Loading...
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/trace_events.h>
7#include <linux/ring_buffer.h>
8#include <linux/trace_clock.h>
9#include <linux/trace_seq.h>
10#include <linux/spinlock.h>
11#include <linux/irq_work.h>
12#include <linux/uaccess.h>
13#include <linux/hardirq.h>
14#include <linux/kthread.h> /* for self test */
15#include <linux/kmemcheck.h>
16#include <linux/module.h>
17#include <linux/percpu.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/slab.h>
21#include <linux/init.h>
22#include <linux/hash.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25
26#include <asm/local.h>
27
28static void update_pages_handler(struct work_struct *work);
29
30/*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33int ring_buffer_print_entry_header(struct trace_seq *s)
34{
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
48}
49
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
118/* Used for individual buffers (after the counter) */
119#define RB_BUFFER_OFF (1 << 20)
120
121#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124#define RB_ALIGNMENT 4U
125#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
127
128#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129# define RB_FORCE_8BYTE_ALIGNMENT 0
130# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131#else
132# define RB_FORCE_8BYTE_ALIGNMENT 1
133# define RB_ARCH_ALIGNMENT 8U
134#endif
135
136#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
137
138/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144};
145
146#define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149static inline int rb_null_event(struct ring_buffer_event *event)
150{
151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152}
153
154static void rb_event_set_padding(struct ring_buffer_event *event)
155{
156 /* padding has a NULL time_delta */
157 event->type_len = RINGBUF_TYPE_PADDING;
158 event->time_delta = 0;
159}
160
161static unsigned
162rb_event_data_length(struct ring_buffer_event *event)
163{
164 unsigned length;
165
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
171}
172
173/*
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
177 */
178static inline unsigned
179rb_event_length(struct ring_buffer_event *event)
180{
181 switch (event->type_len) {
182 case RINGBUF_TYPE_PADDING:
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
186 return event->array[0] + RB_EVNT_HDR_SIZE;
187
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
190
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
193
194 case RINGBUF_TYPE_DATA:
195 return rb_event_data_length(event);
196 default:
197 BUG();
198 }
199 /* not hit */
200 return 0;
201}
202
203/*
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
206 */
207static inline unsigned
208rb_event_ts_length(struct ring_buffer_event *event)
209{
210 unsigned len = 0;
211
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
216 }
217 return len + rb_event_length(event);
218}
219
220/**
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
223 *
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
229 */
230unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231{
232 unsigned length;
233
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
236
237 length = rb_event_length(event);
238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
244}
245EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247/* inline for ring buffer fast paths */
248static __always_inline void *
249rb_event_data(struct ring_buffer_event *event)
250{
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 /* If length is in len field, then array[0] has the data */
255 if (event->type_len)
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
259}
260
261/**
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
264 */
265void *ring_buffer_event_data(struct ring_buffer_event *event)
266{
267 return rb_event_data(event);
268}
269EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271#define for_each_buffer_cpu(buffer, cpu) \
272 for_each_cpu(cpu, buffer->cpumask)
273
274#define TS_SHIFT 27
275#define TS_MASK ((1ULL << TS_SHIFT) - 1)
276#define TS_DELTA_TEST (~TS_MASK)
277
278/* Flag when events were overwritten */
279#define RB_MISSED_EVENTS (1 << 31)
280/* Missed count stored at end */
281#define RB_MISSED_STORED (1 << 30)
282
283struct buffer_data_page {
284 u64 time_stamp; /* page time stamp */
285 local_t commit; /* write committed index */
286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
287};
288
289/*
290 * Note, the buffer_page list must be first. The buffer pages
291 * are allocated in cache lines, which means that each buffer
292 * page will be at the beginning of a cache line, and thus
293 * the least significant bits will be zero. We use this to
294 * add flags in the list struct pointers, to make the ring buffer
295 * lockless.
296 */
297struct buffer_page {
298 struct list_head list; /* list of buffer pages */
299 local_t write; /* index for next write */
300 unsigned read; /* index for next read */
301 local_t entries; /* entries on this page */
302 unsigned long real_end; /* real end of data */
303 struct buffer_data_page *page; /* Actual data page */
304};
305
306/*
307 * The buffer page counters, write and entries, must be reset
308 * atomically when crossing page boundaries. To synchronize this
309 * update, two counters are inserted into the number. One is
310 * the actual counter for the write position or count on the page.
311 *
312 * The other is a counter of updaters. Before an update happens
313 * the update partition of the counter is incremented. This will
314 * allow the updater to update the counter atomically.
315 *
316 * The counter is 20 bits, and the state data is 12.
317 */
318#define RB_WRITE_MASK 0xfffff
319#define RB_WRITE_INTCNT (1 << 20)
320
321static void rb_init_page(struct buffer_data_page *bpage)
322{
323 local_set(&bpage->commit, 0);
324}
325
326/**
327 * ring_buffer_page_len - the size of data on the page.
328 * @page: The page to read
329 *
330 * Returns the amount of data on the page, including buffer page header.
331 */
332size_t ring_buffer_page_len(void *page)
333{
334 return local_read(&((struct buffer_data_page *)page)->commit)
335 + BUF_PAGE_HDR_SIZE;
336}
337
338/*
339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340 * this issue out.
341 */
342static void free_buffer_page(struct buffer_page *bpage)
343{
344 free_page((unsigned long)bpage->page);
345 kfree(bpage);
346}
347
348/*
349 * We need to fit the time_stamp delta into 27 bits.
350 */
351static inline int test_time_stamp(u64 delta)
352{
353 if (delta & TS_DELTA_TEST)
354 return 1;
355 return 0;
356}
357
358#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
359
360/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362
363int ring_buffer_print_page_header(struct trace_seq *s)
364{
365 struct buffer_data_page field;
366
367 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 (unsigned int)sizeof(field.time_stamp),
370 (unsigned int)is_signed_type(u64));
371
372 trace_seq_printf(s, "\tfield: local_t commit;\t"
373 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 (unsigned int)offsetof(typeof(field), commit),
375 (unsigned int)sizeof(field.commit),
376 (unsigned int)is_signed_type(long));
377
378 trace_seq_printf(s, "\tfield: int overwrite;\t"
379 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)offsetof(typeof(field), commit),
381 1,
382 (unsigned int)is_signed_type(long));
383
384 trace_seq_printf(s, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 (unsigned int)offsetof(typeof(field), data),
387 (unsigned int)BUF_PAGE_SIZE,
388 (unsigned int)is_signed_type(char));
389
390 return !trace_seq_has_overflowed(s);
391}
392
393struct rb_irq_work {
394 struct irq_work work;
395 wait_queue_head_t waiters;
396 wait_queue_head_t full_waiters;
397 bool waiters_pending;
398 bool full_waiters_pending;
399 bool wakeup_full;
400};
401
402/*
403 * Structure to hold event state and handle nested events.
404 */
405struct rb_event_info {
406 u64 ts;
407 u64 delta;
408 unsigned long length;
409 struct buffer_page *tail_page;
410 int add_timestamp;
411};
412
413/*
414 * Used for which event context the event is in.
415 * NMI = 0
416 * IRQ = 1
417 * SOFTIRQ = 2
418 * NORMAL = 3
419 *
420 * See trace_recursive_lock() comment below for more details.
421 */
422enum {
423 RB_CTX_NMI,
424 RB_CTX_IRQ,
425 RB_CTX_SOFTIRQ,
426 RB_CTX_NORMAL,
427 RB_CTX_MAX
428};
429
430/*
431 * head_page == tail_page && head == tail then buffer is empty.
432 */
433struct ring_buffer_per_cpu {
434 int cpu;
435 atomic_t record_disabled;
436 struct ring_buffer *buffer;
437 raw_spinlock_t reader_lock; /* serialize readers */
438 arch_spinlock_t lock;
439 struct lock_class_key lock_key;
440 unsigned long nr_pages;
441 unsigned int current_context;
442 struct list_head *pages;
443 struct buffer_page *head_page; /* read from head */
444 struct buffer_page *tail_page; /* write to tail */
445 struct buffer_page *commit_page; /* committed pages */
446 struct buffer_page *reader_page;
447 unsigned long lost_events;
448 unsigned long last_overrun;
449 local_t entries_bytes;
450 local_t entries;
451 local_t overrun;
452 local_t commit_overrun;
453 local_t dropped_events;
454 local_t committing;
455 local_t commits;
456 unsigned long read;
457 unsigned long read_bytes;
458 u64 write_stamp;
459 u64 read_stamp;
460 /* ring buffer pages to update, > 0 to add, < 0 to remove */
461 long nr_pages_to_update;
462 struct list_head new_pages; /* new pages to add */
463 struct work_struct update_pages_work;
464 struct completion update_done;
465
466 struct rb_irq_work irq_work;
467};
468
469struct ring_buffer {
470 unsigned flags;
471 int cpus;
472 atomic_t record_disabled;
473 atomic_t resize_disabled;
474 cpumask_var_t cpumask;
475
476 struct lock_class_key *reader_lock_key;
477
478 struct mutex mutex;
479
480 struct ring_buffer_per_cpu **buffers;
481
482 struct hlist_node node;
483 u64 (*clock)(void);
484
485 struct rb_irq_work irq_work;
486};
487
488struct ring_buffer_iter {
489 struct ring_buffer_per_cpu *cpu_buffer;
490 unsigned long head;
491 struct buffer_page *head_page;
492 struct buffer_page *cache_reader_page;
493 unsigned long cache_read;
494 u64 read_stamp;
495};
496
497/*
498 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
499 *
500 * Schedules a delayed work to wake up any task that is blocked on the
501 * ring buffer waiters queue.
502 */
503static void rb_wake_up_waiters(struct irq_work *work)
504{
505 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
506
507 wake_up_all(&rbwork->waiters);
508 if (rbwork->wakeup_full) {
509 rbwork->wakeup_full = false;
510 wake_up_all(&rbwork->full_waiters);
511 }
512}
513
514/**
515 * ring_buffer_wait - wait for input to the ring buffer
516 * @buffer: buffer to wait on
517 * @cpu: the cpu buffer to wait on
518 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
519 *
520 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
521 * as data is added to any of the @buffer's cpu buffers. Otherwise
522 * it will wait for data to be added to a specific cpu buffer.
523 */
524int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
525{
526 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
527 DEFINE_WAIT(wait);
528 struct rb_irq_work *work;
529 int ret = 0;
530
531 /*
532 * Depending on what the caller is waiting for, either any
533 * data in any cpu buffer, or a specific buffer, put the
534 * caller on the appropriate wait queue.
535 */
536 if (cpu == RING_BUFFER_ALL_CPUS) {
537 work = &buffer->irq_work;
538 /* Full only makes sense on per cpu reads */
539 full = false;
540 } else {
541 if (!cpumask_test_cpu(cpu, buffer->cpumask))
542 return -ENODEV;
543 cpu_buffer = buffer->buffers[cpu];
544 work = &cpu_buffer->irq_work;
545 }
546
547
548 while (true) {
549 if (full)
550 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
551 else
552 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
553
554 /*
555 * The events can happen in critical sections where
556 * checking a work queue can cause deadlocks.
557 * After adding a task to the queue, this flag is set
558 * only to notify events to try to wake up the queue
559 * using irq_work.
560 *
561 * We don't clear it even if the buffer is no longer
562 * empty. The flag only causes the next event to run
563 * irq_work to do the work queue wake up. The worse
564 * that can happen if we race with !trace_empty() is that
565 * an event will cause an irq_work to try to wake up
566 * an empty queue.
567 *
568 * There's no reason to protect this flag either, as
569 * the work queue and irq_work logic will do the necessary
570 * synchronization for the wake ups. The only thing
571 * that is necessary is that the wake up happens after
572 * a task has been queued. It's OK for spurious wake ups.
573 */
574 if (full)
575 work->full_waiters_pending = true;
576 else
577 work->waiters_pending = true;
578
579 if (signal_pending(current)) {
580 ret = -EINTR;
581 break;
582 }
583
584 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
585 break;
586
587 if (cpu != RING_BUFFER_ALL_CPUS &&
588 !ring_buffer_empty_cpu(buffer, cpu)) {
589 unsigned long flags;
590 bool pagebusy;
591
592 if (!full)
593 break;
594
595 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
596 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
597 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
598
599 if (!pagebusy)
600 break;
601 }
602
603 schedule();
604 }
605
606 if (full)
607 finish_wait(&work->full_waiters, &wait);
608 else
609 finish_wait(&work->waiters, &wait);
610
611 return ret;
612}
613
614/**
615 * ring_buffer_poll_wait - poll on buffer input
616 * @buffer: buffer to wait on
617 * @cpu: the cpu buffer to wait on
618 * @filp: the file descriptor
619 * @poll_table: The poll descriptor
620 *
621 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
622 * as data is added to any of the @buffer's cpu buffers. Otherwise
623 * it will wait for data to be added to a specific cpu buffer.
624 *
625 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
626 * zero otherwise.
627 */
628int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
629 struct file *filp, poll_table *poll_table)
630{
631 struct ring_buffer_per_cpu *cpu_buffer;
632 struct rb_irq_work *work;
633
634 if (cpu == RING_BUFFER_ALL_CPUS)
635 work = &buffer->irq_work;
636 else {
637 if (!cpumask_test_cpu(cpu, buffer->cpumask))
638 return -EINVAL;
639
640 cpu_buffer = buffer->buffers[cpu];
641 work = &cpu_buffer->irq_work;
642 }
643
644 poll_wait(filp, &work->waiters, poll_table);
645 work->waiters_pending = true;
646 /*
647 * There's a tight race between setting the waiters_pending and
648 * checking if the ring buffer is empty. Once the waiters_pending bit
649 * is set, the next event will wake the task up, but we can get stuck
650 * if there's only a single event in.
651 *
652 * FIXME: Ideally, we need a memory barrier on the writer side as well,
653 * but adding a memory barrier to all events will cause too much of a
654 * performance hit in the fast path. We only need a memory barrier when
655 * the buffer goes from empty to having content. But as this race is
656 * extremely small, and it's not a problem if another event comes in, we
657 * will fix it later.
658 */
659 smp_mb();
660
661 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
662 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
663 return POLLIN | POLLRDNORM;
664 return 0;
665}
666
667/* buffer may be either ring_buffer or ring_buffer_per_cpu */
668#define RB_WARN_ON(b, cond) \
669 ({ \
670 int _____ret = unlikely(cond); \
671 if (_____ret) { \
672 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
673 struct ring_buffer_per_cpu *__b = \
674 (void *)b; \
675 atomic_inc(&__b->buffer->record_disabled); \
676 } else \
677 atomic_inc(&b->record_disabled); \
678 WARN_ON(1); \
679 } \
680 _____ret; \
681 })
682
683/* Up this if you want to test the TIME_EXTENTS and normalization */
684#define DEBUG_SHIFT 0
685
686static inline u64 rb_time_stamp(struct ring_buffer *buffer)
687{
688 /* shift to debug/test normalization and TIME_EXTENTS */
689 return buffer->clock() << DEBUG_SHIFT;
690}
691
692u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
693{
694 u64 time;
695
696 preempt_disable_notrace();
697 time = rb_time_stamp(buffer);
698 preempt_enable_no_resched_notrace();
699
700 return time;
701}
702EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
703
704void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
705 int cpu, u64 *ts)
706{
707 /* Just stupid testing the normalize function and deltas */
708 *ts >>= DEBUG_SHIFT;
709}
710EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
711
712/*
713 * Making the ring buffer lockless makes things tricky.
714 * Although writes only happen on the CPU that they are on,
715 * and they only need to worry about interrupts. Reads can
716 * happen on any CPU.
717 *
718 * The reader page is always off the ring buffer, but when the
719 * reader finishes with a page, it needs to swap its page with
720 * a new one from the buffer. The reader needs to take from
721 * the head (writes go to the tail). But if a writer is in overwrite
722 * mode and wraps, it must push the head page forward.
723 *
724 * Here lies the problem.
725 *
726 * The reader must be careful to replace only the head page, and
727 * not another one. As described at the top of the file in the
728 * ASCII art, the reader sets its old page to point to the next
729 * page after head. It then sets the page after head to point to
730 * the old reader page. But if the writer moves the head page
731 * during this operation, the reader could end up with the tail.
732 *
733 * We use cmpxchg to help prevent this race. We also do something
734 * special with the page before head. We set the LSB to 1.
735 *
736 * When the writer must push the page forward, it will clear the
737 * bit that points to the head page, move the head, and then set
738 * the bit that points to the new head page.
739 *
740 * We also don't want an interrupt coming in and moving the head
741 * page on another writer. Thus we use the second LSB to catch
742 * that too. Thus:
743 *
744 * head->list->prev->next bit 1 bit 0
745 * ------- -------
746 * Normal page 0 0
747 * Points to head page 0 1
748 * New head page 1 0
749 *
750 * Note we can not trust the prev pointer of the head page, because:
751 *
752 * +----+ +-----+ +-----+
753 * | |------>| T |---X--->| N |
754 * | |<------| | | |
755 * +----+ +-----+ +-----+
756 * ^ ^ |
757 * | +-----+ | |
758 * +----------| R |----------+ |
759 * | |<-----------+
760 * +-----+
761 *
762 * Key: ---X--> HEAD flag set in pointer
763 * T Tail page
764 * R Reader page
765 * N Next page
766 *
767 * (see __rb_reserve_next() to see where this happens)
768 *
769 * What the above shows is that the reader just swapped out
770 * the reader page with a page in the buffer, but before it
771 * could make the new header point back to the new page added
772 * it was preempted by a writer. The writer moved forward onto
773 * the new page added by the reader and is about to move forward
774 * again.
775 *
776 * You can see, it is legitimate for the previous pointer of
777 * the head (or any page) not to point back to itself. But only
778 * temporarially.
779 */
780
781#define RB_PAGE_NORMAL 0UL
782#define RB_PAGE_HEAD 1UL
783#define RB_PAGE_UPDATE 2UL
784
785
786#define RB_FLAG_MASK 3UL
787
788/* PAGE_MOVED is not part of the mask */
789#define RB_PAGE_MOVED 4UL
790
791/*
792 * rb_list_head - remove any bit
793 */
794static struct list_head *rb_list_head(struct list_head *list)
795{
796 unsigned long val = (unsigned long)list;
797
798 return (struct list_head *)(val & ~RB_FLAG_MASK);
799}
800
801/*
802 * rb_is_head_page - test if the given page is the head page
803 *
804 * Because the reader may move the head_page pointer, we can
805 * not trust what the head page is (it may be pointing to
806 * the reader page). But if the next page is a header page,
807 * its flags will be non zero.
808 */
809static inline int
810rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
811 struct buffer_page *page, struct list_head *list)
812{
813 unsigned long val;
814
815 val = (unsigned long)list->next;
816
817 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
818 return RB_PAGE_MOVED;
819
820 return val & RB_FLAG_MASK;
821}
822
823/*
824 * rb_is_reader_page
825 *
826 * The unique thing about the reader page, is that, if the
827 * writer is ever on it, the previous pointer never points
828 * back to the reader page.
829 */
830static bool rb_is_reader_page(struct buffer_page *page)
831{
832 struct list_head *list = page->list.prev;
833
834 return rb_list_head(list->next) != &page->list;
835}
836
837/*
838 * rb_set_list_to_head - set a list_head to be pointing to head.
839 */
840static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
841 struct list_head *list)
842{
843 unsigned long *ptr;
844
845 ptr = (unsigned long *)&list->next;
846 *ptr |= RB_PAGE_HEAD;
847 *ptr &= ~RB_PAGE_UPDATE;
848}
849
850/*
851 * rb_head_page_activate - sets up head page
852 */
853static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
854{
855 struct buffer_page *head;
856
857 head = cpu_buffer->head_page;
858 if (!head)
859 return;
860
861 /*
862 * Set the previous list pointer to have the HEAD flag.
863 */
864 rb_set_list_to_head(cpu_buffer, head->list.prev);
865}
866
867static void rb_list_head_clear(struct list_head *list)
868{
869 unsigned long *ptr = (unsigned long *)&list->next;
870
871 *ptr &= ~RB_FLAG_MASK;
872}
873
874/*
875 * rb_head_page_dactivate - clears head page ptr (for free list)
876 */
877static void
878rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
879{
880 struct list_head *hd;
881
882 /* Go through the whole list and clear any pointers found. */
883 rb_list_head_clear(cpu_buffer->pages);
884
885 list_for_each(hd, cpu_buffer->pages)
886 rb_list_head_clear(hd);
887}
888
889static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
890 struct buffer_page *head,
891 struct buffer_page *prev,
892 int old_flag, int new_flag)
893{
894 struct list_head *list;
895 unsigned long val = (unsigned long)&head->list;
896 unsigned long ret;
897
898 list = &prev->list;
899
900 val &= ~RB_FLAG_MASK;
901
902 ret = cmpxchg((unsigned long *)&list->next,
903 val | old_flag, val | new_flag);
904
905 /* check if the reader took the page */
906 if ((ret & ~RB_FLAG_MASK) != val)
907 return RB_PAGE_MOVED;
908
909 return ret & RB_FLAG_MASK;
910}
911
912static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
913 struct buffer_page *head,
914 struct buffer_page *prev,
915 int old_flag)
916{
917 return rb_head_page_set(cpu_buffer, head, prev,
918 old_flag, RB_PAGE_UPDATE);
919}
920
921static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
922 struct buffer_page *head,
923 struct buffer_page *prev,
924 int old_flag)
925{
926 return rb_head_page_set(cpu_buffer, head, prev,
927 old_flag, RB_PAGE_HEAD);
928}
929
930static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
931 struct buffer_page *head,
932 struct buffer_page *prev,
933 int old_flag)
934{
935 return rb_head_page_set(cpu_buffer, head, prev,
936 old_flag, RB_PAGE_NORMAL);
937}
938
939static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
940 struct buffer_page **bpage)
941{
942 struct list_head *p = rb_list_head((*bpage)->list.next);
943
944 *bpage = list_entry(p, struct buffer_page, list);
945}
946
947static struct buffer_page *
948rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
949{
950 struct buffer_page *head;
951 struct buffer_page *page;
952 struct list_head *list;
953 int i;
954
955 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
956 return NULL;
957
958 /* sanity check */
959 list = cpu_buffer->pages;
960 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
961 return NULL;
962
963 page = head = cpu_buffer->head_page;
964 /*
965 * It is possible that the writer moves the header behind
966 * where we started, and we miss in one loop.
967 * A second loop should grab the header, but we'll do
968 * three loops just because I'm paranoid.
969 */
970 for (i = 0; i < 3; i++) {
971 do {
972 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
973 cpu_buffer->head_page = page;
974 return page;
975 }
976 rb_inc_page(cpu_buffer, &page);
977 } while (page != head);
978 }
979
980 RB_WARN_ON(cpu_buffer, 1);
981
982 return NULL;
983}
984
985static int rb_head_page_replace(struct buffer_page *old,
986 struct buffer_page *new)
987{
988 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
989 unsigned long val;
990 unsigned long ret;
991
992 val = *ptr & ~RB_FLAG_MASK;
993 val |= RB_PAGE_HEAD;
994
995 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
996
997 return ret == val;
998}
999
1000/*
1001 * rb_tail_page_update - move the tail page forward
1002 */
1003static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1004 struct buffer_page *tail_page,
1005 struct buffer_page *next_page)
1006{
1007 unsigned long old_entries;
1008 unsigned long old_write;
1009
1010 /*
1011 * The tail page now needs to be moved forward.
1012 *
1013 * We need to reset the tail page, but without messing
1014 * with possible erasing of data brought in by interrupts
1015 * that have moved the tail page and are currently on it.
1016 *
1017 * We add a counter to the write field to denote this.
1018 */
1019 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1020 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1021
1022 /*
1023 * Just make sure we have seen our old_write and synchronize
1024 * with any interrupts that come in.
1025 */
1026 barrier();
1027
1028 /*
1029 * If the tail page is still the same as what we think
1030 * it is, then it is up to us to update the tail
1031 * pointer.
1032 */
1033 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1034 /* Zero the write counter */
1035 unsigned long val = old_write & ~RB_WRITE_MASK;
1036 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1037
1038 /*
1039 * This will only succeed if an interrupt did
1040 * not come in and change it. In which case, we
1041 * do not want to modify it.
1042 *
1043 * We add (void) to let the compiler know that we do not care
1044 * about the return value of these functions. We use the
1045 * cmpxchg to only update if an interrupt did not already
1046 * do it for us. If the cmpxchg fails, we don't care.
1047 */
1048 (void)local_cmpxchg(&next_page->write, old_write, val);
1049 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1050
1051 /*
1052 * No need to worry about races with clearing out the commit.
1053 * it only can increment when a commit takes place. But that
1054 * only happens in the outer most nested commit.
1055 */
1056 local_set(&next_page->page->commit, 0);
1057
1058 /* Again, either we update tail_page or an interrupt does */
1059 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1060 }
1061}
1062
1063static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1064 struct buffer_page *bpage)
1065{
1066 unsigned long val = (unsigned long)bpage;
1067
1068 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1069 return 1;
1070
1071 return 0;
1072}
1073
1074/**
1075 * rb_check_list - make sure a pointer to a list has the last bits zero
1076 */
1077static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1078 struct list_head *list)
1079{
1080 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1081 return 1;
1082 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1083 return 1;
1084 return 0;
1085}
1086
1087/**
1088 * rb_check_pages - integrity check of buffer pages
1089 * @cpu_buffer: CPU buffer with pages to test
1090 *
1091 * As a safety measure we check to make sure the data pages have not
1092 * been corrupted.
1093 */
1094static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1095{
1096 struct list_head *head = cpu_buffer->pages;
1097 struct buffer_page *bpage, *tmp;
1098
1099 /* Reset the head page if it exists */
1100 if (cpu_buffer->head_page)
1101 rb_set_head_page(cpu_buffer);
1102
1103 rb_head_page_deactivate(cpu_buffer);
1104
1105 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1106 return -1;
1107 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1108 return -1;
1109
1110 if (rb_check_list(cpu_buffer, head))
1111 return -1;
1112
1113 list_for_each_entry_safe(bpage, tmp, head, list) {
1114 if (RB_WARN_ON(cpu_buffer,
1115 bpage->list.next->prev != &bpage->list))
1116 return -1;
1117 if (RB_WARN_ON(cpu_buffer,
1118 bpage->list.prev->next != &bpage->list))
1119 return -1;
1120 if (rb_check_list(cpu_buffer, &bpage->list))
1121 return -1;
1122 }
1123
1124 rb_head_page_activate(cpu_buffer);
1125
1126 return 0;
1127}
1128
1129static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1130{
1131 struct buffer_page *bpage, *tmp;
1132 long i;
1133
1134 for (i = 0; i < nr_pages; i++) {
1135 struct page *page;
1136 /*
1137 * __GFP_NORETRY flag makes sure that the allocation fails
1138 * gracefully without invoking oom-killer and the system is
1139 * not destabilized.
1140 */
1141 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1142 GFP_KERNEL | __GFP_NORETRY,
1143 cpu_to_node(cpu));
1144 if (!bpage)
1145 goto free_pages;
1146
1147 list_add(&bpage->list, pages);
1148
1149 page = alloc_pages_node(cpu_to_node(cpu),
1150 GFP_KERNEL | __GFP_NORETRY, 0);
1151 if (!page)
1152 goto free_pages;
1153 bpage->page = page_address(page);
1154 rb_init_page(bpage->page);
1155 }
1156
1157 return 0;
1158
1159free_pages:
1160 list_for_each_entry_safe(bpage, tmp, pages, list) {
1161 list_del_init(&bpage->list);
1162 free_buffer_page(bpage);
1163 }
1164
1165 return -ENOMEM;
1166}
1167
1168static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1169 unsigned long nr_pages)
1170{
1171 LIST_HEAD(pages);
1172
1173 WARN_ON(!nr_pages);
1174
1175 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1176 return -ENOMEM;
1177
1178 /*
1179 * The ring buffer page list is a circular list that does not
1180 * start and end with a list head. All page list items point to
1181 * other pages.
1182 */
1183 cpu_buffer->pages = pages.next;
1184 list_del(&pages);
1185
1186 cpu_buffer->nr_pages = nr_pages;
1187
1188 rb_check_pages(cpu_buffer);
1189
1190 return 0;
1191}
1192
1193static struct ring_buffer_per_cpu *
1194rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1195{
1196 struct ring_buffer_per_cpu *cpu_buffer;
1197 struct buffer_page *bpage;
1198 struct page *page;
1199 int ret;
1200
1201 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1202 GFP_KERNEL, cpu_to_node(cpu));
1203 if (!cpu_buffer)
1204 return NULL;
1205
1206 cpu_buffer->cpu = cpu;
1207 cpu_buffer->buffer = buffer;
1208 raw_spin_lock_init(&cpu_buffer->reader_lock);
1209 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1210 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1211 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1212 init_completion(&cpu_buffer->update_done);
1213 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1214 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1215 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1216
1217 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1218 GFP_KERNEL, cpu_to_node(cpu));
1219 if (!bpage)
1220 goto fail_free_buffer;
1221
1222 rb_check_bpage(cpu_buffer, bpage);
1223
1224 cpu_buffer->reader_page = bpage;
1225 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1226 if (!page)
1227 goto fail_free_reader;
1228 bpage->page = page_address(page);
1229 rb_init_page(bpage->page);
1230
1231 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1232 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1233
1234 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1235 if (ret < 0)
1236 goto fail_free_reader;
1237
1238 cpu_buffer->head_page
1239 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1240 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1241
1242 rb_head_page_activate(cpu_buffer);
1243
1244 return cpu_buffer;
1245
1246 fail_free_reader:
1247 free_buffer_page(cpu_buffer->reader_page);
1248
1249 fail_free_buffer:
1250 kfree(cpu_buffer);
1251 return NULL;
1252}
1253
1254static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1255{
1256 struct list_head *head = cpu_buffer->pages;
1257 struct buffer_page *bpage, *tmp;
1258
1259 free_buffer_page(cpu_buffer->reader_page);
1260
1261 rb_head_page_deactivate(cpu_buffer);
1262
1263 if (head) {
1264 list_for_each_entry_safe(bpage, tmp, head, list) {
1265 list_del_init(&bpage->list);
1266 free_buffer_page(bpage);
1267 }
1268 bpage = list_entry(head, struct buffer_page, list);
1269 free_buffer_page(bpage);
1270 }
1271
1272 kfree(cpu_buffer);
1273}
1274
1275/**
1276 * __ring_buffer_alloc - allocate a new ring_buffer
1277 * @size: the size in bytes per cpu that is needed.
1278 * @flags: attributes to set for the ring buffer.
1279 *
1280 * Currently the only flag that is available is the RB_FL_OVERWRITE
1281 * flag. This flag means that the buffer will overwrite old data
1282 * when the buffer wraps. If this flag is not set, the buffer will
1283 * drop data when the tail hits the head.
1284 */
1285struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1286 struct lock_class_key *key)
1287{
1288 struct ring_buffer *buffer;
1289 long nr_pages;
1290 int bsize;
1291 int cpu;
1292 int ret;
1293
1294 /* keep it in its own cache line */
1295 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1296 GFP_KERNEL);
1297 if (!buffer)
1298 return NULL;
1299
1300 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1301 goto fail_free_buffer;
1302
1303 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1304 buffer->flags = flags;
1305 buffer->clock = trace_clock_local;
1306 buffer->reader_lock_key = key;
1307
1308 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1309 init_waitqueue_head(&buffer->irq_work.waiters);
1310
1311 /* need at least two pages */
1312 if (nr_pages < 2)
1313 nr_pages = 2;
1314
1315 buffer->cpus = nr_cpu_ids;
1316
1317 bsize = sizeof(void *) * nr_cpu_ids;
1318 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1319 GFP_KERNEL);
1320 if (!buffer->buffers)
1321 goto fail_free_cpumask;
1322
1323 cpu = raw_smp_processor_id();
1324 cpumask_set_cpu(cpu, buffer->cpumask);
1325 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1326 if (!buffer->buffers[cpu])
1327 goto fail_free_buffers;
1328
1329 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1330 if (ret < 0)
1331 goto fail_free_buffers;
1332
1333 mutex_init(&buffer->mutex);
1334
1335 return buffer;
1336
1337 fail_free_buffers:
1338 for_each_buffer_cpu(buffer, cpu) {
1339 if (buffer->buffers[cpu])
1340 rb_free_cpu_buffer(buffer->buffers[cpu]);
1341 }
1342 kfree(buffer->buffers);
1343
1344 fail_free_cpumask:
1345 free_cpumask_var(buffer->cpumask);
1346
1347 fail_free_buffer:
1348 kfree(buffer);
1349 return NULL;
1350}
1351EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1352
1353/**
1354 * ring_buffer_free - free a ring buffer.
1355 * @buffer: the buffer to free.
1356 */
1357void
1358ring_buffer_free(struct ring_buffer *buffer)
1359{
1360 int cpu;
1361
1362 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1363
1364 for_each_buffer_cpu(buffer, cpu)
1365 rb_free_cpu_buffer(buffer->buffers[cpu]);
1366
1367 kfree(buffer->buffers);
1368 free_cpumask_var(buffer->cpumask);
1369
1370 kfree(buffer);
1371}
1372EXPORT_SYMBOL_GPL(ring_buffer_free);
1373
1374void ring_buffer_set_clock(struct ring_buffer *buffer,
1375 u64 (*clock)(void))
1376{
1377 buffer->clock = clock;
1378}
1379
1380static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1381
1382static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1383{
1384 return local_read(&bpage->entries) & RB_WRITE_MASK;
1385}
1386
1387static inline unsigned long rb_page_write(struct buffer_page *bpage)
1388{
1389 return local_read(&bpage->write) & RB_WRITE_MASK;
1390}
1391
1392static int
1393rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1394{
1395 struct list_head *tail_page, *to_remove, *next_page;
1396 struct buffer_page *to_remove_page, *tmp_iter_page;
1397 struct buffer_page *last_page, *first_page;
1398 unsigned long nr_removed;
1399 unsigned long head_bit;
1400 int page_entries;
1401
1402 head_bit = 0;
1403
1404 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1405 atomic_inc(&cpu_buffer->record_disabled);
1406 /*
1407 * We don't race with the readers since we have acquired the reader
1408 * lock. We also don't race with writers after disabling recording.
1409 * This makes it easy to figure out the first and the last page to be
1410 * removed from the list. We unlink all the pages in between including
1411 * the first and last pages. This is done in a busy loop so that we
1412 * lose the least number of traces.
1413 * The pages are freed after we restart recording and unlock readers.
1414 */
1415 tail_page = &cpu_buffer->tail_page->list;
1416
1417 /*
1418 * tail page might be on reader page, we remove the next page
1419 * from the ring buffer
1420 */
1421 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1422 tail_page = rb_list_head(tail_page->next);
1423 to_remove = tail_page;
1424
1425 /* start of pages to remove */
1426 first_page = list_entry(rb_list_head(to_remove->next),
1427 struct buffer_page, list);
1428
1429 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1430 to_remove = rb_list_head(to_remove)->next;
1431 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1432 }
1433
1434 next_page = rb_list_head(to_remove)->next;
1435
1436 /*
1437 * Now we remove all pages between tail_page and next_page.
1438 * Make sure that we have head_bit value preserved for the
1439 * next page
1440 */
1441 tail_page->next = (struct list_head *)((unsigned long)next_page |
1442 head_bit);
1443 next_page = rb_list_head(next_page);
1444 next_page->prev = tail_page;
1445
1446 /* make sure pages points to a valid page in the ring buffer */
1447 cpu_buffer->pages = next_page;
1448
1449 /* update head page */
1450 if (head_bit)
1451 cpu_buffer->head_page = list_entry(next_page,
1452 struct buffer_page, list);
1453
1454 /*
1455 * change read pointer to make sure any read iterators reset
1456 * themselves
1457 */
1458 cpu_buffer->read = 0;
1459
1460 /* pages are removed, resume tracing and then free the pages */
1461 atomic_dec(&cpu_buffer->record_disabled);
1462 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1463
1464 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1465
1466 /* last buffer page to remove */
1467 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1468 list);
1469 tmp_iter_page = first_page;
1470
1471 do {
1472 to_remove_page = tmp_iter_page;
1473 rb_inc_page(cpu_buffer, &tmp_iter_page);
1474
1475 /* update the counters */
1476 page_entries = rb_page_entries(to_remove_page);
1477 if (page_entries) {
1478 /*
1479 * If something was added to this page, it was full
1480 * since it is not the tail page. So we deduct the
1481 * bytes consumed in ring buffer from here.
1482 * Increment overrun to account for the lost events.
1483 */
1484 local_add(page_entries, &cpu_buffer->overrun);
1485 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1486 }
1487
1488 /*
1489 * We have already removed references to this list item, just
1490 * free up the buffer_page and its page
1491 */
1492 free_buffer_page(to_remove_page);
1493 nr_removed--;
1494
1495 } while (to_remove_page != last_page);
1496
1497 RB_WARN_ON(cpu_buffer, nr_removed);
1498
1499 return nr_removed == 0;
1500}
1501
1502static int
1503rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1504{
1505 struct list_head *pages = &cpu_buffer->new_pages;
1506 int retries, success;
1507
1508 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1509 /*
1510 * We are holding the reader lock, so the reader page won't be swapped
1511 * in the ring buffer. Now we are racing with the writer trying to
1512 * move head page and the tail page.
1513 * We are going to adapt the reader page update process where:
1514 * 1. We first splice the start and end of list of new pages between
1515 * the head page and its previous page.
1516 * 2. We cmpxchg the prev_page->next to point from head page to the
1517 * start of new pages list.
1518 * 3. Finally, we update the head->prev to the end of new list.
1519 *
1520 * We will try this process 10 times, to make sure that we don't keep
1521 * spinning.
1522 */
1523 retries = 10;
1524 success = 0;
1525 while (retries--) {
1526 struct list_head *head_page, *prev_page, *r;
1527 struct list_head *last_page, *first_page;
1528 struct list_head *head_page_with_bit;
1529
1530 head_page = &rb_set_head_page(cpu_buffer)->list;
1531 if (!head_page)
1532 break;
1533 prev_page = head_page->prev;
1534
1535 first_page = pages->next;
1536 last_page = pages->prev;
1537
1538 head_page_with_bit = (struct list_head *)
1539 ((unsigned long)head_page | RB_PAGE_HEAD);
1540
1541 last_page->next = head_page_with_bit;
1542 first_page->prev = prev_page;
1543
1544 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1545
1546 if (r == head_page_with_bit) {
1547 /*
1548 * yay, we replaced the page pointer to our new list,
1549 * now, we just have to update to head page's prev
1550 * pointer to point to end of list
1551 */
1552 head_page->prev = last_page;
1553 success = 1;
1554 break;
1555 }
1556 }
1557
1558 if (success)
1559 INIT_LIST_HEAD(pages);
1560 /*
1561 * If we weren't successful in adding in new pages, warn and stop
1562 * tracing
1563 */
1564 RB_WARN_ON(cpu_buffer, !success);
1565 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1566
1567 /* free pages if they weren't inserted */
1568 if (!success) {
1569 struct buffer_page *bpage, *tmp;
1570 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1571 list) {
1572 list_del_init(&bpage->list);
1573 free_buffer_page(bpage);
1574 }
1575 }
1576 return success;
1577}
1578
1579static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1580{
1581 int success;
1582
1583 if (cpu_buffer->nr_pages_to_update > 0)
1584 success = rb_insert_pages(cpu_buffer);
1585 else
1586 success = rb_remove_pages(cpu_buffer,
1587 -cpu_buffer->nr_pages_to_update);
1588
1589 if (success)
1590 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1591}
1592
1593static void update_pages_handler(struct work_struct *work)
1594{
1595 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1596 struct ring_buffer_per_cpu, update_pages_work);
1597 rb_update_pages(cpu_buffer);
1598 complete(&cpu_buffer->update_done);
1599}
1600
1601/**
1602 * ring_buffer_resize - resize the ring buffer
1603 * @buffer: the buffer to resize.
1604 * @size: the new size.
1605 * @cpu_id: the cpu buffer to resize
1606 *
1607 * Minimum size is 2 * BUF_PAGE_SIZE.
1608 *
1609 * Returns 0 on success and < 0 on failure.
1610 */
1611int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1612 int cpu_id)
1613{
1614 struct ring_buffer_per_cpu *cpu_buffer;
1615 unsigned long nr_pages;
1616 int cpu, err = 0;
1617
1618 /*
1619 * Always succeed at resizing a non-existent buffer:
1620 */
1621 if (!buffer)
1622 return size;
1623
1624 /* Make sure the requested buffer exists */
1625 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1626 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1627 return size;
1628
1629 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1630
1631 /* we need a minimum of two pages */
1632 if (nr_pages < 2)
1633 nr_pages = 2;
1634
1635 size = nr_pages * BUF_PAGE_SIZE;
1636
1637 /*
1638 * Don't succeed if resizing is disabled, as a reader might be
1639 * manipulating the ring buffer and is expecting a sane state while
1640 * this is true.
