Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/* Kernel thread helper functions.
   2 *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
 
   3 *
   4 * Creation is done via kthreadd, so that we get a clean environment
   5 * even if we're invoked from userspace (think modprobe, hotplug cpu,
   6 * etc.).
   7 */
 
 
 
   8#include <linux/sched.h>
 
 
   9#include <linux/kthread.h>
  10#include <linux/completion.h>
  11#include <linux/err.h>
 
  12#include <linux/cpuset.h>
  13#include <linux/unistd.h>
  14#include <linux/file.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/slab.h>
  18#include <linux/freezer.h>
  19#include <linux/ptrace.h>
  20#include <linux/uaccess.h>
 
 
  21#include <trace/events/sched.h>
  22
 
  23static DEFINE_SPINLOCK(kthread_create_lock);
  24static LIST_HEAD(kthread_create_list);
  25struct task_struct *kthreadd_task;
  26
  27struct kthread_create_info
  28{
  29	/* Information passed to kthread() from kthreadd. */
 
  30	int (*threadfn)(void *data);
  31	void *data;
  32	int node;
  33
  34	/* Result passed back to kthread_create() from kthreadd. */
  35	struct task_struct *result;
  36	struct completion *done;
  37
  38	struct list_head list;
  39};
  40
  41struct kthread {
  42	unsigned long flags;
  43	unsigned int cpu;
 
 
  44	void *data;
  45	struct completion parked;
  46	struct completion exited;
 
 
 
 
 
  47};
  48
  49enum KTHREAD_BITS {
  50	KTHREAD_IS_PER_CPU = 0,
  51	KTHREAD_SHOULD_STOP,
  52	KTHREAD_SHOULD_PARK,
  53	KTHREAD_IS_PARKED,
  54};
  55
  56static inline void set_kthread_struct(void *kthread)
  57{
  58	/*
  59	 * We abuse ->set_child_tid to avoid the new member and because it
  60	 * can't be wrongly copied by copy_process(). We also rely on fact
  61	 * that the caller can't exec, so PF_KTHREAD can't be cleared.
  62	 */
  63	current->set_child_tid = (__force void __user *)kthread;
  64}
  65
  66static inline struct kthread *to_kthread(struct task_struct *k)
 
 
 
 
 
 
 
 
 
 
 
  67{
  68	WARN_ON(!(k->flags & PF_KTHREAD));
  69	return (__force void *)k->set_child_tid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70}
  71
  72void free_kthread_struct(struct task_struct *k)
  73{
 
 
  74	/*
  75	 * Can be NULL if this kthread was created by kernel_thread()
  76	 * or if kmalloc() in kthread() failed.
  77	 */
  78	kfree(to_kthread(k));
 
 
 
 
 
 
 
 
 
  79}
  80
  81/**
  82 * kthread_should_stop - should this kthread return now?
  83 *
  84 * When someone calls kthread_stop() on your kthread, it will be woken
  85 * and this will return true.  You should then return, and your return
  86 * value will be passed through to kthread_stop().
  87 */
  88bool kthread_should_stop(void)
  89{
  90	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
  91}
  92EXPORT_SYMBOL(kthread_should_stop);
  93
 
 
 
 
 
  94/**
  95 * kthread_should_park - should this kthread park now?
  96 *
  97 * When someone calls kthread_park() on your kthread, it will be woken
  98 * and this will return true.  You should then do the necessary
  99 * cleanup and call kthread_parkme()
 100 *
 101 * Similar to kthread_should_stop(), but this keeps the thread alive
 102 * and in a park position. kthread_unpark() "restarts" the thread and
 103 * calls the thread function again.
 104 */
 105bool kthread_should_park(void)
 106{
 107	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(current)->flags);
 108}
 109EXPORT_SYMBOL_GPL(kthread_should_park);
 110
 
 
 
 
 
 
 
 
 
 
 111/**
 112 * kthread_freezable_should_stop - should this freezable kthread return now?
 113 * @was_frozen: optional out parameter, indicates whether %current was frozen
 114 *
 115 * kthread_should_stop() for freezable kthreads, which will enter
 116 * refrigerator if necessary.  This function is safe from kthread_stop() /
 117 * freezer deadlock and freezable kthreads should use this function instead
 118 * of calling try_to_freeze() directly.
 119 */
 120bool kthread_freezable_should_stop(bool *was_frozen)
 121{
 122	bool frozen = false;
 123
 124	might_sleep();
 125
 126	if (unlikely(freezing(current)))
 127		frozen = __refrigerator(true);
 128
 129	if (was_frozen)
 130		*was_frozen = frozen;
 131
 132	return kthread_should_stop();
 133}
 134EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
 135
 136/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 137 * kthread_data - return data value specified on kthread creation
 138 * @task: kthread task in question
 139 *
 140 * Return the data value specified when kthread @task was created.
 141 * The caller is responsible for ensuring the validity of @task when
 142 * calling this function.
 143 */
 144void *kthread_data(struct task_struct *task)
 145{
 146	return to_kthread(task)->data;
 147}
 
 148
 149/**
 150 * kthread_probe_data - speculative version of kthread_data()
 151 * @task: possible kthread task in question
 152 *
 153 * @task could be a kthread task.  Return the data value specified when it
 154 * was created if accessible.  If @task isn't a kthread task or its data is
 155 * inaccessible for any reason, %NULL is returned.  This function requires
 156 * that @task itself is safe to dereference.
 157 */
 158void *kthread_probe_data(struct task_struct *task)
 159{
 160	struct kthread *kthread = to_kthread(task);
 161	void *data = NULL;
 162
 163	probe_kernel_read(&data, &kthread->data, sizeof(data));
 
 164	return data;
 165}
 166
 167static void __kthread_parkme(struct kthread *self)
 168{
 169	__set_current_state(TASK_PARKED);
 170	while (test_bit(KTHREAD_SHOULD_PARK, &self->flags)) {
 171		if (!test_and_set_bit(KTHREAD_IS_PARKED, &self->flags))
 172			complete(&self->parked);
 173		schedule();
 174		__set_current_state(TASK_PARKED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175	}
 176	clear_bit(KTHREAD_IS_PARKED, &self->flags);
 177	__set_current_state(TASK_RUNNING);
 178}
 179
 180void kthread_parkme(void)
 181{
 182	__kthread_parkme(to_kthread(current));
 183}
 184EXPORT_SYMBOL_GPL(kthread_parkme);
 185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186static int kthread(void *_create)
 187{
 
 188	/* Copy data: it's on kthread's stack */
 189	struct kthread_create_info *create = _create;
 190	int (*threadfn)(void *data) = create->threadfn;
 191	void *data = create->data;
 192	struct completion *done;
 193	struct kthread *self;
 194	int ret;
 195
 196	self = kmalloc(sizeof(*self), GFP_KERNEL);
 197	set_kthread_struct(self);
 198
 199	/* If user was SIGKILLed, I release the structure. */
 200	done = xchg(&create->done, NULL);
 201	if (!done) {
 
 202		kfree(create);
 203		do_exit(-EINTR);
 204	}
 205
 206	if (!self) {
 207		create->result = ERR_PTR(-ENOMEM);
 208		complete(done);
 209		do_exit(-ENOMEM);
 210	}
 211
 212	self->flags = 0;
 213	self->data = data;
 214	init_completion(&self->exited);
 215	init_completion(&self->parked);
 216	current->vfork_done = &self->exited;
 
 
 
 
 217
 218	/* OK, tell user we're spawned, wait for stop or wakeup */
 219	__set_current_state(TASK_UNINTERRUPTIBLE);
 220	create->result = current;
 
 
 
 
 
 221	complete(done);
 222	schedule();
 
 223
 224	ret = -EINTR;
 225	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
 
 226		__kthread_parkme(self);
 227		ret = threadfn(data);
 228	}
 229	do_exit(ret);
 230}
 231
 232/* called from do_fork() to get node information for about to be created task */
 233int tsk_fork_get_node(struct task_struct *tsk)
 234{
 235#ifdef CONFIG_NUMA
 236	if (tsk == kthreadd_task)
 237		return tsk->pref_node_fork;
 238#endif
 239	return NUMA_NO_NODE;
 240}
 241
 242static void create_kthread(struct kthread_create_info *create)
 243{
 244	int pid;
 245
 246#ifdef CONFIG_NUMA
 247	current->pref_node_fork = create->node;
 248#endif
 249	/* We want our own signal handler (we take no signals by default). */
 250	pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
 
 251	if (pid < 0) {
 252		/* If user was SIGKILLed, I release the structure. */
 253		struct completion *done = xchg(&create->done, NULL);
 254
 
 255		if (!done) {
 256			kfree(create);
 257			return;
 258		}
 259		create->result = ERR_PTR(pid);
 260		complete(done);
 261	}
 262}
 263
 264static __printf(4, 0)
 265struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
 266						    void *data, int node,
 267						    const char namefmt[],
 268						    va_list args)
 269{
 270	DECLARE_COMPLETION_ONSTACK(done);
 271	struct task_struct *task;
 272	struct kthread_create_info *create = kmalloc(sizeof(*create),
 273						     GFP_KERNEL);
 274
 275	if (!create)
 276		return ERR_PTR(-ENOMEM);
 277	create->threadfn = threadfn;
 278	create->data = data;
 279	create->node = node;
 280	create->done = &done;
 
 
 
 
 
