Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Pressure stall information for CPU, memory and IO
   4 *
   5 * Copyright (c) 2018 Facebook, Inc.
   6 * Author: Johannes Weiner <hannes@cmpxchg.org>
   7 *
   8 * Polling support by Suren Baghdasaryan <surenb@google.com>
   9 * Copyright (c) 2018 Google, Inc.
  10 *
  11 * When CPU, memory and IO are contended, tasks experience delays that
  12 * reduce throughput and introduce latencies into the workload. Memory
  13 * and IO contention, in addition, can cause a full loss of forward
  14 * progress in which the CPU goes idle.
  15 *
  16 * This code aggregates individual task delays into resource pressure
  17 * metrics that indicate problems with both workload health and
  18 * resource utilization.
  19 *
  20 *			Model
  21 *
  22 * The time in which a task can execute on a CPU is our baseline for
  23 * productivity. Pressure expresses the amount of time in which this
  24 * potential cannot be realized due to resource contention.
  25 *
  26 * This concept of productivity has two components: the workload and
  27 * the CPU. To measure the impact of pressure on both, we define two
  28 * contention states for a resource: SOME and FULL.
  29 *
  30 * In the SOME state of a given resource, one or more tasks are
  31 * delayed on that resource. This affects the workload's ability to
  32 * perform work, but the CPU may still be executing other tasks.
  33 *
  34 * In the FULL state of a given resource, all non-idle tasks are
  35 * delayed on that resource such that nobody is advancing and the CPU
  36 * goes idle. This leaves both workload and CPU unproductive.
  37 *
  38 *	SOME = nr_delayed_tasks != 0
  39 *	FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
  40 *
  41 * What it means for a task to be productive is defined differently
  42 * for each resource. For IO, productive means a running task. For
  43 * memory, productive means a running task that isn't a reclaimer. For
  44 * CPU, productive means an oncpu task.
  45 *
  46 * Naturally, the FULL state doesn't exist for the CPU resource at the
  47 * system level, but exist at the cgroup level. At the cgroup level,
  48 * FULL means all non-idle tasks in the cgroup are delayed on the CPU
  49 * resource which is being used by others outside of the cgroup or
  50 * throttled by the cgroup cpu.max configuration.
  51 *
  52 * The percentage of wallclock time spent in those compound stall
  53 * states gives pressure numbers between 0 and 100 for each resource,
  54 * where the SOME percentage indicates workload slowdowns and the FULL
  55 * percentage indicates reduced CPU utilization:
  56 *
  57 *	%SOME = time(SOME) / period
  58 *	%FULL = time(FULL) / period
  59 *
  60 *			Multiple CPUs
  61 *
  62 * The more tasks and available CPUs there are, the more work can be
  63 * performed concurrently. This means that the potential that can go
  64 * unrealized due to resource contention *also* scales with non-idle
  65 * tasks and CPUs.
  66 *
  67 * Consider a scenario where 257 number crunching tasks are trying to
  68 * run concurrently on 256 CPUs. If we simply aggregated the task
  69 * states, we would have to conclude a CPU SOME pressure number of
  70 * 100%, since *somebody* is waiting on a runqueue at all
  71 * times. However, that is clearly not the amount of contention the
  72 * workload is experiencing: only one out of 256 possible execution
  73 * threads will be contended at any given time, or about 0.4%.
  74 *
  75 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
  76 * given time *one* of the tasks is delayed due to a lack of memory.
  77 * Again, looking purely at the task state would yield a memory FULL
  78 * pressure number of 0%, since *somebody* is always making forward
  79 * progress. But again this wouldn't capture the amount of execution
  80 * potential lost, which is 1 out of 4 CPUs, or 25%.
  81 *
  82 * To calculate wasted potential (pressure) with multiple processors,
  83 * we have to base our calculation on the number of non-idle tasks in
  84 * conjunction with the number of available CPUs, which is the number
  85 * of potential execution threads. SOME becomes then the proportion of
  86 * delayed tasks to possible threads, and FULL is the share of possible
  87 * threads that are unproductive due to delays:
  88 *
  89 *	threads = min(nr_nonidle_tasks, nr_cpus)
  90 *	   SOME = min(nr_delayed_tasks / threads, 1)
  91 *	   FULL = (threads - min(nr_productive_tasks, threads)) / threads
  92 *
  93 * For the 257 number crunchers on 256 CPUs, this yields:
  94 *
  95 *	threads = min(257, 256)
  96 *	   SOME = min(1 / 256, 1)             = 0.4%
  97 *	   FULL = (256 - min(256, 256)) / 256 = 0%
  98 *
  99 * For the 1 out of 4 memory-delayed tasks, this yields:
 100 *
 101 *	threads = min(4, 4)
 102 *	   SOME = min(1 / 4, 1)               = 25%
 103 *	   FULL = (4 - min(3, 4)) / 4         = 25%
 104 *
 105 * [ Substitute nr_cpus with 1, and you can see that it's a natural
 106 *   extension of the single-CPU model. ]
 107 *
 108 *			Implementation
 109 *
 110 * To assess the precise time spent in each such state, we would have
 111 * to freeze the system on task changes and start/stop the state
 112 * clocks accordingly. Obviously that doesn't scale in practice.
 113 *
 114 * Because the scheduler aims to distribute the compute load evenly
 115 * among the available CPUs, we can track task state locally to each
 116 * CPU and, at much lower frequency, extrapolate the global state for
 117 * the cumulative stall times and the running averages.
 118 *
 119 * For each runqueue, we track:
 120 *
 121 *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
 122 *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
 123 *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
 124 *
 125 * and then periodically aggregate:
 126 *
 127 *	tNONIDLE = sum(tNONIDLE[i])
 128 *
 129 *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
 130 *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
 131 *
 132 *	   %SOME = tSOME / period
 133 *	   %FULL = tFULL / period
 134 *
 135 * This gives us an approximation of pressure that is practical
 136 * cost-wise, yet way more sensitive and accurate than periodic
 137 * sampling of the aggregate task states would be.
