Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1 /*
   2 *	x86 SMP booting functions
   3 *
   4 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
   5 *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
   6 *	Copyright 2001 Andi Kleen, SuSE Labs.
   7 *
   8 *	Much of the core SMP work is based on previous work by Thomas Radke, to
   9 *	whom a great many thanks are extended.
  10 *
  11 *	Thanks to Intel for making available several different Pentium,
  12 *	Pentium Pro and Pentium-II/Xeon MP machines.
  13 *	Original development of Linux SMP code supported by Caldera.
  14 *
  15 *	This code is released under the GNU General Public License version 2 or
  16 *	later.
  17 *
  18 *	Fixes
  19 *		Felix Koop	:	NR_CPUS used properly
  20 *		Jose Renau	:	Handle single CPU case.
  21 *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
  22 *		Greg Wright	:	Fix for kernel stacks panic.
  23 *		Erich Boleyn	:	MP v1.4 and additional changes.
  24 *	Matthias Sattler	:	Changes for 2.1 kernel map.
  25 *	Michel Lespinasse	:	Changes for 2.1 kernel map.
  26 *	Michael Chastain	:	Change trampoline.S to gnu as.
  27 *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
  28 *		Ingo Molnar	:	Added APIC timers, based on code
  29 *					from Jose Renau
  30 *		Ingo Molnar	:	various cleanups and rewrites
  31 *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
  32 *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
  33 *	Andi Kleen		:	Changed for SMP boot into long mode.
  34 *		Martin J. Bligh	: 	Added support for multi-quad systems
  35 *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
  36 *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
  37 *      Andi Kleen              :       Converted to new state machine.
  38 *	Ashok Raj		: 	CPU hotplug support
  39 *	Glauber Costa		:	i386 and x86_64 integration
  40 */
  41
  42#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  43
  44#include <linux/init.h>
  45#include <linux/smp.h>
  46#include <linux/export.h>
  47#include <linux/sched.h>
 
 
 
  48#include <linux/percpu.h>
  49#include <linux/bootmem.h>
  50#include <linux/err.h>
  51#include <linux/nmi.h>
  52#include <linux/tboot.h>
  53#include <linux/stackprotector.h>
  54#include <linux/gfp.h>
  55#include <linux/cpuidle.h>
 
 
 
 
 
 
 
  56
  57#include <asm/acpi.h>
 
  58#include <asm/desc.h>
  59#include <asm/nmi.h>
  60#include <asm/irq.h>
  61#include <asm/realmode.h>
  62#include <asm/cpu.h>
  63#include <asm/numa.h>
  64#include <asm/pgtable.h>
  65#include <asm/tlbflush.h>
  66#include <asm/mtrr.h>
  67#include <asm/mwait.h>
  68#include <asm/apic.h>
  69#include <asm/io_apic.h>
  70#include <asm/fpu/internal.h>
  71#include <asm/setup.h>
  72#include <asm/uv/uv.h>
  73#include <linux/mc146818rtc.h>
  74#include <asm/i8259.h>
  75#include <asm/realmode.h>
  76#include <asm/misc.h>
  77
  78/* Number of siblings per CPU package */
  79int smp_num_siblings = 1;
  80EXPORT_SYMBOL(smp_num_siblings);
  81
  82/* Last level cache ID of each logical CPU */
  83DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
 
  84
  85/* representing HT siblings of each logical CPU */
  86DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
  87EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  88
  89/* representing HT and core siblings of each logical CPU */
  90DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
  91EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  92
  93DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94
  95/* Per CPU bogomips and other parameters */
  96DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
  97EXPORT_PER_CPU_SYMBOL(cpu_info);
  98
  99/* Logical package management. We might want to allocate that dynamically */
 100static int *physical_to_logical_pkg __read_mostly;
 101static unsigned long *physical_package_map __read_mostly;;
 102static unsigned int max_physical_pkg_id __read_mostly;
 103unsigned int __max_logical_packages __read_mostly;
 104EXPORT_SYMBOL(__max_logical_packages);
 105static unsigned int logical_packages __read_mostly;
 106
 107/* Maximum number of SMT threads on any online core */
 108int __max_smt_threads __read_mostly;
 109
 110/* Flag to indicate if a complete sched domain rebuild is required */
 111bool x86_topology_update;
 112
 113int arch_update_cpu_topology(void)
 114{
 115	int retval = x86_topology_update;
 116
 117	x86_topology_update = false;
 118	return retval;
 119}
 120
 
 
 121static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
 122{
 123	unsigned long flags;
 124
 125	spin_lock_irqsave(&rtc_lock, flags);
 126	CMOS_WRITE(0xa, 0xf);
 
 
 
 
 127	spin_unlock_irqrestore(&rtc_lock, flags);
 128	local_flush_tlb();
 129	pr_debug("1.\n");
 130	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
 131							start_eip >> 4;
 132	pr_debug("2.\n");
 133	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
 134							start_eip & 0xf;
 135	pr_debug("3.\n");
 136}
 137
 138static inline void smpboot_restore_warm_reset_vector(void)
 139{
 140	unsigned long flags;
 141
 142	/*
 143	 * Install writable page 0 entry to set BIOS data area.
 144	 */
 145	local_flush_tlb();
 146
 147	/*
 148	 * Paranoid:  Set warm reset code and vector here back
 149	 * to default values.
 150	 */
 151	spin_lock_irqsave(&rtc_lock, flags);
 152	CMOS_WRITE(0, 0xf);
 
 
 
 153	spin_unlock_irqrestore(&rtc_lock, flags);
 154
 155	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
 156}
 157
 158/*
 159 * Report back to the Boot Processor during boot time or to the caller processor
 160 * during CPU online.
 161 */
 162static void smp_callin(void)
 163{
 164	int cpuid, phys_id;
 165
 166	/*
 167	 * If waken up by an INIT in an 82489DX configuration
 168	 * cpu_callout_mask guarantees we don't get here before
 169	 * an INIT_deassert IPI reaches our local APIC, so it is
 170	 * now safe to touch our local APIC.
 171	 */
 172	cpuid = smp_processor_id();
 173
 174	/*
 175	 * (This works even if the APIC is not enabled.)
 176	 */
 177	phys_id = read_apic_id();
 178
 179	/*
 180	 * the boot CPU has finished the init stage and is spinning
 181	 * on callin_map until we finish. We are free to set up this
 182	 * CPU, first the APIC. (this is probably redundant on most
 183	 * boards)
 184	 */
 185	apic_ap_setup();
 186
 187	/*
 188	 * Save our processor parameters. Note: this information
 189	 * is needed for clock calibration.
 190	 */
 191	smp_store_cpu_info(cpuid);
 192
 193	/*
 194	 * Get our bogomips.
 195	 * Update loops_per_jiffy in cpu_data. Previous call to
 196	 * smp_store_cpu_info() stored a value that is close but not as
 197	 * accurate as the value just calculated.
 198	 */
 199	calibrate_delay();
 200	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
 
 
 201	pr_debug("Stack at about %p\n", &cpuid);
 202
 203	/*
 204	 * This must be done before setting cpu_online_mask
 205	 * or calling notify_cpu_starting.
 206	 */
 207	set_cpu_sibling_map(raw_smp_processor_id());
 208	wmb();
 209
 
 
 
 
 210	notify_cpu_starting(cpuid);
 
 211
 
 
 212	/*
 213	 * Allow the master to continue.
 
 
 
 
 
 
 214	 */
 215	cpumask_set_cpu(cpuid, cpu_callin_mask);
 
 216}
 217
 218static int cpu0_logical_apicid;
 219static int enable_start_cpu0;
 220/*
 221 * Activate a secondary processor.
 222 */
 223static void notrace start_secondary(void *unused)
 224{
 225	/*
 226	 * Don't put *anything* before cpu_init(), SMP booting is too
 227	 * fragile that we want to limit the things done here to the
 228	 * most necessary things.
 
 
 
 
 
 
 229	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230	cpu_init();
 
 
 231	x86_cpuinit.early_percpu_clock_init();
 232	preempt_disable();
 233	smp_callin();
 234
 235	enable_start_cpu0 = 0;
 236
 237#ifdef CONFIG_X86_32
 238	/* switch away from the initial page table */
 239	load_cr3(swapper_pg_dir);
 240	__flush_tlb_all();
 241#endif
 242
 243	/* otherwise gcc will move up smp_processor_id before the cpu_init */
 244	barrier();
 245	/*
 246	 * Check TSC synchronization with the BP:
 
 
 247	 */
 248	check_tsc_sync_target();
 
 
 249
 250	/*
 251	 * Lock vector_lock and initialize the vectors on this cpu
 252	 * before setting the cpu online. We must set it online with
 253	 * vector_lock held to prevent a concurrent setup/teardown
 254	 * from seeing a half valid vector space.
 255	 */
 256	lock_vector_lock();
 257	setup_vector_irq(smp_processor_id());
 258	set_cpu_online(smp_processor_id(), true);
 
 259	unlock_vector_lock();
 260	cpu_set_state_online(smp_processor_id());
 261	x86_platform.nmi_init();
 262
 263	/* enable local interrupts */
 264	local_irq_enable();
 265
 266	/* to prevent fake stack check failure in clock setup */
 267	boot_init_stack_canary();
 268
 269	x86_cpuinit.setup_percpu_clockev();
 270
 271	wmb();
 272	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 273}
 274
 275/**
 276 * topology_update_package_map - Update the physical to logical package map
 277 * @pkg:	The physical package id as retrieved via CPUID
 278 * @cpu:	The cpu for which this is updated
 279 */
 280int topology_update_package_map(unsigned int pkg, unsigned int cpu)
 281{
 282	unsigned int new;
 283
 284	/* Called from early boot ? */
 285	if (!physical_package_map)
 286		return 0;
 287
 288	if (pkg >= max_physical_pkg_id)
 289		return -EINVAL;
 290
 291	/* Set the logical package id */
 292	if (test_and_set_bit(pkg, physical_package_map))
 293		goto found;
 294
 295	if (logical_packages >= __max_logical_packages) {
 296		pr_warn("Package %u of CPU %u exceeds BIOS package data %u.\n",
 297			logical_packages, cpu, __max_logical_packages);
 298		return -ENOSPC;
 299	}
 300
 301	new = logical_packages++;
 302	if (new != pkg) {
 303		pr_info("CPU %u Converting physical %u to logical package %u\n",
 304			cpu, pkg, new);
 305	}
 306	physical_to_logical_pkg[pkg] = new;
 307
 308found:
 309	cpu_data(cpu).logical_proc_id = physical_to_logical_pkg[pkg];
 310	return 0;
 311}
 312
 313/**
 314 * topology_phys_to_logical_pkg - Map a physical package id to a logical
 315 *
 316 * Returns logical package id or -1 if not found
 317 */
 318int topology_phys_to_logical_pkg(unsigned int phys_pkg)
 319{
 320	if (phys_pkg >= max_physical_pkg_id)
 321		return -1;
 322	return physical_to_logical_pkg[phys_pkg];
 323}
 324EXPORT_SYMBOL(topology_phys_to_logical_pkg);
 325
 326static void __init smp_init_package_map(struct cpuinfo_x86 *c, unsigned int cpu)
 327{
 328	unsigned int ncpus;
 329	size_t size;
 330
 331	/*
 332	 * Today neither Intel nor AMD support heterogenous systems. That
 333	 * might change in the future....
 334	 *
 335	 * While ideally we'd want '* smp_num_siblings' in the below @ncpus
 336	 * computation, this won't actually work since some Intel BIOSes
 337	 * report inconsistent HT data when they disable HT.
 338	 *
 339	 * In particular, they reduce the APIC-IDs to only include the cores,
 340	 * but leave the CPUID topology to say there are (2) siblings.
 341	 * This means we don't know how many threads there will be until
 342	 * after the APIC enumeration.
 343	 *
 344	 * By not including this we'll sometimes over-estimate the number of
 345	 * logical packages by the amount of !present siblings, but this is
 346	 * still better than MAX_LOCAL_APIC.
 347	 *
 348	 * We use total_cpus not nr_cpu_ids because nr_cpu_ids can be limited
 349	 * on the command line leading to a similar issue as the HT disable
 350	 * problem because the hyperthreads are usually enumerated after the
 351	 * primary cores.
 352	 */
 353	ncpus = boot_cpu_data.x86_max_cores;
 354	if (!ncpus) {
 355		pr_warn("x86_max_cores == zero !?!?");
 356		ncpus = 1;
 357	}
 358
 359	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
 360	logical_packages = 0;
 361
 362	/*
 363	 * Possibly larger than what we need as the number of apic ids per
 364	 * package can be smaller than the actual used apic ids.
 365	 */
 366	max_physical_pkg_id = DIV_ROUND_UP(MAX_LOCAL_APIC, ncpus);
 367	size = max_physical_pkg_id * sizeof(unsigned int);
 368	physical_to_logical_pkg = kmalloc(size, GFP_KERNEL);
 369	memset(physical_to_logical_pkg, 0xff, size);
 370	size = BITS_TO_LONGS(max_physical_pkg_id) * sizeof(unsigned long);
 371	physical_package_map = kzalloc(size, GFP_KERNEL);
 372
 373	pr_info("Max logical packages: %u\n", __max_logical_packages);
 374
 375	topology_update_package_map(c->phys_proc_id, cpu);
 376}
 377
 378void __init smp_store_boot_cpu_info(void)
 379{
 380	int id = 0; /* CPU 0 */
 381	struct cpuinfo_x86 *c = &cpu_data(id);
 382
 383	*c = boot_cpu_data;
 384	c->cpu_index = id;
 385	smp_init_package_map(c, id);
 386}
 387
 388/*
 389 * The bootstrap kernel entry code has set these up. Save them for
 390 * a given CPU
 391 */
 392void smp_store_cpu_info(int id)
 393{
 394	struct cpuinfo_x86 *c = &cpu_data(id);
 395
 396	*c = boot_cpu_data;
 