1641 */
1642 if (atomic_read(&buffer->resize_disabled))
1643 return -EBUSY;
1644
1645 /* prevent another thread from changing buffer sizes */
1646 mutex_lock(&buffer->mutex);
1647
1648 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1649 /* calculate the pages to update */
1650 for_each_buffer_cpu(buffer, cpu) {
1651 cpu_buffer = buffer->buffers[cpu];
1652
1653 cpu_buffer->nr_pages_to_update = nr_pages -
1654 cpu_buffer->nr_pages;
1655 /*
1656 * nothing more to do for removing pages or no update
1657 */
1658 if (cpu_buffer->nr_pages_to_update <= 0)
1659 continue;
1660 /*
1661 * to add pages, make sure all new pages can be
1662 * allocated without receiving ENOMEM
1663 */
1664 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1665 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1666 &cpu_buffer->new_pages, cpu)) {
1667 /* not enough memory for new pages */
1668 err = -ENOMEM;
1669 goto out_err;
1670 }
1671 }
1672
1673 get_online_cpus();
1674 /*
1675 * Fire off all the required work handlers
1676 * We can't schedule on offline CPUs, but it's not necessary
1677 * since we can change their buffer sizes without any race.
1678 */
1679 for_each_buffer_cpu(buffer, cpu) {
1680 cpu_buffer = buffer->buffers[cpu];
1681 if (!cpu_buffer->nr_pages_to_update)
1682 continue;
1683
1684 /* Can't run something on an offline CPU. */
1685 if (!cpu_online(cpu)) {
1686 rb_update_pages(cpu_buffer);
1687 cpu_buffer->nr_pages_to_update = 0;
1688 } else {
1689 schedule_work_on(cpu,
1690 &cpu_buffer->update_pages_work);
1691 }
1692 }
1693
1694 /* wait for all the updates to complete */
1695 for_each_buffer_cpu(buffer, cpu) {
1696 cpu_buffer = buffer->buffers[cpu];
1697 if (!cpu_buffer->nr_pages_to_update)
1698 continue;
1699
1700 if (cpu_online(cpu))
1701 wait_for_completion(&cpu_buffer->update_done);
1702 cpu_buffer->nr_pages_to_update = 0;
1703 }
1704
1705 put_online_cpus();
1706 } else {
1707 /* Make sure this CPU has been intitialized */
1708 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1709 goto out;
1710
1711 cpu_buffer = buffer->buffers[cpu_id];
1712
1713 if (nr_pages == cpu_buffer->nr_pages)
1714 goto out;
1715
1716 cpu_buffer->nr_pages_to_update = nr_pages -
1717 cpu_buffer->nr_pages;
1718
1719 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1720 if (cpu_buffer->nr_pages_to_update > 0 &&
1721 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1722 &cpu_buffer->new_pages, cpu_id)) {
1723 err = -ENOMEM;
1724 goto out_err;
1725 }
1726
1727 get_online_cpus();
1728
1729 /* Can't run something on an offline CPU. */
1730 if (!cpu_online(cpu_id))
1731 rb_update_pages(cpu_buffer);
1732 else {
1733 schedule_work_on(cpu_id,
1734 &cpu_buffer->update_pages_work);
1735 wait_for_completion(&cpu_buffer->update_done);
1736 }
1737
1738 cpu_buffer->nr_pages_to_update = 0;
1739 put_online_cpus();
1740 }
1741
1742 out:
1743 /*
1744 * The ring buffer resize can happen with the ring buffer
1745 * enabled, so that the update disturbs the tracing as little
1746 * as possible. But if the buffer is disabled, we do not need
1747 * to worry about that, and we can take the time to verify
1748 * that the buffer is not corrupt.
1749 */
1750 if (atomic_read(&buffer->record_disabled)) {
1751 atomic_inc(&buffer->record_disabled);
1752 /*
1753 * Even though the buffer was disabled, we must make sure
1754 * that it is truly disabled before calling rb_check_pages.
1755 * There could have been a race between checking
1756 * record_disable and incrementing it.
1757 */
1758 synchronize_sched();
1759 for_each_buffer_cpu(buffer, cpu) {
1760 cpu_buffer = buffer->buffers[cpu];
1761 rb_check_pages(cpu_buffer);
1762 }
1763 atomic_dec(&buffer->record_disabled);
1764 }
1765
1766 mutex_unlock(&buffer->mutex);
1767 return size;
1768
1769 out_err:
1770 for_each_buffer_cpu(buffer, cpu) {
1771 struct buffer_page *bpage, *tmp;
1772
1773 cpu_buffer = buffer->buffers[cpu];
1774 cpu_buffer->nr_pages_to_update = 0;
1775
1776 if (list_empty(&cpu_buffer->new_pages))
1777 continue;
1778
1779 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1780 list) {
1781 list_del_init(&bpage->list);
1782 free_buffer_page(bpage);
1783 }
1784 }
1785 mutex_unlock(&buffer->mutex);
1786 return err;
1787}
1788EXPORT_SYMBOL_GPL(ring_buffer_resize);
1789
1790void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1791{
1792 mutex_lock(&buffer->mutex);
1793 if (val)
1794 buffer->flags |= RB_FL_OVERWRITE;
1795 else
1796 buffer->flags &= ~RB_FL_OVERWRITE;
1797 mutex_unlock(&buffer->mutex);
1798}
1799EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1800
1801static __always_inline void *
1802__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1803{
1804 return bpage->data + index;
1805}
1806
1807static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1808{
1809 return bpage->page->data + index;
1810}
1811
1812static __always_inline struct ring_buffer_event *
1813rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1814{
1815 return __rb_page_index(cpu_buffer->reader_page,
1816 cpu_buffer->reader_page->read);
1817}
1818
1819static __always_inline struct ring_buffer_event *
1820rb_iter_head_event(struct ring_buffer_iter *iter)
1821{
1822 return __rb_page_index(iter->head_page, iter->head);
1823}
1824
1825static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1826{
1827 return local_read(&bpage->page->commit);
1828}
1829
1830/* Size is determined by what has been committed */
1831static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1832{
1833 return rb_page_commit(bpage);
1834}
1835
1836static __always_inline unsigned
1837rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1838{
1839 return rb_page_commit(cpu_buffer->commit_page);
1840}
1841
1842static __always_inline unsigned
1843rb_event_index(struct ring_buffer_event *event)
1844{
1845 unsigned long addr = (unsigned long)event;
1846
1847 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1848}
1849
1850static void rb_inc_iter(struct ring_buffer_iter *iter)
1851{
1852 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1853
1854 /*
1855 * The iterator could be on the reader page (it starts there).
1856 * But the head could have moved, since the reader was
1857 * found. Check for this case and assign the iterator
1858 * to the head page instead of next.
1859 */
1860 if (iter->head_page == cpu_buffer->reader_page)
1861 iter->head_page = rb_set_head_page(cpu_buffer);
1862 else
1863 rb_inc_page(cpu_buffer, &iter->head_page);
1864
1865 iter->read_stamp = iter->head_page->page->time_stamp;
1866 iter->head = 0;
1867}
1868
1869/*
1870 * rb_handle_head_page - writer hit the head page
1871 *
1872 * Returns: +1 to retry page
1873 * 0 to continue
1874 * -1 on error
1875 */
1876static int
1877rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1878 struct buffer_page *tail_page,
1879 struct buffer_page *next_page)
1880{
1881 struct buffer_page *new_head;
1882 int entries;
1883 int type;
1884 int ret;
1885
1886 entries = rb_page_entries(next_page);
1887
1888 /*
1889 * The hard part is here. We need to move the head
1890 * forward, and protect against both readers on
1891 * other CPUs and writers coming in via interrupts.
1892 */
1893 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1894 RB_PAGE_HEAD);
1895
1896 /*
1897 * type can be one of four:
1898 * NORMAL - an interrupt already moved it for us
1899 * HEAD - we are the first to get here.
1900 * UPDATE - we are the interrupt interrupting
1901 * a current move.
1902 * MOVED - a reader on another CPU moved the next
1903 * pointer to its reader page. Give up
1904 * and try again.
1905 */
1906
1907 switch (type) {
1908 case RB_PAGE_HEAD:
1909 /*
1910 * We changed the head to UPDATE, thus
1911 * it is our responsibility to update
1912 * the counters.
1913 */
1914 local_add(entries, &cpu_buffer->overrun);
1915 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1916
1917 /*
1918 * The entries will be zeroed out when we move the
1919 * tail page.
1920 */
1921
1922 /* still more to do */
1923 break;
1924
1925 case RB_PAGE_UPDATE:
1926 /*
1927 * This is an interrupt that interrupt the
1928 * previous update. Still more to do.
1929 */
1930 break;
1931 case RB_PAGE_NORMAL:
1932 /*
1933 * An interrupt came in before the update
1934 * and processed this for us.
1935 * Nothing left to do.
1936 */
1937 return 1;
1938 case RB_PAGE_MOVED:
1939 /*
1940 * The reader is on another CPU and just did
1941 * a swap with our next_page.
1942 * Try again.
1943 */
1944 return 1;
1945 default:
1946 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1947 return -1;
1948 }
1949
1950 /*
1951 * Now that we are here, the old head pointer is
1952 * set to UPDATE. This will keep the reader from
1953 * swapping the head page with the reader page.
1954 * The reader (on another CPU) will spin till
1955 * we are finished.
1956 *
1957 * We just need to protect against interrupts
1958 * doing the job. We will set the next pointer
1959 * to HEAD. After that, we set the old pointer
1960 * to NORMAL, but only if it was HEAD before.
1961 * otherwise we are an interrupt, and only
1962 * want the outer most commit to reset it.
1963 */
1964 new_head = next_page;
1965 rb_inc_page(cpu_buffer, &new_head);
1966
1967 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1968 RB_PAGE_NORMAL);
1969
1970 /*
1971 * Valid returns are:
1972 * HEAD - an interrupt came in and already set it.
1973 * NORMAL - One of two things:
1974 * 1) We really set it.
1975 * 2) A bunch of interrupts came in and moved
1976 * the page forward again.
1977 */
1978 switch (ret) {
1979 case RB_PAGE_HEAD:
1980 case RB_PAGE_NORMAL:
1981 /* OK */
1982 break;
1983 default:
1984 RB_WARN_ON(cpu_buffer, 1);
1985 return -1;
1986 }
1987
1988 /*
1989 * It is possible that an interrupt came in,
1990 * set the head up, then more interrupts came in
1991 * and moved it again. When we get back here,
1992 * the page would have been set to NORMAL but we
1993 * just set it back to HEAD.
1994 *
1995 * How do you detect this? Well, if that happened
1996 * the tail page would have moved.
1997 */
1998 if (ret == RB_PAGE_NORMAL) {
1999 struct buffer_page *buffer_tail_page;
2000
2001 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2002 /*
2003 * If the tail had moved passed next, then we need
2004 * to reset the pointer.
2005 */
2006 if (buffer_tail_page != tail_page &&
2007 buffer_tail_page != next_page)
2008 rb_head_page_set_normal(cpu_buffer, new_head,
2009 next_page,
2010 RB_PAGE_HEAD);
2011 }
2012
2013 /*
2014 * If this was the outer most commit (the one that
2015 * changed the original pointer from HEAD to UPDATE),
2016 * then it is up to us to reset it to NORMAL.
2017 */
2018 if (type == RB_PAGE_HEAD) {
2019 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2020 tail_page,
2021 RB_PAGE_UPDATE);
2022 if (RB_WARN_ON(cpu_buffer,
2023 ret != RB_PAGE_UPDATE))
2024 return -1;
2025 }
2026
2027 return 0;
2028}
2029
2030static inline void
2031rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2032 unsigned long tail, struct rb_event_info *info)
2033{
2034 struct buffer_page *tail_page = info->tail_page;
2035 struct ring_buffer_event *event;
2036 unsigned long length = info->length;
2037
2038 /*
2039 * Only the event that crossed the page boundary
2040 * must fill the old tail_page with padding.
2041 */
2042 if (tail >= BUF_PAGE_SIZE) {
2043 /*
2044 * If the page was filled, then we still need
2045 * to update the real_end. Reset it to zero
2046 * and the reader will ignore it.
2047 */
2048 if (tail == BUF_PAGE_SIZE)
2049 tail_page->real_end = 0;
2050
2051 local_sub(length, &tail_page->write);
2052 return;
2053 }
2054
2055 event = __rb_page_index(tail_page, tail);
2056 kmemcheck_annotate_bitfield(event, bitfield);
2057
2058 /* account for padding bytes */
2059 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2060
2061 /*
2062 * Save the original length to the meta data.
2063 * This will be used by the reader to add lost event
2064 * counter.
2065 */
2066 tail_page->real_end = tail;
2067
2068 /*
2069 * If this event is bigger than the minimum size, then
2070 * we need to be careful that we don't subtract the
2071 * write counter enough to allow another writer to slip
2072 * in on this page.
2073 * We put in a discarded commit instead, to make sure
2074 * that this space is not used again.
2075 *
2076 * If we are less than the minimum size, we don't need to
2077 * worry about it.
2078 */
2079 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2080 /* No room for any events */
2081
2082 /* Mark the rest of the page with padding */
2083 rb_event_set_padding(event);
2084
2085 /* Set the write back to the previous setting */
2086 local_sub(length, &tail_page->write);
2087 return;
2088 }
2089
2090 /* Put in a discarded event */
2091 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2092 event->type_len = RINGBUF_TYPE_PADDING;
2093 /* time delta must be non zero */
2094 event->time_delta = 1;
2095
2096 /* Set write to end of buffer */
2097 length = (tail + length) - BUF_PAGE_SIZE;
2098 local_sub(length, &tail_page->write);
2099}
2100
2101static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2102
2103/*
2104 * This is the slow path, force gcc not to inline it.
2105 */
2106static noinline struct ring_buffer_event *
2107rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2108 unsigned long tail, struct rb_event_info *info)
2109{
2110 struct buffer_page *tail_page = info->tail_page;
2111 struct buffer_page *commit_page = cpu_buffer->commit_page;
2112 struct ring_buffer *buffer = cpu_buffer->buffer;
2113 struct buffer_page *next_page;
2114 int ret;
2115
2116 next_page = tail_page;
2117
2118 rb_inc_page(cpu_buffer, &next_page);
2119
2120 /*
2121 * If for some reason, we had an interrupt storm that made
2122 * it all the way around the buffer, bail, and warn
2123 * about it.
2124 */
2125 if (unlikely(next_page == commit_page)) {
2126 local_inc(&cpu_buffer->commit_overrun);
2127 goto out_reset;
2128 }
2129
2130 /*
2131 * This is where the fun begins!
2132 *
2133 * We are fighting against races between a reader that
2134 * could be on another CPU trying to swap its reader
2135 * page with the buffer head.
2136 *
2137 * We are also fighting against interrupts coming in and
2138 * moving the head or tail on us as well.
2139 *
2140 * If the next page is the head page then we have filled
2141 * the buffer, unless the commit page is still on the
2142 * reader page.
2143 */
2144 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2145
2146 /*
2147 * If the commit is not on the reader page, then
2148 * move the header page.
2149 */
2150 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2151 /*
2152 * If we are not in overwrite mode,
2153 * this is easy, just stop here.
2154 */
2155 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2156 local_inc(&cpu_buffer->dropped_events);
2157 goto out_reset;
2158 }
2159
2160 ret = rb_handle_head_page(cpu_buffer,
2161 tail_page,
2162 next_page);
2163 if (ret < 0)
2164 goto out_reset;
2165 if (ret)
2166 goto out_again;
2167 } else {
2168 /*
2169 * We need to be careful here too. The
2170 * commit page could still be on the reader
2171 * page. We could have a small buffer, and
2172 * have filled up the buffer with events
2173 * from interrupts and such, and wrapped.
2174 *
2175 * Note, if the tail page is also the on the
2176 * reader_page, we let it move out.
2177 */
2178 if (unlikely((cpu_buffer->commit_page !=
2179 cpu_buffer->tail_page) &&
2180 (cpu_buffer->commit_page ==
2181 cpu_buffer->reader_page))) {
2182 local_inc(&cpu_buffer->commit_overrun);
2183 goto out_reset;
2184 }
2185 }
2186 }
2187
2188 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2189
2190 out_again:
2191
2192 rb_reset_tail(cpu_buffer, tail, info);
2193
2194 /* Commit what we have for now. */
2195 rb_end_commit(cpu_buffer);
2196 /* rb_end_commit() decs committing */
2197 local_inc(&cpu_buffer->committing);
2198
2199 /* fail and let the caller try again */
2200 return ERR_PTR(-EAGAIN);
2201
2202 out_reset:
2203 /* reset write */
2204 rb_reset_tail(cpu_buffer, tail, info);
2205
2206 return NULL;
2207}
2208
2209/* Slow path, do not inline */
2210static noinline struct ring_buffer_event *
2211rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2212{
2213 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2214
2215 /* Not the first event on the page? */
2216 if (rb_event_index(event)) {
2217 event->time_delta = delta & TS_MASK;
2218 event->array[0] = delta >> TS_SHIFT;
2219 } else {
2220 /* nope, just zero it */
2221 event->time_delta = 0;
2222 event->array[0] = 0;
2223 }
2224
2225 return skip_time_extend(event);
2226}
2227
2228static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2229 struct ring_buffer_event *event);
2230
2231/**
2232 * rb_update_event - update event type and data
2233 * @event: the event to update
2234 * @type: the type of event
2235 * @length: the size of the event field in the ring buffer
2236 *
2237 * Update the type and data fields of the event. The length
2238 * is the actual size that is written to the ring buffer,
2239 * and with this, we can determine what to place into the
2240 * data field.
2241 */
2242static void
2243rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2244 struct ring_buffer_event *event,
2245 struct rb_event_info *info)
2246{
2247 unsigned length = info->length;
2248 u64 delta = info->delta;
2249
2250 /* Only a commit updates the timestamp */
2251 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2252 delta = 0;
2253
2254 /*
2255 * If we need to add a timestamp, then we
2256 * add it to the start of the resevered space.
2257 */
2258 if (unlikely(info->add_timestamp)) {
2259 event = rb_add_time_stamp(event, delta);
2260 length -= RB_LEN_TIME_EXTEND;
2261 delta = 0;
2262 }
2263
2264 event->time_delta = delta;
2265 length -= RB_EVNT_HDR_SIZE;
2266 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2267 event->type_len = 0;
2268 event->array[0] = length;
2269 } else
2270 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2271}
2272
2273static unsigned rb_calculate_event_length(unsigned length)
2274{
2275 struct ring_buffer_event event; /* Used only for sizeof array */
2276
2277 /* zero length can cause confusions */
2278 if (!length)
2279 length++;
2280
2281 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2282 length += sizeof(event.array[0]);
2283
2284 length += RB_EVNT_HDR_SIZE;
2285 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2286
2287 /*
2288 * In case the time delta is larger than the 27 bits for it
2289 * in the header, we need to add a timestamp. If another
2290 * event comes in when trying to discard this one to increase
2291 * the length, then the timestamp will be added in the allocated
2292 * space of this event. If length is bigger than the size needed
2293 * for the TIME_EXTEND, then padding has to be used. The events
2294 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2295 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2296 * As length is a multiple of 4, we only need to worry if it
2297 * is 12 (RB_LEN_TIME_EXTEND + 4).
2298 */
2299 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2300 length += RB_ALIGNMENT;
2301
2302 return length;
2303}
2304
2305#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2306static inline bool sched_clock_stable(void)
2307{
2308 return true;
2309}
2310#endif
2311
2312static inline int
2313rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2314 struct ring_buffer_event *event)
2315{
2316 unsigned long new_index, old_index;
2317 struct buffer_page *bpage;
2318 unsigned long index;
2319 unsigned long addr;
2320
2321 new_index = rb_event_index(event);
2322 old_index = new_index + rb_event_ts_length(event);
2323 addr = (unsigned long)event;
2324 addr &= PAGE_MASK;
2325
2326 bpage = READ_ONCE(cpu_buffer->tail_page);
2327
2328 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2329 unsigned long write_mask =
2330 local_read(&bpage->write) & ~RB_WRITE_MASK;
2331 unsigned long event_length = rb_event_length(event);
2332 /*
2333 * This is on the tail page. It is possible that
2334 * a write could come in and move the tail page
2335 * and write to the next page. That is fine
2336 * because we just shorten what is on this page.
2337 */
2338 old_index += write_mask;
2339 new_index += write_mask;
2340 index = local_cmpxchg(&bpage->write, old_index, new_index);
2341 if (index == old_index) {
2342 /* update counters */
2343 local_sub(event_length, &cpu_buffer->entries_bytes);
2344 return 1;
2345 }
2346 }
2347
2348 /* could not discard */
2349 return 0;
2350}
2351
2352static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2353{
2354 local_inc(&cpu_buffer->committing);
2355 local_inc(&cpu_buffer->commits);
2356}
2357
2358static __always_inline void
2359rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2360{
2361 unsigned long max_count;
2362
2363 /*
2364 * We only race with interrupts and NMIs on this CPU.
2365 * If we own the commit event, then we can commit
2366 * all others that interrupted us, since the interruptions
2367 * are in stack format (they finish before they come
2368 * back to us). This allows us to do a simple loop to
2369 * assign the commit to the tail.
2370 */
2371 again:
2372 max_count = cpu_buffer->nr_pages * 100;
2373
2374 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2375 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2376 return;
2377 if (RB_WARN_ON(cpu_buffer,
2378 rb_is_reader_page(cpu_buffer->tail_page)))
2379 return;
2380 local_set(&cpu_buffer->commit_page->page->commit,
2381 rb_page_write(cpu_buffer->commit_page));
2382 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2383 /* Only update the write stamp if the page has an event */
2384 if (rb_page_write(cpu_buffer->commit_page))
2385 cpu_buffer->write_stamp =
2386 cpu_buffer->commit_page->page->time_stamp;
2387 /* add barrier to keep gcc from optimizing too much */
2388 barrier();
2389 }
2390 while (rb_commit_index(cpu_buffer) !=
2391 rb_page_write(cpu_buffer->commit_page)) {
2392
2393 local_set(&cpu_buffer->commit_page->page->commit,
2394 rb_page_write(cpu_buffer->commit_page));
2395 RB_WARN_ON(cpu_buffer,
2396 local_read(&cpu_buffer->commit_page->page->commit) &
2397 ~RB_WRITE_MASK);
2398 barrier();
2399 }
2400
2401 /* again, keep gcc from optimizing */
2402 barrier();
2403
2404 /*
2405 * If an interrupt came in just after the first while loop
2406 * and pushed the tail page forward, we will be left with
2407 * a dangling commit that will never go forward.
2408 */
2409 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2410 goto again;
2411}
2412
2413static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2414{
2415 unsigned long commits;
2416
2417 if (RB_WARN_ON(cpu_buffer,
2418 !local_read(&cpu_buffer->committing)))
2419 return;
2420
2421 again:
2422 commits = local_read(&cpu_buffer->commits);
2423 /* synchronize with interrupts */
2424 barrier();
2425 if (local_read(&cpu_buffer->committing) == 1)
2426 rb_set_commit_to_write(cpu_buffer);
2427
2428 local_dec(&cpu_buffer->committing);
2429
2430 /* synchronize with interrupts */
2431 barrier();
2432
2433 /*
2434 * Need to account for interrupts coming in between the
2435 * updating of the commit page and the clearing of the
2436 * committing counter.
2437 */
2438 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2439 !local_read(&cpu_buffer->committing)) {
2440 local_inc(&cpu_buffer->committing);
2441 goto again;
2442 }
2443}
2444
2445static inline void rb_event_discard(struct ring_buffer_event *event)
2446{
2447 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2448 event = skip_time_extend(event);
2449
2450 /* array[0] holds the actual length for the discarded event */
2451 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2452 event->type_len = RINGBUF_TYPE_PADDING;
2453 /* time delta must be non zero */
2454 if (!event->time_delta)
2455 event->time_delta = 1;
2456}
2457
2458static __always_inline bool
2459rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2460 struct ring_buffer_event *event)
2461{
2462 unsigned long addr = (unsigned long)event;
2463 unsigned long index;
2464
2465 index = rb_event_index(event);
2466 addr &= PAGE_MASK;
2467
2468 return cpu_buffer->commit_page->page == (void *)addr &&
2469 rb_commit_index(cpu_buffer) == index;
2470}
2471
2472static __always_inline void
2473rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2474 struct ring_buffer_event *event)
2475{
2476 u64 delta;
2477
2478 /*
2479 * The event first in the commit queue updates the
2480 * time stamp.
2481 */
2482 if (rb_event_is_commit(cpu_buffer, event)) {
2483 /*
2484 * A commit event that is first on a page
2485 * updates the write timestamp with the page stamp
2486 */
2487 if (!rb_event_index(event))
2488 cpu_buffer->write_stamp =
2489 cpu_buffer->commit_page->page->time_stamp;
2490 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2491 delta = event->array[0];
2492 delta <<= TS_SHIFT;
2493 delta += event->time_delta;
2494 cpu_buffer->write_stamp += delta;
2495 } else
2496 cpu_buffer->write_stamp += event->time_delta;
2497 }
2498}
2499
2500static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2501 struct ring_buffer_event *event)
2502{
2503 local_inc(&cpu_buffer->entries);
2504 rb_update_write_stamp(cpu_buffer, event);
2505 rb_end_commit(cpu_buffer);
2506}
2507
2508static __always_inline void
2509rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2510{
2511 bool pagebusy;
2512
2513 if (buffer->irq_work.waiters_pending) {
2514 buffer->irq_work.waiters_pending = false;
2515 /* irq_work_queue() supplies it's own memory barriers */
2516 irq_work_queue(&buffer->irq_work.work);
2517 }
2518
2519 if (cpu_buffer->irq_work.waiters_pending) {
2520 cpu_buffer->irq_work.waiters_pending = false;
2521 /* irq_work_queue() supplies it's own memory barriers */
2522 irq_work_queue(&cpu_buffer->irq_work.work);
2523 }
2524
2525 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2526
2527 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2528 cpu_buffer->irq_work.wakeup_full = true;
2529 cpu_buffer->irq_work.full_waiters_pending = false;
2530 /* irq_work_queue() supplies it's own memory barriers */
2531 irq_work_queue(&cpu_buffer->irq_work.work);
2532 }
2533}
2534
2535/*
2536 * The lock and unlock are done within a preempt disable section.
2537 * The current_context per_cpu variable can only be modified
2538 * by the current task between lock and unlock. But it can
2539 * be modified more than once via an interrupt. To pass this
2540 * information from the lock to the unlock without having to
2541 * access the 'in_interrupt()' functions again (which do show
2542 * a bit of overhead in something as critical as function tracing,
2543 * we use a bitmask trick.
2544 *
2545 * bit 0 = NMI context
2546 * bit 1 = IRQ context
2547 * bit 2 = SoftIRQ context
2548 * bit 3 = normal context.
2549 *
2550 * This works because this is the order of contexts that can
2551 * preempt other contexts. A SoftIRQ never preempts an IRQ
2552 * context.
2553 *
2554 * When the context is determined, the corresponding bit is
2555 * checked and set (if it was set, then a recursion of that context
2556 * happened).
2557 *
2558 * On unlock, we need to clear this bit. To do so, just subtract
2559 * 1 from the current_context and AND it to itself.
2560 *
2561 * (binary)
2562 * 101 - 1 = 100
2563 * 101 & 100 = 100 (clearing bit zero)
2564 *
2565 * 1010 - 1 = 1001
2566 * 1010 & 1001 = 1000 (clearing bit 1)
2567 *
2568 * The least significant bit can be cleared this way, and it
2569 * just so happens that it is the same bit corresponding to
2570 * the current context.
2571 */
2572
2573static __always_inline int
2574trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2575{
2576 unsigned int val = cpu_buffer->current_context;
2577 int bit;
2578
2579 if (in_interrupt()) {
2580 if (in_nmi())
2581 bit = RB_CTX_NMI;
2582 else if (in_irq())
2583 bit = RB_CTX_IRQ;
2584 else
2585 bit = RB_CTX_SOFTIRQ;
2586 } else
2587 bit = RB_CTX_NORMAL;
2588
2589 if (unlikely(val & (1 << bit)))
2590 return 1;
2591
2592 val |= (1 << bit);
2593 cpu_buffer->current_context = val;
2594
2595 return 0;
2596}
2597
2598static __always_inline void
2599trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2600{
2601 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2602}
2603
2604/**
2605 * ring_buffer_unlock_commit - commit a reserved
2606 * @buffer: The buffer to commit to
2607 * @event: The event pointer to commit.
2608 *
2609 * This commits the data to the ring buffer, and releases any locks held.
2610 *
2611 * Must be paired with ring_buffer_lock_reserve.
2612 */
2613int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2614 struct ring_buffer_event *event)
2615{
2616 struct ring_buffer_per_cpu *cpu_buffer;
2617 int cpu = raw_smp_processor_id();
2618
2619 cpu_buffer = buffer->buffers[cpu];
2620
2621 rb_commit(cpu_buffer, event);
2622
2623 rb_wakeups(buffer, cpu_buffer);
2624
2625 trace_recursive_unlock(cpu_buffer);
2626
2627 preempt_enable_notrace();
2628
2629 return 0;
2630}
2631EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2632
2633static noinline void
2634rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2635 struct rb_event_info *info)
2636{
2637 WARN_ONCE(info->delta > (1ULL << 59),
2638 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2639 (unsigned long long)info->delta,
2640 (unsigned long long)info->ts,
2641 (unsigned long long)cpu_buffer->write_stamp,
2642 sched_clock_stable() ? "" :
2643 "If you just came from a suspend/resume,\n"
2644 "please switch to the trace global clock:\n"
2645 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2646 info->add_timestamp = 1;
2647}
2648
2649static struct ring_buffer_event *
2650__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2651 struct rb_event_info *info)
2652{
2653 struct ring_buffer_event *event;
2654 struct buffer_page *tail_page;
2655 unsigned long tail, write;
2656
2657 /*
2658 * If the time delta since the last event is too big to
2659 * hold in the time field of the event, then we append a
2660 * TIME EXTEND event ahead of the data event.
2661 */
2662 if (unlikely(info->add_timestamp))
2663 info->length += RB_LEN_TIME_EXTEND;
2664
2665 /* Don't let the compiler play games with cpu_buffer->tail_page */
2666 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2667 write = local_add_return(info->length, &tail_page->write);
2668
2669 /* set write to only the index of the write */
2670 write &= RB_WRITE_MASK;
2671 tail = write - info->length;
2672
2673 /*
2674 * If this is the first commit on the page, then it has the same
2675 * timestamp as the page itself.
2676 */
2677 if (!tail)
2678 info->delta = 0;
2679
2680 /* See if we shot pass the end of this buffer page */
2681 if (unlikely(write > BUF_PAGE_SIZE))
2682 return rb_move_tail(cpu_buffer, tail, info);
2683
2684 /* We reserved something on the buffer */
2685
2686 event = __rb_page_index(tail_page, tail);
2687 kmemcheck_annotate_bitfield(event, bitfield);
2688 rb_update_event(cpu_buffer, event, info);
2689
2690 local_inc(&tail_page->entries);
2691
2692 /*
2693 * If this is the first commit on the page, then update
2694 * its timestamp.
2695 */
2696 if (!tail)
2697 tail_page->page->time_stamp = info->ts;
2698
2699 /* account for these added bytes */
2700 local_add(info->length, &cpu_buffer->entries_bytes);
2701
2702 return event;
2703}
2704
2705static __always_inline struct ring_buffer_event *
2706rb_reserve_next_event(struct ring_buffer *buffer,
2707 struct ring_buffer_per_cpu *cpu_buffer,
2708 unsigned long length)
2709{
2710 struct ring_buffer_event *event;
2711 struct rb_event_info info;
2712 int nr_loops = 0;
2713 u64 diff;
2714
2715 rb_start_commit(cpu_buffer);
2716
2717#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2718 /*
2719 * Due to the ability to swap a cpu buffer from a buffer
2720 * it is possible it was swapped before we committed.
2721 * (committing stops a swap). We check for it here and
2722 * if it happened, we have to fail the write.
2723 */
2724 barrier();
2725 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2726 local_dec(&cpu_buffer->committing);
2727 local_dec(&cpu_buffer->commits);
2728 return NULL;
2729 }
2730#endif
2731
2732 info.length = rb_calculate_event_length(length);
2733 again:
2734 info.add_timestamp = 0;
2735 info.delta = 0;
2736
2737 /*
2738 * We allow for interrupts to reenter here and do a trace.
2739 * If one does, it will cause this original code to loop
2740 * back here. Even with heavy interrupts happening, this
2741 * should only happen a few times in a row. If this happens
2742 * 1000 times in a row, there must be either an interrupt
2743 * storm or we have something buggy.
2744 * Bail!
2745 */
2746 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2747 goto out_fail;
2748
2749 info.ts = rb_time_stamp(cpu_buffer->buffer);
2750 diff = info.ts - cpu_buffer->write_stamp;
2751
2752 /* make sure this diff is calculated here */
2753 barrier();
2754
2755 /* Did the write stamp get updated already? */
2756 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2757 info.delta = diff;
2758 if (unlikely(test_time_stamp(info.delta)))
2759 rb_handle_timestamp(cpu_buffer, &info);
2760 }
2761
2762 event = __rb_reserve_next(cpu_buffer, &info);
2763
2764 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2765 if (info.add_timestamp)
2766 info.length -= RB_LEN_TIME_EXTEND;
2767 goto again;
2768 }
2769
2770 if (!event)
2771 goto out_fail;
2772
2773 return event;
2774
2775 out_fail:
2776 rb_end_commit(cpu_buffer);
2777 return NULL;
2778}
2779
2780/**
2781 * ring_buffer_lock_reserve - reserve a part of the buffer
2782 * @buffer: the ring buffer to reserve from
2783 * @length: the length of the data to reserve (excluding event header)
2784 *
2785 * Returns a reseverd event on the ring buffer to copy directly to.
2786 * The user of this interface will need to get the body to write into
2787 * and can use the ring_buffer_event_data() interface.
2788 *
2789 * The length is the length of the data needed, not the event length
2790 * which also includes the event header.
2791 *
2792 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2793 * If NULL is returned, then nothing has been allocated or locked.
2794 */
2795struct ring_buffer_event *
2796ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2797{
2798 struct ring_buffer_per_cpu *cpu_buffer;
2799 struct ring_buffer_event *event;
2800 int cpu;
2801
2802 /* If we are tracing schedule, we don't want to recurse */
2803 preempt_disable_notrace();
2804
2805 if (unlikely(atomic_read(&buffer->record_disabled)))
2806 goto out;
2807
2808 cpu = raw_smp_processor_id();
2809
2810 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2811 goto out;
2812
2813 cpu_buffer = buffer->buffers[cpu];
2814
2815 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2816 goto out;
2817
2818 if (unlikely(length > BUF_MAX_DATA_SIZE))
2819 goto out;
2820
2821 if (unlikely(trace_recursive_lock(cpu_buffer)))
2822 goto out;
2823
2824 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2825 if (!event)
2826 goto out_unlock;
2827
2828 return event;
2829
2830 out_unlock:
2831 trace_recursive_unlock(cpu_buffer);
2832 out:
2833 preempt_enable_notrace();
2834 return NULL;
2835}
2836EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2837
2838/*
2839 * Decrement the entries to the page that an event is on.
2840 * The event does not even need to exist, only the pointer
2841 * to the page it is on. This may only be called before the commit
2842 * takes place.
2843 */
2844static inline void
2845rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2846 struct ring_buffer_event *event)
2847{
2848 unsigned long addr = (unsigned long)event;
2849 struct buffer_page *bpage = cpu_buffer->commit_page;
2850 struct buffer_page *start;
2851
2852 addr &= PAGE_MASK;
2853
2854 /* Do the likely case first */
2855 if (likely(bpage->page == (void *)addr)) {
2856 local_dec(&bpage->entries);
2857 return;
2858 }
2859
2860 /*
2861 * Because the commit page may be on the reader page we
2862 * start with the next page and check the end loop there.
2863 */
2864 rb_inc_page(cpu_buffer, &bpage);
2865 start = bpage;
2866 do {
2867 if (bpage->page == (void *)addr) {
2868 local_dec(&bpage->entries);
2869 return;
2870 }
2871 rb_inc_page(cpu_buffer, &bpage);
2872 } while (bpage != start);
2873
2874 /* commit not part of this buffer?? */
2875 RB_WARN_ON(cpu_buffer, 1);
2876}
2877
2878/**
2879 * ring_buffer_commit_discard - discard an event that has not been committed
2880 * @buffer: the ring buffer
2881 * @event: non committed event to discard
2882 *
2883 * Sometimes an event that is in the ring buffer needs to be ignored.
2884 * This function lets the user discard an event in the ring buffer
2885 * and then that event will not be read later.
2886 *
2887 * This function only works if it is called before the the item has been
2888 * committed. It will try to free the event from the ring buffer
2889 * if another event has not been added behind it.
2890 *
2891 * If another event has been added behind it, it will set the event
2892 * up as discarded, and perform the commit.
2893 *
2894 * If this function is called, do not call ring_buffer_unlock_commit on
2895 * the event.
2896 */
2897void ring_buffer_discard_commit(struct ring_buffer *buffer,
2898 struct ring_buffer_event *event)
2899{
2900 struct ring_buffer_per_cpu *cpu_buffer;
2901 int cpu;
2902
2903 /* The event is discarded regardless */
2904 rb_event_discard(event);
2905
2906 cpu = smp_processor_id();
2907 cpu_buffer = buffer->buffers[cpu];
2908
2909 /*
2910 * This must only be called if the event has not been
2911 * committed yet. Thus we can assume that preemption
2912 * is still disabled.
2913 */
2914 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2915
2916 rb_decrement_entry(cpu_buffer, event);
2917 if (rb_try_to_discard(cpu_buffer, event))
2918 goto out;
2919
2920 /*
2921 * The commit is still visible by the reader, so we
2922 * must still update the timestamp.
2923 */
2924 rb_update_write_stamp(cpu_buffer, event);
2925 out:
2926 rb_end_commit(cpu_buffer);
2927
2928 trace_recursive_unlock(cpu_buffer);
2929
2930 preempt_enable_notrace();
2931
2932}
2933EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2934
2935/**
2936 * ring_buffer_write - write data to the buffer without reserving
2937 * @buffer: The ring buffer to write to.
2938 * @length: The length of the data being written (excluding the event header)
2939 * @data: The data to write to the buffer.
2940 *
2941 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2942 * one function. If you already have the data to write to the buffer, it
2943 * may be easier to simply call this function.
2944 *
2945 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2946 * and not the length of the event which would hold the header.
2947 */
2948int ring_buffer_write(struct ring_buffer *buffer,
2949 unsigned long length,
2950 void *data)
2951{
2952 struct ring_buffer_per_cpu *cpu_buffer;
2953 struct ring_buffer_event *event;
2954 void *body;
2955 int ret = -EBUSY;
2956 int cpu;
2957
2958 preempt_disable_notrace();
2959
2960 if (atomic_read(&buffer->record_disabled))
2961 goto out;
2962
2963 cpu = raw_smp_processor_id();
2964
2965 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2966 goto out;
2967
2968 cpu_buffer = buffer->buffers[cpu];
2969
2970 if (atomic_read(&cpu_buffer->record_disabled))
2971 goto out;
2972
2973 if (length > BUF_MAX_DATA_SIZE)
2974 goto out;
2975
2976 if (unlikely(trace_recursive_lock(cpu_buffer)))
2977 goto out;
2978
2979 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2980 if (!event)
2981 goto out_unlock;
2982
2983 body = rb_event_data(event);
2984
2985 memcpy(body, data, length);
2986
2987 rb_commit(cpu_buffer, event);
2988
2989 rb_wakeups(buffer, cpu_buffer);
2990
2991 ret = 0;
2992
2993 out_unlock:
2994 trace_recursive_unlock(cpu_buffer);
2995
2996 out:
2997 preempt_enable_notrace();
2998
2999 return ret;
3000}
3001EXPORT_SYMBOL_GPL(ring_buffer_write);
3002
3003static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3004{
3005 struct buffer_page *reader = cpu_buffer->reader_page;
3006 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3007 struct buffer_page *commit = cpu_buffer->commit_page;
3008
3009 /* In case of error, head will be NULL */
3010 if (unlikely(!head))
3011 return true;
3012
3013 return reader->read == rb_page_commit(reader) &&
3014 (commit == reader ||
3015 (commit == head &&
3016 head->read == rb_page_commit(commit)));
3017}
3018
3019/**
3020 * ring_buffer_record_disable - stop all writes into the buffer
3021 * @buffer: The ring buffer to stop writes to.
