Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Driver for DBRI sound chip found on Sparcs.
   3 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
   4 *
   5 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
   6 *
   7 * Based entirely upon drivers/sbus/audio/dbri.c which is:
   8 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
   9 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
  10 *
  11 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
  12 * on Sun SPARCStation 10, 20, LX and Voyager models.
  13 *
  14 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
  15 *   data time multiplexer with ISDN support (aka T7259)
  16 *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
  17 *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
  18 *   Documentation:
  19 *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
  20 *     Sparc Technology Business (courtesy of Sun Support)
  21 *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
  22 *     available from the Lucent (formerly AT&T microelectronics) home
  23 *     page.
  24 *   - http://www.freesoft.org/Linux/DBRI/
  25 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
  26 *   Interfaces: CHI, Audio In & Out, 2 bits parallel
  27 *   Documentation: from the Crystal Semiconductor home page.
  28 *
  29 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
  30 * memory and a serial device (long pipes, no. 0-15) or between two serial
  31 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
  32 * device (short pipes).
  33 * A timeslot defines the bit-offset and no. of bits read from a serial device.
  34 * The timeslots are linked to 6 circular lists, one for each direction for
  35 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
  36 * (the second one is a monitor/tee pipe, valid only for serial input).
  37 *
  38 * The mmcodec is connected via the CHI bus and needs the data & some
  39 * parameters (volume, output selection) time multiplexed in 8 byte
  40 * chunks. It also has a control mode, which serves for audio format setting.
  41 *
  42 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
  43 * the same CHI bus, so I thought perhaps it is possible to use the on-board
  44 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
  45 * audio devices. But the SUN HW group decided against it, at least on my
  46 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
  47 * connected.
  48 *
  49 * I've tried to stick to the following function naming conventions:
  50 * snd_*	ALSA stuff
  51 * cs4215_*	CS4215 codec specific stuff
  52 * dbri_*	DBRI high-level stuff
  53 * other	DBRI low-level stuff
  54 */
  55
  56#include <linux/interrupt.h>
  57#include <linux/delay.h>
  58#include <linux/irq.h>
  59#include <linux/io.h>
  60#include <linux/dma-mapping.h>
  61#include <linux/gfp.h>
  62
  63#include <sound/core.h>
  64#include <sound/pcm.h>
  65#include <sound/pcm_params.h>
  66#include <sound/info.h>
  67#include <sound/control.h>
  68#include <sound/initval.h>
  69
  70#include <linux/of.h>
  71#include <linux/of_device.h>
  72#include <linux/atomic.h>
  73#include <linux/module.h>
  74
  75MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
  76MODULE_DESCRIPTION("Sun DBRI");
  77MODULE_LICENSE("GPL");
  78MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
  79
  80static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
  81static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
  82/* Enable this card */
  83static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
  84
  85module_param_array(index, int, NULL, 0444);
  86MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
  87module_param_array(id, charp, NULL, 0444);
  88MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
  89module_param_array(enable, bool, NULL, 0444);
  90MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
  91
  92#undef DBRI_DEBUG
  93
  94#define D_INT	(1<<0)
  95#define D_GEN	(1<<1)
  96#define D_CMD	(1<<2)
  97#define D_MM	(1<<3)
  98#define D_USR	(1<<4)
  99#define D_DESC	(1<<5)
 100
 101static int dbri_debug;
 102module_param(dbri_debug, int, 0644);
 103MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
 104
 105#ifdef DBRI_DEBUG
 106static char *cmds[] = {
 107	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
 108	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
 109};
 110
 111#define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
 112
 113#else
 114#define dprintk(a, x...) do { } while (0)
 115
 116#endif				/* DBRI_DEBUG */
 117
 118#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
 119				    (intr << 27) |	\
 120				    value)
 121
 122/***************************************************************************
 123	CS4215 specific definitions and structures
 124****************************************************************************/
 125
 126struct cs4215 {
 127	__u8 data[4];		/* Data mode: Time slots 5-8 */
 128	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
 129	__u8 onboard;
 130	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
 131	volatile __u32 status;
 132	volatile __u32 version;
 133	__u8 precision;		/* In bits, either 8 or 16 */
 134	__u8 channels;		/* 1 or 2 */
 135};
 136
 137/*
 138 * Control mode first
 139 */
 140
 141/* Time Slot 1, Status register */
 142#define CS4215_CLB	(1<<2)	/* Control Latch Bit */
 143#define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
 144				/* 0: line: 2.8V, speaker 8V */
 145#define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
 146#define CS4215_RSRVD_1  (1<<5)
 147
 148/* Time Slot 2, Data Format Register */
 149#define CS4215_DFR_LINEAR16	0
 150#define CS4215_DFR_ULAW		1
 151#define CS4215_DFR_ALAW		2
 152#define CS4215_DFR_LINEAR8	3
 153#define CS4215_DFR_STEREO	(1<<2)
 154static struct {
 155	unsigned short freq;
 156	unsigned char xtal;
 157	unsigned char csval;
 158} CS4215_FREQ[] = {
 159	{  8000, (1 << 4), (0 << 3) },
 160	{ 16000, (1 << 4), (1 << 3) },
 161	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
 162	{ 32000, (1 << 4), (3 << 3) },
 163     /* {    NA, (1 << 4), (4 << 3) }, */
 164     /* {    NA, (1 << 4), (5 << 3) }, */
 165	{ 48000, (1 << 4), (6 << 3) },
 166	{  9600, (1 << 4), (7 << 3) },
 167	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
 168	{ 11025, (2 << 4), (1 << 3) },
 169	{ 18900, (2 << 4), (2 << 3) },
 170	{ 22050, (2 << 4), (3 << 3) },
 171	{ 37800, (2 << 4), (4 << 3) },
 172	{ 44100, (2 << 4), (5 << 3) },
 173	{ 33075, (2 << 4), (6 << 3) },
 174	{  6615, (2 << 4), (7 << 3) },
 175	{ 0, 0, 0}
 176};
 177
 178#define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
 179
 180#define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
 181
 182/* Time Slot 3, Serial Port Control register */
 183#define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
 184#define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
 185#define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
 186#define CS4215_BSEL_128	(1<<2)
 187#define CS4215_BSEL_256	(2<<2)
 188#define CS4215_MCK_MAST (0<<4)	/* Master clock */
 189#define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
 190#define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
 191#define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
 192#define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
 193
 194/* Time Slot 4, Test Register */
 195#define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
 196#define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
 197
 198/* Time Slot 5, Parallel Port Register */
 199/* Read only here and the same as the in data mode */
 200
 201/* Time Slot 6, Reserved  */
 202
 203/* Time Slot 7, Version Register  */
 204#define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
 205
 206/* Time Slot 8, Reserved  */
 207
 208/*
 209 * Data mode
 210 */
 211/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
 212
 213/* Time Slot 5, Output Setting  */
 214#define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
 215#define CS4215_LE	(1<<6)	/* Line Out Enable */
 216#define CS4215_HE	(1<<7)	/* Headphone Enable */
 217
 218/* Time Slot 6, Output Setting  */
 219#define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
 220#define CS4215_SE	(1<<6)	/* Speaker Enable */
 221#define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
 222
 223/* Time Slot 7, Input Setting */
 224#define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
 225#define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
 226#define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
 227#define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
 228#define CS4215_PIO1	(1<<7)
 229
 230/* Time Slot 8, Input Setting */
 231#define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
 232#define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
 233
 234/***************************************************************************
 235		DBRI specific definitions and structures
 236****************************************************************************/
 237
 238/* DBRI main registers */
 239#define REG0	0x00		/* Status and Control */
 240#define REG1	0x04		/* Mode and Interrupt */
 241#define REG2	0x08		/* Parallel IO */
 242#define REG3	0x0c		/* Test */
 243#define REG8	0x20		/* Command Queue Pointer */
 244#define REG9	0x24		/* Interrupt Queue Pointer */
 245
 246#define DBRI_NO_CMDS	64
 247#define DBRI_INT_BLK	64
 248#define DBRI_NO_DESCS	64
 249#define DBRI_NO_PIPES	32
 250#define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
 251
 252#define DBRI_REC	0
 253#define DBRI_PLAY	1
 254#define DBRI_NO_STREAMS	2
 255
 256/* One transmit/receive descriptor */
 257/* When ba != 0 descriptor is used */
 258struct dbri_mem {
 259	volatile __u32 word1;
 260	__u32 ba;	/* Transmit/Receive Buffer Address */
 261	__u32 nda;	/* Next Descriptor Address */
 262	volatile __u32 word4;
 263};
 264
 265/* This structure is in a DMA region where it can accessed by both
 266 * the CPU and the DBRI
 267 */
 268struct dbri_dma {
 269	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
 270	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
 271	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
 272};
 273
 274#define dbri_dma_off(member, elem)	\
 275	((u32)(unsigned long)		\
 276	 (&(((struct dbri_dma *)0)->member[elem])))
 277
 278enum in_or_out { PIPEinput, PIPEoutput };
 279
 280struct dbri_pipe {
 281	u32 sdp;		/* SDP command word */
 282	int nextpipe;		/* Next pipe in linked list */
 283	int length;		/* Length of timeslot (bits) */
 284	int first_desc;		/* Index of first descriptor */
 285	int desc;		/* Index of active descriptor */
 286	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
 287};
 288
 289/* Per stream (playback or record) information */
 290struct dbri_streaminfo {
 291	struct snd_pcm_substream *substream;
 292	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
 293	int size;		/* Size of DMA buffer             */
 294	size_t offset;		/* offset in user buffer          */
 295	int pipe;		/* Data pipe used                 */
 296	int left_gain;		/* mixer elements                 */
 297	int right_gain;
 298};
 299
 300/* This structure holds the information for both chips (DBRI & CS4215) */
 301struct snd_dbri {
 302	int regs_size, irq;	/* Needed for unload */
 303	struct platform_device *op;	/* OF device info */
 304	spinlock_t lock;
 305
 306	struct dbri_dma *dma;	/* Pointer to our DMA block */
 307	dma_addr_t dma_dvma;	/* DBRI visible DMA address */
 308
 309	void __iomem *regs;	/* dbri HW regs */
 310	int dbri_irqp;		/* intr queue pointer */
 311
 312	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
 313	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
 314	spinlock_t cmdlock;	/* Protects cmd queue accesses */
 315	s32 *cmdptr;		/* Pointer to the last queued cmd */
 316
 317	int chi_bpf;
 318
 319	struct cs4215 mm;	/* mmcodec special info */
 320				/* per stream (playback/record) info */
 321	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
 322};
 323
 324#define DBRI_MAX_VOLUME		63	/* Output volume */
 325#define DBRI_MAX_GAIN		15	/* Input gain */
 326
 327/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
 328#define D_P		(1<<15)	/* Program command & queue pointer valid */
 329#define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
 330#define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
 331#define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
 332#define D_X		(1<<7)	/* Sanity Timer Disable */
 333#define D_T		(1<<6)	/* Permit activation of the TE interface */
 334#define D_N		(1<<5)	/* Permit activation of the NT interface */
 335#define D_C		(1<<4)	/* Permit activation of the CHI interface */
 336#define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
 337#define D_D		(1<<2)	/* Disable Master Mode */
 338#define D_H		(1<<1)	/* Halt for Analysis */
 339#define D_R		(1<<0)	/* Soft Reset */
 340
 341/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
 342#define D_LITTLE_END	(1<<8)	/* Byte Order */
 343#define D_BIG_END	(0<<8)	/* Byte Order */
 344#define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
 345#define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
 346#define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
 347#define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
 348#define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
 349
 350/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
 351#define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
 352#define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
 353#define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
 354#define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
 355#define D_ENPIO		(0xf0)	/* Enable all the pins */
 356#define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
 357#define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
 358#define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
 359#define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
 360
 361/* DBRI Commands (Page 20) */
 362#define D_WAIT		0x0	/* Stop execution */
 363#define D_PAUSE		0x1	/* Flush long pipes */
 364#define D_JUMP		0x2	/* New command queue */
 365#define D_IIQ		0x3	/* Initialize Interrupt Queue */
 366#define D_REX		0x4	/* Report command execution via interrupt */
 367#define D_SDP		0x5	/* Setup Data Pipe */
 368#define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
 369#define D_DTS		0x7	/* Define Time Slot */
 370#define D_SSP		0x8	/* Set short Data Pipe */
 371#define D_CHI		0x9	/* Set CHI Global Mode */
 372#define D_NT		0xa	/* NT Command */
 373#define D_TE		0xb	/* TE Command */
 374#define D_CDEC		0xc	/* Codec setup */
 375#define D_TEST		0xd	/* No comment */
 376#define D_CDM		0xe	/* CHI Data mode command */
 377
 378/* Special bits for some commands */
 379#define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
 380
 381/* Setup Data Pipe */
 382/* IRM */
 383#define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
 384#define D_SDP_CHANGE	(2<<18)	/* Report any changes */
 385#define D_SDP_EVERY	(3<<18)	/* Report any changes */
 386#define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
 387#define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
 388
 389/* Pipe data MODE */
 390#define D_SDP_MEM	(0<<13)	/* To/from memory */
 391#define D_SDP_HDLC	(2<<13)
 392#define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
 393#define D_SDP_SER	(4<<13)	/* Serial to serial */
 394#define D_SDP_FIXED	(6<<13)	/* Short only */
 395#define D_SDP_MODE(v)	((v)&(7<<13))
 396
 397#define D_SDP_TO_SER	(1<<12)	/* Direction */
 398#define D_SDP_FROM_SER	(0<<12)	/* Direction */
 399#define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
 400#define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
 401#define D_SDP_P		(1<<10)	/* Pointer Valid */
 402#define D_SDP_A		(1<<8)	/* Abort */
 403#define D_SDP_C		(1<<7)	/* Clear */
 404
 405/* Define Time Slot */
 406#define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
 407#define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
 408#define D_DTS_INS	(1<<15)	/* Insert Time Slot */
 409#define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
 410#define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
 411#define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
 412
 413/* Time Slot defines */
 414#define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
 415#define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
 416#define D_TS_DI		(1<<13)	/* Data Invert */
 417#define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
 418#define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
 419#define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
 420#define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
 421#define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
 422#define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
 423
 424/* Concentration Highway Interface Modes */
 425#define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
 426#define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
 427#define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
 428#define D_CHI_OD	(1<<13)	/* Open Drain Enable */
 429#define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
 430#define D_CHI_FD	(1<<11)	/* Frame Drive */
 431#define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
 432
 433/* NT: These are here for completeness */
 434#define D_NT_FBIT	(1<<17)	/* Frame Bit */
 435#define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
 436#define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
 437#define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
 438#define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
 439#define D_NT_FT		(1<<12)	/* Fixed Timing */
 440#define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
 441#define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
 442#define D_NT_ACT	(1<<9)	/* Activate Interface */
 443#define D_NT_MFE	(1<<8)	/* Multiframe Enable */
 444#define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
 445#define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
 446#define D_NT_FACT	(1<<1)	/* Force Activation */
 447#define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
 448
 449/* Codec Setup */
 450#define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
 451#define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
 452#define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
 453
 454/* Test */
 455#define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
 456#define D_TEST_SIZE(v)	((v)<<11)	/* */
 457#define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
 458#define D_TEST_PROC	0x6	/* Microprocessor test */
 459#define D_TEST_SER	0x7	/* Serial-Controller test */
 460#define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
 461#define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
 462#define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
 463#define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
 464#define D_TEST_DUMP	0xe	/* ROM Dump */
 465
 466/* CHI Data Mode */
 467#define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
 468#define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
 469#define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
 470#define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
 471#define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
 472#define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
 473
 474/* The Interrupts */
 475#define D_INTR_BRDY	1	/* Buffer Ready for processing */
 476#define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
 477#define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
 478#define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
 479#define D_INTR_EOL	5	/* End of List */
 480#define D_INTR_CMDI	6	/* Command has bean read */
 481#define D_INTR_XCMP	8	/* Transmission of frame complete */
 482#define D_INTR_SBRI	9	/* BRI status change info */
 483#define D_INTR_FXDT	10	/* Fixed data change */
 484#define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
 485#define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
 486#define D_INTR_DBYT	12	/* Dropped by frame slip */
 487#define D_INTR_RBYT	13	/* Repeated by frame slip */
 488#define D_INTR_LINT	14	/* Lost Interrupt */
 489#define D_INTR_UNDR	15	/* DMA underrun */
 490
 491#define D_INTR_TE	32
 492#define D_INTR_NT	34
 493#define D_INTR_CHI	36
 494#define D_INTR_CMD	38
 495
 496#define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
 497#define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
 498#define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
 499#define D_INTR_GETVAL(v)	((v) & 0xffff)
 500#define D_INTR_GETRVAL(v)	((v) & 0xfffff)
 501
 502#define D_P_0		0	/* TE receive anchor */
 503#define D_P_1		1	/* TE transmit anchor */
 504#define D_P_2		2	/* NT transmit anchor */
 505#define D_P_3		3	/* NT receive anchor */
 506#define D_P_4		4	/* CHI send data */
 507#define D_P_5		5	/* CHI receive data */
 508#define D_P_6		6	/* */
 509#define D_P_7		7	/* */
 510#define D_P_8		8	/* */
 511#define D_P_9		9	/* */
 512#define D_P_10		10	/* */
 513#define D_P_11		11	/* */
 514#define D_P_12		12	/* */
 515#define D_P_13		13	/* */
 516#define D_P_14		14	/* */
 517#define D_P_15		15	/* */
 518#define D_P_16		16	/* CHI anchor pipe */
 519#define D_P_17		17	/* CHI send */
 520#define D_P_18		18	/* CHI receive */
 521#define D_P_19		19	/* CHI receive */
 522#define D_P_20		20	/* CHI receive */
 523#define D_P_21		21	/* */
 524#define D_P_22		22	/* */
 525#define D_P_23		23	/* */
 526#define D_P_24		24	/* */
 527#define D_P_25		25	/* */
 528#define D_P_26		26	/* */
 529#define D_P_27		27	/* */
 530#define D_P_28		28	/* */
 531#define D_P_29		29	/* */
 532#define D_P_30		30	/* */
 533#define D_P_31		31	/* */
 534
 535/* Transmit descriptor defines */
 536#define DBRI_TD_F	(1 << 31)	/* End of Frame */
 537#define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
 538#define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
 539#define DBRI_TD_B	(1 << 15)	/* Final interrupt */
 540#define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
 541#define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
 542#define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
 543#define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
 544#define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
 545#define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
 546#define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
 547			/* Maximum buffer size per TD: almost 8KB */
 548#define DBRI_TD_MAXCNT	((1 << 13) - 4)
 549
 550/* Receive descriptor defines */
 551#define DBRI_RD_F	(1 << 31)	/* End of Frame */
 552#define DBRI_RD_C	(1 << 30)	/* Completed buffer */
 553#define DBRI_RD_B	(1 << 15)	/* Final interrupt */
 554#define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
 555#define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
 556#define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
 557#define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
 558#define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
 559#define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
 560#define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
 561#define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
 562
 563/* stream_info[] access */
 564/* Translate the ALSA direction into the array index */
 565#define DBRI_STREAMNO(substream)				\
 566		(substream->stream ==				\
 567		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
 568
 569/* Return a pointer to dbri_streaminfo */
 570#define DBRI_STREAM(dbri, substream)	\
 571		&dbri->stream_info[DBRI_STREAMNO(substream)]
 572
 573/*
 574 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
 575 * So we have to reverse the bits. Note: not all bit lengths are supported
 576 */
 577static __u32 reverse_bytes(__u32 b, int len)
 578{
 579	switch (len) {
 580	case 32:
 581		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
 