 
 397	c->cpu_index = id;
 398	/*
 399	 * During boot time, CPU0 has this setup already. Save the info when
 400	 * bringing up AP or offlined CPU0.
 401	 */
 402	identify_secondary_cpu(c);
 
 403}
 404
 405static bool
 406topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 407{
 408	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 409
 410	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
 411}
 412
 413static bool
 414topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
 415{
 416	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 417
 418	return !WARN_ONCE(!topology_same_node(c, o),
 419		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
 420		"[node: %d != %d]. Ignoring dependency.\n",
 421		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
 422}
 423
 424#define link_mask(mfunc, c1, c2)					\
 425do {									\
 426	cpumask_set_cpu((c1), mfunc(c2));				\
 427	cpumask_set_cpu((c2), mfunc(c1));				\
 428} while (0)
 429
 430static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 431{
 432	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
 433		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 434
 435		if (c->phys_proc_id == o->phys_proc_id &&
 436		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
 437			if (c->cpu_core_id == o->cpu_core_id)
 
 
 438				return topology_sane(c, o, "smt");
 439
 440			if ((c->cu_id != 0xff) &&
 441			    (o->cu_id != 0xff) &&
 442			    (c->cu_id == o->cu_id))
 443				return topology_sane(c, o, "smt");
 444		}
 445
 446	} else if (c->phys_proc_id == o->phys_proc_id &&
 447		   c->cpu_core_id == o->cpu_core_id) {
 
 448		return topology_sane(c, o, "smt");
 449	}
 450
 451	return false;
 452}
 453
 454static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 
 
 
 
 
 
 
 
 
 
 
 455{
 456	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 457
 458	if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
 459	    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
 460		return topology_sane(c, o, "llc");
 
 
 
 
 461
 462	return false;
 463}
 464
 465/*
 466 * Unlike the other levels, we do not enforce keeping a
 467 * multicore group inside a NUMA node.  If this happens, we will
 468 * discard the MC level of the topology later.
 469 */
 470static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 471{
 472	if (c->phys_proc_id == o->phys_proc_id)
 473		return true;
 474	return false;
 475}
 476
 477#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478static inline int x86_sched_itmt_flags(void)
 479{
 480	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
 481}
 482
 483#ifdef CONFIG_SCHED_MC
 484static int x86_core_flags(void)
 485{
 486	return cpu_core_flags() | x86_sched_itmt_flags();
 487}
 488#endif
 489#ifdef CONFIG_SCHED_SMT
 490static int x86_smt_flags(void)
 491{
 492	return cpu_smt_flags() | x86_sched_itmt_flags();
 493}
 494#endif
 
 
 
 
 
 495#endif
 496
 497static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
 498#ifdef CONFIG_SCHED_SMT
 499	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
 500#endif
 501#ifdef CONFIG_SCHED_MC
 502	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
 503#endif
 504	{ NULL, },
 505};
 506
 507static struct sched_domain_topology_level x86_topology[] = {
 508#ifdef CONFIG_SCHED_SMT
 509	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
 510#endif
 511#ifdef CONFIG_SCHED_MC
 512	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
 513#endif
 514	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
 515	{ NULL, },
 516};
 517
 518/*
 519 * Set if a package/die has multiple NUMA nodes inside.
 520 * AMD Magny-Cours and Intel Cluster-on-Die have this.
 
 521 */
 522static bool x86_has_numa_in_package;
 523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524void set_cpu_sibling_map(int cpu)
 525{
 526	bool has_smt = smp_num_siblings > 1;
 527	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
 528	struct cpuinfo_x86 *c = &cpu_data(cpu);
 529	struct cpuinfo_x86 *o;
 530	int i, threads;
 531
 532	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
 533
 534	if (!has_mp) {
 535		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
 536		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
 
 537		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
 
 538		c->booted_cores = 1;
 539		return;
 540	}
 541
 542	for_each_cpu(i, cpu_sibling_setup_mask) {
 543		o = &cpu_data(i);
 544
 
 
 
 545		if ((i == cpu) || (has_smt && match_smt(c, o)))
 546			link_mask(topology_sibling_cpumask, cpu, i);
 547
 548		if ((i == cpu) || (has_mp && match_llc(c, o)))
 549			link_mask(cpu_llc_shared_mask, cpu, i);
 550
 
 
 
 
 
 551	}
 552
 
 
 
 
 
 
 
 553	/*
 554	 * This needs a separate iteration over the cpus because we rely on all
 555	 * topology_sibling_cpumask links to be set-up.
 556	 */
 557	for_each_cpu(i, cpu_sibling_setup_mask) {
 558		o = &cpu_data(i);
 559
 560		if ((i == cpu) || (has_mp && match_die(c, o))) {
 561			link_mask(topology_core_cpumask, cpu, i);
 562
 563			/*
 564			 *  Does this new cpu bringup a new core?
 565			 */
 566			if (cpumask_weight(
 567			    topology_sibling_cpumask(cpu)) == 1) {
 568				/*
 569				 * for each core in package, increment
 570				 * the booted_cores for this new cpu
 571				 */
 572				if (cpumask_first(
 573				    topology_sibling_cpumask(i)) == i)
 574					c->booted_cores++;
 575				/*
 576				 * increment the core count for all
 577				 * the other cpus in this package
 578				 */
 579				if (i != cpu)
 580					cpu_data(i).booted_cores++;
 581			} else if (i != cpu && !c->booted_cores)
 582				c->booted_cores = cpu_data(i).booted_cores;
 583		}
 584		if (match_die(c, o) && !topology_same_node(c, o))
 585			x86_has_numa_in_package = true;
 586	}
 587
 588	threads = cpumask_weight(topology_sibling_cpumask(cpu));
 589	if (threads > __max_smt_threads)
 590		__max_smt_threads = threads;
 591}
 592
 593/* maps the cpu to the sched domain representing multi-core */
 594const struct cpumask *cpu_coregroup_mask(int cpu)
 595{
 596	return cpu_llc_shared_mask(cpu);
 597}
 598
 
 
 
 
 
 
 599static void impress_friends(void)
 600{
 601	int cpu;
 602	unsigned long bogosum = 0;
 603	/*
 604	 * Allow the user to impress friends.
 605	 */
 606	pr_debug("Before bogomips\n");
 607	for_each_possible_cpu(cpu)
 608		if (cpumask_test_cpu(cpu, cpu_callout_mask))
 609			bogosum += cpu_data(cpu).loops_per_jiffy;
 610	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
 611		num_online_cpus(),
 612		bogosum/(500000/HZ),
 613		(bogosum/(5000/HZ))%100);
 614
 615	pr_debug("Before bogocount - setting activated=1\n");
 616}
 617
 618void __inquire_remote_apic(int apicid)
 619{
 620	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
 621	const char * const names[] = { "ID", "VERSION", "SPIV" };
 622	int timeout;
 623	u32 status;
 624
 625	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
 626
 627	for (i = 0; i < ARRAY_SIZE(regs); i++) {
 628		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
 629
 630		/*
 631		 * Wait for idle.
 632		 */
 633		status = safe_apic_wait_icr_idle();
 634		if (status)
 635			pr_cont("a previous APIC delivery may have failed\n");
 636
 637		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
 638
 639		timeout = 0;
 640		do {
 641			udelay(100);
 642			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
 643		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
 644
 645		switch (status) {
 646		case APIC_ICR_RR_VALID:
 647			status = apic_read(APIC_RRR);
 648			pr_cont("%08x\n", status);
 649			break;
 650		default:
 651			pr_cont("failed\n");
 652		}
 653	}
 654}
 655
 656/*
 657 * The Multiprocessor Specification 1.4 (1997) example code suggests
 658 * that there should be a 10ms delay between the BSP asserting INIT
 659 * and de-asserting INIT, when starting a remote processor.
 660 * But that slows boot and resume on modern processors, which include
 661 * many cores and don't require that delay.
 662 *
 663 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
 664 * Modern processor families are quirked to remove the delay entirely.
 665 */
 666#define UDELAY_10MS_DEFAULT 10000
 667
 668static unsigned int init_udelay = UINT_MAX;
 669
 670static int __init cpu_init_udelay(char *str)
 671{
 672	get_option(&str, &init_udelay);
 673
 674	return 0;
 675}
 676early_param("cpu_init_udelay", cpu_init_udelay);
 677
 678static void __init smp_quirk_init_udelay(void)
 679{
 680	/* if cmdline changed it from default, leave it alone */
 681	if (init_udelay != UINT_MAX)
 682		return;
 683
 684	/* if modern processor, use no delay */
 685	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
 
 686	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
 687		init_udelay = 0;
 688		return;
 689	}
 690	/* else, use legacy delay */
 691	init_udelay = UDELAY_10MS_DEFAULT;
 692}
 693
 694/*
 695 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
 696 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
 697 * won't ... remember to clear down the APIC, etc later.
 698 */
 699int
 700wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
 701{
 702	unsigned long send_status, accept_status = 0;
 703	int maxlvt;
 704
 705	/* Target chip */
 706	/* Boot on the stack */
 707	/* Kick the second */
 708	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
 709
 710	pr_debug("Waiting for send to finish...\n");
 711	send_status = safe_apic_wait_icr_idle();
 712
 713	/*
 714	 * Give the other CPU some time to accept the IPI.
 715	 */
 716	udelay(200);
 717	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 718		maxlvt = lapic_get_maxlvt();
 719		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
 720			apic_write(APIC_ESR, 0);
 721		accept_status = (apic_read(APIC_ESR) & 0xEF);
 722	}
 723	pr_debug("NMI sent\n");
 724
 725	if (send_status)
 726		pr_err("APIC never delivered???\n");
 727	if (accept_status)
 728		pr_err("APIC delivery error (%lx)\n", accept_status);
 729
 730	return (send_status | accept_status);
 
 
 
 
 731}
 732
 733static int
 734wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
 