 281
 282	spin_lock(&kthread_create_lock);
 283	list_add_tail(&create->list, &kthread_create_list);
 284	spin_unlock(&kthread_create_lock);
 285
 286	wake_up_process(kthreadd_task);
 287	/*
 288	 * Wait for completion in killable state, for I might be chosen by
 289	 * the OOM killer while kthreadd is trying to allocate memory for
 290	 * new kernel thread.
 291	 */
 292	if (unlikely(wait_for_completion_killable(&done))) {
 293		/*
 294		 * If I was SIGKILLed before kthreadd (or new kernel thread)
 295		 * calls complete(), leave the cleanup of this structure to
 296		 * that thread.
 297		 */
 298		if (xchg(&create->done, NULL))
 299			return ERR_PTR(-EINTR);
 300		/*
 301		 * kthreadd (or new kernel thread) will call complete()
 302		 * shortly.
 303		 */
 304		wait_for_completion(&done);
 305	}
 306	task = create->result;
 307	if (!IS_ERR(task)) {
 308		static const struct sched_param param = { .sched_priority = 0 };
 309
 310		vsnprintf(task->comm, sizeof(task->comm), namefmt, args);
 311		/*
 312		 * root may have changed our (kthreadd's) priority or CPU mask.
 313		 * The kernel thread should not inherit these properties.
 314		 */
 315		sched_setscheduler_nocheck(task, SCHED_NORMAL, &param);
 316		set_cpus_allowed_ptr(task, cpu_all_mask);
 317	}
 318	kfree(create);
 319	return task;
 320}
 321
 322/**
 323 * kthread_create_on_node - create a kthread.
 324 * @threadfn: the function to run until signal_pending(current).
 325 * @data: data ptr for @threadfn.
 326 * @node: task and thread structures for the thread are allocated on this node
 327 * @namefmt: printf-style name for the thread.
 328 *
 329 * Description: This helper function creates and names a kernel
 330 * thread.  The thread will be stopped: use wake_up_process() to start
 331 * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
 332 * is affine to all CPUs.
 333 *
 334 * If thread is going to be bound on a particular cpu, give its node
 335 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
 336 * When woken, the thread will run @threadfn() with @data as its
 337 * argument. @threadfn() can either call do_exit() directly if it is a
 338 * standalone thread for which no one will call kthread_stop(), or
 339 * return when 'kthread_should_stop()' is true (which means
 340 * kthread_stop() has been called).  The return value should be zero
 341 * or a negative error number; it will be passed to kthread_stop().
 342 *
 343 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
 344 */
 345struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
 346					   void *data, int node,
 347					   const char namefmt[],
 348					   ...)
 349{
 350	struct task_struct *task;
 351	va_list args;
 352
 353	va_start(args, namefmt);
 354	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
 355	va_end(args);
 356
 357	return task;
 358}
 359EXPORT_SYMBOL(kthread_create_on_node);
 360
 361static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, long state)
 362{
 363	unsigned long flags;
 364
 365	if (!wait_task_inactive(p, state)) {
 366		WARN_ON(1);
 367		return;
 368	}
 369
 370	/* It's safe because the task is inactive. */
 371	raw_spin_lock_irqsave(&p->pi_lock, flags);
 372	do_set_cpus_allowed(p, mask);
 373	p->flags |= PF_NO_SETAFFINITY;
 374	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 375}
 376
 377static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state)
 378{
 379	__kthread_bind_mask(p, cpumask_of(cpu), state);
 380}
 381
 382void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
 383{
 384	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
 385}
 386
 387/**
 388 * kthread_bind - bind a just-created kthread to a cpu.
 389 * @p: thread created by kthread_create().
 390 * @cpu: cpu (might not be online, must be possible) for @k to run on.
 391 *
 392 * Description: This function is equivalent to set_cpus_allowed(),
 393 * except that @cpu doesn't need to be online, and the thread must be
 394 * stopped (i.e., just returned from kthread_create()).
 395 */
 396void kthread_bind(struct task_struct *p, unsigned int cpu)
 397{
 398	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
 399}
 400EXPORT_SYMBOL(kthread_bind);
 401
 402/**
 403 * kthread_create_on_cpu - Create a cpu bound kthread
 404 * @threadfn: the function to run until signal_pending(current).
 405 * @data: data ptr for @threadfn.
 406 * @cpu: The cpu on which the thread should be bound,
 407 * @namefmt: printf-style name for the thread. Format is restricted
 408 *	     to "name.*%u". Code fills in cpu number.
 409 *
 410 * Description: This helper function creates and names a kernel thread
 411 * The thread will be woken and put into park mode.
 412 */
 413struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
 414					  void *data, unsigned int cpu,
 415					  const char *namefmt)
 416{
 417	struct task_struct *p;
 418
 419	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
 420				   cpu);
 421	if (IS_ERR(p))
 422		return p;
 423	kthread_bind(p, cpu);
 424	/* CPU hotplug need to bind once again when unparking the thread. */
 425	set_bit(KTHREAD_IS_PER_CPU, &to_kthread(p)->flags);
 426	to_kthread(p)->cpu = cpu;
 427	return p;
 428}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429
 430/**
 431 * kthread_unpark - unpark a thread created by kthread_create().
 432 * @k:		thread created by kthread_create().
 433 *
 434 * Sets kthread_should_park() for @k to return false, wakes it, and
 435 * waits for it to return. If the thread is marked percpu then its
 436 * bound to the cpu again.
 437 */
 438void kthread_unpark(struct task_struct *k)
 439{
 440	struct kthread *kthread = to_kthread(k);
 441
 
 
 
 
 
 
 
 442	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 443	/*
 444	 * We clear the IS_PARKED bit here as we don't wait
 445	 * until the task has left the park code. So if we'd
 446	 * park before that happens we'd see the IS_PARKED bit
 447	 * which might be about to be cleared.
 448	 */
 449	if (test_and_clear_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
 450		/*
 451		 * Newly created kthread was parked when the CPU was offline.
 452		 * The binding was lost and we need to set it again.
 453		 */
 454		if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
 455			__kthread_bind(k, kthread->cpu, TASK_PARKED);
 456		wake_up_state(k, TASK_PARKED);
 457	}
 458}
 459EXPORT_SYMBOL_GPL(kthread_unpark);
 460
 461/**
 462 * kthread_park - park a thread created by kthread_create().
 463 * @k: thread created by kthread_create().
 464 *
 465 * Sets kthread_should_park() for @k to return true, wakes it, and
 466 * waits for it to return. This can also be called after kthread_create()
 467 * instead of calling wake_up_process(): the thread will park without
 468 * calling threadfn().
 469 *
 470 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
 471 * If called by the kthread itself just the park bit is set.
 472 */
 473int kthread_park(struct task_struct *k)
 474{
 475	struct kthread *kthread = to_kthread(k);
 476
 477	if (WARN_ON(k->flags & PF_EXITING))
 478		return -ENOSYS;
 479
 480	if (!test_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
 481		set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 482		if (k != current) {
 483			wake_up_process(k);
 484			wait_for_completion(&kthread->parked);
 485		}
 
 
 
 
 
 
 
 
 
 
 486	}
 487
 488	return 0;
 489}
 490EXPORT_SYMBOL_GPL(kthread_park);
 491
 492/**
 493 * kthread_stop - stop a thread created by kthread_create().
 494 * @k: thread created by kthread_create().
 495 *
 496 * Sets kthread_should_stop() for @k to return true, wakes it, and
 497 * waits for it to exit. This can also be called after kthread_create()
 498 * instead of calling wake_up_process(): the thread will exit without
 499 * calling threadfn().
 500 *
 501 * If threadfn() may call do_exit() itself, the caller must ensure
 502 * task_struct can't go away.
 503 *
 504 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
 505 * was never called.
 506 */
 507int kthread_stop(struct task_struct *k)
 508{
 509	struct kthread *kthread;
 510	int ret;
 511
 512	trace_sched_kthread_stop(k);
 513
 514	get_task_struct(k);
 515	kthread = to_kthread(k);
 516	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
 517	kthread_unpark(k);
 
 518	wake_up_process(k);
 519	wait_for_completion(&kthread->exited);
 520	ret = k->exit_code;
 521	put_task_struct(k);
 522
 523	trace_sched_kthread_stop_ret(ret);
 524	return ret;
 525}
 526EXPORT_SYMBOL(kthread_stop);
 527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528int kthreadd(void *unused)
 529{
 530	struct task_struct *tsk = current;
 531
 532	/* Setup a clean context for our children to inherit. */
 533	set_task_comm(tsk, "kthreadd");
 534	ignore_signals(tsk);
 535	set_cpus_allowed_ptr(tsk, cpu_all_mask);
 536	set_mems_allowed(node_states[N_MEMORY]);
 537
 538	current->flags |= PF_NOFREEZE;
 
 539
 540	for (;;) {
 541		set_current_state(TASK_INTERRUPTIBLE);
 542		if (list_empty(&kthread_create_list))
 543			schedule();
 544		__set_current_state(TASK_RUNNING);
 545
 546		spin_lock(&kthread_create_lock);
 547		while (!list_empty(&kthread_create_list)) {
 548			struct kthread_create_info *create;
 549
 550			create = list_entry(kthread_create_list.next,
 551					    struct kthread_create_info, list);
 552			list_del_init(&create->list);
 553			spin_unlock(&kthread_create_lock);
 554
 555			create_kthread(create);
 556
 557			spin_lock(&kthread_create_lock);
 558		}
 559		spin_unlock(&kthread_create_lock);
 560	}
 561
 562	return 0;
 563}
 564
 565void __kthread_init_worker(struct kthread_worker *worker,
 566				const char *name,
 567				struct lock_class_key *key)
 568{
 569	memset(worker, 0, sizeof(struct kthread_worker));
 570	spin_lock_init(&worker->lock);
 571	lockdep_set_class_and_name(&worker->lock, key, name);
 572	INIT_LIST_HEAD(&worker->work_list);
 573	INIT_LIST_HEAD(&worker->delayed_work_list);
 574}
 575EXPORT_SYMBOL_GPL(__kthread_init_worker);
 576
 577/**
 578 * kthread_worker_fn - kthread function to process kthread_worker
 579 * @worker_ptr: pointer to initialized kthread_worker
 580 *
 581 * This function implements the main cycle of kthread worker. It processes
 582 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
 583 * is empty.
 584 *
 585 * The works are not allowed to keep any locks, disable preemption or interrupts
 586 * when they finish. There is defined a safe point for freezing when one work
 587 * finishes and before a new one is started.
 588 *
 589 * Also the works must not be handled by more than one worker at the same time,
 590 * see also kthread_queue_work().
 591 */
 592int kthread_worker_fn(void *worker_ptr)
 593{
 594	struct kthread_worker *worker = worker_ptr;
 595	struct kthread_work *work;
 596
 597	/*
 598	 * FIXME: Update the check and remove the assignment when all kthread
 599	 * worker users are created using kthread_create_worker*() functions.
 600	 */
 601	WARN_ON(worker->task && worker->task != current);
 602	worker->task = current;
 603
 604	if (worker->flags & KTW_FREEZABLE)
 605		set_freezable();
 606
 607repeat:
 608	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
 609
 610	if (kthread_should_stop()) {
 611		__set_current_state(TASK_RUNNING);
 612		spin_lock_irq(&worker->lock);
 613		worker->task = NULL;
 614		spin_unlock_irq(&worker->lock);
 615		return 0;
 616	}
 617
 618	work = NULL;
 619	spin_lock_irq(&worker->lock);
 620	if (!list_empty(&worker->work_list)) {
 621		work = list_first_entry(&worker->work_list,
 622					struct kthread_work, node);
 623		list_del_init(&work->node);
 624	}
 625	worker->current_work = work;
 626	spin_unlock_irq(&worker->lock);
 627
 628	if (work) {
 
 629		__set_current_state(TASK_RUNNING);
 
 630		work->func(work);
 
 
 
 
 
 631	} else if (!freezing(current))
 632		schedule();
 633
 634	try_to_freeze();
 