 582	case 16:
 583		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
 
 584	case 8:
 585		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
 
 586	case 4:
 587		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
 
 588	case 2:
 589		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
 590	case 1:
 591	case 0:
 592		break;
 593	default:
 594		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
 595	}
 596
 597	return b;
 598}
 599
 600/*
 601****************************************************************************
 602************** DBRI initialization and command synchronization *************
 603****************************************************************************
 604
 605Commands are sent to the DBRI by building a list of them in memory,
 606then writing the address of the first list item to DBRI register 8.
 607The list is terminated with a WAIT command, which generates a
 608CPU interrupt to signal completion.
 609
 610Since the DBRI can run in parallel with the CPU, several means of
 611synchronization present themselves. The method implemented here uses
 612the dbri_cmdwait() to wait for execution of batch of sent commands.
 613
 614A circular command buffer is used here. A new command is being added
 615while another can be executed. The scheme works by adding two WAIT commands
 616after each sent batch of commands. When the next batch is prepared it is
 617added after the WAIT commands then the WAITs are replaced with single JUMP
 618command to the new batch. The the DBRI is forced to reread the last WAIT
 619command (replaced by the JUMP by then). If the DBRI is still executing
 620previous commands the request to reread the WAIT command is ignored.
 621
 622Every time a routine wants to write commands to the DBRI, it must
 623first call dbri_cmdlock() and get pointer to a free space in
 624dbri->dma->cmd buffer. After this, the commands can be written to
 625the buffer, and dbri_cmdsend() is called with the final pointer value
 626to send them to the DBRI.
 627
 628*/
 629
 630#define MAXLOOPS 20
 631/*
 632 * Wait for the current command string to execute
 633 */
 634static void dbri_cmdwait(struct snd_dbri *dbri)
 635{
 636	int maxloops = MAXLOOPS;
 637	unsigned long flags;
 638
 639	/* Delay if previous commands are still being processed */
 640	spin_lock_irqsave(&dbri->lock, flags);
 641	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
 642		spin_unlock_irqrestore(&dbri->lock, flags);
 643		msleep_interruptible(1);
 644		spin_lock_irqsave(&dbri->lock, flags);
 645	}
 646	spin_unlock_irqrestore(&dbri->lock, flags);
 647
 648	if (maxloops == 0)
 649		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
 650	else
 651		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
 652			MAXLOOPS - maxloops - 1);
 653}
 654/*
 655 * Lock the command queue and return pointer to space for len cmd words
 656 * It locks the cmdlock spinlock.
 657 */
 658static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
 659{
 660	u32 dvma_addr = (u32)dbri->dma_dvma;
 661
 662	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
 663	len += 2;
 664	spin_lock(&dbri->cmdlock);
 665	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
 666		return dbri->cmdptr + 2;
 667	else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
 668		return dbri->dma->cmd;
 669	else
 670		printk(KERN_ERR "DBRI: no space for commands.");
 671
 672	return NULL;
 673}
 674
 675/*
 676 * Send prepared cmd string. It works by writing a JUMP cmd into
 677 * the last WAIT cmd and force DBRI to reread the cmd.
 678 * The JUMP cmd points to the new cmd string.
 679 * It also releases the cmdlock spinlock.
 680 *
 681 * Lock must be held before calling this.
 682 */
 683static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
 684{
 685	u32 dvma_addr = (u32)dbri->dma_dvma;
 686	s32 tmp, addr;
 687	static int wait_id = 0;
 688
 689	wait_id++;
 690	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
 691	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
 692	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
 693
 694	/* Replace the last command with JUMP */
 695	addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
 696	*(dbri->cmdptr+1) = addr;
 697	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
 698
 699#ifdef DBRI_DEBUG
 700	if (cmd > dbri->cmdptr) {
 701		s32 *ptr;
 702
 703		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
 704			dprintk(D_CMD, "cmd: %lx:%08x\n",
 705				(unsigned long)ptr, *ptr);
 706	} else {
 707		s32 *ptr = dbri->cmdptr;
 708
 709		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 710		ptr++;
 711		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 712		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
 713			dprintk(D_CMD, "cmd: %lx:%08x\n",
 714				(unsigned long)ptr, *ptr);
 715	}
 716#endif
 717
 718	/* Reread the last command */
 719	tmp = sbus_readl(dbri->regs + REG0);
 720	tmp |= D_P;
 721	sbus_writel(tmp, dbri->regs + REG0);
 722
 723	dbri->cmdptr = cmd;
 724	spin_unlock(&dbri->cmdlock);
 725}
 726
 727/* Lock must be held when calling this */
 728static void dbri_reset(struct snd_dbri *dbri)
 729{
 730	int i;
 731	u32 tmp;
 732
 733	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
 734		sbus_readl(dbri->regs + REG0),
 735		sbus_readl(dbri->regs + REG2),
 736		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
 737
 738	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
 739	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
 740		udelay(10);
 741
 742	/* A brute approach - DBRI falls back to working burst size by itself
 743	 * On SS20 D_S does not work, so do not try so high. */
 744	tmp = sbus_readl(dbri->regs + REG0);
 745	tmp |= D_G | D_E;
 746	tmp &= ~D_S;
 747	sbus_writel(tmp, dbri->regs + REG0);
 748}
 749
 750/* Lock must not be held before calling this */
 751static void dbri_initialize(struct snd_dbri *dbri)
 752{
 753	u32 dvma_addr = (u32)dbri->dma_dvma;
 754	s32 *cmd;
 755	u32 dma_addr;
 756	unsigned long flags;
 757	int n;
 758
 759	spin_lock_irqsave(&dbri->lock, flags);
 760
 761	dbri_reset(dbri);
 762
 763	/* Initialize pipes */
 764	for (n = 0; n < DBRI_NO_PIPES; n++)
 765		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
 766
 767	spin_lock_init(&dbri->cmdlock);
 768	/*
 769	 * Initialize the interrupt ring buffer.
 770	 */
 771	dma_addr = dvma_addr + dbri_dma_off(intr, 0);
 772	dbri->dma->intr[0] = dma_addr;
 773	dbri->dbri_irqp = 1;
 774	/*
 775	 * Set up the interrupt queue
 776	 */
 777	spin_lock(&dbri->cmdlock);
 778	cmd = dbri->cmdptr = dbri->dma->cmd;
 779	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
 780	*(cmd++) = dma_addr;
 781	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 782	dbri->cmdptr = cmd;
 783	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 784	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 785	dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
 786	sbus_writel(dma_addr, dbri->regs + REG8);
 787	spin_unlock(&dbri->cmdlock);
 788
 789	spin_unlock_irqrestore(&dbri->lock, flags);
 790	dbri_cmdwait(dbri);
 791}
 792
 793/*
 794****************************************************************************
 795************************** DBRI data pipe management ***********************
 796****************************************************************************
 797
 798While DBRI control functions use the command and interrupt buffers, the
 799main data path takes the form of data pipes, which can be short (command
 800and interrupt driven), or long (attached to DMA buffers).  These functions
 801provide a rudimentary means of setting up and managing the DBRI's pipes,
 802but the calling functions have to make sure they respect the pipes' linked
 803list ordering, among other things.  The transmit and receive functions
 804here interface closely with the transmit and receive interrupt code.
 805
 806*/
 807static inline int pipe_active(struct snd_dbri *dbri, int pipe)
 808{
 809	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
 810}
 811
 812/* reset_pipe(dbri, pipe)
 813 *
 814 * Called on an in-use pipe to clear anything being transmitted or received
 815 * Lock must be held before calling this.
 816 */
 817static void reset_pipe(struct snd_dbri *dbri, int pipe)
 818{
 819	int sdp;
 820	int desc;
 821	s32 *cmd;
 822
 823	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 824		printk(KERN_ERR "DBRI: reset_pipe called with "
 825			"illegal pipe number\n");
 826		return;
 827	}
 828
 829	sdp = dbri->pipes[pipe].sdp;
 830	if (sdp == 0) {
 831		printk(KERN_ERR "DBRI: reset_pipe called "
 832			"on uninitialized pipe\n");
 833		return;
 834	}
 835
 836	cmd = dbri_cmdlock(dbri, 3);
 837	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
 838	*(cmd++) = 0;
 839	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 840	dbri_cmdsend(dbri, cmd, 3);
 841
 842	desc = dbri->pipes[pipe].first_desc;
 843	if (desc >= 0)
 844		do {
 845			dbri->dma->desc[desc].ba = 0;
 846			dbri->dma->desc[desc].nda = 0;
 847			desc = dbri->next_desc[desc];
 848		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
 849
 850	dbri->pipes[pipe].desc = -1;
 851	dbri->pipes[pipe].first_desc = -1;
 852}
 853
 854/*
 855 * Lock must be held before calling this.
 856 */
 857static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
 858{
 859	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 860		printk(KERN_ERR "DBRI: setup_pipe called "
 861			"with illegal pipe number\n");
 862		return;
 863	}
 864
 865	if ((sdp & 0xf800) != sdp) {
 866		printk(KERN_ERR "DBRI: setup_pipe called "
 867			"with strange SDP value\n");
 868		/* sdp &= 0xf800; */
 869	}
 870
 871	/* If this is a fixed receive pipe, arrange for an interrupt
 872	 * every time its data changes
 873	 */
 874	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
 875		sdp |= D_SDP_CHANGE;
 876
 877	sdp |= D_PIPE(pipe);
 878	dbri->pipes[pipe].sdp = sdp;
 879	dbri->pipes[pipe].desc = -1;
 880	dbri->pipes[pipe].first_desc = -1;
 881
 882	reset_pipe(dbri, pipe);
 883}
 884
 885/*
 886 * Lock must be held before calling this.
 887 */
 888static void link_time_slot(struct snd_dbri *dbri, int pipe,
 889			   int prevpipe, int nextpipe,
 890			   int length, int cycle)
 891{
 892	s32 *cmd;
 893	int val;
 894
 895	if (pipe < 0 || pipe > DBRI_MAX_PIPE
 896			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 897			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 898		printk(KERN_ERR
 899		    "DBRI: link_time_slot called with illegal pipe number\n");
 900		return;
 901	}
 902
 903	if (dbri->pipes[pipe].sdp == 0
 904			|| dbri->pipes[prevpipe].sdp == 0
 905			|| dbri->pipes[nextpipe].sdp == 0) {
 906		printk(KERN_ERR "DBRI: link_time_slot called "
 907			"on uninitialized pipe\n");
 908		return;
 909	}
 910
 911	dbri->pipes[prevpipe].nextpipe = pipe;
 912	dbri->pipes[pipe].nextpipe = nextpipe;
 913	dbri->pipes[pipe].length = length;
 914
 915	cmd = dbri_cmdlock(dbri, 4);
 916
 917	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
 918		/* Deal with CHI special case:
 919		 * "If transmission on edges 0 or 1 is desired, then cycle n
 920		 *  (where n = # of bit times per frame...) must be used."
 921		 *                  - DBRI data sheet, page 11
 922		 */
 923		if (prevpipe == 16 && cycle == 0)
 924			cycle = dbri->chi_bpf;
 925
 926		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
 927		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 928		*(cmd++) = 0;
 929		*(cmd++) =
 930		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 931	} else {
 932		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
 933		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 934		*(cmd++) =
 935		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 936		*(cmd++) = 0;
 937	}
 938	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 939
 940	dbri_cmdsend(dbri, cmd, 4);
 941}
 942
 943#if 0
 944/*
 945 * Lock must be held before calling this.
 946 */
 947static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
 948			     enum in_or_out direction, int prevpipe,
 949			     int nextpipe)
 950{
 951	s32 *cmd;
 952	int val;
 953
 954	if (pipe < 0 || pipe > DBRI_MAX_PIPE
 955			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 956			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 957		printk(KERN_ERR
 958		    "DBRI: unlink_time_slot called with illegal pipe number\n");
 959		return;
 960	}
 961
 962	cmd = dbri_cmdlock(dbri, 4);
 963
 964	if (direction == PIPEinput) {
 965		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
 966		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 967		*(cmd++) = D_TS_NEXT(nextpipe);
 968		*(cmd++) = 0;
 969	} else {
 970		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
 971		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 972		*(cmd++) = 0;
 973		*(cmd++) = D_TS_NEXT(nextpipe);
 974	}
 975	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 976
 977	dbri_cmdsend(dbri, cmd, 4);
 978}
 979#endif
 980
 981/* xmit_fixed() / recv_fixed()
 982 *
 983 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
 984 * expected to change much, and which we don't need to buffer.
 985 * The DBRI only interrupts us when the data changes (receive pipes),
 986 * or only changes the data when this function is called (transmit pipes).
 987 * Only short pipes (numbers 16-31) can be used in fixed data mode.
 988 *
 989 * These function operate on a 32-bit field, no matter how large
 990 * the actual time slot is.  The interrupt handler takes care of bit
 991 * ordering and alignment.  An 8-bit time slot will always end up
 992 * in the low-order 8 bits, filled either MSB-first or LSB-first,
 993 * depending on the settings passed to setup_pipe().
 994 *
 995 * Lock must not be held before calling it.
 996 */
 997static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
 998{
 999	s32 *cmd;
1000	unsigned long flags;
1001
1002	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1003		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1004		return;
1005	}
1006
1007	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1008		printk(KERN_ERR "DBRI: xmit_fixed: "
1009			"Uninitialized pipe %d\n", pipe);
1010		return;
1011	}
1012
1013	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1014		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1015		return;
1016	}
1017
1018	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1019		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1020			pipe);
1021		return;
1022	}
1023
1024	/* DBRI short pipes always transmit LSB first */
1025
1026	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1027		data = reverse_bytes(data, dbri->pipes[pipe].length);
1028
1029	cmd = dbri_cmdlock(dbri, 3);
1030
1031	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1032	*(cmd++) = data;
1033	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1034
1035	spin_lock_irqsave(&dbri->lock, flags);
1036	dbri_cmdsend(dbri, cmd, 3);
1037	spin_unlock_irqrestore(&dbri->lock, flags);
1038	dbri_cmdwait(dbri);
1039
1040}
1041
1042static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1043{
1044	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1045		printk(KERN_ERR "DBRI: recv_fixed called with "
1046			"illegal pipe number\n");
1047		return;
1048	}
1049
1050	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1051		printk(KERN_ERR "DBRI: recv_fixed called on "
1052			"non-fixed pipe %d\n", pipe);
1053		return;
1054	}
1055
1056	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1057		printk(KERN_ERR "DBRI: recv_fixed called on "
1058			"transmit pipe %d\n", pipe);
1059		return;
1060	}
1061
1062	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1063}
1064
1065/* setup_descs()
1066 *
1067 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1068 * with a DMA buffer.
1069 *
1070 * Only pipe numbers 0-15 can be used in this mode.
1071 *
1072 * This function takes a stream number pointing to a data buffer,
1073 * and work by building chains of descriptors which identify the
1074 * data buffers.  Buffers too large for a single descriptor will
1075 * be spread across multiple descriptors.
1076 *
1077 * All descriptors create a ring buffer.
1078 *
1079 * Lock must be held before calling this.
1080 */
1081static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1082{
1083	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1084	u32 dvma_addr = (u32)dbri->dma_dvma;
1085	__u32 dvma_buffer;
1086	int desc;
1087	int len;
1088	int first_desc = -1;
1089	int last_desc = -1;
1090
1091	if (info->pipe < 0 || info->pipe > 15) {
1092		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1093		return -2;
1094	}
1095
1096	if (dbri->pipes[info->pipe].sdp == 0) {
1097		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1098		       info->pipe);
1099		return -2;
1100	}
1101
1102	dvma_buffer = info->dvma_buffer;
1103	len = info->size;
1104
1105	if (streamno == DBRI_PLAY) {
1106		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1107			printk(KERN_ERR "DBRI: setup_descs: "
1108				"Called on receive pipe %d\n", info->pipe);
1109			return -2;
1110		}
1111	} else {
1112		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1113			printk(KERN_ERR
1114			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1115			     info->pipe);
1116			return -2;
1117		}
1118		/* Should be able to queue multiple buffers
1119		 * to receive on a pipe
1120		 */
1121		if (pipe_active(dbri, info->pipe)) {
1122			printk(KERN_ERR "DBRI: recv_on_pipe: "
1123				"Called on active pipe %d\n", info->pipe);
1124			return -2;
1125		}
1126
1127		/* Make sure buffer size is multiple of four */
1128		len &= ~3;
1129	}
1130
1131	/* Free descriptors if pipe has any */
1132	desc = dbri->pipes[info->pipe].first_desc;
1133	if (desc >= 0)
1134		do {
1135			dbri->dma->desc[desc].ba = 0;
1136			dbri->dma->desc[desc].nda = 0;
1137			desc = dbri->next_desc[desc];
1138		} while (desc != -1 &&
1139			 desc != dbri->pipes[info->pipe].first_desc);
1140
1141	dbri->pipes[info->pipe].desc = -1;
1142	dbri->pipes[info->pipe].first_desc = -1;
1143
1144	desc = 0;
1145	while (len > 0) {
1146		int mylen;
1147
1148		for (; desc < DBRI_NO_DESCS; desc++) {
1149			if (!dbri->dma->desc[desc].ba)
1150				break;
1151		}
1152
1153		if (desc == DBRI_NO_DESCS) {
1154			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1155			return -1;
1156		}
1157
1158		if (len > DBRI_TD_MAXCNT)
1159			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
1160		else
1161			mylen = len;
1162
1163		if (mylen > period)
1164			mylen = period;
1165
1166		dbri->next_desc[desc] = -1;
1167		dbri->dma->desc[desc].ba = dvma_buffer;
1168		dbri->dma->desc[desc].nda = 0;
1169
1170		if (streamno == DBRI_PLAY) {
1171			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1172			dbri->dma->desc[desc].word4 = 0;
1173			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1174		} else {
1175			dbri->dma->desc[desc].word1 = 0;
1176			dbri->dma->desc[desc].word4 =
1177			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1178		}
1179
1180		if (first_desc == -1)
1181			first_desc = desc;
1182		else {
1183			dbri->next_desc[last_desc] = desc;
1184			dbri->dma->desc[last_desc].nda =
1185			    dvma_addr + dbri_dma_off(desc, desc);
1186		}
1187
1188		last_desc = desc;
1189		dvma_buffer += mylen;
1190		len -= mylen;
1191	}
1192
1193	if (first_desc == -1 || last_desc == -1) {
1194		printk(KERN_ERR "DBRI: setup_descs: "
1195			" Not enough descriptors available\n");
1196		return -1;
1197	}
1198
1199	dbri->dma->desc[last_desc].nda =
1200	    dvma_addr + dbri_dma_off(desc, first_desc);
1201	dbri->next_desc[last_desc] = first_desc;
1202	dbri->pipes[info->pipe].first_desc = first_desc;
1203	dbri->pipes[info->pipe].desc = first_desc;
1204
1205#ifdef DBRI_DEBUG
1206	for (desc = first_desc; desc != -1;) {
1207		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1208			desc,
1209			dbri->dma->desc[desc].word1,
1210			dbri->dma->desc[desc].ba,
1211			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1212			desc = dbri->next_desc[desc];
1213			if (desc == first_desc)
1214				break;
1215	}
1216#endif
1217	return 0;
1218}
1219
1220/*
1221****************************************************************************
1222************************** DBRI - CHI interface ****************************
1223****************************************************************************
1224
1225The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1226multiplexed serial interface which the DBRI can operate in either master
1227(give clock/frame sync) or slave (take clock/frame sync) mode.
1228
1229*/
1230
1231enum master_or_slave { CHImaster, CHIslave };
1232
1233/*
1234 * Lock must not be held before calling it.
1235 */
1236static void reset_chi(struct snd_dbri *dbri,
1237		      enum master_or_slave master_or_slave,
1238		      int bits_per_frame)
1239{
1240	s32 *cmd;
1241	int val;
1242
1243	/* Set CHI Anchor: Pipe 16 */
1244
1245	cmd = dbri_cmdlock(dbri, 4);
1246	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1247		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1248	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1249	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1250	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1251	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1252	dbri_cmdsend(dbri, cmd, 4);
1253
1254	dbri->pipes[16].sdp = 1;
1255	dbri->pipes[16].nextpipe = 16;
1256
1257	cmd = dbri_cmdlock(dbri, 4);
1258
1259	if (master_or_slave == CHIslave) {
1260		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1261		 *
1262		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1263		 * IR     = give immediate CHI status interrupt
1264		 * EN     = give CHI status interrupt upon change
1265		 */
1266		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1267	} else {
1268		/* Setup DBRI for CHI Master - generate clock, FS
1269		 *
1270		 * BPF				=  bits per 8 kHz frame
1271		 * 12.288 MHz / CHICM_divisor	= clock rate
1272		 * FD = 1 - drive CHIFS on rising edge of CHICK
1273		 */
1274		int clockrate = bits_per_frame * 8;
1275		int divisor = 12288 / clockrate;
1276
1277		if (divisor > 255 || divisor * clockrate != 12288)
1278			printk(KERN_ERR "DBRI: illegal bits_per_frame "
1279				"in setup_chi\n");
1280
1281		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1282				    | D_CHI_BPF(bits_per_frame));
1283	}
1284
1285	dbri->chi_bpf = bits_per_frame;
1286
1287	/* CHI Data Mode
1288	 *
1289	 * RCE   =  0 - receive on falling edge of CHICK
1290	 * XCE   =  1 - transmit on rising edge of CHICK
1291	 * XEN   =  1 - enable transmitter
1292	 * REN   =  1 - enable receiver
1293	 */
1294
1295	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1296	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1297	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1298
1299	dbri_cmdsend(dbri, cmd, 4);
1300}
1301
1302/*
1303****************************************************************************
1304*********************** CS4215 audio codec management **********************
1305****************************************************************************
1306
1307In the standard SPARC audio configuration, the CS4215 codec is attached
1308to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1309
1310 * Lock must not be held before calling it.
1311
1312*/
1313static void cs4215_setup_pipes(struct snd_dbri *dbri)
1314{
1315	unsigned long flags;
1316
1317	spin_lock_irqsave(&dbri->lock, flags);
1318	/*
1319	 * Data mode:
1320	 * Pipe  4: Send timeslots 1-4 (audio data)
1321	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1322	 * Pipe  6: Receive timeslots 1-4 (audio data)
1323	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1324	 *          interrupt, and the rest of the data (slot 5 and 8) is
1325	 *          not relevant for us (only for doublechecking).
1326	 *
1327	 * Control mode:
1328	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1329	 * Pipe 18: Receive timeslot 1 (clb).
1330	 * Pipe 19: Receive timeslot 7 (version).
1331	 */
1332
1333	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1334	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1335	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1336	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1337
1338	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1339	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1340	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1341	spin_unlock_irqrestore(&dbri->lock, flags);
1342
1343	dbri_cmdwait(dbri);
1344}
1345
1346static int cs4215_init_data(struct cs4215 *mm)
1347{
1348	/*
1349	 * No action, memory resetting only.
1350	 *
1351	 * Data Time Slot 5-8
1352	 * Speaker,Line and Headphone enable. Gain set to the half.
1353	 * Input is mike.
1354	 */
1355	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1356	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1357	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1358	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1359
1360	/*
1361	 * Control Time Slot 1-4
1362	 * 0: Default I/O voltage scale
1363	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1364	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1365	 * 3: Tests disabled
1366	 */
1367	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1368	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1369	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1370	mm->ctrl[3] = 0;
1371
1372	mm->status = 0;
1373	mm->version = 0xff;
1374	mm->precision = 8;	/* For ULAW */
1375	mm->channels = 1;
1376
1377	return 0;
1378}
1379
1380static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1381{
1382	if (muted) {
1383		dbri->mm.data[0] |= 63;
1384		dbri->mm.data[1] |= 63;
1385		dbri->mm.data[2] &= ~15;
1386		dbri->mm.data[3] &= ~15;
1387	} else {
1388		/* Start by setting the playback attenuation. */
1389		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1390		int left_gain = info->left_gain & 0x3f;
1391		int right_gain = info->right_gain & 0x3f;
1392
1393		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1394		dbri->mm.data[1] &= ~0x3f;
1395		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1396		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1397