 
 735{
 736	unsigned long send_status = 0, accept_status = 0;
 737	int maxlvt, num_starts, j;
 738
 
 739	maxlvt = lapic_get_maxlvt();
 740
 741	/*
 742	 * Be paranoid about clearing APIC errors.
 743	 */
 744	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 745		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 746			apic_write(APIC_ESR, 0);
 747		apic_read(APIC_ESR);
 748	}
 749
 750	pr_debug("Asserting INIT\n");
 751
 752	/*
 753	 * Turn INIT on target chip
 754	 */
 755	/*
 756	 * Send IPI
 757	 */
 758	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
 759		       phys_apicid);
 760
 761	pr_debug("Waiting for send to finish...\n");
 762	send_status = safe_apic_wait_icr_idle();
 763
 764	udelay(init_udelay);
 765
 766	pr_debug("Deasserting INIT\n");
 767
 768	/* Target chip */
 769	/* Send IPI */
 770	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
 771
 772	pr_debug("Waiting for send to finish...\n");
 773	send_status = safe_apic_wait_icr_idle();
 774
 775	mb();
 776
 777	/*
 778	 * Should we send STARTUP IPIs ?
 779	 *
 780	 * Determine this based on the APIC version.
 781	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
 782	 */
 783	if (APIC_INTEGRATED(boot_cpu_apic_version))
 784		num_starts = 2;
 785	else
 786		num_starts = 0;
 787
 788	/*
 789	 * Run STARTUP IPI loop.
 790	 */
 791	pr_debug("#startup loops: %d\n", num_starts);
 792
 793	for (j = 1; j <= num_starts; j++) {
 794		pr_debug("Sending STARTUP #%d\n", j);
 795		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 796			apic_write(APIC_ESR, 0);
 797		apic_read(APIC_ESR);
 798		pr_debug("After apic_write\n");
 799
 800		/*
 801		 * STARTUP IPI
 802		 */
 803
 804		/* Target chip */
 805		/* Boot on the stack */
 806		/* Kick the second */
 807		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
 808			       phys_apicid);
 809
 810		/*
 811		 * Give the other CPU some time to accept the IPI.
 812		 */
 813		if (init_udelay == 0)
 814			udelay(10);
 815		else
 816			udelay(300);
 817
 818		pr_debug("Startup point 1\n");
 819
 820		pr_debug("Waiting for send to finish...\n");
 821		send_status = safe_apic_wait_icr_idle();
 822
 823		/*
 824		 * Give the other CPU some time to accept the IPI.
 825		 */
 826		if (init_udelay == 0)
 827			udelay(10);
 828		else
 829			udelay(200);
 830
 831		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 832			apic_write(APIC_ESR, 0);
 833		accept_status = (apic_read(APIC_ESR) & 0xEF);
 834		if (send_status || accept_status)
 835			break;
 836	}
 837	pr_debug("After Startup\n");
 838
 839	if (send_status)
 840		pr_err("APIC never delivered???\n");
 841	if (accept_status)
 842		pr_err("APIC delivery error (%lx)\n", accept_status);
 843
 
 844	return (send_status | accept_status);
 845}
 846
 847/* reduce the number of lines printed when booting a large cpu count system */
 848static void announce_cpu(int cpu, int apicid)
 849{
 850	static int current_node = -1;
 
 851	int node = early_cpu_to_node(cpu);
 852	static int width, node_width;
 853
 854	if (!width)
 855		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
 856
 857	if (!node_width)
 858		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
 859
 860	if (cpu == 1)
 861		printk(KERN_INFO "x86: Booting SMP configuration:\n");
 
 862
 863	if (system_state == SYSTEM_BOOTING) {
 864		if (node != current_node) {
 865			if (current_node > (-1))
 866				pr_cont("\n");
 867			current_node = node;
 868
 869			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
 870			       node_width - num_digits(node), " ", node);
 871		}
 872
 873		/* Add padding for the BSP */
 874		if (cpu == 1)
 875			pr_cont("%*s", width + 1, " ");
 
 876
 877		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
 878
 879	} else
 880		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
 881			node, cpu, apicid);
 882}
 883
 884static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
 885{
 886	int cpu;
 887
 888	cpu = smp_processor_id();
 889	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
 890		return NMI_HANDLED;
 891
 892	return NMI_DONE;
 893}
 894
 895/*
 896 * Wake up AP by INIT, INIT, STARTUP sequence.
 897 *
 898 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
 899 * boot-strap code which is not a desired behavior for waking up BSP. To
 900 * void the boot-strap code, wake up CPU0 by NMI instead.
 901 *
 902 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
 903 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
 904 * We'll change this code in the future to wake up hard offlined CPU0 if
 905 * real platform and request are available.
 906 */
 907static int
 908wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
 909	       int *cpu0_nmi_registered)
 910{
 911	int id;
 912	int boot_error;
 913
 914	preempt_disable();
 915
 916	/*
 917	 * Wake up AP by INIT, INIT, STARTUP sequence.
 918	 */
 919	if (cpu) {
 920		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
 921		goto out;
 922	}
 923
 924	/*
 925	 * Wake up BSP by nmi.
 926	 *
 927	 * Register a NMI handler to help wake up CPU0.
 928	 */
 929	boot_error = register_nmi_handler(NMI_LOCAL,
 930					  wakeup_cpu0_nmi, 0, "wake_cpu0");
 931
 932	if (!boot_error) {
 933		enable_start_cpu0 = 1;
 934		*cpu0_nmi_registered = 1;
 935		if (apic->dest_logical == APIC_DEST_LOGICAL)
 936			id = cpu0_logical_apicid;
 937		else
 938			id = apicid;
 939		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
 940	}
 941
 942out:
 943	preempt_enable();
 944
 945	return boot_error;
 946}
 947
 948void common_cpu_up(unsigned int cpu, struct task_struct *idle)
 949{
 950	/* Just in case we booted with a single CPU. */
 951	alternatives_enable_smp();
 952
 953	per_cpu(current_task, cpu) = idle;
 
 
 
 
 
 
 954
 955#ifdef CONFIG_X86_32
 956	/* Stack for startup_32 can be just as for start_secondary onwards */
 957	irq_ctx_init(cpu);
 958	per_cpu(cpu_current_top_of_stack, cpu) =
 959		(unsigned long)task_stack_page(idle) + THREAD_SIZE;
 960#else
 961	initial_gs = per_cpu_offset(cpu);
 962#endif
 
 963}
 964
 965/*
 966 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
 967 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
 968 * Returns zero if CPU booted OK, else error code from
 969 * ->wakeup_secondary_cpu.
 970 */
 971static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
 972{
 973	volatile u32 *trampoline_status =
 974		(volatile u32 *) __va(real_mode_header->trampoline_status);
 975	/* start_ip had better be page-aligned! */
 976	unsigned long start_ip = real_mode_header->trampoline_start;
 
 977
 978	unsigned long boot_error = 0;
 979	int cpu0_nmi_registered = 0;
 980	unsigned long timeout;
 981
 
 982	idle->thread.sp = (unsigned long)task_pt_regs(idle);
 983	early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
 984	initial_code = (unsigned long)start_secondary;
 985	initial_stack  = idle->thread.sp;
 986
 987	/*
 988	 * Enable the espfix hack for this CPU
 989	*/
 990#ifdef CONFIG_X86_ESPFIX64
 
 
 
 
 991	init_espfix_ap(cpu);
 992#endif
 993
 994	/* So we see what's up */
 995	announce_cpu(cpu, apicid);
 996
 997	/*
 998	 * This grunge runs the startup process for
 999	 * the targeted processor.
1000	 */
1001
1002	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
1003
1004		pr_debug("Setting warm reset code and vector.\n");
1005
1006		smpboot_setup_warm_reset_vector(start_ip);
1007		/*
1008		 * Be paranoid about clearing APIC errors.
1009		*/
1010		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1011			apic_write(APIC_ESR, 0);
1012			apic_read(APIC_ESR);
1013		}
1014	}
1015
1016	/*
1017	 * AP might wait on cpu_callout_mask in cpu_init() with
1018	 * cpu_initialized_mask set if previous attempt to online
1019	 * it timed-out. Clear cpu_initialized_mask so that after
1020	 * INIT/SIPI it could start with a clean state.
1021	 */
1022	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1023	smp_mb();
1024
1025	/*
1026	 * Wake up a CPU in difference cases:
1027	 * - Use the method in the APIC driver if it's defined
 
1028	 * Otherwise,
1029	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1030	 */
1031	if (apic->wakeup_secondary_cpu)
1032		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
 
 
1033	else
1034		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1035						     &cpu0_nmi_registered);
1036
1037	if (!boot_error) {
1038		/*
1039		 * Wait 10s total for first sign of life from AP
1040		 */
1041		boot_error = -1;
1042		timeout = jiffies + 10*HZ;
1043		while (time_before(jiffies, timeout)) {
1044			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1045				/*
1046				 * Tell AP to proceed with initialization
1047				 */
1048				cpumask_set_cpu(cpu, cpu_callout_mask);
1049				boot_error = 0;
1050				break;
1051			}
1052			schedule();
1053		}
1054	}
1055
1056	if (!boot_error) {
1057		/*
1058		 * Wait till AP completes initial initialization
1059		 */
1060		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1061			/*
1062			 * Allow other tasks to run while we wait for the
1063			 * AP to come online. This also gives a chance
1064			 * for the MTRR work(triggered by the AP coming online)
1065			 * to be completed in the stop machine context.
1066			 */
1067			schedule();
1068		}
1069	}
1070
1071	/* mark "stuck" area as not stuck */
1072	*trampoline_status = 0;
1073
1074	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
1075		/*
1076		 * Cleanup possible dangling ends...
1077		 */
1078		smpboot_restore_warm_reset_vector();
1079	}
1080	/*
1081	 * Clean up the nmi handler. Do this after the callin and callout sync
1082	 * to avoid impact of possible long unregister time.
1083	 */
1084	if (cpu0_nmi_registered)
1085		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1086
1087	return boot_error;
1088}
1089
1090int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1091{
1092	int apicid = apic->cpu_present_to_apicid(cpu);
1093	unsigned long flags;
1094	int err;
1095
1096	WARN_ON(irqs_disabled());
1097
1098	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1099
1100	if (apicid == BAD_APICID ||
1101	    !physid_isset(apicid, phys_cpu_present_map) ||
1102	    !apic->apic_id_valid(apicid)) {
1103		pr_err("%s: bad cpu %d\n", __func__, cpu);
1104		return -EINVAL;
1105	}
1106
1107	/*
1108	 * Already booted CPU?
1109	 */
1110	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1111		pr_debug("do_boot_cpu %d Already started\n", cpu);
1112		return -ENOSYS;
1113	}
1114
1115	/*
1116	 * Save current MTRR state in case it was changed since early boot
1117	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1118	 */
1119	mtrr_save_state();
1120
1121	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1122	err = cpu_check_up_prepare(cpu);
1123	if (err && err != -EBUSY)
1124		return err;
1125
1126	/* the FPU context is blank, nobody can own it */
1127	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1128
1129	common_cpu_up(cpu, tidle);
 
 
1130
1131	err = do_boot_cpu(apicid, cpu, tidle);
1132	if (err) {
1133		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1134		return -EIO;
1135	}
1136
1137	/*
1138	 * Check TSC synchronization with the AP (keep irqs disabled
1139	 * while doing so):
1140	 */
1141	local_irq_save(flags);
1142	check_tsc_sync_source(cpu);
1143	local_irq_restore(flags);
1144
1145	while (!cpu_online(cpu)) {
1146		cpu_relax();
1147		touch_nmi_watchdog();
1148	}
1149
1150	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1151}
1152
1153/**
1154 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1155 */
1156void arch_disable_smp_support(void)
1157{
1158	disable_ioapic_support();
1159}
1160
1161/*
1162 * Fall back to non SMP mode after errors.
1163 *
1164 * RED-PEN audit/test this more. I bet there is more state messed up here.
1165 */
1166static __init void disable_smp(void)
1167{
1168	pr_info("SMP disabled\n");
1169
1170	disable_ioapic_support();
 