 635	goto repeat;
 636}
 637EXPORT_SYMBOL_GPL(kthread_worker_fn);
 638
 639static __printf(3, 0) struct kthread_worker *
 640__kthread_create_worker(int cpu, unsigned int flags,
 641			const char namefmt[], va_list args)
 642{
 643	struct kthread_worker *worker;
 644	struct task_struct *task;
 645	int node = -1;
 646
 647	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
 648	if (!worker)
 649		return ERR_PTR(-ENOMEM);
 650
 651	kthread_init_worker(worker);
 652
 653	if (cpu >= 0)
 654		node = cpu_to_node(cpu);
 655
 656	task = __kthread_create_on_node(kthread_worker_fn, worker,
 657						node, namefmt, args);
 658	if (IS_ERR(task))
 659		goto fail_task;
 660
 661	if (cpu >= 0)
 662		kthread_bind(task, cpu);
 663
 664	worker->flags = flags;
 665	worker->task = task;
 666	wake_up_process(task);
 667	return worker;
 668
 669fail_task:
 670	kfree(worker);
 671	return ERR_CAST(task);
 672}
 673
 674/**
 675 * kthread_create_worker - create a kthread worker
 676 * @flags: flags modifying the default behavior of the worker
 677 * @namefmt: printf-style name for the kthread worker (task).
 678 *
 679 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 680 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 681 * when the worker was SIGKILLed.
 682 */
 683struct kthread_worker *
 684kthread_create_worker(unsigned int flags, const char namefmt[], ...)
 685{
 686	struct kthread_worker *worker;
 687	va_list args;
 688
 689	va_start(args, namefmt);
 690	worker = __kthread_create_worker(-1, flags, namefmt, args);
 691	va_end(args);
 692
 693	return worker;
 694}
 695EXPORT_SYMBOL(kthread_create_worker);
 696
 697/**
 698 * kthread_create_worker_on_cpu - create a kthread worker and bind it
 699 *	it to a given CPU and the associated NUMA node.
 700 * @cpu: CPU number
 701 * @flags: flags modifying the default behavior of the worker
 702 * @namefmt: printf-style name for the kthread worker (task).
 703 *
 704 * Use a valid CPU number if you want to bind the kthread worker
 705 * to the given CPU and the associated NUMA node.
 706 *
 707 * A good practice is to add the cpu number also into the worker name.
 708 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
 709 *
 710 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 712 * when the worker was SIGKILLed.
 713 */
 714struct kthread_worker *
 715kthread_create_worker_on_cpu(int cpu, unsigned int flags,
 716			     const char namefmt[], ...)
 717{
 718	struct kthread_worker *worker;
 719	va_list args;
 720
 721	va_start(args, namefmt);
 722	worker = __kthread_create_worker(cpu, flags, namefmt, args);
 723	va_end(args);
 724
 725	return worker;
 726}
 727EXPORT_SYMBOL(kthread_create_worker_on_cpu);
 728
 729/*
 730 * Returns true when the work could not be queued at the moment.
 731 * It happens when it is already pending in a worker list
 732 * or when it is being cancelled.
 733 */
 734static inline bool queuing_blocked(struct kthread_worker *worker,
 735				   struct kthread_work *work)
 736{
 737	lockdep_assert_held(&worker->lock);
 738
 739	return !list_empty(&work->node) || work->canceling;
 740}
 741
 742static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
 743					     struct kthread_work *work)
 744{
 745	lockdep_assert_held(&worker->lock);
 746	WARN_ON_ONCE(!list_empty(&work->node));
 747	/* Do not use a work with >1 worker, see kthread_queue_work() */
 748	WARN_ON_ONCE(work->worker && work->worker != worker);
 749}
 750
 751/* insert @work before @pos in @worker */
 752static void kthread_insert_work(struct kthread_worker *worker,
 753				struct kthread_work *work,
 754				struct list_head *pos)
 755{
 756	kthread_insert_work_sanity_check(worker, work);
 757
 
 
 758	list_add_tail(&work->node, pos);
 759	work->worker = worker;
 760	if (!worker->current_work && likely(worker->task))
 761		wake_up_process(worker->task);
 762}
 763
 764/**
 765 * kthread_queue_work - queue a kthread_work
 766 * @worker: target kthread_worker
 767 * @work: kthread_work to queue
 768 *
 769 * Queue @work to work processor @task for async execution.  @task
 770 * must have been created with kthread_worker_create().  Returns %true
 771 * if @work was successfully queued, %false if it was already pending.
 772 *
 773 * Reinitialize the work if it needs to be used by another worker.
 774 * For example, when the worker was stopped and started again.
 775 */
 776bool kthread_queue_work(struct kthread_worker *worker,
 777			struct kthread_work *work)
 778{
 779	bool ret = false;
 780	unsigned long flags;
 781
 782	spin_lock_irqsave(&worker->lock, flags);
 783	if (!queuing_blocked(worker, work)) {
 784		kthread_insert_work(worker, work, &worker->work_list);
 785		ret = true;
 786	}
 787	spin_unlock_irqrestore(&worker->lock, flags);
 788	return ret;
 789}
 790EXPORT_SYMBOL_GPL(kthread_queue_work);
 791
 792/**
 793 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
 794 *	delayed work when the timer expires.
 795 * @__data: pointer to the data associated with the timer
 796 *
 797 * The format of the function is defined by struct timer_list.
 798 * It should have been called from irqsafe timer with irq already off.
 799 */
 800void kthread_delayed_work_timer_fn(unsigned long __data)
 801{
 802	struct kthread_delayed_work *dwork =
 803		(struct kthread_delayed_work *)__data;
 804	struct kthread_work *work = &dwork->work;
 805	struct kthread_worker *worker = work->worker;
 
 806
 807	/*
 808	 * This might happen when a pending work is reinitialized.
 809	 * It means that it is used a wrong way.
 810	 */
 811	if (WARN_ON_ONCE(!worker))
 812		return;
 813
 814	spin_lock(&worker->lock);
 815	/* Work must not be used with >1 worker, see kthread_queue_work(). */
 816	WARN_ON_ONCE(work->worker != worker);
 817
 818	/* Move the work from worker->delayed_work_list. */
 819	WARN_ON_ONCE(list_empty(&work->node));
 820	list_del_init(&work->node);
 821	kthread_insert_work(worker, work, &worker->work_list);
 
 822
 823	spin_unlock(&worker->lock);
 824}
 825EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
 826
 827void __kthread_queue_delayed_work(struct kthread_worker *worker,
 828				  struct kthread_delayed_work *dwork,
 829				  unsigned long delay)
 830{
 831	struct timer_list *timer = &dwork->timer;
 832	struct kthread_work *work = &dwork->work;
 833
 834	WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn ||
 835		     timer->data != (unsigned long)dwork);
 836
 837	/*
 838	 * If @delay is 0, queue @dwork->work immediately.  This is for
 839	 * both optimization and correctness.  The earliest @timer can
 840	 * expire is on the closest next tick and delayed_work users depend
 841	 * on that there's no such delay when @delay is 0.
 842	 */
 843	if (!delay) {
 844		kthread_insert_work(worker, work, &worker->work_list);
 845		return;
 846	}
 847
 848	/* Be paranoid and try to detect possible races already now. */
 849	kthread_insert_work_sanity_check(worker, work);
 850
 851	list_add(&work->node, &worker->delayed_work_list);
 852	work->worker = worker;
 853	timer_stats_timer_set_start_info(&dwork->timer);
 854	timer->expires = jiffies + delay;
 855	add_timer(timer);
 856}
 857
 858/**
 859 * kthread_queue_delayed_work - queue the associated kthread work
 860 *	after a delay.
 861 * @worker: target kthread_worker
 862 * @dwork: kthread_delayed_work to queue
 863 * @delay: number of jiffies to wait before queuing
 864 *
 865 * If the work has not been pending it starts a timer that will queue
 866 * the work after the given @delay. If @delay is zero, it queues the
 867 * work immediately.
 868 *
 869 * Return: %false if the @work has already been pending. It means that
 870 * either the timer was running or the work was queued. It returns %true
 871 * otherwise.
 872 */
 873bool kthread_queue_delayed_work(struct kthread_worker *worker,
 874				struct kthread_delayed_work *dwork,
 875				unsigned long delay)
 876{
 877	struct kthread_work *work = &dwork->work;
 878	unsigned long flags;
 879	bool ret = false;
 880
 881	spin_lock_irqsave(&worker->lock, flags);
 882
 883	if (!queuing_blocked(worker, work)) {
 884		__kthread_queue_delayed_work(worker, dwork, delay);
 885		ret = true;
 886	}
 887
 888	spin_unlock_irqrestore(&worker->lock, flags);
 889	return ret;
 890}
 891EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
 892
 893struct kthread_flush_work {
 894	struct kthread_work	work;
 895	struct completion	done;
 896};
 897
 898static void kthread_flush_work_fn(struct kthread_work *work)
 899{
 900	struct kthread_flush_work *fwork =
 901		container_of(work, struct kthread_flush_work, work);
 902	complete(&fwork->done);
 903}
 904
 905/**
 906 * kthread_flush_work - flush a kthread_work
 907 * @work: work to flush
 908 *
 909 * If @work is queued or executing, wait for it to finish execution.
 910 */
 911void kthread_flush_work(struct kthread_work *work)
 912{
 913	struct kthread_flush_work fwork = {
 914		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
 915		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
 916	};
 917	struct kthread_worker *worker;
 918	bool noop = false;
 919
 920	worker = work->worker;
 921	if (!worker)
 922		return;
 923
 924	spin_lock_irq(&worker->lock);
 925	/* Work must not be used with >1 worker, see kthread_queue_work(). */
 926	WARN_ON_ONCE(work->worker != worker);
 927
 928	if (!list_empty(&work->node))
 929		kthread_insert_work(worker, &fwork.work, work->node.next);
 930	else if (worker->current_work == work)
 931		kthread_insert_work(worker, &fwork.work,
 932				    worker->work_list.next);
 933	else
 934		noop = true;
 935
 936	spin_unlock_irq(&worker->lock);
 937
 938	if (!noop)
 939		wait_for_completion(&fwork.done);
 940}
 941EXPORT_SYMBOL_GPL(kthread_flush_work);
 942
 943/*
 944 * This function removes the work from the worker queue. Also it makes sure
 945 * that it won't get queued later via the delayed work's timer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 946 *
 947 * The work might still be in use when this function finishes. See the
 948 * current_work proceed by the worker.
 949 *
 950 * Return: %true if @work was pending and successfully canceled,
 951 *	%false if @work was not pending
 952 */
 953static bool __kthread_cancel_work(struct kthread_work *work, bool is_dwork,
 954				  unsigned long *flags)
 955{
 956	/* Try to cancel the timer if exists. */
 957	if (is_dwork) {
 958		struct kthread_delayed_work *dwork =
 959			container_of(work, struct kthread_delayed_work, work);
 960		struct kthread_worker *worker = work->worker;
 961
 962		/*
 963		 * del_timer_sync() must be called to make sure that the timer
 964		 * callback is not running. The lock must be temporary released
 965		 * to avoid a deadlock with the callback. In the meantime,
 966		 * any queuing is blocked by setting the canceling counter.
 967		 */
 968		work->canceling++;
 969		spin_unlock_irqrestore(&worker->lock, *flags);
 970		del_timer_sync(&dwork->timer);
 971		spin_lock_irqsave(&worker->lock, *flags);
 972		work->canceling--;
 973	}
 974
 975	/*
 976	 * Try to remove the work from a worker list. It might either
 977	 * be from worker->work_list or from worker->delayed_work_list.
 978	 */
 979	if (!list_empty(&work->node)) {
 980		list_del_init(&work->node);
 981		return true;
 982	}
 983
 984	return false;
 985}
 986
 987/**
 988 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
 989 * @worker: kthread worker to use
 990 * @dwork: kthread delayed work to queue
 991 * @delay: number of jiffies to wait before queuing
 992 *
 993 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
 994 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
 995 * @work is guaranteed to be queued immediately.
 996 *
 997 * Return: %true if @dwork was pending and its timer was modified,
 998 * %false otherwise.
 999 *
1000 * A special case is when the work is being canceled in parallel.
1001 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1002 * or yet another kthread_mod_delayed_work() call. We let the other command
1003 * win and return %false here. The caller is supposed to synchronize these
1004 * operations a reasonable way.
 