3022 *
3023 * This prevents all writes to the buffer. Any attempt to write
3024 * to the buffer after this will fail and return NULL.
3025 *
3026 * The caller should call synchronize_sched() after this.
3027 */
3028void ring_buffer_record_disable(struct ring_buffer *buffer)
3029{
3030 atomic_inc(&buffer->record_disabled);
3031}
3032EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3033
3034/**
3035 * ring_buffer_record_enable - enable writes to the buffer
3036 * @buffer: The ring buffer to enable writes
3037 *
3038 * Note, multiple disables will need the same number of enables
3039 * to truly enable the writing (much like preempt_disable).
3040 */
3041void ring_buffer_record_enable(struct ring_buffer *buffer)
3042{
3043 atomic_dec(&buffer->record_disabled);
3044}
3045EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3046
3047/**
3048 * ring_buffer_record_off - stop all writes into the buffer
3049 * @buffer: The ring buffer to stop writes to.
3050 *
3051 * This prevents all writes to the buffer. Any attempt to write
3052 * to the buffer after this will fail and return NULL.
3053 *
3054 * This is different than ring_buffer_record_disable() as
3055 * it works like an on/off switch, where as the disable() version
3056 * must be paired with a enable().
3057 */
3058void ring_buffer_record_off(struct ring_buffer *buffer)
3059{
3060 unsigned int rd;
3061 unsigned int new_rd;
3062
3063 do {
3064 rd = atomic_read(&buffer->record_disabled);
3065 new_rd = rd | RB_BUFFER_OFF;
3066 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3067}
3068EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3069
3070/**
3071 * ring_buffer_record_on - restart writes into the buffer
3072 * @buffer: The ring buffer to start writes to.
3073 *
3074 * This enables all writes to the buffer that was disabled by
3075 * ring_buffer_record_off().
3076 *
3077 * This is different than ring_buffer_record_enable() as
3078 * it works like an on/off switch, where as the enable() version
3079 * must be paired with a disable().
3080 */
3081void ring_buffer_record_on(struct ring_buffer *buffer)
3082{
3083 unsigned int rd;
3084 unsigned int new_rd;
3085
3086 do {
3087 rd = atomic_read(&buffer->record_disabled);
3088 new_rd = rd & ~RB_BUFFER_OFF;
3089 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3090}
3091EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3092
3093/**
3094 * ring_buffer_record_is_on - return true if the ring buffer can write
3095 * @buffer: The ring buffer to see if write is enabled
3096 *
3097 * Returns true if the ring buffer is in a state that it accepts writes.
3098 */
3099int ring_buffer_record_is_on(struct ring_buffer *buffer)
3100{
3101 return !atomic_read(&buffer->record_disabled);
3102}
3103
3104/**
3105 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3106 * @buffer: The ring buffer to stop writes to.
3107 * @cpu: The CPU buffer to stop
3108 *
3109 * This prevents all writes to the buffer. Any attempt to write
3110 * to the buffer after this will fail and return NULL.
3111 *
3112 * The caller should call synchronize_sched() after this.
3113 */
3114void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3115{
3116 struct ring_buffer_per_cpu *cpu_buffer;
3117
3118 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3119 return;
3120
3121 cpu_buffer = buffer->buffers[cpu];
3122 atomic_inc(&cpu_buffer->record_disabled);
3123}
3124EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3125
3126/**
3127 * ring_buffer_record_enable_cpu - enable writes to the buffer
3128 * @buffer: The ring buffer to enable writes
3129 * @cpu: The CPU to enable.
3130 *
3131 * Note, multiple disables will need the same number of enables
3132 * to truly enable the writing (much like preempt_disable).
3133 */
3134void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3135{
3136 struct ring_buffer_per_cpu *cpu_buffer;
3137
3138 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3139 return;
3140
3141 cpu_buffer = buffer->buffers[cpu];
3142 atomic_dec(&cpu_buffer->record_disabled);
3143}
3144EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3145
3146/*
3147 * The total entries in the ring buffer is the running counter
3148 * of entries entered into the ring buffer, minus the sum of
3149 * the entries read from the ring buffer and the number of
3150 * entries that were overwritten.
3151 */
3152static inline unsigned long
3153rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3154{
3155 return local_read(&cpu_buffer->entries) -
3156 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3157}
3158
3159/**
3160 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3161 * @buffer: The ring buffer
3162 * @cpu: The per CPU buffer to read from.
3163 */
3164u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3165{
3166 unsigned long flags;
3167 struct ring_buffer_per_cpu *cpu_buffer;
3168 struct buffer_page *bpage;
3169 u64 ret = 0;
3170
3171 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3172 return 0;
3173
3174 cpu_buffer = buffer->buffers[cpu];
3175 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3176 /*
3177 * if the tail is on reader_page, oldest time stamp is on the reader
3178 * page
3179 */
3180 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3181 bpage = cpu_buffer->reader_page;
3182 else
3183 bpage = rb_set_head_page(cpu_buffer);
3184 if (bpage)
3185 ret = bpage->page->time_stamp;
3186 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3187
3188 return ret;
3189}
3190EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3191
3192/**
3193 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3194 * @buffer: The ring buffer
3195 * @cpu: The per CPU buffer to read from.
3196 */
3197unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3198{
3199 struct ring_buffer_per_cpu *cpu_buffer;
3200 unsigned long ret;
3201
3202 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3203 return 0;
3204
3205 cpu_buffer = buffer->buffers[cpu];
3206 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3207
3208 return ret;
3209}
3210EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3211
3212/**
3213 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3214 * @buffer: The ring buffer
3215 * @cpu: The per CPU buffer to get the entries from.
3216 */
3217unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3218{
3219 struct ring_buffer_per_cpu *cpu_buffer;
3220
3221 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3222 return 0;
3223
3224 cpu_buffer = buffer->buffers[cpu];
3225
3226 return rb_num_of_entries(cpu_buffer);
3227}
3228EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3229
3230/**
3231 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3232 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3233 * @buffer: The ring buffer
3234 * @cpu: The per CPU buffer to get the number of overruns from
3235 */
3236unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3237{
3238 struct ring_buffer_per_cpu *cpu_buffer;
3239 unsigned long ret;
3240
3241 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3242 return 0;
3243
3244 cpu_buffer = buffer->buffers[cpu];
3245 ret = local_read(&cpu_buffer->overrun);
3246
3247 return ret;
3248}
3249EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3250
3251/**
3252 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3253 * commits failing due to the buffer wrapping around while there are uncommitted
3254 * events, such as during an interrupt storm.
3255 * @buffer: The ring buffer
3256 * @cpu: The per CPU buffer to get the number of overruns from
3257 */
3258unsigned long
3259ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3260{
3261 struct ring_buffer_per_cpu *cpu_buffer;
3262 unsigned long ret;
3263
3264 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3265 return 0;
3266
3267 cpu_buffer = buffer->buffers[cpu];
3268 ret = local_read(&cpu_buffer->commit_overrun);
3269
3270 return ret;
3271}
3272EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3273
3274/**
3275 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3276 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3277 * @buffer: The ring buffer
3278 * @cpu: The per CPU buffer to get the number of overruns from
3279 */
3280unsigned long
3281ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3282{
3283 struct ring_buffer_per_cpu *cpu_buffer;
3284 unsigned long ret;
3285
3286 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3287 return 0;
3288
3289 cpu_buffer = buffer->buffers[cpu];
3290 ret = local_read(&cpu_buffer->dropped_events);
3291
3292 return ret;
3293}
3294EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3295
3296/**
3297 * ring_buffer_read_events_cpu - get the number of events successfully read
3298 * @buffer: The ring buffer
3299 * @cpu: The per CPU buffer to get the number of events read
3300 */
3301unsigned long
3302ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3303{
3304 struct ring_buffer_per_cpu *cpu_buffer;
3305
3306 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3307 return 0;
3308
3309 cpu_buffer = buffer->buffers[cpu];
3310 return cpu_buffer->read;
3311}
3312EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3313
3314/**
3315 * ring_buffer_entries - get the number of entries in a buffer
3316 * @buffer: The ring buffer
3317 *
3318 * Returns the total number of entries in the ring buffer
3319 * (all CPU entries)
3320 */
3321unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3322{
3323 struct ring_buffer_per_cpu *cpu_buffer;
3324 unsigned long entries = 0;
3325 int cpu;
3326
3327 /* if you care about this being correct, lock the buffer */
3328 for_each_buffer_cpu(buffer, cpu) {
3329 cpu_buffer = buffer->buffers[cpu];
3330 entries += rb_num_of_entries(cpu_buffer);
3331 }
3332
3333 return entries;
3334}
3335EXPORT_SYMBOL_GPL(ring_buffer_entries);
3336
3337/**
3338 * ring_buffer_overruns - get the number of overruns in buffer
3339 * @buffer: The ring buffer
3340 *
3341 * Returns the total number of overruns in the ring buffer
3342 * (all CPU entries)
3343 */
3344unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3345{
3346 struct ring_buffer_per_cpu *cpu_buffer;
3347 unsigned long overruns = 0;
3348 int cpu;
3349
3350 /* if you care about this being correct, lock the buffer */
3351 for_each_buffer_cpu(buffer, cpu) {
3352 cpu_buffer = buffer->buffers[cpu];
3353 overruns += local_read(&cpu_buffer->overrun);
3354 }
3355
3356 return overruns;
3357}
3358EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3359
3360static void rb_iter_reset(struct ring_buffer_iter *iter)
3361{
3362 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3363
3364 /* Iterator usage is expected to have record disabled */
3365 iter->head_page = cpu_buffer->reader_page;
3366 iter->head = cpu_buffer->reader_page->read;
3367
3368 iter->cache_reader_page = iter->head_page;
3369 iter->cache_read = cpu_buffer->read;
3370
3371 if (iter->head)
3372 iter->read_stamp = cpu_buffer->read_stamp;
3373 else
3374 iter->read_stamp = iter->head_page->page->time_stamp;
3375}
3376
3377/**
3378 * ring_buffer_iter_reset - reset an iterator
3379 * @iter: The iterator to reset
3380 *
3381 * Resets the iterator, so that it will start from the beginning
3382 * again.
3383 */
3384void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3385{
3386 struct ring_buffer_per_cpu *cpu_buffer;
3387 unsigned long flags;
3388
3389 if (!iter)
3390 return;
3391
3392 cpu_buffer = iter->cpu_buffer;
3393
3394 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3395 rb_iter_reset(iter);
3396 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3397}
3398EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3399
3400/**
3401 * ring_buffer_iter_empty - check if an iterator has no more to read
3402 * @iter: The iterator to check
3403 */
3404int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3405{
3406 struct ring_buffer_per_cpu *cpu_buffer;
3407
3408 cpu_buffer = iter->cpu_buffer;
3409
3410 return iter->head_page == cpu_buffer->commit_page &&
3411 iter->head == rb_commit_index(cpu_buffer);
3412}
3413EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3414
3415static void
3416rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3417 struct ring_buffer_event *event)
3418{
3419 u64 delta;
3420
3421 switch (event->type_len) {
3422 case RINGBUF_TYPE_PADDING:
3423 return;
3424
3425 case RINGBUF_TYPE_TIME_EXTEND:
3426 delta = event->array[0];
3427 delta <<= TS_SHIFT;
3428 delta += event->time_delta;
3429 cpu_buffer->read_stamp += delta;
3430 return;
3431
3432 case RINGBUF_TYPE_TIME_STAMP:
3433 /* FIXME: not implemented */
3434 return;
3435
3436 case RINGBUF_TYPE_DATA:
3437 cpu_buffer->read_stamp += event->time_delta;
3438 return;
3439
3440 default:
3441 BUG();
3442 }
3443 return;
3444}
3445
3446static void
3447rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3448 struct ring_buffer_event *event)
3449{
3450 u64 delta;
3451
3452 switch (event->type_len) {
3453 case RINGBUF_TYPE_PADDING:
3454 return;
3455
3456 case RINGBUF_TYPE_TIME_EXTEND:
3457 delta = event->array[0];
3458 delta <<= TS_SHIFT;
3459 delta += event->time_delta;
3460 iter->read_stamp += delta;
3461 return;
3462
3463 case RINGBUF_TYPE_TIME_STAMP:
3464 /* FIXME: not implemented */
3465 return;
3466
3467 case RINGBUF_TYPE_DATA:
3468 iter->read_stamp += event->time_delta;
3469 return;
3470
3471 default:
3472 BUG();
3473 }
3474 return;
3475}
3476
3477static struct buffer_page *
3478rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3479{
3480 struct buffer_page *reader = NULL;
3481 unsigned long overwrite;
3482 unsigned long flags;
3483 int nr_loops = 0;
3484 int ret;
3485
3486 local_irq_save(flags);
3487 arch_spin_lock(&cpu_buffer->lock);
3488
3489 again:
3490 /*
3491 * This should normally only loop twice. But because the
3492 * start of the reader inserts an empty page, it causes
3493 * a case where we will loop three times. There should be no
3494 * reason to loop four times (that I know of).
3495 */
3496 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3497 reader = NULL;
3498 goto out;
3499 }
3500
3501 reader = cpu_buffer->reader_page;
3502
3503 /* If there's more to read, return this page */
3504 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3505 goto out;
3506
3507 /* Never should we have an index greater than the size */
3508 if (RB_WARN_ON(cpu_buffer,
3509 cpu_buffer->reader_page->read > rb_page_size(reader)))
3510 goto out;
3511
3512 /* check if we caught up to the tail */
3513 reader = NULL;
3514 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3515 goto out;
3516
3517 /* Don't bother swapping if the ring buffer is empty */
3518 if (rb_num_of_entries(cpu_buffer) == 0)
3519 goto out;
3520
3521 /*
3522 * Reset the reader page to size zero.
3523 */
3524 local_set(&cpu_buffer->reader_page->write, 0);
3525 local_set(&cpu_buffer->reader_page->entries, 0);
3526 local_set(&cpu_buffer->reader_page->page->commit, 0);
3527 cpu_buffer->reader_page->real_end = 0;
3528
3529 spin:
3530 /*
3531 * Splice the empty reader page into the list around the head.
3532 */
3533 reader = rb_set_head_page(cpu_buffer);
3534 if (!reader)
3535 goto out;
3536 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3537 cpu_buffer->reader_page->list.prev = reader->list.prev;
3538
3539 /*
3540 * cpu_buffer->pages just needs to point to the buffer, it
3541 * has no specific buffer page to point to. Lets move it out
3542 * of our way so we don't accidentally swap it.
3543 */
3544 cpu_buffer->pages = reader->list.prev;
3545
3546 /* The reader page will be pointing to the new head */
3547 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3548
3549 /*
3550 * We want to make sure we read the overruns after we set up our
3551 * pointers to the next object. The writer side does a
3552 * cmpxchg to cross pages which acts as the mb on the writer
3553 * side. Note, the reader will constantly fail the swap
3554 * while the writer is updating the pointers, so this
3555 * guarantees that the overwrite recorded here is the one we
3556 * want to compare with the last_overrun.
3557 */
3558 smp_mb();
3559 overwrite = local_read(&(cpu_buffer->overrun));
3560
3561 /*
3562 * Here's the tricky part.
3563 *
3564 * We need to move the pointer past the header page.
3565 * But we can only do that if a writer is not currently
3566 * moving it. The page before the header page has the
3567 * flag bit '1' set if it is pointing to the page we want.
3568 * but if the writer is in the process of moving it
3569 * than it will be '2' or already moved '0'.
3570 */
3571
3572 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3573
3574 /*
3575 * If we did not convert it, then we must try again.
3576 */
3577 if (!ret)
3578 goto spin;
3579
3580 /*
3581 * Yeah! We succeeded in replacing the page.
3582 *
3583 * Now make the new head point back to the reader page.
3584 */
3585 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3586 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3587
3588 /* Finally update the reader page to the new head */
3589 cpu_buffer->reader_page = reader;
3590 cpu_buffer->reader_page->read = 0;
3591
3592 if (overwrite != cpu_buffer->last_overrun) {
3593 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3594 cpu_buffer->last_overrun = overwrite;
3595 }
3596
3597 goto again;
3598
3599 out:
3600 /* Update the read_stamp on the first event */
3601 if (reader && reader->read == 0)
3602 cpu_buffer->read_stamp = reader->page->time_stamp;
3603
3604 arch_spin_unlock(&cpu_buffer->lock);
3605 local_irq_restore(flags);
3606
3607 return reader;
3608}
3609
3610static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3611{
3612 struct ring_buffer_event *event;
3613 struct buffer_page *reader;
3614 unsigned length;
3615
3616 reader = rb_get_reader_page(cpu_buffer);
3617
3618 /* This function should not be called when buffer is empty */
3619 if (RB_WARN_ON(cpu_buffer, !reader))
3620 return;
3621
3622 event = rb_reader_event(cpu_buffer);
3623
3624 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3625 cpu_buffer->read++;
3626
3627 rb_update_read_stamp(cpu_buffer, event);
3628
3629 length = rb_event_length(event);
3630 cpu_buffer->reader_page->read += length;
3631}
3632
3633static void rb_advance_iter(struct ring_buffer_iter *iter)
3634{
3635 struct ring_buffer_per_cpu *cpu_buffer;
3636 struct ring_buffer_event *event;
3637 unsigned length;
3638
3639 cpu_buffer = iter->cpu_buffer;
3640
3641 /*
3642 * Check if we are at the end of the buffer.
3643 */
3644 if (iter->head >= rb_page_size(iter->head_page)) {
3645 /* discarded commits can make the page empty */
3646 if (iter->head_page == cpu_buffer->commit_page)
3647 return;
3648 rb_inc_iter(iter);
3649 return;
3650 }
3651
3652 event = rb_iter_head_event(iter);
3653
3654 length = rb_event_length(event);
3655
3656 /*
3657 * This should not be called to advance the header if we are
3658 * at the tail of the buffer.
3659 */
3660 if (RB_WARN_ON(cpu_buffer,
3661 (iter->head_page == cpu_buffer->commit_page) &&
3662 (iter->head + length > rb_commit_index(cpu_buffer))))
3663 return;
3664
3665 rb_update_iter_read_stamp(iter, event);
3666
3667 iter->head += length;
3668
3669 /* check for end of page padding */
3670 if ((iter->head >= rb_page_size(iter->head_page)) &&
3671 (iter->head_page != cpu_buffer->commit_page))
3672 rb_inc_iter(iter);
3673}
3674
3675static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3676{
3677 return cpu_buffer->lost_events;
3678}
3679
3680static struct ring_buffer_event *
3681rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3682 unsigned long *lost_events)
3683{
3684 struct ring_buffer_event *event;
3685 struct buffer_page *reader;
3686 int nr_loops = 0;
3687
3688 again:
3689 /*
3690 * We repeat when a time extend is encountered.
3691 * Since the time extend is always attached to a data event,
3692 * we should never loop more than once.
3693 * (We never hit the following condition more than twice).
3694 */
3695 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3696 return NULL;
3697
3698 reader = rb_get_reader_page(cpu_buffer);
3699 if (!reader)
3700 return NULL;
3701
3702 event = rb_reader_event(cpu_buffer);
3703
3704 switch (event->type_len) {
3705 case RINGBUF_TYPE_PADDING:
3706 if (rb_null_event(event))
3707 RB_WARN_ON(cpu_buffer, 1);
3708 /*
3709 * Because the writer could be discarding every
3710 * event it creates (which would probably be bad)
3711 * if we were to go back to "again" then we may never
3712 * catch up, and will trigger the warn on, or lock
3713 * the box. Return the padding, and we will release
3714 * the current locks, and try again.
3715 */
3716 return event;
3717
3718 case RINGBUF_TYPE_TIME_EXTEND:
3719 /* Internal data, OK to advance */
3720 rb_advance_reader(cpu_buffer);
3721 goto again;
3722
3723 case RINGBUF_TYPE_TIME_STAMP:
3724 /* FIXME: not implemented */
3725 rb_advance_reader(cpu_buffer);
3726 goto again;
3727
3728 case RINGBUF_TYPE_DATA:
3729 if (ts) {
3730 *ts = cpu_buffer->read_stamp + event->time_delta;
3731 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3732 cpu_buffer->cpu, ts);
3733 }
3734 if (lost_events)
3735 *lost_events = rb_lost_events(cpu_buffer);
3736 return event;
3737
3738 default:
3739 BUG();
3740 }
3741
3742 return NULL;
3743}
3744EXPORT_SYMBOL_GPL(ring_buffer_peek);
3745
3746static struct ring_buffer_event *
3747rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3748{
3749 struct ring_buffer *buffer;
3750 struct ring_buffer_per_cpu *cpu_buffer;
3751 struct ring_buffer_event *event;
3752 int nr_loops = 0;
3753
3754 cpu_buffer = iter->cpu_buffer;
3755 buffer = cpu_buffer->buffer;
3756
3757 /*
3758 * Check if someone performed a consuming read to
3759 * the buffer. A consuming read invalidates the iterator
3760 * and we need to reset the iterator in this case.
3761 */
3762 if (unlikely(iter->cache_read != cpu_buffer->read ||
3763 iter->cache_reader_page != cpu_buffer->reader_page))
3764 rb_iter_reset(iter);
3765
3766 again:
3767 if (ring_buffer_iter_empty(iter))
3768 return NULL;
3769
3770 /*
3771 * We repeat when a time extend is encountered or we hit
3772 * the end of the page. Since the time extend is always attached
3773 * to a data event, we should never loop more than three times.
3774 * Once for going to next page, once on time extend, and
3775 * finally once to get the event.
3776 * (We never hit the following condition more than thrice).
3777 */
3778 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3779 return NULL;
3780
3781 if (rb_per_cpu_empty(cpu_buffer))
3782 return NULL;
3783
3784 if (iter->head >= rb_page_size(iter->head_page)) {
3785 rb_inc_iter(iter);
3786 goto again;
3787 }
3788
3789 event = rb_iter_head_event(iter);
3790
3791 switch (event->type_len) {
3792 case RINGBUF_TYPE_PADDING:
3793 if (rb_null_event(event)) {
3794 rb_inc_iter(iter);
3795 goto again;
3796 }
3797 rb_advance_iter(iter);
3798 return event;
3799
3800 case RINGBUF_TYPE_TIME_EXTEND:
3801 /* Internal data, OK to advance */
3802 rb_advance_iter(iter);
3803 goto again;
3804
3805 case RINGBUF_TYPE_TIME_STAMP:
3806 /* FIXME: not implemented */
3807 rb_advance_iter(iter);
3808 goto again;
3809
3810 case RINGBUF_TYPE_DATA:
3811 if (ts) {
3812 *ts = iter->read_stamp + event->time_delta;
3813 ring_buffer_normalize_time_stamp(buffer,
3814 cpu_buffer->cpu, ts);
3815 }
3816 return event;
3817
3818 default:
3819 BUG();
3820 }
3821
3822 return NULL;
3823}
3824EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3825
3826static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3827{
3828 if (likely(!in_nmi())) {
3829 raw_spin_lock(&cpu_buffer->reader_lock);
3830 return true;
3831 }
3832
3833 /*
3834 * If an NMI die dumps out the content of the ring buffer
3835 * trylock must be used to prevent a deadlock if the NMI
3836 * preempted a task that holds the ring buffer locks. If
3837 * we get the lock then all is fine, if not, then continue
3838 * to do the read, but this can corrupt the ring buffer,
3839 * so it must be permanently disabled from future writes.
3840 * Reading from NMI is a oneshot deal.
3841 */
3842 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3843 return true;
3844
3845 /* Continue without locking, but disable the ring buffer */
3846 atomic_inc(&cpu_buffer->record_disabled);
3847 return false;
3848}
3849
3850static inline void
3851rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3852{
3853 if (likely(locked))
3854 raw_spin_unlock(&cpu_buffer->reader_lock);
3855 return;
3856}
3857
3858/**
3859 * ring_buffer_peek - peek at the next event to be read
3860 * @buffer: The ring buffer to read
3861 * @cpu: The cpu to peak at
3862 * @ts: The timestamp counter of this event.
3863 * @lost_events: a variable to store if events were lost (may be NULL)
3864 *
3865 * This will return the event that will be read next, but does
3866 * not consume the data.
3867 */
3868struct ring_buffer_event *
3869ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3870 unsigned long *lost_events)
3871{
3872 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3873 struct ring_buffer_event *event;
3874 unsigned long flags;
3875 bool dolock;
3876
3877 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3878 return NULL;
3879
3880 again:
3881 local_irq_save(flags);
3882 dolock = rb_reader_lock(cpu_buffer);
3883 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3884 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3885 rb_advance_reader(cpu_buffer);
3886 rb_reader_unlock(cpu_buffer, dolock);
3887 local_irq_restore(flags);
3888
3889 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3890 goto again;
3891
3892 return event;
3893}
3894
3895/**
3896 * ring_buffer_iter_peek - peek at the next event to be read
3897 * @iter: The ring buffer iterator
3898 * @ts: The timestamp counter of this event.
3899 *
3900 * This will return the event that will be read next, but does
3901 * not increment the iterator.
3902 */
3903struct ring_buffer_event *
3904ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3905{
3906 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3907 struct ring_buffer_event *event;
3908 unsigned long flags;
3909
3910 again:
3911 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3912 event = rb_iter_peek(iter, ts);
3913 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3914
3915 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3916 goto again;
3917
3918 return event;
3919}
3920
3921/**
3922 * ring_buffer_consume - return an event and consume it
3923 * @buffer: The ring buffer to get the next event from
3924 * @cpu: the cpu to read the buffer from
3925 * @ts: a variable to store the timestamp (may be NULL)
3926 * @lost_events: a variable to store if events were lost (may be NULL)
3927 *
3928 * Returns the next event in the ring buffer, and that event is consumed.
3929 * Meaning, that sequential reads will keep returning a different event,
3930 * and eventually empty the ring buffer if the producer is slower.
3931 */
3932struct ring_buffer_event *
3933ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3934 unsigned long *lost_events)
3935{
3936 struct ring_buffer_per_cpu *cpu_buffer;
3937 struct ring_buffer_event *event = NULL;
3938 unsigned long flags;
3939 bool dolock;
3940
3941 again:
3942 /* might be called in atomic */
3943 preempt_disable();
3944
3945 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3946 goto out;
3947
3948 cpu_buffer = buffer->buffers[cpu];
3949 local_irq_save(flags);
3950 dolock = rb_reader_lock(cpu_buffer);
3951
3952 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3953 if (event) {
3954 cpu_buffer->lost_events = 0;
3955 rb_advance_reader(cpu_buffer);
3956 }
3957
3958 rb_reader_unlock(cpu_buffer, dolock);
3959 local_irq_restore(flags);
3960
3961 out:
3962 preempt_enable();
3963
3964 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3965 goto again;
3966
3967 return event;
3968}
3969EXPORT_SYMBOL_GPL(ring_buffer_consume);
3970
3971/**
3972 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3973 * @buffer: The ring buffer to read from
3974 * @cpu: The cpu buffer to iterate over
3975 *
3976 * This performs the initial preparations necessary to iterate
3977 * through the buffer. Memory is allocated, buffer recording
3978 * is disabled, and the iterator pointer is returned to the caller.
3979 *
3980 * Disabling buffer recordng prevents the reading from being
3981 * corrupted. This is not a consuming read, so a producer is not
3982 * expected.
3983 *
3984 * After a sequence of ring_buffer_read_prepare calls, the user is
3985 * expected to make at least one call to ring_buffer_read_prepare_sync.
3986 * Afterwards, ring_buffer_read_start is invoked to get things going
3987 * for real.
3988 *
3989 * This overall must be paired with ring_buffer_read_finish.
3990 */
3991struct ring_buffer_iter *
3992ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3993{
3994 struct ring_buffer_per_cpu *cpu_buffer;
3995 struct ring_buffer_iter *iter;
3996
3997 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3998 return NULL;
3999
4000 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4001 if (!iter)
4002 return NULL;
4003
4004 cpu_buffer = buffer->buffers[cpu];
4005
4006 iter->cpu_buffer = cpu_buffer;
4007
4008 atomic_inc(&buffer->resize_disabled);
4009 atomic_inc(&cpu_buffer->record_disabled);
4010
4011 return iter;
4012}
4013EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4014
4015/**
4016 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4017 *
4018 * All previously invoked ring_buffer_read_prepare calls to prepare
4019 * iterators will be synchronized. Afterwards, read_buffer_read_start
4020 * calls on those iterators are allowed.
4021 */
4022void
4023ring_buffer_read_prepare_sync(void)
4024{
4025 synchronize_sched();
4026}
4027EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4028
4029/**
4030 * ring_buffer_read_start - start a non consuming read of the buffer
4031 * @iter: The iterator returned by ring_buffer_read_prepare
4032 *
4033 * This finalizes the startup of an iteration through the buffer.
4034 * The iterator comes from a call to ring_buffer_read_prepare and
4035 * an intervening ring_buffer_read_prepare_sync must have been
4036 * performed.
4037 *
4038 * Must be paired with ring_buffer_read_finish.
4039 */
4040void
4041ring_buffer_read_start(struct ring_buffer_iter *iter)
4042{
4043 struct ring_buffer_per_cpu *cpu_buffer;
4044 unsigned long flags;
4045
4046 if (!iter)
4047 return;
4048
4049 cpu_buffer = iter->cpu_buffer;
4050
4051 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4052 arch_spin_lock(&cpu_buffer->lock);
4053 rb_iter_reset(iter);
4054 arch_spin_unlock(&cpu_buffer->lock);
4055 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4056}
4057EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4058
4059/**
4060 * ring_buffer_read_finish - finish reading the iterator of the buffer
4061 * @iter: The iterator retrieved by ring_buffer_start
4062 *
4063 * This re-enables the recording to the buffer, and frees the
4064 * iterator.
4065 */
4066void
4067ring_buffer_read_finish(struct ring_buffer_iter *iter)
4068{
4069 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4070 unsigned long flags;
4071
4072 /*
4073 * Ring buffer is disabled from recording, here's a good place
4074 * to check the integrity of the ring buffer.
4075 * Must prevent readers from trying to read, as the check
4076 * clears the HEAD page and readers require it.
4077 */
4078 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4079 rb_check_pages(cpu_buffer);
4080 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4081
4082 atomic_dec(&cpu_buffer->record_disabled);
4083 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4084 kfree(iter);
4085}
4086EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4087
4088/**
4089 * ring_buffer_read - read the next item in the ring buffer by the iterator
4090 * @iter: The ring buffer iterator
4091 * @ts: The time stamp of the event read.
4092 *
4093 * This reads the next event in the ring buffer and increments the iterator.
4094 */
4095struct ring_buffer_event *
4096ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4097{
4098 struct ring_buffer_event *event;
4099 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4100 unsigned long flags;
4101
4102 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4103 again:
4104 event = rb_iter_peek(iter, ts);
4105 if (!event)
4106 goto out;
4107
4108 if (event->type_len == RINGBUF_TYPE_PADDING)
4109 goto again;
4110
4111 rb_advance_iter(iter);
4112 out:
4113 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4114
4115 return event;
4116}
4117EXPORT_SYMBOL_GPL(ring_buffer_read);
4118
4119/**
4120 * ring_buffer_size - return the size of the ring buffer (in bytes)
4121 * @buffer: The ring buffer.
4122 */
4123unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4124{
4125 /*
4126 * Earlier, this method returned
4127 * BUF_PAGE_SIZE * buffer->nr_pages
4128 * Since the nr_pages field is now removed, we have converted this to
4129 * return the per cpu buffer value.
4130 */
4131 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4132 return 0;
4133
4134 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4135}
4136EXPORT_SYMBOL_GPL(ring_buffer_size);
4137
4138static void
4139rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4140{
4141 rb_head_page_deactivate(cpu_buffer);
4142
4143 cpu_buffer->head_page
4144 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4145 local_set(&cpu_buffer->head_page->write, 0);
4146 local_set(&cpu_buffer->head_page->entries, 0);
4147 local_set(&cpu_buffer->head_page->page->commit, 0);
4148
4149 cpu_buffer->head_page->read = 0;
4150
4151 cpu_buffer->tail_page = cpu_buffer->head_page;
4152 cpu_buffer->commit_page = cpu_buffer->head_page;
4153
4154 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4155 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4156 local_set(&cpu_buffer->reader_page->write, 0);
4157 local_set(&cpu_buffer->reader_page->entries, 0);
4158 local_set(&cpu_buffer->reader_page->page->commit, 0);
4159 cpu_buffer->reader_page->read = 0;
4160
4161 local_set(&cpu_buffer->entries_bytes, 0);
4162 local_set(&cpu_buffer->overrun, 0);
4163 local_set(&cpu_buffer->commit_overrun, 0);
4164 local_set(&cpu_buffer->dropped_events, 0);
4165 local_set(&cpu_buffer->entries, 0);
4166 local_set(&cpu_buffer->committing, 0);
4167 local_set(&cpu_buffer->commits, 0);
4168 cpu_buffer->read = 0;
4169 cpu_buffer->read_bytes = 0;
4170
4171 cpu_buffer->write_stamp = 0;
4172 cpu_buffer->read_stamp = 0;
4173
4174 cpu_buffer->lost_events = 0;
4175 cpu_buffer->last_overrun = 0;
4176
4177 rb_head_page_activate(cpu_buffer);
4178}
4179
4180/**
4181 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4182 * @buffer: The ring buffer to reset a per cpu buffer of
4183 * @cpu: The CPU buffer to be reset
4184 */
4185void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4186{
4187 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4188 unsigned long flags;
4189
4190 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4191 return;
4192
4193 atomic_inc(&buffer->resize_disabled);
4194 atomic_inc(&cpu_buffer->record_disabled);
4195
4196 /* Make sure all commits have finished */
4197 synchronize_sched();
4198
4199 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4200
4201 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4202 goto out;
4203
4204 arch_spin_lock(&cpu_buffer->lock);
4205
4206 rb_reset_cpu(cpu_buffer);
4207
4208 arch_spin_unlock(&cpu_buffer->lock);
4209
4210 out:
4211 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4212
4213 atomic_dec(&cpu_buffer->record_disabled);
4214 atomic_dec(&buffer->resize_disabled);
4215}
4216EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4217
4218/**
4219 * ring_buffer_reset - reset a ring buffer
4220 * @buffer: The ring buffer to reset all cpu buffers
4221 */
4222void ring_buffer_reset(struct ring_buffer *buffer)
4223{
4224 int cpu;
4225
4226 for_each_buffer_cpu(buffer, cpu)
4227 ring_buffer_reset_cpu(buffer, cpu);
4228}
4229EXPORT_SYMBOL_GPL(ring_buffer_reset);
4230
4231/**
4232 * rind_buffer_empty - is the ring buffer empty?
4233 * @buffer: The ring buffer to test
4234 */
4235bool ring_buffer_empty(struct ring_buffer *buffer)
4236{
4237 struct ring_buffer_per_cpu *cpu_buffer;
4238 unsigned long flags;
4239 bool dolock;
4240 int cpu;
4241 int ret;
4242
4243 /* yes this is racy, but if you don't like the race, lock the buffer */
4244 for_each_buffer_cpu(buffer, cpu) {
4245 cpu_buffer = buffer->buffers[cpu];
4246 local_irq_save(flags);
4247 dolock = rb_reader_lock(cpu_buffer);
4248 ret = rb_per_cpu_empty(cpu_buffer);
4249 rb_reader_unlock(cpu_buffer, dolock);
4250 local_irq_restore(flags);
4251
4252 if (!ret)
4253 return false;
4254 }
4255
4256 return true;
4257}
4258EXPORT_SYMBOL_GPL(ring_buffer_empty);
4259
4260/**
4261 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4262 * @buffer: The ring buffer
4263 * @cpu: The CPU buffer to test
4264 */
4265bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4266{
4267 struct ring_buffer_per_cpu *cpu_buffer;
4268 unsigned long flags;
4269 bool dolock;
4270 int ret;
4271
4272 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4273 return true;
4274
4275 cpu_buffer = buffer->buffers[cpu];
4276 local_irq_save(flags);
4277 dolock = rb_reader_lock(cpu_buffer);
4278 ret = rb_per_cpu_empty(cpu_buffer);
4279 rb_reader_unlock(cpu_buffer, dolock);
4280 local_irq_restore(flags);
4281
4282 return ret;
4283}
4284EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4285
4286#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4287/**
4288 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4289 * @buffer_a: One buffer to swap with
4290 * @buffer_b: The other buffer to swap with
4291 *
4292 * This function is useful for tracers that want to take a "snapshot"
4293 * of a CPU buffer and has another back up buffer lying around.
4294 * it is expected that the tracer handles the cpu buffer not being
4295 * used at the moment.
4296 */
4297int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4298 struct ring_buffer *buffer_b, int cpu)
4299{
4300 struct ring_buffer_per_cpu *cpu_buffer_a;
4301 struct ring_buffer_per_cpu *cpu_buffer_b;
4302 int ret = -EINVAL;
4303
4304 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4305 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4306 goto out;
4307
4308 cpu_buffer_a = buffer_a->buffers[cpu];
4309 cpu_buffer_b = buffer_b->buffers[cpu];
4310
4311 /* At least make sure the two buffers are somewhat the same */
4312 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4313 goto out;
4314
4315 ret = -EAGAIN;
4316
4317 if (atomic_read(&buffer_a->record_disabled))
4318 goto out;
4319
4320 if (atomic_read(&buffer_b->record_disabled))
4321 goto out;
4322
4323 if (atomic_read(&cpu_buffer_a->record_disabled))
4324 goto out;
4325
4326 if (atomic_read(&cpu_buffer_b->record_disabled))
4327 goto out;
4328
4329 /*
4330 * We can't do a synchronize_sched here because this
4331 * function can be called in atomic context.
4332 * Normally this will be called from the same CPU as cpu.
4333 * If not it's up to the caller to protect this.
4334 */
4335 atomic_inc(&cpu_buffer_a->record_disabled);
4336 atomic_inc(&cpu_buffer_b->record_disabled);
4337
4338 ret = -EBUSY;
4339 if (local_read(&cpu_buffer_a->committing))
4340 goto out_dec;
4341 if (local_read(&cpu_buffer_b->committing))
4342 goto out_dec;
4343
4344 buffer_a->buffers[cpu] = cpu_buffer_b;
4345 buffer_b->buffers[cpu] = cpu_buffer_a;
4346
4347 cpu_buffer_b->buffer = buffer_a;
4348 cpu_buffer_a->buffer = buffer_b;
4349
4350 ret = 0;
4351
4352out_dec:
4353 atomic_dec(&cpu_buffer_a->record_disabled);
4354 atomic_dec(&cpu_buffer_b->record_disabled);
4355out:
4356 return ret;
4357}
4358EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4359#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4360
4361/**
4362 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4363 * @buffer: the buffer to allocate for.
4364 * @cpu: the cpu buffer to allocate.
4365 *
4366 * This function is used in conjunction with ring_buffer_read_page.
4367 * When reading a full page from the ring buffer, these functions
4368 * can be used to speed up the process. The calling function should
4369 * allocate a few pages first with this function. Then when it
4370 * needs to get pages from the ring buffer, it passes the result
4371 * of this function into ring_buffer_read_page, which will swap
4372 * the page that was allocated, with the read page of the buffer.
4373 *
4374 * Returns:
4375 * The page allocated, or NULL on error.
4376 */
4377void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4378{
4379 struct buffer_data_page *bpage;
4380 struct page *page;
4381
4382 page = alloc_pages_node(cpu_to_node(cpu),
4383 GFP_KERNEL | __GFP_NORETRY, 0);
4384 if (!page)
4385 return NULL;
4386
4387 bpage = page_address(page);
4388
4389 rb_init_page(bpage);
4390
4391 return bpage;
4392}
4393EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4394
4395/**
4396 * ring_buffer_free_read_page - free an allocated read page
4397 * @buffer: the buffer the page was allocate for
4398 * @data: the page to free
4399 *
4400 * Free a page allocated from ring_buffer_alloc_read_page.
4401 */
4402void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4403{
4404 free_page((unsigned long)data);
4405}
4406EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4407
4408/**
4409 * ring_buffer_read_page - extract a page from the ring buffer
4410 * @buffer: buffer to extract from
4411 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4412 * @len: amount to extract
4413 * @cpu: the cpu of the buffer to extract
4414 * @full: should the extraction only happen when the page is full.
4415 *
4416 * This function will pull out a page from the ring buffer and consume it.
4417 * @data_page must be the address of the variable that was returned
4418 * from ring_buffer_alloc_read_page. This is because the page might be used
4419 * to swap with a page in the ring buffer.
4420 *
4421 * for example:
4422 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4423 * if (!rpage)
4424 * return error;
4425 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4426 * if (ret >= 0)
4427 * process_page(rpage, ret);
4428 *
4429 * When @full is set, the function will not return true unless
4430 * the writer is off the reader page.
4431 *
4432 * Note: it is up to the calling functions to handle sleeps and wakeups.