1171
1172	init_cpu_present(cpumask_of(0));
1173	init_cpu_possible(cpumask_of(0));
1174
1175	if (smp_found_config)
1176		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1177	else
1178		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1179	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1180	cpumask_set_cpu(0, topology_core_cpumask(0));
 
1181}
1182
1183enum {
1184	SMP_OK,
1185	SMP_NO_CONFIG,
1186	SMP_NO_APIC,
1187	SMP_FORCE_UP,
1188};
1189
1190/*
1191 * Various sanity checks.
1192 */
1193static int __init smp_sanity_check(unsigned max_cpus)
1194{
1195	preempt_disable();
1196
1197#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1198	if (def_to_bigsmp && nr_cpu_ids > 8) {
1199		unsigned int cpu;
1200		unsigned nr;
1201
1202		pr_warn("More than 8 CPUs detected - skipping them\n"
1203			"Use CONFIG_X86_BIGSMP\n");
1204
1205		nr = 0;
1206		for_each_present_cpu(cpu) {
1207			if (nr >= 8)
1208				set_cpu_present(cpu, false);
1209			nr++;
1210		}
1211
1212		nr = 0;
1213		for_each_possible_cpu(cpu) {
1214			if (nr >= 8)
1215				set_cpu_possible(cpu, false);
1216			nr++;
1217		}
1218
1219		nr_cpu_ids = 8;
1220	}
1221#endif
1222
1223	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1224		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1225			hard_smp_processor_id());
1226
1227		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1228	}
1229
1230	/*
1231	 * If we couldn't find an SMP configuration at boot time,
1232	 * get out of here now!
1233	 */
1234	if (!smp_found_config && !acpi_lapic) {
1235		preempt_enable();
1236		pr_notice("SMP motherboard not detected\n");
1237		return SMP_NO_CONFIG;
1238	}
1239
1240	/*
1241	 * Should not be necessary because the MP table should list the boot
1242	 * CPU too, but we do it for the sake of robustness anyway.
1243	 */
1244	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1245		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1246			  boot_cpu_physical_apicid);
1247		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1248	}
1249	preempt_enable();
1250
1251	/*
1252	 * If we couldn't find a local APIC, then get out of here now!
1253	 */
1254	if (APIC_INTEGRATED(boot_cpu_apic_version) &&
1255	    !boot_cpu_has(X86_FEATURE_APIC)) {
1256		if (!disable_apic) {
1257			pr_err("BIOS bug, local APIC #%d not detected!...\n",
1258				boot_cpu_physical_apicid);
1259			pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
1260		}
1261		return SMP_NO_APIC;
1262	}
1263
1264	/*
1265	 * If SMP should be disabled, then really disable it!
1266	 */
1267	if (!max_cpus) {
1268		pr_info("SMP mode deactivated\n");
1269		return SMP_FORCE_UP;
1270	}
1271
1272	return SMP_OK;
1273}
1274
1275static void __init smp_cpu_index_default(void)
1276{
1277	int i;
1278	struct cpuinfo_x86 *c;
1279
1280	for_each_possible_cpu(i) {
1281		c = &cpu_data(i);
1282		/* mark all to hotplug */
1283		c->cpu_index = nr_cpu_ids;
 
 
 
1284	}
 
 
 
 
1285}
 
1286
1287/*
1288 * Prepare for SMP bootup.  The MP table or ACPI has been read
1289 * earlier.  Just do some sanity checking here and enable APIC mode.
 
1290 */
1291void __init native_smp_prepare_cpus(unsigned int max_cpus)
1292{
1293	unsigned int i;
1294
1295	smp_cpu_index_default();
1296
1297	/*
1298	 * Setup boot CPU information
1299	 */
1300	smp_store_boot_cpu_info(); /* Final full version of the data */
1301	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1302	mb();
1303
1304	for_each_possible_cpu(i) {
1305		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1306		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1307		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1308	}
1309
1310	/*
1311	 * Set 'default' x86 topology, this matches default_topology() in that
1312	 * it has NUMA nodes as a topology level. See also
1313	 * native_smp_cpus_done().
1314	 *
1315	 * Must be done before set_cpus_sibling_map() is ran.
1316	 */
1317	set_sched_topology(x86_topology);
1318
1319	set_cpu_sibling_map(0);
1320
1321	switch (smp_sanity_check(max_cpus)) {
1322	case SMP_NO_CONFIG:
1323		disable_smp();
1324		if (APIC_init_uniprocessor())
1325			pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
1326		return;
1327	case SMP_NO_APIC:
1328		disable_smp();
1329		return;
1330	case SMP_FORCE_UP:
1331		disable_smp();
1332		apic_bsp_setup(false);
 
1333		return;
1334	case SMP_OK:
 
1335		break;
1336	}
1337
1338	if (read_apic_id() != boot_cpu_physical_apicid) {
1339		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1340		     read_apic_id(), boot_cpu_physical_apicid);
1341		/* Or can we switch back to PIC here? */
1342	}
1343
1344	default_setup_apic_routing();
1345	cpu0_logical_apicid = apic_bsp_setup(false);
1346
1347	pr_info("CPU0: ");
1348	print_cpu_info(&cpu_data(0));
1349
1350	if (is_uv_system())
1351		uv_system_init();
1352
1353	set_mtrr_aps_delayed_init();
1354
1355	smp_quirk_init_udelay();
 
 
 
 
1356}
1357
1358void arch_enable_nonboot_cpus_begin(void)
1359{
1360	set_mtrr_aps_delayed_init();
1361}
1362
1363void arch_enable_nonboot_cpus_end(void)
1364{
1365	mtrr_aps_init();
1366}
1367
1368/*
1369 * Early setup to make printk work.
1370 */
1371void __init native_smp_prepare_boot_cpu(void)
1372{
1373	int me = smp_processor_id();
1374	switch_to_new_gdt(me);
1375	/* already set me in cpu_online_mask in boot_cpu_init() */
1376	cpumask_set_cpu(me, cpu_callout_mask);
1377	cpu_set_state_online(me);
 
 
1378}
1379
1380void __init native_smp_cpus_done(unsigned int max_cpus)
1381{
1382	pr_debug("Boot done\n");
1383
1384	if (x86_has_numa_in_package)
1385		set_sched_topology(x86_numa_in_package_topology);
1386
1387	nmi_selftest();
1388	impress_friends();
1389	setup_ioapic_dest();
1390	mtrr_aps_init();
1391}
1392
1393static int __initdata setup_possible_cpus = -1;
1394static int __init _setup_possible_cpus(char *str)
1395{
1396	get_option(&str, &setup_possible_cpus);
1397	return 0;
1398}
1399early_param("possible_cpus", _setup_possible_cpus);
1400
1401
1402/*
1403 * cpu_possible_mask should be static, it cannot change as cpu's
1404 * are onlined, or offlined. The reason is per-cpu data-structures
1405 * are allocated by some modules at init time, and dont expect to
1406 * do this dynamically on cpu arrival/departure.
1407 * cpu_present_mask on the other hand can change dynamically.
1408 * In case when cpu_hotplug is not compiled, then we resort to current
1409 * behaviour, which is cpu_possible == cpu_present.
1410 * - Ashok Raj
1411 *
1412 * Three ways to find out the number of additional hotplug CPUs:
1413 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1414 * - The user can overwrite it with possible_cpus=NUM
1415 * - Otherwise don't reserve additional CPUs.
1416 * We do this because additional CPUs waste a lot of memory.
1417 * -AK
1418 */
1419__init void prefill_possible_map(void)
1420{
1421	int i, possible;
1422
1423	/* No boot processor was found in mptable or ACPI MADT */
1424	if (!num_processors) {
1425		if (boot_cpu_has(X86_FEATURE_APIC)) {
1426			int apicid = boot_cpu_physical_apicid;
1427			int cpu = hard_smp_processor_id();
1428
1429			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1430
1431			/* Make sure boot cpu is enumerated */
1432			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1433			    apic->apic_id_valid(apicid))
1434				generic_processor_info(apicid, boot_cpu_apic_version);
1435		}
1436
1437		if (!num_processors)
1438			num_processors = 1;
1439	}
1440
1441	i = setup_max_cpus ?: 1;
1442	if (setup_possible_cpus == -1) {
1443		possible = num_processors;
1444#ifdef CONFIG_HOTPLUG_CPU
1445		if (setup_max_cpus)
1446			possible += disabled_cpus;
1447#else
1448		if (possible > i)
1449			possible = i;
1450#endif
1451	} else
1452		possible = setup_possible_cpus;
1453
1454	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1455
1456	/* nr_cpu_ids could be reduced via nr_cpus= */
1457	if (possible > nr_cpu_ids) {
1458		pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
1459			possible, nr_cpu_ids);
1460		possible = nr_cpu_ids;
1461	}
1462
1463#ifdef CONFIG_HOTPLUG_CPU
1464	if (!setup_max_cpus)
1465#endif
1466	if (possible > i) {
1467		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1468			possible, setup_max_cpus);
1469		possible = i;
1470	}
1471
1472	nr_cpu_ids = possible;
1473
1474	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1475		possible, max_t(int, possible - num_processors, 0));
1476
1477	reset_cpu_possible_mask();
1478
1479	for (i = 0; i < possible; i++)
1480		set_cpu_possible(i, true);
1481}
1482
1483#ifdef CONFIG_HOTPLUG_CPU
1484
1485/* Recompute SMT state for all CPUs on offline */
1486static void recompute_smt_state(void)
1487{
1488	int max_threads, cpu;
1489
1490	max_threads = 0;
1491	for_each_online_cpu (cpu) {
1492		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1493
1494		if (threads > max_threads)
1495			max_threads = threads;
1496	}
1497	__max_smt_threads = max_threads;
1498}
1499
1500static void remove_siblinginfo(int cpu)
1501{
1502	int sibling;
1503	struct cpuinfo_x86 *c = &cpu_data(cpu);
1504
1505	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1506		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1507		/*/
1508		 * last thread sibling in this cpu core going down
1509		 */
1510		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1511			cpu_data(sibling).booted_cores--;
1512	}
1513
1514	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
 
 
 
1515		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
 
 
 
 
1516	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1517		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
 
 
1518	cpumask_clear(cpu_llc_shared_mask(cpu));
 
1519	cpumask_clear(topology_sibling_cpumask(cpu));
1520	cpumask_clear(topology_core_cpumask(cpu));
1521	c->phys_proc_id = 0;
1522	c->cpu_core_id = 0;
 
1523	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1524	recompute_smt_state();
1525}
1526
1527static void remove_cpu_from_maps(int cpu)
1528{
1529	set_cpu_online(cpu, false);
1530	cpumask_clear_cpu(cpu, cpu_callout_mask);
1531	cpumask_clear_cpu(cpu, cpu_callin_mask);
1532	/* was set by cpu_init() */
1533	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1534	numa_remove_cpu(cpu);
1535}
1536
1537void cpu_disable_common(void)
1538{
1539	int cpu = smp_processor_id();
1540
1541	remove_siblinginfo(cpu);
1542
1543	/* It's now safe to remove this processor from the online map */
1544	lock_vector_lock();
1545	remove_cpu_from_maps(cpu);
1546	unlock_vector_lock();
1547	fixup_irqs();
 
