INTERRUPTIBLE);
319	if (signal_pending(current))
320		return -ERESTARTSYS;
321
322	spin_unlock(&wq->lock);
323	schedule();
324	spin_lock(&wq->lock);
325
326	return 0;
327}
328EXPORT_SYMBOL(do_wait_intr);
329
330int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait)
331{
332	if (likely(list_empty(&wait->entry)))
333		__add_wait_queue_entry_tail(wq, wait);
334
335	set_current_state(TASK_INTERRUPTIBLE);
336	if (signal_pending(current))
337		return -ERESTARTSYS;
338
339	spin_unlock_irq(&wq->lock);
340	schedule();
341	spin_lock_irq(&wq->lock);
342
343	return 0;
344}
345EXPORT_SYMBOL(do_wait_intr_irq);
346
347/**
348 * finish_wait - clean up after waiting in a queue
349 * @wq_head: waitqueue waited on
350 * @wq_entry: wait descriptor
351 *
352 * Sets current thread back to running state and removes
353 * the wait descriptor from the given waitqueue if still
354 * queued.
355 */
356void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
357{
358	unsigned long flags;
359
360	__set_current_state(TASK_RUNNING);
361	/*
362	 * We can check for list emptiness outside the lock
363	 * IFF:
364	 *  - we use the "careful" check that verifies both
365	 *    the next and prev pointers, so that there cannot
366	 *    be any half-pending updates in progress on other
367	 *    CPU's that we haven't seen yet (and that might
368	 *    still change the stack area.
369	 * and
370	 *  - all other users take the lock (ie we can only
371	 *    have _one_ other CPU that looks at or modifies
372	 *    the list).
373	 */
374	if (!list_empty_careful(&wq_entry->entry)) {
375		spin_lock_irqsave(&wq_head->lock, flags);
376		list_del_init(&wq_entry->entry);
377		spin_unlock_irqrestore(&wq_head->lock, flags);
378	}
379}
380EXPORT_SYMBOL(finish_wait);
381
382int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
383{
384	int ret = default_wake_function(wq_entry, mode, sync, key);
385
386	if (ret)
387		list_del_init_careful(&wq_entry->entry);
388
389	return ret;
390}
391EXPORT_SYMBOL(autoremove_wake_function);
392
 
 
 
 
 
393/*
394 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
395 *
396 * add_wait_queue(&wq_head, &wait);
397 * for (;;) {
398 *     if (condition)
399 *         break;
400 *
401 *     // in wait_woken()			// in woken_wake_function()
 
 
 
 
 
 
 
 
 
402 *
403 *     p->state = mode;				wq_entry->flags |= WQ_FLAG_WOKEN;
404 *     smp_mb(); // A				try_to_wake_up():
405 *     if (!(wq_entry->flags & WQ_FLAG_WOKEN))	   <full barrier>
406 *         schedule()				   if (p->state & mode)
407 *     p->state = TASK_RUNNING;			      p->state = TASK_RUNNING;
408 *     wq_entry->flags &= ~WQ_FLAG_WOKEN;	~~~~~~~~~~~~~~~~~~
409 *     smp_mb(); // B				condition = true;
410 * }						smp_mb(); // C
411 * remove_wait_queue(&wq_head, &wait);		wq_entry->flags |= WQ_FLAG_WOKEN;
412 */
413long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout)
414{
 
415	/*
416	 * The below executes an smp_mb(), which matches with the full barrier
417	 * executed by the try_to_wake_up() in woken_wake_function() such that
418	 * either we see the store to wq_entry->flags in woken_wake_function()
419	 * or woken_wake_function() sees our store to current->state.
420	 */
421	set_current_state(mode); /* A */
422	if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !kthread_should_stop_or_park())
423		timeout = schedule_timeout(timeout);
424	__set_current_state(TASK_RUNNING);
425
426	/*
427	 * The below executes an smp_mb(), which matches with the smp_mb() (C)
428	 * in woken_wake_function() such that either we see the wait condition
429	 * being true or the store to wq_entry->flags in woken_wake_function()
430	 * follows ours in the coherence order.
431	 */
432	smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */
433
434	return timeout;
435}
436EXPORT_SYMBOL(wait_woken);
437
438int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
439{
440	/* Pairs with the smp_store_mb() in wait_woken(). */
441	smp_mb(); /* C */
442	wq_entry->flags |= WQ_FLAG_WOKEN;
 
 
 
 
 
 
443
444	return default_wake_function(wq_entry, mode, sync, key);
445}
446EXPORT_SYMBOL(woken_wake_function);