1398		/* Now set the recording gain. */
1399		info = &dbri->stream_info[DBRI_REC];
1400		left_gain = info->left_gain & 0xf;
1401		right_gain = info->right_gain & 0xf;
1402		dbri->mm.data[2] |= CS4215_LG(left_gain);
1403		dbri->mm.data[3] |= CS4215_RG(right_gain);
1404	}
1405
1406	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1407}
1408
1409/*
1410 * Set the CS4215 to data mode.
1411 */
1412static void cs4215_open(struct snd_dbri *dbri)
1413{
1414	int data_width;
1415	u32 tmp;
1416	unsigned long flags;
1417
1418	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1419		dbri->mm.channels, dbri->mm.precision);
1420
1421	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1422	 * to make sure this takes.  This avoids clicking noises.
1423	 */
1424
1425	cs4215_setdata(dbri, 1);
1426	udelay(125);
1427
1428	/*
1429	 * Data mode:
1430	 * Pipe  4: Send timeslots 1-4 (audio data)
1431	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1432	 * Pipe  6: Receive timeslots 1-4 (audio data)
1433	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1434	 *          interrupt, and the rest of the data (slot 5 and 8) is
1435	 *          not relevant for us (only for doublechecking).
1436	 *
1437	 * Just like in control mode, the time slots are all offset by eight
1438	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1439	 * even if it's the CHI master.  Don't ask me...
1440	 */
1441	spin_lock_irqsave(&dbri->lock, flags);
1442	tmp = sbus_readl(dbri->regs + REG0);
1443	tmp &= ~(D_C);		/* Disable CHI */
1444	sbus_writel(tmp, dbri->regs + REG0);
1445
1446	/* Switch CS4215 to data mode - set PIO3 to 1 */
1447	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1448		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1449
1450	reset_chi(dbri, CHIslave, 128);
1451
1452	/* Note: this next doesn't work for 8-bit stereo, because the two
1453	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1454	 * (See CS4215 datasheet Fig 15)
1455	 *
1456	 * DBRI non-contiguous mode would be required to make this work.
1457	 */
1458	data_width = dbri->mm.channels * dbri->mm.precision;
1459
1460	link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1461	link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1462	link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1463	link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1464
1465	/* FIXME: enable CHI after _setdata? */
1466	tmp = sbus_readl(dbri->regs + REG0);
1467	tmp |= D_C;		/* Enable CHI */
1468	sbus_writel(tmp, dbri->regs + REG0);
1469	spin_unlock_irqrestore(&dbri->lock, flags);
1470
1471	cs4215_setdata(dbri, 0);
1472}
1473
1474/*
1475 * Send the control information (i.e. audio format)
1476 */
1477static int cs4215_setctrl(struct snd_dbri *dbri)
1478{
1479	int i, val;
1480	u32 tmp;
1481	unsigned long flags;
1482
1483	/* FIXME - let the CPU do something useful during these delays */
1484
1485	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1486	 * to make sure this takes.  This avoids clicking noises.
1487	 */
1488	cs4215_setdata(dbri, 1);
1489	udelay(125);
1490
1491	/*
1492	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1493	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1494	 */
1495	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1496	sbus_writel(val, dbri->regs + REG2);
1497	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1498	udelay(34);
1499
1500	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1501	 * operate as CHI master, supplying clocking and frame synchronization.
1502	 *
1503	 * In Data mode, however, the CS4215 must be CHI master to insure
1504	 * that its data stream is synchronous with its codec.
1505	 *
1506	 * The upshot of all this?  We start by putting the DBRI into master
1507	 * mode, program the CS4215 in Control mode, then switch the CS4215
1508	 * into Data mode and put the DBRI into slave mode.  Various timing
1509	 * requirements must be observed along the way.
1510	 *
1511	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1512	 * others?), the addressing of the CS4215's time slots is
1513	 * offset by eight bits, so we add eight to all the "cycle"
1514	 * values in the Define Time Slot (DTS) commands.  This is
1515	 * done in hardware by a TI 248 that delays the DBRI->4215
1516	 * frame sync signal by eight clock cycles.  Anybody know why?
1517	 */
1518	spin_lock_irqsave(&dbri->lock, flags);
1519	tmp = sbus_readl(dbri->regs + REG0);
1520	tmp &= ~D_C;		/* Disable CHI */
1521	sbus_writel(tmp, dbri->regs + REG0);
1522
1523	reset_chi(dbri, CHImaster, 128);
1524
1525	/*
1526	 * Control mode:
1527	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1528	 * Pipe 18: Receive timeslot 1 (clb).
1529	 * Pipe 19: Receive timeslot 7 (version).
1530	 */
1531
1532	link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1533	link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1534	link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1535	spin_unlock_irqrestore(&dbri->lock, flags);
1536
1537	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1538	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1539	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1540
1541	spin_lock_irqsave(&dbri->lock, flags);
1542	tmp = sbus_readl(dbri->regs + REG0);
1543	tmp |= D_C;		/* Enable CHI */
1544	sbus_writel(tmp, dbri->regs + REG0);
1545	spin_unlock_irqrestore(&dbri->lock, flags);
1546
1547	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1548		msleep_interruptible(1);
1549
1550	if (i == 0) {
1551		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1552			dbri->mm.status);
1553		return -1;
1554	}
1555
1556	/* Disable changes to our copy of the version number, as we are about
1557	 * to leave control mode.
1558	 */
1559	recv_fixed(dbri, 19, NULL);
1560
1561	/* Terminate CS4215 control mode - data sheet says
1562	 * "Set CLB=1 and send two more frames of valid control info"
1563	 */
1564	dbri->mm.ctrl[0] |= CS4215_CLB;
1565	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1566
1567	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1568	udelay(250);
1569
1570	cs4215_setdata(dbri, 0);
1571
1572	return 0;
1573}
1574
1575/*
1576 * Setup the codec with the sampling rate, audio format and number of
1577 * channels.
1578 * As part of the process we resend the settings for the data
1579 * timeslots as well.
1580 */
1581static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1582			  snd_pcm_format_t format, unsigned int channels)
1583{
1584	int freq_idx;
1585	int ret = 0;
1586
1587	/* Lookup index for this rate */
1588	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1589		if (CS4215_FREQ[freq_idx].freq == rate)
1590			break;
1591	}
1592	if (CS4215_FREQ[freq_idx].freq != rate) {
1593		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1594		return -1;
1595	}
1596
1597	switch (format) {
1598	case SNDRV_PCM_FORMAT_MU_LAW:
1599		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1600		dbri->mm.precision = 8;
1601		break;
1602	case SNDRV_PCM_FORMAT_A_LAW:
1603		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1604		dbri->mm.precision = 8;
1605		break;
1606	case SNDRV_PCM_FORMAT_U8:
1607		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1608		dbri->mm.precision = 8;
1609		break;
1610	case SNDRV_PCM_FORMAT_S16_BE:
1611		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1612		dbri->mm.precision = 16;
1613		break;
1614	default:
1615		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1616		return -1;
1617	}
1618
1619	/* Add rate parameters */
1620	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1621	dbri->mm.ctrl[2] = CS4215_XCLK |
1622	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1623
1624	dbri->mm.channels = channels;
1625	if (channels == 2)
1626		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1627
1628	ret = cs4215_setctrl(dbri);
1629	if (ret == 0)
1630		cs4215_open(dbri);	/* set codec to data mode */
1631
1632	return ret;
1633}
1634
1635/*
1636 *
1637 */
1638static int cs4215_init(struct snd_dbri *dbri)
1639{
1640	u32 reg2 = sbus_readl(dbri->regs + REG2);
1641	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1642
1643	/* Look for the cs4215 chips */
1644	if (reg2 & D_PIO2) {
1645		dprintk(D_MM, "Onboard CS4215 detected\n");
1646		dbri->mm.onboard = 1;
1647	}
1648	if (reg2 & D_PIO0) {
1649		dprintk(D_MM, "Speakerbox detected\n");
1650		dbri->mm.onboard = 0;
1651
1652		if (reg2 & D_PIO2) {
1653			printk(KERN_INFO "DBRI: Using speakerbox / "
1654			       "ignoring onboard mmcodec.\n");
1655			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1656		}
1657	}
1658
1659	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1660		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1661		return -EIO;
1662	}
1663
1664	cs4215_setup_pipes(dbri);
1665	cs4215_init_data(&dbri->mm);
1666
1667	/* Enable capture of the status & version timeslots. */
1668	recv_fixed(dbri, 18, &dbri->mm.status);
1669	recv_fixed(dbri, 19, &dbri->mm.version);
1670
1671	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1672	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1673		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1674			dbri->mm.offset);
1675		return -EIO;
1676	}
1677	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1678
1679	return 0;
1680}
1681
1682/*
1683****************************************************************************
1684*************************** DBRI interrupt handler *************************
1685****************************************************************************
1686
1687The DBRI communicates with the CPU mainly via a circular interrupt
1688buffer.  When an interrupt is signaled, the CPU walks through the
1689buffer and calls dbri_process_one_interrupt() for each interrupt word.
1690Complicated interrupts are handled by dedicated functions (which
1691appear first in this file).  Any pending interrupts can be serviced by
1692calling dbri_process_interrupt_buffer(), which works even if the CPU's
1693interrupts are disabled.
1694
1695*/
1696
1697/* xmit_descs()
1698 *
1699 * Starts transmitting the current TD's for recording/playing.
1700 * For playback, ALSA has filled the DMA memory with new data (we hope).
1701 */
1702static void xmit_descs(struct snd_dbri *dbri)
1703{
1704	struct dbri_streaminfo *info;
1705	u32 dvma_addr;
1706	s32 *cmd;
1707	unsigned long flags;
1708	int first_td;
1709
1710	if (dbri == NULL)
1711		return;		/* Disabled */
1712
1713	dvma_addr = (u32)dbri->dma_dvma;
1714	info = &dbri->stream_info[DBRI_REC];
1715	spin_lock_irqsave(&dbri->lock, flags);
1716
1717	if (info->pipe >= 0) {
1718		first_td = dbri->pipes[info->pipe].first_desc;
1719
1720		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1721
1722		/* Stream could be closed by the time we run. */
1723		if (first_td >= 0) {
1724			cmd = dbri_cmdlock(dbri, 2);
1725			*(cmd++) = DBRI_CMD(D_SDP, 0,
1726					    dbri->pipes[info->pipe].sdp
1727					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1728			*(cmd++) = dvma_addr +
1729				   dbri_dma_off(desc, first_td);
1730			dbri_cmdsend(dbri, cmd, 2);
1731
1732			/* Reset our admin of the pipe. */
1733			dbri->pipes[info->pipe].desc = first_td;
1734		}
1735	}
1736
1737	info = &dbri->stream_info[DBRI_PLAY];
1738
1739	if (info->pipe >= 0) {
1740		first_td = dbri->pipes[info->pipe].first_desc;
1741
1742		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1743
1744		/* Stream could be closed by the time we run. */
1745		if (first_td >= 0) {
1746			cmd = dbri_cmdlock(dbri, 2);
1747			*(cmd++) = DBRI_CMD(D_SDP, 0,
1748					    dbri->pipes[info->pipe].sdp
1749					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1750			*(cmd++) = dvma_addr +
1751				   dbri_dma_off(desc, first_td);
1752			dbri_cmdsend(dbri, cmd, 2);
1753
1754			/* Reset our admin of the pipe. */
1755			dbri->pipes[info->pipe].desc = first_td;
1756		}
1757	}
1758
1759	spin_unlock_irqrestore(&dbri->lock, flags);
1760}
1761
1762/* transmission_complete_intr()
1763 *
1764 * Called by main interrupt handler when DBRI signals transmission complete
1765 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1766 *
1767 * Walks through the pipe's list of transmit buffer descriptors and marks
1768 * them as available. Stops when the first descriptor is found without
1769 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1770 *
1771 * The DMA buffers are not released. They form a ring buffer and
1772 * they are filled by ALSA while others are transmitted by DMA.
1773 *
1774 */
1775
1776static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1777{
1778	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1779	int td = dbri->pipes[pipe].desc;
1780	int status;
1781
1782	while (td >= 0) {
1783		if (td >= DBRI_NO_DESCS) {
1784			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1785			return;
1786		}
1787
1788		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1789		if (!(status & DBRI_TD_TBC))
1790			break;
1791
1792		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1793
1794		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1795		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1796
1797		td = dbri->next_desc[td];
1798		dbri->pipes[pipe].desc = td;
1799	}
1800
1801	/* Notify ALSA */
1802	spin_unlock(&dbri->lock);
1803	snd_pcm_period_elapsed(info->substream);
1804	spin_lock(&dbri->lock);
1805}
1806
1807static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1808{
1809	struct dbri_streaminfo *info;
1810	int rd = dbri->pipes[pipe].desc;
1811	s32 status;
1812
1813	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1814		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1815		return;
1816	}
1817
1818	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1819	status = dbri->dma->desc[rd].word1;
1820	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1821
1822	info = &dbri->stream_info[DBRI_REC];
1823	info->offset += DBRI_RD_CNT(status);
1824
1825	/* FIXME: Check status */
1826
1827	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1828		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1829
1830	/* Notify ALSA */
1831	spin_unlock(&dbri->lock);
1832	snd_pcm_period_elapsed(info->substream);
1833	spin_lock(&dbri->lock);
1834}
1835
1836static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1837{
1838	int val = D_INTR_GETVAL(x);
1839	int channel = D_INTR_GETCHAN(x);
1840	int command = D_INTR_GETCMD(x);
1841	int code = D_INTR_GETCODE(x);
1842#ifdef DBRI_DEBUG
1843	int rval = D_INTR_GETRVAL(x);
1844#endif
1845
1846	if (channel == D_INTR_CMD) {
1847		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1848			cmds[command], val);
1849	} else {
1850		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1851			channel, code, rval);
1852	}
1853
1854	switch (code) {
1855	case D_INTR_CMDI:
1856		if (command != D_WAIT)
1857			printk(KERN_ERR "DBRI: Command read interrupt\n");
1858		break;
1859	case D_INTR_BRDY:
1860		reception_complete_intr(dbri, channel);
1861		break;
1862	case D_INTR_XCMP:
1863	case D_INTR_MINT:
1864		transmission_complete_intr(dbri, channel);
1865		break;
1866	case D_INTR_UNDR:
1867		/* UNDR - Transmission underrun
1868		 * resend SDP command with clear pipe bit (C) set
1869		 */
1870		{
1871	/* FIXME: do something useful in case of underrun */
1872			printk(KERN_ERR "DBRI: Underrun error\n");
1873#if 0
1874			s32 *cmd;
1875			int pipe = channel;
1876			int td = dbri->pipes[pipe].desc;
1877
1878			dbri->dma->desc[td].word4 = 0;
1879			cmd = dbri_cmdlock(dbri, NoGetLock);
1880			*(cmd++) = DBRI_CMD(D_SDP, 0,
1881					    dbri->pipes[pipe].sdp
1882					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1883			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1884			dbri_cmdsend(dbri, cmd);
1885#endif
1886		}
1887		break;
1888	case D_INTR_FXDT:
1889		/* FXDT - Fixed data change */
1890		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1891			val = reverse_bytes(val, dbri->pipes[channel].length);
1892
1893		if (dbri->pipes[channel].recv_fixed_ptr)
1894			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1895		break;
1896	default:
1897		if (channel != D_INTR_CMD)
1898			printk(KERN_WARNING
1899			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1900	}
1901}
1902
1903/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1904 * buffer until it finds a zero word (indicating nothing more to do
1905 * right now).  Non-zero words require processing and are handed off
1906 * to dbri_process_one_interrupt AFTER advancing the pointer.
1907 */
1908static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1909{
1910	s32 x;
1911
1912	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1913		dbri->dma->intr[dbri->dbri_irqp] = 0;
1914		dbri->dbri_irqp++;
1915		if (dbri->dbri_irqp == DBRI_INT_BLK)
1916			dbri->dbri_irqp = 1;
1917
1918		dbri_process_one_interrupt(dbri, x);
1919	}
1920}
1921
1922static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1923{
1924	struct snd_dbri *dbri = dev_id;
1925	static int errcnt = 0;
1926	int x;
1927
1928	if (dbri == NULL)
1929		return IRQ_NONE;
1930	spin_lock(&dbri->lock);
1931
1932	/*
1933	 * Read it, so the interrupt goes away.
1934	 */
1935	x = sbus_readl(dbri->regs + REG1);
1936
1937	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1938		u32 tmp;
1939
1940		if (x & D_MRR)
1941			printk(KERN_ERR
1942			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1943			       x);
1944		if (x & D_MLE)
1945			printk(KERN_ERR
1946			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1947			       x);
1948		if (x & D_LBG)
1949			printk(KERN_ERR
1950			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1951		if (x & D_MBE)
1952			printk(KERN_ERR
1953			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1954
1955		/* Some of these SBus errors cause the chip's SBus circuitry
1956		 * to be disabled, so just re-enable and try to keep going.
1957		 *
1958		 * The only one I've seen is MRR, which will be triggered
1959		 * if you let a transmit pipe underrun, then try to CDP it.
1960		 *
1961		 * If these things persist, we reset the chip.
1962		 */
1963		if ((++errcnt) % 10 == 0) {
1964			dprintk(D_INT, "Interrupt errors exceeded.\n");
1965			dbri_reset(dbri);
1966		} else {
1967			tmp = sbus_readl(dbri->regs + REG0);
1968			tmp &= ~(D_D);
1969			sbus_writel(tmp, dbri->regs + REG0);
1970		}
1971	}
1972
1973	dbri_process_interrupt_buffer(dbri);
1974
1975	spin_unlock(&dbri->lock);
1976
1977	return IRQ_HANDLED;
1978}
1979
1980/****************************************************************************
1981		PCM Interface
1982****************************************************************************/
1983static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1984	.info		= SNDRV_PCM_INFO_MMAP |
1985			  SNDRV_PCM_INFO_INTERLEAVED |
1986			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
1987			  SNDRV_PCM_INFO_MMAP_VALID |
1988			  SNDRV_PCM_INFO_BATCH,
1989	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
1990			  SNDRV_PCM_FMTBIT_A_LAW |
1991			  SNDRV_PCM_FMTBIT_U8 |
1992			  SNDRV_PCM_FMTBIT_S16_BE,
1993	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1994	.rate_min		= 5512,
1995	.rate_max		= 48000,
1996	.channels_min		= 1,
1997	.channels_max		= 2,
1998	.buffer_bytes_max	= 64 * 1024,
1999	.period_bytes_min	= 1,
2000	.period_bytes_max	= DBRI_TD_MAXCNT,
2001	.periods_min		= 1,
2002	.periods_max		= 1024,
2003};
2004
2005static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2006			      struct snd_pcm_hw_rule *rule)
2007{
2008	struct snd_interval *c = hw_param_interval(params,
2009				SNDRV_PCM_HW_PARAM_CHANNELS);
2010	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2011	struct snd_mask fmt;
2012
2013	snd_mask_any(&fmt);
2014	if (c->min > 1) {
2015		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2016		return snd_mask_refine(f, &fmt);
2017	}
2018	return 0;
2019}
2020
2021static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2022				struct snd_pcm_hw_rule *rule)
2023{
2024	struct snd_interval *c = hw_param_interval(params,
2025				SNDRV_PCM_HW_PARAM_CHANNELS);
2026	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2027	struct snd_interval ch;
2028
2029	snd_interval_any(&ch);
2030	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2031		ch.min = 1;
2032		ch.max = 1;
2033		ch.integer = 1;
2034		return snd_interval_refine(c, &ch);
2035	}
2036	return 0;
2037}
2038
2039static int snd_dbri_open(struct snd_pcm_substream *substream)
2040{
2041	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2042	struct snd_pcm_runtime *runtime = substream->runtime;
2043	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2044	unsigned long flags;
2045
2046	dprintk(D_USR, "open audio output.\n");
2047	runtime->hw = snd_dbri_pcm_hw;
2048
2049	spin_lock_irqsave(&dbri->lock, flags);
2050	info->substream = substream;
2051	info->offset = 0;
2052	info->dvma_buffer = 0;
2053	info->pipe = -1;
2054	spin_unlock_irqrestore(&dbri->lock, flags);
2055
2056	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2057			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2058			    -1);
2059	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2060			    snd_hw_rule_channels, NULL,
2061			    SNDRV_PCM_HW_PARAM_CHANNELS,
2062			    -1);
2063
2064	cs4215_open(dbri);
2065
2066	return 0;
2067}
2068
2069static int snd_dbri_close(struct snd_pcm_substream *substream)
2070{
2071	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2072	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2073
2074	dprintk(D_USR, "close audio output.\n");
2075	info->substream = NULL;
2076	info->offset = 0;
2077
2078	return 0;
2079}
2080
2081static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2082			      struct snd_pcm_hw_params *hw_params)
2083{
2084	struct snd_pcm_runtime *runtime = substream->runtime;
2085	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2086	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2087	int direction;
2088	int ret;
2089
2090	/* set sampling rate, audio format and number of channels */
2091	ret = cs4215_prepare(dbri, params_rate(hw_params),
2092			     params_format(hw_params),
2093			     params_channels(hw_params));
2094	if (ret != 0)
2095		return ret;
2096
2097	if ((ret = snd_pcm_lib_malloc_pages(substream,
2098				params_buffer_bytes(hw_params))) < 0) {
2099		printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2100		return ret;
2101	}
2102
2103	/* hw_params can get called multiple times. Only map the DMA once.
2104	 */
2105	if (info->dvma_buffer == 0) {
2106		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2107			direction = DMA_TO_DEVICE;
2108		else
2109			direction = DMA_FROM_DEVICE;
2110
2111		info->dvma_buffer =
2112			dma_map_single(&dbri->op->dev,
2113				       runtime->dma_area,
2114				       params_buffer_bytes(hw_params),
2115				       direction);
2116	}
2117
2118	direction = params_buffer_bytes(hw_params);
2119	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2120		direction, info->dvma_buffer);
2121	return 0;
2122}
2123
2124static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2125{
2126	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2127	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2128	int direction;
2129
2130	dprintk(D_USR, "hw_free.\n");
2131
2132	/* hw_free can get called multiple times. Only unmap the DMA once.
2133	 */
2134	if (info->dvma_buffer) {
2135		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2136			direction = DMA_TO_DEVICE;
2137		else
2138			direction = DMA_FROM_DEVICE;
2139
2140		dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2141				 substream->runtime->buffer_size, direction);
2142		info->dvma_buffer = 0;
2143	}
2144	if (info->pipe != -1) {
2145		reset_pipe(dbri, info->pipe);
2146		info->pipe = -1;
2147	}
2148
2149	return snd_pcm_lib_free_pages(substream);
2150}
2151
2152static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2153{
2154	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2155	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2156	int ret;
2157
2158	info->size = snd_pcm_lib_buffer_bytes(substream);
2159	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2160		info->pipe = 4;	/* Send pipe */
2161	else
2162		info->pipe = 6;	/* Receive pipe */
2163
2164	spin_lock_irq(&dbri->lock);
2165	info->offset = 0;
2166
2167	/* Setup the all the transmit/receive descriptors to cover the
2168	 * whole DMA buffer.
2169	 */
2170	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2171			  snd_pcm_lib_period_bytes(substream));
2172
2173	spin_unlock_irq(&dbri->lock);
2174
2175	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2176	return ret;
2177}
2178
2179static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2180{
2181	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2182	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2183	int ret = 0;
2184
2185	switch (cmd) {
2186	case SNDRV_PCM_TRIGGER_START:
2187		dprintk(D_USR, "start audio, period is %d bytes\n",
2188			(int)snd_pcm_lib_period_bytes(substream));
2189		/* Re-submit the TDs. */
2190		xmit_descs(dbri);
2191		break;
2192	case SNDRV_PCM_TRIGGER_STOP:
2193		dprintk(D_USR, "stop audio.\n");
2194		reset_pipe(dbri, info->pipe);
2195		break;
2196	default:
2197		ret = -EINVAL;
2198	}
2199
2200	return ret;
2201}
2202
2203static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2204{
2205	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2206	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2207	snd_pcm_uframes_t ret;
2208
2209	ret = bytes_to_frames(substream->runtime, info->offset)
2210		% substream->runtime->buffer_size;
2211	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2212		ret, substream->runtime->buffer_size);
2213	return ret;
2214}
2215
2216static struct snd_pcm_ops snd_dbri_ops = {
2217	.open = snd_dbri_open,
2218	.close = snd_dbri_close,
2219	.ioctl = snd_pcm_lib_ioctl,
2220	.hw_params = snd_dbri_hw_params,
2221	.hw_free = snd_dbri_hw_free,
2222	.prepare = snd_dbri_prepare,
2223	.trigger = snd_dbri_trigger,
2224	.pointer = snd_dbri_pointer,
2225};
2226
2227static int snd_dbri_pcm(struct snd_card *card)
2228{
2229	struct snd_pcm *pcm;
2230	int err;
2231
2232	if ((err = snd_pcm_new(card,
2233			       /* ID */		    "sun_dbri",
2234			       /* device */	    0,
2235			       /* playback count */ 1,
2236			       /* capture count */  1, &pcm)) < 0)
 