1548}
1549
1550int native_cpu_disable(void)
1551{
1552	int ret;
1553
1554	ret = check_irq_vectors_for_cpu_disable();
1555	if (ret)
1556		return ret;
1557
1558	clear_local_APIC();
1559	cpu_disable_common();
1560
1561	return 0;
1562}
1563
1564int common_cpu_die(unsigned int cpu)
1565{
1566	int ret = 0;
1567
1568	/* We don't do anything here: idle task is faking death itself. */
1569
1570	/* They ack this in play_dead() by setting CPU_DEAD */
1571	if (cpu_wait_death(cpu, 5)) {
1572		if (system_state == SYSTEM_RUNNING)
1573			pr_info("CPU %u is now offline\n", cpu);
1574	} else {
1575		pr_err("CPU %u didn't die...\n", cpu);
1576		ret = -1;
1577	}
1578
1579	return ret;
1580}
1581
1582void native_cpu_die(unsigned int cpu)
1583{
1584	common_cpu_die(cpu);
1585}
1586
1587void play_dead_common(void)
1588{
1589	idle_task_exit();
1590	reset_lazy_tlbstate();
1591
1592	/* Ack it */
1593	(void)cpu_report_death();
1594
1595	/*
1596	 * With physical CPU hotplug, we should halt the cpu
1597	 */
1598	local_irq_disable();
1599}
1600
1601static bool wakeup_cpu0(void)
1602{
1603	if (smp_processor_id() == 0 && enable_start_cpu0)
1604		return true;
1605
1606	return false;
1607}
1608
1609/*
1610 * We need to flush the caches before going to sleep, lest we have
1611 * dirty data in our caches when we come back up.
1612 */
1613static inline void mwait_play_dead(void)
1614{
 
1615	unsigned int eax, ebx, ecx, edx;
1616	unsigned int highest_cstate = 0;
1617	unsigned int highest_subcstate = 0;
1618	void *mwait_ptr;
1619	int i;
1620
 
 
 
1621	if (!this_cpu_has(X86_FEATURE_MWAIT))
1622		return;
1623	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1624		return;
1625	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1626		return;
1627
1628	eax = CPUID_MWAIT_LEAF;
1629	ecx = 0;
1630	native_cpuid(&eax, &ebx, &ecx, &edx);
1631
1632	/*
1633	 * eax will be 0 if EDX enumeration is not valid.
1634	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1635	 */
1636	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1637		eax = 0;
1638	} else {
1639		edx >>= MWAIT_SUBSTATE_SIZE;
1640		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1641			if (edx & MWAIT_SUBSTATE_MASK) {
1642				highest_cstate = i;
1643				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1644			}
1645		}
1646		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1647			(highest_subcstate - 1);
1648	}
1649
1650	/*
1651	 * This should be a memory location in a cache line which is
1652	 * unlikely to be touched by other processors.  The actual
1653	 * content is immaterial as it is not actually modified in any way.
1654	 */
1655	mwait_ptr = &current_thread_info()->flags;
1656
1657	wbinvd();
1658
1659	while (1) {
1660		/*
1661		 * The CLFLUSH is a workaround for erratum AAI65 for
1662		 * the Xeon 7400 series.  It's not clear it is actually
1663		 * needed, but it should be harmless in either case.
1664		 * The WBINVD is insufficient due to the spurious-wakeup
1665		 * case where we return around the loop.
1666		 */
1667		mb();
1668		clflush(mwait_ptr);
1669		mb();
1670		__monitor(mwait_ptr, 0, 0);
1671		mb();
1672		__mwait(eax, 0);
1673		/*
1674		 * If NMI wants to wake up CPU0, start CPU0.
1675		 */
1676		if (wakeup_cpu0())
1677			start_cpu0();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1678	}
1679}
1680
1681void hlt_play_dead(void)
1682{
1683	if (__this_cpu_read(cpu_info.x86) >= 4)
1684		wbinvd();
1685
1686	while (1) {
1687		native_halt();
1688		/*
1689		 * If NMI wants to wake up CPU0, start CPU0.
1690		 */
1691		if (wakeup_cpu0())
1692			start_cpu0();
1693	}
1694}
1695
 
 
 
 
1696void native_play_dead(void)
1697{
 
 
 
1698	play_dead_common();
1699	tboot_shutdown(TB_SHUTDOWN_WFS);
1700
1701	mwait_play_dead();	/* Only returns on failure */
1702	if (cpuidle_play_dead())
1703		hlt_play_dead();
1704}
1705
1706#else /* ... !CONFIG_HOTPLUG_CPU */
1707int native_cpu_disable(void)
1708{
1709	return -ENOSYS;
1710}
1711
1712void native_cpu_die(unsigned int cpu)
1713{
1714	/* We said "no" in __cpu_disable */
1715	BUG();
1716}
1717
1718void native_play_dead(void)
1719{
1720	BUG();
1721}
1722
1723#endif
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3 *	x86 SMP booting functions
   4 *
   5 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
   6 *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
   7 *	Copyright 2001 Andi Kleen, SuSE Labs.
   8 *
   9 *	Much of the core SMP work is based on previous work by Thomas Radke, to
  10 *	whom a great many thanks are extended.
  11 *
  12 *	Thanks to Intel for making available several different Pentium,
  13 *	Pentium Pro and Pentium-II/Xeon MP machines.
  14 *	Original development of Linux SMP code supported by Caldera.
  15 *
 
 
 
  16 *	Fixes
  17 *		Felix Koop	:	NR_CPUS used properly
  18 *		Jose Renau	:	Handle single CPU case.
  19 *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
  20 *		Greg Wright	:	Fix for kernel stacks panic.
  21 *		Erich Boleyn	:	MP v1.4 and additional changes.
  22 *	Matthias Sattler	:	Changes for 2.1 kernel map.
  23 *	Michel Lespinasse	:	Changes for 2.1 kernel map.
  24 *	Michael Chastain	:	Change trampoline.S to gnu as.
  25 *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
  26 *		Ingo Molnar	:	Added APIC timers, based on code
  27 *					from Jose Renau
  28 *		Ingo Molnar	:	various cleanups and rewrites
  29 *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
  30 *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
  31 *	Andi Kleen		:	Changed for SMP boot into long mode.
  32 *		Martin J. Bligh	: 	Added support for multi-quad systems
  33 *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
  34 *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
  35 *      Andi Kleen              :       Converted to new state machine.
  36 *	Ashok Raj		: 	CPU hotplug support
  37 *	Glauber Costa		:	i386 and x86_64 integration
  38 */
  39
  40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  41
  42#include <linux/init.h>
  43#include <linux/smp.h>
  44#include <linux/export.h>
  45#include <linux/sched.h>
  46#include <linux/sched/topology.h>
  47#include <linux/sched/hotplug.h>
  48#include <linux/sched/task_stack.h>
  49#include <linux/percpu.h>
  50#include <linux/memblock.h>
  51#include <linux/err.h>
  52#include <linux/nmi.h>
  53#include <linux/tboot.h>
 
  54#include <linux/gfp.h>
  55#include <linux/cpuidle.h>
  56#include <linux/kexec.h>
  57#include <linux/numa.h>
  58#include <linux/pgtable.h>
  59#include <linux/overflow.h>
  60#include <linux/stackprotector.h>
  61#include <linux/cpuhotplug.h>
  62#include <linux/mc146818rtc.h>
  63
  64#include <asm/acpi.h>
  65#include <asm/cacheinfo.h>
  66#include <asm/desc.h>
  67#include <asm/nmi.h>
  68#include <asm/irq.h>
  69#include <asm/realmode.h>
  70#include <asm/cpu.h>
  71#include <asm/numa.h>
 
  72#include <asm/tlbflush.h>
  73#include <asm/mtrr.h>
  74#include <asm/mwait.h>
  75#include <asm/apic.h>
  76#include <asm/io_apic.h>
  77#include <asm/fpu/api.h>
  78#include <asm/setup.h>
  79#include <asm/uv/uv.h>
  80#include <asm/microcode.h>
  81#include <asm/i8259.h>
 
  82#include <asm/misc.h>
  83#include <asm/qspinlock.h>
  84#include <asm/intel-family.h>
  85#include <asm/cpu_device_id.h>
  86#include <asm/spec-ctrl.h>
  87#include <asm/hw_irq.h>
  88#include <asm/stackprotector.h>
  89#include <asm/sev.h>
  90#include <asm/spec-ctrl.h>
  91
  92/* representing HT siblings of each logical CPU */
  93DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
  94EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  95
  96/* representing HT and core siblings of each logical CPU */
  97DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
  98EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  99
 100/* representing HT, core, and die siblings of each logical CPU */
 101DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
 102EXPORT_PER_CPU_SYMBOL(cpu_die_map);
 103
 104/* CPUs which are the primary SMT threads */
 105struct cpumask __cpu_primary_thread_mask __read_mostly;
 106
 107/* Representing CPUs for which sibling maps can be computed */
 108static cpumask_var_t cpu_sibling_setup_mask;
 109
 110struct mwait_cpu_dead {
 111	unsigned int	control;
 112	unsigned int	status;
 113};
 114
 115#define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
 116#define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
 117
 118/*
 119 * Cache line aligned data for mwait_play_dead(). Separate on purpose so
 120 * that it's unlikely to be touched by other CPUs.
 121 */
 122static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
 
 
 
 
 
 
 123
 124/* Maximum number of SMT threads on any online core */
 125int __read_mostly __max_smt_threads = 1;
 126
 127/* Flag to indicate if a complete sched domain rebuild is required */
 128bool x86_topology_update;
 129
 130int arch_update_cpu_topology(void)
 131{
 132	int retval = x86_topology_update;
 133
 134	x86_topology_update = false;
 135	return retval;
 136}
 137
 138static unsigned int smpboot_warm_reset_vector_count;
 139
 140static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
 141{
 142	unsigned long flags;
 143
 144	spin_lock_irqsave(&rtc_lock, flags);
 145	if (!smpboot_warm_reset_vector_count++) {
 146		CMOS_WRITE(0xa, 0xf);
 147		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
 148		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
 149	}
 150	spin_unlock_irqrestore(&rtc_lock, flags);
 
 
 
 
 
 
 
 
 151}
 152
 153static inline void smpboot_restore_warm_reset_vector(void)
 154{
 155	unsigned long flags;
 156
 157	/*
 
 
 
 
 
 158	 * Paranoid:  Set warm reset code and vector here back
 159	 * to default values.
 160	 */
 161	spin_lock_irqsave(&rtc_lock, flags);
 162	if (!--smpboot_warm_reset_vector_count) {
 163		CMOS_WRITE(0, 0xf);
 164		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
 165	}
 166	spin_unlock_irqrestore(&rtc_lock, flags);
 167
 
 168}
 169
 170/* Run the next set of setup steps for the upcoming CPU */
 171static void ap_starting(void)
 
 
 
 172{
 173	int cpuid = smp_processor_id();
 174
 175	/* Mop up eventual mwait_play_dead() wreckage */
 176	this_cpu_write(mwait_cpu_dead.status, 0);
 177	this_cpu_write(mwait_cpu_dead.control, 0);
 
 
 
 
 178
 179	/*
 180	 * If woken up by an INIT in an 82489DX configuration the alive
 181	 * synchronization guarantees that the CPU does not reach this
 182	 * point before an INIT_deassert IPI reaches the local APIC, so it
 183	 * is now safe to touch the local APIC.
 184	 *
 185	 * Set up this CPU, first the APIC, which is probably redundant on
 186	 * most boards.
 
 
 187	 */
 188	apic_ap_setup();
 189
 190	/* Save the processor parameters. */
 
 
 
 191	smp_store_cpu_info(cpuid);
 192
 193	/*
 194	 * The topology information must be up to date before
 195	 * notify_cpu_starting().
 