 138 */
 139
 140static int psi_bug __read_mostly;
 141
 142DEFINE_STATIC_KEY_FALSE(psi_disabled);
 143static DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
 144
 145#ifdef CONFIG_PSI_DEFAULT_DISABLED
 146static bool psi_enable;
 147#else
 148static bool psi_enable = true;
 149#endif
 150static int __init setup_psi(char *str)
 151{
 152	return kstrtobool(str, &psi_enable) == 0;
 153}
 154__setup("psi=", setup_psi);
 155
 156/* Running averages - we need to be higher-res than loadavg */
 157#define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
 158#define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
 159#define EXP_60s		1981		/* 1/exp(2s/60s) */
 160#define EXP_300s	2034		/* 1/exp(2s/300s) */
 161
 162/* PSI trigger definitions */
 163#define WINDOW_MAX_US 10000000	/* Max window size is 10s */
 164#define UPDATES_PER_WINDOW 10	/* 10 updates per window */
 165
 166/* Sampling frequency in nanoseconds */
 167static u64 psi_period __read_mostly;
 168
 169/* System-level pressure and stall tracking */
 170static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
 171struct psi_group psi_system = {
 172	.pcpu = &system_group_pcpu,
 173};
 174
 175static void psi_avgs_work(struct work_struct *work);
 176
 177static void poll_timer_fn(struct timer_list *t);
 178
 179static void group_init(struct psi_group *group)
 180{
 181	int cpu;
 182
 183	group->enabled = true;
 184	for_each_possible_cpu(cpu)
 185		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
 186	group->avg_last_update = sched_clock();
 187	group->avg_next_update = group->avg_last_update + psi_period;
 188	mutex_init(&group->avgs_lock);
 189
 190	/* Init avg trigger-related members */
 191	INIT_LIST_HEAD(&group->avg_triggers);
 192	memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers));
 193	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
 194
 195	/* Init rtpoll trigger-related members */
 196	atomic_set(&group->rtpoll_scheduled, 0);
 197	mutex_init(&group->rtpoll_trigger_lock);
 198	INIT_LIST_HEAD(&group->rtpoll_triggers);
 199	group->rtpoll_min_period = U32_MAX;
 200	group->rtpoll_next_update = ULLONG_MAX;
 201	init_waitqueue_head(&group->rtpoll_wait);
 202	timer_setup(&group->rtpoll_timer, poll_timer_fn, 0);
 203	rcu_assign_pointer(group->rtpoll_task, NULL);
 204}
 205
 206void __init psi_init(void)
 207{
 208	if (!psi_enable) {
 209		static_branch_enable(&psi_disabled);
 210		static_branch_disable(&psi_cgroups_enabled);
 211		return;
 212	}
 213
 214	if (!cgroup_psi_enabled())
 215		static_branch_disable(&psi_cgroups_enabled);
 216
 217	psi_period = jiffies_to_nsecs(PSI_FREQ);
 218	group_init(&psi_system);
 219}
 220
 221static bool test_state(unsigned int *tasks, enum psi_states state, bool oncpu)
 222{
 223	switch (state) {
 224	case PSI_IO_SOME:
 225		return unlikely(tasks[NR_IOWAIT]);
 226	case PSI_IO_FULL:
 227		return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]);
 228	case PSI_MEM_SOME:
 229		return unlikely(tasks[NR_MEMSTALL]);
 230	case PSI_MEM_FULL:
 231		return unlikely(tasks[NR_MEMSTALL] &&
 232			tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]);
 233	case PSI_CPU_SOME:
 234		return unlikely(tasks[NR_RUNNING] > oncpu);
 235	case PSI_CPU_FULL:
 236		return unlikely(tasks[NR_RUNNING] && !oncpu);
 237	case PSI_NONIDLE:
 238		return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
 239			tasks[NR_RUNNING];
 240	default:
 241		return false;
 242	}
 243}
 244
 245static void get_recent_times(struct psi_group *group, int cpu,
 246			     enum psi_aggregators aggregator, u32 *times,
 247			     u32 *pchanged_states)
 248{
 249	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
 250	int current_cpu = raw_smp_processor_id();
 251	unsigned int tasks[NR_PSI_TASK_COUNTS];
 252	u64 now, state_start;
 253	enum psi_states s;
 254	unsigned int seq;
 255	u32 state_mask;
 256
 257	*pchanged_states = 0;
 258
 259	/* Snapshot a coherent view of the CPU state */
 260	do {
 261		seq = read_seqcount_begin(&groupc->seq);
 262		now = cpu_clock(cpu);
 263		memcpy(times, groupc->times, sizeof(groupc->times));
 264		state_mask = groupc->state_mask;
 265		state_start = groupc->state_start;
 266		if (cpu == current_cpu)
 267			memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
 268	} while (read_seqcount_retry(&groupc->seq, seq));
 269
 270	/* Calculate state time deltas against the previous snapshot */
 271	for (s = 0; s < NR_PSI_STATES; s++) {
 272		u32 delta;
 273		/*
 274		 * In addition to already concluded states, we also
 275		 * incorporate currently active states on the CPU,
 276		 * since states may last for many sampling periods.
 277		 *
 278		 * This way we keep our delta sampling buckets small
 279		 * (u32) and our reported pressure close to what's
 280		 * actually happening.
 281		 */
 282		if (state_mask & (1 << s))
 283			times[s] += now - state_start;
 284
 285		delta = times[s] - groupc->times_prev[aggregator][s];
 286		groupc->times_prev[aggregator][s] = times[s];
 287
 288		times[s] = delta;
 289		if (delta)
 290			*pchanged_states |= (1 << s);
 291	}
 292
 293	/*
 294	 * When collect_percpu_times() from the avgs_work, we don't want to
 295	 * re-arm avgs_work when all CPUs are IDLE. But the current CPU running
 296	 * this avgs_work is never IDLE, cause avgs_work can't be shut off.
 297	 * So for the current CPU, we need to re-arm avgs_work only when
 298	 * (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs
 299	 * we can just check PSI_NONIDLE delta.
 300	 */
 301	if (current_work() == &group->avgs_work.work) {
 302		bool reschedule;
 303
 304		if (cpu == current_cpu)
 305			reschedule = tasks[NR_RUNNING] +
 306				     tasks[NR_IOWAIT] +
 307				     tasks[NR_MEMSTALL] > 1;
 308		else
 309			reschedule = *pchanged_states & (1 << PSI_NONIDLE);
 310
 311		if (reschedule)
 312			*pchanged_states |= PSI_STATE_RESCHEDULE;
 313	}
 314}
 315
 316static void calc_avgs(unsigned long avg[3], int missed_periods,
 317		      u64 time, u64 period)
 318{
 319	unsigned long pct;
 320
 321	/* Fill in zeroes for periods of no activity */
 322	if (missed_periods) {
 323		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
 324		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
 325		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
 326	}
 327
 328	/* Sample the most recent active period */
 329	pct = div_u64(time * 100, period);
 330	pct *= FIXED_1;
 331	avg[0] = calc_load(avg[0], EXP_10s, pct);
 332	avg[1] = calc_load(avg[1], EXP_60s, pct);
 333	avg[2] = calc_load(avg[2], EXP_300s, pct);
 334}
 335
 336static void collect_percpu_times(struct psi_group *group,
 337				 enum psi_aggregators aggregator,
 338				 u32 *pchanged_states)
 339{
 340	u64 deltas[NR_PSI_STATES - 1] = { 0, };
 341	unsigned long nonidle_total = 0;
 342	u32 changed_states = 0;
 343	int cpu;
 344	int s;
 345
 346	/*
 347	 * Collect the per-cpu time buckets and average them into a
 348	 * single time sample that is normalized to wallclock time.
 349	 *
 350	 * For averaging, each CPU is weighted by its non-idle time in
 351	 * the sampling period. This eliminates artifacts from uneven
 352	 * loading, or even entirely idle CPUs.
 353	 */
 354	for_each_possible_cpu(cpu) {
 355		u32 times[NR_PSI_STATES];
 356		u32 nonidle;
 357		u32 cpu_changed_states;
 358
 359		get_recent_times(group, cpu, aggregator, times,
 360				&cpu_changed_states);
 361		changed_states |= cpu_changed_states;
 362
 363		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
 364		nonidle_total += nonidle;
 365
 366		for (s = 0; s < PSI_NONIDLE; s++)
 367			deltas[s] += (u64)times[s] * nonidle;
 368	}
 369
 370	/*
 371	 * Integrate the sample into the running statistics that are
 372	 * reported to userspace: the cumulative stall times and the
 373	 * decaying averages.
 374	 *
 375	 * Pressure percentages are sampled at PSI_FREQ. We might be
 376	 * called more often when the user polls more frequently than
 377	 * that; we might be called less often when there is no task
 378	 * activity, thus no data, and clock ticks are sporadic. The
 379	 * below handles both.