1005 *
1006 * This function is safe to call from any context including IRQ handler.
1007 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1008 * for details.
1009 */
1010bool kthread_mod_delayed_work(struct kthread_worker *worker,
1011			      struct kthread_delayed_work *dwork,
1012			      unsigned long delay)
1013{
1014	struct kthread_work *work = &dwork->work;
1015	unsigned long flags;
1016	int ret = false;
1017
1018	spin_lock_irqsave(&worker->lock, flags);
1019
1020	/* Do not bother with canceling when never queued. */
1021	if (!work->worker)
 
1022		goto fast_queue;
 
1023
1024	/* Work must not be used with >1 worker, see kthread_queue_work() */
1025	WARN_ON_ONCE(work->worker != worker);
1026
1027	/* Do not fight with another command that is canceling this work. */
1028	if (work->canceling)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029		goto out;
 
 
1030
1031	ret = __kthread_cancel_work(work, true, &flags);
1032fast_queue:
1033	__kthread_queue_delayed_work(worker, dwork, delay);
1034out:
1035	spin_unlock_irqrestore(&worker->lock, flags);
1036	return ret;
1037}
1038EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1039
1040static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1041{
1042	struct kthread_worker *worker = work->worker;
1043	unsigned long flags;
1044	int ret = false;
1045
1046	if (!worker)
1047		goto out;
1048
1049	spin_lock_irqsave(&worker->lock, flags);
1050	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1051	WARN_ON_ONCE(work->worker != worker);
1052
1053	ret = __kthread_cancel_work(work, is_dwork, &flags);
 
 
 
1054
1055	if (worker->current_work != work)
1056		goto out_fast;
1057
1058	/*
1059	 * The work is in progress and we need to wait with the lock released.
1060	 * In the meantime, block any queuing by setting the canceling counter.
1061	 */
1062	work->canceling++;
1063	spin_unlock_irqrestore(&worker->lock, flags);
1064	kthread_flush_work(work);
1065	spin_lock_irqsave(&worker->lock, flags);
1066	work->canceling--;
1067
1068out_fast:
1069	spin_unlock_irqrestore(&worker->lock, flags);
1070out:
1071	return ret;
1072}
1073
1074/**
1075 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1076 * @work: the kthread work to cancel
1077 *
1078 * Cancel @work and wait for its execution to finish.  This function
1079 * can be used even if the work re-queues itself. On return from this
1080 * function, @work is guaranteed to be not pending or executing on any CPU.
1081 *
1082 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1083 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1084 *
1085 * The caller must ensure that the worker on which @work was last
1086 * queued can't be destroyed before this function returns.
1087 *
1088 * Return: %true if @work was pending, %false otherwise.
1089 */
1090bool kthread_cancel_work_sync(struct kthread_work *work)
1091{
1092	return __kthread_cancel_work_sync(work, false);
1093}
1094EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1095
1096/**
1097 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1098 *	wait for it to finish.
1099 * @dwork: the kthread delayed work to cancel
1100 *
1101 * This is kthread_cancel_work_sync() for delayed works.
1102 *
1103 * Return: %true if @dwork was pending, %false otherwise.
1104 */
1105bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1106{
1107	return __kthread_cancel_work_sync(&dwork->work, true);
1108}
1109EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1110
1111/**
1112 * kthread_flush_worker - flush all current works on a kthread_worker
1113 * @worker: worker to flush
1114 *
1115 * Wait until all currently executing or pending works on @worker are
1116 * finished.
1117 */
1118void kthread_flush_worker(struct kthread_worker *worker)
1119{
1120	struct kthread_flush_work fwork = {
1121		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1122		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1123	};
1124
1125	kthread_queue_work(worker, &fwork.work);
1126	wait_for_completion(&fwork.done);
1127}
1128EXPORT_SYMBOL_GPL(kthread_flush_worker);
1129
1130/**
1131 * kthread_destroy_worker - destroy a kthread worker
1132 * @worker: worker to be destroyed
1133 *
1134 * Flush and destroy @worker.  The simple flush is enough because the kthread
1135 * worker API is used only in trivial scenarios.  There are no multi-step state
1136 * machines needed.
 
 
 
 
1137 */
1138void kthread_destroy_worker(struct kthread_worker *worker)
1139{
1140	struct task_struct *task;
1141
1142	task = worker->task;
1143	if (WARN_ON(!task))
1144		return;
1145
1146	kthread_flush_worker(worker);
1147	kthread_stop(task);
 
1148	WARN_ON(!list_empty(&worker->work_list));
1149	kfree(worker);
1150}
1151EXPORT_SYMBOL(kthread_destroy_worker);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Kernel thread helper functions.
   3 *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
   4 *   Copyright (C) 2009 Red Hat, Inc.
   5 *
   6 * Creation is done via kthreadd, so that we get a clean environment
   7 * even if we're invoked from userspace (think modprobe, hotplug cpu,
   8 * etc.).
   9 */
  10#include <uapi/linux/sched/types.h>
  11#include <linux/mm.h>
  12#include <linux/mmu_context.h>
  13#include <linux/sched.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/task.h>
  16#include <linux/kthread.h>
  17#include <linux/completion.h>
  18#include <linux/err.h>
  19#include <linux/cgroup.h>
  20#include <linux/cpuset.h>
  21#include <linux/unistd.h>
  22#include <linux/file.h>
  23#include <linux/export.h>
  24#include <linux/mutex.h>
  25#include <linux/slab.h>
  26#include <linux/freezer.h>
  27#include <linux/ptrace.h>
  28#include <linux/uaccess.h>
  29#include <linux/numa.h>
  30#include <linux/sched/isolation.h>
  31#include <trace/events/sched.h>
  32
  33
  34static DEFINE_SPINLOCK(kthread_create_lock);
  35static LIST_HEAD(kthread_create_list);
  36struct task_struct *kthreadd_task;
  37
  38struct kthread_create_info
  39{
  40	/* Information passed to kthread() from kthreadd. */
  41	char *full_name;
  42	int (*threadfn)(void *data);
  43	void *data;
  44	int node;
  45
  46	/* Result passed back to kthread_create() from kthreadd. */
  47	struct task_struct *result;
  48	struct completion *done;
  49
  50	struct list_head list;
  51};
  52
  53struct kthread {
  54	unsigned long flags;
  55	unsigned int cpu;
  56	int result;
  57	int (*threadfn)(void *);
  58	void *data;
  59	struct completion parked;
  60	struct completion exited;
  61#ifdef CONFIG_BLK_CGROUP
  62	struct cgroup_subsys_state *blkcg_css;
  63#endif
  64	/* To store the full name if task comm is truncated. */
  65	char *full_name;
  66};
  67
  68enum KTHREAD_BITS {
  69	KTHREAD_IS_PER_CPU = 0,
  70	KTHREAD_SHOULD_STOP,
  71	KTHREAD_SHOULD_PARK,
 
  72};
  73
  74static inline struct kthread *to_kthread(struct task_struct *k)
  75{
  76	WARN_ON(!(k->flags & PF_KTHREAD));
  77	return k->worker_private;
 
 
 
 
  78}
  79
  80/*
  81 * Variant of to_kthread() that doesn't assume @p is a kthread.
  82 *
  83 * Per construction; when:
  84 *
  85 *   (p->flags & PF_KTHREAD) && p->worker_private
  86 *
  87 * the task is both a kthread and struct kthread is persistent. However
  88 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
  89 * begin_new_exec()).
  90 */
  91static inline struct kthread *__to_kthread(struct task_struct *p)
  92{
  93	void *kthread = p->worker_private;
  94	if (kthread && !(p->flags & PF_KTHREAD))
  95		kthread = NULL;
  96	return kthread;
  97}
  98
  99void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
 100{
 101	struct kthread *kthread = to_kthread(tsk);
 102
 103	if (!kthread || !kthread->full_name) {
 104		__get_task_comm(buf, buf_size, tsk);
 105		return;
 106	}
 107
 108	strscpy_pad(buf, kthread->full_name, buf_size);
 109}
 110
 111bool set_kthread_struct(struct task_struct *p)
 112{
 113	struct kthread *kthread;
 114
 115	if (WARN_ON_ONCE(to_kthread(p)))
 116		return false;
 117
 118	kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
 119	if (!kthread)
 120		return false;
 121
 122	init_completion(&kthread->exited);
 123	init_completion(&kthread->parked);
 124	p->vfork_done = &kthread->exited;
 125
 126	p->worker_private = kthread;
 127	return true;
 128}
 129
 130void free_kthread_struct(struct task_struct *k)
 131{
 132	struct kthread *kthread;
 133
 134	/*
 135	 * Can be NULL if kmalloc() in set_kthread_struct() failed.
 