 
 196	 */
 197	set_cpu_sibling_map(cpuid);
 198
 199	ap_init_aperfmperf();
 200
 201	pr_debug("Stack at about %p\n", &cpuid);
 202
 
 
 
 
 
 203	wmb();
 204
 205	/*
 206	 * This runs the AP through all the cpuhp states to its target
 207	 * state CPUHP_ONLINE.
 208	 */
 209	notify_cpu_starting(cpuid);
 210}
 211
 212static void ap_calibrate_delay(void)
 213{
 214	/*
 215	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
 216	 * smp_store_cpu_info() stored a value that is close but not as
 217	 * accurate as the value just calculated.
 218	 *
 219	 * As this is invoked after the TSC synchronization check,
 220	 * calibrate_delay_is_known() will skip the calibration routine
 221	 * when TSC is synchronized across sockets.
 222	 */
 223	calibrate_delay();
 224	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
 225}
 226
 
 
 227/*
 228 * Activate a secondary processor.
 229 */
 230static void notrace start_secondary(void *unused)
 231{
 232	/*
 233	 * Don't put *anything* except direct CPU state initialization
 234	 * before cpu_init(), SMP booting is too fragile that we want to
 235	 * limit the things done here to the most necessary things.
 236	 */
 237	cr4_init();
 238
 239	/*
 240	 * 32-bit specific. 64-bit reaches this code with the correct page
 241	 * table established. Yet another historical divergence.
 242	 */
 243	if (IS_ENABLED(CONFIG_X86_32)) {
 244		/* switch away from the initial page table */
 245		load_cr3(swapper_pg_dir);
 246		__flush_tlb_all();
 247	}
 248
 249	cpu_init_exception_handling();
 250
 251	/*
 252	 * Load the microcode before reaching the AP alive synchronization
 253	 * point below so it is not part of the full per CPU serialized
 254	 * bringup part when "parallel" bringup is enabled.
 255	 *
 256	 * That's even safe when hyperthreading is enabled in the CPU as
 257	 * the core code starts the primary threads first and leaves the
 258	 * secondary threads waiting for SIPI. Loading microcode on
 259	 * physical cores concurrently is a safe operation.
 260	 *
 261	 * This covers both the Intel specific issue that concurrent
 262	 * microcode loading on SMT siblings must be prohibited and the
 263	 * vendor independent issue`that microcode loading which changes
 264	 * CPUID, MSRs etc. must be strictly serialized to maintain
 265	 * software state correctness.
 266	 */
 267	load_ucode_ap();
 268
 269	/*
 270	 * Synchronization point with the hotplug core. Sets this CPUs
 271	 * synchronization state to ALIVE and spin-waits for the control CPU to
 272	 * release this CPU for further bringup.
 273	 */
 274	cpuhp_ap_sync_alive();
 275
 276	cpu_init();
 277	fpu__init_cpu();
 278	rcutree_report_cpu_starting(raw_smp_processor_id());
 279	x86_cpuinit.early_percpu_clock_init();
 
 
 280
 281	ap_starting();
 282
 283	/* Check TSC synchronization with the control CPU. */
 284	check_tsc_sync_target();
 
 
 
 285
 
 
 286	/*
 287	 * Calibrate the delay loop after the TSC synchronization check.
 288	 * This allows to skip the calibration when TSC is synchronized
 289	 * across sockets.
 290	 */
 291	ap_calibrate_delay();
 292
 293	speculative_store_bypass_ht_init();
 294
 295	/*
 296	 * Lock vector_lock, set CPU online and bring the vector
 297	 * allocator online. Online must be set with vector_lock held
 298	 * to prevent a concurrent irq setup/teardown from seeing a
 299	 * half valid vector space.
 300	 */
 301	lock_vector_lock();
 
 302	set_cpu_online(smp_processor_id(), true);
 303	lapic_online();
 304	unlock_vector_lock();
 
 305	x86_platform.nmi_init();
 306
 307	/* enable local interrupts */
 308	local_irq_enable();
 309
 
 
 
 310	x86_cpuinit.setup_percpu_clockev();
 311
 312	wmb();
 313	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 314}
 315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 316/*
 317 * The bootstrap kernel entry code has set these up. Save them for
 318 * a given CPU
 319 */
 320void smp_store_cpu_info(int id)
 321{
 322	struct cpuinfo_x86 *c = &cpu_data(id);
 323
 324	/* Copy boot_cpu_data only on the first bringup */
 325	if (!c->initialized)
 326		*c = boot_cpu_data;
 327	c->cpu_index = id;
 328	/*
 329	 * During boot time, CPU0 has this setup already. Save the info when
 330	 * bringing up an AP.
 331	 */
 332	identify_secondary_cpu(c);
 333	c->initialized = true;
 334}
 335
 336static bool
 337topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 338{
 339	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 340
 341	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
 342}
 343
 344static bool
 345topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
 346{
 347	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 348
 349	return !WARN_ONCE(!topology_same_node(c, o),
 350		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
 351		"[node: %d != %d]. Ignoring dependency.\n",
 352		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
 353}
 354
 355#define link_mask(mfunc, c1, c2)					\
 356do {									\
 357	cpumask_set_cpu((c1), mfunc(c2));				\
 358	cpumask_set_cpu((c2), mfunc(c1));				\
 359} while (0)
 360
 361static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 362{
 363	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
 364		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 365
 366		if (c->topo.pkg_id == o->topo.pkg_id &&
 367		    c->topo.die_id == o->topo.die_id &&
 368		    c->topo.amd_node_id == o->topo.amd_node_id &&
 369		    per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
 370			if (c->topo.core_id == o->topo.core_id)
 371				return topology_sane(c, o, "smt");
 372
 373			if ((c->topo.cu_id != 0xff) &&
 374			    (o->topo.cu_id != 0xff) &&
 375			    (c->topo.cu_id == o->topo.cu_id))
 376				return topology_sane(c, o, "smt");
 377		}
 378
 379	} else if (c->topo.pkg_id == o->topo.pkg_id &&
 380		   c->topo.die_id == o->topo.die_id &&
 381		   c->topo.core_id == o->topo.core_id) {
 382		return topology_sane(c, o, "smt");
 383	}
 384
 385	return false;
 386}
 387
 388static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 389{
 390	if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id)
 391		return false;
 392
 393	if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1)
 394		return c->topo.amd_node_id == o->topo.amd_node_id;
 395
 396	return true;
 397}
 398
 399static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 400{
 401	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 402
 403	/* If the arch didn't set up l2c_id, fall back to SMT */
 404	if (per_cpu_l2c_id(cpu1) == BAD_APICID)
 405		return match_smt(c, o);
 406
 407	/* Do not match if L2 cache id does not match: */
 408	if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
 409		return false;
 410
 411	return topology_sane(c, o, "l2c");
 412}
 413
 414/*
 415 * Unlike the other levels, we do not enforce keeping a
 416 * multicore group inside a NUMA node.  If this happens, we will
 417 * discard the MC level of the topology later.
 418 */
 419static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 420{
 421	if (c->topo.pkg_id == o->topo.pkg_id)
 422		return true;
 423	return false;
 424}
 425
 426/*
 427 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
 428 *
 429 * Any Intel CPU that has multiple nodes per package and does not
 430 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
 431 *
 432 * When in SNC mode, these CPUs enumerate an LLC that is shared
 433 * by multiple NUMA nodes. The LLC is shared for off-package data
 434 * access but private to the NUMA node (half of the package) for
 435 * on-package access. CPUID (the source of the information about
 436 * the LLC) can only enumerate the cache as shared or unshared,
 437 * but not this particular configuration.
 438 */
 439
 440static const struct x86_cpu_id intel_cod_cpu[] = {
 441	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
 442	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
 443	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
 444	{}
 445};
 446
 447static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 448{
 449	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
 450	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 451	bool intel_snc = id && id->driver_data;
 452
 453	/* Do not match if we do not have a valid APICID for cpu: */
 454	if (per_cpu_llc_id(cpu1) == BAD_APICID)
 455		return false;
 456
 457	/* Do not match if LLC id does not match: */
 458	if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
 459		return false;
 460
 461	/*
 462	 * Allow the SNC topology without warning. Return of false
 463	 * means 'c' does not share the LLC of 'o'. This will be
 464	 * reflected to userspace.
 465	 */
 466	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
 467		return false;
 468
 469	return topology_sane(c, o, "llc");
 470}
 471
 472
 473static inline int x86_sched_itmt_flags(void)
 474{
 475	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
 476}
 477
 478#ifdef CONFIG_SCHED_MC
 479static int x86_core_flags(void)
 480{
 481	return cpu_core_flags() | x86_sched_itmt_flags();
 482}
 483#endif
 484#ifdef CONFIG_SCHED_SMT
 485static int x86_smt_flags(void)
 486{
 487	return cpu_smt_flags();
 488}
 489#endif
 490#ifdef CONFIG_SCHED_CLUSTER
 491static int x86_cluster_flags(void)
 492{
 493	return cpu_cluster_flags() | x86_sched_itmt_flags();
 494}
 495#endif
 496
 497static int x86_die_flags(void)
 498{
 499	if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
 500	       return x86_sched_itmt_flags();
 
 
 
 
 
 501
 502	return 0;
 503}
 
 
 
 
 
 
 
 
 504
 505/*
 506 * Set if a package/die has multiple NUMA nodes inside.
 507 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
 508 * Sub-NUMA Clustering have this.
 509 */
 510static bool x86_has_numa_in_package;
 511
 512static struct sched_domain_topology_level x86_topology[6];
 513
 514static void __init build_sched_topology(void)
 515{
 516	int i = 0;
 517
 518#ifdef CONFIG_SCHED_SMT
 519	x86_topology[i++] = (struct sched_domain_topology_level){
 520		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
 521	};
 522#endif
 523#ifdef CONFIG_SCHED_CLUSTER
 524	x86_topology[i++] = (struct sched_domain_topology_level){
 525		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
 526	};
 527#endif
 528#ifdef CONFIG_SCHED_MC
 529	x86_topology[i++] = (struct sched_domain_topology_level){
 530		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
 531	};
 532#endif
 533	/*
 534	 * When there is NUMA topology inside the package skip the PKG domain
 535	 * since the NUMA domains will auto-magically create the right spanning
 536	 * domains based on the SLIT.
 537	 */
 538	if (!x86_has_numa_in_package) {
 539		x86_topology[i++] = (struct sched_domain_topology_level){
 540			cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG)
 541		};
 542	}
 543
 544	/*
 545	 * There must be one trailing NULL entry left.
 546	 */
 547	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
 548
 549	set_sched_topology(x86_topology);
 550}
 551
 552void set_cpu_sibling_map(int cpu)
 553{
 554	bool has_smt = __max_threads_per_core > 1;
 555	bool has_mp = has_smt || topology_num_cores_per_package() > 1;
 556	struct cpuinfo_x86 *c = &cpu_data(cpu);
 557	struct cpuinfo_x86 *o;
 558	int i, threads;
 559
 560	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
 561
 562	if (!has_mp) {
 563		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
 564		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
 565		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
 566		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
 567		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
 568		c->booted_cores = 1;
 569		return;
 570	}
 571
 572	for_each_cpu(i, cpu_sibling_setup_mask) {
 573		o = &cpu_data(i);
 574
 575		if (match_pkg(c, o) && !topology_same_node(c, o))
 576			x86_has_numa_in_package = true;
 577
 578		if ((i == cpu) || (has_smt && match_smt(c, o)))
 579			link_mask(topology_sibling_cpumask, cpu, i);
 580
 581		if ((i == cpu) || (has_mp && match_llc(c, o)))
 582			link_mask(cpu_llc_shared_mask, cpu, i);
 583
 584		if ((i == cpu) || (has_mp && match_l2c(c, o)))
 585			link_mask(cpu_l2c_shared_mask, cpu, i);
 586
 587		if ((i == cpu) || (has_mp && match_die(c, o)))
 588			link_mask(topology_die_cpumask, cpu, i);
 589	}
 590
 591	threads = cpumask_weight(topology_sibling_cpumask(cpu));
 592	if (threads > __max_smt_threads)
 593		__max_smt_threads = threads;
 594
 595	for_each_cpu(i, topology_sibling_cpumask(cpu))
 596		cpu_data(i).smt_active = threads > 1;
 597
 598	/*
 599	 * This needs a separate iteration over the cpus because we rely on all
 600	 * topology_sibling_cpumask links to be set-up.
 601	 */
 602	for_each_cpu(i, cpu_sibling_setup_mask) {
 603		o = &cpu_data(i);
 604
 605		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
 606			link_mask(topology_core_cpumask, cpu, i);
 607
 608			/*
 609			 *  Does this new cpu bringup a new core?
 610			 */
 611			if (threads == 1) {
 