4433 * The ring buffer can be used anywhere in the kernel and can not
4434 * blindly call wake_up. The layer that uses the ring buffer must be
4435 * responsible for that.
4436 *
4437 * Returns:
4438 * >=0 if data has been transferred, returns the offset of consumed data.
4439 * <0 if no data has been transferred.
4440 */
4441int ring_buffer_read_page(struct ring_buffer *buffer,
4442 void **data_page, size_t len, int cpu, int full)
4443{
4444 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4445 struct ring_buffer_event *event;
4446 struct buffer_data_page *bpage;
4447 struct buffer_page *reader;
4448 unsigned long missed_events;
4449 unsigned long flags;
4450 unsigned int commit;
4451 unsigned int read;
4452 u64 save_timestamp;
4453 int ret = -1;
4454
4455 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4456 goto out;
4457
4458 /*
4459 * If len is not big enough to hold the page header, then
4460 * we can not copy anything.
4461 */
4462 if (len <= BUF_PAGE_HDR_SIZE)
4463 goto out;
4464
4465 len -= BUF_PAGE_HDR_SIZE;
4466
4467 if (!data_page)
4468 goto out;
4469
4470 bpage = *data_page;
4471 if (!bpage)
4472 goto out;
4473
4474 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4475
4476 reader = rb_get_reader_page(cpu_buffer);
4477 if (!reader)
4478 goto out_unlock;
4479
4480 event = rb_reader_event(cpu_buffer);
4481
4482 read = reader->read;
4483 commit = rb_page_commit(reader);
4484
4485 /* Check if any events were dropped */
4486 missed_events = cpu_buffer->lost_events;
4487
4488 /*
4489 * If this page has been partially read or
4490 * if len is not big enough to read the rest of the page or
4491 * a writer is still on the page, then
4492 * we must copy the data from the page to the buffer.
4493 * Otherwise, we can simply swap the page with the one passed in.
4494 */
4495 if (read || (len < (commit - read)) ||
4496 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4497 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4498 unsigned int rpos = read;
4499 unsigned int pos = 0;
4500 unsigned int size;
4501
4502 if (full)
4503 goto out_unlock;
4504
4505 if (len > (commit - read))
4506 len = (commit - read);
4507
4508 /* Always keep the time extend and data together */
4509 size = rb_event_ts_length(event);
4510
4511 if (len < size)
4512 goto out_unlock;
4513
4514 /* save the current timestamp, since the user will need it */
4515 save_timestamp = cpu_buffer->read_stamp;
4516
4517 /* Need to copy one event at a time */
4518 do {
4519 /* We need the size of one event, because
4520 * rb_advance_reader only advances by one event,
4521 * whereas rb_event_ts_length may include the size of
4522 * one or two events.
4523 * We have already ensured there's enough space if this
4524 * is a time extend. */
4525 size = rb_event_length(event);
4526 memcpy(bpage->data + pos, rpage->data + rpos, size);
4527
4528 len -= size;
4529
4530 rb_advance_reader(cpu_buffer);
4531 rpos = reader->read;
4532 pos += size;
4533
4534 if (rpos >= commit)
4535 break;
4536
4537 event = rb_reader_event(cpu_buffer);
4538 /* Always keep the time extend and data together */
4539 size = rb_event_ts_length(event);
4540 } while (len >= size);
4541
4542 /* update bpage */
4543 local_set(&bpage->commit, pos);
4544 bpage->time_stamp = save_timestamp;
4545
4546 /* we copied everything to the beginning */
4547 read = 0;
4548 } else {
4549 /* update the entry counter */
4550 cpu_buffer->read += rb_page_entries(reader);
4551 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4552
4553 /* swap the pages */
4554 rb_init_page(bpage);
4555 bpage = reader->page;
4556 reader->page = *data_page;
4557 local_set(&reader->write, 0);
4558 local_set(&reader->entries, 0);
4559 reader->read = 0;
4560 *data_page = bpage;
4561
4562 /*
4563 * Use the real_end for the data size,
4564 * This gives us a chance to store the lost events
4565 * on the page.
4566 */
4567 if (reader->real_end)
4568 local_set(&bpage->commit, reader->real_end);
4569 }
4570 ret = read;
4571
4572 cpu_buffer->lost_events = 0;
4573
4574 commit = local_read(&bpage->commit);
4575 /*
4576 * Set a flag in the commit field if we lost events
4577 */
4578 if (missed_events) {
4579 /* If there is room at the end of the page to save the
4580 * missed events, then record it there.
4581 */
4582 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4583 memcpy(&bpage->data[commit], &missed_events,
4584 sizeof(missed_events));
4585 local_add(RB_MISSED_STORED, &bpage->commit);
4586 commit += sizeof(missed_events);
4587 }
4588 local_add(RB_MISSED_EVENTS, &bpage->commit);
4589 }
4590
4591 /*
4592 * This page may be off to user land. Zero it out here.
4593 */
4594 if (commit < BUF_PAGE_SIZE)
4595 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4596
4597 out_unlock:
4598 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4599
4600 out:
4601 return ret;
4602}
4603EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4604
4605/*
4606 * We only allocate new buffers, never free them if the CPU goes down.
4607 * If we were to free the buffer, then the user would lose any trace that was in
4608 * the buffer.
4609 */
4610int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4611{
4612 struct ring_buffer *buffer;
4613 long nr_pages_same;
4614 int cpu_i;
4615 unsigned long nr_pages;
4616
4617 buffer = container_of(node, struct ring_buffer, node);
4618 if (cpumask_test_cpu(cpu, buffer->cpumask))
4619 return 0;
4620
4621 nr_pages = 0;
4622 nr_pages_same = 1;
4623 /* check if all cpu sizes are same */
4624 for_each_buffer_cpu(buffer, cpu_i) {
4625 /* fill in the size from first enabled cpu */
4626 if (nr_pages == 0)
4627 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4628 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4629 nr_pages_same = 0;
4630 break;
4631 }
4632 }
4633 /* allocate minimum pages, user can later expand it */
4634 if (!nr_pages_same)
4635 nr_pages = 2;
4636 buffer->buffers[cpu] =
4637 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4638 if (!buffer->buffers[cpu]) {
4639 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4640 cpu);
4641 return -ENOMEM;
4642 }
4643 smp_wmb();
4644 cpumask_set_cpu(cpu, buffer->cpumask);
4645 return 0;
4646}
4647
4648#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4649/*
4650 * This is a basic integrity check of the ring buffer.
4651 * Late in the boot cycle this test will run when configured in.
4652 * It will kick off a thread per CPU that will go into a loop
4653 * writing to the per cpu ring buffer various sizes of data.
4654 * Some of the data will be large items, some small.
4655 *
4656 * Another thread is created that goes into a spin, sending out
4657 * IPIs to the other CPUs to also write into the ring buffer.
4658 * this is to test the nesting ability of the buffer.
4659 *
4660 * Basic stats are recorded and reported. If something in the
4661 * ring buffer should happen that's not expected, a big warning
4662 * is displayed and all ring buffers are disabled.
4663 */
4664static struct task_struct *rb_threads[NR_CPUS] __initdata;
4665
4666struct rb_test_data {
4667 struct ring_buffer *buffer;
4668 unsigned long events;
4669 unsigned long bytes_written;
4670 unsigned long bytes_alloc;
4671 unsigned long bytes_dropped;
4672 unsigned long events_nested;
4673 unsigned long bytes_written_nested;
4674 unsigned long bytes_alloc_nested;
4675 unsigned long bytes_dropped_nested;
4676 int min_size_nested;
4677 int max_size_nested;
4678 int max_size;
4679 int min_size;
4680 int cpu;
4681 int cnt;
4682};
4683
4684static struct rb_test_data rb_data[NR_CPUS] __initdata;
4685
4686/* 1 meg per cpu */
4687#define RB_TEST_BUFFER_SIZE 1048576
4688
4689static char rb_string[] __initdata =
4690 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4691 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4692 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4693
4694static bool rb_test_started __initdata;
4695
4696struct rb_item {
4697 int size;
4698 char str[];
4699};
4700
4701static __init int rb_write_something(struct rb_test_data *data, bool nested)
4702{
4703 struct ring_buffer_event *event;
4704 struct rb_item *item;
4705 bool started;
4706 int event_len;
4707 int size;
4708 int len;
4709 int cnt;
4710
4711 /* Have nested writes different that what is written */
4712 cnt = data->cnt + (nested ? 27 : 0);
4713
4714 /* Multiply cnt by ~e, to make some unique increment */
4715 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4716
4717 len = size + sizeof(struct rb_item);
4718
4719 started = rb_test_started;
4720 /* read rb_test_started before checking buffer enabled */
4721 smp_rmb();
4722
4723 event = ring_buffer_lock_reserve(data->buffer, len);
4724 if (!event) {
4725 /* Ignore dropped events before test starts. */
4726 if (started) {
4727 if (nested)
4728 data->bytes_dropped += len;
4729 else
4730 data->bytes_dropped_nested += len;
4731 }
4732 return len;
4733 }
4734
4735 event_len = ring_buffer_event_length(event);
4736
4737 if (RB_WARN_ON(data->buffer, event_len < len))
4738 goto out;
4739
4740 item = ring_buffer_event_data(event);
4741 item->size = size;
4742 memcpy(item->str, rb_string, size);
4743
4744 if (nested) {
4745 data->bytes_alloc_nested += event_len;
4746 data->bytes_written_nested += len;
4747 data->events_nested++;
4748 if (!data->min_size_nested || len < data->min_size_nested)
4749 data->min_size_nested = len;
4750 if (len > data->max_size_nested)
4751 data->max_size_nested = len;
4752 } else {
4753 data->bytes_alloc += event_len;
4754 data->bytes_written += len;
4755 data->events++;
4756 if (!data->min_size || len < data->min_size)
4757 data->max_size = len;
4758 if (len > data->max_size)
4759 data->max_size = len;
4760 }
4761
4762 out:
4763 ring_buffer_unlock_commit(data->buffer, event);
4764
4765 return 0;
4766}
4767
4768static __init int rb_test(void *arg)
4769{
4770 struct rb_test_data *data = arg;
4771
4772 while (!kthread_should_stop()) {
4773 rb_write_something(data, false);
4774 data->cnt++;
4775
4776 set_current_state(TASK_INTERRUPTIBLE);
4777 /* Now sleep between a min of 100-300us and a max of 1ms */
4778 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4779 }
4780
4781 return 0;
4782}
4783
4784static __init void rb_ipi(void *ignore)
4785{
4786 struct rb_test_data *data;
4787 int cpu = smp_processor_id();
4788
4789 data = &rb_data[cpu];
4790 rb_write_something(data, true);
4791}
4792
4793static __init int rb_hammer_test(void *arg)
4794{
4795 while (!kthread_should_stop()) {
4796
4797 /* Send an IPI to all cpus to write data! */
4798 smp_call_function(rb_ipi, NULL, 1);
4799 /* No sleep, but for non preempt, let others run */
4800 schedule();
4801 }
4802
4803 return 0;
4804}
4805
4806static __init int test_ringbuffer(void)
4807{
4808 struct task_struct *rb_hammer;
4809 struct ring_buffer *buffer;
4810 int cpu;
4811 int ret = 0;
4812
4813 pr_info("Running ring buffer tests...\n");
4814
4815 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4816 if (WARN_ON(!buffer))
4817 return 0;
4818
4819 /* Disable buffer so that threads can't write to it yet */
4820 ring_buffer_record_off(buffer);
4821
4822 for_each_online_cpu(cpu) {
4823 rb_data[cpu].buffer = buffer;
4824 rb_data[cpu].cpu = cpu;
4825 rb_data[cpu].cnt = cpu;
4826 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4827 "rbtester/%d", cpu);
4828 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4829 pr_cont("FAILED\n");
4830 ret = PTR_ERR(rb_threads[cpu]);
4831 goto out_free;
4832 }
4833
4834 kthread_bind(rb_threads[cpu], cpu);
4835 wake_up_process(rb_threads[cpu]);
4836 }
4837
4838 /* Now create the rb hammer! */
4839 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4840 if (WARN_ON(IS_ERR(rb_hammer))) {
4841 pr_cont("FAILED\n");
4842 ret = PTR_ERR(rb_hammer);
4843 goto out_free;
4844 }
4845
4846 ring_buffer_record_on(buffer);
4847 /*
4848 * Show buffer is enabled before setting rb_test_started.
4849 * Yes there's a small race window where events could be
4850 * dropped and the thread wont catch it. But when a ring
4851 * buffer gets enabled, there will always be some kind of
4852 * delay before other CPUs see it. Thus, we don't care about
4853 * those dropped events. We care about events dropped after
4854 * the threads see that the buffer is active.
4855 */
4856 smp_wmb();
4857 rb_test_started = true;
4858
4859 set_current_state(TASK_INTERRUPTIBLE);
4860 /* Just run for 10 seconds */;
4861 schedule_timeout(10 * HZ);
4862
4863 kthread_stop(rb_hammer);
4864
4865 out_free:
4866 for_each_online_cpu(cpu) {
4867 if (!rb_threads[cpu])
4868 break;
4869 kthread_stop(rb_threads[cpu]);
4870 }
4871 if (ret) {
4872 ring_buffer_free(buffer);
4873 return ret;
4874 }
4875
4876 /* Report! */
4877 pr_info("finished\n");
4878 for_each_online_cpu(cpu) {
4879 struct ring_buffer_event *event;
4880 struct rb_test_data *data = &rb_data[cpu];
4881 struct rb_item *item;
4882 unsigned long total_events;
4883 unsigned long total_dropped;
4884 unsigned long total_written;
4885 unsigned long total_alloc;
4886 unsigned long total_read = 0;
4887 unsigned long total_size = 0;
4888 unsigned long total_len = 0;
4889 unsigned long total_lost = 0;
4890 unsigned long lost;
4891 int big_event_size;
4892 int small_event_size;
4893
4894 ret = -1;
4895
4896 total_events = data->events + data->events_nested;
4897 total_written = data->bytes_written + data->bytes_written_nested;
4898 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4899 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4900
4901 big_event_size = data->max_size + data->max_size_nested;
4902 small_event_size = data->min_size + data->min_size_nested;
4903
4904 pr_info("CPU %d:\n", cpu);
4905 pr_info(" events: %ld\n", total_events);
4906 pr_info(" dropped bytes: %ld\n", total_dropped);
4907 pr_info(" alloced bytes: %ld\n", total_alloc);
4908 pr_info(" written bytes: %ld\n", total_written);
4909 pr_info(" biggest event: %d\n", big_event_size);
4910 pr_info(" smallest event: %d\n", small_event_size);
4911
4912 if (RB_WARN_ON(buffer, total_dropped))
4913 break;
4914
4915 ret = 0;
4916
4917 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4918 total_lost += lost;
4919 item = ring_buffer_event_data(event);
4920 total_len += ring_buffer_event_length(event);
4921 total_size += item->size + sizeof(struct rb_item);
4922 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4923 pr_info("FAILED!\n");
4924 pr_info("buffer had: %.*s\n", item->size, item->str);
4925 pr_info("expected: %.*s\n", item->size, rb_string);
4926 RB_WARN_ON(buffer, 1);
4927 ret = -1;
4928 break;
4929 }
4930 total_read++;
4931 }
4932 if (ret)
4933 break;
4934
4935 ret = -1;
4936
4937 pr_info(" read events: %ld\n", total_read);
4938 pr_info(" lost events: %ld\n", total_lost);
4939 pr_info(" total events: %ld\n", total_lost + total_read);
4940 pr_info(" recorded len bytes: %ld\n", total_len);
4941 pr_info(" recorded size bytes: %ld\n", total_size);
4942 if (total_lost)
4943 pr_info(" With dropped events, record len and size may not match\n"
4944 " alloced and written from above\n");
4945 if (!total_lost) {
4946 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4947 total_size != total_written))
4948 break;
4949 }
4950 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4951 break;
4952
4953 ret = 0;
4954 }
4955 if (!ret)
4956 pr_info("Ring buffer PASSED!\n");
4957
4958 ring_buffer_free(buffer);
4959 return 0;
4960}
4961
4962late_initcall(test_ringbuffer);
4963#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7#include <linux/trace_recursion.h>
8#include <linux/trace_events.h>
9#include <linux/ring_buffer.h>
10#include <linux/trace_clock.h>
11#include <linux/sched/clock.h>
12#include <linux/trace_seq.h>
13#include <linux/spinlock.h>
14#include <linux/irq_work.h>
15#include <linux/security.h>
16#include <linux/uaccess.h>
17#include <linux/hardirq.h>
18#include <linux/kthread.h> /* for self test */
19#include <linux/module.h>
20#include <linux/percpu.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/slab.h>
24#include <linux/init.h>
25#include <linux/hash.h>
26#include <linux/list.h>
27#include <linux/cpu.h>
28#include <linux/oom.h>
29
30#include <asm/local64.h>
31#include <asm/local.h>
32
33/*
34 * The "absolute" timestamp in the buffer is only 59 bits.
35 * If a clock has the 5 MSBs set, it needs to be saved and
36 * reinserted.
37 */
38#define TS_MSB (0xf8ULL << 56)
39#define ABS_TS_MASK (~TS_MSB)
40
41static void update_pages_handler(struct work_struct *work);
42
43/*
44 * The ring buffer header is special. We must manually up keep it.
45 */
46int ring_buffer_print_entry_header(struct trace_seq *s)
47{
48 trace_seq_puts(s, "# compressed entry header\n");
49 trace_seq_puts(s, "\ttype_len : 5 bits\n");
50 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
51 trace_seq_puts(s, "\tarray : 32 bits\n");
52 trace_seq_putc(s, '\n');
53 trace_seq_printf(s, "\tpadding : type == %d\n",
54 RINGBUF_TYPE_PADDING);
55 trace_seq_printf(s, "\ttime_extend : type == %d\n",
56 RINGBUF_TYPE_TIME_EXTEND);
57 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
58 RINGBUF_TYPE_TIME_STAMP);
59 trace_seq_printf(s, "\tdata max type_len == %d\n",
60 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
61
62 return !trace_seq_has_overflowed(s);
63}
64
65/*
66 * The ring buffer is made up of a list of pages. A separate list of pages is
67 * allocated for each CPU. A writer may only write to a buffer that is
68 * associated with the CPU it is currently executing on. A reader may read
69 * from any per cpu buffer.
70 *
71 * The reader is special. For each per cpu buffer, the reader has its own
72 * reader page. When a reader has read the entire reader page, this reader
73 * page is swapped with another page in the ring buffer.
74 *
75 * Now, as long as the writer is off the reader page, the reader can do what
76 * ever it wants with that page. The writer will never write to that page
77 * again (as long as it is out of the ring buffer).
78 *
79 * Here's some silly ASCII art.
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * | |-->| |-->| |
97 * +---+ +---+ +---+
98 * ^ |
99 * | |
100 * +---------------+
101 *
102 *
103 * +------+
104 * |reader| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | |-->| |-->| |
108 * | +---+ +---+ +---+
109 * | |
110 * | |
111 * +------------------------------+
112 *
113 *
114 * +------+
115 * |buffer| RING BUFFER
116 * |page |------------------v
117 * +------+ +---+ +---+ +---+
118 * ^ | | | |-->| |
119 * | New +---+ +---+ +---+
120 * | Reader------^ |
121 * | page |
122 * +------------------------------+
123 *
124 *
125 * After we make this swap, the reader can hand this page off to the splice
126 * code and be done with it. It can even allocate a new page if it needs to
127 * and swap that into the ring buffer.
128 *
129 * We will be using cmpxchg soon to make all this lockless.
130 *
131 */
132
133/* Used for individual buffers (after the counter) */
134#define RB_BUFFER_OFF (1 << 20)
135
136#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
137
138#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
139#define RB_ALIGNMENT 4U
140#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
141#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
142
143#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
144# define RB_FORCE_8BYTE_ALIGNMENT 0
145# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
146#else
147# define RB_FORCE_8BYTE_ALIGNMENT 1
148# define RB_ARCH_ALIGNMENT 8U
149#endif
150
151#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
152
153/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
154#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
155
156enum {
157 RB_LEN_TIME_EXTEND = 8,
158 RB_LEN_TIME_STAMP = 8,
159};
160
161#define skip_time_extend(event) \
162 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
163
164#define extended_time(event) \
165 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
166
167static inline bool rb_null_event(struct ring_buffer_event *event)
168{
169 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
170}
171
172static void rb_event_set_padding(struct ring_buffer_event *event)
173{
174 /* padding has a NULL time_delta */
175 event->type_len = RINGBUF_TYPE_PADDING;
176 event->time_delta = 0;
177}
178
179static unsigned
180rb_event_data_length(struct ring_buffer_event *event)
181{
182 unsigned length;
183
184 if (event->type_len)
185 length = event->type_len * RB_ALIGNMENT;
186 else
187 length = event->array[0];
188 return length + RB_EVNT_HDR_SIZE;
189}
190
191/*
192 * Return the length of the given event. Will return
193 * the length of the time extend if the event is a
194 * time extend.
195 */
196static inline unsigned
197rb_event_length(struct ring_buffer_event *event)
198{
199 switch (event->type_len) {
200 case RINGBUF_TYPE_PADDING:
201 if (rb_null_event(event))
202 /* undefined */
203 return -1;
204 return event->array[0] + RB_EVNT_HDR_SIZE;
205
206 case RINGBUF_TYPE_TIME_EXTEND:
207 return RB_LEN_TIME_EXTEND;
208
209 case RINGBUF_TYPE_TIME_STAMP:
210 return RB_LEN_TIME_STAMP;
211
212 case RINGBUF_TYPE_DATA:
213 return rb_event_data_length(event);
214 default:
215 WARN_ON_ONCE(1);
216 }
217 /* not hit */
218 return 0;
219}
220
221/*
222 * Return total length of time extend and data,
223 * or just the event length for all other events.
224 */
225static inline unsigned
226rb_event_ts_length(struct ring_buffer_event *event)
227{
228 unsigned len = 0;
229
230 if (extended_time(event)) {
231 /* time extends include the data event after it */
232 len = RB_LEN_TIME_EXTEND;
233 event = skip_time_extend(event);
234 }
235 return len + rb_event_length(event);
236}
237
238/**
239 * ring_buffer_event_length - return the length of the event
240 * @event: the event to get the length of
241 *
242 * Returns the size of the data load of a data event.
243 * If the event is something other than a data event, it
244 * returns the size of the event itself. With the exception
245 * of a TIME EXTEND, where it still returns the size of the
246 * data load of the data event after it.
247 */
248unsigned ring_buffer_event_length(struct ring_buffer_event *event)
249{
250 unsigned length;
251
252 if (extended_time(event))
253 event = skip_time_extend(event);
254
255 length = rb_event_length(event);
256 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
257 return length;
258 length -= RB_EVNT_HDR_SIZE;
259 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
260 length -= sizeof(event->array[0]);
261 return length;
262}
263EXPORT_SYMBOL_GPL(ring_buffer_event_length);
264
265/* inline for ring buffer fast paths */
266static __always_inline void *
267rb_event_data(struct ring_buffer_event *event)
268{
269 if (extended_time(event))
270 event = skip_time_extend(event);
271 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
272 /* If length is in len field, then array[0] has the data */
273 if (event->type_len)
274 return (void *)&event->array[0];
275 /* Otherwise length is in array[0] and array[1] has the data */
276 return (void *)&event->array[1];
277}
278
279/**
280 * ring_buffer_event_data - return the data of the event
281 * @event: the event to get the data from
282 */
283void *ring_buffer_event_data(struct ring_buffer_event *event)
284{
285 return rb_event_data(event);
286}
287EXPORT_SYMBOL_GPL(ring_buffer_event_data);
288
289#define for_each_buffer_cpu(buffer, cpu) \
290 for_each_cpu(cpu, buffer->cpumask)
291
292#define for_each_online_buffer_cpu(buffer, cpu) \
293 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
294
295#define TS_SHIFT 27
296#define TS_MASK ((1ULL << TS_SHIFT) - 1)
297#define TS_DELTA_TEST (~TS_MASK)
298
299static u64 rb_event_time_stamp(struct ring_buffer_event *event)
300{
301 u64 ts;
302
303 ts = event->array[0];
304 ts <<= TS_SHIFT;
305 ts += event->time_delta;
306
307 return ts;
308}
309
310/* Flag when events were overwritten */
311#define RB_MISSED_EVENTS (1 << 31)
312/* Missed count stored at end */
313#define RB_MISSED_STORED (1 << 30)
314
315struct buffer_data_page {
316 u64 time_stamp; /* page time stamp */
317 local_t commit; /* write committed index */
318 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
319};
320
321struct buffer_data_read_page {
322 unsigned order; /* order of the page */
323 struct buffer_data_page *data; /* actual data, stored in this page */
324};
325
326/*
327 * Note, the buffer_page list must be first. The buffer pages
328 * are allocated in cache lines, which means that each buffer
329 * page will be at the beginning of a cache line, and thus
330 * the least significant bits will be zero. We use this to
331 * add flags in the list struct pointers, to make the ring buffer
332 * lockless.
333 */
334struct buffer_page {
335 struct list_head list; /* list of buffer pages */
336 local_t write; /* index for next write */
337 unsigned read; /* index for next read */
338 local_t entries; /* entries on this page */
339 unsigned long real_end; /* real end of data */
340 unsigned order; /* order of the page */
341 struct buffer_data_page *page; /* Actual data page */
342};
343
344/*
345 * The buffer page counters, write and entries, must be reset
346 * atomically when crossing page boundaries. To synchronize this
347 * update, two counters are inserted into the number. One is
348 * the actual counter for the write position or count on the page.
349 *
350 * The other is a counter of updaters. Before an update happens
351 * the update partition of the counter is incremented. This will
352 * allow the updater to update the counter atomically.
353 *
354 * The counter is 20 bits, and the state data is 12.
355 */
356#define RB_WRITE_MASK 0xfffff
357#define RB_WRITE_INTCNT (1 << 20)
358
359static void rb_init_page(struct buffer_data_page *bpage)
360{
361 local_set(&bpage->commit, 0);
362}
363
364static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
365{
366 return local_read(&bpage->page->commit);
367}
368
369static void free_buffer_page(struct buffer_page *bpage)
370{
371 free_pages((unsigned long)bpage->page, bpage->order);
372 kfree(bpage);
373}
374
375/*
376 * We need to fit the time_stamp delta into 27 bits.
377 */
378static inline bool test_time_stamp(u64 delta)
379{
380 return !!(delta & TS_DELTA_TEST);
381}
382
383struct rb_irq_work {
384 struct irq_work work;
385 wait_queue_head_t waiters;
386 wait_queue_head_t full_waiters;
387 bool waiters_pending;
388 bool full_waiters_pending;
389 bool wakeup_full;
390};
391
392/*
393 * Structure to hold event state and handle nested events.
394 */
395struct rb_event_info {
396 u64 ts;
397 u64 delta;
398 u64 before;
399 u64 after;
400 unsigned long length;
401 struct buffer_page *tail_page;
402 int add_timestamp;
403};
404
405/*
406 * Used for the add_timestamp
407 * NONE
408 * EXTEND - wants a time extend
409 * ABSOLUTE - the buffer requests all events to have absolute time stamps
410 * FORCE - force a full time stamp.
411 */
412enum {
413 RB_ADD_STAMP_NONE = 0,
414 RB_ADD_STAMP_EXTEND = BIT(1),
415 RB_ADD_STAMP_ABSOLUTE = BIT(2),
416 RB_ADD_STAMP_FORCE = BIT(3)
417};
418/*
419 * Used for which event context the event is in.
420 * TRANSITION = 0
421 * NMI = 1
422 * IRQ = 2
423 * SOFTIRQ = 3
424 * NORMAL = 4
425 *
426 * See trace_recursive_lock() comment below for more details.
427 */
428enum {
429 RB_CTX_TRANSITION,
430 RB_CTX_NMI,
431 RB_CTX_IRQ,
432 RB_CTX_SOFTIRQ,
433 RB_CTX_NORMAL,
434 RB_CTX_MAX
435};
436
437struct rb_time_struct {
438 local64_t time;
439};
440typedef struct rb_time_struct rb_time_t;
441
442#define MAX_NEST 5
443
444/*
445 * head_page == tail_page && head == tail then buffer is empty.
446 */
447struct ring_buffer_per_cpu {
448 int cpu;
449 atomic_t record_disabled;
450 atomic_t resize_disabled;
451 struct trace_buffer *buffer;
452 raw_spinlock_t reader_lock; /* serialize readers */
453 arch_spinlock_t lock;
454 struct lock_class_key lock_key;
455 struct buffer_data_page *free_page;
456 unsigned long nr_pages;
457 unsigned int current_context;
458 struct list_head *pages;
459 struct buffer_page *head_page; /* read from head */
460 struct buffer_page *tail_page; /* write to tail */
461 struct buffer_page *commit_page; /* committed pages */
462 struct buffer_page *reader_page;
463 unsigned long lost_events;
464 unsigned long last_overrun;
465 unsigned long nest;
466 local_t entries_bytes;
467 local_t entries;
468 local_t overrun;
469 local_t commit_overrun;
470 local_t dropped_events;
471 local_t committing;
472 local_t commits;
473 local_t pages_touched;
474 local_t pages_lost;
475 local_t pages_read;
476 long last_pages_touch;
477 size_t shortest_full;
478 unsigned long read;
479 unsigned long read_bytes;
480 rb_time_t write_stamp;
481 rb_time_t before_stamp;
482 u64 event_stamp[MAX_NEST];
483 u64 read_stamp;
484 /* pages removed since last reset */
485 unsigned long pages_removed;
486 /* ring buffer pages to update, > 0 to add, < 0 to remove */
487 long nr_pages_to_update;
488 struct list_head new_pages; /* new pages to add */
489 struct work_struct update_pages_work;
490 struct completion update_done;
491
492 struct rb_irq_work irq_work;
493};
494
495struct trace_buffer {
496 unsigned flags;
497 int cpus;
498 atomic_t record_disabled;
499 atomic_t resizing;
500 cpumask_var_t cpumask;
501
502 struct lock_class_key *reader_lock_key;
503
504 struct mutex mutex;
505
506 struct ring_buffer_per_cpu **buffers;
507
508 struct hlist_node node;
509 u64 (*clock)(void);
510
511 struct rb_irq_work irq_work;
512 bool time_stamp_abs;
513
514 unsigned int subbuf_size;
515 unsigned int subbuf_order;
516 unsigned int max_data_size;
517};
518
519struct ring_buffer_iter {
520 struct ring_buffer_per_cpu *cpu_buffer;
521 unsigned long head;
522 unsigned long next_event;
523 struct buffer_page *head_page;
524 struct buffer_page *cache_reader_page;
525 unsigned long cache_read;
526 unsigned long cache_pages_removed;
527 u64 read_stamp;
528 u64 page_stamp;
529 struct ring_buffer_event *event;
530 size_t event_size;
531 int missed_events;
532};
533
534int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
535{
536 struct buffer_data_page field;
537
538 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
539 "offset:0;\tsize:%u;\tsigned:%u;\n",
540 (unsigned int)sizeof(field.time_stamp),
541 (unsigned int)is_signed_type(u64));
542
543 trace_seq_printf(s, "\tfield: local_t commit;\t"
544 "offset:%u;\tsize:%u;\tsigned:%u;\n",
545 (unsigned int)offsetof(typeof(field), commit),
546 (unsigned int)sizeof(field.commit),
547 (unsigned int)is_signed_type(long));
548
549 trace_seq_printf(s, "\tfield: int overwrite;\t"
550 "offset:%u;\tsize:%u;\tsigned:%u;\n",
551 (unsigned int)offsetof(typeof(field), commit),
552 1,
553 (unsigned int)is_signed_type(long));
554
555 trace_seq_printf(s, "\tfield: char data;\t"
556 "offset:%u;\tsize:%u;\tsigned:%u;\n",
557 (unsigned int)offsetof(typeof(field), data),
558 (unsigned int)buffer->subbuf_size,
559 (unsigned int)is_signed_type(char));
560
561 return !trace_seq_has_overflowed(s);
562}
563
564static inline void rb_time_read(rb_time_t *t, u64 *ret)
565{
566 *ret = local64_read(&t->time);
567}
568static void rb_time_set(rb_time_t *t, u64 val)
569{
570 local64_set(&t->time, val);
571}
572
573/*
574 * Enable this to make sure that the event passed to
575 * ring_buffer_event_time_stamp() is not committed and also
576 * is on the buffer that it passed in.
577 */
578//#define RB_VERIFY_EVENT
579#ifdef RB_VERIFY_EVENT
580static struct list_head *rb_list_head(struct list_head *list);
581static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
582 void *event)
583{
584 struct buffer_page *page = cpu_buffer->commit_page;
585 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
586 struct list_head *next;
587 long commit, write;
588 unsigned long addr = (unsigned long)event;
589 bool done = false;
590 int stop = 0;
591
592 /* Make sure the event exists and is not committed yet */
593 do {
594 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
595 done = true;
596 commit = local_read(&page->page->commit);
597 write = local_read(&page->write);
598 if (addr >= (unsigned long)&page->page->data[commit] &&
599 addr < (unsigned long)&page->page->data[write])
600 return;
601
602 next = rb_list_head(page->list.next);
603 page = list_entry(next, struct buffer_page, list);
604 } while (!done);
605 WARN_ON_ONCE(1);
606}
607#else
608static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
609 void *event)
610{
611}
612#endif
613
614/*
615 * The absolute time stamp drops the 5 MSBs and some clocks may
616 * require them. The rb_fix_abs_ts() will take a previous full
617 * time stamp, and add the 5 MSB of that time stamp on to the
618 * saved absolute time stamp. Then they are compared in case of
619 * the unlikely event that the latest time stamp incremented
620 * the 5 MSB.
621 */
622static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
623{
624 if (save_ts & TS_MSB) {
625 abs |= save_ts & TS_MSB;
626 /* Check for overflow */
627 if (unlikely(abs < save_ts))
628 abs += 1ULL << 59;
629 }
630 return abs;
631}
632
633static inline u64 rb_time_stamp(struct trace_buffer *buffer);
634
635/**
636 * ring_buffer_event_time_stamp - return the event's current time stamp
637 * @buffer: The buffer that the event is on
638 * @event: the event to get the time stamp of
639 *
640 * Note, this must be called after @event is reserved, and before it is
641 * committed to the ring buffer. And must be called from the same
642 * context where the event was reserved (normal, softirq, irq, etc).
643 *
644 * Returns the time stamp associated with the current event.
645 * If the event has an extended time stamp, then that is used as
646 * the time stamp to return.
647 * In the highly unlikely case that the event was nested more than
648 * the max nesting, then the write_stamp of the buffer is returned,
649 * otherwise current time is returned, but that really neither of
650 * the last two cases should ever happen.
651 */
652u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
653 struct ring_buffer_event *event)
654{
655 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
656 unsigned int nest;
657 u64 ts;
658
659 /* If the event includes an absolute time, then just use that */
660 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
661 ts = rb_event_time_stamp(event);
662 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
663 }
664
665 nest = local_read(&cpu_buffer->committing);
666 verify_event(cpu_buffer, event);
667 if (WARN_ON_ONCE(!nest))
668 goto fail;
669
670 /* Read the current saved nesting level time stamp */
671 if (likely(--nest < MAX_NEST))
672 return cpu_buffer->event_stamp[nest];
673
674 /* Shouldn't happen, warn if it does */
675 WARN_ONCE(1, "nest (%d) greater than max", nest);
676
677 fail:
678 rb_time_read(&cpu_buffer->write_stamp, &ts);
679
680 return ts;
681}
682
683/**
684 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
685 * @buffer: The ring_buffer to get the number of pages from
686 * @cpu: The cpu of the ring_buffer to get the number of pages from
687 *
688 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
689 */
690size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
691{
692 return buffer->buffers[cpu]->nr_pages;
693}
694
695/**
696 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
697 * @buffer: The ring_buffer to get the number of pages from
698 * @cpu: The cpu of the ring_buffer to get the number of pages from
699 *
700 * Returns the number of pages that have content in the ring buffer.
701 */
702size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
703{
704 size_t read;
705 size_t lost;
706 size_t cnt;
707
708 read = local_read(&buffer->buffers[cpu]->pages_read);
709 lost = local_read(&buffer->buffers[cpu]->pages_lost);
710 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
711
712 if (WARN_ON_ONCE(cnt < lost))
713 return 0;
714
715 cnt -= lost;
716
717 /* The reader can read an empty page, but not more than that */
718 if (cnt < read) {
719 WARN_ON_ONCE(read > cnt + 1);
720 return 0;
721 }
722
723 return cnt - read;
724}
725
726static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
727{
728 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
729 size_t nr_pages;
730 size_t dirty;
731
732 nr_pages = cpu_buffer->nr_pages;
733 if (!nr_pages || !full)
734 return true;
735
736 /*
737 * Add one as dirty will never equal nr_pages, as the sub-buffer
738 * that the writer is on is not counted as dirty.
739 * This is needed if "buffer_percent" is set to 100.
740 */
741 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
742
743 return (dirty * 100) >= (full * nr_pages);
744}
745
746/*
747 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
748 *
749 * Schedules a delayed work to wake up any task that is blocked on the
750 * ring buffer waiters queue.
751 */
752static void rb_wake_up_waiters(struct irq_work *work)
753{
754 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
755
756 wake_up_all(&rbwork->waiters);
757 if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
758 /* Only cpu_buffer sets the above flags */
759 struct ring_buffer_per_cpu *cpu_buffer =
760 container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
761
762 /* Called from interrupt context */
763 raw_spin_lock(&cpu_buffer->reader_lock);
764 rbwork->wakeup_full = false;
765 rbwork->full_waiters_pending = false;
766
767 /* Waking up all waiters, they will reset the shortest full */
768 cpu_buffer->shortest_full = 0;
769 raw_spin_unlock(&cpu_buffer->reader_lock);
770
771 wake_up_all(&rbwork->full_waiters);
772 }
773}
774
775/**
776 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
777 * @buffer: The ring buffer to wake waiters on
778 * @cpu: The CPU buffer to wake waiters on
779 *
780 * In the case of a file that represents a ring buffer is closing,
781 * it is prudent to wake up any waiters that are on this.
782 */
783void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
784{
785 struct ring_buffer_per_cpu *cpu_buffer;
786 struct rb_irq_work *rbwork;
787
788 if (!buffer)
789 return;
790
791 if (cpu == RING_BUFFER_ALL_CPUS) {
792
793 /* Wake up individual ones too. One level recursion */
794 for_each_buffer_cpu(buffer, cpu)
795 ring_buffer_wake_waiters(buffer, cpu);
796
797 rbwork = &buffer->irq_work;
798 } else {
799 if (WARN_ON_ONCE(!buffer->buffers))
800 return;
801 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
802 return;
803
804 cpu_buffer = buffer->buffers[cpu];
805 /* The CPU buffer may not have been initialized yet */
806 if (!cpu_buffer)
807 return;
808 rbwork = &cpu_buffer->irq_work;
809 }
810
811 /* This can be called in any context */
812 irq_work_queue(&rbwork->work);
813}
814
815static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
816{
817 struct ring_buffer_per_cpu *cpu_buffer;
818 bool ret = false;
819
820 /* Reads of all CPUs always waits for any data */
821 if (cpu == RING_BUFFER_ALL_CPUS)
822 return !ring_buffer_empty(buffer);
823
824 cpu_buffer = buffer->buffers[cpu];
825
826 if (!ring_buffer_empty_cpu(buffer, cpu)) {
827 unsigned long flags;
828 bool pagebusy;
829
830 if (!full)
831 return true;
832
833 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
834 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
835 ret = !pagebusy && full_hit(buffer, cpu, full);
836
837 if (!cpu_buffer->shortest_full ||
838 cpu_buffer->shortest_full > full)
839 cpu_buffer->shortest_full = full;
840 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
841 }
842 return ret;
843}
844
845/**
846 * ring_buffer_wait - wait for input to the ring buffer
847 * @buffer: buffer to wait on
848 * @cpu: the cpu buffer to wait on
849 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
850 *
851 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
852 * as data is added to any of the @buffer's cpu buffers. Otherwise
853 * it will wait for data to be added to a specific cpu buffer.
854 */
855int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
856{
857 struct ring_buffer_per_cpu *cpu_buffer;
858 DEFINE_WAIT(wait);
859 struct rb_irq_work *work;
860 int ret = 0;
861
862 /*
863 * Depending on what the caller is waiting for, either any
864 * data in any cpu buffer, or a specific buffer, put the
865 * caller on the appropriate wait queue.
866 */
867 if (cpu == RING_BUFFER_ALL_CPUS) {
868 work = &buffer->irq_work;
869 /* Full only makes sense on per cpu reads */
870 full = 0;
871 } else {
872 if (!cpumask_test_cpu(cpu, buffer->cpumask))
873 return -ENODEV;
874 cpu_buffer = buffer->buffers[cpu];
875 work = &cpu_buffer->irq_work;
876 }
877
878 if (full)
879 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
880 else
881 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
882
883 /*
884 * The events can happen in critical sections where
885 * checking a work queue can cause deadlocks.