 380	 */
 381
 382	/* total= */
 383	for (s = 0; s < NR_PSI_STATES - 1; s++)
 384		group->total[aggregator][s] +=
 385				div_u64(deltas[s], max(nonidle_total, 1UL));
 386
 387	if (pchanged_states)
 388		*pchanged_states = changed_states;
 389}
 390
 391/* Trigger tracking window manipulations */
 392static void window_reset(struct psi_window *win, u64 now, u64 value,
 393			 u64 prev_growth)
 394{
 395	win->start_time = now;
 396	win->start_value = value;
 397	win->prev_growth = prev_growth;
 398}
 399
 400/*
 401 * PSI growth tracking window update and growth calculation routine.
 402 *
 403 * This approximates a sliding tracking window by interpolating
 404 * partially elapsed windows using historical growth data from the
 405 * previous intervals. This minimizes memory requirements (by not storing
 406 * all the intermediate values in the previous window) and simplifies
 407 * the calculations. It works well because PSI signal changes only in
 408 * positive direction and over relatively small window sizes the growth
 409 * is close to linear.
 410 */
 411static u64 window_update(struct psi_window *win, u64 now, u64 value)
 412{
 413	u64 elapsed;
 414	u64 growth;
 415
 416	elapsed = now - win->start_time;
 417	growth = value - win->start_value;
 418	/*
 419	 * After each tracking window passes win->start_value and
 420	 * win->start_time get reset and win->prev_growth stores
 421	 * the average per-window growth of the previous window.
 422	 * win->prev_growth is then used to interpolate additional
 423	 * growth from the previous window assuming it was linear.
 424	 */
 425	if (elapsed > win->size)
 426		window_reset(win, now, value, growth);
 427	else {
 428		u32 remaining;
 429
 430		remaining = win->size - elapsed;
 431		growth += div64_u64(win->prev_growth * remaining, win->size);
 432	}
 433
 434	return growth;
 435}
 436
 437static void update_triggers(struct psi_group *group, u64 now,
 438						   enum psi_aggregators aggregator)
 439{
 440	struct psi_trigger *t;
 441	u64 *total = group->total[aggregator];
 442	struct list_head *triggers;
 443	u64 *aggregator_total;
 444
 445	if (aggregator == PSI_AVGS) {
 446		triggers = &group->avg_triggers;
 447		aggregator_total = group->avg_total;
 448	} else {
 449		triggers = &group->rtpoll_triggers;
 450		aggregator_total = group->rtpoll_total;
 451	}
 452
 453	/*
 454	 * On subsequent updates, calculate growth deltas and let
 455	 * watchers know when their specified thresholds are exceeded.
 456	 */
 457	list_for_each_entry(t, triggers, node) {
 458		u64 growth;
 459		bool new_stall;
 460
 461		new_stall = aggregator_total[t->state] != total[t->state];
 462
 463		/* Check for stall activity or a previous threshold breach */
 464		if (!new_stall && !t->pending_event)
 465			continue;
 466		/*
 467		 * Check for new stall activity, as well as deferred
 468		 * events that occurred in the last window after the
 469		 * trigger had already fired (we want to ratelimit
 470		 * events without dropping any).
 471		 */
 472		if (new_stall) {
 473			/* Calculate growth since last update */
 474			growth = window_update(&t->win, now, total[t->state]);
 475			if (!t->pending_event) {
 476				if (growth < t->threshold)
 477					continue;
 478
 479				t->pending_event = true;
 480			}
 481		}
 482		/* Limit event signaling to once per window */
 483		if (now < t->last_event_time + t->win.size)
 484			continue;
 485
 486		/* Generate an event */
 487		if (cmpxchg(&t->event, 0, 1) == 0) {
 488			if (t->of)
 489				kernfs_notify(t->of->kn);
 490			else
 491				wake_up_interruptible(&t->event_wait);
 492		}
 493		t->last_event_time = now;
 494		/* Reset threshold breach flag once event got generated */
 495		t->pending_event = false;
 496	}
 497}
 498
 499static u64 update_averages(struct psi_group *group, u64 now)
 500{
 501	unsigned long missed_periods = 0;
 502	u64 expires, period;
 503	u64 avg_next_update;
 504	int s;
 505
 506	/* avgX= */
 507	expires = group->avg_next_update;
 508	if (now - expires >= psi_period)
 509		missed_periods = div_u64(now - expires, psi_period);
 510
 511	/*
 512	 * The periodic clock tick can get delayed for various
 513	 * reasons, especially on loaded systems. To avoid clock
 514	 * drift, we schedule the clock in fixed psi_period intervals.
 515	 * But the deltas we sample out of the per-cpu buckets above
 516	 * are based on the actual time elapsing between clock ticks.
 517	 */
 518	avg_next_update = expires + ((1 + missed_periods) * psi_period);
 519	period = now - (group->avg_last_update + (missed_periods * psi_period));
 520	group->avg_last_update = now;
 521
 522	for (s = 0; s < NR_PSI_STATES - 1; s++) {
 523		u32 sample;
 524
 525		sample = group->total[PSI_AVGS][s] - group->avg_total[s];
 526		/*
 527		 * Due to the lockless sampling of the time buckets,
 528		 * recorded time deltas can slip into the next period,
 529		 * which under full pressure can result in samples in
 530		 * excess of the period length.
 531		 *
 532		 * We don't want to report non-sensical pressures in
 533		 * excess of 100%, nor do we want to drop such events
 534		 * on the floor. Instead we punt any overage into the
 535		 * future until pressure subsides. By doing this we
 536		 * don't underreport the occurring pressure curve, we
 537		 * just report it delayed by one period length.
 538		 *
 539		 * The error isn't cumulative. As soon as another
 540		 * delta slips from a period P to P+1, by definition
 541		 * it frees up its time T in P.
 542		 */
 543		if (sample > period)
 544			sample = period;
 545		group->avg_total[s] += sample;
 546		calc_avgs(group->avg[s], missed_periods, sample, period);
 547	}
 548
 549	return avg_next_update;
 550}
 551
 552static void psi_avgs_work(struct work_struct *work)
 553{
 554	struct delayed_work *dwork;
 555	struct psi_group *group;
 556	u32 changed_states;
 557	u64 now;
 558
 559	dwork = to_delayed_work(work);
 560	group = container_of(dwork, struct psi_group, avgs_work);
 561
 562	mutex_lock(&group->avgs_lock);
 563
 564	now = sched_clock();
 565
 566	collect_percpu_times(group, PSI_AVGS, &changed_states);
 567	/*
 568	 * If there is task activity, periodically fold the per-cpu
 569	 * times and feed samples into the running averages. If things
 570	 * are idle and there is no data to process, stop the clock.
 571	 * Once restarted, we'll catch up the running averages in one
 572	 * go - see calc_avgs() and missed_periods.