2237		return err;
2238
2239	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2240	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2241
2242	pcm->private_data = card->private_data;
2243	pcm->info_flags = 0;
2244	strcpy(pcm->name, card->shortname);
2245
2246	if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2247			SNDRV_DMA_TYPE_CONTINUOUS,
2248			snd_dma_continuous_data(GFP_KERNEL),
2249			64 * 1024, 64 * 1024)) < 0)
2250		return err;
2251
2252	return 0;
2253}
2254
2255/*****************************************************************************
2256			Mixer interface
2257*****************************************************************************/
2258
2259static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2260				  struct snd_ctl_elem_info *uinfo)
2261{
2262	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2263	uinfo->count = 2;
2264	uinfo->value.integer.min = 0;
2265	if (kcontrol->private_value == DBRI_PLAY)
2266		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2267	else
2268		uinfo->value.integer.max = DBRI_MAX_GAIN;
2269	return 0;
2270}
2271
2272static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2273				 struct snd_ctl_elem_value *ucontrol)
2274{
2275	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2276	struct dbri_streaminfo *info;
2277
2278	if (snd_BUG_ON(!dbri))
2279		return -EINVAL;
2280	info = &dbri->stream_info[kcontrol->private_value];
2281
2282	ucontrol->value.integer.value[0] = info->left_gain;
2283	ucontrol->value.integer.value[1] = info->right_gain;
2284	return 0;
2285}
2286
2287static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2288				 struct snd_ctl_elem_value *ucontrol)
2289{
2290	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2291	struct dbri_streaminfo *info =
2292				&dbri->stream_info[kcontrol->private_value];
2293	unsigned int vol[2];
2294	int changed = 0;
2295
2296	vol[0] = ucontrol->value.integer.value[0];
2297	vol[1] = ucontrol->value.integer.value[1];
2298	if (kcontrol->private_value == DBRI_PLAY) {
2299		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2300			return -EINVAL;
2301	} else {
2302		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2303			return -EINVAL;
2304	}
2305
2306	if (info->left_gain != vol[0]) {
2307		info->left_gain = vol[0];
2308		changed = 1;
2309	}
2310	if (info->right_gain != vol[1]) {
2311		info->right_gain = vol[1];
2312		changed = 1;
2313	}
2314	if (changed) {
2315		/* First mute outputs, and wait 1/8000 sec (125 us)
2316		 * to make sure this takes.  This avoids clicking noises.
2317		 */
2318		cs4215_setdata(dbri, 1);
2319		udelay(125);
2320		cs4215_setdata(dbri, 0);
2321	}
2322	return changed;
2323}
2324
2325static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2326				  struct snd_ctl_elem_info *uinfo)
2327{
2328	int mask = (kcontrol->private_value >> 16) & 0xff;
2329
2330	uinfo->type = (mask == 1) ?
2331	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2332	uinfo->count = 1;
2333	uinfo->value.integer.min = 0;
2334	uinfo->value.integer.max = mask;
2335	return 0;
2336}
2337
2338static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2339				 struct snd_ctl_elem_value *ucontrol)
2340{
2341	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2342	int elem = kcontrol->private_value & 0xff;
2343	int shift = (kcontrol->private_value >> 8) & 0xff;
2344	int mask = (kcontrol->private_value >> 16) & 0xff;
2345	int invert = (kcontrol->private_value >> 24) & 1;
2346
2347	if (snd_BUG_ON(!dbri))
2348		return -EINVAL;
2349
2350	if (elem < 4)
2351		ucontrol->value.integer.value[0] =
2352		    (dbri->mm.data[elem] >> shift) & mask;
2353	else
2354		ucontrol->value.integer.value[0] =
2355		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2356
2357	if (invert == 1)
2358		ucontrol->value.integer.value[0] =
2359		    mask - ucontrol->value.integer.value[0];
2360	return 0;
2361}
2362
2363static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2364				 struct snd_ctl_elem_value *ucontrol)
2365{
2366	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2367	int elem = kcontrol->private_value & 0xff;
2368	int shift = (kcontrol->private_value >> 8) & 0xff;
2369	int mask = (kcontrol->private_value >> 16) & 0xff;
2370	int invert = (kcontrol->private_value >> 24) & 1;
2371	int changed = 0;
2372	unsigned short val;
2373
2374	if (snd_BUG_ON(!dbri))
2375		return -EINVAL;
2376
2377	val = (ucontrol->value.integer.value[0] & mask);
2378	if (invert == 1)
2379		val = mask - val;
2380	val <<= shift;
2381
2382	if (elem < 4) {
2383		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2384				       ~(mask << shift)) | val;
2385		changed = (val != dbri->mm.data[elem]);
2386	} else {
2387		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2388					   ~(mask << shift)) | val;
2389		changed = (val != dbri->mm.ctrl[elem - 4]);
2390	}
2391
2392	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2393		"mixer-value=%ld, mm-value=0x%x\n",
2394		mask, changed, ucontrol->value.integer.value[0],
2395		dbri->mm.data[elem & 3]);
2396
2397	if (changed) {
2398		/* First mute outputs, and wait 1/8000 sec (125 us)
2399		 * to make sure this takes.  This avoids clicking noises.
2400		 */
2401		cs4215_setdata(dbri, 1);
2402		udelay(125);
2403		cs4215_setdata(dbri, 0);
2404	}
2405	return changed;
2406}
2407
2408/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2409   timeslots. Shift is the bit offset in the timeslot, mask defines the
2410   number of bits. invert is a boolean for use with attenuation.
2411 */
2412#define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
2413{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
2414  .info = snd_cs4215_info_single,				\
2415  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
2416  .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
2417			((invert) << 24) },
2418
2419static struct snd_kcontrol_new dbri_controls[] = {
2420	{
2421	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2422	 .name  = "Playback Volume",
2423	 .info  = snd_cs4215_info_volume,
2424	 .get   = snd_cs4215_get_volume,
2425	 .put   = snd_cs4215_put_volume,
2426	 .private_value = DBRI_PLAY,
2427	 },
2428	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2429	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2430	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2431	{
2432	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2433	 .name  = "Capture Volume",
2434	 .info  = snd_cs4215_info_volume,
2435	 .get   = snd_cs4215_get_volume,
2436	 .put   = snd_cs4215_put_volume,
2437	 .private_value = DBRI_REC,
2438	 },
2439	/* FIXME: mic/line switch */
2440	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2441	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2442	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2443	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2444};
2445
2446static int snd_dbri_mixer(struct snd_card *card)
2447{
2448	int idx, err;
2449	struct snd_dbri *dbri;
2450
2451	if (snd_BUG_ON(!card || !card->private_data))
2452		return -EINVAL;
2453	dbri = card->private_data;
2454
2455	strcpy(card->mixername, card->shortname);
2456
2457	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2458		err = snd_ctl_add(card,
2459				snd_ctl_new1(&dbri_controls[idx], dbri));
2460		if (err < 0)
2461			return err;
2462	}
2463
2464	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2465		dbri->stream_info[idx].left_gain = 0;
2466		dbri->stream_info[idx].right_gain = 0;
2467	}
2468
2469	return 0;
2470}
2471
2472/****************************************************************************
2473			/proc interface
2474****************************************************************************/
2475static void dbri_regs_read(struct snd_info_entry *entry,
2476			   struct snd_info_buffer *buffer)
2477{
2478	struct snd_dbri *dbri = entry->private_data;
2479
2480	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2481	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2482	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2483	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2484}
2485
2486#ifdef DBRI_DEBUG
2487static void dbri_debug_read(struct snd_info_entry *entry,
2488			    struct snd_info_buffer *buffer)
2489{
2490	struct snd_dbri *dbri = entry->private_data;
2491	int pipe;
2492	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2493
2494	for (pipe = 0; pipe < 32; pipe++) {
2495		if (pipe_active(dbri, pipe)) {
2496			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2497			snd_iprintf(buffer,
2498				    "Pipe %d: %s SDP=0x%x desc=%d, "
2499				    "len=%d next %d\n",
2500				    pipe,
2501				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2502								 "input",
2503				    pptr->sdp, pptr->desc,
2504				    pptr->length, pptr->nextpipe);
2505		}
2506	}
2507}
2508#endif
2509
2510static void snd_dbri_proc(struct snd_card *card)
2511{
2512	struct snd_dbri *dbri = card->private_data;
2513	struct snd_info_entry *entry;
2514
2515	if (!snd_card_proc_new(card, "regs", &entry))
2516		snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2517
 
2518#ifdef DBRI_DEBUG
2519	if (!snd_card_proc_new(card, "debug", &entry)) {
2520		snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2521		entry->mode = S_IFREG | S_IRUGO;	/* Readable only. */
2522	}
2523#endif
2524}
2525
2526/*
2527****************************************************************************
2528**************************** Initialization ********************************
2529****************************************************************************
2530*/
2531static void snd_dbri_free(struct snd_dbri *dbri);
2532
2533static int snd_dbri_create(struct snd_card *card,
2534			   struct platform_device *op,
2535			   int irq, int dev)
2536{
2537	struct snd_dbri *dbri = card->private_data;
2538	int err;
2539
2540	spin_lock_init(&dbri->lock);
2541	dbri->op = op;
2542	dbri->irq = irq;
2543
2544	dbri->dma = dma_zalloc_coherent(&op->dev, sizeof(struct dbri_dma),
2545					&dbri->dma_dvma, GFP_ATOMIC);
2546	if (!dbri->dma)
2547		return -ENOMEM;
2548
2549	dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2550		dbri->dma, dbri->dma_dvma);
2551
2552	/* Map the registers into memory. */
2553	dbri->regs_size = resource_size(&op->resource[0]);
2554	dbri->regs = of_ioremap(&op->resource[0], 0,
2555				dbri->regs_size, "DBRI Registers");
2556	if (!dbri->regs) {
2557		printk(KERN_ERR "DBRI: could not allocate registers\n");
2558		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2559				  (void *)dbri->dma, dbri->dma_dvma);
2560		return -EIO;
2561	}
2562
2563	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2564			  "DBRI audio", dbri);
2565	if (err) {
2566		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2567		of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2568		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2569				  (void *)dbri->dma, dbri->dma_dvma);
2570		return err;
2571	}
2572
2573	/* Do low level initialization of the DBRI and CS4215 chips */
2574	dbri_initialize(dbri);
2575	err = cs4215_init(dbri);
2576	if (err) {
2577		snd_dbri_free(dbri);
2578		return err;
2579	}
2580
2581	return 0;
2582}
2583
2584static void snd_dbri_free(struct snd_dbri *dbri)
2585{
2586	dprintk(D_GEN, "snd_dbri_free\n");
2587	dbri_reset(dbri);
2588
2589	if (dbri->irq)
2590		free_irq(dbri->irq, dbri);
2591
2592	if (dbri->regs)
2593		of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2594
2595	if (dbri->dma)
2596		dma_free_coherent(&dbri->op->dev,
2597				  sizeof(struct dbri_dma),
2598				  (void *)dbri->dma, dbri->dma_dvma);
2599}
2600
2601static int dbri_probe(struct platform_device *op)
2602{
2603	struct snd_dbri *dbri;
2604	struct resource *rp;
2605	struct snd_card *card;
2606	static int dev = 0;
2607	int irq;
2608	int err;
2609
2610	if (dev >= SNDRV_CARDS)
2611		return -ENODEV;
2612	if (!enable[dev]) {
2613		dev++;
2614		return -ENOENT;
2615	}
2616
2617	irq = op->archdata.irqs[0];
2618	if (irq <= 0) {
2619		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2620		return -ENODEV;
2621	}
2622
2623	err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2624			   sizeof(struct snd_dbri), &card);
2625	if (err < 0)
2626		return err;
2627
2628	strcpy(card->driver, "DBRI");
2629	strcpy(card->shortname, "Sun DBRI");
2630	rp = &op->resource[0];
2631	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2632		card->shortname,
2633		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2634
2635	err = snd_dbri_create(card, op, irq, dev);
2636	if (err < 0) {
2637		snd_card_free(card);
2638		return err;
2639	}
2640
2641	dbri = card->private_data;
2642	err = snd_dbri_pcm(card);
2643	if (err < 0)
2644		goto _err;
2645
2646	err = snd_dbri_mixer(card);
2647	if (err < 0)
2648		goto _err;
2649
2650	/* /proc file handling */
2651	snd_dbri_proc(card);
2652	dev_set_drvdata(&op->dev, card);
2653
2654	err = snd_card_register(card);
2655	if (err < 0)
2656		goto _err;
2657
2658	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2659	       dev, dbri->regs,
2660	       dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2661	dev++;
2662
2663	return 0;
2664
2665_err:
2666	snd_dbri_free(dbri);
2667	snd_card_free(card);
2668	return err;
2669}
2670
2671static int dbri_remove(struct platform_device *op)
2672{
2673	struct snd_card *card = dev_get_drvdata(&op->dev);
2674
2675	snd_dbri_free(card->private_data);
2676	snd_card_free(card);
2677
2678	return 0;
2679}
2680
2681static const struct of_device_id dbri_match[] = {
2682	{
2683		.name = "SUNW,DBRIe",
2684	},
2685	{
2686		.name = "SUNW,DBRIf",
2687	},
2688	{},
2689};
2690
2691MODULE_DEVICE_TABLE(of, dbri_match);
2692
2693static struct platform_driver dbri_sbus_driver = {
2694	.driver = {
2695		.name = "dbri",
2696		.of_match_table = dbri_match,
2697	},
2698	.probe		= dbri_probe,
2699	.remove		= dbri_remove,
2700};
2701
2702module_platform_driver(dbri_sbus_driver);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for DBRI sound chip found on Sparcs.
   4 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
   5 *
   6 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
   7 *
   8 * Based entirely upon drivers/sbus/audio/dbri.c which is:
   9 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
  10 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
  11 *
  12 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
  13 * on Sun SPARCStation 10, 20, LX and Voyager models.
  14 *
  15 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
  16 *   data time multiplexer with ISDN support (aka T7259)
  17 *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
  18 *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
  19 *   Documentation:
  20 *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
  21 *     Sparc Technology Business (courtesy of Sun Support)
  22 *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
  23 *     available from the Lucent (formerly AT&T microelectronics) home
  24 *     page.
  25 *   - https://www.freesoft.org/Linux/DBRI/
  26 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
  27 *   Interfaces: CHI, Audio In & Out, 2 bits parallel
  28 *   Documentation: from the Crystal Semiconductor home page.
  29 *
  30 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
  31 * memory and a serial device (long pipes, no. 0-15) or between two serial
  32 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
  33 * device (short pipes).
  34 * A timeslot defines the bit-offset and no. of bits read from a serial device.
  35 * The timeslots are linked to 6 circular lists, one for each direction for
  36 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
  37 * (the second one is a monitor/tee pipe, valid only for serial input).
  38 *
  39 * The mmcodec is connected via the CHI bus and needs the data & some
  40 * parameters (volume, output selection) time multiplexed in 8 byte
  41 * chunks. It also has a control mode, which serves for audio format setting.
  42 *
  43 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
  44 * the same CHI bus, so I thought perhaps it is possible to use the on-board
  45 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
  46 * audio devices. But the SUN HW group decided against it, at least on my
  47 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
  48 * connected.
  49 *
  50 * I've tried to stick to the following function naming conventions:
  51 * snd_*	ALSA stuff
  52 * cs4215_*	CS4215 codec specific stuff
  53 * dbri_*	DBRI high-level stuff
  54 * other	DBRI low-level stuff
  55 */
  56
  57#include <linux/interrupt.h>
  58#include <linux/delay.h>
  59#include <linux/irq.h>
  60#include <linux/io.h>
  61#include <linux/dma-mapping.h>
  62#include <linux/gfp.h>
  63
  64#include <sound/core.h>
  65#include <sound/pcm.h>
  66#include <sound/pcm_params.h>
  67#include <sound/info.h>
  68#include <sound/control.h>
  69#include <sound/initval.h>
  70
  71#include <linux/of.h>
  72#include <linux/platform_device.h>
  73#include <linux/atomic.h>
  74#include <linux/module.h>
  75
  76MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
  77MODULE_DESCRIPTION("Sun DBRI");
  78MODULE_LICENSE("GPL");
 