 136	 */
 137	kthread = to_kthread(k);
 138	if (!kthread)
 139		return;
 140
 141#ifdef CONFIG_BLK_CGROUP
 142	WARN_ON_ONCE(kthread->blkcg_css);
 143#endif
 144	k->worker_private = NULL;
 145	kfree(kthread->full_name);
 146	kfree(kthread);
 147}
 148
 149/**
 150 * kthread_should_stop - should this kthread return now?
 151 *
 152 * When someone calls kthread_stop() on your kthread, it will be woken
 153 * and this will return true.  You should then return, and your return
 154 * value will be passed through to kthread_stop().
 155 */
 156bool kthread_should_stop(void)
 157{
 158	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
 159}
 160EXPORT_SYMBOL(kthread_should_stop);
 161
 162static bool __kthread_should_park(struct task_struct *k)
 163{
 164	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
 165}
 166
 167/**
 168 * kthread_should_park - should this kthread park now?
 169 *
 170 * When someone calls kthread_park() on your kthread, it will be woken
 171 * and this will return true.  You should then do the necessary
 172 * cleanup and call kthread_parkme()
 173 *
 174 * Similar to kthread_should_stop(), but this keeps the thread alive
 175 * and in a park position. kthread_unpark() "restarts" the thread and
 176 * calls the thread function again.
 177 */
 178bool kthread_should_park(void)
 179{
 180	return __kthread_should_park(current);
 181}
 182EXPORT_SYMBOL_GPL(kthread_should_park);
 183
 184bool kthread_should_stop_or_park(void)
 185{
 186	struct kthread *kthread = __to_kthread(current);
 187
 188	if (!kthread)
 189		return false;
 190
 191	return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK));
 192}
 193
 194/**
 195 * kthread_freezable_should_stop - should this freezable kthread return now?
 196 * @was_frozen: optional out parameter, indicates whether %current was frozen
 197 *
 198 * kthread_should_stop() for freezable kthreads, which will enter
 199 * refrigerator if necessary.  This function is safe from kthread_stop() /
 200 * freezer deadlock and freezable kthreads should use this function instead
 201 * of calling try_to_freeze() directly.
 202 */
 203bool kthread_freezable_should_stop(bool *was_frozen)
 204{
 205	bool frozen = false;
 206
 207	might_sleep();
 208
 209	if (unlikely(freezing(current)))
 210		frozen = __refrigerator(true);
 211
 212	if (was_frozen)
 213		*was_frozen = frozen;
 214
 215	return kthread_should_stop();
 216}
 217EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
 218
 219/**
 220 * kthread_func - return the function specified on kthread creation
 221 * @task: kthread task in question
 222 *
 223 * Returns NULL if the task is not a kthread.
 224 */
 225void *kthread_func(struct task_struct *task)
 226{
 227	struct kthread *kthread = __to_kthread(task);
 228	if (kthread)
 229		return kthread->threadfn;
 230	return NULL;
 231}
 232EXPORT_SYMBOL_GPL(kthread_func);
 233
 234/**
 235 * kthread_data - return data value specified on kthread creation
 236 * @task: kthread task in question
 237 *
 238 * Return the data value specified when kthread @task was created.
 239 * The caller is responsible for ensuring the validity of @task when
 240 * calling this function.
 241 */
 242void *kthread_data(struct task_struct *task)
 243{
 244	return to_kthread(task)->data;
 245}
 246EXPORT_SYMBOL_GPL(kthread_data);
 247
 248/**
 249 * kthread_probe_data - speculative version of kthread_data()
 250 * @task: possible kthread task in question
 251 *
 252 * @task could be a kthread task.  Return the data value specified when it
 253 * was created if accessible.  If @task isn't a kthread task or its data is
 254 * inaccessible for any reason, %NULL is returned.  This function requires
 255 * that @task itself is safe to dereference.
 256 */
 257void *kthread_probe_data(struct task_struct *task)
 258{
 259	struct kthread *kthread = __to_kthread(task);
 260	void *data = NULL;
 261
 262	if (kthread)
 263		copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
 264	return data;
 265}
 266
 267static void __kthread_parkme(struct kthread *self)
 268{
 269	for (;;) {
 270		/*
 271		 * TASK_PARKED is a special state; we must serialize against
 272		 * possible pending wakeups to avoid store-store collisions on
 273		 * task->state.
 274		 *
 275		 * Such a collision might possibly result in the task state
 276		 * changin from TASK_PARKED and us failing the
 277		 * wait_task_inactive() in kthread_park().
 278		 */
 279		set_special_state(TASK_PARKED);
 280		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
 281			break;
 282
 283		/*
 284		 * Thread is going to call schedule(), do not preempt it,
 285		 * or the caller of kthread_park() may spend more time in
 286		 * wait_task_inactive().
 287		 */
 288		preempt_disable();
 289		complete(&self->parked);
 290		schedule_preempt_disabled();
 291		preempt_enable();
 292	}
 
 293	__set_current_state(TASK_RUNNING);
 294}
 295
 296void kthread_parkme(void)
 297{
 298	__kthread_parkme(to_kthread(current));
 299}
 300EXPORT_SYMBOL_GPL(kthread_parkme);
 301
 302/**
 303 * kthread_exit - Cause the current kthread return @result to kthread_stop().
 304 * @result: The integer value to return to kthread_stop().
 305 *
 306 * While kthread_exit can be called directly, it exists so that
 307 * functions which do some additional work in non-modular code such as
 308 * module_put_and_kthread_exit can be implemented.
 309 *
 310 * Does not return.
 311 */
 312void __noreturn kthread_exit(long result)
 313{
 314	struct kthread *kthread = to_kthread(current);
 315	kthread->result = result;
 316	do_exit(0);
 317}
 318
 319/**
 320 * kthread_complete_and_exit - Exit the current kthread.
 321 * @comp: Completion to complete
 322 * @code: The integer value to return to kthread_stop().
 323 *
 324 * If present, complete @comp and then return code to kthread_stop().
 325 *
 326 * A kernel thread whose module may be removed after the completion of
 327 * @comp can use this function to exit safely.
 328 *
 329 * Does not return.
 330 */
 331void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
 332{
 333	if (comp)
 334		complete(comp);
 335
 336	kthread_exit(code);
 337}
 338EXPORT_SYMBOL(kthread_complete_and_exit);
 339
 340static int kthread(void *_create)
 341{
 342	static const struct sched_param param = { .sched_priority = 0 };
 343	/* Copy data: it's on kthread's stack */
 344	struct kthread_create_info *create = _create;
 345	int (*threadfn)(void *data) = create->threadfn;
 346	void *data = create->data;
 347	struct completion *done;
 348	struct kthread *self;
 349	int ret;
 350
 351	self = to_kthread(current);
 
 352
 353	/* Release the structure when caller killed by a fatal signal. */
 354	done = xchg(&create->done, NULL);
 355	if (!done) {
 356		kfree(create->full_name);
 357		kfree(create);
 358		kthread_exit(-EINTR);
 359	}
 360
 361	self->full_name = create->full_name;
 362	self->threadfn = threadfn;
 
 
 
 
 
 363	self->data = data;
 364
 365	/*
 366	 * The new thread inherited kthreadd's priority and CPU mask. Reset
 367	 * back to default in case they have been changed.
 368	 */
 369	sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
 370	set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD));
 371
 372	/* OK, tell user we're spawned, wait for stop or wakeup */
 373	__set_current_state(TASK_UNINTERRUPTIBLE);
 374	create->result = current;
 375	/*
 376	 * Thread is going to call schedule(), do not preempt it,
 377	 * or the creator may spend more time in wait_task_inactive().
 378	 */
 379	preempt_disable();
 380	complete(done);
 381	schedule_preempt_disabled();
 382	preempt_enable();
 383
 384	ret = -EINTR;
 385	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
 386		cgroup_kthread_ready();
 387		__kthread_parkme(self);
 388		ret = threadfn(data);
 389	}
 390	kthread_exit(ret);
 391}
 392
 393/* called from kernel_clone() to get node information for about to be created task */
 394int tsk_fork_get_node(struct task_struct *tsk)
 395{
 396#ifdef CONFIG_NUMA
 397	if (tsk == kthreadd_task)
 398		return tsk->pref_node_fork;
 399#endif
 400	return NUMA_NO_NODE;
 401}
 402
 403static void create_kthread(struct kthread_create_info *create)
 404{
 405	int pid;
 406
 407#ifdef CONFIG_NUMA
 408	current->pref_node_fork = create->node;
 409#endif
 410	/* We want our own signal handler (we take no signals by default). */
 411	pid = kernel_thread(kthread, create, create->full_name,
 412			    CLONE_FS | CLONE_FILES | SIGCHLD);
 413	if (pid < 0) {
 414		/* Release the structure when caller killed by a fatal signal. */
 415		struct completion *done = xchg(&create->done, NULL);
 416
 417		kfree(create->full_name);
 418		if (!done) {
 419			kfree(create);
 420			return;
 421		}
 422		create->result = ERR_PTR(pid);
 423		complete(done);
 424	}
 425}
 426
 427static __printf(4, 0)
 428struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
 429						    void *data, int node,
 430						    const char namefmt[],
 431						    va_list args)
 432{
 433	DECLARE_COMPLETION_ONSTACK(done);
 434	struct task_struct *task;
 435	struct kthread_create_info *create = kmalloc(sizeof(*create),
 436						     GFP_KERNEL);
 437
 438	if (!create)
 439		return ERR_PTR(-ENOMEM);
 440	create->threadfn = threadfn;
 441	create->data = data;
 442	create->node = node;
 443	create->done = &done;
 444	create->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
 445	if (!create->full_name) {
 446		task = ERR_PTR(-ENOMEM);
 447		goto free_create;
 448	}
 449
 450	spin_lock(&kthread_create_lock);
 451	list_add_tail(&create->list, &kthread_create_list);
 452	spin_unlock(&kthread_create_lock);
 453
 454	wake_up_process(kthreadd_task);
 455	/*
 456	 * Wait for completion in killable state, for I might be chosen by
 457	 * the OOM killer while kthreadd is trying to allocate memory for
 458	 * new kernel thread.
 459	 */
 460	if (unlikely(wait_for_completion_killable(&done))) {
 461		/*
 462		 * If I was killed by a fatal signal before kthreadd (or new
 463		 * kernel thread) calls complete(), leave the cleanup of this
 464		 * structure to that thread.
 465		 */
 466		if (xchg(&create->done, NULL))
 467			return ERR_PTR(-EINTR);
 468		/*
 469		 * kthreadd (or new kernel thread) will call complete()
 470		 * shortly.
 471		 */
 472		wait_for_completion(&done);
 473	}
 474	task = create->result;
 475free_create:
 
 
 
 
 
 
 
 
 
 
 476	kfree(create);
 477	return task;
 478}
 479
 480/**
 481 * kthread_create_on_node - create a kthread.
 482 * @threadfn: the function to run until signal_pending(current).
 483 * @data: data ptr for @threadfn.
 484 * @node: task and thread structures for the thread are allocated on this node
 485 * @namefmt: printf-style name for the thread.
 486 *
 487 * Description: This helper function creates and names a kernel
 488 * thread.  The thread will be stopped: use wake_up_process() to start
 489 * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
 490 * is affine to all CPUs.
 491 *
 492 * If thread is going to be bound on a particular cpu, give its node
 493 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
 494 * When woken, the thread will run @threadfn() with @data as its
 495 * argument. @threadfn() can either return directly if it is a
 496 * standalone thread for which no one will call kthread_stop(), or
 497 * return when 'kthread_should_stop()' is true (which means
 498 * kthread_stop() has been called).  The return value should be zero
 499 * or a negative error number; it will be passed to kthread_stop().
 500 *
 501 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
 502 */
 503struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
 504					   void *data, int node,
 505					   const char namefmt[],
 506					   ...)
 507{
 508	struct task_struct *task;
 509	va_list args;
 510
 511	va_start(args, namefmt);
 512	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
 513	va_end(args);
 514
 515	return task;
 516}
 517EXPORT_SYMBOL(kthread_create_on_node);
 518
 519static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
 520{
 521	unsigned long flags;
 522
 523	if (!wait_task_inactive(p, state)) {
 524		WARN_ON(1);
 525		return;
 526	}
 527
 528	/* It's safe because the task is inactive. */
 529	raw_spin_lock_irqsave(&p->pi_lock, flags);
 530	do_set_cpus_allowed(p, mask);
 531	p->flags |= PF_NO_SETAFFINITY;
 532	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 533}
 534
 535static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
 536{
 537	__kthread_bind_mask(p, cpumask_of(cpu), state);
 538}
 539
 540void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
 541{
 542	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
 543}
 544
 545/**
 546 * kthread_bind - bind a just-created kthread to a cpu.
 547 * @p: thread created by kthread_create().
 548 * @cpu: cpu (might not be online, must be possible) for @k to run on.
 549 *
 550 * Description: This function is equivalent to set_cpus_allowed(),
 551 * except that @cpu doesn't need to be online, and the thread must be
 552 * stopped (i.e., just returned from kthread_create()).
 553 */
 554void kthread_bind(struct task_struct *p, unsigned int cpu)
 555{
 556	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
 557}
 558EXPORT_SYMBOL(kthread_bind);
 559
 560/**
 561 * kthread_create_on_cpu - Create a cpu bound kthread
 562 * @threadfn: the function to run until signal_pending(current).
 563 * @data: data ptr for @threadfn.
 564 * @cpu: The cpu on which the thread should be bound,
 565 * @namefmt: printf-style name for the thread. Format is restricted
 566 *	     to "name.*%u". Code fills in cpu number.
 567 *
 568 * Description: This helper function creates and names a kernel thread
 