 573	 */
 574	if (now >= group->avg_next_update) {
 575		update_triggers(group, now, PSI_AVGS);
 576		group->avg_next_update = update_averages(group, now);
 577	}
 578
 579	if (changed_states & PSI_STATE_RESCHEDULE) {
 580		schedule_delayed_work(dwork, nsecs_to_jiffies(
 581				group->avg_next_update - now) + 1);
 582	}
 583
 584	mutex_unlock(&group->avgs_lock);
 585}
 586
 587static void init_rtpoll_triggers(struct psi_group *group, u64 now)
 588{
 589	struct psi_trigger *t;
 590
 591	list_for_each_entry(t, &group->rtpoll_triggers, node)
 592		window_reset(&t->win, now,
 593				group->total[PSI_POLL][t->state], 0);
 594	memcpy(group->rtpoll_total, group->total[PSI_POLL],
 595		   sizeof(group->rtpoll_total));
 596	group->rtpoll_next_update = now + group->rtpoll_min_period;
 597}
 598
 599/* Schedule rtpolling if it's not already scheduled or forced. */
 600static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay,
 601				   bool force)
 602{
 603	struct task_struct *task;
 604
 605	/*
 606	 * atomic_xchg should be called even when !force to provide a
 607	 * full memory barrier (see the comment inside psi_rtpoll_work).
 608	 */
 609	if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force)
 610		return;
 611
 612	rcu_read_lock();
 613
 614	task = rcu_dereference(group->rtpoll_task);
 615	/*
 616	 * kworker might be NULL in case psi_trigger_destroy races with
 617	 * psi_task_change (hotpath) which can't use locks
 618	 */
 619	if (likely(task))
 620		mod_timer(&group->rtpoll_timer, jiffies + delay);
 621	else
 622		atomic_set(&group->rtpoll_scheduled, 0);
 623
 624	rcu_read_unlock();
 625}
 626
 627static void psi_rtpoll_work(struct psi_group *group)
 628{
 629	bool force_reschedule = false;
 630	u32 changed_states;
 631	u64 now;
 632
 633	mutex_lock(&group->rtpoll_trigger_lock);
 634
 635	now = sched_clock();
 636
 637	if (now > group->rtpoll_until) {
 638		/*
 639		 * We are either about to start or might stop rtpolling if no
 640		 * state change was recorded. Resetting rtpoll_scheduled leaves
 641		 * a small window for psi_group_change to sneak in and schedule
 642		 * an immediate rtpoll_work before we get to rescheduling. One
 643		 * potential extra wakeup at the end of the rtpolling window
 644		 * should be negligible and rtpoll_next_update still keeps
 645		 * updates correctly on schedule.
 646		 */
 647		atomic_set(&group->rtpoll_scheduled, 0);
 648		/*
 649		 * A task change can race with the rtpoll worker that is supposed to
 650		 * report on it. To avoid missing events, ensure ordering between
 651		 * rtpoll_scheduled and the task state accesses, such that if the
 652		 * rtpoll worker misses the state update, the task change is
 653		 * guaranteed to reschedule the rtpoll worker:
 654		 *
 655		 * rtpoll worker:
 656		 *   atomic_set(rtpoll_scheduled, 0)
 657		 *   smp_mb()
 658		 *   LOAD states
 659		 *
 660		 * task change:
 661		 *   STORE states
 662		 *   if atomic_xchg(rtpoll_scheduled, 1) == 0:
 663		 *     schedule rtpoll worker
 664		 *
 665		 * The atomic_xchg() implies a full barrier.
 666		 */
 667		smp_mb();
 668	} else {
 669		/* The rtpolling window is not over, keep rescheduling */
 670		force_reschedule = true;
 671	}
 672
 673
 674	collect_percpu_times(group, PSI_POLL, &changed_states);
 675
 676	if (changed_states & group->rtpoll_states) {
 677		/* Initialize trigger windows when entering rtpolling mode */
 678		if (now > group->rtpoll_until)
 679			init_rtpoll_triggers(group, now);
 680
 681		/*
 682		 * Keep the monitor active for at least the duration of the
 683		 * minimum tracking window as long as monitor states are
 684		 * changing.
 685		 */
 686		group->rtpoll_until = now +
 687			group->rtpoll_min_period * UPDATES_PER_WINDOW;
 688	}
 689
 690	if (now > group->rtpoll_until) {
 691		group->rtpoll_next_update = ULLONG_MAX;
 692		goto out;
 693	}
 694
 695	if (now >= group->rtpoll_next_update) {
 696		if (changed_states & group->rtpoll_states) {
 697			update_triggers(group, now, PSI_POLL);
 698			memcpy(group->rtpoll_total, group->total[PSI_POLL],
 699				   sizeof(group->rtpoll_total));
 700		}
 701		group->rtpoll_next_update = now + group->rtpoll_min_period;
 702	}
 703
 704	psi_schedule_rtpoll_work(group,
 705		nsecs_to_jiffies(group->rtpoll_next_update - now) + 1,
 706		force_reschedule);
 707
 708out:
 709	mutex_unlock(&group->rtpoll_trigger_lock);
 710}
 711
 712static int psi_rtpoll_worker(void *data)
 713{
 714	struct psi_group *group = (struct psi_group *)data;
 715
 716	sched_set_fifo_low(current);
 717
 718	while (true) {
 719		wait_event_interruptible(group->rtpoll_wait,
 720				atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) ||
 721				kthread_should_stop());
 722		if (kthread_should_stop())
 723			break;
 724
 725		psi_rtpoll_work(group);
 726	}
 727	return 0;
 728}
 729
 730static void poll_timer_fn(struct timer_list *t)
 731{
 732	struct psi_group *group = from_timer(group, t, rtpoll_timer);
 733
 734	atomic_set(&group->rtpoll_wakeup, 1);
 735	wake_up_interruptible(&group->rtpoll_wait);
 736}
 737
 738static void record_times(struct psi_group_cpu *groupc, u64 now)
 739{
 740	u32 delta;
 741
 742	delta = now - groupc->state_start;
 743	groupc->state_start = now;
 744
 745	if (groupc->state_mask & (1 << PSI_IO_SOME)) {
 746		groupc->times[PSI_IO_SOME] += delta;
 747		if (groupc->state_mask & (1 << PSI_IO_FULL))
 748			groupc->times[PSI_IO_FULL] += delta;
 749	}
 750
 751	if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
 752		groupc->times[PSI_MEM_SOME] += delta;
 753		if (groupc->state_mask & (1 << PSI_MEM_FULL))
 754			groupc->times[PSI_MEM_FULL] += delta;
 755	}
 756
 757	if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
 758		groupc->times[PSI_CPU_SOME] += delta;
 759		if (groupc->state_mask & (1 << PSI_CPU_FULL))
 760			groupc->times[PSI_CPU_FULL] += delta;
 761	}
 762
 763	if (groupc->state_mask & (1 << PSI_NONIDLE))
 764		groupc->times[PSI_NONIDLE] += delta;
 765}
 766
 767static void psi_group_change(struct psi_group *group, int cpu,
 768			     unsigned int clear, unsigned int set, u64 now,
 769			     bool wake_clock)
 770{
 771	struct psi_group_cpu *groupc;
 772	unsigned int t, m;
 773	enum psi_states s;
 774	u32 state_mask;
 775
 776	groupc = per_cpu_ptr(group->pcpu, cpu);
 777
 778	/*
 779	 * First we update the task counts according to the state
 780	 * change requested through the @clear and @set bits.
 781	 *
 782	 * Then if the cgroup PSI stats accounting enabled, we
 783	 * assess the aggregate resource states this CPU's tasks
 784	 * have been in since the last change, and account any
 785	 * SOME and FULL time these may have resulted in.