886 * After adding a task to the queue, this flag is set
887 * only to notify events to try to wake up the queue
888 * using irq_work.
889 *
890 * We don't clear it even if the buffer is no longer
891 * empty. The flag only causes the next event to run
892 * irq_work to do the work queue wake up. The worse
893 * that can happen if we race with !trace_empty() is that
894 * an event will cause an irq_work to try to wake up
895 * an empty queue.
896 *
897 * There's no reason to protect this flag either, as
898 * the work queue and irq_work logic will do the necessary
899 * synchronization for the wake ups. The only thing
900 * that is necessary is that the wake up happens after
901 * a task has been queued. It's OK for spurious wake ups.
902 */
903 if (full)
904 work->full_waiters_pending = true;
905 else
906 work->waiters_pending = true;
907
908 if (rb_watermark_hit(buffer, cpu, full))
909 goto out;
910
911 if (signal_pending(current)) {
912 ret = -EINTR;
913 goto out;
914 }
915
916 schedule();
917 out:
918 if (full)
919 finish_wait(&work->full_waiters, &wait);
920 else
921 finish_wait(&work->waiters, &wait);
922
923 if (!ret && !rb_watermark_hit(buffer, cpu, full) && signal_pending(current))
924 ret = -EINTR;
925
926 return ret;
927}
928
929/**
930 * ring_buffer_poll_wait - poll on buffer input
931 * @buffer: buffer to wait on
932 * @cpu: the cpu buffer to wait on
933 * @filp: the file descriptor
934 * @poll_table: The poll descriptor
935 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
936 *
937 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
938 * as data is added to any of the @buffer's cpu buffers. Otherwise
939 * it will wait for data to be added to a specific cpu buffer.
940 *
941 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
942 * zero otherwise.
943 */
944__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
945 struct file *filp, poll_table *poll_table, int full)
946{
947 struct ring_buffer_per_cpu *cpu_buffer;
948 struct rb_irq_work *rbwork;
949
950 if (cpu == RING_BUFFER_ALL_CPUS) {
951 rbwork = &buffer->irq_work;
952 full = 0;
953 } else {
954 if (!cpumask_test_cpu(cpu, buffer->cpumask))
955 return EPOLLERR;
956
957 cpu_buffer = buffer->buffers[cpu];
958 rbwork = &cpu_buffer->irq_work;
959 }
960
961 if (full) {
962 unsigned long flags;
963
964 poll_wait(filp, &rbwork->full_waiters, poll_table);
965
966 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
967 rbwork->full_waiters_pending = true;
968 if (!cpu_buffer->shortest_full ||
969 cpu_buffer->shortest_full > full)
970 cpu_buffer->shortest_full = full;
971 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
972 } else {
973 poll_wait(filp, &rbwork->waiters, poll_table);
974 rbwork->waiters_pending = true;
975 }
976
977 /*
978 * There's a tight race between setting the waiters_pending and
979 * checking if the ring buffer is empty. Once the waiters_pending bit
980 * is set, the next event will wake the task up, but we can get stuck
981 * if there's only a single event in.
982 *
983 * FIXME: Ideally, we need a memory barrier on the writer side as well,
984 * but adding a memory barrier to all events will cause too much of a
985 * performance hit in the fast path. We only need a memory barrier when
986 * the buffer goes from empty to having content. But as this race is
987 * extremely small, and it's not a problem if another event comes in, we
988 * will fix it later.
989 */
990 smp_mb();
991
992 if (full)
993 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
994
995 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
996 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
997 return EPOLLIN | EPOLLRDNORM;
998 return 0;
999}
1000
1001/* buffer may be either ring_buffer or ring_buffer_per_cpu */
1002#define RB_WARN_ON(b, cond) \
1003 ({ \
1004 int _____ret = unlikely(cond); \
1005 if (_____ret) { \
1006 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1007 struct ring_buffer_per_cpu *__b = \
1008 (void *)b; \
1009 atomic_inc(&__b->buffer->record_disabled); \
1010 } else \
1011 atomic_inc(&b->record_disabled); \
1012 WARN_ON(1); \
1013 } \
1014 _____ret; \
1015 })
1016
1017/* Up this if you want to test the TIME_EXTENTS and normalization */
1018#define DEBUG_SHIFT 0
1019
1020static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1021{
1022 u64 ts;
1023
1024 /* Skip retpolines :-( */
1025 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1026 ts = trace_clock_local();
1027 else
1028 ts = buffer->clock();
1029
1030 /* shift to debug/test normalization and TIME_EXTENTS */
1031 return ts << DEBUG_SHIFT;
1032}
1033
1034u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1035{
1036 u64 time;
1037
1038 preempt_disable_notrace();
1039 time = rb_time_stamp(buffer);
1040 preempt_enable_notrace();
1041
1042 return time;
1043}
1044EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1045
1046void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1047 int cpu, u64 *ts)
1048{
1049 /* Just stupid testing the normalize function and deltas */
1050 *ts >>= DEBUG_SHIFT;
1051}
1052EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1053
1054/*
1055 * Making the ring buffer lockless makes things tricky.
1056 * Although writes only happen on the CPU that they are on,
1057 * and they only need to worry about interrupts. Reads can
1058 * happen on any CPU.
1059 *
1060 * The reader page is always off the ring buffer, but when the
1061 * reader finishes with a page, it needs to swap its page with
1062 * a new one from the buffer. The reader needs to take from
1063 * the head (writes go to the tail). But if a writer is in overwrite
1064 * mode and wraps, it must push the head page forward.
1065 *
1066 * Here lies the problem.
1067 *
1068 * The reader must be careful to replace only the head page, and
1069 * not another one. As described at the top of the file in the
1070 * ASCII art, the reader sets its old page to point to the next
1071 * page after head. It then sets the page after head to point to
1072 * the old reader page. But if the writer moves the head page
1073 * during this operation, the reader could end up with the tail.
1074 *
1075 * We use cmpxchg to help prevent this race. We also do something
1076 * special with the page before head. We set the LSB to 1.
1077 *
1078 * When the writer must push the page forward, it will clear the
1079 * bit that points to the head page, move the head, and then set
1080 * the bit that points to the new head page.
1081 *
1082 * We also don't want an interrupt coming in and moving the head
1083 * page on another writer. Thus we use the second LSB to catch
1084 * that too. Thus:
1085 *
1086 * head->list->prev->next bit 1 bit 0
1087 * ------- -------
1088 * Normal page 0 0
1089 * Points to head page 0 1
1090 * New head page 1 0
1091 *
1092 * Note we can not trust the prev pointer of the head page, because:
1093 *
1094 * +----+ +-----+ +-----+
1095 * | |------>| T |---X--->| N |
1096 * | |<------| | | |
1097 * +----+ +-----+ +-----+
1098 * ^ ^ |
1099 * | +-----+ | |
1100 * +----------| R |----------+ |
1101 * | |<-----------+
1102 * +-----+
1103 *
1104 * Key: ---X--> HEAD flag set in pointer
1105 * T Tail page
1106 * R Reader page
1107 * N Next page
1108 *
1109 * (see __rb_reserve_next() to see where this happens)
1110 *
1111 * What the above shows is that the reader just swapped out
1112 * the reader page with a page in the buffer, but before it
1113 * could make the new header point back to the new page added
1114 * it was preempted by a writer. The writer moved forward onto
1115 * the new page added by the reader and is about to move forward
1116 * again.
1117 *
1118 * You can see, it is legitimate for the previous pointer of
1119 * the head (or any page) not to point back to itself. But only
1120 * temporarily.
1121 */
1122
1123#define RB_PAGE_NORMAL 0UL
1124#define RB_PAGE_HEAD 1UL
1125#define RB_PAGE_UPDATE 2UL
1126
1127
1128#define RB_FLAG_MASK 3UL
1129
1130/* PAGE_MOVED is not part of the mask */
1131#define RB_PAGE_MOVED 4UL
1132
1133/*
1134 * rb_list_head - remove any bit
1135 */
1136static struct list_head *rb_list_head(struct list_head *list)
1137{
1138 unsigned long val = (unsigned long)list;
1139
1140 return (struct list_head *)(val & ~RB_FLAG_MASK);
1141}
1142
1143/*
1144 * rb_is_head_page - test if the given page is the head page
1145 *
1146 * Because the reader may move the head_page pointer, we can
1147 * not trust what the head page is (it may be pointing to
1148 * the reader page). But if the next page is a header page,
1149 * its flags will be non zero.
1150 */
1151static inline int
1152rb_is_head_page(struct buffer_page *page, struct list_head *list)
1153{
1154 unsigned long val;
1155
1156 val = (unsigned long)list->next;
1157
1158 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1159 return RB_PAGE_MOVED;
1160
1161 return val & RB_FLAG_MASK;
1162}
1163
1164/*
1165 * rb_is_reader_page
1166 *
1167 * The unique thing about the reader page, is that, if the
1168 * writer is ever on it, the previous pointer never points
1169 * back to the reader page.
1170 */
1171static bool rb_is_reader_page(struct buffer_page *page)
1172{
1173 struct list_head *list = page->list.prev;
1174
1175 return rb_list_head(list->next) != &page->list;
1176}
1177
1178/*
1179 * rb_set_list_to_head - set a list_head to be pointing to head.
1180 */
1181static void rb_set_list_to_head(struct list_head *list)
1182{
1183 unsigned long *ptr;
1184
1185 ptr = (unsigned long *)&list->next;
1186 *ptr |= RB_PAGE_HEAD;
1187 *ptr &= ~RB_PAGE_UPDATE;
1188}
1189
1190/*
1191 * rb_head_page_activate - sets up head page
1192 */
1193static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1194{
1195 struct buffer_page *head;
1196
1197 head = cpu_buffer->head_page;
1198 if (!head)
1199 return;
1200
1201 /*
1202 * Set the previous list pointer to have the HEAD flag.
1203 */
1204 rb_set_list_to_head(head->list.prev);
1205}
1206
1207static void rb_list_head_clear(struct list_head *list)
1208{
1209 unsigned long *ptr = (unsigned long *)&list->next;
1210
1211 *ptr &= ~RB_FLAG_MASK;
1212}
1213
1214/*
1215 * rb_head_page_deactivate - clears head page ptr (for free list)
1216 */
1217static void
1218rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1219{
1220 struct list_head *hd;
1221
1222 /* Go through the whole list and clear any pointers found. */
1223 rb_list_head_clear(cpu_buffer->pages);
1224
1225 list_for_each(hd, cpu_buffer->pages)
1226 rb_list_head_clear(hd);
1227}
1228
1229static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1230 struct buffer_page *head,
1231 struct buffer_page *prev,
1232 int old_flag, int new_flag)
1233{
1234 struct list_head *list;
1235 unsigned long val = (unsigned long)&head->list;
1236 unsigned long ret;
1237
1238 list = &prev->list;
1239
1240 val &= ~RB_FLAG_MASK;
1241
1242 ret = cmpxchg((unsigned long *)&list->next,
1243 val | old_flag, val | new_flag);
1244
1245 /* check if the reader took the page */
1246 if ((ret & ~RB_FLAG_MASK) != val)
1247 return RB_PAGE_MOVED;
1248
1249 return ret & RB_FLAG_MASK;
1250}
1251
1252static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1253 struct buffer_page *head,
1254 struct buffer_page *prev,
1255 int old_flag)
1256{
1257 return rb_head_page_set(cpu_buffer, head, prev,
1258 old_flag, RB_PAGE_UPDATE);
1259}
1260
1261static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1262 struct buffer_page *head,
1263 struct buffer_page *prev,
1264 int old_flag)
1265{
1266 return rb_head_page_set(cpu_buffer, head, prev,
1267 old_flag, RB_PAGE_HEAD);
1268}
1269
1270static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1271 struct buffer_page *head,
1272 struct buffer_page *prev,
1273 int old_flag)
1274{
1275 return rb_head_page_set(cpu_buffer, head, prev,
1276 old_flag, RB_PAGE_NORMAL);
1277}
1278
1279static inline void rb_inc_page(struct buffer_page **bpage)
1280{
1281 struct list_head *p = rb_list_head((*bpage)->list.next);
1282
1283 *bpage = list_entry(p, struct buffer_page, list);
1284}
1285
1286static struct buffer_page *
1287rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1288{
1289 struct buffer_page *head;
1290 struct buffer_page *page;
1291 struct list_head *list;
1292 int i;
1293
1294 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1295 return NULL;
1296
1297 /* sanity check */
1298 list = cpu_buffer->pages;
1299 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1300 return NULL;
1301
1302 page = head = cpu_buffer->head_page;
1303 /*
1304 * It is possible that the writer moves the header behind
1305 * where we started, and we miss in one loop.
1306 * A second loop should grab the header, but we'll do
1307 * three loops just because I'm paranoid.
1308 */
1309 for (i = 0; i < 3; i++) {
1310 do {
1311 if (rb_is_head_page(page, page->list.prev)) {
1312 cpu_buffer->head_page = page;
1313 return page;
1314 }
1315 rb_inc_page(&page);
1316 } while (page != head);
1317 }
1318
1319 RB_WARN_ON(cpu_buffer, 1);
1320
1321 return NULL;
1322}
1323
1324static bool rb_head_page_replace(struct buffer_page *old,
1325 struct buffer_page *new)
1326{
1327 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1328 unsigned long val;
1329
1330 val = *ptr & ~RB_FLAG_MASK;
1331 val |= RB_PAGE_HEAD;
1332
1333 return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1334}
1335
1336/*
1337 * rb_tail_page_update - move the tail page forward
1338 */
1339static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1340 struct buffer_page *tail_page,
1341 struct buffer_page *next_page)
1342{
1343 unsigned long old_entries;
1344 unsigned long old_write;
1345
1346 /*
1347 * The tail page now needs to be moved forward.
1348 *
1349 * We need to reset the tail page, but without messing
1350 * with possible erasing of data brought in by interrupts
1351 * that have moved the tail page and are currently on it.
1352 *
1353 * We add a counter to the write field to denote this.
1354 */
1355 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1356 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1357
1358 local_inc(&cpu_buffer->pages_touched);
1359 /*
1360 * Just make sure we have seen our old_write and synchronize
1361 * with any interrupts that come in.
1362 */
1363 barrier();
1364
1365 /*
1366 * If the tail page is still the same as what we think
1367 * it is, then it is up to us to update the tail
1368 * pointer.
1369 */
1370 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1371 /* Zero the write counter */
1372 unsigned long val = old_write & ~RB_WRITE_MASK;
1373 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1374
1375 /*
1376 * This will only succeed if an interrupt did
1377 * not come in and change it. In which case, we
1378 * do not want to modify it.
1379 *
1380 * We add (void) to let the compiler know that we do not care
1381 * about the return value of these functions. We use the
1382 * cmpxchg to only update if an interrupt did not already
1383 * do it for us. If the cmpxchg fails, we don't care.
1384 */
1385 (void)local_cmpxchg(&next_page->write, old_write, val);
1386 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1387
1388 /*
1389 * No need to worry about races with clearing out the commit.
1390 * it only can increment when a commit takes place. But that
1391 * only happens in the outer most nested commit.
1392 */
1393 local_set(&next_page->page->commit, 0);
1394
1395 /* Again, either we update tail_page or an interrupt does */
1396 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1397 }
1398}
1399
1400static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1401 struct buffer_page *bpage)
1402{
1403 unsigned long val = (unsigned long)bpage;
1404
1405 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1406}
1407
1408/**
1409 * rb_check_pages - integrity check of buffer pages
1410 * @cpu_buffer: CPU buffer with pages to test
1411 *
1412 * As a safety measure we check to make sure the data pages have not
1413 * been corrupted.
1414 */
1415static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1416{
1417 struct list_head *head = rb_list_head(cpu_buffer->pages);
1418 struct list_head *tmp;
1419
1420 if (RB_WARN_ON(cpu_buffer,
1421 rb_list_head(rb_list_head(head->next)->prev) != head))
1422 return;
1423
1424 if (RB_WARN_ON(cpu_buffer,
1425 rb_list_head(rb_list_head(head->prev)->next) != head))
1426 return;
1427
1428 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1429 if (RB_WARN_ON(cpu_buffer,
1430 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1431 return;
1432
1433 if (RB_WARN_ON(cpu_buffer,
1434 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1435 return;
1436 }
1437}
1438
1439static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1440 long nr_pages, struct list_head *pages)
1441{
1442 struct buffer_page *bpage, *tmp;
1443 bool user_thread = current->mm != NULL;
1444 gfp_t mflags;
1445 long i;
1446
1447 /*
1448 * Check if the available memory is there first.
1449 * Note, si_mem_available() only gives us a rough estimate of available
1450 * memory. It may not be accurate. But we don't care, we just want
1451 * to prevent doing any allocation when it is obvious that it is
1452 * not going to succeed.
1453 */
1454 i = si_mem_available();
1455 if (i < nr_pages)
1456 return -ENOMEM;
1457
1458 /*
1459 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1460 * gracefully without invoking oom-killer and the system is not
1461 * destabilized.
1462 */
1463 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1464
1465 /*
1466 * If a user thread allocates too much, and si_mem_available()
1467 * reports there's enough memory, even though there is not.
1468 * Make sure the OOM killer kills this thread. This can happen
1469 * even with RETRY_MAYFAIL because another task may be doing
1470 * an allocation after this task has taken all memory.
1471 * This is the task the OOM killer needs to take out during this
1472 * loop, even if it was triggered by an allocation somewhere else.
1473 */
1474 if (user_thread)
1475 set_current_oom_origin();
1476 for (i = 0; i < nr_pages; i++) {
1477 struct page *page;
1478
1479 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1480 mflags, cpu_to_node(cpu_buffer->cpu));
1481 if (!bpage)
1482 goto free_pages;
1483
1484 rb_check_bpage(cpu_buffer, bpage);
1485
1486 list_add(&bpage->list, pages);
1487
1488 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags,
1489 cpu_buffer->buffer->subbuf_order);
1490 if (!page)
1491 goto free_pages;
1492 bpage->page = page_address(page);
1493 bpage->order = cpu_buffer->buffer->subbuf_order;
1494 rb_init_page(bpage->page);
1495
1496 if (user_thread && fatal_signal_pending(current))
1497 goto free_pages;
1498 }
1499 if (user_thread)
1500 clear_current_oom_origin();
1501
1502 return 0;
1503
1504free_pages:
1505 list_for_each_entry_safe(bpage, tmp, pages, list) {
1506 list_del_init(&bpage->list);
1507 free_buffer_page(bpage);
1508 }
1509 if (user_thread)
1510 clear_current_oom_origin();
1511
1512 return -ENOMEM;
1513}
1514
1515static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1516 unsigned long nr_pages)
1517{
1518 LIST_HEAD(pages);
1519
1520 WARN_ON(!nr_pages);
1521
1522 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1523 return -ENOMEM;
1524
1525 /*
1526 * The ring buffer page list is a circular list that does not
1527 * start and end with a list head. All page list items point to
1528 * other pages.
1529 */
1530 cpu_buffer->pages = pages.next;
1531 list_del(&pages);
1532
1533 cpu_buffer->nr_pages = nr_pages;
1534
1535 rb_check_pages(cpu_buffer);
1536
1537 return 0;
1538}
1539
1540static struct ring_buffer_per_cpu *
1541rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1542{
1543 struct ring_buffer_per_cpu *cpu_buffer;
1544 struct buffer_page *bpage;
1545 struct page *page;
1546 int ret;
1547
1548 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1549 GFP_KERNEL, cpu_to_node(cpu));
1550 if (!cpu_buffer)
1551 return NULL;
1552
1553 cpu_buffer->cpu = cpu;
1554 cpu_buffer->buffer = buffer;
1555 raw_spin_lock_init(&cpu_buffer->reader_lock);
1556 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1557 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1558 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1559 init_completion(&cpu_buffer->update_done);
1560 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1561 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1562 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1563
1564 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1565 GFP_KERNEL, cpu_to_node(cpu));
1566 if (!bpage)
1567 goto fail_free_buffer;
1568
1569 rb_check_bpage(cpu_buffer, bpage);
1570
1571 cpu_buffer->reader_page = bpage;
1572
1573 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, cpu_buffer->buffer->subbuf_order);
1574 if (!page)
1575 goto fail_free_reader;
1576 bpage->page = page_address(page);
1577 rb_init_page(bpage->page);
1578
1579 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1580 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1581
1582 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1583 if (ret < 0)
1584 goto fail_free_reader;
1585
1586 cpu_buffer->head_page
1587 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1588 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1589
1590 rb_head_page_activate(cpu_buffer);
1591
1592 return cpu_buffer;
1593
1594 fail_free_reader:
1595 free_buffer_page(cpu_buffer->reader_page);
1596
1597 fail_free_buffer:
1598 kfree(cpu_buffer);
1599 return NULL;
1600}
1601
1602static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1603{
1604 struct list_head *head = cpu_buffer->pages;
1605 struct buffer_page *bpage, *tmp;
1606
1607 irq_work_sync(&cpu_buffer->irq_work.work);
1608
1609 free_buffer_page(cpu_buffer->reader_page);
1610
1611 if (head) {
1612 rb_head_page_deactivate(cpu_buffer);
1613
1614 list_for_each_entry_safe(bpage, tmp, head, list) {
1615 list_del_init(&bpage->list);
1616 free_buffer_page(bpage);
1617 }
1618 bpage = list_entry(head, struct buffer_page, list);
1619 free_buffer_page(bpage);
1620 }
1621
1622 free_page((unsigned long)cpu_buffer->free_page);
1623
1624 kfree(cpu_buffer);
1625}
1626
1627/**
1628 * __ring_buffer_alloc - allocate a new ring_buffer
1629 * @size: the size in bytes per cpu that is needed.
1630 * @flags: attributes to set for the ring buffer.
1631 * @key: ring buffer reader_lock_key.
1632 *
1633 * Currently the only flag that is available is the RB_FL_OVERWRITE
1634 * flag. This flag means that the buffer will overwrite old data
1635 * when the buffer wraps. If this flag is not set, the buffer will
1636 * drop data when the tail hits the head.
1637 */
1638struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1639 struct lock_class_key *key)
1640{
1641 struct trace_buffer *buffer;
1642 long nr_pages;
1643 int bsize;
1644 int cpu;
1645 int ret;
1646
1647 /* keep it in its own cache line */
1648 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1649 GFP_KERNEL);
1650 if (!buffer)
1651 return NULL;
1652
1653 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1654 goto fail_free_buffer;
1655
1656 /* Default buffer page size - one system page */
1657 buffer->subbuf_order = 0;
1658 buffer->subbuf_size = PAGE_SIZE - BUF_PAGE_HDR_SIZE;
1659
1660 /* Max payload is buffer page size - header (8bytes) */
1661 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
1662
1663 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
1664 buffer->flags = flags;
1665 buffer->clock = trace_clock_local;
1666 buffer->reader_lock_key = key;
1667
1668 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1669 init_waitqueue_head(&buffer->irq_work.waiters);
1670
1671 /* need at least two pages */
1672 if (nr_pages < 2)
1673 nr_pages = 2;
1674
1675 buffer->cpus = nr_cpu_ids;
1676
1677 bsize = sizeof(void *) * nr_cpu_ids;
1678 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1679 GFP_KERNEL);
1680 if (!buffer->buffers)
1681 goto fail_free_cpumask;
1682
1683 cpu = raw_smp_processor_id();
1684 cpumask_set_cpu(cpu, buffer->cpumask);
1685 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1686 if (!buffer->buffers[cpu])
1687 goto fail_free_buffers;
1688
1689 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1690 if (ret < 0)
1691 goto fail_free_buffers;
1692
1693 mutex_init(&buffer->mutex);
1694
1695 return buffer;
1696
1697 fail_free_buffers:
1698 for_each_buffer_cpu(buffer, cpu) {
1699 if (buffer->buffers[cpu])
1700 rb_free_cpu_buffer(buffer->buffers[cpu]);
1701 }
1702 kfree(buffer->buffers);
1703
1704 fail_free_cpumask:
1705 free_cpumask_var(buffer->cpumask);
1706
1707 fail_free_buffer:
1708 kfree(buffer);
1709 return NULL;
1710}
1711EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1712
1713/**
1714 * ring_buffer_free - free a ring buffer.
1715 * @buffer: the buffer to free.
1716 */
1717void
1718ring_buffer_free(struct trace_buffer *buffer)
1719{
1720 int cpu;
1721
1722 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1723
1724 irq_work_sync(&buffer->irq_work.work);
1725
1726 for_each_buffer_cpu(buffer, cpu)
1727 rb_free_cpu_buffer(buffer->buffers[cpu]);
1728
1729 kfree(buffer->buffers);
1730 free_cpumask_var(buffer->cpumask);
1731
1732 kfree(buffer);
1733}
1734EXPORT_SYMBOL_GPL(ring_buffer_free);
1735
1736void ring_buffer_set_clock(struct trace_buffer *buffer,
1737 u64 (*clock)(void))
1738{
1739 buffer->clock = clock;
1740}
1741
1742void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1743{
1744 buffer->time_stamp_abs = abs;
1745}
1746
1747bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1748{
1749 return buffer->time_stamp_abs;
1750}
1751
1752static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1753
1754static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1755{
1756 return local_read(&bpage->entries) & RB_WRITE_MASK;
1757}
1758
1759static inline unsigned long rb_page_write(struct buffer_page *bpage)
1760{
1761 return local_read(&bpage->write) & RB_WRITE_MASK;
1762}
1763
1764static bool
1765rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1766{
1767 struct list_head *tail_page, *to_remove, *next_page;
1768 struct buffer_page *to_remove_page, *tmp_iter_page;
1769 struct buffer_page *last_page, *first_page;
1770 unsigned long nr_removed;
1771 unsigned long head_bit;
1772 int page_entries;
1773
1774 head_bit = 0;
1775
1776 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1777 atomic_inc(&cpu_buffer->record_disabled);
1778 /*
1779 * We don't race with the readers since we have acquired the reader
1780 * lock. We also don't race with writers after disabling recording.
1781 * This makes it easy to figure out the first and the last page to be
1782 * removed from the list. We unlink all the pages in between including
1783 * the first and last pages. This is done in a busy loop so that we
1784 * lose the least number of traces.
1785 * The pages are freed after we restart recording and unlock readers.
1786 */
1787 tail_page = &cpu_buffer->tail_page->list;
1788
1789 /*
1790 * tail page might be on reader page, we remove the next page
1791 * from the ring buffer
1792 */
1793 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1794 tail_page = rb_list_head(tail_page->next);
1795 to_remove = tail_page;
1796
1797 /* start of pages to remove */
1798 first_page = list_entry(rb_list_head(to_remove->next),
1799 struct buffer_page, list);
1800
1801 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1802 to_remove = rb_list_head(to_remove)->next;
1803 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1804 }
1805 /* Read iterators need to reset themselves when some pages removed */
1806 cpu_buffer->pages_removed += nr_removed;
1807
1808 next_page = rb_list_head(to_remove)->next;
1809
1810 /*
1811 * Now we remove all pages between tail_page and next_page.
1812 * Make sure that we have head_bit value preserved for the
1813 * next page
1814 */
1815 tail_page->next = (struct list_head *)((unsigned long)next_page |
1816 head_bit);
1817 next_page = rb_list_head(next_page);
1818 next_page->prev = tail_page;
1819
1820 /* make sure pages points to a valid page in the ring buffer */
1821 cpu_buffer->pages = next_page;
1822
1823 /* update head page */
1824 if (head_bit)
1825 cpu_buffer->head_page = list_entry(next_page,
1826 struct buffer_page, list);
1827
1828 /* pages are removed, resume tracing and then free the pages */
1829 atomic_dec(&cpu_buffer->record_disabled);
1830 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1831
1832 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1833
1834 /* last buffer page to remove */
1835 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1836 list);
1837 tmp_iter_page = first_page;
1838
1839 do {
1840 cond_resched();
1841
1842 to_remove_page = tmp_iter_page;
1843 rb_inc_page(&tmp_iter_page);
1844
1845 /* update the counters */
1846 page_entries = rb_page_entries(to_remove_page);
1847 if (page_entries) {
1848 /*
1849 * If something was added to this page, it was full
1850 * since it is not the tail page. So we deduct the
1851 * bytes consumed in ring buffer from here.
1852 * Increment overrun to account for the lost events.
1853 */
1854 local_add(page_entries, &cpu_buffer->overrun);
1855 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
1856 local_inc(&cpu_buffer->pages_lost);
1857 }
1858
1859 /*
1860 * We have already removed references to this list item, just
1861 * free up the buffer_page and its page
1862 */
1863 free_buffer_page(to_remove_page);
1864 nr_removed--;
1865
1866 } while (to_remove_page != last_page);
1867
1868 RB_WARN_ON(cpu_buffer, nr_removed);
1869
1870 return nr_removed == 0;
1871}
1872
1873static bool
1874rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1875{
1876 struct list_head *pages = &cpu_buffer->new_pages;
1877 unsigned long flags;
1878 bool success;
1879 int retries;
1880
1881 /* Can be called at early boot up, where interrupts must not been enabled */
1882 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1883 /*
1884 * We are holding the reader lock, so the reader page won't be swapped
1885 * in the ring buffer. Now we are racing with the writer trying to
1886 * move head page and the tail page.
1887 * We are going to adapt the reader page update process where:
1888 * 1. We first splice the start and end of list of new pages between
1889 * the head page and its previous page.
1890 * 2. We cmpxchg the prev_page->next to point from head page to the
1891 * start of new pages list.
1892 * 3. Finally, we update the head->prev to the end of new list.
1893 *
1894 * We will try this process 10 times, to make sure that we don't keep
1895 * spinning.
1896 */
1897 retries = 10;
1898 success = false;
1899 while (retries--) {
1900 struct list_head *head_page, *prev_page;
1901 struct list_head *last_page, *first_page;
1902 struct list_head *head_page_with_bit;
1903 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
1904
1905 if (!hpage)
1906 break;
1907 head_page = &hpage->list;
1908 prev_page = head_page->prev;
1909
1910 first_page = pages->next;
1911 last_page = pages->prev;
1912
1913 head_page_with_bit = (struct list_head *)
1914 ((unsigned long)head_page | RB_PAGE_HEAD);
1915
1916 last_page->next = head_page_with_bit;
1917 first_page->prev = prev_page;
1918
1919 /* caution: head_page_with_bit gets updated on cmpxchg failure */
1920 if (try_cmpxchg(&prev_page->next,
1921 &head_page_with_bit, first_page)) {
1922 /*
1923 * yay, we replaced the page pointer to our new list,
1924 * now, we just have to update to head page's prev
1925 * pointer to point to end of list
1926 */
1927 head_page->prev = last_page;
1928 success = true;
1929 break;
1930 }
1931 }
1932
1933 if (success)
1934 INIT_LIST_HEAD(pages);
1935 /*
1936 * If we weren't successful in adding in new pages, warn and stop
1937 * tracing
1938 */
1939 RB_WARN_ON(cpu_buffer, !success);
1940 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1941
1942 /* free pages if they weren't inserted */
1943 if (!success) {
1944 struct buffer_page *bpage, *tmp;
1945 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1946 list) {
1947 list_del_init(&bpage->list);
1948 free_buffer_page(bpage);
1949 }
1950 }
1951 return success;
1952}
1953
1954static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1955{
1956 bool success;
1957
1958 if (cpu_buffer->nr_pages_to_update > 0)
1959 success = rb_insert_pages(cpu_buffer);
1960 else
1961 success = rb_remove_pages(cpu_buffer,
1962 -cpu_buffer->nr_pages_to_update);
1963
1964 if (success)
1965 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1966}
1967
1968static void update_pages_handler(struct work_struct *work)
1969{
1970 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1971 struct ring_buffer_per_cpu, update_pages_work);
1972 rb_update_pages(cpu_buffer);
1973 complete(&cpu_buffer->update_done);
1974}
1975
1976/**
1977 * ring_buffer_resize - resize the ring buffer
1978 * @buffer: the buffer to resize.
1979 * @size: the new size.
1980 * @cpu_id: the cpu buffer to resize
1981 *
1982 * Minimum size is 2 * buffer->subbuf_size.
1983 *
1984 * Returns 0 on success and < 0 on failure.
1985 */
1986int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1987 int cpu_id)
1988{
1989 struct ring_buffer_per_cpu *cpu_buffer;
1990 unsigned long nr_pages;
1991 int cpu, err;
1992
1993 /*
1994 * Always succeed at resizing a non-existent buffer:
1995 */
1996 if (!buffer)
1997 return 0;
1998
1999 /* Make sure the requested buffer exists */
2000 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2001 !cpumask_test_cpu(cpu_id, buffer->cpumask))
2002 return 0;
2003
2004 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2005
2006 /* we need a minimum of two pages */
2007 if (nr_pages < 2)
2008 nr_pages = 2;
2009
2010 /* prevent another thread from changing buffer sizes */
2011 mutex_lock(&buffer->mutex);
2012 atomic_inc(&buffer->resizing);
2013
2014 if (cpu_id == RING_BUFFER_ALL_CPUS) {
2015 /*
2016 * Don't succeed if resizing is disabled, as a reader might be
2017 * manipulating the ring buffer and is expecting a sane state while
2018 * this is true.
2019 */
2020 for_each_buffer_cpu(buffer, cpu) {
2021 cpu_buffer = buffer->buffers[cpu];
2022 if (atomic_read(&cpu_buffer->resize_disabled)) {
2023 err = -EBUSY;
2024 goto out_err_unlock;
2025 }
2026 }
2027
2028 /* calculate the pages to update */
2029 for_each_buffer_cpu(buffer, cpu) {
2030 cpu_buffer = buffer->buffers[cpu];
2031
2032 cpu_buffer->nr_pages_to_update = nr_pages -
2033 cpu_buffer->nr_pages;
2034 /*
2035 * nothing more to do for removing pages or no update
2036 */
2037 if (cpu_buffer->nr_pages_to_update <= 0)
2038 continue;
2039 /*
2040 * to add pages, make sure all new pages can be
2041 * allocated without receiving ENOMEM
2042 */
2043 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2044 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2045 &cpu_buffer->new_pages)) {
2046 /* not enough memory for new pages */
2047 err = -ENOMEM;
2048 goto out_err;
2049 }
2050
2051 cond_resched();
2052 }
2053
2054 cpus_read_lock();
2055 /*
2056 * Fire off all the required work handlers
2057 * We can't schedule on offline CPUs, but it's not necessary
2058 * since we can change their buffer sizes without any race.
2059 */
2060 for_each_buffer_cpu(buffer, cpu) {
2061 cpu_buffer = buffer->buffers[cpu];
2062 if (!cpu_buffer->nr_pages_to_update)
2063 continue;
2064
2065 /* Can't run something on an offline CPU. */
2066 if (!cpu_online(cpu)) {
2067 rb_update_pages(cpu_buffer);
2068 cpu_buffer->nr_pages_to_update = 0;
2069 } else {
2070 /* Run directly if possible. */
2071 migrate_disable();
2072 if (cpu != smp_processor_id()) {
2073 migrate_enable();
2074 schedule_work_on(cpu,
2075 &cpu_buffer->update_pages_work);
2076 } else {
2077 update_pages_handler(&cpu_buffer->update_pages_work);
2078 migrate_enable();
2079 }
2080 }
2081 }
2082
2083 /* wait for all the updates to complete */
2084 for_each_buffer_cpu(buffer, cpu) {
2085 cpu_buffer = buffer->buffers[cpu];
2086 if (!cpu_buffer->nr_pages_to_update)
2087 continue;
2088
2089 if (cpu_online(cpu))
2090 wait_for_completion(&cpu_buffer->update_done);
2091 cpu_buffer->nr_pages_to_update = 0;
2092 }
2093
2094 cpus_read_unlock();
2095 } else {
2096 cpu_buffer = buffer->buffers[cpu_id];
2097
2098 if (nr_pages == cpu_buffer->nr_pages)
2099 goto out;
2100
2101 /*
2102 * Don't succeed if resizing is disabled, as a reader might be
2103 * manipulating the ring buffer and is expecting a sane state while
2104 * this is true.
2105 */
2106 if (atomic_read(&cpu_buffer->resize_disabled)) {
2107 err = -EBUSY;
2108 goto out_err_unlock;
2109 }
2110
2111 cpu_buffer->nr_pages_to_update = nr_pages -
2112 cpu_buffer->nr_pages;
2113
2114 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2115 if (cpu_buffer->nr_pages_to_update > 0 &&
2116 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2117 &cpu_buffer->new_pages)) {
2118 err = -ENOMEM;
2119 goto out_err;
2120 }
2121
2122 cpus_read_lock();
2123
2124 /* Can't run something on an offline CPU. */
2125 if (!cpu_online(cpu_id))
2126 rb_update_pages(cpu_buffer);
2127 else {
2128 /* Run directly if possible. */
2129 migrate_disable();
2130 if (cpu_id == smp_processor_id()) {
2131 rb_update_pages(cpu_buffer);
2132 migrate_enable();
2133 } else {
2134 migrate_enable();
2135 schedule_work_on(cpu_id,
2136 &cpu_buffer->update_pages_work);
2137 wait_for_completion(&cpu_buffer->update_done);
2138 }
2139 }
2140
2141 cpu_buffer->nr_pages_to_update = 0;
2142 cpus_read_unlock();
2143 }
2144
2145 out:
2146 /*
2147 * The ring buffer resize can happen with the ring buffer
2148 * enabled, so that the update disturbs the tracing as little
2149 * as possible. But if the buffer is disabled, we do not need
2150 * to worry about that, and we can take the time to verify
2151 * that the buffer is not corrupt.
2152 */
2153 if (atomic_read(&buffer->record_disabled)) {
2154 atomic_inc(&buffer->record_disabled);
2155 /*
2156 * Even though the buffer was disabled, we must make sure
2157 * that it is truly disabled before calling rb_check_pages.
2158 * There could have been a race between checking
2159 * record_disable and incrementing it.
2160 */
2161 synchronize_rcu();
2162 for_each_buffer_cpu(buffer, cpu) {
2163 cpu_buffer = buffer->buffers[cpu];
2164 rb_check_pages(cpu_buffer);
2165 }
2166 atomic_dec(&buffer->record_disabled);
2167 }
2168
2169 atomic_dec(&buffer->resizing);
2170 mutex_unlock(&buffer->mutex);
2171 return 0;
2172
2173 out_err:
2174 for_each_buffer_cpu(buffer, cpu) {
2175 struct buffer_page *bpage, *tmp;
2176
2177 cpu_buffer = buffer->buffers[cpu];
2178 cpu_buffer->nr_pages_to_update = 0;
2179
2180 if (list_empty(&cpu_buffer->new_pages))
2181 continue;
2182
2183 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2184 list) {
2185 list_del_init(&bpage->list);
2186 free_buffer_page(bpage);
2187 }
2188 }
2189 out_err_unlock:
2190 atomic_dec(&buffer->resizing);
2191 mutex_unlock(&buffer->mutex);
2192 return err;
2193}
2194EXPORT_SYMBOL_GPL(ring_buffer_resize);
2195
2196void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2197{
2198 mutex_lock(&buffer->mutex);
2199 if (val)
2200 buffer->flags |= RB_FL_OVERWRITE;
2201 else
2202 buffer->flags &= ~RB_FL_OVERWRITE;
2203 mutex_unlock(&buffer->mutex);
2204}
2205EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2206
2207static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2208{
2209 return bpage->page->data + index;
2210}
2211
2212static __always_inline struct ring_buffer_event *
2213rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2214{
2215 return __rb_page_index(cpu_buffer->reader_page,
2216 cpu_buffer->reader_page->read);
2217}
2218
2219static struct ring_buffer_event *
2220rb_iter_head_event(struct ring_buffer_iter *iter)
2221{
2222 struct ring_buffer_event *event;
2223 struct buffer_page *iter_head_page = iter->head_page;
2224 unsigned long commit;
2225 unsigned length;
2226
2227 if (iter->head != iter->next_event)
2228 return iter->event;
2229
2230 /*
2231 * When the writer goes across pages, it issues a cmpxchg which
2232 * is a mb(), which will synchronize with the rmb here.
2233 * (see rb_tail_page_update() and __rb_reserve_next())
2234 */
2235 commit = rb_page_commit(iter_head_page);
2236 smp_rmb();
2237
2238 /* An event needs to be at least 8 bytes in size */
2239 if (iter->head > commit - 8)
2240 goto reset;
2241
2242 event = __rb_page_index(iter_head_page, iter->head);
2243 length = rb_event_length(event);
2244
2245 /*
2246 * READ_ONCE() doesn't work on functions and we don't want the
2247 * compiler doing any crazy optimizations with length.