  79
  80static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
  81static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
  82/* Enable this card */
  83static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
  84
  85module_param_array(index, int, NULL, 0444);
  86MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
  87module_param_array(id, charp, NULL, 0444);
  88MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
  89module_param_array(enable, bool, NULL, 0444);
  90MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
  91
  92#undef DBRI_DEBUG
  93
  94#define D_INT	(1<<0)
  95#define D_GEN	(1<<1)
  96#define D_CMD	(1<<2)
  97#define D_MM	(1<<3)
  98#define D_USR	(1<<4)
  99#define D_DESC	(1<<5)
 100
 101static int dbri_debug;
 102module_param(dbri_debug, int, 0644);
 103MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
 104
 105#ifdef DBRI_DEBUG
 106static const char * const cmds[] = {
 107	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
 108	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
 109};
 110
 111#define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
 112
 113#else
 114#define dprintk(a, x...) do { } while (0)
 115
 116#endif				/* DBRI_DEBUG */
 117
 118#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
 119				    (intr << 27) |	\
 120				    value)
 121
 122/***************************************************************************
 123	CS4215 specific definitions and structures
 124****************************************************************************/
 125
 126struct cs4215 {
 127	__u8 data[4];		/* Data mode: Time slots 5-8 */
 128	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
 129	__u8 onboard;
 130	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
 131	volatile __u32 status;
 132	volatile __u32 version;
 133	__u8 precision;		/* In bits, either 8 or 16 */
 134	__u8 channels;		/* 1 or 2 */
 135};
 136
 137/*
 138 * Control mode first
 139 */
 140
 141/* Time Slot 1, Status register */
 142#define CS4215_CLB	(1<<2)	/* Control Latch Bit */
 143#define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
 144				/* 0: line: 2.8V, speaker 8V */
 145#define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
 146#define CS4215_RSRVD_1  (1<<5)
 147
 148/* Time Slot 2, Data Format Register */
 149#define CS4215_DFR_LINEAR16	0
 150#define CS4215_DFR_ULAW		1
 151#define CS4215_DFR_ALAW		2
 152#define CS4215_DFR_LINEAR8	3
 153#define CS4215_DFR_STEREO	(1<<2)
 154static struct {
 155	unsigned short freq;
 156	unsigned char xtal;
 157	unsigned char csval;
 158} CS4215_FREQ[] = {
 159	{  8000, (1 << 4), (0 << 3) },
 160	{ 16000, (1 << 4), (1 << 3) },
 161	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
 162	{ 32000, (1 << 4), (3 << 3) },
 163     /* {    NA, (1 << 4), (4 << 3) }, */
 164     /* {    NA, (1 << 4), (5 << 3) }, */
 165	{ 48000, (1 << 4), (6 << 3) },
 166	{  9600, (1 << 4), (7 << 3) },
 167	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
 168	{ 11025, (2 << 4), (1 << 3) },
 169	{ 18900, (2 << 4), (2 << 3) },
 170	{ 22050, (2 << 4), (3 << 3) },
 171	{ 37800, (2 << 4), (4 << 3) },
 172	{ 44100, (2 << 4), (5 << 3) },
 173	{ 33075, (2 << 4), (6 << 3) },
 174	{  6615, (2 << 4), (7 << 3) },
 175	{ 0, 0, 0}
 176};
 177
 178#define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
 179
 180#define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
 181
 182/* Time Slot 3, Serial Port Control register */
 183#define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
 184#define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
 185#define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
 186#define CS4215_BSEL_128	(1<<2)
 187#define CS4215_BSEL_256	(2<<2)
 188#define CS4215_MCK_MAST (0<<4)	/* Master clock */
 189#define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
 190#define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
 191#define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
 192#define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
 193
 194/* Time Slot 4, Test Register */
 195#define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
 196#define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
 197
 198/* Time Slot 5, Parallel Port Register */
 199/* Read only here and the same as the in data mode */
 200
 201/* Time Slot 6, Reserved  */
 202
 203/* Time Slot 7, Version Register  */
 204#define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
 205
 206/* Time Slot 8, Reserved  */
 207
 208/*
 209 * Data mode
 210 */
 211/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
 212
 213/* Time Slot 5, Output Setting  */
 214#define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
 215#define CS4215_LE	(1<<6)	/* Line Out Enable */
 216#define CS4215_HE	(1<<7)	/* Headphone Enable */
 217
 218/* Time Slot 6, Output Setting  */
 219#define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
 220#define CS4215_SE	(1<<6)	/* Speaker Enable */
 221#define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
 222
 223/* Time Slot 7, Input Setting */
 224#define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
 225#define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
 226#define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
 227#define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
 228#define CS4215_PIO1	(1<<7)
 229
 230/* Time Slot 8, Input Setting */
 231#define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
 232#define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
 233
 234/***************************************************************************
 235		DBRI specific definitions and structures
 236****************************************************************************/
 237
 238/* DBRI main registers */
 239#define REG0	0x00		/* Status and Control */
 240#define REG1	0x04		/* Mode and Interrupt */
 241#define REG2	0x08		/* Parallel IO */
 242#define REG3	0x0c		/* Test */
 243#define REG8	0x20		/* Command Queue Pointer */
 244#define REG9	0x24		/* Interrupt Queue Pointer */
 245
 246#define DBRI_NO_CMDS	64
 247#define DBRI_INT_BLK	64
 248#define DBRI_NO_DESCS	64
 249#define DBRI_NO_PIPES	32
 250#define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
 251
 252#define DBRI_REC	0
 253#define DBRI_PLAY	1
 254#define DBRI_NO_STREAMS	2
 255
 256/* One transmit/receive descriptor */
 257/* When ba != 0 descriptor is used */
 258struct dbri_mem {
 259	volatile __u32 word1;
 260	__u32 ba;	/* Transmit/Receive Buffer Address */
 261	__u32 nda;	/* Next Descriptor Address */
 262	volatile __u32 word4;
 263};
 264
 265/* This structure is in a DMA region where it can accessed by both
 266 * the CPU and the DBRI
 267 */
 268struct dbri_dma {
 269	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
 270	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
 271	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
 272};
 273
 274#define dbri_dma_off(member, elem)	\
 275	((u32)(unsigned long)		\
 276	 (&(((struct dbri_dma *)0)->member[elem])))
 277
 278enum in_or_out { PIPEinput, PIPEoutput };
 279
 280struct dbri_pipe {
 281	u32 sdp;		/* SDP command word */
 282	int nextpipe;		/* Next pipe in linked list */
 283	int length;		/* Length of timeslot (bits) */
 284	int first_desc;		/* Index of first descriptor */
 285	int desc;		/* Index of active descriptor */
 286	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
 287};
 288
 289/* Per stream (playback or record) information */
 290struct dbri_streaminfo {
 291	struct snd_pcm_substream *substream;
 292	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
 293	int size;		/* Size of DMA buffer             */
 294	size_t offset;		/* offset in user buffer          */
 295	int pipe;		/* Data pipe used                 */
 296	int left_gain;		/* mixer elements                 */
 297	int right_gain;
 298};
 299
 300/* This structure holds the information for both chips (DBRI & CS4215) */
 301struct snd_dbri {
 302	int regs_size, irq;	/* Needed for unload */
 303	struct platform_device *op;	/* OF device info */
 304	spinlock_t lock;
 305
 306	struct dbri_dma *dma;	/* Pointer to our DMA block */
 307	dma_addr_t dma_dvma;	/* DBRI visible DMA address */
 308
 309	void __iomem *regs;	/* dbri HW regs */
 310	int dbri_irqp;		/* intr queue pointer */
 311
 312	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
 313	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
 314	spinlock_t cmdlock;	/* Protects cmd queue accesses */
 315	s32 *cmdptr;		/* Pointer to the last queued cmd */
 316
 317	int chi_bpf;
 318
 319	struct cs4215 mm;	/* mmcodec special info */
 320				/* per stream (playback/record) info */
 321	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
 322};
 323
 324#define DBRI_MAX_VOLUME		63	/* Output volume */
 325#define DBRI_MAX_GAIN		15	/* Input gain */
 326
 327/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
 328#define D_P		(1<<15)	/* Program command & queue pointer valid */
 329#define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
 330#define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
 331#define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
 332#define D_X		(1<<7)	/* Sanity Timer Disable */
 333#define D_T		(1<<6)	/* Permit activation of the TE interface */
 334#define D_N		(1<<5)	/* Permit activation of the NT interface */
 335#define D_C		(1<<4)	/* Permit activation of the CHI interface */
 336#define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
 337#define D_D		(1<<2)	/* Disable Master Mode */
 338#define D_H		(1<<1)	/* Halt for Analysis */
 339#define D_R		(1<<0)	/* Soft Reset */
 340
 341/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
 342#define D_LITTLE_END	(1<<8)	/* Byte Order */
 343#define D_BIG_END	(0<<8)	/* Byte Order */
 344#define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
 345#define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
 346#define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
 347#define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
 348#define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
 349
 350/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
 351#define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
 352#define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
 353#define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
 354#define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
 355#define D_ENPIO		(0xf0)	/* Enable all the pins */
 356#define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
 357#define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
 358#define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
 359#define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
 360
 361/* DBRI Commands (Page 20) */
 362#define D_WAIT		0x0	/* Stop execution */
 363#define D_PAUSE		0x1	/* Flush long pipes */
 364#define D_JUMP		0x2	/* New command queue */
 365#define D_IIQ		0x3	/* Initialize Interrupt Queue */
 366#define D_REX		0x4	/* Report command execution via interrupt */
 367#define D_SDP		0x5	/* Setup Data Pipe */
 368#define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
 369#define D_DTS		0x7	/* Define Time Slot */
 370#define D_SSP		0x8	/* Set short Data Pipe */
 371#define D_CHI		0x9	/* Set CHI Global Mode */
 372#define D_NT		0xa	/* NT Command */
 373#define D_TE		0xb	/* TE Command */
 374#define D_CDEC		0xc	/* Codec setup */
 375#define D_TEST		0xd	/* No comment */
 376#define D_CDM		0xe	/* CHI Data mode command */
 377
 378/* Special bits for some commands */
 379#define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
 380
 381/* Setup Data Pipe */
 382/* IRM */
 383#define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
 384#define D_SDP_CHANGE	(2<<18)	/* Report any changes */
 385#define D_SDP_EVERY	(3<<18)	/* Report any changes */
 386#define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
 387#define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
 388
 389/* Pipe data MODE */
 390#define D_SDP_MEM	(0<<13)	/* To/from memory */
 391#define D_SDP_HDLC	(2<<13)
 392#define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
 393#define D_SDP_SER	(4<<13)	/* Serial to serial */
 394#define D_SDP_FIXED	(6<<13)	/* Short only */
 395#define D_SDP_MODE(v)	((v)&(7<<13))
 396
 397#define D_SDP_TO_SER	(1<<12)	/* Direction */
 398#define D_SDP_FROM_SER	(0<<12)	/* Direction */
 399#define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
 400#define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
 401#define D_SDP_P		(1<<10)	/* Pointer Valid */
 402#define D_SDP_A		(1<<8)	/* Abort */
 403#define D_SDP_C		(1<<7)	/* Clear */
 404
 405/* Define Time Slot */
 406#define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
 407#define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
 408#define D_DTS_INS	(1<<15)	/* Insert Time Slot */
 409#define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
 410#define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
 411#define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
 412
 413/* Time Slot defines */
 414#define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
 415#define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
 416#define D_TS_DI		(1<<13)	/* Data Invert */
 417#define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
 418#define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
 419#define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
 420#define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
 421#define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
 422#define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
 423
 424/* Concentration Highway Interface Modes */
 425#define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
 426#define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
 427#define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
 428#define D_CHI_OD	(1<<13)	/* Open Drain Enable */
 429#define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
 430#define D_CHI_FD	(1<<11)	/* Frame Drive */
 431#define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
 432
 433/* NT: These are here for completeness */
 434#define D_NT_FBIT	(1<<17)	/* Frame Bit */
 435#define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
 436#define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
 437#define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
 438#define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
 439#define D_NT_FT		(1<<12)	/* Fixed Timing */
 440#define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
 441#define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
 442#define D_NT_ACT	(1<<9)	/* Activate Interface */
 443#define D_NT_MFE	(1<<8)	/* Multiframe Enable */
 444#define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
 445#define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
 446#define D_NT_FACT	(1<<1)	/* Force Activation */
 447#define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
 448
 449/* Codec Setup */
 450#define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
 451#define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
 452#define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
 453
 454/* Test */
 455#define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
 456#define D_TEST_SIZE(v)	((v)<<11)	/* */
 457#define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
 458#define D_TEST_PROC	0x6	/* Microprocessor test */
 459#define D_TEST_SER	0x7	/* Serial-Controller test */
 460#define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
 461#define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
 462#define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
 463#define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
 464#define D_TEST_DUMP	0xe	/* ROM Dump */
 465
 466/* CHI Data Mode */
 467#define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
 468#define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
 469#define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
 470#define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
 471#define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
 472#define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
 473
 474/* The Interrupts */
 475#define D_INTR_BRDY	1	/* Buffer Ready for processing */
 476#define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
 477#define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
 478#define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
 479#define D_INTR_EOL	5	/* End of List */
 480#define D_INTR_CMDI	6	/* Command has bean read */
 481#define D_INTR_XCMP	8	/* Transmission of frame complete */
 482#define D_INTR_SBRI	9	/* BRI status change info */
 483#define D_INTR_FXDT	10	/* Fixed data change */
 484#define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
 485#define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
 486#define D_INTR_DBYT	12	/* Dropped by frame slip */
 487#define D_INTR_RBYT	13	/* Repeated by frame slip */
 488#define D_INTR_LINT	14	/* Lost Interrupt */
 489#define D_INTR_UNDR	15	/* DMA underrun */
 490
 491#define D_INTR_TE	32
 492#define D_INTR_NT	34
 493#define D_INTR_CHI	36
 494#define D_INTR_CMD	38
 495
 496#define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
 497#define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
 498#define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
 499#define D_INTR_GETVAL(v)	((v) & 0xffff)
 500#define D_INTR_GETRVAL(v)	((v) & 0xfffff)
 501
 502#define D_P_0		0	/* TE receive anchor */
 503#define D_P_1		1	/* TE transmit anchor */
 504#define D_P_2		2	/* NT transmit anchor */
 505#define D_P_3		3	/* NT receive anchor */
 506#define D_P_4		4	/* CHI send data */
 507#define D_P_5		5	/* CHI receive data */
 508#define D_P_6		6	/* */
 509#define D_P_7		7	/* */
 510#define D_P_8		8	/* */
 511#define D_P_9		9	/* */
 512#define D_P_10		10	/* */
 513#define D_P_11		11	/* */
 514#define D_P_12		12	/* */
 515#define D_P_13		13	/* */
 516#define D_P_14		14	/* */
 517#define D_P_15		15	/* */
 518#define D_P_16		16	/* CHI anchor pipe */
 519#define D_P_17		17	/* CHI send */
 520#define D_P_18		18	/* CHI receive */
 521#define D_P_19		19	/* CHI receive */
 522#define D_P_20		20	/* CHI receive */
 523#define D_P_21		21	/* */
 524#define D_P_22		22	/* */
 525#define D_P_23		23	/* */
 526#define D_P_24		24	/* */
 527#define D_P_25		25	/* */
 528#define D_P_26		26	/* */
 529#define D_P_27		27	/* */
 530#define D_P_28		28	/* */
 531#define D_P_29		29	/* */
 532#define D_P_30		30	/* */
 533#define D_P_31		31	/* */
 534
 535/* Transmit descriptor defines */
 536#define DBRI_TD_F	(1 << 31)	/* End of Frame */
 537#define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
 538#define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
 539#define DBRI_TD_B	(1 << 15)	/* Final interrupt */
 540#define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
 541#define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
 542#define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
 543#define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
 544#define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
 545#define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
 546#define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
 547			/* Maximum buffer size per TD: almost 8KB */
 548#define DBRI_TD_MAXCNT	((1 << 13) - 4)
 549
 550/* Receive descriptor defines */
 551#define DBRI_RD_F	(1 << 31)	/* End of Frame */
 552#define DBRI_RD_C	(1 << 30)	/* Completed buffer */
 553#define DBRI_RD_B	(1 << 15)	/* Final interrupt */
 554#define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
 555#define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
 556#define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
 557#define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
 558#define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
 559#define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
 560#define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
 561#define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
 562
 563/* stream_info[] access */
 564/* Translate the ALSA direction into the array index */
 565#define DBRI_STREAMNO(substream)				\
 566		(substream->stream ==				\
 567		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
 568
 569/* Return a pointer to dbri_streaminfo */
 570#define DBRI_STREAM(dbri, substream)	\
 571		&dbri->stream_info[DBRI_STREAMNO(substream)]
 572
 573/*
 574 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
 575 * So we have to reverse the bits. Note: not all bit lengths are supported
 576 */
 577static __u32 reverse_bytes(__u32 b, int len)
 578{
 579	switch (len) {
 580	case 32:
 581		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
 582		fallthrough;
 583	case 16:
 584		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
 585		fallthrough;
 586	case 8:
 587		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
 588		fallthrough;
 589	case 4:
 590		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
 591		fallthrough;
 592	case 2:
 593		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
 594	case 1:
 595	case 0:
 596		break;
 597	default:
 598		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
 599	}
 600
 601	return b;
 602}
 603
 604/*
 605****************************************************************************
 606************** DBRI initialization and command synchronization *************
 607****************************************************************************
 608
 609Commands are sent to the DBRI by building a list of them in memory,
 610then writing the address of the first list item to DBRI register 8.
 611The list is terminated with a WAIT command, which generates a
 612CPU interrupt to signal completion.
 613
 614Since the DBRI can run in parallel with the CPU, several means of
 615synchronization present themselves. The method implemented here uses
 616the dbri_cmdwait() to wait for execution of batch of sent commands.
 617
 618A circular command buffer is used here. A new command is being added
 619while another can be executed. The scheme works by adding two WAIT commands
 620after each sent batch of commands. When the next batch is prepared it is
 621added after the WAIT commands then the WAITs are replaced with single JUMP
 622command to the new batch. Then the DBRI is forced to reread the last WAIT
 623command (replaced by the JUMP by then). If the DBRI is still executing
 624previous commands the request to reread the WAIT command is ignored.
 625
 626Every time a routine wants to write commands to the DBRI, it must
 627first call dbri_cmdlock() and get pointer to a free space in
 628dbri->dma->cmd buffer. After this, the commands can be written to
 629the buffer, and dbri_cmdsend() is called with the final pointer value
 630to send them to the DBRI.
 631
 632*/
 633
 634#define MAXLOOPS 20
 635/*
 636 * Wait for the current command string to execute
 637 */