 786	 */
 787	write_seqcount_begin(&groupc->seq);
 788
 789	/*
 790	 * Start with TSK_ONCPU, which doesn't have a corresponding
 791	 * task count - it's just a boolean flag directly encoded in
 792	 * the state mask. Clear, set, or carry the current state if
 793	 * no changes are requested.
 794	 */
 795	if (unlikely(clear & TSK_ONCPU)) {
 796		state_mask = 0;
 797		clear &= ~TSK_ONCPU;
 798	} else if (unlikely(set & TSK_ONCPU)) {
 799		state_mask = PSI_ONCPU;
 800		set &= ~TSK_ONCPU;
 801	} else {
 802		state_mask = groupc->state_mask & PSI_ONCPU;
 803	}
 804
 805	/*
 806	 * The rest of the state mask is calculated based on the task
 807	 * counts. Update those first, then construct the mask.
 808	 */
 809	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
 810		if (!(m & (1 << t)))
 811			continue;
 812		if (groupc->tasks[t]) {
 813			groupc->tasks[t]--;
 814		} else if (!psi_bug) {
 815			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
 816					cpu, t, groupc->tasks[0],
 817					groupc->tasks[1], groupc->tasks[2],
 818					groupc->tasks[3], clear, set);
 819			psi_bug = 1;
 820		}
 821	}
 822
 823	for (t = 0; set; set &= ~(1 << t), t++)
 824		if (set & (1 << t))
 825			groupc->tasks[t]++;
 826
 827	if (!group->enabled) {
 828		/*
 829		 * On the first group change after disabling PSI, conclude
 830		 * the current state and flush its time. This is unlikely
 831		 * to matter to the user, but aggregation (get_recent_times)
 832		 * may have already incorporated the live state into times_prev;
 833		 * avoid a delta sample underflow when PSI is later re-enabled.
 834		 */
 835		if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE)))
 836			record_times(groupc, now);
 837
 838		groupc->state_mask = state_mask;
 839
 840		write_seqcount_end(&groupc->seq);
 841		return;
 842	}
 843
 844	for (s = 0; s < NR_PSI_STATES; s++) {
 845		if (test_state(groupc->tasks, s, state_mask & PSI_ONCPU))
 846			state_mask |= (1 << s);
 847	}
 848
 849	/*
 850	 * Since we care about lost potential, a memstall is FULL
 851	 * when there are no other working tasks, but also when
 852	 * the CPU is actively reclaiming and nothing productive
 853	 * could run even if it were runnable. So when the current
 854	 * task in a cgroup is in_memstall, the corresponding groupc
 855	 * on that cpu is in PSI_MEM_FULL state.
 856	 */
 857	if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall))
 858		state_mask |= (1 << PSI_MEM_FULL);
 859
 860	record_times(groupc, now);
 861
 862	groupc->state_mask = state_mask;
 863
 864	write_seqcount_end(&groupc->seq);
 865
 866	if (state_mask & group->rtpoll_states)
 867		psi_schedule_rtpoll_work(group, 1, false);
 868
 869	if (wake_clock && !delayed_work_pending(&group->avgs_work))
 870		schedule_delayed_work(&group->avgs_work, PSI_FREQ);
 871}
 872
 873static inline struct psi_group *task_psi_group(struct task_struct *task)
 874{
 875#ifdef CONFIG_CGROUPS
 876	if (static_branch_likely(&psi_cgroups_enabled))
 877		return cgroup_psi(task_dfl_cgroup(task));
 878#endif
 879	return &psi_system;
 880}
 881
 882static void psi_flags_change(struct task_struct *task, int clear, int set)
 883{
 884	if (((task->psi_flags & set) ||
 885	     (task->psi_flags & clear) != clear) &&
 886	    !psi_bug) {
 887		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
 888				task->pid, task->comm, task_cpu(task),
 889				task->psi_flags, clear, set);
 890		psi_bug = 1;
 891	}
 892
 893	task->psi_flags &= ~clear;
 894	task->psi_flags |= set;
 895}
 896
 897void psi_task_change(struct task_struct *task, int clear, int set)
 898{
 899	int cpu = task_cpu(task);
 900	struct psi_group *group;
 901	u64 now;
 902
 903	if (!task->pid)
 904		return;
 905
 906	psi_flags_change(task, clear, set);
 907
 908	now = cpu_clock(cpu);
 909
 910	group = task_psi_group(task);
 911	do {
 912		psi_group_change(group, cpu, clear, set, now, true);
 913	} while ((group = group->parent));
 914}
 915
 916void psi_task_switch(struct task_struct *prev, struct task_struct *next,
 917		     bool sleep)
 918{
 919	struct psi_group *group, *common = NULL;
 920	int cpu = task_cpu(prev);
 921	u64 now = cpu_clock(cpu);
 922
 923	if (next->pid) {
 924		psi_flags_change(next, 0, TSK_ONCPU);
 925		/*
 926		 * Set TSK_ONCPU on @next's cgroups. If @next shares any
 927		 * ancestors with @prev, those will already have @prev's
 928		 * TSK_ONCPU bit set, and we can stop the iteration there.
 929		 */
 930		group = task_psi_group(next);
 931		do {
 932			if (per_cpu_ptr(group->pcpu, cpu)->state_mask &
 933			    PSI_ONCPU) {
 934				common = group;
 935				break;
 936			}
 937
 938			psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
 939		} while ((group = group->parent));
 940	}
 941
 942	if (prev->pid) {
 943		int clear = TSK_ONCPU, set = 0;
 944		bool wake_clock = true;
 945
 946		/*
 947		 * When we're going to sleep, psi_dequeue() lets us
 948		 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
 949		 * TSK_IOWAIT here, where we can combine it with
 950		 * TSK_ONCPU and save walking common ancestors twice.
 951		 */
 952		if (sleep) {
 953			clear |= TSK_RUNNING;
 954			if (prev->in_memstall)
 955				clear |= TSK_MEMSTALL_RUNNING;
 956			if (prev->in_iowait)
 957				set |= TSK_IOWAIT;
 958
 959			/*
 960			 * Periodic aggregation shuts off if there is a period of no
 961			 * task changes, so we wake it back up if necessary. However,
 962			 * don't do this if the task change is the aggregation worker
 963			 * itself going to sleep, or we'll ping-pong forever.
 964			 */
 965			if (unlikely((prev->flags & PF_WQ_WORKER) &&
 966				     wq_worker_last_func(prev) == psi_avgs_work))
 967				wake_clock = false;
 968		}
 969
 970		psi_flags_change(prev, clear, set);
 971
 972		group = task_psi_group(prev);
 973		do {
 974			if (group == common)
 975				break;
 976			psi_group_change(group, cpu, clear, set, now, wake_clock);
 977		} while ((group = group->parent));
 978
 979		/*
 980		 * TSK_ONCPU is handled up to the common ancestor. If there are
 981		 * any other differences between the two tasks (e.g. prev goes
 982		 * to sleep, or only one task is memstall), finish propagating
 983		 * those differences all the way up to the root.