 569 */
 570struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
 571					  void *data, unsigned int cpu,
 572					  const char *namefmt)
 573{
 574	struct task_struct *p;
 575
 576	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
 577				   cpu);
 578	if (IS_ERR(p))
 579		return p;
 580	kthread_bind(p, cpu);
 581	/* CPU hotplug need to bind once again when unparking the thread. */
 
 582	to_kthread(p)->cpu = cpu;
 583	return p;
 584}
 585EXPORT_SYMBOL(kthread_create_on_cpu);
 586
 587void kthread_set_per_cpu(struct task_struct *k, int cpu)
 588{
 589	struct kthread *kthread = to_kthread(k);
 590	if (!kthread)
 591		return;
 592
 593	WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
 594
 595	if (cpu < 0) {
 596		clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 597		return;
 598	}
 599
 600	kthread->cpu = cpu;
 601	set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 602}
 603
 604bool kthread_is_per_cpu(struct task_struct *p)
 605{
 606	struct kthread *kthread = __to_kthread(p);
 607	if (!kthread)
 608		return false;
 609
 610	return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 611}
 612
 613/**
 614 * kthread_unpark - unpark a thread created by kthread_create().
 615 * @k:		thread created by kthread_create().
 616 *
 617 * Sets kthread_should_park() for @k to return false, wakes it, and
 618 * waits for it to return. If the thread is marked percpu then its
 619 * bound to the cpu again.
 620 */
 621void kthread_unpark(struct task_struct *k)
 622{
 623	struct kthread *kthread = to_kthread(k);
 624
 625	/*
 626	 * Newly created kthread was parked when the CPU was offline.
 627	 * The binding was lost and we need to set it again.
 628	 */
 629	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
 630		__kthread_bind(k, kthread->cpu, TASK_PARKED);
 631
 632	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 633	/*
 634	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
 
 
 
 635	 */
 636	wake_up_state(k, TASK_PARKED);
 
 
 
 
 
 
 
 
 637}
 638EXPORT_SYMBOL_GPL(kthread_unpark);
 639
 640/**
 641 * kthread_park - park a thread created by kthread_create().
 642 * @k: thread created by kthread_create().
 643 *
 644 * Sets kthread_should_park() for @k to return true, wakes it, and
 645 * waits for it to return. This can also be called after kthread_create()
 646 * instead of calling wake_up_process(): the thread will park without
 647 * calling threadfn().
 648 *
 649 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
 650 * If called by the kthread itself just the park bit is set.
 651 */
 652int kthread_park(struct task_struct *k)
 653{
 654	struct kthread *kthread = to_kthread(k);
 655
 656	if (WARN_ON(k->flags & PF_EXITING))
 657		return -ENOSYS;
 658
 659	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
 660		return -EBUSY;
 661
 662	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 663	if (k != current) {
 664		wake_up_process(k);
 665		/*
 666		 * Wait for __kthread_parkme() to complete(), this means we
 667		 * _will_ have TASK_PARKED and are about to call schedule().
 668		 */
 669		wait_for_completion(&kthread->parked);
 670		/*
 671		 * Now wait for that schedule() to complete and the task to
 672		 * get scheduled out.
 673		 */
 674		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
 675	}
 676
 677	return 0;
 678}
 679EXPORT_SYMBOL_GPL(kthread_park);
 680
 681/**
 682 * kthread_stop - stop a thread created by kthread_create().
 683 * @k: thread created by kthread_create().
 684 *
 685 * Sets kthread_should_stop() for @k to return true, wakes it, and
 686 * waits for it to exit. This can also be called after kthread_create()
 687 * instead of calling wake_up_process(): the thread will exit without
 688 * calling threadfn().
 689 *
 690 * If threadfn() may call kthread_exit() itself, the caller must ensure
 691 * task_struct can't go away.
 692 *
 693 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
 694 * was never called.
 695 */
 696int kthread_stop(struct task_struct *k)
 697{
 698	struct kthread *kthread;
 699	int ret;
 700
 701	trace_sched_kthread_stop(k);
 702
 703	get_task_struct(k);
 704	kthread = to_kthread(k);
 705	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
 706	kthread_unpark(k);
 707	set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL);
 708	wake_up_process(k);
 709	wait_for_completion(&kthread->exited);
 710	ret = kthread->result;
 711	put_task_struct(k);
 712
 713	trace_sched_kthread_stop_ret(ret);
 714	return ret;
 715}
 716EXPORT_SYMBOL(kthread_stop);
 717
 718/**
 719 * kthread_stop_put - stop a thread and put its task struct
 720 * @k: thread created by kthread_create().
 721 *
 722 * Stops a thread created by kthread_create() and put its task_struct.
 723 * Only use when holding an extra task struct reference obtained by
 724 * calling get_task_struct().
 725 */
 726int kthread_stop_put(struct task_struct *k)
 727{
 728	int ret;
 729
 730	ret = kthread_stop(k);
 731	put_task_struct(k);
 732	return ret;
 733}
 734EXPORT_SYMBOL(kthread_stop_put);
 735
 736int kthreadd(void *unused)
 737{
 738	struct task_struct *tsk = current;
 739
 740	/* Setup a clean context for our children to inherit. */
 741	set_task_comm(tsk, "kthreadd");
 742	ignore_signals(tsk);
 743	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD));
 744	set_mems_allowed(node_states[N_MEMORY]);
 745
 746	current->flags |= PF_NOFREEZE;
 747	cgroup_init_kthreadd();
 748
 749	for (;;) {
 750		set_current_state(TASK_INTERRUPTIBLE);
 751		if (list_empty(&kthread_create_list))
 752			schedule();
 753		__set_current_state(TASK_RUNNING);
 754
 755		spin_lock(&kthread_create_lock);
 756		while (!list_empty(&kthread_create_list)) {
 757			struct kthread_create_info *create;
 758
 759			create = list_entry(kthread_create_list.next,
 760					    struct kthread_create_info, list);
 761			list_del_init(&create->list);
 762			spin_unlock(&kthread_create_lock);
 763
 764			create_kthread(create);
 765
 766			spin_lock(&kthread_create_lock);
 767		}
 768		spin_unlock(&kthread_create_lock);
 769	}
 770
 771	return 0;
 772}
 773
 774void __kthread_init_worker(struct kthread_worker *worker,
 775				const char *name,
 776				struct lock_class_key *key)
 777{
 778	memset(worker, 0, sizeof(struct kthread_worker));
 779	raw_spin_lock_init(&worker->lock);
 780	lockdep_set_class_and_name(&worker->lock, key, name);
 781	INIT_LIST_HEAD(&worker->work_list);
 782	INIT_LIST_HEAD(&worker->delayed_work_list);
 783}
 784EXPORT_SYMBOL_GPL(__kthread_init_worker);
 785
 786/**
 787 * kthread_worker_fn - kthread function to process kthread_worker
 788 * @worker_ptr: pointer to initialized kthread_worker
 789 *
 790 * This function implements the main cycle of kthread worker. It processes
 791 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
 792 * is empty.
 793 *
 794 * The works are not allowed to keep any locks, disable preemption or interrupts
 795 * when they finish. There is defined a safe point for freezing when one work
 796 * finishes and before a new one is started.
 797 *
 798 * Also the works must not be handled by more than one worker at the same time,
 799 * see also kthread_queue_work().
 800 */
 801int kthread_worker_fn(void *worker_ptr)
 802{
 803	struct kthread_worker *worker = worker_ptr;
 804	struct kthread_work *work;
 805
 806	/*
 807	 * FIXME: Update the check and remove the assignment when all kthread
 808	 * worker users are created using kthread_create_worker*() functions.
 809	 */
 810	WARN_ON(worker->task && worker->task != current);
 811	worker->task = current;
 812
 813	if (worker->flags & KTW_FREEZABLE)
 814		set_freezable();
 815
 816repeat:
 817	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
 818
 819	if (kthread_should_stop()) {
 820		__set_current_state(TASK_RUNNING);
 821		raw_spin_lock_irq(&worker->lock);
 822		worker->task = NULL;
 823		raw_spin_unlock_irq(&worker->lock);
 824		return 0;
 825	}
 826
 827	work = NULL;
 828	raw_spin_lock_irq(&worker->lock);
 829	if (!list_empty(&worker->work_list)) {
 830		work = list_first_entry(&worker->work_list,
 831					struct kthread_work, node);
 832		list_del_init(&work->node);
 833	}
 834	worker->current_work = work;
 835	raw_spin_unlock_irq(&worker->lock);
 836
 837	if (work) {
 838		kthread_work_func_t func = work->func;
 839		__set_current_state(TASK_RUNNING);
 840		trace_sched_kthread_work_execute_start(work);
 841		work->func(work);
 842		/*
 843		 * Avoid dereferencing work after this point.  The trace
 844		 * event only cares about the address.
 845		 */
 846		trace_sched_kthread_work_execute_end(work, func);
 847	} else if (!freezing(current))
 848		schedule();
 849
 850	try_to_freeze();
 851	cond_resched();
 852	goto repeat;
 853}
 854EXPORT_SYMBOL_GPL(kthread_worker_fn);
 855
 856static __printf(3, 0) struct kthread_worker *
 857__kthread_create_worker(int cpu, unsigned int flags,
 858			const char namefmt[], va_list args)
 859{
 860	struct kthread_worker *worker;
 861	struct task_struct *task;
 862	int node = NUMA_NO_NODE;
 863
 864	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
 865	if (!worker)
 866		return ERR_PTR(-ENOMEM);
 867
 868	kthread_init_worker(worker);
 869
 870	if (cpu >= 0)
 871		node = cpu_to_node(cpu);
 872
 873	task = __kthread_create_on_node(kthread_worker_fn, worker,
 874						node, namefmt, args);
 875	if (IS_ERR(task))
 876		goto fail_task;
 877
 878	if (cpu >= 0)
 879		kthread_bind(task, cpu);
 880
 881	worker->flags = flags;
 882	worker->task = task;
 883	wake_up_process(task);
 884	return worker;
 885
 886fail_task:
 887	kfree(worker);
 888	return ERR_CAST(task);
 889}
 890
 891/**
 892 * kthread_create_worker - create a kthread worker
 893 * @flags: flags modifying the default behavior of the worker
 894 * @namefmt: printf-style name for the kthread worker (task).
 895 *
 896 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 897 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 898 * when the caller was killed by a fatal signal.
 899 */
 900struct kthread_worker *
 901kthread_create_worker(unsigned int flags, const char namefmt[], ...)
 902{
 903	struct kthread_worker *worker;
 904	va_list args;
 905
 906	va_start(args, namefmt);
 907	worker = __kthread_create_worker(-1, flags, namefmt, args);
 908	va_end(args);
 909
 910	return worker;
 911}
 912EXPORT_SYMBOL(kthread_create_worker);
 913
 914/**
 915 * kthread_create_worker_on_cpu - create a kthread worker and bind it
 916 *	to a given CPU and the associated NUMA node.
 917 * @cpu: CPU number
 918 * @flags: flags modifying the default behavior of the worker
 919 * @namefmt: printf-style name for the kthread worker (task).
 920 *
 921 * Use a valid CPU number if you want to bind the kthread worker
 922 * to the given CPU and the associated NUMA node.
 923 *
 924 * A good practice is to add the cpu number also into the worker name.
 925 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
 926 *
 927 * CPU hotplug:
 928 * The kthread worker API is simple and generic. It just provides a way
 929 * to create, use, and destroy workers.
 930 *
 931 * It is up to the API user how to handle CPU hotplug. They have to decide
 932 * how to handle pending work items, prevent queuing new ones, and
 933 * restore the functionality when the CPU goes off and on. There are a
 934 * few catches:
 935 *
 936 *    - CPU affinity gets lost when it is scheduled on an offline CPU.
 937 *
 938 *    - The worker might not exist when the CPU was off when the user
 939 *      created the workers.
 940 *
 941 * Good practice is to implement two CPU hotplug callbacks and to
 942 * destroy/create the worker when the CPU goes down/up.
 943 *
 944 * Return:
 945 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 946 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 947 * when the caller was killed by a fatal signal.
 948 */
 949struct kthread_worker *
 950kthread_create_worker_on_cpu(int cpu, unsigned int flags,
 951			     const char namefmt[], ...)
 952{
 953	struct kthread_worker *worker;
 954	va_list args;
 955
 956	va_start(args, namefmt);
 957	worker = __kthread_create_worker(cpu, flags, namefmt, args);
 958	va_end(args);
 959
 960	return worker;
 961}
 962EXPORT_SYMBOL(kthread_create_worker_on_cpu);
 963
 964/*
 965 * Returns true when the work could not be queued at the moment.
 966 * It happens when it is already pending in a worker list
 967 * or when it is being cancelled.
 968 */
 969static inline bool queuing_blocked(struct kthread_worker *worker,
 970				   struct kthread_work *work)
 971{
 972	lockdep_assert_held(&worker->lock);
 973
 974	return !list_empty(&work->node) || work->canceling;
 975}
 976
 977static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
 978					     struct kthread_work *work)
 979{
 980	lockdep_assert_held(&worker->lock);
 981	WARN_ON_ONCE(!list_empty(&work->node));
 982	/* Do not use a work with >1 worker, see kthread_queue_work() */
 983	WARN_ON_ONCE(work->worker && work->worker != worker);
 984}
 985
 986/* insert @work before @pos in @worker */
 987static void kthread_insert_work(struct kthread_worker *worker,
 988				struct kthread_work *work,
 989				struct list_head *pos)
 990{
 991	kthread_insert_work_sanity_check(worker, work);
 992
 993	trace_sched_kthread_work_queue_work(worker, work);
 994
 995	list_add_tail(&work->node, pos);
 996	work->worker = worker;
 997	if (!worker->current_work && likely(worker->task))
 998		wake_up_process(worker->task);
 999}
1000
1001/**
1002 * kthread_queue_work - queue a kthread_work
1003 * @worker: target kthread_worker
1004 * @work: kthread_work to queue
1005 *
1006 * Queue @work to work processor @task for async execution.  @task
1007 * must have been created with kthread_worker_create().  Returns %true
1008 * if @work was successfully queued, %false if it was already pending.
1009 *
1010 * Reinitialize the work if it needs to be used by another worker.
1011 * For example, when the worker was stopped and started again.
1012 */
1013bool kthread_queue_work(struct kthread_worker *worker,
1014			struct kthread_work *work)
1015{
1016	bool ret = false;
1017	unsigned long flags;
1018
1019	raw_spin_lock_irqsave(&worker->lock, flags);
1020	if (!queuing_blocked(worker, work)) {
1021		kthread_insert_work(worker, work, &worker->work_list);
1022		ret = true;
1023	}
1024	raw_spin_unlock_irqrestore(&worker->lock, flags);
1025	return ret;
1026}
1027EXPORT_SYMBOL_GPL(kthread_queue_work);
1028
1029/**
1030 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
1031 *	delayed work when the timer expires.
1032 * @t: pointer to the expired timer
1033 *
1034 * The format of the function is defined by struct timer_list.
1035 * It should have been called from irqsafe timer with irq already off.
1036 */
1037void kthread_delayed_work_timer_fn(struct timer_list *t)
1038{
1039	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
 