 638static void dbri_cmdwait(struct snd_dbri *dbri)
 639{
 640	int maxloops = MAXLOOPS;
 641	unsigned long flags;
 642
 643	/* Delay if previous commands are still being processed */
 644	spin_lock_irqsave(&dbri->lock, flags);
 645	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
 646		spin_unlock_irqrestore(&dbri->lock, flags);
 647		msleep_interruptible(1);
 648		spin_lock_irqsave(&dbri->lock, flags);
 649	}
 650	spin_unlock_irqrestore(&dbri->lock, flags);
 651
 652	if (maxloops == 0)
 653		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
 654	else
 655		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
 656			MAXLOOPS - maxloops - 1);
 657}
 658/*
 659 * Lock the command queue and return pointer to space for len cmd words
 660 * It locks the cmdlock spinlock.
 661 */
 662static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
 663{
 664	u32 dvma_addr = (u32)dbri->dma_dvma;
 665
 666	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
 667	len += 2;
 668	spin_lock(&dbri->cmdlock);
 669	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
 670		return dbri->cmdptr + 2;
 671	else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
 672		return dbri->dma->cmd;
 673	else
 674		printk(KERN_ERR "DBRI: no space for commands.");
 675
 676	return NULL;
 677}
 678
 679/*
 680 * Send prepared cmd string. It works by writing a JUMP cmd into
 681 * the last WAIT cmd and force DBRI to reread the cmd.
 682 * The JUMP cmd points to the new cmd string.
 683 * It also releases the cmdlock spinlock.
 684 *
 685 * Lock must be held before calling this.
 686 */
 687static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
 688{
 689	u32 dvma_addr = (u32)dbri->dma_dvma;
 690	s32 tmp, addr;
 691	static int wait_id;
 692
 693	wait_id++;
 694	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
 695	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
 696	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
 697
 698	/* Replace the last command with JUMP */
 699	addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
 700	*(dbri->cmdptr+1) = addr;
 701	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
 702
 703#ifdef DBRI_DEBUG
 704	if (cmd > dbri->cmdptr) {
 705		s32 *ptr;
 706
 707		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
 708			dprintk(D_CMD, "cmd: %lx:%08x\n",
 709				(unsigned long)ptr, *ptr);
 710	} else {
 711		s32 *ptr = dbri->cmdptr;
 712
 713		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 714		ptr++;
 715		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 716		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
 717			dprintk(D_CMD, "cmd: %lx:%08x\n",
 718				(unsigned long)ptr, *ptr);
 719	}
 720#endif
 721
 722	/* Reread the last command */
 723	tmp = sbus_readl(dbri->regs + REG0);
 724	tmp |= D_P;
 725	sbus_writel(tmp, dbri->regs + REG0);
 726
 727	dbri->cmdptr = cmd;
 728	spin_unlock(&dbri->cmdlock);
 729}
 730
 731/* Lock must be held when calling this */
 732static void dbri_reset(struct snd_dbri *dbri)
 733{
 734	int i;
 735	u32 tmp;
 736
 737	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
 738		sbus_readl(dbri->regs + REG0),
 739		sbus_readl(dbri->regs + REG2),
 740		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
 741
 742	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
 743	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
 744		udelay(10);
 745
 746	/* A brute approach - DBRI falls back to working burst size by itself
 747	 * On SS20 D_S does not work, so do not try so high. */
 748	tmp = sbus_readl(dbri->regs + REG0);
 749	tmp |= D_G | D_E;
 750	tmp &= ~D_S;
 751	sbus_writel(tmp, dbri->regs + REG0);
 752}
 753
 754/* Lock must not be held before calling this */
 755static void dbri_initialize(struct snd_dbri *dbri)
 756{
 757	u32 dvma_addr = (u32)dbri->dma_dvma;
 758	s32 *cmd;
 759	u32 dma_addr;
 760	unsigned long flags;
 761	int n;
 762
 763	spin_lock_irqsave(&dbri->lock, flags);
 764
 765	dbri_reset(dbri);
 766
 767	/* Initialize pipes */
 768	for (n = 0; n < DBRI_NO_PIPES; n++)
 769		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
 770
 771	spin_lock_init(&dbri->cmdlock);
 772	/*
 773	 * Initialize the interrupt ring buffer.
 774	 */
 775	dma_addr = dvma_addr + dbri_dma_off(intr, 0);
 776	dbri->dma->intr[0] = dma_addr;
 777	dbri->dbri_irqp = 1;
 778	/*
 779	 * Set up the interrupt queue
 780	 */
 781	spin_lock(&dbri->cmdlock);
 782	cmd = dbri->cmdptr = dbri->dma->cmd;
 783	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
 784	*(cmd++) = dma_addr;
 785	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 786	dbri->cmdptr = cmd;
 787	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 788	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 789	dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
 790	sbus_writel(dma_addr, dbri->regs + REG8);
 791	spin_unlock(&dbri->cmdlock);
 792
 793	spin_unlock_irqrestore(&dbri->lock, flags);
 794	dbri_cmdwait(dbri);
 795}
 796
 797/*
 798****************************************************************************
 799************************** DBRI data pipe management ***********************
 800****************************************************************************
 801
 802While DBRI control functions use the command and interrupt buffers, the
 803main data path takes the form of data pipes, which can be short (command
 804and interrupt driven), or long (attached to DMA buffers).  These functions
 805provide a rudimentary means of setting up and managing the DBRI's pipes,
 806but the calling functions have to make sure they respect the pipes' linked
 807list ordering, among other things.  The transmit and receive functions
 808here interface closely with the transmit and receive interrupt code.
 809
 810*/
 811static inline int pipe_active(struct snd_dbri *dbri, int pipe)
 812{
 813	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
 814}
 815
 816/* reset_pipe(dbri, pipe)
 817 *
 818 * Called on an in-use pipe to clear anything being transmitted or received
 819 * Lock must be held before calling this.
 820 */
 821static void reset_pipe(struct snd_dbri *dbri, int pipe)
 822{
 823	int sdp;
 824	int desc;
 825	s32 *cmd;
 826
 827	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 828		printk(KERN_ERR "DBRI: reset_pipe called with "
 829			"illegal pipe number\n");
 830		return;
 831	}
 832
 833	sdp = dbri->pipes[pipe].sdp;
 834	if (sdp == 0) {
 835		printk(KERN_ERR "DBRI: reset_pipe called "
 836			"on uninitialized pipe\n");
 837		return;
 838	}
 839
 840	cmd = dbri_cmdlock(dbri, 3);
 841	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
 842	*(cmd++) = 0;
 843	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 844	dbri_cmdsend(dbri, cmd, 3);
 845
 846	desc = dbri->pipes[pipe].first_desc;
 847	if (desc >= 0)
 848		do {
 849			dbri->dma->desc[desc].ba = 0;
 850			dbri->dma->desc[desc].nda = 0;
 851			desc = dbri->next_desc[desc];
 852		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
 853
 854	dbri->pipes[pipe].desc = -1;
 855	dbri->pipes[pipe].first_desc = -1;
 856}
 857
 858/*
 859 * Lock must be held before calling this.
 860 */
 861static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
 862{
 863	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 864		printk(KERN_ERR "DBRI: setup_pipe called "
 865			"with illegal pipe number\n");
 866		return;
 867	}
 868
 869	if ((sdp & 0xf800) != sdp) {
 870		printk(KERN_ERR "DBRI: setup_pipe called "
 871			"with strange SDP value\n");
 872		/* sdp &= 0xf800; */
 873	}
 874
 875	/* If this is a fixed receive pipe, arrange for an interrupt
 876	 * every time its data changes
 877	 */
 878	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
 879		sdp |= D_SDP_CHANGE;
 880
 881	sdp |= D_PIPE(pipe);
 882	dbri->pipes[pipe].sdp = sdp;
 883	dbri->pipes[pipe].desc = -1;
 884	dbri->pipes[pipe].first_desc = -1;
 885
 886	reset_pipe(dbri, pipe);
 887}
 888
 889/*
 890 * Lock must be held before calling this.
 891 */
 892static void link_time_slot(struct snd_dbri *dbri, int pipe,
 893			   int prevpipe, int nextpipe,
 894			   int length, int cycle)
 895{
 896	s32 *cmd;
 897	int val;
 898
 899	if (pipe < 0 || pipe > DBRI_MAX_PIPE
 900			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 901			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 902		printk(KERN_ERR
 903		    "DBRI: link_time_slot called with illegal pipe number\n");
 904		return;
 905	}
 906
 907	if (dbri->pipes[pipe].sdp == 0
 908			|| dbri->pipes[prevpipe].sdp == 0
 909			|| dbri->pipes[nextpipe].sdp == 0) {
 910		printk(KERN_ERR "DBRI: link_time_slot called "
 911			"on uninitialized pipe\n");
 912		return;
 913	}
 914
 915	dbri->pipes[prevpipe].nextpipe = pipe;
 916	dbri->pipes[pipe].nextpipe = nextpipe;
 917	dbri->pipes[pipe].length = length;
 918
 919	cmd = dbri_cmdlock(dbri, 4);
 920
 921	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
 922		/* Deal with CHI special case:
 923		 * "If transmission on edges 0 or 1 is desired, then cycle n
 924		 *  (where n = # of bit times per frame...) must be used."
 925		 *                  - DBRI data sheet, page 11
 926		 */
 927		if (prevpipe == 16 && cycle == 0)
 928			cycle = dbri->chi_bpf;
 929
 930		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
 931		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 932		*(cmd++) = 0;
 933		*(cmd++) =
 934		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 935	} else {
 936		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
 937		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 938		*(cmd++) =
 939		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 940		*(cmd++) = 0;
 941	}
 942	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 943
 944	dbri_cmdsend(dbri, cmd, 4);
 945}
 946
 947#if 0
 948/*
 949 * Lock must be held before calling this.
 950 */
 951static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
 952			     enum in_or_out direction, int prevpipe,
 953			     int nextpipe)
 954{
 955	s32 *cmd;
 956	int val;
 957
 958	if (pipe < 0 || pipe > DBRI_MAX_PIPE
 959			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 960			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 961		printk(KERN_ERR
 962		    "DBRI: unlink_time_slot called with illegal pipe number\n");
 963		return;
 964	}
 965
 966	cmd = dbri_cmdlock(dbri, 4);
 967
 968	if (direction == PIPEinput) {
 969		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
 970		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 971		*(cmd++) = D_TS_NEXT(nextpipe);
 972		*(cmd++) = 0;
 973	} else {
 974		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
 975		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
 976		*(cmd++) = 0;
 977		*(cmd++) = D_TS_NEXT(nextpipe);
 978	}
 979	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 980
 981	dbri_cmdsend(dbri, cmd, 4);
 982}
 983#endif
 984
 985/* xmit_fixed() / recv_fixed()
 986 *
 987 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
 988 * expected to change much, and which we don't need to buffer.
 989 * The DBRI only interrupts us when the data changes (receive pipes),
 990 * or only changes the data when this function is called (transmit pipes).
 991 * Only short pipes (numbers 16-31) can be used in fixed data mode.
 992 *
 993 * These function operate on a 32-bit field, no matter how large
 994 * the actual time slot is.  The interrupt handler takes care of bit
 995 * ordering and alignment.  An 8-bit time slot will always end up
 996 * in the low-order 8 bits, filled either MSB-first or LSB-first,
 997 * depending on the settings passed to setup_pipe().
 998 *
 999 * Lock must not be held before calling it.
1000 */
1001static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
1002{
1003	s32 *cmd;
1004	unsigned long flags;
1005
1006	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1007		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1008		return;
1009	}
1010
1011	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1012		printk(KERN_ERR "DBRI: xmit_fixed: "
1013			"Uninitialized pipe %d\n", pipe);
1014		return;
1015	}
1016
1017	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1018		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1019		return;
1020	}
1021
1022	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1023		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1024			pipe);
1025		return;
1026	}
1027
1028	/* DBRI short pipes always transmit LSB first */
1029
1030	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1031		data = reverse_bytes(data, dbri->pipes[pipe].length);
1032
1033	cmd = dbri_cmdlock(dbri, 3);
1034
1035	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1036	*(cmd++) = data;
1037	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1038
1039	spin_lock_irqsave(&dbri->lock, flags);
1040	dbri_cmdsend(dbri, cmd, 3);
1041	spin_unlock_irqrestore(&dbri->lock, flags);
1042	dbri_cmdwait(dbri);
1043
1044}
1045
1046static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1047{
1048	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1049		printk(KERN_ERR "DBRI: recv_fixed called with "
1050			"illegal pipe number\n");
1051		return;
1052	}
1053
1054	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1055		printk(KERN_ERR "DBRI: recv_fixed called on "
1056			"non-fixed pipe %d\n", pipe);
1057		return;
1058	}
1059
1060	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1061		printk(KERN_ERR "DBRI: recv_fixed called on "
1062			"transmit pipe %d\n", pipe);
1063		return;
1064	}
1065
1066	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1067}
1068
1069/* setup_descs()
1070 *
1071 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1072 * with a DMA buffer.
1073 *
1074 * Only pipe numbers 0-15 can be used in this mode.
1075 *
1076 * This function takes a stream number pointing to a data buffer,
1077 * and work by building chains of descriptors which identify the
1078 * data buffers.  Buffers too large for a single descriptor will
1079 * be spread across multiple descriptors.
1080 *
1081 * All descriptors create a ring buffer.
1082 *
1083 * Lock must be held before calling this.
1084 */
1085static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1086{
1087	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1088	u32 dvma_addr = (u32)dbri->dma_dvma;
1089	__u32 dvma_buffer;
1090	int desc;
1091	int len;
1092	int first_desc = -1;
1093	int last_desc = -1;
1094
1095	if (info->pipe < 0 || info->pipe > 15) {
1096		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1097		return -2;
1098	}
1099
1100	if (dbri->pipes[info->pipe].sdp == 0) {
1101		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1102		       info->pipe);
1103		return -2;
1104	}
1105
1106	dvma_buffer = info->dvma_buffer;
1107	len = info->size;
1108
1109	if (streamno == DBRI_PLAY) {
1110		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1111			printk(KERN_ERR "DBRI: setup_descs: "
1112				"Called on receive pipe %d\n", info->pipe);
1113			return -2;
1114		}
1115	} else {
1116		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1117			printk(KERN_ERR
1118			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1119			     info->pipe);
1120			return -2;
1121		}
1122		/* Should be able to queue multiple buffers
1123		 * to receive on a pipe
1124		 */
1125		if (pipe_active(dbri, info->pipe)) {
1126			printk(KERN_ERR "DBRI: recv_on_pipe: "
1127				"Called on active pipe %d\n", info->pipe);
1128			return -2;
1129		}
1130
1131		/* Make sure buffer size is multiple of four */
1132		len &= ~3;
1133	}
1134
1135	/* Free descriptors if pipe has any */
1136	desc = dbri->pipes[info->pipe].first_desc;
1137	if (desc >= 0)
1138		do {
1139			dbri->dma->desc[desc].ba = 0;
1140			dbri->dma->desc[desc].nda = 0;
1141			desc = dbri->next_desc[desc];
1142		} while (desc != -1 &&
1143			 desc != dbri->pipes[info->pipe].first_desc);
1144
1145	dbri->pipes[info->pipe].desc = -1;
1146	dbri->pipes[info->pipe].first_desc = -1;
1147
1148	desc = 0;
1149	while (len > 0) {
1150		int mylen;
1151
1152		for (; desc < DBRI_NO_DESCS; desc++) {
1153			if (!dbri->dma->desc[desc].ba)
1154				break;
1155		}
1156
1157		if (desc == DBRI_NO_DESCS) {
1158			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1159			return -1;
1160		}
1161
1162		if (len > DBRI_TD_MAXCNT)
1163			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
1164		else
1165			mylen = len;
1166
1167		if (mylen > period)
1168			mylen = period;
1169
1170		dbri->next_desc[desc] = -1;
1171		dbri->dma->desc[desc].ba = dvma_buffer;
1172		dbri->dma->desc[desc].nda = 0;
1173
1174		if (streamno == DBRI_PLAY) {
1175			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1176			dbri->dma->desc[desc].word4 = 0;
1177			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1178		} else {
1179			dbri->dma->desc[desc].word1 = 0;
1180			dbri->dma->desc[desc].word4 =
1181			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1182		}
1183
1184		if (first_desc == -1)
1185			first_desc = desc;
1186		else {
1187			dbri->next_desc[last_desc] = desc;
1188			dbri->dma->desc[last_desc].nda =
1189			    dvma_addr + dbri_dma_off(desc, desc);
1190		}
1191
1192		last_desc = desc;
1193		dvma_buffer += mylen;
1194		len -= mylen;
1195	}
1196
1197	if (first_desc == -1 || last_desc == -1) {
1198		printk(KERN_ERR "DBRI: setup_descs: "
1199			" Not enough descriptors available\n");
1200		return -1;
1201	}
1202
1203	dbri->dma->desc[last_desc].nda =
1204	    dvma_addr + dbri_dma_off(desc, first_desc);
1205	dbri->next_desc[last_desc] = first_desc;
1206	dbri->pipes[info->pipe].first_desc = first_desc;
1207	dbri->pipes[info->pipe].desc = first_desc;
1208
1209#ifdef DBRI_DEBUG
1210	for (desc = first_desc; desc != -1;) {
1211		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1212			desc,
1213			dbri->dma->desc[desc].word1,
1214			dbri->dma->desc[desc].ba,
1215			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1216			desc = dbri->next_desc[desc];
1217			if (desc == first_desc)
1218				break;
1219	}
1220#endif
1221	return 0;
1222}
1223
1224/*
1225****************************************************************************
1226************************** DBRI - CHI interface ****************************
1227****************************************************************************
1228
1229The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1230multiplexed serial interface which the DBRI can operate in either master
1231(give clock/frame sync) or slave (take clock/frame sync) mode.
1232
1233*/
1234
1235enum master_or_slave { CHImaster, CHIslave };
1236
1237/*
1238 * Lock must not be held before calling it.
1239 */
1240static void reset_chi(struct snd_dbri *dbri,
1241		      enum master_or_slave master_or_slave,
1242		      int bits_per_frame)
1243{
1244	s32 *cmd;
1245	int val;
1246
1247	/* Set CHI Anchor: Pipe 16 */
1248
1249	cmd = dbri_cmdlock(dbri, 4);
1250	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1251		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1252	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1253	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1254	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1255	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1256	dbri_cmdsend(dbri, cmd, 4);
1257
1258	dbri->pipes[16].sdp = 1;
1259	dbri->pipes[16].nextpipe = 16;
1260
1261	cmd = dbri_cmdlock(dbri, 4);
1262
1263	if (master_or_slave == CHIslave) {
1264		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1265		 *
1266		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1267		 * IR     = give immediate CHI status interrupt
1268		 * EN     = give CHI status interrupt upon change
1269		 */
1270		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1271	} else {
1272		/* Setup DBRI for CHI Master - generate clock, FS
1273		 *
1274		 * BPF				=  bits per 8 kHz frame
1275		 * 12.288 MHz / CHICM_divisor	= clock rate
1276		 * FD = 1 - drive CHIFS on rising edge of CHICK
1277		 */
1278		int clockrate = bits_per_frame * 8;
1279		int divisor = 12288 / clockrate;
1280
1281		if (divisor > 255 || divisor * clockrate != 12288)
1282			printk(KERN_ERR "DBRI: illegal bits_per_frame "
1283				"in setup_chi\n");
1284
1285		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1286				    | D_CHI_BPF(bits_per_frame));
1287	}
1288
1289	dbri->chi_bpf = bits_per_frame;
1290
1291	/* CHI Data Mode
1292	 *
1293	 * RCE   =  0 - receive on falling edge of CHICK
1294	 * XCE   =  1 - transmit on rising edge of CHICK
1295	 * XEN   =  1 - enable transmitter
1296	 * REN   =  1 - enable receiver
1297	 */
1298
1299	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1300	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1301	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1302
1303	dbri_cmdsend(dbri, cmd, 4);
1304}
1305
1306/*
1307****************************************************************************
1308*********************** CS4215 audio codec management **********************
1309****************************************************************************
1310
1311In the standard SPARC audio configuration, the CS4215 codec is attached
1312to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1313
1314 * Lock must not be held before calling it.
1315
1316*/
1317static void cs4215_setup_pipes(struct snd_dbri *dbri)
1318{
1319	unsigned long flags;
1320
1321	spin_lock_irqsave(&dbri->lock, flags);
1322	/*
1323	 * Data mode:
1324	 * Pipe  4: Send timeslots 1-4 (audio data)
1325	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1326	 * Pipe  6: Receive timeslots 1-4 (audio data)
1327	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1328	 *          interrupt, and the rest of the data (slot 5 and 8) is
1329	 *          not relevant for us (only for doublechecking).
1330	 *
1331	 * Control mode:
1332	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1333	 * Pipe 18: Receive timeslot 1 (clb).
1334	 * Pipe 19: Receive timeslot 7 (version).
1335	 */
1336
1337	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1338	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1339	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1340	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1341
1342	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1343	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1344	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1345	spin_unlock_irqrestore(&dbri->lock, flags);
1346
1347	dbri_cmdwait(dbri);
1348}
1349
1350static int cs4215_init_data(struct cs4215 *mm)
1351{
1352	/*
1353	 * No action, memory resetting only.
1354	 *
1355	 * Data Time Slot 5-8
1356	 * Speaker,Line and Headphone enable. Gain set to the half.
1357	 * Input is mike.
1358	 */
1359	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1360	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1361	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1362	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1363
1364	/*
1365	 * Control Time Slot 1-4
1366	 * 0: Default I/O voltage scale
1367	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1368	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1369	 * 3: Tests disabled