 984		 */
 985		if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) {
 986			clear &= ~TSK_ONCPU;
 987			for (; group; group = group->parent)
 988				psi_group_change(group, cpu, clear, set, now, wake_clock);
 989		}
 990	}
 991}
 992
 993#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 994void psi_account_irqtime(struct task_struct *task, u32 delta)
 995{
 996	int cpu = task_cpu(task);
 997	struct psi_group *group;
 998	struct psi_group_cpu *groupc;
 999	u64 now;
1000
1001	if (static_branch_likely(&psi_disabled))
1002		return;
1003
1004	if (!task->pid)
1005		return;
1006
1007	now = cpu_clock(cpu);
1008
1009	group = task_psi_group(task);
1010	do {
1011		if (!group->enabled)
1012			continue;
1013
1014		groupc = per_cpu_ptr(group->pcpu, cpu);
1015
1016		write_seqcount_begin(&groupc->seq);
1017
1018		record_times(groupc, now);
1019		groupc->times[PSI_IRQ_FULL] += delta;
1020
1021		write_seqcount_end(&groupc->seq);
1022
1023		if (group->rtpoll_states & (1 << PSI_IRQ_FULL))
1024			psi_schedule_rtpoll_work(group, 1, false);
1025	} while ((group = group->parent));
1026}
1027#endif
1028
1029/**
1030 * psi_memstall_enter - mark the beginning of a memory stall section
1031 * @flags: flags to handle nested sections
1032 *
1033 * Marks the calling task as being stalled due to a lack of memory,
1034 * such as waiting for a refault or performing reclaim.
1035 */
1036void psi_memstall_enter(unsigned long *flags)
1037{
1038	struct rq_flags rf;
1039	struct rq *rq;
1040
1041	if (static_branch_likely(&psi_disabled))
1042		return;
1043
1044	*flags = current->in_memstall;
1045	if (*flags)
1046		return;
1047	/*
1048	 * in_memstall setting & accounting needs to be atomic wrt
1049	 * changes to the task's scheduling state, otherwise we can
1050	 * race with CPU migration.
1051	 */
1052	rq = this_rq_lock_irq(&rf);
1053
1054	current->in_memstall = 1;
1055	psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
1056
1057	rq_unlock_irq(rq, &rf);
1058}
1059EXPORT_SYMBOL_GPL(psi_memstall_enter);
1060
1061/**
1062 * psi_memstall_leave - mark the end of an memory stall section
1063 * @flags: flags to handle nested memdelay sections
1064 *
1065 * Marks the calling task as no longer stalled due to lack of memory.
1066 */
1067void psi_memstall_leave(unsigned long *flags)
1068{
1069	struct rq_flags rf;
1070	struct rq *rq;
1071
1072	if (static_branch_likely(&psi_disabled))
1073		return;
1074
1075	if (*flags)
1076		return;
1077	/*
1078	 * in_memstall clearing & accounting needs to be atomic wrt
1079	 * changes to the task's scheduling state, otherwise we could
1080	 * race with CPU migration.
1081	 */
1082	rq = this_rq_lock_irq(&rf);
1083
1084	current->in_memstall = 0;
1085	psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
1086
1087	rq_unlock_irq(rq, &rf);
1088}
1089EXPORT_SYMBOL_GPL(psi_memstall_leave);
1090
1091#ifdef CONFIG_CGROUPS
1092int psi_cgroup_alloc(struct cgroup *cgroup)
1093{
1094	if (!static_branch_likely(&psi_cgroups_enabled))
1095		return 0;
1096
1097	cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL);
1098	if (!cgroup->psi)
1099		return -ENOMEM;
1100
1101	cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu);
1102	if (!cgroup->psi->pcpu) {
1103		kfree(cgroup->psi);
1104		return -ENOMEM;
1105	}
1106	group_init(cgroup->psi);
1107	cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup));
1108	return 0;
1109}
1110
1111void psi_cgroup_free(struct cgroup *cgroup)
1112{
1113	if (!static_branch_likely(&psi_cgroups_enabled))
1114		return;
1115
1116	cancel_delayed_work_sync(&cgroup->psi->avgs_work);
1117	free_percpu(cgroup->psi->pcpu);
1118	/* All triggers must be removed by now */
1119	WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n");
1120	kfree(cgroup->psi);
1121}
1122
1123/**
1124 * cgroup_move_task - move task to a different cgroup
1125 * @task: the task
1126 * @to: the target css_set
1127 *
1128 * Move task to a new cgroup and safely migrate its associated stall
1129 * state between the different groups.
1130 *
1131 * This function acquires the task's rq lock to lock out concurrent
1132 * changes to the task's scheduling state and - in case the task is
1133 * running - concurrent changes to its stall state.
1134 */
1135void cgroup_move_task(struct task_struct *task, struct css_set *to)
1136{
1137	unsigned int task_flags;
1138	struct rq_flags rf;
1139	struct rq *rq;
1140
1141	if (!static_branch_likely(&psi_cgroups_enabled)) {
1142		/*
1143		 * Lame to do this here, but the scheduler cannot be locked
1144		 * from the outside, so we move cgroups from inside sched/.
1145		 */
1146		rcu_assign_pointer(task->cgroups, to);
1147		return;
1148	}
1149
1150	rq = task_rq_lock(task, &rf);
1151
1152	/*
1153	 * We may race with schedule() dropping the rq lock between
1154	 * deactivating prev and switching to next. Because the psi
1155	 * updates from the deactivation are deferred to the switch
1156	 * callback to save cgroup tree updates, the task's scheduling
1157	 * state here is not coherent with its psi state:
1158	 *
1159	 * schedule()                   cgroup_move_task()
1160	 *   rq_lock()
1161	 *   deactivate_task()
1162	 *     p->on_rq = 0
1163	 *     psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1164	 *   pick_next_task()
1165	 *     rq_unlock()
1166	 *                                rq_lock()
1167	 *                                psi_task_change() // old cgroup
1168	 *                                task->cgroups = to
1169	 *                                psi_task_change() // new cgroup
1170	 *                                rq_unlock()
1171	 *     rq_lock()
1172	 *   psi_sched_switch() // does deferred updates in new cgroup
1173	 *
1174	 * Don't rely on the scheduling state. Use psi_flags instead.
1175	 */
1176	task_flags = task->psi_flags;
1177
1178	if (task_flags)
1179		psi_task_change(task, task_flags, 0);
1180
1181	/* See comment above */
1182	rcu_assign_pointer(task->cgroups, to);
1183
1184	if (task_flags)
1185		psi_task_change(task, 0, task_flags);
1186
1187	task_rq_unlock(rq, task, &rf);
1188}
1189
1190void psi_cgroup_restart(struct psi_group *group)
1191{
1192	int cpu;
1193
1194	/*
1195	 * After we disable psi_group->enabled, we don't actually
1196	 * stop percpu tasks accounting in each psi_group_cpu,
1197	 * instead only stop test_state() loop, record_times()
1198	 * and averaging worker, see psi_group_change() for details.
1199	 *
1200	 * When disable cgroup PSI, this function has nothing to sync
1201	 * since cgroup pressure files are hidden and percpu psi_group_cpu
1202	 * would see !psi_group->enabled and only do task accounting.
1203	 *
1204	 * When re-enable cgroup PSI, this function use psi_group_change()
1205	 * to get correct state mask from test_state() loop on tasks[],
1206	 * and restart groupc->state_start from now, use .clear = .set = 0
1207	 * here since no task status really changed.