1040	struct kthread_work *work = &dwork->work;
1041	struct kthread_worker *worker = work->worker;
1042	unsigned long flags;
1043
1044	/*
1045	 * This might happen when a pending work is reinitialized.
1046	 * It means that it is used a wrong way.
1047	 */
1048	if (WARN_ON_ONCE(!worker))
1049		return;
1050
1051	raw_spin_lock_irqsave(&worker->lock, flags);
1052	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1053	WARN_ON_ONCE(work->worker != worker);
1054
1055	/* Move the work from worker->delayed_work_list. */
1056	WARN_ON_ONCE(list_empty(&work->node));
1057	list_del_init(&work->node);
1058	if (!work->canceling)
1059		kthread_insert_work(worker, work, &worker->work_list);
1060
1061	raw_spin_unlock_irqrestore(&worker->lock, flags);
1062}
1063EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1064
1065static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1066					 struct kthread_delayed_work *dwork,
1067					 unsigned long delay)
1068{
1069	struct timer_list *timer = &dwork->timer;
1070	struct kthread_work *work = &dwork->work;
1071
1072	WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
 
1073
1074	/*
1075	 * If @delay is 0, queue @dwork->work immediately.  This is for
1076	 * both optimization and correctness.  The earliest @timer can
1077	 * expire is on the closest next tick and delayed_work users depend
1078	 * on that there's no such delay when @delay is 0.
1079	 */
1080	if (!delay) {
1081		kthread_insert_work(worker, work, &worker->work_list);
1082		return;
1083	}
1084
1085	/* Be paranoid and try to detect possible races already now. */
1086	kthread_insert_work_sanity_check(worker, work);
1087
1088	list_add(&work->node, &worker->delayed_work_list);
1089	work->worker = worker;
 
1090	timer->expires = jiffies + delay;
1091	add_timer(timer);
1092}
1093
1094/**
1095 * kthread_queue_delayed_work - queue the associated kthread work
1096 *	after a delay.
1097 * @worker: target kthread_worker
1098 * @dwork: kthread_delayed_work to queue
1099 * @delay: number of jiffies to wait before queuing
1100 *
1101 * If the work has not been pending it starts a timer that will queue
1102 * the work after the given @delay. If @delay is zero, it queues the
1103 * work immediately.
1104 *
1105 * Return: %false if the @work has already been pending. It means that
1106 * either the timer was running or the work was queued. It returns %true
1107 * otherwise.
1108 */
1109bool kthread_queue_delayed_work(struct kthread_worker *worker,
1110				struct kthread_delayed_work *dwork,
1111				unsigned long delay)
1112{
1113	struct kthread_work *work = &dwork->work;
1114	unsigned long flags;
1115	bool ret = false;
1116
1117	raw_spin_lock_irqsave(&worker->lock, flags);
1118
1119	if (!queuing_blocked(worker, work)) {
1120		__kthread_queue_delayed_work(worker, dwork, delay);
1121		ret = true;
1122	}
1123
1124	raw_spin_unlock_irqrestore(&worker->lock, flags);
1125	return ret;
1126}
1127EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1128
1129struct kthread_flush_work {
1130	struct kthread_work	work;
1131	struct completion	done;
1132};
1133
1134static void kthread_flush_work_fn(struct kthread_work *work)
1135{
1136	struct kthread_flush_work *fwork =
1137		container_of(work, struct kthread_flush_work, work);
1138	complete(&fwork->done);
1139}
1140
1141/**
1142 * kthread_flush_work - flush a kthread_work
1143 * @work: work to flush
1144 *
1145 * If @work is queued or executing, wait for it to finish execution.
1146 */
1147void kthread_flush_work(struct kthread_work *work)
1148{
1149	struct kthread_flush_work fwork = {
1150		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1151		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1152	};
1153	struct kthread_worker *worker;
1154	bool noop = false;
1155
1156	worker = work->worker;
1157	if (!worker)
1158		return;
1159
1160	raw_spin_lock_irq(&worker->lock);
1161	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1162	WARN_ON_ONCE(work->worker != worker);
1163
1164	if (!list_empty(&work->node))
1165		kthread_insert_work(worker, &fwork.work, work->node.next);
1166	else if (worker->current_work == work)
1167		kthread_insert_work(worker, &fwork.work,
1168				    worker->work_list.next);
1169	else
1170		noop = true;
1171
1172	raw_spin_unlock_irq(&worker->lock);
1173
1174	if (!noop)
1175		wait_for_completion(&fwork.done);
1176}
1177EXPORT_SYMBOL_GPL(kthread_flush_work);
1178
1179/*
1180 * Make sure that the timer is neither set nor running and could
1181 * not manipulate the work list_head any longer.
1182 *
1183 * The function is called under worker->lock. The lock is temporary
1184 * released but the timer can't be set again in the meantime.
1185 */
1186static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1187					      unsigned long *flags)
1188{
1189	struct kthread_delayed_work *dwork =
1190		container_of(work, struct kthread_delayed_work, work);
1191	struct kthread_worker *worker = work->worker;
1192
1193	/*
1194	 * del_timer_sync() must be called to make sure that the timer
1195	 * callback is not running. The lock must be temporary released
1196	 * to avoid a deadlock with the callback. In the meantime,
1197	 * any queuing is blocked by setting the canceling counter.
1198	 */
1199	work->canceling++;
1200	raw_spin_unlock_irqrestore(&worker->lock, *flags);
1201	del_timer_sync(&dwork->timer);
1202	raw_spin_lock_irqsave(&worker->lock, *flags);
1203	work->canceling--;
1204}
1205
1206/*
1207 * This function removes the work from the worker queue.
1208 *
1209 * It is called under worker->lock. The caller must make sure that
1210 * the timer used by delayed work is not running, e.g. by calling
1211 * kthread_cancel_delayed_work_timer().
1212 *
1213 * The work might still be in use when this function finishes. See the
1214 * current_work proceed by the worker.
1215 *
1216 * Return: %true if @work was pending and successfully canceled,
1217 *	%false if @work was not pending
1218 */
1219static bool __kthread_cancel_work(struct kthread_work *work)
 
1220{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1221	/*
1222	 * Try to remove the work from a worker list. It might either
1223	 * be from worker->work_list or from worker->delayed_work_list.
1224	 */
1225	if (!list_empty(&work->node)) {
1226		list_del_init(&work->node);
1227		return true;
1228	}
1229
1230	return false;
1231}
1232
1233/**
1234 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1235 * @worker: kthread worker to use
1236 * @dwork: kthread delayed work to queue
1237 * @delay: number of jiffies to wait before queuing
1238 *
1239 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1240 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1241 * @work is guaranteed to be queued immediately.
1242 *
1243 * Return: %false if @dwork was idle and queued, %true otherwise.
 