 612				/*
 613				 * for each core in package, increment
 614				 * the booted_cores for this new cpu
 615				 */
 616				if (cpumask_first(
 617				    topology_sibling_cpumask(i)) == i)
 618					c->booted_cores++;
 619				/*
 620				 * increment the core count for all
 621				 * the other cpus in this package
 622				 */
 623				if (i != cpu)
 624					cpu_data(i).booted_cores++;
 625			} else if (i != cpu && !c->booted_cores)
 626				c->booted_cores = cpu_data(i).booted_cores;
 627		}
 
 
 628	}
 
 
 
 
 629}
 630
 631/* maps the cpu to the sched domain representing multi-core */
 632const struct cpumask *cpu_coregroup_mask(int cpu)
 633{
 634	return cpu_llc_shared_mask(cpu);
 635}
 636
 637const struct cpumask *cpu_clustergroup_mask(int cpu)
 638{
 639	return cpu_l2c_shared_mask(cpu);
 640}
 641EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
 642
 643static void impress_friends(void)
 644{
 645	int cpu;
 646	unsigned long bogosum = 0;
 647	/*
 648	 * Allow the user to impress friends.
 649	 */
 650	pr_debug("Before bogomips\n");
 651	for_each_online_cpu(cpu)
 652		bogosum += cpu_data(cpu).loops_per_jiffy;
 653
 654	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
 655		num_online_cpus(),
 656		bogosum/(500000/HZ),
 657		(bogosum/(5000/HZ))%100);
 658
 659	pr_debug("Before bogocount - setting activated=1\n");
 660}
 661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662/*
 663 * The Multiprocessor Specification 1.4 (1997) example code suggests
 664 * that there should be a 10ms delay between the BSP asserting INIT
 665 * and de-asserting INIT, when starting a remote processor.
 666 * But that slows boot and resume on modern processors, which include
 667 * many cores and don't require that delay.
 668 *
 669 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
 670 * Modern processor families are quirked to remove the delay entirely.
 671 */
 672#define UDELAY_10MS_DEFAULT 10000
 673
 674static unsigned int init_udelay = UINT_MAX;
 675
 676static int __init cpu_init_udelay(char *str)
 677{
 678	get_option(&str, &init_udelay);
 679
 680	return 0;
 681}
 682early_param("cpu_init_udelay", cpu_init_udelay);
 683
 684static void __init smp_quirk_init_udelay(void)
 685{
 686	/* if cmdline changed it from default, leave it alone */
 687	if (init_udelay != UINT_MAX)
 688		return;
 689
 690	/* if modern processor, use no delay */
 691	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
 692	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
 693	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
 694		init_udelay = 0;
 695		return;
 696	}
 697	/* else, use legacy delay */
 698	init_udelay = UDELAY_10MS_DEFAULT;
 699}
 700
 701/*
 702 * Wake up AP by INIT, INIT, STARTUP sequence.
 
 
 703 */
 704static void send_init_sequence(u32 phys_apicid)
 
 705{
 706	int maxlvt = lapic_get_maxlvt();
 
 
 
 
 
 
 707
 708	/* Be paranoid about clearing APIC errors. */
 
 
 
 
 
 
 709	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 710		/* Due to the Pentium erratum 3AP.  */
 711		if (maxlvt > 3)
 712			apic_write(APIC_ESR, 0);
 713		apic_read(APIC_ESR);
 714	}
 
 715
 716	/* Assert INIT on the target CPU */
 717	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
 718	safe_apic_wait_icr_idle();
 
 719
 720	udelay(init_udelay);
 721
 722	/* Deassert INIT on the target CPU */
 723	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
 724	safe_apic_wait_icr_idle();
 725}
 726
 727/*
 728 * Wake up AP by INIT, INIT, STARTUP sequence.
 729 */
 730static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
 731{
 732	unsigned long send_status = 0, accept_status = 0;
 733	int num_starts, j, maxlvt;
 734
 735	preempt_disable();
 736	maxlvt = lapic_get_maxlvt();
 737	send_init_sequence(phys_apicid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738
 739	mb();
 740
 741	/*
 742	 * Should we send STARTUP IPIs ?
 743	 *
 744	 * Determine this based on the APIC version.
 745	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
 746	 */
 747	if (APIC_INTEGRATED(boot_cpu_apic_version))
 748		num_starts = 2;
 749	else
 750		num_starts = 0;
 751
 752	/*
 753	 * Run STARTUP IPI loop.
 754	 */
 755	pr_debug("#startup loops: %d\n", num_starts);
 756
 757	for (j = 1; j <= num_starts; j++) {
 758		pr_debug("Sending STARTUP #%d\n", j);
 759		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 760			apic_write(APIC_ESR, 0);
 761		apic_read(APIC_ESR);
 762		pr_debug("After apic_write\n");
 763
 764		/*
 765		 * STARTUP IPI
 766		 */
 767
 768		/* Target chip */
 769		/* Boot on the stack */
 770		/* Kick the second */
 771		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
 772			       phys_apicid);
 773
 774		/*
 775		 * Give the other CPU some time to accept the IPI.
 776		 */
 777		if (init_udelay == 0)
 778			udelay(10);
 779		else
 780			udelay(300);
 781
 782		pr_debug("Startup point 1\n");
 783
 784		pr_debug("Waiting for send to finish...\n");
 785		send_status = safe_apic_wait_icr_idle();
 786
 787		/*
 788		 * Give the other CPU some time to accept the IPI.
 789		 */
 790		if (init_udelay == 0)
 791			udelay(10);
 792		else
 793			udelay(200);
 794
 795		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 796			apic_write(APIC_ESR, 0);
 797		accept_status = (apic_read(APIC_ESR) & 0xEF);
 798		if (send_status || accept_status)
 799			break;
 800	}
 801	pr_debug("After Startup\n");
 802
 803	if (send_status)
 804		pr_err("APIC never delivered???\n");
 805	if (accept_status)
 806		pr_err("APIC delivery error (%lx)\n", accept_status);
 807
 808	preempt_enable();
 809	return (send_status | accept_status);
 810}
 811
 812/* reduce the number of lines printed when booting a large cpu count system */
 813static void announce_cpu(int cpu, int apicid)
 814{
 815	static int width, node_width, first = 1;
 816	static int current_node = NUMA_NO_NODE;
 817	int node = early_cpu_to_node(cpu);
 
 818
 819	if (!width)
 820		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
 821
 822	if (!node_width)
 823		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
 824
 825	if (system_state < SYSTEM_RUNNING) {
 826		if (first)
 827			pr_info("x86: Booting SMP configuration:\n");
 828
 
 829		if (node != current_node) {
 830			if (current_node > (-1))
 831				pr_cont("\n");
 832			current_node = node;
 833
 834			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
 835			       node_width - num_digits(node), " ", node);
 836		}
 837
 838		/* Add padding for the BSP */
 839		if (first)
 840			pr_cont("%*s", width + 1, " ");
 841		first = 0;
 842
 843		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
 
 844	} else
 845		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
 846			node, cpu, apicid);
 847}
 848
 849int common_cpu_up(unsigned int cpu, struct task_struct *idle)
 850{
 851	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852
 
 
 853	/* Just in case we booted with a single CPU. */
 854	alternatives_enable_smp();
 855
 856	per_cpu(pcpu_hot.current_task, cpu) = idle;
 857	cpu_init_stack_canary(cpu, idle);
 858
 859	/* Initialize the interrupt stack(s) */
 860	ret = irq_init_percpu_irqstack(cpu);
 861	if (ret)
 862		return ret;
 863
 864#ifdef CONFIG_X86_32
 865	/* Stack for startup_32 can be just as for start_secondary onwards */
 866	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
 
 
 
 
 867#endif
 868	return 0;
 869}
 870
 871/*
 872 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
 873 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
 874 * Returns zero if startup was successfully sent, else error code from
 875 * ->wakeup_secondary_cpu.
 876 */
 877static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
 878{
 
 
 
 879	unsigned long start_ip = real_mode_header->trampoline_start;
 880	int ret;
 881
 882#ifdef CONFIG_X86_64
 883	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
 884	if (apic->wakeup_secondary_cpu_64)
 885		start_ip = real_mode_header->trampoline_start64;
 886#endif
 887	idle->thread.sp = (unsigned long)task_pt_regs(idle);
 
 888	initial_code = (unsigned long)start_secondary;
 
 889
 890	if (IS_ENABLED(CONFIG_X86_32)) {
 891		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
 892		initial_stack  = idle->thread.sp;
 893	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
 894		smpboot_control = cpu;
 895	}
 896
 897	/* Enable the espfix hack for this CPU */
 898	init_espfix_ap(cpu);
 
 899
 900	/* So we see what's up */
 901	announce_cpu(cpu, apicid);
 902
 903	/*
 904	 * This grunge runs the startup process for
 905	 * the targeted processor.
 906	 */
 907	if (x86_platform.legacy.warm_reset) {
 
 908
 909		pr_debug("Setting warm reset code and vector.\n");
 910
 911		smpboot_setup_warm_reset_vector(start_ip);
 912		/*
 913		 * Be paranoid about clearing APIC errors.
 914		*/
 915		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 916			apic_write(APIC_ESR, 0);
 917			apic_read(APIC_ESR);
 918		}
 919	}
 920
 
 
 
 
 
 
 
 921	smp_mb();
 922
 923	/*
 924	 * Wake up a CPU in difference cases:
 925	 * - Use a method from the APIC driver if one defined, with wakeup
 926	 *   straight to 64-bit mode preferred over wakeup to RM.
 927	 * Otherwise,
 928	 * - Use an INIT boot APIC message
 929	 */
 930	if (apic->wakeup_secondary_cpu_64)
 931		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
 932	else if (apic->wakeup_secondary_cpu)
 933		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
 934	else
 935		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 936
 937	/* If the wakeup mechanism failed, cleanup the warm reset vector */
 938	if (ret)
 939		arch_cpuhp_cleanup_kick_cpu(cpu);
 940	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941}
 942
 943int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
 944{
 945	u32 apicid = apic->cpu_present_to_apicid(cpu);
 
 946	int err;
 947
 948	lockdep_assert_irqs_enabled();
 949
 950	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
 951
 952	if (apicid == BAD_APICID || !apic_id_valid(apicid)) {
 953		pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid);
 
 
 954		return -EINVAL;
 955	}
 956
 957	if (!test_bit(apicid, phys_cpu_present_map)) {
 958		pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid);
 959		return -EINVAL;
 
 
 
 960	}
 961
 962	/*
 963	 * Save current MTRR state in case it was changed since early boot
 964	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
 965	 */
 966	mtrr_save_state();
 967
 
 
 
 
 
 968	/* the FPU context is blank, nobody can own it */
 969	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
 970
 971	err = common_cpu_up(cpu, tidle);
 972	if (err)
 973		return err;
 974
 975	err = do_boot_cpu(apicid, cpu, tidle);
 976	if (err)
 977		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
 
 
 978
 979	return err;
 980}
 
 
 
 
 