1208	 */
1209	if (!group->enabled)
1210		return;
1211
1212	for_each_possible_cpu(cpu) {
1213		struct rq *rq = cpu_rq(cpu);
1214		struct rq_flags rf;
1215		u64 now;
1216
1217		rq_lock_irq(rq, &rf);
1218		now = cpu_clock(cpu);
1219		psi_group_change(group, cpu, 0, 0, now, true);
1220		rq_unlock_irq(rq, &rf);
1221	}
1222}
1223#endif /* CONFIG_CGROUPS */
1224
1225int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1226{
1227	bool only_full = false;
1228	int full;
1229	u64 now;
1230
1231	if (static_branch_likely(&psi_disabled))
1232		return -EOPNOTSUPP;
1233
1234	/* Update averages before reporting them */
1235	mutex_lock(&group->avgs_lock);
1236	now = sched_clock();
1237	collect_percpu_times(group, PSI_AVGS, NULL);
1238	if (now >= group->avg_next_update)
1239		group->avg_next_update = update_averages(group, now);
1240	mutex_unlock(&group->avgs_lock);
1241
1242#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1243	only_full = res == PSI_IRQ;
1244#endif
1245
1246	for (full = 0; full < 2 - only_full; full++) {
1247		unsigned long avg[3] = { 0, };
1248		u64 total = 0;
1249		int w;
1250
1251		/* CPU FULL is undefined at the system level */
1252		if (!(group == &psi_system && res == PSI_CPU && full)) {
1253			for (w = 0; w < 3; w++)
1254				avg[w] = group->avg[res * 2 + full][w];
1255			total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1256					NSEC_PER_USEC);
1257		}
1258
1259		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1260			   full || only_full ? "full" : "some",
1261			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1262			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1263			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1264			   total);
1265	}
1266
1267	return 0;
1268}
1269
1270struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf,
1271				       enum psi_res res, struct file *file,
1272				       struct kernfs_open_file *of)
1273{
1274	struct psi_trigger *t;
1275	enum psi_states state;
1276	u32 threshold_us;
1277	bool privileged;
1278	u32 window_us;
1279
1280	if (static_branch_likely(&psi_disabled))
1281		return ERR_PTR(-EOPNOTSUPP);
1282
1283	/*
1284	 * Checking the privilege here on file->f_cred implies that a privileged user
1285	 * could open the file and delegate the write to an unprivileged one.
1286	 */
1287	privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE);
1288
1289	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1290		state = PSI_IO_SOME + res * 2;
1291	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1292		state = PSI_IO_FULL + res * 2;
1293	else
1294		return ERR_PTR(-EINVAL);
1295
1296#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1297	if (res == PSI_IRQ && --state != PSI_IRQ_FULL)
1298		return ERR_PTR(-EINVAL);
1299#endif
1300
1301	if (state >= PSI_NONIDLE)
1302		return ERR_PTR(-EINVAL);
1303
1304	if (window_us == 0 || window_us > WINDOW_MAX_US)
1305		return ERR_PTR(-EINVAL);
1306
1307	/*
1308	 * Unprivileged users can only use 2s windows so that averages aggregation
1309	 * work is used, and no RT threads need to be spawned.
1310	 */
1311	if (!privileged && window_us % 2000000)
1312		return ERR_PTR(-EINVAL);
1313
1314	/* Check threshold */
1315	if (threshold_us == 0 || threshold_us > window_us)
1316		return ERR_PTR(-EINVAL);
1317
1318	t = kmalloc(sizeof(*t), GFP_KERNEL);
1319	if (!t)
1320		return ERR_PTR(-ENOMEM);
1321
1322	t->group = group;
1323	t->state = state;
1324	t->threshold = threshold_us * NSEC_PER_USEC;
1325	t->win.size = window_us * NSEC_PER_USEC;
1326	window_reset(&t->win, sched_clock(),
1327			group->total[PSI_POLL][t->state], 0);
1328
1329	t->event = 0;
1330	t->last_event_time = 0;
1331	t->of = of;
1332	if (!of)
1333		init_waitqueue_head(&t->event_wait);
1334	t->pending_event = false;
1335	t->aggregator = privileged ? PSI_POLL : PSI_AVGS;
1336
1337	if (privileged) {
1338		mutex_lock(&group->rtpoll_trigger_lock);
1339
1340		if (!rcu_access_pointer(group->rtpoll_task)) {
1341			struct task_struct *task;
1342
1343			task = kthread_create(psi_rtpoll_worker, group, "psimon");
1344			if (IS_ERR(task)) {
1345				kfree(t);
1346				mutex_unlock(&group->rtpoll_trigger_lock);
1347				return ERR_CAST(task);
1348			}
1349			atomic_set(&group->rtpoll_wakeup, 0);
1350			wake_up_process(task);
1351			rcu_assign_pointer(group->rtpoll_task, task);
1352		}
1353
1354		list_add(&t->node, &group->rtpoll_triggers);
1355		group->rtpoll_min_period = min(group->rtpoll_min_period,
1356			div_u64(t->win.size, UPDATES_PER_WINDOW));
1357		group->rtpoll_nr_triggers[t->state]++;
1358		group->rtpoll_states |= (1 << t->state);
1359
1360		mutex_unlock(&group->rtpoll_trigger_lock);
1361	} else {
1362		mutex_lock(&group->avgs_lock);
1363
1364		list_add(&t->node, &group->avg_triggers);
1365		group->avg_nr_triggers[t->state]++;
1366
1367		mutex_unlock(&group->avgs_lock);
1368	}
1369	return t;
1370}
1371
1372void psi_trigger_destroy(struct psi_trigger *t)
1373{
1374	struct psi_group *group;
1375	struct task_struct *task_to_destroy = NULL;
1376
1377	/*
1378	 * We do not check psi_disabled since it might have been disabled after
1379	 * the trigger got created.
1380	 */
1381	if (!t)
1382		return;
1383
1384	group = t->group;
1385	/*
1386	 * Wakeup waiters to stop polling and clear the queue to prevent it from
1387	 * being accessed later. Can happen if cgroup is deleted from under a
1388	 * polling process.
1389	 */
1390	if (t->of)
1391		kernfs_notify(t->of->kn);
1392	else
1393		wake_up_interruptible(&t->event_wait);
1394
1395	if (t->aggregator == PSI_AVGS) {
1396		mutex_lock(&group->avgs_lock);
1397		if (!list_empty(&t->node)) {
1398			list_del(&t->node);
1399			group->avg_nr_triggers[t->state]--;
1400		}
1401		mutex_unlock(&group->avgs_lock);
1402	} else {
1403		mutex_lock(&group->rtpoll_trigger_lock);
1404		if (!list_empty(&t->node)) {
1405			struct psi_trigger *tmp;
1406			u64 period = ULLONG_MAX;
1407
1408			list_del(&t->node);
1409			group->rtpoll_nr_triggers[t->state]--;
1410			if (!group->rtpoll_nr_triggers[t->state])
1411				group->rtpoll_states &= ~(1 << t->state);
1412			/*
1413			 * Reset min update period for the remaining triggers
1414			 * iff the destroying trigger had the min window size.
1415			 */
1416			if (group->rtpoll_min_period == div_u64(t->win.size, UPDATES_PER_WINDOW)) {
1417				list_for_each_entry(tmp, &group->rtpoll_triggers, node)
1418					period = min(period, div_u64(tmp->win.size,
1419							UPDATES_PER_WINDOW));
1420				group->rtpoll_min_period = period;
1421			}
1422			/* Destroy rtpoll_task when the last trigger is destroyed */
1423			if (group->rtpoll_states == 0) {
1424				group->rtpoll_until = 0;
1425				task_to_destroy = rcu_dereference_protected(
1426						group->rtpoll_task,
1427						lockdep_is_held(&group->rtpoll_trigger_lock));
1428				rcu_assign_pointer(group->rtpoll_task, NULL);
1429				del_timer(&group->rtpoll_timer);
1430			}
1431		}
1432		mutex_unlock(&group->rtpoll_trigger_lock);
1433	}
1434
1435	/*
1436	 * Wait for psi_schedule_rtpoll_work RCU to complete its read-side
1437	 * critical section before destroying the trigger and optionally the
1438	 * rtpoll_task.