1370	 */
1371	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1372	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1373	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1374	mm->ctrl[3] = 0;
1375
1376	mm->status = 0;
1377	mm->version = 0xff;
1378	mm->precision = 8;	/* For ULAW */
1379	mm->channels = 1;
1380
1381	return 0;
1382}
1383
1384static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1385{
1386	if (muted) {
1387		dbri->mm.data[0] |= 63;
1388		dbri->mm.data[1] |= 63;
1389		dbri->mm.data[2] &= ~15;
1390		dbri->mm.data[3] &= ~15;
1391	} else {
1392		/* Start by setting the playback attenuation. */
1393		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1394		int left_gain = info->left_gain & 0x3f;
1395		int right_gain = info->right_gain & 0x3f;
1396
1397		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1398		dbri->mm.data[1] &= ~0x3f;
1399		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1400		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1401
1402		/* Now set the recording gain. */
1403		info = &dbri->stream_info[DBRI_REC];
1404		left_gain = info->left_gain & 0xf;
1405		right_gain = info->right_gain & 0xf;
1406		dbri->mm.data[2] |= CS4215_LG(left_gain);
1407		dbri->mm.data[3] |= CS4215_RG(right_gain);
1408	}
1409
1410	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1411}
1412
1413/*
1414 * Set the CS4215 to data mode.
1415 */
1416static void cs4215_open(struct snd_dbri *dbri)
1417{
1418	int data_width;
1419	u32 tmp;
1420	unsigned long flags;
1421
1422	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1423		dbri->mm.channels, dbri->mm.precision);
1424
1425	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1426	 * to make sure this takes.  This avoids clicking noises.
1427	 */
1428
1429	cs4215_setdata(dbri, 1);
1430	udelay(125);
1431
1432	/*
1433	 * Data mode:
1434	 * Pipe  4: Send timeslots 1-4 (audio data)
1435	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1436	 * Pipe  6: Receive timeslots 1-4 (audio data)
1437	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1438	 *          interrupt, and the rest of the data (slot 5 and 8) is
1439	 *          not relevant for us (only for doublechecking).
1440	 *
1441	 * Just like in control mode, the time slots are all offset by eight
1442	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1443	 * even if it's the CHI master.  Don't ask me...
1444	 */
1445	spin_lock_irqsave(&dbri->lock, flags);
1446	tmp = sbus_readl(dbri->regs + REG0);
1447	tmp &= ~(D_C);		/* Disable CHI */
1448	sbus_writel(tmp, dbri->regs + REG0);
1449
1450	/* Switch CS4215 to data mode - set PIO3 to 1 */
1451	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1452		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1453
1454	reset_chi(dbri, CHIslave, 128);
1455
1456	/* Note: this next doesn't work for 8-bit stereo, because the two
1457	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1458	 * (See CS4215 datasheet Fig 15)
1459	 *
1460	 * DBRI non-contiguous mode would be required to make this work.
1461	 */
1462	data_width = dbri->mm.channels * dbri->mm.precision;
1463
1464	link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1465	link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1466	link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1467	link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1468
1469	/* FIXME: enable CHI after _setdata? */
1470	tmp = sbus_readl(dbri->regs + REG0);
1471	tmp |= D_C;		/* Enable CHI */
1472	sbus_writel(tmp, dbri->regs + REG0);
1473	spin_unlock_irqrestore(&dbri->lock, flags);
1474
1475	cs4215_setdata(dbri, 0);
1476}
1477
1478/*
1479 * Send the control information (i.e. audio format)
1480 */
1481static int cs4215_setctrl(struct snd_dbri *dbri)
1482{
1483	int i, val;
1484	u32 tmp;
1485	unsigned long flags;
1486
1487	/* FIXME - let the CPU do something useful during these delays */
1488
1489	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1490	 * to make sure this takes.  This avoids clicking noises.
1491	 */
1492	cs4215_setdata(dbri, 1);
1493	udelay(125);
1494
1495	/*
1496	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1497	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1498	 */
1499	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1500	sbus_writel(val, dbri->regs + REG2);
1501	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1502	udelay(34);
1503
1504	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1505	 * operate as CHI master, supplying clocking and frame synchronization.
1506	 *
1507	 * In Data mode, however, the CS4215 must be CHI master to insure
1508	 * that its data stream is synchronous with its codec.
1509	 *
1510	 * The upshot of all this?  We start by putting the DBRI into master
1511	 * mode, program the CS4215 in Control mode, then switch the CS4215
1512	 * into Data mode and put the DBRI into slave mode.  Various timing
1513	 * requirements must be observed along the way.
1514	 *
1515	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1516	 * others?), the addressing of the CS4215's time slots is
1517	 * offset by eight bits, so we add eight to all the "cycle"
1518	 * values in the Define Time Slot (DTS) commands.  This is
1519	 * done in hardware by a TI 248 that delays the DBRI->4215
1520	 * frame sync signal by eight clock cycles.  Anybody know why?
1521	 */
1522	spin_lock_irqsave(&dbri->lock, flags);
1523	tmp = sbus_readl(dbri->regs + REG0);
1524	tmp &= ~D_C;		/* Disable CHI */
1525	sbus_writel(tmp, dbri->regs + REG0);
1526
1527	reset_chi(dbri, CHImaster, 128);
1528
1529	/*
1530	 * Control mode:
1531	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1532	 * Pipe 18: Receive timeslot 1 (clb).
1533	 * Pipe 19: Receive timeslot 7 (version).
1534	 */
1535
1536	link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1537	link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1538	link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1539	spin_unlock_irqrestore(&dbri->lock, flags);
1540
1541	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1542	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1543	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1544
1545	spin_lock_irqsave(&dbri->lock, flags);
1546	tmp = sbus_readl(dbri->regs + REG0);
1547	tmp |= D_C;		/* Enable CHI */
1548	sbus_writel(tmp, dbri->regs + REG0);
1549	spin_unlock_irqrestore(&dbri->lock, flags);
1550
1551	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1552		msleep_interruptible(1);
1553
1554	if (i == 0) {
1555		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1556			dbri->mm.status);
1557		return -1;
1558	}
1559
1560	/* Disable changes to our copy of the version number, as we are about
1561	 * to leave control mode.
1562	 */
1563	recv_fixed(dbri, 19, NULL);
1564
1565	/* Terminate CS4215 control mode - data sheet says
1566	 * "Set CLB=1 and send two more frames of valid control info"
1567	 */
1568	dbri->mm.ctrl[0] |= CS4215_CLB;
1569	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1570
1571	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1572	udelay(250);
1573
1574	cs4215_setdata(dbri, 0);
1575
1576	return 0;
1577}
1578
1579/*
1580 * Setup the codec with the sampling rate, audio format and number of
1581 * channels.
1582 * As part of the process we resend the settings for the data
1583 * timeslots as well.
1584 */
1585static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1586			  snd_pcm_format_t format, unsigned int channels)
1587{
1588	int freq_idx;
1589	int ret = 0;
1590
1591	/* Lookup index for this rate */
1592	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1593		if (CS4215_FREQ[freq_idx].freq == rate)
1594			break;
1595	}
1596	if (CS4215_FREQ[freq_idx].freq != rate) {
1597		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1598		return -1;
1599	}
1600
1601	switch (format) {
1602	case SNDRV_PCM_FORMAT_MU_LAW:
1603		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1604		dbri->mm.precision = 8;
1605		break;
1606	case SNDRV_PCM_FORMAT_A_LAW:
1607		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1608		dbri->mm.precision = 8;
1609		break;
1610	case SNDRV_PCM_FORMAT_U8:
1611		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1612		dbri->mm.precision = 8;
1613		break;
1614	case SNDRV_PCM_FORMAT_S16_BE:
1615		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1616		dbri->mm.precision = 16;
1617		break;
1618	default:
1619		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1620		return -1;
1621	}
1622
1623	/* Add rate parameters */
1624	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1625	dbri->mm.ctrl[2] = CS4215_XCLK |
1626	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1627
1628	dbri->mm.channels = channels;
1629	if (channels == 2)
1630		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1631
1632	ret = cs4215_setctrl(dbri);
1633	if (ret == 0)
1634		cs4215_open(dbri);	/* set codec to data mode */
1635
1636	return ret;
1637}
1638
1639/*
1640 *
1641 */
1642static int cs4215_init(struct snd_dbri *dbri)
1643{
1644	u32 reg2 = sbus_readl(dbri->regs + REG2);
1645	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1646
1647	/* Look for the cs4215 chips */
1648	if (reg2 & D_PIO2) {
1649		dprintk(D_MM, "Onboard CS4215 detected\n");
1650		dbri->mm.onboard = 1;
1651	}
1652	if (reg2 & D_PIO0) {
1653		dprintk(D_MM, "Speakerbox detected\n");
1654		dbri->mm.onboard = 0;
1655
1656		if (reg2 & D_PIO2) {
1657			printk(KERN_INFO "DBRI: Using speakerbox / "
1658			       "ignoring onboard mmcodec.\n");
1659			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1660		}
1661	}
1662
1663	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1664		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1665		return -EIO;
1666	}
1667
1668	cs4215_setup_pipes(dbri);
1669	cs4215_init_data(&dbri->mm);
1670
1671	/* Enable capture of the status & version timeslots. */
1672	recv_fixed(dbri, 18, &dbri->mm.status);
1673	recv_fixed(dbri, 19, &dbri->mm.version);
1674
1675	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1676	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1677		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1678			dbri->mm.offset);
1679		return -EIO;
1680	}
1681	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1682
1683	return 0;
1684}
1685
1686/*
1687****************************************************************************
1688*************************** DBRI interrupt handler *************************
1689****************************************************************************
1690
1691The DBRI communicates with the CPU mainly via a circular interrupt
1692buffer.  When an interrupt is signaled, the CPU walks through the
1693buffer and calls dbri_process_one_interrupt() for each interrupt word.
1694Complicated interrupts are handled by dedicated functions (which
1695appear first in this file).  Any pending interrupts can be serviced by
1696calling dbri_process_interrupt_buffer(), which works even if the CPU's
1697interrupts are disabled.
1698
1699*/
1700
1701/* xmit_descs()
1702 *
1703 * Starts transmitting the current TD's for recording/playing.
1704 * For playback, ALSA has filled the DMA memory with new data (we hope).
1705 */
1706static void xmit_descs(struct snd_dbri *dbri)
1707{
1708	struct dbri_streaminfo *info;
1709	u32 dvma_addr;
1710	s32 *cmd;
1711	unsigned long flags;
1712	int first_td;
1713
1714	if (dbri == NULL)
1715		return;		/* Disabled */
1716
1717	dvma_addr = (u32)dbri->dma_dvma;
1718	info = &dbri->stream_info[DBRI_REC];
1719	spin_lock_irqsave(&dbri->lock, flags);
1720
1721	if (info->pipe >= 0) {
1722		first_td = dbri->pipes[info->pipe].first_desc;
1723
1724		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1725
1726		/* Stream could be closed by the time we run. */
1727		if (first_td >= 0) {
1728			cmd = dbri_cmdlock(dbri, 2);
1729			*(cmd++) = DBRI_CMD(D_SDP, 0,
1730					    dbri->pipes[info->pipe].sdp
1731					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1732			*(cmd++) = dvma_addr +
1733				   dbri_dma_off(desc, first_td);
1734			dbri_cmdsend(dbri, cmd, 2);
1735
1736			/* Reset our admin of the pipe. */
1737			dbri->pipes[info->pipe].desc = first_td;
1738		}
1739	}
1740
1741	info = &dbri->stream_info[DBRI_PLAY];
1742
1743	if (info->pipe >= 0) {
1744		first_td = dbri->pipes[info->pipe].first_desc;
1745
1746		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1747
1748		/* Stream could be closed by the time we run. */
1749		if (first_td >= 0) {
1750			cmd = dbri_cmdlock(dbri, 2);
1751			*(cmd++) = DBRI_CMD(D_SDP, 0,
1752					    dbri->pipes[info->pipe].sdp
1753					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1754			*(cmd++) = dvma_addr +
1755				   dbri_dma_off(desc, first_td);
1756			dbri_cmdsend(dbri, cmd, 2);
1757
1758			/* Reset our admin of the pipe. */
1759			dbri->pipes[info->pipe].desc = first_td;
1760		}
1761	}
1762
1763	spin_unlock_irqrestore(&dbri->lock, flags);
1764}
1765
1766/* transmission_complete_intr()
1767 *
1768 * Called by main interrupt handler when DBRI signals transmission complete
1769 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1770 *
1771 * Walks through the pipe's list of transmit buffer descriptors and marks
1772 * them as available. Stops when the first descriptor is found without
1773 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1774 *
1775 * The DMA buffers are not released. They form a ring buffer and
1776 * they are filled by ALSA while others are transmitted by DMA.
1777 *
1778 */
1779
1780static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1781{
1782	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1783	int td = dbri->pipes[pipe].desc;
1784	int status;
1785
1786	while (td >= 0) {
1787		if (td >= DBRI_NO_DESCS) {
1788			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1789			return;
1790		}
1791
1792		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1793		if (!(status & DBRI_TD_TBC))
1794			break;
1795
1796		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1797
1798		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1799		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1800
1801		td = dbri->next_desc[td];
1802		dbri->pipes[pipe].desc = td;
1803	}
1804
1805	/* Notify ALSA */
1806	spin_unlock(&dbri->lock);
1807	snd_pcm_period_elapsed(info->substream);
1808	spin_lock(&dbri->lock);
1809}
1810
1811static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1812{
1813	struct dbri_streaminfo *info;
1814	int rd = dbri->pipes[pipe].desc;
1815	s32 status;
1816
1817	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1818		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1819		return;
1820	}
1821
1822	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1823	status = dbri->dma->desc[rd].word1;
1824	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1825
1826	info = &dbri->stream_info[DBRI_REC];
1827	info->offset += DBRI_RD_CNT(status);
1828
1829	/* FIXME: Check status */
1830
1831	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1832		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1833
1834	/* Notify ALSA */
1835	spin_unlock(&dbri->lock);
1836	snd_pcm_period_elapsed(info->substream);
1837	spin_lock(&dbri->lock);
1838}
1839
1840static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1841{
1842	int val = D_INTR_GETVAL(x);
1843	int channel = D_INTR_GETCHAN(x);
1844	int command = D_INTR_GETCMD(x);
1845	int code = D_INTR_GETCODE(x);
1846#ifdef DBRI_DEBUG
1847	int rval = D_INTR_GETRVAL(x);
1848#endif
1849
1850	if (channel == D_INTR_CMD) {
1851		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1852			cmds[command], val);
1853	} else {
1854		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1855			channel, code, rval);
1856	}
1857
1858	switch (code) {
1859	case D_INTR_CMDI:
1860		if (command != D_WAIT)
1861			printk(KERN_ERR "DBRI: Command read interrupt\n");
1862		break;
1863	case D_INTR_BRDY:
1864		reception_complete_intr(dbri, channel);
1865		break;
1866	case D_INTR_XCMP:
1867	case D_INTR_MINT:
1868		transmission_complete_intr(dbri, channel);
1869		break;
1870	case D_INTR_UNDR:
1871		/* UNDR - Transmission underrun
1872		 * resend SDP command with clear pipe bit (C) set
1873		 */
1874		{
1875	/* FIXME: do something useful in case of underrun */
1876			printk(KERN_ERR "DBRI: Underrun error\n");
1877#if 0
1878			s32 *cmd;
1879			int pipe = channel;
1880			int td = dbri->pipes[pipe].desc;
1881
1882			dbri->dma->desc[td].word4 = 0;
1883			cmd = dbri_cmdlock(dbri, NoGetLock);
1884			*(cmd++) = DBRI_CMD(D_SDP, 0,
1885					    dbri->pipes[pipe].sdp
1886					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1887			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1888			dbri_cmdsend(dbri, cmd);
1889#endif
1890		}
1891		break;
1892	case D_INTR_FXDT:
1893		/* FXDT - Fixed data change */
1894		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1895			val = reverse_bytes(val, dbri->pipes[channel].length);
1896
1897		if (dbri->pipes[channel].recv_fixed_ptr)
1898			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1899		break;
1900	default:
1901		if (channel != D_INTR_CMD)
1902			printk(KERN_WARNING
1903			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1904	}
1905}
1906
1907/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1908 * buffer until it finds a zero word (indicating nothing more to do
1909 * right now).  Non-zero words require processing and are handed off
1910 * to dbri_process_one_interrupt AFTER advancing the pointer.
1911 */
1912static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1913{
1914	s32 x;
1915
1916	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1917		dbri->dma->intr[dbri->dbri_irqp] = 0;
1918		dbri->dbri_irqp++;
1919		if (dbri->dbri_irqp == DBRI_INT_BLK)
1920			dbri->dbri_irqp = 1;
1921
1922		dbri_process_one_interrupt(dbri, x);
1923	}
1924}
1925
1926static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1927{
1928	struct snd_dbri *dbri = dev_id;
1929	static int errcnt;
1930	int x;
1931
1932	if (dbri == NULL)
1933		return IRQ_NONE;
1934	spin_lock(&dbri->lock);
1935
1936	/*
1937	 * Read it, so the interrupt goes away.
1938	 */
1939	x = sbus_readl(dbri->regs + REG1);
1940
1941	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1942		u32 tmp;
1943
1944		if (x & D_MRR)
1945			printk(KERN_ERR
1946			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1947			       x);
1948		if (x & D_MLE)
1949			printk(KERN_ERR
1950			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1951			       x);
1952		if (x & D_LBG)
1953			printk(KERN_ERR
1954			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1955		if (x & D_MBE)
1956			printk(KERN_ERR
1957			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1958
1959		/* Some of these SBus errors cause the chip's SBus circuitry
1960		 * to be disabled, so just re-enable and try to keep going.
1961		 *
1962		 * The only one I've seen is MRR, which will be triggered
1963		 * if you let a transmit pipe underrun, then try to CDP it.
1964		 *
1965		 * If these things persist, we reset the chip.
1966		 */
1967		if ((++errcnt) % 10 == 0) {
1968			dprintk(D_INT, "Interrupt errors exceeded.\n");
1969			dbri_reset(dbri);
1970		} else {
1971			tmp = sbus_readl(dbri->regs + REG0);
1972			tmp &= ~(D_D);
1973			sbus_writel(tmp, dbri->regs + REG0);
1974		}
1975	}
1976
1977	dbri_process_interrupt_buffer(dbri);
1978
1979	spin_unlock(&dbri->lock);
1980
1981	return IRQ_HANDLED;
1982}
1983
1984/****************************************************************************
1985		PCM Interface
1986****************************************************************************/
1987static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
1988	.info		= SNDRV_PCM_INFO_MMAP |
1989			  SNDRV_PCM_INFO_INTERLEAVED |
1990			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
1991			  SNDRV_PCM_INFO_MMAP_VALID |
1992			  SNDRV_PCM_INFO_BATCH,
1993	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
1994			  SNDRV_PCM_FMTBIT_A_LAW |
1995			  SNDRV_PCM_FMTBIT_U8 |
1996			  SNDRV_PCM_FMTBIT_S16_BE,
1997	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1998	.rate_min		= 5512,
1999	.rate_max		= 48000,
2000	.channels_min		= 1,
2001	.channels_max		= 2,
2002	.buffer_bytes_max	= 64 * 1024,
2003	.period_bytes_min	= 1,
2004	.period_bytes_max	= DBRI_TD_MAXCNT,
2005	.periods_min		= 1,
2006	.periods_max		= 1024,
2007};
2008
2009static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2010			      struct snd_pcm_hw_rule *rule)
2011{
2012	struct snd_interval *c = hw_param_interval(params,
2013				SNDRV_PCM_HW_PARAM_CHANNELS);
2014	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2015	struct snd_mask fmt;
2016
2017	snd_mask_any(&fmt);
2018	if (c->min > 1) {
2019		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2020		return snd_mask_refine(f, &fmt);
2021	}
2022	return 0;
2023}
2024
2025static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2026				struct snd_pcm_hw_rule *rule)
2027{
2028	struct snd_interval *c = hw_param_interval(params,
2029				SNDRV_PCM_HW_PARAM_CHANNELS);
2030	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2031	struct snd_interval ch;
2032
2033	snd_interval_any(&ch);
2034	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2035		ch.min = 1;
2036		ch.max = 1;
2037		ch.integer = 1;
2038		return snd_interval_refine(c, &ch);
2039	}
2040	return 0;
2041}
2042
2043static int snd_dbri_open(struct snd_pcm_substream *substream)
2044{
2045	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2046	struct snd_pcm_runtime *runtime = substream->runtime;
2047	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2048	unsigned long flags;
2049
2050	dprintk(D_USR, "open audio output.\n");
2051	runtime->hw = snd_dbri_pcm_hw;
2052
2053	spin_lock_irqsave(&dbri->lock, flags);
2054	info->substream = substream;
2055	info->offset = 0;
2056	info->dvma_buffer = 0;
2057	info->pipe = -1;
2058	spin_unlock_irqrestore(&dbri->lock, flags);
2059
2060	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2061			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2062			    -1);
2063	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2064			    snd_hw_rule_channels, NULL,
2065			    SNDRV_PCM_HW_PARAM_CHANNELS,
2066			    -1);
2067
2068	cs4215_open(dbri);
2069
2070	return 0;
2071}
2072
2073static int snd_dbri_close(struct snd_pcm_substream *substream)
2074{
2075	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2076	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2077
2078	dprintk(D_USR, "close audio output.\n");
2079	info->substream = NULL;
2080	info->offset = 0;
2081
2082	return 0;
2083}
2084
2085static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2086			      struct snd_pcm_hw_params *hw_params)
2087{
2088	struct snd_pcm_runtime *runtime = substream->runtime;
2089	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2090	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2091	int direction;
2092	int ret;
2093
2094	/* set sampling rate, audio format and number of channels */
2095	ret = cs4215_prepare(dbri, params_rate(hw_params),
2096			     params_format(hw_params),
2097			     params_channels(hw_params));
2098	if (ret != 0)
2099		return ret;
2100
 