1244 *
1245 * A special case is when the work is being canceled in parallel.
1246 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1247 * or yet another kthread_mod_delayed_work() call. We let the other command
1248 * win and return %true here. The return value can be used for reference
1249 * counting and the number of queued works stays the same. Anyway, the caller
1250 * is supposed to synchronize these operations a reasonable way.
1251 *
1252 * This function is safe to call from any context including IRQ handler.
1253 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1254 * for details.
1255 */
1256bool kthread_mod_delayed_work(struct kthread_worker *worker,
1257			      struct kthread_delayed_work *dwork,
1258			      unsigned long delay)
1259{
1260	struct kthread_work *work = &dwork->work;
1261	unsigned long flags;
1262	int ret;
1263
1264	raw_spin_lock_irqsave(&worker->lock, flags);
1265
1266	/* Do not bother with canceling when never queued. */
1267	if (!work->worker) {
1268		ret = false;
1269		goto fast_queue;
1270	}
1271
1272	/* Work must not be used with >1 worker, see kthread_queue_work() */
1273	WARN_ON_ONCE(work->worker != worker);
1274
1275	/*
1276	 * Temporary cancel the work but do not fight with another command
1277	 * that is canceling the work as well.
1278	 *
1279	 * It is a bit tricky because of possible races with another
1280	 * mod_delayed_work() and cancel_delayed_work() callers.
1281	 *
1282	 * The timer must be canceled first because worker->lock is released
1283	 * when doing so. But the work can be removed from the queue (list)
1284	 * only when it can be queued again so that the return value can
1285	 * be used for reference counting.
1286	 */
1287	kthread_cancel_delayed_work_timer(work, &flags);
1288	if (work->canceling) {
1289		/* The number of works in the queue does not change. */
1290		ret = true;
1291		goto out;
1292	}
1293	ret = __kthread_cancel_work(work);
1294
 
1295fast_queue:
1296	__kthread_queue_delayed_work(worker, dwork, delay);
1297out:
1298	raw_spin_unlock_irqrestore(&worker->lock, flags);
1299	return ret;
1300}
1301EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1302
1303static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1304{
1305	struct kthread_worker *worker = work->worker;
1306	unsigned long flags;
1307	int ret = false;
1308
1309	if (!worker)
1310		goto out;
1311
1312	raw_spin_lock_irqsave(&worker->lock, flags);
1313	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1314	WARN_ON_ONCE(work->worker != worker);
1315
1316	if (is_dwork)
1317		kthread_cancel_delayed_work_timer(work, &flags);
1318
1319	ret = __kthread_cancel_work(work);
1320
1321	if (worker->current_work != work)
1322		goto out_fast;
1323
1324	/*
1325	 * The work is in progress and we need to wait with the lock released.
1326	 * In the meantime, block any queuing by setting the canceling counter.
1327	 */
1328	work->canceling++;
1329	raw_spin_unlock_irqrestore(&worker->lock, flags);
1330	kthread_flush_work(work);
1331	raw_spin_lock_irqsave(&worker->lock, flags);
1332	work->canceling--;
1333
1334out_fast:
1335	raw_spin_unlock_irqrestore(&worker->lock, flags);
1336out:
1337	return ret;
1338}
1339
1340/**
1341 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1342 * @work: the kthread work to cancel
1343 *
1344 * Cancel @work and wait for its execution to finish.  This function
1345 * can be used even if the work re-queues itself. On return from this
1346 * function, @work is guaranteed to be not pending or executing on any CPU.
1347 *
1348 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1349 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1350 *
1351 * The caller must ensure that the worker on which @work was last
1352 * queued can't be destroyed before this function returns.
1353 *
1354 * Return: %true if @work was pending, %false otherwise.
1355 */
1356bool kthread_cancel_work_sync(struct kthread_work *work)
1357{
1358	return __kthread_cancel_work_sync(work, false);
1359}
1360EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1361
1362/**
1363 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1364 *	wait for it to finish.
1365 * @dwork: the kthread delayed work to cancel
1366 *
1367 * This is kthread_cancel_work_sync() for delayed works.
1368 *
1369 * Return: %true if @dwork was pending, %false otherwise.
1370 */
1371bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1372{
1373	return __kthread_cancel_work_sync(&dwork->work, true);
1374}
1375EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1376
1377/**
1378 * kthread_flush_worker - flush all current works on a kthread_worker
1379 * @worker: worker to flush
1380 *
1381 * Wait until all currently executing or pending works on @worker are
1382 * finished.
1383 */
1384void kthread_flush_worker(struct kthread_worker *worker)
1385{
1386	struct kthread_flush_work fwork = {
1387		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1388		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1389	};
1390
1391	kthread_queue_work(worker, &fwork.work);
1392	wait_for_completion(&fwork.done);
1393}
1394EXPORT_SYMBOL_GPL(kthread_flush_worker);
1395
1396/**
1397 * kthread_destroy_worker - destroy a kthread worker
1398 * @worker: worker to be destroyed
1399 *
1400 * Flush and destroy @worker.  The simple flush is enough because the kthread
1401 * worker API is used only in trivial scenarios.  There are no multi-step state
1402 * machines needed.
1403 *
1404 * Note that this function is not responsible for handling delayed work, so
1405 * caller should be responsible for queuing or canceling all delayed work items
1406 * before invoke this function.
1407 */
1408void kthread_destroy_worker(struct kthread_worker *worker)
1409{
1410	struct task_struct *task;
1411
1412	task = worker->task;
1413	if (WARN_ON(!task))
1414		return;
1415
1416	kthread_flush_worker(worker);
1417	kthread_stop(task);
1418	WARN_ON(!list_empty(&worker->delayed_work_list));
1419	WARN_ON(!list_empty(&worker->work_list));
1420	kfree(worker);
1421}
1422EXPORT_SYMBOL(kthread_destroy_worker);
1423
1424/**
1425 * kthread_use_mm - make the calling kthread operate on an address space
1426 * @mm: address space to operate on
1427 */
1428void kthread_use_mm(struct mm_struct *mm)
1429{
1430	struct mm_struct *active_mm;
1431	struct task_struct *tsk = current;
1432
1433	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1434	WARN_ON_ONCE(tsk->mm);
1435
1436	/*
1437	 * It is possible for mm to be the same as tsk->active_mm, but
1438	 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm),
1439	 * because these references are not equivalent.
1440	 */
1441	mmgrab(mm);
1442
1443	task_lock(tsk);
1444	/* Hold off tlb flush IPIs while switching mm's */
1445	local_irq_disable();
1446	active_mm = tsk->active_mm;
1447	tsk->active_mm = mm;
1448	tsk->mm = mm;
1449	membarrier_update_current_mm(mm);
1450	switch_mm_irqs_off(active_mm, mm, tsk);
1451	local_irq_enable();
1452	task_unlock(tsk);
1453#ifdef finish_arch_post_lock_switch
1454	finish_arch_post_lock_switch();
1455#endif
1456
1457	/*
1458	 * When a kthread starts operating on an address space, the loop
1459	 * in membarrier_{private,global}_expedited() may not observe
1460	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1461	 * memory barrier after storing to tsk->mm, before accessing
1462	 * user-space memory. A full memory barrier for membarrier
1463	 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1464	 * mmdrop_lazy_tlb().
1465	 */
1466	mmdrop_lazy_tlb(active_mm);
1467}
1468EXPORT_SYMBOL_GPL(kthread_use_mm);
1469
1470/**
1471 * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1472 * @mm: address space to operate on
1473 */
1474void kthread_unuse_mm(struct mm_struct *mm)
1475{
1476	struct task_struct *tsk = current;
1477
1478	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1479	WARN_ON_ONCE(!tsk->mm);
1480
1481	task_lock(tsk);
1482	/*
1483	 * When a kthread stops operating on an address space, the loop
1484	 * in membarrier_{private,global}_expedited() may not observe
1485	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1486	 * memory barrier after accessing user-space memory, before
1487	 * clearing tsk->mm.
1488	 */
1489	smp_mb__after_spinlock();
1490	local_irq_disable();
1491	tsk->mm = NULL;
1492	membarrier_update_current_mm(NULL);
1493	mmgrab_lazy_tlb(mm);
1494	/* active_mm is still 'mm' */
1495	enter_lazy_tlb(mm, tsk);
1496	local_irq_enable();
1497	task_unlock(tsk);
1498
1499	mmdrop(mm);
1500}
1501EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1502
1503#ifdef CONFIG_BLK_CGROUP
1504/**
1505 * kthread_associate_blkcg - associate blkcg to current kthread
1506 * @css: the cgroup info
1507 *
1508 * Current thread must be a kthread. The thread is running jobs on behalf of
1509 * other threads. In some cases, we expect the jobs attach cgroup info of
1510 * original threads instead of that of current thread. This function stores
1511 * original thread's cgroup info in current kthread context for later
1512 * retrieval.
1513 */
1514void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1515{
1516	struct kthread *kthread;
1517
1518	if (!(current->flags & PF_KTHREAD))
1519		return;
1520	kthread = to_kthread(current);
1521	if (!kthread)
1522		return;
1523
1524	if (kthread->blkcg_css) {
1525		css_put(kthread->blkcg_css);
1526		kthread->blkcg_css = NULL;
1527	}
1528	if (css) {
1529		css_get(css);
1530		kthread->blkcg_css = css;
1531	}
1532}
1533EXPORT_SYMBOL(kthread_associate_blkcg);
1534
1535/**
1536 * kthread_blkcg - get associated blkcg css of current kthread
1537 *
1538 * Current thread must be a kthread.
1539 */
1540struct cgroup_subsys_state *kthread_blkcg(void)
1541{
1542	struct kthread *kthread;
1543
1544	if (current->flags & PF_KTHREAD) {
1545		kthread = to_kthread(current);
1546		if (kthread)
1547			return kthread->blkcg_css;
1548	}
1549	return NULL;
1550}
1551#endif