1439	 */
1440	synchronize_rcu();
1441	/*
1442	 * Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent
1443	 * a deadlock while waiting for psi_rtpoll_work to acquire
1444	 * rtpoll_trigger_lock
1445	 */
1446	if (task_to_destroy) {
1447		/*
1448		 * After the RCU grace period has expired, the worker
1449		 * can no longer be found through group->rtpoll_task.
1450		 */
1451		kthread_stop(task_to_destroy);
1452		atomic_set(&group->rtpoll_scheduled, 0);
1453	}
1454	kfree(t);
1455}
1456
1457__poll_t psi_trigger_poll(void **trigger_ptr,
1458				struct file *file, poll_table *wait)
1459{
1460	__poll_t ret = DEFAULT_POLLMASK;
1461	struct psi_trigger *t;
1462
1463	if (static_branch_likely(&psi_disabled))
1464		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1465
1466	t = smp_load_acquire(trigger_ptr);
1467	if (!t)
1468		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1469
1470	if (t->of)
1471		kernfs_generic_poll(t->of, wait);
1472	else
1473		poll_wait(file, &t->event_wait, wait);
1474
1475	if (cmpxchg(&t->event, 1, 0) == 1)
1476		ret |= EPOLLPRI;
1477
1478	return ret;
1479}
1480
1481#ifdef CONFIG_PROC_FS
1482static int psi_io_show(struct seq_file *m, void *v)
1483{
1484	return psi_show(m, &psi_system, PSI_IO);
1485}
1486
1487static int psi_memory_show(struct seq_file *m, void *v)
1488{
1489	return psi_show(m, &psi_system, PSI_MEM);
1490}
1491
1492static int psi_cpu_show(struct seq_file *m, void *v)
1493{
1494	return psi_show(m, &psi_system, PSI_CPU);
1495}
1496
1497static int psi_io_open(struct inode *inode, struct file *file)
1498{
1499	return single_open(file, psi_io_show, NULL);
1500}
1501
1502static int psi_memory_open(struct inode *inode, struct file *file)
1503{
1504	return single_open(file, psi_memory_show, NULL);
1505}
1506
1507static int psi_cpu_open(struct inode *inode, struct file *file)
1508{
1509	return single_open(file, psi_cpu_show, NULL);
1510}
1511
1512static ssize_t psi_write(struct file *file, const char __user *user_buf,
1513			 size_t nbytes, enum psi_res res)
1514{
1515	char buf[32];
1516	size_t buf_size;
1517	struct seq_file *seq;
1518	struct psi_trigger *new;
1519
1520	if (static_branch_likely(&psi_disabled))
1521		return -EOPNOTSUPP;
1522
1523	if (!nbytes)
1524		return -EINVAL;
1525
1526	buf_size = min(nbytes, sizeof(buf));
1527	if (copy_from_user(buf, user_buf, buf_size))
1528		return -EFAULT;
1529
1530	buf[buf_size - 1] = '\0';
1531
1532	seq = file->private_data;
1533
1534	/* Take seq->lock to protect seq->private from concurrent writes */
1535	mutex_lock(&seq->lock);
1536
1537	/* Allow only one trigger per file descriptor */
1538	if (seq->private) {
1539		mutex_unlock(&seq->lock);
1540		return -EBUSY;
1541	}
1542
1543	new = psi_trigger_create(&psi_system, buf, res, file, NULL);
1544	if (IS_ERR(new)) {
1545		mutex_unlock(&seq->lock);
1546		return PTR_ERR(new);
1547	}
1548
1549	smp_store_release(&seq->private, new);
1550	mutex_unlock(&seq->lock);
1551
1552	return nbytes;
1553}
1554
1555static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1556			    size_t nbytes, loff_t *ppos)
1557{
1558	return psi_write(file, user_buf, nbytes, PSI_IO);
1559}
1560
1561static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1562				size_t nbytes, loff_t *ppos)
1563{
1564	return psi_write(file, user_buf, nbytes, PSI_MEM);
1565}
1566
1567static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1568			     size_t nbytes, loff_t *ppos)
1569{
1570	return psi_write(file, user_buf, nbytes, PSI_CPU);
1571}
1572
1573static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1574{
1575	struct seq_file *seq = file->private_data;
1576
1577	return psi_trigger_poll(&seq->private, file, wait);
1578}
1579
1580static int psi_fop_release(struct inode *inode, struct file *file)
1581{
1582	struct seq_file *seq = file->private_data;
1583
1584	psi_trigger_destroy(seq->private);
1585	return single_release(inode, file);
1586}
1587
1588static const struct proc_ops psi_io_proc_ops = {
1589	.proc_open	= psi_io_open,
1590	.proc_read	= seq_read,
1591	.proc_lseek	= seq_lseek,
1592	.proc_write	= psi_io_write,
1593	.proc_poll	= psi_fop_poll,
1594	.proc_release	= psi_fop_release,
1595};
1596
1597static const struct proc_ops psi_memory_proc_ops = {
1598	.proc_open	= psi_memory_open,
1599	.proc_read	= seq_read,
1600	.proc_lseek	= seq_lseek,
1601	.proc_write	= psi_memory_write,
1602	.proc_poll	= psi_fop_poll,
1603	.proc_release	= psi_fop_release,
1604};
1605
1606static const struct proc_ops psi_cpu_proc_ops = {
1607	.proc_open	= psi_cpu_open,
1608	.proc_read	= seq_read,
1609	.proc_lseek	= seq_lseek,
1610	.proc_write	= psi_cpu_write,
1611	.proc_poll	= psi_fop_poll,
1612	.proc_release	= psi_fop_release,
1613};
1614
1615#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1616static int psi_irq_show(struct seq_file *m, void *v)
1617{
1618	return psi_show(m, &psi_system, PSI_IRQ);
1619}
1620
1621static int psi_irq_open(struct inode *inode, struct file *file)
1622{
1623	return single_open(file, psi_irq_show, NULL);
1624}
1625
1626static ssize_t psi_irq_write(struct file *file, const char __user *user_buf,
1627			     size_t nbytes, loff_t *ppos)
1628{
1629	return psi_write(file, user_buf, nbytes, PSI_IRQ);
1630}
1631
1632static const struct proc_ops psi_irq_proc_ops = {
1633	.proc_open	= psi_irq_open,
1634	.proc_read	= seq_read,
1635	.proc_lseek	= seq_lseek,
1636	.proc_write	= psi_irq_write,
1637	.proc_poll	= psi_fop_poll,
1638	.proc_release	= psi_fop_release,
1639};
1640#endif
1641
1642static int __init psi_proc_init(void)
1643{
1644	if (psi_enable) {
1645		proc_mkdir("pressure", NULL);
1646		proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1647		proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1648		proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
1649#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1650		proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops);
1651#endif
1652	}
1653	return 0;
1654}
1655module_init(psi_proc_init);
1656
1657#endif /* CONFIG_PROC_FS */