2248 */
2249 barrier();
2250
2251 if ((iter->head + length) > commit || length > iter->event_size)
2252 /* Writer corrupted the read? */
2253 goto reset;
2254
2255 memcpy(iter->event, event, length);
2256 /*
2257 * If the page stamp is still the same after this rmb() then the
2258 * event was safely copied without the writer entering the page.
2259 */
2260 smp_rmb();
2261
2262 /* Make sure the page didn't change since we read this */
2263 if (iter->page_stamp != iter_head_page->page->time_stamp ||
2264 commit > rb_page_commit(iter_head_page))
2265 goto reset;
2266
2267 iter->next_event = iter->head + length;
2268 return iter->event;
2269 reset:
2270 /* Reset to the beginning */
2271 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2272 iter->head = 0;
2273 iter->next_event = 0;
2274 iter->missed_events = 1;
2275 return NULL;
2276}
2277
2278/* Size is determined by what has been committed */
2279static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2280{
2281 return rb_page_commit(bpage);
2282}
2283
2284static __always_inline unsigned
2285rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2286{
2287 return rb_page_commit(cpu_buffer->commit_page);
2288}
2289
2290static __always_inline unsigned
2291rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
2292{
2293 unsigned long addr = (unsigned long)event;
2294
2295 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
2296
2297 return addr - BUF_PAGE_HDR_SIZE;
2298}
2299
2300static void rb_inc_iter(struct ring_buffer_iter *iter)
2301{
2302 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2303
2304 /*
2305 * The iterator could be on the reader page (it starts there).
2306 * But the head could have moved, since the reader was
2307 * found. Check for this case and assign the iterator
2308 * to the head page instead of next.
2309 */
2310 if (iter->head_page == cpu_buffer->reader_page)
2311 iter->head_page = rb_set_head_page(cpu_buffer);
2312 else
2313 rb_inc_page(&iter->head_page);
2314
2315 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2316 iter->head = 0;
2317 iter->next_event = 0;
2318}
2319
2320/*
2321 * rb_handle_head_page - writer hit the head page
2322 *
2323 * Returns: +1 to retry page
2324 * 0 to continue
2325 * -1 on error
2326 */
2327static int
2328rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2329 struct buffer_page *tail_page,
2330 struct buffer_page *next_page)
2331{
2332 struct buffer_page *new_head;
2333 int entries;
2334 int type;
2335 int ret;
2336
2337 entries = rb_page_entries(next_page);
2338
2339 /*
2340 * The hard part is here. We need to move the head
2341 * forward, and protect against both readers on
2342 * other CPUs and writers coming in via interrupts.
2343 */
2344 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2345 RB_PAGE_HEAD);
2346
2347 /*
2348 * type can be one of four:
2349 * NORMAL - an interrupt already moved it for us
2350 * HEAD - we are the first to get here.
2351 * UPDATE - we are the interrupt interrupting
2352 * a current move.
2353 * MOVED - a reader on another CPU moved the next
2354 * pointer to its reader page. Give up
2355 * and try again.
2356 */
2357
2358 switch (type) {
2359 case RB_PAGE_HEAD:
2360 /*
2361 * We changed the head to UPDATE, thus
2362 * it is our responsibility to update
2363 * the counters.
2364 */
2365 local_add(entries, &cpu_buffer->overrun);
2366 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2367 local_inc(&cpu_buffer->pages_lost);
2368
2369 /*
2370 * The entries will be zeroed out when we move the
2371 * tail page.
2372 */
2373
2374 /* still more to do */
2375 break;
2376
2377 case RB_PAGE_UPDATE:
2378 /*
2379 * This is an interrupt that interrupt the
2380 * previous update. Still more to do.
2381 */
2382 break;
2383 case RB_PAGE_NORMAL:
2384 /*
2385 * An interrupt came in before the update
2386 * and processed this for us.
2387 * Nothing left to do.
2388 */
2389 return 1;
2390 case RB_PAGE_MOVED:
2391 /*
2392 * The reader is on another CPU and just did
2393 * a swap with our next_page.
2394 * Try again.
2395 */
2396 return 1;
2397 default:
2398 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2399 return -1;
2400 }
2401
2402 /*
2403 * Now that we are here, the old head pointer is
2404 * set to UPDATE. This will keep the reader from
2405 * swapping the head page with the reader page.
2406 * The reader (on another CPU) will spin till
2407 * we are finished.
2408 *
2409 * We just need to protect against interrupts
2410 * doing the job. We will set the next pointer
2411 * to HEAD. After that, we set the old pointer
2412 * to NORMAL, but only if it was HEAD before.
2413 * otherwise we are an interrupt, and only
2414 * want the outer most commit to reset it.
2415 */
2416 new_head = next_page;
2417 rb_inc_page(&new_head);
2418
2419 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2420 RB_PAGE_NORMAL);
2421
2422 /*
2423 * Valid returns are:
2424 * HEAD - an interrupt came in and already set it.
2425 * NORMAL - One of two things:
2426 * 1) We really set it.
2427 * 2) A bunch of interrupts came in and moved
2428 * the page forward again.
2429 */
2430 switch (ret) {
2431 case RB_PAGE_HEAD:
2432 case RB_PAGE_NORMAL:
2433 /* OK */
2434 break;
2435 default:
2436 RB_WARN_ON(cpu_buffer, 1);
2437 return -1;
2438 }
2439
2440 /*
2441 * It is possible that an interrupt came in,
2442 * set the head up, then more interrupts came in
2443 * and moved it again. When we get back here,
2444 * the page would have been set to NORMAL but we
2445 * just set it back to HEAD.
2446 *
2447 * How do you detect this? Well, if that happened
2448 * the tail page would have moved.
2449 */
2450 if (ret == RB_PAGE_NORMAL) {
2451 struct buffer_page *buffer_tail_page;
2452
2453 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2454 /*
2455 * If the tail had moved passed next, then we need
2456 * to reset the pointer.
2457 */
2458 if (buffer_tail_page != tail_page &&
2459 buffer_tail_page != next_page)
2460 rb_head_page_set_normal(cpu_buffer, new_head,
2461 next_page,
2462 RB_PAGE_HEAD);
2463 }
2464
2465 /*
2466 * If this was the outer most commit (the one that
2467 * changed the original pointer from HEAD to UPDATE),
2468 * then it is up to us to reset it to NORMAL.
2469 */
2470 if (type == RB_PAGE_HEAD) {
2471 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2472 tail_page,
2473 RB_PAGE_UPDATE);
2474 if (RB_WARN_ON(cpu_buffer,
2475 ret != RB_PAGE_UPDATE))
2476 return -1;
2477 }
2478
2479 return 0;
2480}
2481
2482static inline void
2483rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2484 unsigned long tail, struct rb_event_info *info)
2485{
2486 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
2487 struct buffer_page *tail_page = info->tail_page;
2488 struct ring_buffer_event *event;
2489 unsigned long length = info->length;
2490
2491 /*
2492 * Only the event that crossed the page boundary
2493 * must fill the old tail_page with padding.
2494 */
2495 if (tail >= bsize) {
2496 /*
2497 * If the page was filled, then we still need
2498 * to update the real_end. Reset it to zero
2499 * and the reader will ignore it.
2500 */
2501 if (tail == bsize)
2502 tail_page->real_end = 0;
2503
2504 local_sub(length, &tail_page->write);
2505 return;
2506 }
2507
2508 event = __rb_page_index(tail_page, tail);
2509
2510 /*
2511 * Save the original length to the meta data.
2512 * This will be used by the reader to add lost event
2513 * counter.
2514 */
2515 tail_page->real_end = tail;
2516
2517 /*
2518 * If this event is bigger than the minimum size, then
2519 * we need to be careful that we don't subtract the
2520 * write counter enough to allow another writer to slip
2521 * in on this page.
2522 * We put in a discarded commit instead, to make sure
2523 * that this space is not used again, and this space will
2524 * not be accounted into 'entries_bytes'.
2525 *
2526 * If we are less than the minimum size, we don't need to
2527 * worry about it.
2528 */
2529 if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
2530 /* No room for any events */
2531
2532 /* Mark the rest of the page with padding */
2533 rb_event_set_padding(event);
2534
2535 /* Make sure the padding is visible before the write update */
2536 smp_wmb();
2537
2538 /* Set the write back to the previous setting */
2539 local_sub(length, &tail_page->write);
2540 return;
2541 }
2542
2543 /* Put in a discarded event */
2544 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
2545 event->type_len = RINGBUF_TYPE_PADDING;
2546 /* time delta must be non zero */
2547 event->time_delta = 1;
2548
2549 /* account for padding bytes */
2550 local_add(bsize - tail, &cpu_buffer->entries_bytes);
2551
2552 /* Make sure the padding is visible before the tail_page->write update */
2553 smp_wmb();
2554
2555 /* Set write to end of buffer */
2556 length = (tail + length) - bsize;
2557 local_sub(length, &tail_page->write);
2558}
2559
2560static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2561
2562/*
2563 * This is the slow path, force gcc not to inline it.
2564 */
2565static noinline struct ring_buffer_event *
2566rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2567 unsigned long tail, struct rb_event_info *info)
2568{
2569 struct buffer_page *tail_page = info->tail_page;
2570 struct buffer_page *commit_page = cpu_buffer->commit_page;
2571 struct trace_buffer *buffer = cpu_buffer->buffer;
2572 struct buffer_page *next_page;
2573 int ret;
2574
2575 next_page = tail_page;
2576
2577 rb_inc_page(&next_page);
2578
2579 /*
2580 * If for some reason, we had an interrupt storm that made
2581 * it all the way around the buffer, bail, and warn
2582 * about it.
2583 */
2584 if (unlikely(next_page == commit_page)) {
2585 local_inc(&cpu_buffer->commit_overrun);
2586 goto out_reset;
2587 }
2588
2589 /*
2590 * This is where the fun begins!
2591 *
2592 * We are fighting against races between a reader that
2593 * could be on another CPU trying to swap its reader
2594 * page with the buffer head.
2595 *
2596 * We are also fighting against interrupts coming in and
2597 * moving the head or tail on us as well.
2598 *
2599 * If the next page is the head page then we have filled
2600 * the buffer, unless the commit page is still on the
2601 * reader page.
2602 */
2603 if (rb_is_head_page(next_page, &tail_page->list)) {
2604
2605 /*
2606 * If the commit is not on the reader page, then
2607 * move the header page.
2608 */
2609 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2610 /*
2611 * If we are not in overwrite mode,
2612 * this is easy, just stop here.
2613 */
2614 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2615 local_inc(&cpu_buffer->dropped_events);
2616 goto out_reset;
2617 }
2618
2619 ret = rb_handle_head_page(cpu_buffer,
2620 tail_page,
2621 next_page);
2622 if (ret < 0)
2623 goto out_reset;
2624 if (ret)
2625 goto out_again;
2626 } else {
2627 /*
2628 * We need to be careful here too. The
2629 * commit page could still be on the reader
2630 * page. We could have a small buffer, and
2631 * have filled up the buffer with events
2632 * from interrupts and such, and wrapped.
2633 *
2634 * Note, if the tail page is also on the
2635 * reader_page, we let it move out.
2636 */
2637 if (unlikely((cpu_buffer->commit_page !=
2638 cpu_buffer->tail_page) &&
2639 (cpu_buffer->commit_page ==
2640 cpu_buffer->reader_page))) {
2641 local_inc(&cpu_buffer->commit_overrun);
2642 goto out_reset;
2643 }
2644 }
2645 }
2646
2647 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2648
2649 out_again:
2650
2651 rb_reset_tail(cpu_buffer, tail, info);
2652
2653 /* Commit what we have for now. */
2654 rb_end_commit(cpu_buffer);
2655 /* rb_end_commit() decs committing */
2656 local_inc(&cpu_buffer->committing);
2657
2658 /* fail and let the caller try again */
2659 return ERR_PTR(-EAGAIN);
2660
2661 out_reset:
2662 /* reset write */
2663 rb_reset_tail(cpu_buffer, tail, info);
2664
2665 return NULL;
2666}
2667
2668/* Slow path */
2669static struct ring_buffer_event *
2670rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2671 struct ring_buffer_event *event, u64 delta, bool abs)
2672{
2673 if (abs)
2674 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2675 else
2676 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2677
2678 /* Not the first event on the page, or not delta? */
2679 if (abs || rb_event_index(cpu_buffer, event)) {
2680 event->time_delta = delta & TS_MASK;
2681 event->array[0] = delta >> TS_SHIFT;
2682 } else {
2683 /* nope, just zero it */
2684 event->time_delta = 0;
2685 event->array[0] = 0;
2686 }
2687
2688 return skip_time_extend(event);
2689}
2690
2691#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2692static inline bool sched_clock_stable(void)
2693{
2694 return true;
2695}
2696#endif
2697
2698static void
2699rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2700 struct rb_event_info *info)
2701{
2702 u64 write_stamp;
2703
2704 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2705 (unsigned long long)info->delta,
2706 (unsigned long long)info->ts,
2707 (unsigned long long)info->before,
2708 (unsigned long long)info->after,
2709 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
2710 sched_clock_stable() ? "" :
2711 "If you just came from a suspend/resume,\n"
2712 "please switch to the trace global clock:\n"
2713 " echo global > /sys/kernel/tracing/trace_clock\n"
2714 "or add trace_clock=global to the kernel command line\n");
2715}
2716
2717static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2718 struct ring_buffer_event **event,
2719 struct rb_event_info *info,
2720 u64 *delta,
2721 unsigned int *length)
2722{
2723 bool abs = info->add_timestamp &
2724 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2725
2726 if (unlikely(info->delta > (1ULL << 59))) {
2727 /*
2728 * Some timers can use more than 59 bits, and when a timestamp
2729 * is added to the buffer, it will lose those bits.
2730 */
2731 if (abs && (info->ts & TS_MSB)) {
2732 info->delta &= ABS_TS_MASK;
2733
2734 /* did the clock go backwards */
2735 } else if (info->before == info->after && info->before > info->ts) {
2736 /* not interrupted */
2737 static int once;
2738
2739 /*
2740 * This is possible with a recalibrating of the TSC.
2741 * Do not produce a call stack, but just report it.
2742 */
2743 if (!once) {
2744 once++;
2745 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2746 info->before, info->ts);
2747 }
2748 } else
2749 rb_check_timestamp(cpu_buffer, info);
2750 if (!abs)
2751 info->delta = 0;
2752 }
2753 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
2754 *length -= RB_LEN_TIME_EXTEND;
2755 *delta = 0;
2756}
2757
2758/**
2759 * rb_update_event - update event type and data
2760 * @cpu_buffer: The per cpu buffer of the @event
2761 * @event: the event to update
2762 * @info: The info to update the @event with (contains length and delta)
2763 *
2764 * Update the type and data fields of the @event. The length
2765 * is the actual size that is written to the ring buffer,
2766 * and with this, we can determine what to place into the
2767 * data field.
2768 */
2769static void
2770rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2771 struct ring_buffer_event *event,
2772 struct rb_event_info *info)
2773{
2774 unsigned length = info->length;
2775 u64 delta = info->delta;
2776 unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2777
2778 if (!WARN_ON_ONCE(nest >= MAX_NEST))
2779 cpu_buffer->event_stamp[nest] = info->ts;
2780
2781 /*
2782 * If we need to add a timestamp, then we
2783 * add it to the start of the reserved space.
2784 */
2785 if (unlikely(info->add_timestamp))
2786 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2787
2788 event->time_delta = delta;
2789 length -= RB_EVNT_HDR_SIZE;
2790 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2791 event->type_len = 0;
2792 event->array[0] = length;
2793 } else
2794 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2795}
2796
2797static unsigned rb_calculate_event_length(unsigned length)
2798{
2799 struct ring_buffer_event event; /* Used only for sizeof array */
2800
2801 /* zero length can cause confusions */
2802 if (!length)
2803 length++;
2804
2805 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2806 length += sizeof(event.array[0]);
2807
2808 length += RB_EVNT_HDR_SIZE;
2809 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2810
2811 /*
2812 * In case the time delta is larger than the 27 bits for it
2813 * in the header, we need to add a timestamp. If another
2814 * event comes in when trying to discard this one to increase
2815 * the length, then the timestamp will be added in the allocated
2816 * space of this event. If length is bigger than the size needed
2817 * for the TIME_EXTEND, then padding has to be used. The events
2818 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2819 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2820 * As length is a multiple of 4, we only need to worry if it
2821 * is 12 (RB_LEN_TIME_EXTEND + 4).
2822 */
2823 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2824 length += RB_ALIGNMENT;
2825
2826 return length;
2827}
2828
2829static inline bool
2830rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2831 struct ring_buffer_event *event)
2832{
2833 unsigned long new_index, old_index;
2834 struct buffer_page *bpage;
2835 unsigned long addr;
2836
2837 new_index = rb_event_index(cpu_buffer, event);
2838 old_index = new_index + rb_event_ts_length(event);
2839 addr = (unsigned long)event;
2840 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
2841
2842 bpage = READ_ONCE(cpu_buffer->tail_page);
2843
2844 /*
2845 * Make sure the tail_page is still the same and
2846 * the next write location is the end of this event
2847 */
2848 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2849 unsigned long write_mask =
2850 local_read(&bpage->write) & ~RB_WRITE_MASK;
2851 unsigned long event_length = rb_event_length(event);
2852
2853 /*
2854 * For the before_stamp to be different than the write_stamp
2855 * to make sure that the next event adds an absolute
2856 * value and does not rely on the saved write stamp, which
2857 * is now going to be bogus.
2858 *
2859 * By setting the before_stamp to zero, the next event
2860 * is not going to use the write_stamp and will instead
2861 * create an absolute timestamp. This means there's no
2862 * reason to update the wirte_stamp!
2863 */
2864 rb_time_set(&cpu_buffer->before_stamp, 0);
2865
2866 /*
2867 * If an event were to come in now, it would see that the
2868 * write_stamp and the before_stamp are different, and assume
2869 * that this event just added itself before updating
2870 * the write stamp. The interrupting event will fix the
2871 * write stamp for us, and use an absolute timestamp.
2872 */
2873
2874 /*
2875 * This is on the tail page. It is possible that
2876 * a write could come in and move the tail page
2877 * and write to the next page. That is fine
2878 * because we just shorten what is on this page.
2879 */
2880 old_index += write_mask;
2881 new_index += write_mask;
2882
2883 /* caution: old_index gets updated on cmpxchg failure */
2884 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
2885 /* update counters */
2886 local_sub(event_length, &cpu_buffer->entries_bytes);
2887 return true;
2888 }
2889 }
2890
2891 /* could not discard */
2892 return false;
2893}
2894
2895static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2896{
2897 local_inc(&cpu_buffer->committing);
2898 local_inc(&cpu_buffer->commits);
2899}
2900
2901static __always_inline void
2902rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2903{
2904 unsigned long max_count;
2905
2906 /*
2907 * We only race with interrupts and NMIs on this CPU.
2908 * If we own the commit event, then we can commit
2909 * all others that interrupted us, since the interruptions
2910 * are in stack format (they finish before they come
2911 * back to us). This allows us to do a simple loop to
2912 * assign the commit to the tail.
2913 */
2914 again:
2915 max_count = cpu_buffer->nr_pages * 100;
2916
2917 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2918 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2919 return;
2920 if (RB_WARN_ON(cpu_buffer,
2921 rb_is_reader_page(cpu_buffer->tail_page)))
2922 return;
2923 /*
2924 * No need for a memory barrier here, as the update
2925 * of the tail_page did it for this page.
2926 */
2927 local_set(&cpu_buffer->commit_page->page->commit,
2928 rb_page_write(cpu_buffer->commit_page));
2929 rb_inc_page(&cpu_buffer->commit_page);
2930 /* add barrier to keep gcc from optimizing too much */
2931 barrier();
2932 }
2933 while (rb_commit_index(cpu_buffer) !=
2934 rb_page_write(cpu_buffer->commit_page)) {
2935
2936 /* Make sure the readers see the content of what is committed. */
2937 smp_wmb();
2938 local_set(&cpu_buffer->commit_page->page->commit,
2939 rb_page_write(cpu_buffer->commit_page));
2940 RB_WARN_ON(cpu_buffer,
2941 local_read(&cpu_buffer->commit_page->page->commit) &
2942 ~RB_WRITE_MASK);
2943 barrier();
2944 }
2945
2946 /* again, keep gcc from optimizing */
2947 barrier();
2948
2949 /*
2950 * If an interrupt came in just after the first while loop
2951 * and pushed the tail page forward, we will be left with
2952 * a dangling commit that will never go forward.
2953 */
2954 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2955 goto again;
2956}
2957
2958static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2959{
2960 unsigned long commits;
2961
2962 if (RB_WARN_ON(cpu_buffer,
2963 !local_read(&cpu_buffer->committing)))
2964 return;
2965
2966 again:
2967 commits = local_read(&cpu_buffer->commits);
2968 /* synchronize with interrupts */
2969 barrier();
2970 if (local_read(&cpu_buffer->committing) == 1)
2971 rb_set_commit_to_write(cpu_buffer);
2972
2973 local_dec(&cpu_buffer->committing);
2974
2975 /* synchronize with interrupts */
2976 barrier();
2977
2978 /*
2979 * Need to account for interrupts coming in between the
2980 * updating of the commit page and the clearing of the
2981 * committing counter.
2982 */
2983 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2984 !local_read(&cpu_buffer->committing)) {
2985 local_inc(&cpu_buffer->committing);
2986 goto again;
2987 }
2988}
2989
2990static inline void rb_event_discard(struct ring_buffer_event *event)
2991{
2992 if (extended_time(event))
2993 event = skip_time_extend(event);
2994
2995 /* array[0] holds the actual length for the discarded event */
2996 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2997 event->type_len = RINGBUF_TYPE_PADDING;
2998 /* time delta must be non zero */
2999 if (!event->time_delta)
3000 event->time_delta = 1;
3001}
3002
3003static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3004{
3005 local_inc(&cpu_buffer->entries);
3006 rb_end_commit(cpu_buffer);
3007}
3008
3009static __always_inline void
3010rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3011{
3012 if (buffer->irq_work.waiters_pending) {
3013 buffer->irq_work.waiters_pending = false;
3014 /* irq_work_queue() supplies it's own memory barriers */
3015 irq_work_queue(&buffer->irq_work.work);
3016 }
3017
3018 if (cpu_buffer->irq_work.waiters_pending) {
3019 cpu_buffer->irq_work.waiters_pending = false;
3020 /* irq_work_queue() supplies it's own memory barriers */
3021 irq_work_queue(&cpu_buffer->irq_work.work);
3022 }
3023
3024 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3025 return;
3026
3027 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3028 return;
3029
3030 if (!cpu_buffer->irq_work.full_waiters_pending)
3031 return;
3032
3033 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3034
3035 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3036 return;
3037
3038 cpu_buffer->irq_work.wakeup_full = true;
3039 cpu_buffer->irq_work.full_waiters_pending = false;
3040 /* irq_work_queue() supplies it's own memory barriers */
3041 irq_work_queue(&cpu_buffer->irq_work.work);
3042}
3043
3044#ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3045# define do_ring_buffer_record_recursion() \
3046 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3047#else
3048# define do_ring_buffer_record_recursion() do { } while (0)
3049#endif
3050
3051/*
3052 * The lock and unlock are done within a preempt disable section.
3053 * The current_context per_cpu variable can only be modified
3054 * by the current task between lock and unlock. But it can
3055 * be modified more than once via an interrupt. To pass this
3056 * information from the lock to the unlock without having to
3057 * access the 'in_interrupt()' functions again (which do show
3058 * a bit of overhead in something as critical as function tracing,
3059 * we use a bitmask trick.
3060 *
3061 * bit 1 = NMI context
3062 * bit 2 = IRQ context
3063 * bit 3 = SoftIRQ context
3064 * bit 4 = normal context.
3065 *
3066 * This works because this is the order of contexts that can
3067 * preempt other contexts. A SoftIRQ never preempts an IRQ
3068 * context.
3069 *
3070 * When the context is determined, the corresponding bit is
3071 * checked and set (if it was set, then a recursion of that context
3072 * happened).
3073 *
3074 * On unlock, we need to clear this bit. To do so, just subtract
3075 * 1 from the current_context and AND it to itself.
3076 *
3077 * (binary)
3078 * 101 - 1 = 100
3079 * 101 & 100 = 100 (clearing bit zero)
3080 *
3081 * 1010 - 1 = 1001
3082 * 1010 & 1001 = 1000 (clearing bit 1)
3083 *
3084 * The least significant bit can be cleared this way, and it
3085 * just so happens that it is the same bit corresponding to
3086 * the current context.
3087 *
3088 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3089 * is set when a recursion is detected at the current context, and if
3090 * the TRANSITION bit is already set, it will fail the recursion.
3091 * This is needed because there's a lag between the changing of
3092 * interrupt context and updating the preempt count. In this case,
3093 * a false positive will be found. To handle this, one extra recursion
3094 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3095 * bit is already set, then it is considered a recursion and the function
3096 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3097 *
3098 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3099 * to be cleared. Even if it wasn't the context that set it. That is,
3100 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3101 * is called before preempt_count() is updated, since the check will
3102 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3103 * NMI then comes in, it will set the NMI bit, but when the NMI code
3104 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3105 * and leave the NMI bit set. But this is fine, because the interrupt
3106 * code that set the TRANSITION bit will then clear the NMI bit when it
3107 * calls trace_recursive_unlock(). If another NMI comes in, it will
3108 * set the TRANSITION bit and continue.
3109 *
3110 * Note: The TRANSITION bit only handles a single transition between context.
3111 */
3112
3113static __always_inline bool
3114trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3115{
3116 unsigned int val = cpu_buffer->current_context;
3117 int bit = interrupt_context_level();
3118
3119 bit = RB_CTX_NORMAL - bit;
3120
3121 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3122 /*
3123 * It is possible that this was called by transitioning
3124 * between interrupt context, and preempt_count() has not
3125 * been updated yet. In this case, use the TRANSITION bit.
3126 */
3127 bit = RB_CTX_TRANSITION;
3128 if (val & (1 << (bit + cpu_buffer->nest))) {
3129 do_ring_buffer_record_recursion();
3130 return true;
3131 }
3132 }
3133
3134 val |= (1 << (bit + cpu_buffer->nest));
3135 cpu_buffer->current_context = val;
3136
3137 return false;
3138}
3139
3140static __always_inline void
3141trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3142{
3143 cpu_buffer->current_context &=
3144 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3145}
3146
3147/* The recursive locking above uses 5 bits */
3148#define NESTED_BITS 5
3149
3150/**
3151 * ring_buffer_nest_start - Allow to trace while nested
3152 * @buffer: The ring buffer to modify
3153 *
3154 * The ring buffer has a safety mechanism to prevent recursion.
3155 * But there may be a case where a trace needs to be done while
3156 * tracing something else. In this case, calling this function
3157 * will allow this function to nest within a currently active
3158 * ring_buffer_lock_reserve().
3159 *
3160 * Call this function before calling another ring_buffer_lock_reserve() and
3161 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3162 */
3163void ring_buffer_nest_start(struct trace_buffer *buffer)
3164{
3165 struct ring_buffer_per_cpu *cpu_buffer;
3166 int cpu;
3167
3168 /* Enabled by ring_buffer_nest_end() */
3169 preempt_disable_notrace();
3170 cpu = raw_smp_processor_id();
3171 cpu_buffer = buffer->buffers[cpu];
3172 /* This is the shift value for the above recursive locking */
3173 cpu_buffer->nest += NESTED_BITS;
3174}
3175
3176/**
3177 * ring_buffer_nest_end - Allow to trace while nested
3178 * @buffer: The ring buffer to modify
3179 *
3180 * Must be called after ring_buffer_nest_start() and after the
3181 * ring_buffer_unlock_commit().
3182 */
3183void ring_buffer_nest_end(struct trace_buffer *buffer)
3184{
3185 struct ring_buffer_per_cpu *cpu_buffer;
3186 int cpu;
3187
3188 /* disabled by ring_buffer_nest_start() */
3189 cpu = raw_smp_processor_id();
3190 cpu_buffer = buffer->buffers[cpu];
3191 /* This is the shift value for the above recursive locking */
3192 cpu_buffer->nest -= NESTED_BITS;
3193 preempt_enable_notrace();
3194}
3195
3196/**
3197 * ring_buffer_unlock_commit - commit a reserved
3198 * @buffer: The buffer to commit to
3199 *
3200 * This commits the data to the ring buffer, and releases any locks held.
3201 *
3202 * Must be paired with ring_buffer_lock_reserve.
3203 */
3204int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3205{
3206 struct ring_buffer_per_cpu *cpu_buffer;
3207 int cpu = raw_smp_processor_id();
3208
3209 cpu_buffer = buffer->buffers[cpu];
3210
3211 rb_commit(cpu_buffer);
3212
3213 rb_wakeups(buffer, cpu_buffer);
3214
3215 trace_recursive_unlock(cpu_buffer);
3216
3217 preempt_enable_notrace();
3218
3219 return 0;
3220}
3221EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3222
3223/* Special value to validate all deltas on a page. */
3224#define CHECK_FULL_PAGE 1L
3225
3226#ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3227
3228static const char *show_irq_str(int bits)
3229{
3230 const char *type[] = {
3231 ".", // 0
3232 "s", // 1
3233 "h", // 2
3234 "Hs", // 3
3235 "n", // 4
3236 "Ns", // 5
3237 "Nh", // 6
3238 "NHs", // 7
3239 };
3240
3241 return type[bits];
3242}
3243
3244/* Assume this is an trace event */
3245static const char *show_flags(struct ring_buffer_event *event)
3246{
3247 struct trace_entry *entry;
3248 int bits = 0;
3249
3250 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3251 return "X";
3252
3253 entry = ring_buffer_event_data(event);
3254
3255 if (entry->flags & TRACE_FLAG_SOFTIRQ)
3256 bits |= 1;
3257
3258 if (entry->flags & TRACE_FLAG_HARDIRQ)
3259 bits |= 2;
3260
3261 if (entry->flags & TRACE_FLAG_NMI)
3262 bits |= 4;
3263
3264 return show_irq_str(bits);
3265}
3266
3267static const char *show_irq(struct ring_buffer_event *event)
3268{
3269 struct trace_entry *entry;
3270
3271 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3272 return "";
3273
3274 entry = ring_buffer_event_data(event);
3275 if (entry->flags & TRACE_FLAG_IRQS_OFF)
3276 return "d";
3277 return "";
3278}
3279
3280static const char *show_interrupt_level(void)
3281{
3282 unsigned long pc = preempt_count();
3283 unsigned char level = 0;
3284
3285 if (pc & SOFTIRQ_OFFSET)
3286 level |= 1;
3287
3288 if (pc & HARDIRQ_MASK)
3289 level |= 2;
3290
3291 if (pc & NMI_MASK)
3292 level |= 4;
3293
3294 return show_irq_str(level);
3295}
3296
3297static void dump_buffer_page(struct buffer_data_page *bpage,
3298 struct rb_event_info *info,
3299 unsigned long tail)
3300{
3301 struct ring_buffer_event *event;
3302 u64 ts, delta;
3303 int e;
3304
3305 ts = bpage->time_stamp;
3306 pr_warn(" [%lld] PAGE TIME STAMP\n", ts);
3307
3308 for (e = 0; e < tail; e += rb_event_length(event)) {
3309
3310 event = (struct ring_buffer_event *)(bpage->data + e);
3311
3312 switch (event->type_len) {
3313
3314 case RINGBUF_TYPE_TIME_EXTEND:
3315 delta = rb_event_time_stamp(event);
3316 ts += delta;
3317 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
3318 e, ts, delta);
3319 break;
3320
3321 case RINGBUF_TYPE_TIME_STAMP:
3322 delta = rb_event_time_stamp(event);
3323 ts = rb_fix_abs_ts(delta, ts);
3324 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n",
3325 e, ts, delta);
3326 break;
3327
3328 case RINGBUF_TYPE_PADDING:
3329 ts += event->time_delta;
3330 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n",
3331 e, ts, event->time_delta);
3332 break;
3333
3334 case RINGBUF_TYPE_DATA:
3335 ts += event->time_delta;
3336 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n",
3337 e, ts, event->time_delta,
3338 show_flags(event), show_irq(event));
3339 break;
3340
3341 default:
3342 break;
3343 }
3344 }
3345 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
3346}
3347
3348static DEFINE_PER_CPU(atomic_t, checking);
3349static atomic_t ts_dump;
3350
3351#define buffer_warn_return(fmt, ...) \
3352 do { \
3353 /* If another report is happening, ignore this one */ \
3354 if (atomic_inc_return(&ts_dump) != 1) { \
3355 atomic_dec(&ts_dump); \
3356 goto out; \
3357 } \
3358 atomic_inc(&cpu_buffer->record_disabled); \
3359 pr_warn(fmt, ##__VA_ARGS__); \
3360 dump_buffer_page(bpage, info, tail); \
3361 atomic_dec(&ts_dump); \
3362 /* There's some cases in boot up that this can happen */ \
3363 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \
3364 /* Do not re-enable checking */ \
3365 return; \
3366 } while (0)
3367
3368/*
3369 * Check if the current event time stamp matches the deltas on
3370 * the buffer page.
3371 */
3372static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3373 struct rb_event_info *info,
3374 unsigned long tail)
3375{
3376 struct ring_buffer_event *event;
3377 struct buffer_data_page *bpage;
3378 u64 ts, delta;
3379 bool full = false;
3380 int e;
3381
3382 bpage = info->tail_page->page;
3383
3384 if (tail == CHECK_FULL_PAGE) {
3385 full = true;
3386 tail = local_read(&bpage->commit);
3387 } else if (info->add_timestamp &
3388 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3389 /* Ignore events with absolute time stamps */
3390 return;
3391 }
3392
3393 /*
3394 * Do not check the first event (skip possible extends too).
3395 * Also do not check if previous events have not been committed.
3396 */
3397 if (tail <= 8 || tail > local_read(&bpage->commit))
3398 return;
3399
3400 /*
3401 * If this interrupted another event,
3402 */
3403 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3404 goto out;
3405
3406 ts = bpage->time_stamp;
3407
3408 for (e = 0; e < tail; e += rb_event_length(event)) {
3409
3410 event = (struct ring_buffer_event *)(bpage->data + e);
3411
3412 switch (event->type_len) {
3413
3414 case RINGBUF_TYPE_TIME_EXTEND:
3415 delta = rb_event_time_stamp(event);
3416 ts += delta;
3417 break;
3418
3419 case RINGBUF_TYPE_TIME_STAMP:
3420 delta = rb_event_time_stamp(event);
3421 delta = rb_fix_abs_ts(delta, ts);
3422 if (delta < ts) {
3423 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
3424 cpu_buffer->cpu, ts, delta);
3425 }
3426 ts = delta;
3427 break;
3428
3429 case RINGBUF_TYPE_PADDING:
3430 if (event->time_delta == 1)
3431 break;
3432 fallthrough;
3433 case RINGBUF_TYPE_DATA:
3434 ts += event->time_delta;
3435 break;
3436
3437 default:
3438 RB_WARN_ON(cpu_buffer, 1);
3439 }
3440 }
3441 if ((full && ts > info->ts) ||
3442 (!full && ts + info->delta != info->ts)) {
3443 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
3444 cpu_buffer->cpu,
3445 ts + info->delta, info->ts, info->delta,
3446 info->before, info->after,
3447 full ? " (full)" : "", show_interrupt_level());
3448 }
3449out:
3450 atomic_dec(this_cpu_ptr(&checking));
3451}
3452#else
3453static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3454 struct rb_event_info *info,
3455 unsigned long tail)
3456{
3457}
3458#endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3459
3460static struct ring_buffer_event *
3461__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3462 struct rb_event_info *info)
3463{
3464 struct ring_buffer_event *event;
3465 struct buffer_page *tail_page;
3466 unsigned long tail, write, w;
3467
3468 /* Don't let the compiler play games with cpu_buffer->tail_page */
3469 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3470
3471 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
3472 barrier();
3473 rb_time_read(&cpu_buffer->before_stamp, &info->before);
3474 rb_time_read(&cpu_buffer->write_stamp, &info->after);
3475 barrier();
3476 info->ts = rb_time_stamp(cpu_buffer->buffer);
3477
3478 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3479 info->delta = info->ts;
3480 } else {
3481 /*
3482 * If interrupting an event time update, we may need an
3483 * absolute timestamp.
3484 * Don't bother if this is the start of a new page (w == 0).
3485 */
3486 if (!w) {
3487 /* Use the sub-buffer timestamp */
3488 info->delta = 0;
3489 } else if (unlikely(info->before != info->after)) {
3490 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3491 info->length += RB_LEN_TIME_EXTEND;
3492 } else {
3493 info->delta = info->ts - info->after;
3494 if (unlikely(test_time_stamp(info->delta))) {
3495 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3496 info->length += RB_LEN_TIME_EXTEND;
3497 }
3498 }
3499 }
3500
3501 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
3502
3503 /*C*/ write = local_add_return(info->length, &tail_page->write);
3504
3505 /* set write to only the index of the write */
3506 write &= RB_WRITE_MASK;
3507
3508 tail = write - info->length;
3509
3510 /* See if we shot pass the end of this buffer page */
3511 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
3512 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3513 return rb_move_tail(cpu_buffer, tail, info);
3514 }
3515
3516 if (likely(tail == w)) {
3517 /* Nothing interrupted us between A and C */
3518 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
3519 /*
3520 * If something came in between C and D, the write stamp
3521 * may now not be in sync. But that's fine as the before_stamp
3522 * will be different and then next event will just be forced
3523 * to use an absolute timestamp.
3524 */
3525 if (likely(!(info->add_timestamp &
3526 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3527 /* This did not interrupt any time update */
3528 info->delta = info->ts - info->after;
3529 else
3530 /* Just use full timestamp for interrupting event */
3531 info->delta = info->ts;
3532 check_buffer(cpu_buffer, info, tail);
3533 } else {
3534 u64 ts;
3535 /* SLOW PATH - Interrupted between A and C */
3536
3537 /* Save the old before_stamp */
3538 rb_time_read(&cpu_buffer->before_stamp, &info->before);
3539
3540 /*
3541 * Read a new timestamp and update the before_stamp to make
3542 * the next event after this one force using an absolute
3543 * timestamp. This is in case an interrupt were to come in
3544 * between E and F.
3545 */
3546 ts = rb_time_stamp(cpu_buffer->buffer);
3547 rb_time_set(&cpu_buffer->before_stamp, ts);
3548
3549 barrier();
3550 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after);
3551 barrier();
3552 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3553 info->after == info->before && info->after < ts) {
3554 /*
3555 * Nothing came after this event between C and F, it is
3556 * safe to use info->after for the delta as it
3557 * matched info->before and is still valid.
3558 */
3559 info->delta = ts - info->after;
3560 } else {
3561 /*
3562 * Interrupted between C and F:
3563 * Lost the previous events time stamp. Just set the
3564 * delta to zero, and this will be the same time as
3565 * the event this event interrupted. And the events that
3566 * came after this will still be correct (as they would
3567 * have built their delta on the previous event.
3568 */
3569 info->delta = 0;
3570 }
3571 info->ts = ts;
3572 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3573 }
3574
3575 /*
3576 * If this is the first commit on the page, then it has the same
3577 * timestamp as the page itself.
3578 */
3579 if (unlikely(!tail && !(info->add_timestamp &
3580 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3581 info->delta = 0;
3582
3583 /* We reserved something on the buffer */
3584
3585 event = __rb_page_index(tail_page, tail);
3586 rb_update_event(cpu_buffer, event, info);
3587
3588 local_inc(&tail_page->entries);
3589
3590 /*
3591 * If this is the first commit on the page, then update
3592 * its timestamp.
3593 */
3594 if (unlikely(!tail))
3595 tail_page->page->time_stamp = info->ts;
3596
3597 /* account for these added bytes */
3598 local_add(info->length, &cpu_buffer->entries_bytes);
3599
3600 return event;
3601}
3602
3603static __always_inline struct ring_buffer_event *
3604rb_reserve_next_event(struct trace_buffer *buffer,
3605 struct ring_buffer_per_cpu *cpu_buffer,
3606 unsigned long length)
3607{
3608 struct ring_buffer_event *event;
3609 struct rb_event_info info;
3610 int nr_loops = 0;
3611 int add_ts_default;
3612
3613 /* ring buffer does cmpxchg, make sure it is safe in NMI context */
3614 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
3615 (unlikely(in_nmi()))) {
3616 return NULL;
3617 }
3618
3619 rb_start_commit(cpu_buffer);
3620 /* The commit page can not change after this */
3621
3622#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3623 /*
3624 * Due to the ability to swap a cpu buffer from a buffer
3625 * it is possible it was swapped before we committed.
3626 * (committing stops a swap). We check for it here and
3627 * if it happened, we have to fail the write.