 
 
 
 
 
2101	/* hw_params can get called multiple times. Only map the DMA once.
2102	 */
2103	if (info->dvma_buffer == 0) {
2104		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2105			direction = DMA_TO_DEVICE;
2106		else
2107			direction = DMA_FROM_DEVICE;
2108
2109		info->dvma_buffer =
2110			dma_map_single(&dbri->op->dev,
2111				       runtime->dma_area,
2112				       params_buffer_bytes(hw_params),
2113				       direction);
2114	}
2115
2116	direction = params_buffer_bytes(hw_params);
2117	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2118		direction, info->dvma_buffer);
2119	return 0;
2120}
2121
2122static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2123{
2124	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2125	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2126	int direction;
2127
2128	dprintk(D_USR, "hw_free.\n");
2129
2130	/* hw_free can get called multiple times. Only unmap the DMA once.
2131	 */
2132	if (info->dvma_buffer) {
2133		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2134			direction = DMA_TO_DEVICE;
2135		else
2136			direction = DMA_FROM_DEVICE;
2137
2138		dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2139				 substream->runtime->buffer_size, direction);
2140		info->dvma_buffer = 0;
2141	}
2142	if (info->pipe != -1) {
2143		reset_pipe(dbri, info->pipe);
2144		info->pipe = -1;
2145	}
2146
2147	return 0;
2148}
2149
2150static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2151{
2152	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2153	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2154	int ret;
2155
2156	info->size = snd_pcm_lib_buffer_bytes(substream);
2157	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2158		info->pipe = 4;	/* Send pipe */
2159	else
2160		info->pipe = 6;	/* Receive pipe */
2161
2162	spin_lock_irq(&dbri->lock);
2163	info->offset = 0;
2164
2165	/* Setup the all the transmit/receive descriptors to cover the
2166	 * whole DMA buffer.
2167	 */
2168	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2169			  snd_pcm_lib_period_bytes(substream));
2170
2171	spin_unlock_irq(&dbri->lock);
2172
2173	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2174	return ret;
2175}
2176
2177static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2178{
2179	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2180	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2181	int ret = 0;
2182
2183	switch (cmd) {
2184	case SNDRV_PCM_TRIGGER_START:
2185		dprintk(D_USR, "start audio, period is %d bytes\n",
2186			(int)snd_pcm_lib_period_bytes(substream));
2187		/* Re-submit the TDs. */
2188		xmit_descs(dbri);
2189		break;
2190	case SNDRV_PCM_TRIGGER_STOP:
2191		dprintk(D_USR, "stop audio.\n");
2192		reset_pipe(dbri, info->pipe);
2193		break;
2194	default:
2195		ret = -EINVAL;
2196	}
2197
2198	return ret;
2199}
2200
2201static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2202{
2203	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2204	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2205	snd_pcm_uframes_t ret;
2206
2207	ret = bytes_to_frames(substream->runtime, info->offset)
2208		% substream->runtime->buffer_size;
2209	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2210		ret, substream->runtime->buffer_size);
2211	return ret;
2212}
2213
2214static const struct snd_pcm_ops snd_dbri_ops = {
2215	.open = snd_dbri_open,
2216	.close = snd_dbri_close,
 
2217	.hw_params = snd_dbri_hw_params,
2218	.hw_free = snd_dbri_hw_free,
2219	.prepare = snd_dbri_prepare,
2220	.trigger = snd_dbri_trigger,
2221	.pointer = snd_dbri_pointer,
2222};
2223
2224static int snd_dbri_pcm(struct snd_card *card)
2225{
2226	struct snd_pcm *pcm;
2227	int err;
2228
2229	err = snd_pcm_new(card,
2230			  /* ID */	    "sun_dbri",
2231			  /* device */	    0,
2232			  /* playback count */ 1,
2233			  /* capture count */  1, &pcm);
2234	if (err < 0)
2235		return err;
2236
2237	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2238	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2239
2240	pcm->private_data = card->private_data;
2241	pcm->info_flags = 0;
2242	strcpy(pcm->name, card->shortname);
2243
2244	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
2245				       NULL, 64 * 1024, 64 * 1024);
 
 
 
 
2246	return 0;
2247}
2248
2249/*****************************************************************************
2250			Mixer interface
2251*****************************************************************************/
2252
2253static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2254				  struct snd_ctl_elem_info *uinfo)
2255{
2256	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2257	uinfo->count = 2;
2258	uinfo->value.integer.min = 0;
2259	if (kcontrol->private_value == DBRI_PLAY)
2260		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2261	else
2262		uinfo->value.integer.max = DBRI_MAX_GAIN;
2263	return 0;
2264}
2265
2266static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2267				 struct snd_ctl_elem_value *ucontrol)
2268{
2269	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2270	struct dbri_streaminfo *info;
2271
2272	if (snd_BUG_ON(!dbri))
2273		return -EINVAL;
2274	info = &dbri->stream_info[kcontrol->private_value];
2275
2276	ucontrol->value.integer.value[0] = info->left_gain;
2277	ucontrol->value.integer.value[1] = info->right_gain;
2278	return 0;
2279}
2280
2281static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2282				 struct snd_ctl_elem_value *ucontrol)
2283{
2284	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2285	struct dbri_streaminfo *info =
2286				&dbri->stream_info[kcontrol->private_value];
2287	unsigned int vol[2];
2288	int changed = 0;
2289
2290	vol[0] = ucontrol->value.integer.value[0];
2291	vol[1] = ucontrol->value.integer.value[1];
2292	if (kcontrol->private_value == DBRI_PLAY) {
2293		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2294			return -EINVAL;
2295	} else {
2296		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2297			return -EINVAL;
2298	}
2299
2300	if (info->left_gain != vol[0]) {
2301		info->left_gain = vol[0];
2302		changed = 1;
2303	}
2304	if (info->right_gain != vol[1]) {
2305		info->right_gain = vol[1];
2306		changed = 1;
2307	}
2308	if (changed) {
2309		/* First mute outputs, and wait 1/8000 sec (125 us)
2310		 * to make sure this takes.  This avoids clicking noises.
2311		 */
2312		cs4215_setdata(dbri, 1);
2313		udelay(125);
2314		cs4215_setdata(dbri, 0);
2315	}
2316	return changed;
2317}
2318
2319static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2320				  struct snd_ctl_elem_info *uinfo)
2321{
2322	int mask = (kcontrol->private_value >> 16) & 0xff;
2323
2324	uinfo->type = (mask == 1) ?
2325	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2326	uinfo->count = 1;
2327	uinfo->value.integer.min = 0;
2328	uinfo->value.integer.max = mask;
2329	return 0;
2330}
2331
2332static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2333				 struct snd_ctl_elem_value *ucontrol)
2334{
2335	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2336	int elem = kcontrol->private_value & 0xff;
2337	int shift = (kcontrol->private_value >> 8) & 0xff;
2338	int mask = (kcontrol->private_value >> 16) & 0xff;
2339	int invert = (kcontrol->private_value >> 24) & 1;
2340
2341	if (snd_BUG_ON(!dbri))
2342		return -EINVAL;
2343
2344	if (elem < 4)
2345		ucontrol->value.integer.value[0] =
2346		    (dbri->mm.data[elem] >> shift) & mask;
2347	else
2348		ucontrol->value.integer.value[0] =
2349		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2350
2351	if (invert == 1)
2352		ucontrol->value.integer.value[0] =
2353		    mask - ucontrol->value.integer.value[0];
2354	return 0;
2355}
2356
2357static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2358				 struct snd_ctl_elem_value *ucontrol)
2359{
2360	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2361	int elem = kcontrol->private_value & 0xff;
2362	int shift = (kcontrol->private_value >> 8) & 0xff;
2363	int mask = (kcontrol->private_value >> 16) & 0xff;
2364	int invert = (kcontrol->private_value >> 24) & 1;
2365	int changed = 0;
2366	unsigned short val;
2367
2368	if (snd_BUG_ON(!dbri))
2369		return -EINVAL;
2370
2371	val = (ucontrol->value.integer.value[0] & mask);
2372	if (invert == 1)
2373		val = mask - val;
2374	val <<= shift;
2375
2376	if (elem < 4) {
2377		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2378				       ~(mask << shift)) | val;
2379		changed = (val != dbri->mm.data[elem]);
2380	} else {
2381		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2382					   ~(mask << shift)) | val;
2383		changed = (val != dbri->mm.ctrl[elem - 4]);
2384	}
2385
2386	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2387		"mixer-value=%ld, mm-value=0x%x\n",
2388		mask, changed, ucontrol->value.integer.value[0],
2389		dbri->mm.data[elem & 3]);
2390
2391	if (changed) {
2392		/* First mute outputs, and wait 1/8000 sec (125 us)
2393		 * to make sure this takes.  This avoids clicking noises.
2394		 */
2395		cs4215_setdata(dbri, 1);
2396		udelay(125);
2397		cs4215_setdata(dbri, 0);
2398	}
2399	return changed;
2400}
2401
2402/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2403   timeslots. Shift is the bit offset in the timeslot, mask defines the
2404   number of bits. invert is a boolean for use with attenuation.
2405 */
2406#define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
2407{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
2408  .info = snd_cs4215_info_single,				\
2409  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
2410  .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
2411			((invert) << 24) },
2412
2413static const struct snd_kcontrol_new dbri_controls[] = {
2414	{
2415	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2416	 .name  = "Playback Volume",
2417	 .info  = snd_cs4215_info_volume,
2418	 .get   = snd_cs4215_get_volume,
2419	 .put   = snd_cs4215_put_volume,
2420	 .private_value = DBRI_PLAY,
2421	 },
2422	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2423	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2424	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2425	{
2426	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2427	 .name  = "Capture Volume",
2428	 .info  = snd_cs4215_info_volume,
2429	 .get   = snd_cs4215_get_volume,
2430	 .put   = snd_cs4215_put_volume,
2431	 .private_value = DBRI_REC,
2432	 },
2433	/* FIXME: mic/line switch */
2434	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2435	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2436	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2437	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2438};
2439
2440static int snd_dbri_mixer(struct snd_card *card)
2441{
2442	int idx, err;
2443	struct snd_dbri *dbri;
2444
2445	if (snd_BUG_ON(!card || !card->private_data))
2446		return -EINVAL;
2447	dbri = card->private_data;
2448
2449	strcpy(card->mixername, card->shortname);
2450
2451	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2452		err = snd_ctl_add(card,
2453				snd_ctl_new1(&dbri_controls[idx], dbri));
2454		if (err < 0)
2455			return err;
2456	}
2457
2458	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2459		dbri->stream_info[idx].left_gain = 0;
2460		dbri->stream_info[idx].right_gain = 0;
2461	}
2462
2463	return 0;
2464}
2465
2466/****************************************************************************
2467			/proc interface
2468****************************************************************************/
2469static void dbri_regs_read(struct snd_info_entry *entry,
2470			   struct snd_info_buffer *buffer)
2471{
2472	struct snd_dbri *dbri = entry->private_data;
2473
2474	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2475	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2476	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2477	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2478}
2479
2480#ifdef DBRI_DEBUG
2481static void dbri_debug_read(struct snd_info_entry *entry,
2482			    struct snd_info_buffer *buffer)
2483{
2484	struct snd_dbri *dbri = entry->private_data;
2485	int pipe;
2486	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2487
2488	for (pipe = 0; pipe < 32; pipe++) {
2489		if (pipe_active(dbri, pipe)) {
2490			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2491			snd_iprintf(buffer,
2492				    "Pipe %d: %s SDP=0x%x desc=%d, "
2493				    "len=%d next %d\n",
2494				    pipe,
2495				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2496								 "input",
2497				    pptr->sdp, pptr->desc,
2498				    pptr->length, pptr->nextpipe);
2499		}
2500	}
2501}
2502#endif
2503
2504static void snd_dbri_proc(struct snd_card *card)
2505{
2506	struct snd_dbri *dbri = card->private_data;
 
 
 
 
2507
2508	snd_card_ro_proc_new(card, "regs", dbri, dbri_regs_read);
2509#ifdef DBRI_DEBUG
2510	snd_card_ro_proc_new(card, "debug", dbri, dbri_debug_read);
 
 
 
2511#endif
2512}
2513
2514/*
2515****************************************************************************
2516**************************** Initialization ********************************
2517****************************************************************************
2518*/
2519static void snd_dbri_free(struct snd_dbri *dbri);
2520
2521static int snd_dbri_create(struct snd_card *card,
2522			   struct platform_device *op,
2523			   int irq, int dev)
2524{
2525	struct snd_dbri *dbri = card->private_data;
2526	int err;
2527
2528	spin_lock_init(&dbri->lock);
2529	dbri->op = op;
2530	dbri->irq = irq;
2531
2532	dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
2533				       &dbri->dma_dvma, GFP_KERNEL);
2534	if (!dbri->dma)
2535		return -ENOMEM;
2536
2537	dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2538		dbri->dma, dbri->dma_dvma);
2539
2540	/* Map the registers into memory. */
2541	dbri->regs_size = resource_size(&op->resource[0]);
2542	dbri->regs = of_ioremap(&op->resource[0], 0,
2543				dbri->regs_size, "DBRI Registers");
2544	if (!dbri->regs) {
2545		printk(KERN_ERR "DBRI: could not allocate registers\n");
2546		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2547				  (void *)dbri->dma, dbri->dma_dvma);
2548		return -EIO;
2549	}
2550
2551	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2552			  "DBRI audio", dbri);
2553	if (err) {
2554		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2555		of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2556		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2557				  (void *)dbri->dma, dbri->dma_dvma);
2558		return err;
2559	}
2560
2561	/* Do low level initialization of the DBRI and CS4215 chips */
2562	dbri_initialize(dbri);
2563	err = cs4215_init(dbri);
2564	if (err) {
2565		snd_dbri_free(dbri);
2566		return err;
2567	}
2568
2569	return 0;
2570}
2571
2572static void snd_dbri_free(struct snd_dbri *dbri)
2573{
2574	dprintk(D_GEN, "snd_dbri_free\n");
2575	dbri_reset(dbri);
2576
2577	if (dbri->irq)
2578		free_irq(dbri->irq, dbri);
2579
2580	if (dbri->regs)
2581		of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2582
2583	if (dbri->dma)
2584		dma_free_coherent(&dbri->op->dev,
2585				  sizeof(struct dbri_dma),
2586				  (void *)dbri->dma, dbri->dma_dvma);
2587}
2588
2589static int dbri_probe(struct platform_device *op)
2590{
2591	struct snd_dbri *dbri;
2592	struct resource *rp;
2593	struct snd_card *card;
2594	static int dev;
2595	int irq;
2596	int err;
2597
2598	if (dev >= SNDRV_CARDS)
2599		return -ENODEV;
2600	if (!enable[dev]) {
2601		dev++;
2602		return -ENOENT;
2603	}
2604
2605	irq = op->archdata.irqs[0];
2606	if (irq <= 0) {
2607		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2608		return -ENODEV;
2609	}
2610
2611	err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2612			   sizeof(struct snd_dbri), &card);
2613	if (err < 0)
2614		return err;
2615
2616	strcpy(card->driver, "DBRI");
2617	strcpy(card->shortname, "Sun DBRI");
2618	rp = &op->resource[0];
2619	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2620		card->shortname,
2621		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2622
2623	err = snd_dbri_create(card, op, irq, dev);
2624	if (err < 0) {
2625		snd_card_free(card);
2626		return err;
2627	}
2628
2629	dbri = card->private_data;
2630	err = snd_dbri_pcm(card);
2631	if (err < 0)
2632		goto _err;
2633
2634	err = snd_dbri_mixer(card);
2635	if (err < 0)
2636		goto _err;
2637
2638	/* /proc file handling */
2639	snd_dbri_proc(card);
2640	dev_set_drvdata(&op->dev, card);
2641
2642	err = snd_card_register(card);
2643	if (err < 0)
2644		goto _err;
2645
2646	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2647	       dev, dbri->regs,
2648	       dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2649	dev++;
2650
2651	return 0;
2652
2653_err:
2654	snd_dbri_free(dbri);
2655	snd_card_free(card);
2656	return err;
2657}
2658
2659static void dbri_remove(struct platform_device *op)
2660{
2661	struct snd_card *card = dev_get_drvdata(&op->dev);
2662
2663	snd_dbri_free(card->private_data);
2664	snd_card_free(card);
 
 
2665}
2666
2667static const struct of_device_id dbri_match[] = {
2668	{
2669		.name = "SUNW,DBRIe",
2670	},
2671	{
2672		.name = "SUNW,DBRIf",
2673	},
2674	{},
2675};
2676
2677MODULE_DEVICE_TABLE(of, dbri_match);
2678
2679static struct platform_driver dbri_sbus_driver = {
2680	.driver = {
2681		.name = "dbri",
2682		.of_match_table = dbri_match,
2683	},
2684	.probe		= dbri_probe,
2685	.remove_new	= dbri_remove,
2686};
2687
2688module_platform_driver(dbri_sbus_driver);