 981
 982int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
 983{
 984	return smp_ops.kick_ap_alive(cpu, tidle);
 985}
 986
 987void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
 988{
 989	/* Cleanup possible dangling ends... */
 990	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
 991		smpboot_restore_warm_reset_vector();
 992}
 993
 994void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
 995{
 996	if (smp_ops.cleanup_dead_cpu)
 997		smp_ops.cleanup_dead_cpu(cpu);
 998
 999	if (system_state == SYSTEM_RUNNING)
1000		pr_info("CPU %u is now offline\n", cpu);
1001}
1002
1003void arch_cpuhp_sync_state_poll(void)
1004{
1005	if (smp_ops.poll_sync_state)
1006		smp_ops.poll_sync_state();
1007}
1008
1009/**
1010 * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1011 */
1012void __init arch_disable_smp_support(void)
1013{
1014	disable_ioapic_support();
1015}
1016
1017/*
1018 * Fall back to non SMP mode after errors.
1019 *
1020 * RED-PEN audit/test this more. I bet there is more state messed up here.
1021 */
1022static __init void disable_smp(void)
1023{
1024	pr_info("SMP disabled\n");
1025
1026	disable_ioapic_support();
1027	topology_reset_possible_cpus_up();
1028
 
 
 
 
 
 
 
1029	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1030	cpumask_set_cpu(0, topology_core_cpumask(0));
1031	cpumask_set_cpu(0, topology_die_cpumask(0));
1032}
1033
1034void __init smp_prepare_cpus_common(void)
 
 
 
 
 
 
 
 
 
 
1035{
1036	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037
1038	/* Mark all except the boot CPU as hotpluggable */
1039	for_each_possible_cpu(i) {
1040		if (i)
1041			per_cpu(cpu_info.cpu_index, i) = nr_cpu_ids;
 
 
 
 
 
 
 
1042	}
1043
1044	for_each_possible_cpu(i) {
1045		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1046		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1047		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1048		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1049		zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1050	}
1051
1052	set_cpu_sibling_map(0);
1053}
1054
1055void __init smp_prepare_boot_cpu(void)
1056{
1057	smp_ops.smp_prepare_boot_cpu();
1058}
1059
1060#ifdef CONFIG_X86_64
1061/* Establish whether parallel bringup can be supported. */
1062bool __init arch_cpuhp_init_parallel_bringup(void)
1063{
1064	if (!x86_cpuinit.parallel_bringup) {
1065		pr_info("Parallel CPU startup disabled by the platform\n");
1066		return false;
1067	}
1068
1069	smpboot_control = STARTUP_READ_APICID;
1070	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1071	return true;
1072}
1073#endif
1074
1075/*
1076 * Prepare for SMP bootup.
1077 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1078 *            for common interface support.
1079 */
1080void __init native_smp_prepare_cpus(unsigned int max_cpus)
1081{
1082	smp_prepare_cpus_common();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083
1084	switch (apic_intr_mode) {
1085	case APIC_PIC:
1086	case APIC_VIRTUAL_WIRE_NO_CONFIG:
 
 
 
 
 
 
1087		disable_smp();
1088		return;
1089	case APIC_SYMMETRIC_IO_NO_ROUTING:
1090		disable_smp();
1091		/* Setup local timer */
1092		x86_init.timers.setup_percpu_clockev();
1093		return;
1094	case APIC_VIRTUAL_WIRE:
1095	case APIC_SYMMETRIC_IO:
1096		break;
1097	}
1098
1099	/* Setup local timer */
1100	x86_init.timers.setup_percpu_clockev();
 
 
 
 
 
 
1101
1102	pr_info("CPU0: ");
1103	print_cpu_info(&cpu_data(0));
1104
1105	uv_system_init();
 
 
 
1106
1107	smp_quirk_init_udelay();
1108
1109	speculative_store_bypass_ht_init();
1110
1111	snp_set_wakeup_secondary_cpu();
1112}
1113
1114void arch_thaw_secondary_cpus_begin(void)
1115{
1116	set_cache_aps_delayed_init(true);
1117}
1118
1119void arch_thaw_secondary_cpus_end(void)
1120{
1121	cache_aps_init();
1122}
1123
1124/*
1125 * Early setup to make printk work.
1126 */
1127void __init native_smp_prepare_boot_cpu(void)
1128{
1129	int me = smp_processor_id();
1130
1131	/* SMP handles this from setup_per_cpu_areas() */
1132	if (!IS_ENABLED(CONFIG_SMP))
1133		switch_gdt_and_percpu_base(me);
1134
1135	native_pv_lock_init();
1136}
1137
1138void __init native_smp_cpus_done(unsigned int max_cpus)
1139{
1140	pr_debug("Boot done\n");
1141
1142	build_sched_topology();
 
 
1143	nmi_selftest();
1144	impress_friends();
1145	cache_aps_init();
 
 
 
 
 
 
 
 
1146}
 
 
1147
1148/* correctly size the local cpu masks */
1149void __init setup_cpu_local_masks(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150{
1151	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152}
1153
1154#ifdef CONFIG_HOTPLUG_CPU
1155
1156/* Recompute SMT state for all CPUs on offline */
1157static void recompute_smt_state(void)
1158{
1159	int max_threads, cpu;
1160
1161	max_threads = 0;
1162	for_each_online_cpu (cpu) {
1163		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1164
1165		if (threads > max_threads)
1166			max_threads = threads;
1167	}
1168	__max_smt_threads = max_threads;
1169}
1170
1171static void remove_siblinginfo(int cpu)
1172{
1173	int sibling;
1174	struct cpuinfo_x86 *c = &cpu_data(cpu);
1175
1176	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1177		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1178		/*/
1179		 * last thread sibling in this cpu core going down
1180		 */
1181		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1182			cpu_data(sibling).booted_cores--;
1183	}
1184
1185	for_each_cpu(sibling, topology_die_cpumask(cpu))
1186		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1187
1188	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1189		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1190		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1191			cpu_data(sibling).smt_active = false;
1192	}
1193
1194	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1195		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1196	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1197		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1198	cpumask_clear(cpu_llc_shared_mask(cpu));
1199	cpumask_clear(cpu_l2c_shared_mask(cpu));
1200	cpumask_clear(topology_sibling_cpumask(cpu));
1201	cpumask_clear(topology_core_cpumask(cpu));
1202	cpumask_clear(topology_die_cpumask(cpu));
1203	c->topo.core_id = 0;
1204	c->booted_cores = 0;
1205	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1206	recompute_smt_state();
1207}
1208
1209static void remove_cpu_from_maps(int cpu)
1210{
1211	set_cpu_online(cpu, false);
 
 
 
 
1212	numa_remove_cpu(cpu);
1213}
1214
1215void cpu_disable_common(void)
1216{
1217	int cpu = smp_processor_id();
1218
1219	remove_siblinginfo(cpu);
1220
1221	/* It's now safe to remove this processor from the online map */
1222	lock_vector_lock();
1223	remove_cpu_from_maps(cpu);
1224	unlock_vector_lock();
1225	fixup_irqs();
1226	lapic_offline();
1227}
1228
1229int native_cpu_disable(void)
1230{
1231	int ret;
1232
1233	ret = lapic_can_unplug_cpu();
1234	if (ret)
1235		return ret;
1236
 
1237	cpu_disable_common();
1238
1239        /*
1240         * Disable the local APIC. Otherwise IPI broadcasts will reach
1241         * it. It still responds normally to INIT, NMI, SMI, and SIPI
1242         * messages.
1243         *
1244         * Disabling the APIC must happen after cpu_disable_common()
1245         * which invokes fixup_irqs().
1246         *
1247         * Disabling the APIC preserves already set bits in IRR, but
1248         * an interrupt arriving after disabling the local APIC does not
1249         * set the corresponding IRR bit.
1250         *
1251         * fixup_irqs() scans IRR for set bits so it can raise a not
1252         * yet handled interrupt on the new destination CPU via an IPI
1253         * but obviously it can't do so for IRR bits which are not set.
1254         * IOW, interrupts arriving after disabling the local APIC will
1255         * be lost.
1256         */
1257	apic_soft_disable();
 
1258
1259	return 0;
 
 
1260}
1261
1262void play_dead_common(void)
1263{
1264	idle_task_exit();
 
1265
1266	cpuhp_ap_report_dead();
 
1267
 
 
 
1268	local_irq_disable();
1269}
1270
 
 
 
 
 
 
 
 
1271/*
1272 * We need to flush the caches before going to sleep, lest we have
1273 * dirty data in our caches when we come back up.
1274 */
1275static inline void mwait_play_dead(void)
1276{
1277	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1278	unsigned int eax, ebx, ecx, edx;
1279	unsigned int highest_cstate = 0;
1280	unsigned int highest_subcstate = 0;
 
1281	int i;
1282
1283	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1284	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1285		return;
1286	if (!this_cpu_has(X86_FEATURE_MWAIT))
1287		return;
1288	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1289		return;
1290	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1291		return;
1292
1293	eax = CPUID_MWAIT_LEAF;
1294	ecx = 0;
1295	native_cpuid(&eax, &ebx, &ecx, &edx);
1296
1297	/*
1298	 * eax will be 0 if EDX enumeration is not valid.
1299	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1300	 */
1301	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1302		eax = 0;
1303	} else {
1304		edx >>= MWAIT_SUBSTATE_SIZE;
1305		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1306			if (edx & MWAIT_SUBSTATE_MASK) {
1307				highest_cstate = i;
1308				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1309			}
1310		}
1311		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1312			(highest_subcstate - 1);
1313	}
1314
1315	/* Set up state for the kexec() hack below */
1316	md->status = CPUDEAD_MWAIT_WAIT;
1317	md->control = CPUDEAD_MWAIT_WAIT;
 
 
 
1318
1319	wbinvd();
1320
1321	while (1) {
1322		/*
1323		 * The CLFLUSH is a workaround for erratum AAI65 for
1324		 * the Xeon 7400 series.  It's not clear it is actually
1325		 * needed, but it should be harmless in either case.
1326		 * The WBINVD is insufficient due to the spurious-wakeup
1327		 * case where we return around the loop.
1328		 */
1329		mb();
1330		clflush(md);
1331		mb();
1332		__monitor(md, 0, 0);
1333		mb();
1334		__mwait(eax, 0);
1335
1336		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1337			/*
1338			 * Kexec is about to happen. Don't go back into mwait() as
1339			 * the kexec kernel might overwrite text and data including
1340			 * page tables and stack. So mwait() would resume when the
1341			 * monitor cache line is written to and then the CPU goes
1342			 * south due to overwritten text, page tables and stack.
1343			 *
1344			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1345			 * SMI. They will resume execution at the instruction
1346			 * following the HLT instruction and run into the problem
1347			 * which this is trying to prevent.
1348			 */
1349			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1350			while(1)
1351				native_halt();
1352		}
1353	}
1354}
1355
1356/*
1357 * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1358 * mwait_play_dead().
1359 */
1360void smp_kick_mwait_play_dead(void)
1361{
1362	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1363	struct mwait_cpu_dead *md;
1364	unsigned int cpu, i;
1365
1366	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1367		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1368
1369		/* Does it sit in mwait_play_dead() ? */
1370		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1371			continue;
1372
1373		/* Wait up to 5ms */
1374		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1375			/* Bring it out of mwait */
1376			WRITE_ONCE(md->control, newstate);
1377			udelay(5);
1378		}
1379
1380		if (READ_ONCE(md->status) != newstate)
1381			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1382	}
1383}
1384
1385void __noreturn hlt_play_dead(void)
1386{
1387	if (__this_cpu_read(cpu_info.x86) >= 4)
1388		wbinvd();
1389
1390	while (1)
1391		native_halt();
 
 
 
 
 
 
1392}
1393
1394/*
1395 * native_play_dead() is essentially a __noreturn function, but it can't
1396 * be marked as such as the compiler may complain about it.
1397 */
1398void native_play_dead(void)
1399{
1400	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1401		__update_spec_ctrl(0);
1402
1403	play_dead_common();
1404	tboot_shutdown(TB_SHUTDOWN_WFS);
1405
1406	mwait_play_dead();
1407	if (cpuidle_play_dead())
1408		hlt_play_dead();
1409}
1410
1411#else /* ... !CONFIG_HOTPLUG_CPU */
1412int native_cpu_disable(void)
1413{
1414	return -ENOSYS;
 
 
 
 
 
 
1415}
1416
1417void native_play_dead(void)
1418{
1419	BUG();
1420}
1421
1422#endif