3628 */
3629 barrier();
3630 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3631 local_dec(&cpu_buffer->committing);
3632 local_dec(&cpu_buffer->commits);
3633 return NULL;
3634 }
3635#endif
3636
3637 info.length = rb_calculate_event_length(length);
3638
3639 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3640 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3641 info.length += RB_LEN_TIME_EXTEND;
3642 if (info.length > cpu_buffer->buffer->max_data_size)
3643 goto out_fail;
3644 } else {
3645 add_ts_default = RB_ADD_STAMP_NONE;
3646 }
3647
3648 again:
3649 info.add_timestamp = add_ts_default;
3650 info.delta = 0;
3651
3652 /*
3653 * We allow for interrupts to reenter here and do a trace.
3654 * If one does, it will cause this original code to loop
3655 * back here. Even with heavy interrupts happening, this
3656 * should only happen a few times in a row. If this happens
3657 * 1000 times in a row, there must be either an interrupt
3658 * storm or we have something buggy.
3659 * Bail!
3660 */
3661 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3662 goto out_fail;
3663
3664 event = __rb_reserve_next(cpu_buffer, &info);
3665
3666 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3667 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3668 info.length -= RB_LEN_TIME_EXTEND;
3669 goto again;
3670 }
3671
3672 if (likely(event))
3673 return event;
3674 out_fail:
3675 rb_end_commit(cpu_buffer);
3676 return NULL;
3677}
3678
3679/**
3680 * ring_buffer_lock_reserve - reserve a part of the buffer
3681 * @buffer: the ring buffer to reserve from
3682 * @length: the length of the data to reserve (excluding event header)
3683 *
3684 * Returns a reserved event on the ring buffer to copy directly to.
3685 * The user of this interface will need to get the body to write into
3686 * and can use the ring_buffer_event_data() interface.
3687 *
3688 * The length is the length of the data needed, not the event length
3689 * which also includes the event header.
3690 *
3691 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3692 * If NULL is returned, then nothing has been allocated or locked.
3693 */
3694struct ring_buffer_event *
3695ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3696{
3697 struct ring_buffer_per_cpu *cpu_buffer;
3698 struct ring_buffer_event *event;
3699 int cpu;
3700
3701 /* If we are tracing schedule, we don't want to recurse */
3702 preempt_disable_notrace();
3703
3704 if (unlikely(atomic_read(&buffer->record_disabled)))
3705 goto out;
3706
3707 cpu = raw_smp_processor_id();
3708
3709 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3710 goto out;
3711
3712 cpu_buffer = buffer->buffers[cpu];
3713
3714 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3715 goto out;
3716
3717 if (unlikely(length > buffer->max_data_size))
3718 goto out;
3719
3720 if (unlikely(trace_recursive_lock(cpu_buffer)))
3721 goto out;
3722
3723 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3724 if (!event)
3725 goto out_unlock;
3726
3727 return event;
3728
3729 out_unlock:
3730 trace_recursive_unlock(cpu_buffer);
3731 out:
3732 preempt_enable_notrace();
3733 return NULL;
3734}
3735EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3736
3737/*
3738 * Decrement the entries to the page that an event is on.
3739 * The event does not even need to exist, only the pointer
3740 * to the page it is on. This may only be called before the commit
3741 * takes place.
3742 */
3743static inline void
3744rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3745 struct ring_buffer_event *event)
3746{
3747 unsigned long addr = (unsigned long)event;
3748 struct buffer_page *bpage = cpu_buffer->commit_page;
3749 struct buffer_page *start;
3750
3751 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3752
3753 /* Do the likely case first */
3754 if (likely(bpage->page == (void *)addr)) {
3755 local_dec(&bpage->entries);
3756 return;
3757 }
3758
3759 /*
3760 * Because the commit page may be on the reader page we
3761 * start with the next page and check the end loop there.
3762 */
3763 rb_inc_page(&bpage);
3764 start = bpage;
3765 do {
3766 if (bpage->page == (void *)addr) {
3767 local_dec(&bpage->entries);
3768 return;
3769 }
3770 rb_inc_page(&bpage);
3771 } while (bpage != start);
3772
3773 /* commit not part of this buffer?? */
3774 RB_WARN_ON(cpu_buffer, 1);
3775}
3776
3777/**
3778 * ring_buffer_discard_commit - discard an event that has not been committed
3779 * @buffer: the ring buffer
3780 * @event: non committed event to discard
3781 *
3782 * Sometimes an event that is in the ring buffer needs to be ignored.
3783 * This function lets the user discard an event in the ring buffer
3784 * and then that event will not be read later.
3785 *
3786 * This function only works if it is called before the item has been
3787 * committed. It will try to free the event from the ring buffer
3788 * if another event has not been added behind it.
3789 *
3790 * If another event has been added behind it, it will set the event
3791 * up as discarded, and perform the commit.
3792 *
3793 * If this function is called, do not call ring_buffer_unlock_commit on
3794 * the event.
3795 */
3796void ring_buffer_discard_commit(struct trace_buffer *buffer,
3797 struct ring_buffer_event *event)
3798{
3799 struct ring_buffer_per_cpu *cpu_buffer;
3800 int cpu;
3801
3802 /* The event is discarded regardless */
3803 rb_event_discard(event);
3804
3805 cpu = smp_processor_id();
3806 cpu_buffer = buffer->buffers[cpu];
3807
3808 /*
3809 * This must only be called if the event has not been
3810 * committed yet. Thus we can assume that preemption
3811 * is still disabled.
3812 */
3813 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3814
3815 rb_decrement_entry(cpu_buffer, event);
3816 if (rb_try_to_discard(cpu_buffer, event))
3817 goto out;
3818
3819 out:
3820 rb_end_commit(cpu_buffer);
3821
3822 trace_recursive_unlock(cpu_buffer);
3823
3824 preempt_enable_notrace();
3825
3826}
3827EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3828
3829/**
3830 * ring_buffer_write - write data to the buffer without reserving
3831 * @buffer: The ring buffer to write to.
3832 * @length: The length of the data being written (excluding the event header)
3833 * @data: The data to write to the buffer.
3834 *
3835 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3836 * one function. If you already have the data to write to the buffer, it
3837 * may be easier to simply call this function.
3838 *
3839 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3840 * and not the length of the event which would hold the header.
3841 */
3842int ring_buffer_write(struct trace_buffer *buffer,
3843 unsigned long length,
3844 void *data)
3845{
3846 struct ring_buffer_per_cpu *cpu_buffer;
3847 struct ring_buffer_event *event;
3848 void *body;
3849 int ret = -EBUSY;
3850 int cpu;
3851
3852 preempt_disable_notrace();
3853
3854 if (atomic_read(&buffer->record_disabled))
3855 goto out;
3856
3857 cpu = raw_smp_processor_id();
3858
3859 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3860 goto out;
3861
3862 cpu_buffer = buffer->buffers[cpu];
3863
3864 if (atomic_read(&cpu_buffer->record_disabled))
3865 goto out;
3866
3867 if (length > buffer->max_data_size)
3868 goto out;
3869
3870 if (unlikely(trace_recursive_lock(cpu_buffer)))
3871 goto out;
3872
3873 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3874 if (!event)
3875 goto out_unlock;
3876
3877 body = rb_event_data(event);
3878
3879 memcpy(body, data, length);
3880
3881 rb_commit(cpu_buffer);
3882
3883 rb_wakeups(buffer, cpu_buffer);
3884
3885 ret = 0;
3886
3887 out_unlock:
3888 trace_recursive_unlock(cpu_buffer);
3889
3890 out:
3891 preempt_enable_notrace();
3892
3893 return ret;
3894}
3895EXPORT_SYMBOL_GPL(ring_buffer_write);
3896
3897static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3898{
3899 struct buffer_page *reader = cpu_buffer->reader_page;
3900 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3901 struct buffer_page *commit = cpu_buffer->commit_page;
3902
3903 /* In case of error, head will be NULL */
3904 if (unlikely(!head))
3905 return true;
3906
3907 /* Reader should exhaust content in reader page */
3908 if (reader->read != rb_page_commit(reader))
3909 return false;
3910
3911 /*
3912 * If writers are committing on the reader page, knowing all
3913 * committed content has been read, the ring buffer is empty.
3914 */
3915 if (commit == reader)
3916 return true;
3917
3918 /*
3919 * If writers are committing on a page other than reader page
3920 * and head page, there should always be content to read.
3921 */
3922 if (commit != head)
3923 return false;
3924
3925 /*
3926 * Writers are committing on the head page, we just need
3927 * to care about there're committed data, and the reader will
3928 * swap reader page with head page when it is to read data.
3929 */
3930 return rb_page_commit(commit) == 0;
3931}
3932
3933/**
3934 * ring_buffer_record_disable - stop all writes into the buffer
3935 * @buffer: The ring buffer to stop writes to.
3936 *
3937 * This prevents all writes to the buffer. Any attempt to write
3938 * to the buffer after this will fail and return NULL.
3939 *
3940 * The caller should call synchronize_rcu() after this.
3941 */
3942void ring_buffer_record_disable(struct trace_buffer *buffer)
3943{
3944 atomic_inc(&buffer->record_disabled);
3945}
3946EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3947
3948/**
3949 * ring_buffer_record_enable - enable writes to the buffer
3950 * @buffer: The ring buffer to enable writes
3951 *
3952 * Note, multiple disables will need the same number of enables
3953 * to truly enable the writing (much like preempt_disable).
3954 */
3955void ring_buffer_record_enable(struct trace_buffer *buffer)
3956{
3957 atomic_dec(&buffer->record_disabled);
3958}
3959EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3960
3961/**
3962 * ring_buffer_record_off - stop all writes into the buffer
3963 * @buffer: The ring buffer to stop writes to.
3964 *
3965 * This prevents all writes to the buffer. Any attempt to write
3966 * to the buffer after this will fail and return NULL.
3967 *
3968 * This is different than ring_buffer_record_disable() as
3969 * it works like an on/off switch, where as the disable() version
3970 * must be paired with a enable().
3971 */
3972void ring_buffer_record_off(struct trace_buffer *buffer)
3973{
3974 unsigned int rd;
3975 unsigned int new_rd;
3976
3977 rd = atomic_read(&buffer->record_disabled);
3978 do {
3979 new_rd = rd | RB_BUFFER_OFF;
3980 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
3981}
3982EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3983
3984/**
3985 * ring_buffer_record_on - restart writes into the buffer
3986 * @buffer: The ring buffer to start writes to.
3987 *
3988 * This enables all writes to the buffer that was disabled by
3989 * ring_buffer_record_off().
3990 *
3991 * This is different than ring_buffer_record_enable() as
3992 * it works like an on/off switch, where as the enable() version
3993 * must be paired with a disable().
3994 */
3995void ring_buffer_record_on(struct trace_buffer *buffer)
3996{
3997 unsigned int rd;
3998 unsigned int new_rd;
3999
4000 rd = atomic_read(&buffer->record_disabled);
4001 do {
4002 new_rd = rd & ~RB_BUFFER_OFF;
4003 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4004}
4005EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4006
4007/**
4008 * ring_buffer_record_is_on - return true if the ring buffer can write
4009 * @buffer: The ring buffer to see if write is enabled
4010 *
4011 * Returns true if the ring buffer is in a state that it accepts writes.
4012 */
4013bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4014{
4015 return !atomic_read(&buffer->record_disabled);
4016}
4017
4018/**
4019 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4020 * @buffer: The ring buffer to see if write is set enabled
4021 *
4022 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4023 * Note that this does NOT mean it is in a writable state.
4024 *
4025 * It may return true when the ring buffer has been disabled by
4026 * ring_buffer_record_disable(), as that is a temporary disabling of
4027 * the ring buffer.
4028 */
4029bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4030{
4031 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4032}
4033
4034/**
4035 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4036 * @buffer: The ring buffer to stop writes to.
4037 * @cpu: The CPU buffer to stop
4038 *
4039 * This prevents all writes to the buffer. Any attempt to write
4040 * to the buffer after this will fail and return NULL.
4041 *
4042 * The caller should call synchronize_rcu() after this.
4043 */
4044void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4045{
4046 struct ring_buffer_per_cpu *cpu_buffer;
4047
4048 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4049 return;
4050
4051 cpu_buffer = buffer->buffers[cpu];
4052 atomic_inc(&cpu_buffer->record_disabled);
4053}
4054EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4055
4056/**
4057 * ring_buffer_record_enable_cpu - enable writes to the buffer
4058 * @buffer: The ring buffer to enable writes
4059 * @cpu: The CPU to enable.
4060 *
4061 * Note, multiple disables will need the same number of enables
4062 * to truly enable the writing (much like preempt_disable).
4063 */
4064void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4065{
4066 struct ring_buffer_per_cpu *cpu_buffer;
4067
4068 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4069 return;
4070
4071 cpu_buffer = buffer->buffers[cpu];
4072 atomic_dec(&cpu_buffer->record_disabled);
4073}
4074EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4075
4076/*
4077 * The total entries in the ring buffer is the running counter
4078 * of entries entered into the ring buffer, minus the sum of
4079 * the entries read from the ring buffer and the number of
4080 * entries that were overwritten.
4081 */
4082static inline unsigned long
4083rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4084{
4085 return local_read(&cpu_buffer->entries) -
4086 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4087}
4088
4089/**
4090 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4091 * @buffer: The ring buffer
4092 * @cpu: The per CPU buffer to read from.
4093 */
4094u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4095{
4096 unsigned long flags;
4097 struct ring_buffer_per_cpu *cpu_buffer;
4098 struct buffer_page *bpage;
4099 u64 ret = 0;
4100
4101 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4102 return 0;
4103
4104 cpu_buffer = buffer->buffers[cpu];
4105 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4106 /*
4107 * if the tail is on reader_page, oldest time stamp is on the reader
4108 * page
4109 */
4110 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4111 bpage = cpu_buffer->reader_page;
4112 else
4113 bpage = rb_set_head_page(cpu_buffer);
4114 if (bpage)
4115 ret = bpage->page->time_stamp;
4116 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4117
4118 return ret;
4119}
4120EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4121
4122/**
4123 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4124 * @buffer: The ring buffer
4125 * @cpu: The per CPU buffer to read from.
4126 */
4127unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4128{
4129 struct ring_buffer_per_cpu *cpu_buffer;
4130 unsigned long ret;
4131
4132 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4133 return 0;
4134
4135 cpu_buffer = buffer->buffers[cpu];
4136 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4137
4138 return ret;
4139}
4140EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4141
4142/**
4143 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4144 * @buffer: The ring buffer
4145 * @cpu: The per CPU buffer to get the entries from.
4146 */
4147unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4148{
4149 struct ring_buffer_per_cpu *cpu_buffer;
4150
4151 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4152 return 0;
4153
4154 cpu_buffer = buffer->buffers[cpu];
4155
4156 return rb_num_of_entries(cpu_buffer);
4157}
4158EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4159
4160/**
4161 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4162 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4163 * @buffer: The ring buffer
4164 * @cpu: The per CPU buffer to get the number of overruns from
4165 */
4166unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4167{
4168 struct ring_buffer_per_cpu *cpu_buffer;
4169 unsigned long ret;
4170
4171 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4172 return 0;
4173
4174 cpu_buffer = buffer->buffers[cpu];
4175 ret = local_read(&cpu_buffer->overrun);
4176
4177 return ret;
4178}
4179EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4180
4181/**
4182 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4183 * commits failing due to the buffer wrapping around while there are uncommitted
4184 * events, such as during an interrupt storm.
4185 * @buffer: The ring buffer
4186 * @cpu: The per CPU buffer to get the number of overruns from
4187 */
4188unsigned long
4189ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4190{
4191 struct ring_buffer_per_cpu *cpu_buffer;
4192 unsigned long ret;
4193
4194 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4195 return 0;
4196
4197 cpu_buffer = buffer->buffers[cpu];
4198 ret = local_read(&cpu_buffer->commit_overrun);
4199
4200 return ret;
4201}
4202EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4203
4204/**
4205 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4206 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4207 * @buffer: The ring buffer
4208 * @cpu: The per CPU buffer to get the number of overruns from
4209 */
4210unsigned long
4211ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4212{
4213 struct ring_buffer_per_cpu *cpu_buffer;
4214 unsigned long ret;
4215
4216 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4217 return 0;
4218
4219 cpu_buffer = buffer->buffers[cpu];
4220 ret = local_read(&cpu_buffer->dropped_events);
4221
4222 return ret;
4223}
4224EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4225
4226/**
4227 * ring_buffer_read_events_cpu - get the number of events successfully read
4228 * @buffer: The ring buffer
4229 * @cpu: The per CPU buffer to get the number of events read
4230 */
4231unsigned long
4232ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4233{
4234 struct ring_buffer_per_cpu *cpu_buffer;
4235
4236 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4237 return 0;
4238
4239 cpu_buffer = buffer->buffers[cpu];
4240 return cpu_buffer->read;
4241}
4242EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4243
4244/**
4245 * ring_buffer_entries - get the number of entries in a buffer
4246 * @buffer: The ring buffer
4247 *
4248 * Returns the total number of entries in the ring buffer
4249 * (all CPU entries)
4250 */
4251unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4252{
4253 struct ring_buffer_per_cpu *cpu_buffer;
4254 unsigned long entries = 0;
4255 int cpu;
4256
4257 /* if you care about this being correct, lock the buffer */
4258 for_each_buffer_cpu(buffer, cpu) {
4259 cpu_buffer = buffer->buffers[cpu];
4260 entries += rb_num_of_entries(cpu_buffer);
4261 }
4262
4263 return entries;
4264}
4265EXPORT_SYMBOL_GPL(ring_buffer_entries);
4266
4267/**
4268 * ring_buffer_overruns - get the number of overruns in buffer
4269 * @buffer: The ring buffer
4270 *
4271 * Returns the total number of overruns in the ring buffer
4272 * (all CPU entries)
4273 */
4274unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4275{
4276 struct ring_buffer_per_cpu *cpu_buffer;
4277 unsigned long overruns = 0;
4278 int cpu;
4279
4280 /* if you care about this being correct, lock the buffer */
4281 for_each_buffer_cpu(buffer, cpu) {
4282 cpu_buffer = buffer->buffers[cpu];
4283 overruns += local_read(&cpu_buffer->overrun);
4284 }
4285
4286 return overruns;
4287}
4288EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4289
4290static void rb_iter_reset(struct ring_buffer_iter *iter)
4291{
4292 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4293
4294 /* Iterator usage is expected to have record disabled */
4295 iter->head_page = cpu_buffer->reader_page;
4296 iter->head = cpu_buffer->reader_page->read;
4297 iter->next_event = iter->head;
4298
4299 iter->cache_reader_page = iter->head_page;
4300 iter->cache_read = cpu_buffer->read;
4301 iter->cache_pages_removed = cpu_buffer->pages_removed;
4302
4303 if (iter->head) {
4304 iter->read_stamp = cpu_buffer->read_stamp;
4305 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4306 } else {
4307 iter->read_stamp = iter->head_page->page->time_stamp;
4308 iter->page_stamp = iter->read_stamp;
4309 }
4310}
4311
4312/**
4313 * ring_buffer_iter_reset - reset an iterator
4314 * @iter: The iterator to reset
4315 *
4316 * Resets the iterator, so that it will start from the beginning
4317 * again.
4318 */
4319void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4320{
4321 struct ring_buffer_per_cpu *cpu_buffer;
4322 unsigned long flags;
4323
4324 if (!iter)
4325 return;
4326
4327 cpu_buffer = iter->cpu_buffer;
4328
4329 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4330 rb_iter_reset(iter);
4331 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4332}
4333EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4334
4335/**
4336 * ring_buffer_iter_empty - check if an iterator has no more to read
4337 * @iter: The iterator to check
4338 */
4339int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4340{
4341 struct ring_buffer_per_cpu *cpu_buffer;
4342 struct buffer_page *reader;
4343 struct buffer_page *head_page;
4344 struct buffer_page *commit_page;
4345 struct buffer_page *curr_commit_page;
4346 unsigned commit;
4347 u64 curr_commit_ts;
4348 u64 commit_ts;
4349
4350 cpu_buffer = iter->cpu_buffer;
4351 reader = cpu_buffer->reader_page;
4352 head_page = cpu_buffer->head_page;
4353 commit_page = cpu_buffer->commit_page;
4354 commit_ts = commit_page->page->time_stamp;
4355
4356 /*
4357 * When the writer goes across pages, it issues a cmpxchg which
4358 * is a mb(), which will synchronize with the rmb here.
4359 * (see rb_tail_page_update())
4360 */
4361 smp_rmb();
4362 commit = rb_page_commit(commit_page);
4363 /* We want to make sure that the commit page doesn't change */
4364 smp_rmb();
4365
4366 /* Make sure commit page didn't change */
4367 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4368 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4369
4370 /* If the commit page changed, then there's more data */
4371 if (curr_commit_page != commit_page ||
4372 curr_commit_ts != commit_ts)
4373 return 0;
4374
4375 /* Still racy, as it may return a false positive, but that's OK */
4376 return ((iter->head_page == commit_page && iter->head >= commit) ||
4377 (iter->head_page == reader && commit_page == head_page &&
4378 head_page->read == commit &&
4379 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4380}
4381EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4382
4383static void
4384rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4385 struct ring_buffer_event *event)
4386{
4387 u64 delta;
4388
4389 switch (event->type_len) {
4390 case RINGBUF_TYPE_PADDING:
4391 return;
4392
4393 case RINGBUF_TYPE_TIME_EXTEND:
4394 delta = rb_event_time_stamp(event);
4395 cpu_buffer->read_stamp += delta;
4396 return;
4397
4398 case RINGBUF_TYPE_TIME_STAMP:
4399 delta = rb_event_time_stamp(event);
4400 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4401 cpu_buffer->read_stamp = delta;
4402 return;
4403
4404 case RINGBUF_TYPE_DATA:
4405 cpu_buffer->read_stamp += event->time_delta;
4406 return;
4407
4408 default:
4409 RB_WARN_ON(cpu_buffer, 1);
4410 }
4411}
4412
4413static void
4414rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4415 struct ring_buffer_event *event)
4416{
4417 u64 delta;
4418
4419 switch (event->type_len) {
4420 case RINGBUF_TYPE_PADDING:
4421 return;
4422
4423 case RINGBUF_TYPE_TIME_EXTEND:
4424 delta = rb_event_time_stamp(event);
4425 iter->read_stamp += delta;
4426 return;
4427
4428 case RINGBUF_TYPE_TIME_STAMP:
4429 delta = rb_event_time_stamp(event);
4430 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4431 iter->read_stamp = delta;
4432 return;
4433
4434 case RINGBUF_TYPE_DATA:
4435 iter->read_stamp += event->time_delta;
4436 return;
4437
4438 default:
4439 RB_WARN_ON(iter->cpu_buffer, 1);
4440 }
4441}
4442
4443static struct buffer_page *
4444rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4445{
4446 struct buffer_page *reader = NULL;
4447 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
4448 unsigned long overwrite;
4449 unsigned long flags;
4450 int nr_loops = 0;
4451 bool ret;
4452
4453 local_irq_save(flags);
4454 arch_spin_lock(&cpu_buffer->lock);
4455
4456 again:
4457 /*
4458 * This should normally only loop twice. But because the
4459 * start of the reader inserts an empty page, it causes
4460 * a case where we will loop three times. There should be no
4461 * reason to loop four times (that I know of).
4462 */
4463 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4464 reader = NULL;
4465 goto out;
4466 }
4467
4468 reader = cpu_buffer->reader_page;
4469
4470 /* If there's more to read, return this page */
4471 if (cpu_buffer->reader_page->read < rb_page_size(reader))
4472 goto out;
4473
4474 /* Never should we have an index greater than the size */
4475 if (RB_WARN_ON(cpu_buffer,
4476 cpu_buffer->reader_page->read > rb_page_size(reader)))
4477 goto out;
4478
4479 /* check if we caught up to the tail */
4480 reader = NULL;
4481 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4482 goto out;
4483
4484 /* Don't bother swapping if the ring buffer is empty */
4485 if (rb_num_of_entries(cpu_buffer) == 0)
4486 goto out;
4487
4488 /*
4489 * Reset the reader page to size zero.
4490 */
4491 local_set(&cpu_buffer->reader_page->write, 0);
4492 local_set(&cpu_buffer->reader_page->entries, 0);
4493 local_set(&cpu_buffer->reader_page->page->commit, 0);
4494 cpu_buffer->reader_page->real_end = 0;
4495
4496 spin:
4497 /*
4498 * Splice the empty reader page into the list around the head.
4499 */
4500 reader = rb_set_head_page(cpu_buffer);
4501 if (!reader)
4502 goto out;
4503 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4504 cpu_buffer->reader_page->list.prev = reader->list.prev;
4505
4506 /*
4507 * cpu_buffer->pages just needs to point to the buffer, it
4508 * has no specific buffer page to point to. Lets move it out
4509 * of our way so we don't accidentally swap it.
4510 */
4511 cpu_buffer->pages = reader->list.prev;
4512
4513 /* The reader page will be pointing to the new head */
4514 rb_set_list_to_head(&cpu_buffer->reader_page->list);
4515
4516 /*
4517 * We want to make sure we read the overruns after we set up our
4518 * pointers to the next object. The writer side does a
4519 * cmpxchg to cross pages which acts as the mb on the writer
4520 * side. Note, the reader will constantly fail the swap
4521 * while the writer is updating the pointers, so this
4522 * guarantees that the overwrite recorded here is the one we
4523 * want to compare with the last_overrun.
4524 */
4525 smp_mb();
4526 overwrite = local_read(&(cpu_buffer->overrun));
4527
4528 /*
4529 * Here's the tricky part.
4530 *
4531 * We need to move the pointer past the header page.
4532 * But we can only do that if a writer is not currently
4533 * moving it. The page before the header page has the
4534 * flag bit '1' set if it is pointing to the page we want.
4535 * but if the writer is in the process of moving it
4536 * than it will be '2' or already moved '0'.
4537 */
4538
4539 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4540
4541 /*
4542 * If we did not convert it, then we must try again.
4543 */
4544 if (!ret)
4545 goto spin;
4546
4547 /*
4548 * Yay! We succeeded in replacing the page.
4549 *
4550 * Now make the new head point back to the reader page.
4551 */
4552 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4553 rb_inc_page(&cpu_buffer->head_page);
4554
4555 local_inc(&cpu_buffer->pages_read);
4556
4557 /* Finally update the reader page to the new head */
4558 cpu_buffer->reader_page = reader;
4559 cpu_buffer->reader_page->read = 0;
4560
4561 if (overwrite != cpu_buffer->last_overrun) {
4562 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4563 cpu_buffer->last_overrun = overwrite;
4564 }
4565
4566 goto again;
4567
4568 out:
4569 /* Update the read_stamp on the first event */
4570 if (reader && reader->read == 0)
4571 cpu_buffer->read_stamp = reader->page->time_stamp;
4572
4573 arch_spin_unlock(&cpu_buffer->lock);
4574 local_irq_restore(flags);
4575
4576 /*
4577 * The writer has preempt disable, wait for it. But not forever
4578 * Although, 1 second is pretty much "forever"
4579 */
4580#define USECS_WAIT 1000000
4581 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4582 /* If the write is past the end of page, a writer is still updating it */
4583 if (likely(!reader || rb_page_write(reader) <= bsize))
4584 break;
4585
4586 udelay(1);
4587
4588 /* Get the latest version of the reader write value */
4589 smp_rmb();
4590 }
4591
4592 /* The writer is not moving forward? Something is wrong */
4593 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4594 reader = NULL;
4595
4596 /*
4597 * Make sure we see any padding after the write update
4598 * (see rb_reset_tail()).
4599 *
4600 * In addition, a writer may be writing on the reader page
4601 * if the page has not been fully filled, so the read barrier
4602 * is also needed to make sure we see the content of what is
4603 * committed by the writer (see rb_set_commit_to_write()).
4604 */
4605 smp_rmb();
4606
4607
4608 return reader;
4609}
4610
4611static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4612{
4613 struct ring_buffer_event *event;
4614 struct buffer_page *reader;
4615 unsigned length;
4616
4617 reader = rb_get_reader_page(cpu_buffer);
4618
4619 /* This function should not be called when buffer is empty */
4620 if (RB_WARN_ON(cpu_buffer, !reader))
4621 return;
4622
4623 event = rb_reader_event(cpu_buffer);
4624
4625 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4626 cpu_buffer->read++;
4627
4628 rb_update_read_stamp(cpu_buffer, event);
4629
4630 length = rb_event_length(event);
4631 cpu_buffer->reader_page->read += length;
4632 cpu_buffer->read_bytes += length;
4633}
4634
4635static void rb_advance_iter(struct ring_buffer_iter *iter)
4636{
4637 struct ring_buffer_per_cpu *cpu_buffer;
4638
4639 cpu_buffer = iter->cpu_buffer;
4640
4641 /* If head == next_event then we need to jump to the next event */
4642 if (iter->head == iter->next_event) {
4643 /* If the event gets overwritten again, there's nothing to do */
4644 if (rb_iter_head_event(iter) == NULL)
4645 return;
4646 }
4647
4648 iter->head = iter->next_event;
4649
4650 /*
4651 * Check if we are at the end of the buffer.
4652 */
4653 if (iter->next_event >= rb_page_size(iter->head_page)) {
4654 /* discarded commits can make the page empty */
4655 if (iter->head_page == cpu_buffer->commit_page)
4656 return;
4657 rb_inc_iter(iter);
4658 return;
4659 }
4660
4661 rb_update_iter_read_stamp(iter, iter->event);
4662}
4663
4664static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4665{
4666 return cpu_buffer->lost_events;
4667}
4668
4669static struct ring_buffer_event *
4670rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4671 unsigned long *lost_events)
4672{
4673 struct ring_buffer_event *event;
4674 struct buffer_page *reader;
4675 int nr_loops = 0;
4676
4677 if (ts)
4678 *ts = 0;
4679 again:
4680 /*
4681 * We repeat when a time extend is encountered.
4682 * Since the time extend is always attached to a data event,
4683 * we should never loop more than once.
4684 * (We never hit the following condition more than twice).
4685 */
4686 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4687 return NULL;
4688
4689 reader = rb_get_reader_page(cpu_buffer);
4690 if (!reader)
4691 return NULL;
4692
4693 event = rb_reader_event(cpu_buffer);
4694
4695 switch (event->type_len) {
4696 case RINGBUF_TYPE_PADDING:
4697 if (rb_null_event(event))
4698 RB_WARN_ON(cpu_buffer, 1);
4699 /*
4700 * Because the writer could be discarding every
4701 * event it creates (which would probably be bad)
4702 * if we were to go back to "again" then we may never
4703 * catch up, and will trigger the warn on, or lock
4704 * the box. Return the padding, and we will release
4705 * the current locks, and try again.
4706 */
4707 return event;
4708
4709 case RINGBUF_TYPE_TIME_EXTEND:
4710 /* Internal data, OK to advance */
4711 rb_advance_reader(cpu_buffer);
4712 goto again;
4713
4714 case RINGBUF_TYPE_TIME_STAMP:
4715 if (ts) {
4716 *ts = rb_event_time_stamp(event);
4717 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4718 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4719 cpu_buffer->cpu, ts);
4720 }
4721 /* Internal data, OK to advance */
4722 rb_advance_reader(cpu_buffer);
4723 goto again;
4724
4725 case RINGBUF_TYPE_DATA:
4726 if (ts && !(*ts)) {
4727 *ts = cpu_buffer->read_stamp + event->time_delta;
4728 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4729 cpu_buffer->cpu, ts);
4730 }
4731 if (lost_events)
4732 *lost_events = rb_lost_events(cpu_buffer);
4733 return event;
4734
4735 default:
4736 RB_WARN_ON(cpu_buffer, 1);
4737 }
4738
4739 return NULL;
4740}
4741EXPORT_SYMBOL_GPL(ring_buffer_peek);
4742
4743static struct ring_buffer_event *
4744rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4745{
4746 struct trace_buffer *buffer;
4747 struct ring_buffer_per_cpu *cpu_buffer;
4748 struct ring_buffer_event *event;
4749 int nr_loops = 0;
4750
4751 if (ts)
4752 *ts = 0;
4753
4754 cpu_buffer = iter->cpu_buffer;
4755 buffer = cpu_buffer->buffer;
4756
4757 /*
4758 * Check if someone performed a consuming read to the buffer
4759 * or removed some pages from the buffer. In these cases,
4760 * iterator was invalidated and we need to reset it.
4761 */
4762 if (unlikely(iter->cache_read != cpu_buffer->read ||
4763 iter->cache_reader_page != cpu_buffer->reader_page ||
4764 iter->cache_pages_removed != cpu_buffer->pages_removed))
4765 rb_iter_reset(iter);
4766
4767 again:
4768 if (ring_buffer_iter_empty(iter))
4769 return NULL;
4770
4771 /*
4772 * As the writer can mess with what the iterator is trying
4773 * to read, just give up if we fail to get an event after
4774 * three tries. The iterator is not as reliable when reading
4775 * the ring buffer with an active write as the consumer is.
4776 * Do not warn if the three failures is reached.
4777 */
4778 if (++nr_loops > 3)
4779 return NULL;
4780
4781 if (rb_per_cpu_empty(cpu_buffer))
4782 return NULL;
4783
4784 if (iter->head >= rb_page_size(iter->head_page)) {
4785 rb_inc_iter(iter);
4786 goto again;
4787 }
4788
4789 event = rb_iter_head_event(iter);
4790 if (!event)
4791 goto again;
4792
4793 switch (event->type_len) {
4794 case RINGBUF_TYPE_PADDING:
4795 if (rb_null_event(event)) {
4796 rb_inc_iter(iter);
4797 goto again;
4798 }
4799 rb_advance_iter(iter);
4800 return event;
4801
4802 case RINGBUF_TYPE_TIME_EXTEND:
4803 /* Internal data, OK to advance */
4804 rb_advance_iter(iter);
4805 goto again;
4806
4807 case RINGBUF_TYPE_TIME_STAMP:
4808 if (ts) {
4809 *ts = rb_event_time_stamp(event);
4810 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4811 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4812 cpu_buffer->cpu, ts);
4813 }
4814 /* Internal data, OK to advance */
4815 rb_advance_iter(iter);
4816 goto again;
4817
4818 case RINGBUF_TYPE_DATA:
4819 if (ts && !(*ts)) {
4820 *ts = iter->read_stamp + event->time_delta;
4821 ring_buffer_normalize_time_stamp(buffer,
4822 cpu_buffer->cpu, ts);
4823 }
4824 return event;
4825
4826 default:
4827 RB_WARN_ON(cpu_buffer, 1);
4828 }
4829
4830 return NULL;
4831}
4832EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4833
4834static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4835{
4836 if (likely(!in_nmi())) {
4837 raw_spin_lock(&cpu_buffer->reader_lock);
4838 return true;
4839 }
4840
4841 /*
4842 * If an NMI die dumps out the content of the ring buffer
4843 * trylock must be used to prevent a deadlock if the NMI
4844 * preempted a task that holds the ring buffer locks. If
4845 * we get the lock then all is fine, if not, then continue
4846 * to do the read, but this can corrupt the ring buffer,
4847 * so it must be permanently disabled from future writes.
4848 * Reading from NMI is a oneshot deal.
4849 */
4850 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4851 return true;
4852
4853 /* Continue without locking, but disable the ring buffer */
4854 atomic_inc(&cpu_buffer->record_disabled);
4855 return false;
4856}
4857
4858static inline void
4859rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4860{
4861 if (likely(locked))
4862 raw_spin_unlock(&cpu_buffer->reader_lock);
4863}
4864
4865/**
4866 * ring_buffer_peek - peek at the next event to be read
4867 * @buffer: The ring buffer to read
4868 * @cpu: The cpu to peak at
4869 * @ts: The timestamp counter of this event.
4870 * @lost_events: a variable to store if events were lost (may be NULL)
4871 *
4872 * This will return the event that will be read next, but does
4873 * not consume the data.
4874 */
4875struct ring_buffer_event *
4876ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4877 unsigned long *lost_events)
4878{
4879 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4880 struct ring_buffer_event *event;
4881 unsigned long flags;
4882 bool dolock;
4883
4884 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4885 return NULL;
4886
4887 again:
4888 local_irq_save(flags);
4889 dolock = rb_reader_lock(cpu_buffer);
4890 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4891 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4892 rb_advance_reader(cpu_buffer);
4893 rb_reader_unlock(cpu_buffer, dolock);
4894 local_irq_restore(flags);
4895
4896 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4897 goto again;
4898
4899 return event;
4900}
4901
4902/** ring_buffer_iter_dropped - report if there are dropped events
4903 * @iter: The ring buffer iterator
4904 *
4905 * Returns true if there was dropped events since the last peek.
4906 */
4907bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4908{
4909 bool ret = iter->missed_events != 0;
4910
4911 iter->missed_events = 0;
4912 return ret;
4913}
4914EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4915
4916/**
4917 * ring_buffer_iter_peek - peek at the next event to be read
4918 * @iter: The ring buffer iterator
4919 * @ts: The timestamp counter of this event.
4920 *
4921 * This will return the event that will be read next, but does
4922 * not increment the iterator.
4923 */
4924struct ring_buffer_event *
4925ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4926{
4927 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4928 struct ring_buffer_event *event;
4929 unsigned long flags;
4930
4931 again:
4932 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4933 event = rb_iter_peek(iter, ts);
4934 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4935
4936 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4937 goto again;
4938
4939 return event;
4940}
4941
4942/**
4943 * ring_buffer_consume - return an event and consume it
4944 * @buffer: The ring buffer to get the next event from
4945 * @cpu: the cpu to read the buffer from
4946 * @ts: a variable to store the timestamp (may be NULL)
4947 * @lost_events: a variable to store if events were lost (may be NULL)
4948 *
4949 * Returns the next event in the ring buffer, and that event is consumed.
4950 * Meaning, that sequential reads will keep returning a different event,
4951 * and eventually empty the ring buffer if the producer is slower.
4952 */
4953struct ring_buffer_event *
4954ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4955 unsigned long *lost_events)
4956{
4957 struct ring_buffer_per_cpu *cpu_buffer;
4958 struct ring_buffer_event *event = NULL;
4959 unsigned long flags;
4960 bool dolock;
4961
4962 again:
4963 /* might be called in atomic */
4964 preempt_disable();
4965
4966 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4967 goto out;
4968
4969 cpu_buffer = buffer->buffers[cpu];
4970 local_irq_save(flags);
4971 dolock = rb_reader_lock(cpu_buffer);
4972
4973 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4974 if (event) {
4975 cpu_buffer->lost_events = 0;
4976 rb_advance_reader(cpu_buffer);
4977 }
4978
4979 rb_reader_unlock(cpu_buffer, dolock);
4980 local_irq_restore(flags);
4981
4982 out:
4983 preempt_enable();
4984
4985 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4986 goto again;
4987
4988 return event;
4989}
4990EXPORT_SYMBOL_GPL(ring_buffer_consume);
4991
4992/**
4993 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4994 * @buffer: The ring buffer to read from
4995 * @cpu: The cpu buffer to iterate over
4996 * @flags: gfp flags to use for memory allocation
4997 *
4998 * This performs the initial preparations necessary to iterate
4999 * through the buffer. Memory is allocated, buffer recording
5000 * is disabled, and the iterator pointer is returned to the caller.
5001 *
5002 * Disabling buffer recording prevents the reading from being
5003 * corrupted. This is not a consuming read, so a producer is not
5004 * expected.
5005 *
5006 * After a sequence of ring_buffer_read_prepare calls, the user is
5007 * expected to make at least one call to ring_buffer_read_prepare_sync.
5008 * Afterwards, ring_buffer_read_start is invoked to get things going
5009 * for real.
5010 *
5011 * This overall must be paired with ring_buffer_read_finish.
5012 */
5013struct ring_buffer_iter *
5014ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5015{
5016 struct ring_buffer_per_cpu *cpu_buffer;
5017 struct ring_buffer_iter *iter;
5018
5019 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5020 return NULL;
5021
5022 iter = kzalloc(sizeof(*iter), flags);
5023 if (!iter)
5024 return NULL;
5025
5026 /* Holds the entire event: data and meta data */
5027 iter->event_size = buffer->subbuf_size;
5028 iter->event = kmalloc(iter->event_size, flags);
5029 if (!iter->event) {
5030 kfree(iter);
5031 return NULL;
5032 }
5033
5034 cpu_buffer = buffer->buffers[cpu];
5035
5036 iter->cpu_buffer = cpu_buffer;
5037
5038 atomic_inc(&cpu_buffer->resize_disabled);
5039
5040 return iter;
5041}
5042EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5043
5044/**
5045 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5046 *
5047 * All previously invoked ring_buffer_read_prepare calls to prepare
5048 * iterators will be synchronized. Afterwards, read_buffer_read_start
5049 * calls on those iterators are allowed.
5050 */
5051void
5052ring_buffer_read_prepare_sync(void)
5053{
5054 synchronize_rcu();
5055}
5056EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5057
5058/**
5059 * ring_buffer_read_start - start a non consuming read of the buffer
5060 * @iter: The iterator returned by ring_buffer_read_prepare
5061 *
5062 * This finalizes the startup of an iteration through the buffer.
5063 * The iterator comes from a call to ring_buffer_read_prepare and
5064 * an intervening ring_buffer_read_prepare_sync must have been
5065 * performed.
5066 *
5067 * Must be paired with ring_buffer_read_finish.
5068 */
5069void
5070ring_buffer_read_start(struct ring_buffer_iter *iter)
5071{
5072 struct ring_buffer_per_cpu *cpu_buffer;
5073 unsigned long flags;
5074
5075 if (!iter)
5076 return;
5077
5078 cpu_buffer = iter->cpu_buffer;
5079
5080 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5081 arch_spin_lock(&cpu_buffer->lock);
5082 rb_iter_reset(iter);
5083 arch_spin_unlock(&cpu_buffer->lock);
5084 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5085}
5086EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5087
5088/**
5089 * ring_buffer_read_finish - finish reading the iterator of the buffer
5090 * @iter: The iterator retrieved by ring_buffer_start
5091 *
5092 * This re-enables the recording to the buffer, and frees the
5093 * iterator.
5094 */
5095void
5096ring_buffer_read_finish(struct ring_buffer_iter *iter)
5097{
5098 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5099 unsigned long flags;
5100
5101 /*
5102 * Ring buffer is disabled from recording, here's a good place
5103 * to check the integrity of the ring buffer.
5104 * Must prevent readers from trying to read, as the check
5105 * clears the HEAD page and readers require it.
5106 */
5107 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5108 rb_check_pages(cpu_buffer);
5109 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5110
5111 atomic_dec(&cpu_buffer->resize_disabled);
5112 kfree(iter->event);
5113 kfree(iter);
5114}
5115EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5116
5117/**
5118 * ring_buffer_iter_advance - advance the iterator to the next location
5119 * @iter: The ring buffer iterator
5120 *
5121 * Move the location of the iterator such that the next read will
5122 * be the next location of the iterator.
5123 */
5124void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5125{
5126 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5127 unsigned long flags;
5128
5129 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5130
5131 rb_advance_iter(iter);
5132
5133 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5134}
5135EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5136
5137/**
5138 * ring_buffer_size - return the size of the ring buffer (in bytes)
5139 * @buffer: The ring buffer.
5140 * @cpu: The CPU to get ring buffer size from.
5141 */
5142unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5143{
5144 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5145 return 0;
5146
5147 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5148}
5149EXPORT_SYMBOL_GPL(ring_buffer_size);
5150
5151/**
5152 * ring_buffer_max_event_size - return the max data size of an event
5153 * @buffer: The ring buffer.
5154 *
5155 * Returns the maximum size an event can be.
5156 */
5157unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5158{
5159 /* If abs timestamp is requested, events have a timestamp too */
5160 if (ring_buffer_time_stamp_abs(buffer))
5161 return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5162 return buffer->max_data_size;
5163}
5164EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5165
5166static void rb_clear_buffer_page(struct buffer_page *page)
5167{
5168 local_set(&page->write, 0);
5169 local_set(&page->entries, 0);
5170 rb_init_page(page->page);
5171 page->read = 0;
5172}
5173
5174static void
5175rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5176{
5177 struct buffer_page *page;
5178
5179 rb_head_page_deactivate(cpu_buffer);
5180
5181 cpu_buffer->head_page
5182 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5183 rb_clear_buffer_page(cpu_buffer->head_page);
5184 list_for_each_entry(page, cpu_buffer->pages, list) {
5185 rb_clear_buffer_page(page);
5186 }
5187
5188 cpu_buffer->tail_page = cpu_buffer->head_page;
5189 cpu_buffer->commit_page = cpu_buffer->head_page;
5190
5191 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5192 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5193 rb_clear_buffer_page(cpu_buffer->reader_page);
5194
5195 local_set(&cpu_buffer->entries_bytes, 0);
5196 local_set(&cpu_buffer->overrun, 0);
5197 local_set(&cpu_buffer->commit_overrun, 0);
5198 local_set(&cpu_buffer->dropped_events, 0);
5199 local_set(&cpu_buffer->entries, 0);
5200 local_set(&cpu_buffer->committing, 0);
5201 local_set(&cpu_buffer->commits, 0);
5202 local_set(&cpu_buffer->pages_touched, 0);
5203 local_set(&cpu_buffer->pages_lost, 0);
5204 local_set(&cpu_buffer->pages_read, 0);
5205 cpu_buffer->last_pages_touch = 0;
5206 cpu_buffer->shortest_full = 0;
5207 cpu_buffer->read = 0;
5208 cpu_buffer->read_bytes = 0;
5209
5210 rb_time_set(&cpu_buffer->write_stamp, 0);
5211 rb_time_set(&cpu_buffer->before_stamp, 0);
5212
5213 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5214
5215 cpu_buffer->lost_events = 0;
5216 cpu_buffer->last_overrun = 0;
5217
5218 rb_head_page_activate(cpu_buffer);
5219 cpu_buffer->pages_removed = 0;
5220}
5221
5222/* Must have disabled the cpu buffer then done a synchronize_rcu */
5223static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5224{
5225 unsigned long flags;
5226
5227 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5228
5229 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5230 goto out;
5231
5232 arch_spin_lock(&cpu_buffer->lock);
5233
5234 rb_reset_cpu(cpu_buffer);
5235
5236 arch_spin_unlock(&cpu_buffer->lock);
5237
5238 out:
5239 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5240}
5241
5242/**
5243 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5244 * @buffer: The ring buffer to reset a per cpu buffer of
5245 * @cpu: The CPU buffer to be reset
5246 */
5247void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5248{
5249 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5250
5251 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5252 return;
5253
5254 /* prevent another thread from changing buffer sizes */
5255 mutex_lock(&buffer->mutex);
5256
5257 atomic_inc(&cpu_buffer->resize_disabled);
5258 atomic_inc(&cpu_buffer->record_disabled);
5259
5260 /* Make sure all commits have finished */
5261 synchronize_rcu();
5262
5263 reset_disabled_cpu_buffer(cpu_buffer);
5264
5265 atomic_dec(&cpu_buffer->record_disabled);
5266 atomic_dec(&cpu_buffer->resize_disabled);
5267
5268 mutex_unlock(&buffer->mutex);
5269}
5270EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5271
5272/* Flag to ensure proper resetting of atomic variables */
5273#define RESET_BIT (1 << 30)
5274
5275/**
5276 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5277 * @buffer: The ring buffer to reset a per cpu buffer of
5278 */
5279void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5280{
5281 struct ring_buffer_per_cpu *cpu_buffer;
5282 int cpu;
5283
5284 /* prevent another thread from changing buffer sizes */
5285 mutex_lock(&buffer->mutex);
5286
5287 for_each_online_buffer_cpu(buffer, cpu) {
5288 cpu_buffer = buffer->buffers[cpu];
5289
5290 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5291 atomic_inc(&cpu_buffer->record_disabled);
5292 }
5293
5294 /* Make sure all commits have finished */
5295 synchronize_rcu();
5296
5297 for_each_buffer_cpu(buffer, cpu) {
5298 cpu_buffer = buffer->buffers[cpu];
5299
5300 /*
5301 * If a CPU came online during the synchronize_rcu(), then
5302 * ignore it.
5303 */
5304 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5305 continue;
5306
5307 reset_disabled_cpu_buffer(cpu_buffer);
5308
5309 atomic_dec(&cpu_buffer->record_disabled);
5310 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5311 }
5312
5313 mutex_unlock(&buffer->mutex);
5314}
5315
5316/**
5317 * ring_buffer_reset - reset a ring buffer
5318 * @buffer: The ring buffer to reset all cpu buffers
5319 */
5320void ring_buffer_reset(struct trace_buffer *buffer)
5321{
5322 struct ring_buffer_per_cpu *cpu_buffer;
5323 int cpu;
5324
5325 /* prevent another thread from changing buffer sizes */
5326 mutex_lock(&buffer->mutex);
5327
5328 for_each_buffer_cpu(buffer, cpu) {
5329 cpu_buffer = buffer->buffers[cpu];
5330
5331 atomic_inc(&cpu_buffer->resize_disabled);
5332 atomic_inc(&cpu_buffer->record_disabled);
5333 }
5334
5335 /* Make sure all commits have finished */
5336 synchronize_rcu();
5337
5338 for_each_buffer_cpu(buffer, cpu) {
5339 cpu_buffer = buffer->buffers[cpu];
5340
5341 reset_disabled_cpu_buffer(cpu_buffer);
5342
5343 atomic_dec(&cpu_buffer->record_disabled);
5344 atomic_dec(&cpu_buffer->resize_disabled);
5345 }
5346
5347 mutex_unlock(&buffer->mutex);
5348}
5349EXPORT_SYMBOL_GPL(ring_buffer_reset);
5350
5351/**
5352 * ring_buffer_empty - is the ring buffer empty?
5353 * @buffer: The ring buffer to test
5354 */
5355bool ring_buffer_empty(struct trace_buffer *buffer)
5356{
5357 struct ring_buffer_per_cpu *cpu_buffer;
5358 unsigned long flags;
5359 bool dolock;
5360 bool ret;
5361 int cpu;
5362
5363 /* yes this is racy, but if you don't like the race, lock the buffer */
5364 for_each_buffer_cpu(buffer, cpu) {
5365 cpu_buffer = buffer->buffers[cpu];
5366 local_irq_save(flags);
5367 dolock = rb_reader_lock(cpu_buffer);
5368 ret = rb_per_cpu_empty(cpu_buffer);
5369 rb_reader_unlock(cpu_buffer, dolock);
5370 local_irq_restore(flags);
5371
5372 if (!ret)
5373 return false;
5374 }
5375
5376 return true;
5377}
5378EXPORT_SYMBOL_GPL(ring_buffer_empty);
5379
5380/**
5381 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5382 * @buffer: The ring buffer
5383 * @cpu: The CPU buffer to test
5384 */
5385bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5386{
5387 struct ring_buffer_per_cpu *cpu_buffer;
5388 unsigned long flags;
5389 bool dolock;
5390 bool ret;
5391
5392 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5393 return true;
5394
5395 cpu_buffer = buffer->buffers[cpu];
5396 local_irq_save(flags);
5397 dolock = rb_reader_lock(cpu_buffer);
5398 ret = rb_per_cpu_empty(cpu_buffer);
5399 rb_reader_unlock(cpu_buffer, dolock);
5400 local_irq_restore(flags);
5401
5402 return ret;
5403}
5404EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5405
5406#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5407/**
5408 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5409 * @buffer_a: One buffer to swap with
5410 * @buffer_b: The other buffer to swap with
5411 * @cpu: the CPU of the buffers to swap
5412 *
5413 * This function is useful for tracers that want to take a "snapshot"
5414 * of a CPU buffer and has another back up buffer lying around.
5415 * it is expected that the tracer handles the cpu buffer not being
5416 * used at the moment.
5417 */
5418int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5419 struct trace_buffer *buffer_b, int cpu)
5420{
5421 struct ring_buffer_per_cpu *cpu_buffer_a;
5422 struct ring_buffer_per_cpu *cpu_buffer_b;
5423 int ret = -EINVAL;
5424
5425 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5426 !cpumask_test_cpu(cpu, buffer_b->cpumask))
5427 goto out;
5428
5429 cpu_buffer_a = buffer_a->buffers[cpu];
5430 cpu_buffer_b = buffer_b->buffers[cpu];
5431
5432 /* At least make sure the two buffers are somewhat the same */
5433 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5434 goto out;
5435
5436 if (buffer_a->subbuf_order != buffer_b->subbuf_order)
5437 goto out;
5438
5439 ret = -EAGAIN;
5440
5441 if (atomic_read(&buffer_a->record_disabled))
5442 goto out;
5443
5444 if (atomic_read(&buffer_b->record_disabled))
5445 goto out;
5446
5447 if (atomic_read(&cpu_buffer_a->record_disabled))
5448 goto out;
5449
5450 if (atomic_read(&cpu_buffer_b->record_disabled))
5451 goto out;
5452
5453 /*
5454 * We can't do a synchronize_rcu here because this
5455 * function can be called in atomic context.
5456 * Normally this will be called from the same CPU as cpu.
5457 * If not it's up to the caller to protect this.
5458 */
5459 atomic_inc(&cpu_buffer_a->record_disabled);
5460 atomic_inc(&cpu_buffer_b->record_disabled);
5461
5462 ret = -EBUSY;
5463 if (local_read(&cpu_buffer_a->committing))
5464 goto out_dec;
5465 if (local_read(&cpu_buffer_b->committing))
5466 goto out_dec;
5467
5468 /*
5469 * When resize is in progress, we cannot swap it because
5470 * it will mess the state of the cpu buffer.
5471 */
5472 if (atomic_read(&buffer_a->resizing))
5473 goto out_dec;
5474 if (atomic_read(&buffer_b->resizing))
5475 goto out_dec;
5476
5477 buffer_a->buffers[cpu] = cpu_buffer_b;
5478 buffer_b->buffers[cpu] = cpu_buffer_a;
5479
5480 cpu_buffer_b->buffer = buffer_a;
5481 cpu_buffer_a->buffer = buffer_b;
5482
5483 ret = 0;
5484
5485out_dec:
5486 atomic_dec(&cpu_buffer_a->record_disabled);
5487 atomic_dec(&cpu_buffer_b->record_disabled);
5488out:
5489 return ret;
5490}
5491EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5492#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5493
5494/**
5495 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5496 * @buffer: the buffer to allocate for.
5497 * @cpu: the cpu buffer to allocate.
5498 *
5499 * This function is used in conjunction with ring_buffer_read_page.
5500 * When reading a full page from the ring buffer, these functions
5501 * can be used to speed up the process. The calling function should
5502 * allocate a few pages first with this function. Then when it
5503 * needs to get pages from the ring buffer, it passes the result
5504 * of this function into ring_buffer_read_page, which will swap
5505 * the page that was allocated, with the read page of the buffer.
5506 *
5507 * Returns:
5508 * The page allocated, or ERR_PTR
5509 */
5510struct buffer_data_read_page *
5511ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5512{
5513 struct ring_buffer_per_cpu *cpu_buffer;
5514 struct buffer_data_read_page *bpage = NULL;
5515 unsigned long flags;
5516 struct page *page;
5517
5518 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5519 return ERR_PTR(-ENODEV);
5520
5521 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
5522 if (!bpage)
5523 return ERR_PTR(-ENOMEM);
5524
5525 bpage->order = buffer->subbuf_order;
5526 cpu_buffer = buffer->buffers[cpu];
5527 local_irq_save(flags);
5528 arch_spin_lock(&cpu_buffer->lock);
5529
5530 if (cpu_buffer->free_page) {
5531 bpage->data = cpu_buffer->free_page;
5532 cpu_buffer->free_page = NULL;
5533 }
5534
5535 arch_spin_unlock(&cpu_buffer->lock);
5536 local_irq_restore(flags);
5537
5538 if (bpage->data)
5539 goto out;
5540
5541 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_NORETRY,
5542 cpu_buffer->buffer->subbuf_order);
5543 if (!page) {
5544 kfree(bpage);
5545 return ERR_PTR(-ENOMEM);
5546 }
5547
5548 bpage->data = page_address(page);
5549
5550 out:
5551 rb_init_page(bpage->data);
5552
5553 return bpage;
5554}
5555EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5556
5557/**
5558 * ring_buffer_free_read_page - free an allocated read page
5559 * @buffer: the buffer the page was allocate for
5560 * @cpu: the cpu buffer the page came from
5561 * @data_page: the page to free
5562 *
5563 * Free a page allocated from ring_buffer_alloc_read_page.
5564 */
5565void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
5566 struct buffer_data_read_page *data_page)
5567{
5568 struct ring_buffer_per_cpu *cpu_buffer;
5569 struct buffer_data_page *bpage = data_page->data;
5570 struct page *page = virt_to_page(bpage);
5571 unsigned long flags;
5572
5573 if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5574 return;
5575
5576 cpu_buffer = buffer->buffers[cpu];
5577
5578 /*
5579 * If the page is still in use someplace else, or order of the page
5580 * is different from the subbuffer order of the buffer -
5581 * we can't reuse it
5582 */
5583 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
5584 goto out;
5585
5586 local_irq_save(flags);
5587 arch_spin_lock(&cpu_buffer->lock);
5588
5589 if (!cpu_buffer->free_page) {
5590 cpu_buffer->free_page = bpage;
5591 bpage = NULL;
5592 }
5593
5594 arch_spin_unlock(&cpu_buffer->lock);
5595 local_irq_restore(flags);
5596
5597 out:
5598 free_pages((unsigned long)bpage, data_page->order);
5599 kfree(data_page);
5600}
5601EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5602
5603/**
5604 * ring_buffer_read_page - extract a page from the ring buffer
5605 * @buffer: buffer to extract from
5606 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5607 * @len: amount to extract
5608 * @cpu: the cpu of the buffer to extract
5609 * @full: should the extraction only happen when the page is full.
5610 *
5611 * This function will pull out a page from the ring buffer and consume it.
5612 * @data_page must be the address of the variable that was returned
5613 * from ring_buffer_alloc_read_page. This is because the page might be used
5614 * to swap with a page in the ring buffer.
5615 *
5616 * for example:
5617 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
5618 * if (IS_ERR(rpage))
5619 * return PTR_ERR(rpage);
5620 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
5621 * if (ret >= 0)
5622 * process_page(ring_buffer_read_page_data(rpage), ret);
5623 * ring_buffer_free_read_page(buffer, cpu, rpage);
5624 *
5625 * When @full is set, the function will not return true unless
5626 * the writer is off the reader page.
5627 *
5628 * Note: it is up to the calling functions to handle sleeps and wakeups.
5629 * The ring buffer can be used anywhere in the kernel and can not
5630 * blindly call wake_up. The layer that uses the ring buffer must be
5631 * responsible for that.
5632 *
5633 * Returns:
5634 * >=0 if data has been transferred, returns the offset of consumed data.
5635 * <0 if no data has been transferred.
5636 */
5637int ring_buffer_read_page(struct trace_buffer *buffer,
5638 struct buffer_data_read_page *data_page,
5639 size_t len, int cpu, int full)
5640{
5641 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5642 struct ring_buffer_event *event;
5643 struct buffer_data_page *bpage;
5644 struct buffer_page *reader;
5645 unsigned long missed_events;
5646 unsigned long flags;
5647 unsigned int commit;
5648 unsigned int read;
5649 u64 save_timestamp;
5650 int ret = -1;
5651
5652 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5653 goto out;
5654
5655 /*
5656 * If len is not big enough to hold the page header, then
5657 * we can not copy anything.
5658 */
5659 if (len <= BUF_PAGE_HDR_SIZE)
5660 goto out;
5661
5662 len -= BUF_PAGE_HDR_SIZE;
5663
5664 if (!data_page || !data_page->data)
5665 goto out;
5666 if (data_page->order != buffer->subbuf_order)
5667 goto out;
5668
5669 bpage = data_page->data;
5670 if (!bpage)
5671 goto out;
5672
5673 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5674
5675 reader = rb_get_reader_page(cpu_buffer);
5676 if (!reader)
5677 goto out_unlock;
5678
5679 event = rb_reader_event(cpu_buffer);
5680
5681 read = reader->read;
5682 commit = rb_page_commit(reader);
5683
5684 /* Check if any events were dropped */
5685 missed_events = cpu_buffer->lost_events;
5686
5687 /*
5688 * If this page has been partially read or
5689 * if len is not big enough to read the rest of the page or
5690 * a writer is still on the page, then
5691 * we must copy the data from the page to the buffer.
5692 * Otherwise, we can simply swap the page with the one passed in.
5693 */
5694 if (read || (len < (commit - read)) ||
5695 cpu_buffer->reader_page == cpu_buffer->commit_page) {
5696 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5697 unsigned int rpos = read;
5698 unsigned int pos = 0;
5699 unsigned int size;
5700
5701 /*
5702 * If a full page is expected, this can still be returned
5703 * if there's been a previous partial read and the
5704 * rest of the page can be read and the commit page is off
5705 * the reader page.
5706 */
5707 if (full &&
5708 (!read || (len < (commit - read)) ||
5709 cpu_buffer->reader_page == cpu_buffer->commit_page))
5710 goto out_unlock;
5711
5712 if (len > (commit - read))
5713 len = (commit - read);
5714
5715 /* Always keep the time extend and data together */
5716 size = rb_event_ts_length(event);
5717
5718 if (len < size)
5719 goto out_unlock;
5720
5721 /* save the current timestamp, since the user will need it */
5722 save_timestamp = cpu_buffer->read_stamp;
5723
5724 /* Need to copy one event at a time */
5725 do {
5726 /* We need the size of one event, because
5727 * rb_advance_reader only advances by one event,
5728 * whereas rb_event_ts_length may include the size of
5729 * one or two events.
5730 * We have already ensured there's enough space if this
5731 * is a time extend. */
5732 size = rb_event_length(event);
5733 memcpy(bpage->data + pos, rpage->data + rpos, size);
5734
5735 len -= size;
5736
5737 rb_advance_reader(cpu_buffer);
5738 rpos = reader->read;
5739 pos += size;
5740
5741 if (rpos >= commit)
5742 break;
5743
5744 event = rb_reader_event(cpu_buffer);
5745 /* Always keep the time extend and data together */
5746 size = rb_event_ts_length(event);
5747 } while (len >= size);
5748
5749 /* update bpage */
5750 local_set(&bpage->commit, pos);
5751 bpage->time_stamp = save_timestamp;
5752
5753 /* we copied everything to the beginning */
5754 read = 0;
5755 } else {
5756 /* update the entry counter */
5757 cpu_buffer->read += rb_page_entries(reader);
5758 cpu_buffer->read_bytes += rb_page_commit(reader);
5759
5760 /* swap the pages */
5761 rb_init_page(bpage);
5762 bpage = reader->page;
5763 reader->page = data_page->data;
5764 local_set(&reader->write, 0);
5765 local_set(&reader->entries, 0);
5766 reader->read = 0;
5767 data_page->data = bpage;
5768
5769 /*
5770 * Use the real_end for the data size,
5771 * This gives us a chance to store the lost events
5772 * on the page.
5773 */
5774 if (reader->real_end)
5775 local_set(&bpage->commit, reader->real_end);
5776 }
5777 ret = read;
5778
5779 cpu_buffer->lost_events = 0;
5780
5781 commit = local_read(&bpage->commit);
5782 /*
5783 * Set a flag in the commit field if we lost events
5784 */
5785 if (missed_events) {
5786 /* If there is room at the end of the page to save the
5787 * missed events, then record it there.
5788 */
5789 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
5790 memcpy(&bpage->data[commit], &missed_events,
5791 sizeof(missed_events));
5792 local_add(RB_MISSED_STORED, &bpage->commit);
5793 commit += sizeof(missed_events);
5794 }
5795 local_add(RB_MISSED_EVENTS, &bpage->commit);
5796 }
5797
5798 /*
5799 * This page may be off to user land. Zero it out here.
5800 */
5801 if (commit < buffer->subbuf_size)
5802 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
5803
5804 out_unlock:
5805 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5806
5807 out:
5808 return ret;
5809}
5810EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5811
5812/**
5813 * ring_buffer_read_page_data - get pointer to the data in the page.
5814 * @page: the page to get the data from
5815 *
5816 * Returns pointer to the actual data in this page.
5817 */
5818void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
5819{
5820 return page->data;
5821}
5822EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
5823
5824/**
5825 * ring_buffer_subbuf_size_get - get size of the sub buffer.
5826 * @buffer: the buffer to get the sub buffer size from
5827 *
5828 * Returns size of the sub buffer, in bytes.
5829 */
5830int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
5831{
5832 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
5833}
5834EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
5835
5836/**
5837 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
5838 * @buffer: The ring_buffer to get the system sub page order from
5839 *
5840 * By default, one ring buffer sub page equals to one system page. This parameter
5841 * is configurable, per ring buffer. The size of the ring buffer sub page can be
5842 * extended, but must be an order of system page size.
5843 *
5844 * Returns the order of buffer sub page size, in system pages:
5845 * 0 means the sub buffer size is 1 system page and so forth.
5846 * In case of an error < 0 is returned.
5847 */
5848int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
5849{
5850 if (!buffer)
5851 return -EINVAL;
5852
5853 return buffer->subbuf_order;
5854}
5855EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
5856
5857/**
5858 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
5859 * @buffer: The ring_buffer to set the new page size.
5860 * @order: Order of the system pages in one sub buffer page
5861 *
5862 * By default, one ring buffer pages equals to one system page. This API can be
5863 * used to set new size of the ring buffer page. The size must be order of
5864 * system page size, that's why the input parameter @order is the order of
5865 * system pages that are allocated for one ring buffer page:
5866 * 0 - 1 system page
5867 * 1 - 2 system pages
5868 * 3 - 4 system pages
5869 * ...
5870 *
5871 * Returns 0 on success or < 0 in case of an error.
5872 */
5873int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
5874{
5875 struct ring_buffer_per_cpu *cpu_buffer;
5876 struct buffer_page *bpage, *tmp;
5877 int old_order, old_size;
5878 int nr_pages;
5879 int psize;
5880 int err;
5881 int cpu;
5882
5883 if (!buffer || order < 0)
5884 return -EINVAL;
5885
5886 if (buffer->subbuf_order == order)
5887 return 0;
5888
5889 psize = (1 << order) * PAGE_SIZE;
5890 if (psize <= BUF_PAGE_HDR_SIZE)
5891 return -EINVAL;
5892
5893 /* Size of a subbuf cannot be greater than the write counter */
5894 if (psize > RB_WRITE_MASK + 1)
5895 return -EINVAL;
5896
5897 old_order = buffer->subbuf_order;
5898 old_size = buffer->subbuf_size;
5899
5900 /* prevent another thread from changing buffer sizes */
5901 mutex_lock(&buffer->mutex);
5902 atomic_inc(&buffer->record_disabled);
5903
5904 /* Make sure all commits have finished */
5905 synchronize_rcu();
5906
5907 buffer->subbuf_order = order;
5908 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
5909
5910 /* Make sure all new buffers are allocated, before deleting the old ones */
5911 for_each_buffer_cpu(buffer, cpu) {
5912
5913 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5914 continue;
5915
5916 cpu_buffer = buffer->buffers[cpu];
5917
5918 /* Update the number of pages to match the new size */
5919 nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
5920 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
5921
5922 /* we need a minimum of two pages */
5923 if (nr_pages < 2)
5924 nr_pages = 2;
5925
5926 cpu_buffer->nr_pages_to_update = nr_pages;
5927
5928 /* Include the reader page */
5929 nr_pages++;
5930
5931 /* Allocate the new size buffer */
5932 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5933 if (__rb_allocate_pages(cpu_buffer, nr_pages,
5934 &cpu_buffer->new_pages)) {
5935 /* not enough memory for new pages */
5936 err = -ENOMEM;
5937 goto error;
5938 }
5939 }
5940
5941 for_each_buffer_cpu(buffer, cpu) {
5942
5943 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5944 continue;
5945
5946 cpu_buffer = buffer->buffers[cpu];
5947
5948 /* Clear the head bit to make the link list normal to read */
5949 rb_head_page_deactivate(cpu_buffer);
5950
5951 /* Now walk the list and free all the old sub buffers */
5952 list_for_each_entry_safe(bpage, tmp, cpu_buffer->pages, list) {
5953 list_del_init(&bpage->list);
5954 free_buffer_page(bpage);
5955 }
5956 /* The above loop stopped an the last page needing to be freed */
5957 bpage = list_entry(cpu_buffer->pages, struct buffer_page, list);
5958 free_buffer_page(bpage);
5959
5960 /* Free the current reader page */
5961 free_buffer_page(cpu_buffer->reader_page);
5962
5963 /* One page was allocated for the reader page */
5964 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
5965 struct buffer_page, list);
5966 list_del_init(&cpu_buffer->reader_page->list);
5967
5968 /* The cpu_buffer pages are a link list with no head */
5969 cpu_buffer->pages = cpu_buffer->new_pages.next;
5970 cpu_buffer->new_pages.next->prev = cpu_buffer->new_pages.prev;
5971 cpu_buffer->new_pages.prev->next = cpu_buffer->new_pages.next;
5972
5973 /* Clear the new_pages list */
5974 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5975
5976 cpu_buffer->head_page
5977 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5978 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
5979
5980 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
5981 cpu_buffer->nr_pages_to_update = 0;
5982
5983 free_pages((unsigned long)cpu_buffer->free_page, old_order);
5984 cpu_buffer->free_page = NULL;
5985
5986 rb_head_page_activate(cpu_buffer);
5987
5988 rb_check_pages(cpu_buffer);
5989 }
5990
5991 atomic_dec(&buffer->record_disabled);
5992 mutex_unlock(&buffer->mutex);
5993
5994 return 0;
5995
5996error:
5997 buffer->subbuf_order = old_order;
5998 buffer->subbuf_size = old_size;
5999
6000 atomic_dec(&buffer->record_disabled);
6001 mutex_unlock(&buffer->mutex);
6002
6003 for_each_buffer_cpu(buffer, cpu) {
6004 cpu_buffer = buffer->buffers[cpu];
6005
6006 if (!cpu_buffer->nr_pages_to_update)
6007 continue;
6008
6009 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6010 list_del_init(&bpage->list);
6011 free_buffer_page(bpage);
6012 }
6013 }
6014
6015 return err;
6016}
6017EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6018
6019/*
6020 * We only allocate new buffers, never free them if the CPU goes down.
6021 * If we were to free the buffer, then the user would lose any trace that was in
6022 * the buffer.
6023 */
6024int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
6025{
6026 struct trace_buffer *buffer;
6027 long nr_pages_same;
6028 int cpu_i;
6029 unsigned long nr_pages;
6030
6031 buffer = container_of(node, struct trace_buffer, node);
6032 if (cpumask_test_cpu(cpu, buffer->cpumask))
6033 return 0;
6034
6035 nr_pages = 0;
6036 nr_pages_same = 1;
6037 /* check if all cpu sizes are same */
6038 for_each_buffer_cpu(buffer, cpu_i) {
6039 /* fill in the size from first enabled cpu */
6040 if (nr_pages == 0)
6041 nr_pages = buffer->buffers[cpu_i]->nr_pages;
6042 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
6043 nr_pages_same = 0;
6044 break;
6045 }
6046 }
6047 /* allocate minimum pages, user can later expand it */
6048 if (!nr_pages_same)
6049 nr_pages = 2;
6050 buffer->buffers[cpu] =
6051 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
6052 if (!buffer->buffers[cpu]) {
6053 WARN(1, "failed to allocate ring buffer on CPU %u\n",
6054 cpu);
6055 return -ENOMEM;
6056 }
6057 smp_wmb();
6058 cpumask_set_cpu(cpu, buffer->cpumask);
6059 return 0;
6060}
6061
6062#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
6063/*
6064 * This is a basic integrity check of the ring buffer.
6065 * Late in the boot cycle this test will run when configured in.
6066 * It will kick off a thread per CPU that will go into a loop
6067 * writing to the per cpu ring buffer various sizes of data.
6068 * Some of the data will be large items, some small.
6069 *
6070 * Another thread is created that goes into a spin, sending out
6071 * IPIs to the other CPUs to also write into the ring buffer.
6072 * this is to test the nesting ability of the buffer.
6073 *
6074 * Basic stats are recorded and reported. If something in the
6075 * ring buffer should happen that's not expected, a big warning
6076 * is displayed and all ring buffers are disabled.
6077 */
6078static struct task_struct *rb_threads[NR_CPUS] __initdata;
6079
6080struct rb_test_data {
6081 struct trace_buffer *buffer;
6082 unsigned long events;
6083 unsigned long bytes_written;
6084 unsigned long bytes_alloc;
6085 unsigned long bytes_dropped;
6086 unsigned long events_nested;
6087 unsigned long bytes_written_nested;
6088 unsigned long bytes_alloc_nested;
6089 unsigned long bytes_dropped_nested;
6090 int min_size_nested;
6091 int max_size_nested;
6092 int max_size;
6093 int min_size;
6094 int cpu;
6095 int cnt;
6096};
6097
6098static struct rb_test_data rb_data[NR_CPUS] __initdata;
6099
6100/* 1 meg per cpu */
6101#define RB_TEST_BUFFER_SIZE 1048576
6102
6103static char rb_string[] __initdata =
6104 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
6105 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
6106 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
6107
6108static bool rb_test_started __initdata;
6109
6110struct rb_item {
6111 int size;
6112 char str[];
6113};
6114
6115static __init int rb_write_something(struct rb_test_data *data, bool nested)
6116{
6117 struct ring_buffer_event *event;
6118 struct rb_item *item;
6119 bool started;
6120 int event_len;
6121 int size;
6122 int len;
6123 int cnt;
6124
6125 /* Have nested writes different that what is written */
6126 cnt = data->cnt + (nested ? 27 : 0);
6127
6128 /* Multiply cnt by ~e, to make some unique increment */
6129 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
6130
6131 len = size + sizeof(struct rb_item);
6132
6133 started = rb_test_started;
6134 /* read rb_test_started before checking buffer enabled */
6135 smp_rmb();
6136
6137 event = ring_buffer_lock_reserve(data->buffer, len);
6138 if (!event) {
6139 /* Ignore dropped events before test starts. */
6140 if (started) {
6141 if (nested)
6142 data->bytes_dropped += len;
6143 else
6144 data->bytes_dropped_nested += len;
6145 }
6146 return len;
6147 }
6148
6149 event_len = ring_buffer_event_length(event);
6150
6151 if (RB_WARN_ON(data->buffer, event_len < len))
6152 goto out;
6153
6154 item = ring_buffer_event_data(event);
6155 item->size = size;
6156 memcpy(item->str, rb_string, size);
6157
6158 if (nested) {
6159 data->bytes_alloc_nested += event_len;
6160 data->bytes_written_nested += len;
6161 data->events_nested++;
6162 if (!data->min_size_nested || len < data->min_size_nested)
6163 data->min_size_nested = len;
6164 if (len > data->max_size_nested)
6165 data->max_size_nested = len;
6166 } else {
6167 data->bytes_alloc += event_len;
6168 data->bytes_written += len;
6169 data->events++;
6170 if (!data->min_size || len < data->min_size)
6171 data->max_size = len;
6172 if (len > data->max_size)
6173 data->max_size = len;
6174 }
6175
6176 out:
6177 ring_buffer_unlock_commit(data->buffer);
6178
6179 return 0;
6180}
6181
6182static __init int rb_test(void *arg)
6183{
6184 struct rb_test_data *data = arg;
6185
6186 while (!kthread_should_stop()) {
6187 rb_write_something(data, false);
6188 data->cnt++;
6189
6190 set_current_state(TASK_INTERRUPTIBLE);
6191 /* Now sleep between a min of 100-300us and a max of 1ms */
6192 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6193 }
6194
6195 return 0;
6196}
6197
6198static __init void rb_ipi(void *ignore)
6199{
6200 struct rb_test_data *data;
6201 int cpu = smp_processor_id();
6202
6203 data = &rb_data[cpu];
6204 rb_write_something(data, true);
6205}
6206
6207static __init int rb_hammer_test(void *arg)
6208{
6209 while (!kthread_should_stop()) {
6210
6211 /* Send an IPI to all cpus to write data! */
6212 smp_call_function(rb_ipi, NULL, 1);
6213 /* No sleep, but for non preempt, let others run */
6214 schedule();
6215 }
6216
6217 return 0;
6218}
6219
6220static __init int test_ringbuffer(void)
6221{
6222 struct task_struct *rb_hammer;
6223 struct trace_buffer *buffer;
6224 int cpu;
6225 int ret = 0;
6226
6227 if (security_locked_down(LOCKDOWN_TRACEFS)) {
6228 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6229 return 0;
6230 }
6231
6232 pr_info("Running ring buffer tests...\n");
6233
6234 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6235 if (WARN_ON(!buffer))
6236 return 0;
6237
6238 /* Disable buffer so that threads can't write to it yet */
6239 ring_buffer_record_off(buffer);
6240
6241 for_each_online_cpu(cpu) {
6242 rb_data[cpu].buffer = buffer;
6243 rb_data[cpu].cpu = cpu;
6244 rb_data[cpu].cnt = cpu;
6245 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6246 cpu, "rbtester/%u");
6247 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6248 pr_cont("FAILED\n");
6249 ret = PTR_ERR(rb_threads[cpu]);
6250 goto out_free;
6251 }
6252 }
6253
6254 /* Now create the rb hammer! */
6255 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6256 if (WARN_ON(IS_ERR(rb_hammer))) {
6257 pr_cont("FAILED\n");
6258 ret = PTR_ERR(rb_hammer);
6259 goto out_free;
6260 }
6261
6262 ring_buffer_record_on(buffer);
6263 /*
6264 * Show buffer is enabled before setting rb_test_started.
6265 * Yes there's a small race window where events could be
6266 * dropped and the thread wont catch it. But when a ring
6267 * buffer gets enabled, there will always be some kind of
6268 * delay before other CPUs see it. Thus, we don't care about
6269 * those dropped events. We care about events dropped after
6270 * the threads see that the buffer is active.
6271 */
6272 smp_wmb();
6273 rb_test_started = true;
6274
6275 set_current_state(TASK_INTERRUPTIBLE);
6276 /* Just run for 10 seconds */;
6277 schedule_timeout(10 * HZ);
6278
6279 kthread_stop(rb_hammer);
6280
6281 out_free:
6282 for_each_online_cpu(cpu) {
6283 if (!rb_threads[cpu])
6284 break;
6285 kthread_stop(rb_threads[cpu]);
6286 }
6287 if (ret) {
6288 ring_buffer_free(buffer);
6289 return ret;
6290 }
6291
6292 /* Report! */
6293 pr_info("finished\n");
6294 for_each_online_cpu(cpu) {
6295 struct ring_buffer_event *event;
6296 struct rb_test_data *data = &rb_data[cpu];
6297 struct rb_item *item;
6298 unsigned long total_events;
6299 unsigned long total_dropped;
6300 unsigned long total_written;
6301 unsigned long total_alloc;
6302 unsigned long total_read = 0;
6303 unsigned long total_size = 0;
6304 unsigned long total_len = 0;
6305 unsigned long total_lost = 0;
6306 unsigned long lost;
6307 int big_event_size;
6308 int small_event_size;
6309
6310 ret = -1;
6311
6312 total_events = data->events + data->events_nested;
6313 total_written = data->bytes_written + data->bytes_written_nested;
6314 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6315 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6316
6317 big_event_size = data->max_size + data->max_size_nested;
6318 small_event_size = data->min_size + data->min_size_nested;
6319
6320 pr_info("CPU %d:\n", cpu);
6321 pr_info(" events: %ld\n", total_events);
6322 pr_info(" dropped bytes: %ld\n", total_dropped);
6323 pr_info(" alloced bytes: %ld\n", total_alloc);
6324 pr_info(" written bytes: %ld\n", total_written);
6325 pr_info(" biggest event: %d\n", big_event_size);
6326 pr_info(" smallest event: %d\n", small_event_size);
6327
6328 if (RB_WARN_ON(buffer, total_dropped))
6329 break;
6330
6331 ret = 0;
6332
6333 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6334 total_lost += lost;
6335 item = ring_buffer_event_data(event);
6336 total_len += ring_buffer_event_length(event);
6337 total_size += item->size + sizeof(struct rb_item);
6338 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6339 pr_info("FAILED!\n");
6340 pr_info("buffer had: %.*s\n", item->size, item->str);
6341 pr_info("expected: %.*s\n", item->size, rb_string);
6342 RB_WARN_ON(buffer, 1);
6343 ret = -1;
6344 break;
6345 }
6346 total_read++;
6347 }
6348 if (ret)
6349 break;
6350
6351 ret = -1;
6352
6353 pr_info(" read events: %ld\n", total_read);
6354 pr_info(" lost events: %ld\n", total_lost);
6355 pr_info(" total events: %ld\n", total_lost + total_read);
6356 pr_info(" recorded len bytes: %ld\n", total_len);
6357 pr_info(" recorded size bytes: %ld\n", total_size);
6358 if (total_lost) {
6359 pr_info(" With dropped events, record len and size may not match\n"
6360 " alloced and written from above\n");
6361 } else {
6362 if (RB_WARN_ON(buffer, total_len != total_alloc ||
6363 total_size != total_written))
6364 break;
6365 }
6366 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6367 break;
6368
6369 ret = 0;
6370 }
6371 if (!ret)
6372 pr_info("Ring buffer PASSED!\n");
6373
6374 ring_buffer_free(buffer);
6375 return 0;
6376}
6377
6378late_initcall(test_ringbuffer);
6379#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */