Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 * Generic helpers for smp ipi calls
  3 *
  4 * (C) Jens Axboe <jens.axboe@oracle.com> 2008
  5 */
  6
  7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8
  9#include <linux/irq_work.h>
 10#include <linux/rcupdate.h>
 11#include <linux/rculist.h>
 12#include <linux/kernel.h>
 13#include <linux/export.h>
 14#include <linux/percpu.h>
 15#include <linux/init.h>
 
 16#include <linux/gfp.h>
 17#include <linux/smp.h>
 18#include <linux/cpu.h>
 19#include <linux/sched.h>
 
 20#include <linux/hypervisor.h>
 
 
 
 
 
 
 
 
 
 21
 22#include "smpboot.h"
 
 23
 24enum {
 25	CSD_FLAG_LOCK		= 0x01,
 26	CSD_FLAG_SYNCHRONOUS	= 0x02,
 27};
 28
 29struct call_function_data {
 30	struct call_single_data	__percpu *csd;
 31	cpumask_var_t		cpumask;
 
 32};
 33
 34static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_function_data, cfd_data);
 35
 36static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
 37
 38static void flush_smp_call_function_queue(bool warn_cpu_offline);
 
 
 39
 40int smpcfd_prepare_cpu(unsigned int cpu)
 41{
 42	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
 43
 44	if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
 45				     cpu_to_node(cpu)))
 46		return -ENOMEM;
 47	cfd->csd = alloc_percpu(struct call_single_data);
 
 
 
 
 
 48	if (!cfd->csd) {
 49		free_cpumask_var(cfd->cpumask);
 
 50		return -ENOMEM;
 51	}
 52
 53	return 0;
 54}
 55
 56int smpcfd_dead_cpu(unsigned int cpu)
 57{
 58	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
 59
 60	free_cpumask_var(cfd->cpumask);
 
 61	free_percpu(cfd->csd);
 62	return 0;
 63}
 64
 65int smpcfd_dying_cpu(unsigned int cpu)
 66{
 67	/*
 68	 * The IPIs for the smp-call-function callbacks queued by other
 69	 * CPUs might arrive late, either due to hardware latencies or
 70	 * because this CPU disabled interrupts (inside stop-machine)
 71	 * before the IPIs were sent. So flush out any pending callbacks
 72	 * explicitly (without waiting for the IPIs to arrive), to
 73	 * ensure that the outgoing CPU doesn't go offline with work
 74	 * still pending.
 75	 */
 76	flush_smp_call_function_queue(false);
 
 77	return 0;
 78}
 79
 80void __init call_function_init(void)
 81{
 82	int i;
 83
 84	for_each_possible_cpu(i)
 85		init_llist_head(&per_cpu(call_single_queue, i));
 86
 87	smpcfd_prepare_cpu(smp_processor_id());
 88}
 89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 90/*
 91 * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
 92 *
 93 * For non-synchronous ipi calls the csd can still be in use by the
 94 * previous function call. For multi-cpu calls its even more interesting
 95 * as we'll have to ensure no other cpu is observing our csd.
 96 */
 97static __always_inline void csd_lock_wait(struct call_single_data *csd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 98{
 99	smp_cond_load_acquire(&csd->flags, !(VAL & CSD_FLAG_LOCK));
100}
101
102static __always_inline void csd_lock(struct call_single_data *csd)
 
 
 
 
 
 
103{
104	csd_lock_wait(csd);
105	csd->flags |= CSD_FLAG_LOCK;
106
107	/*
108	 * prevent CPU from reordering the above assignment
109	 * to ->flags with any subsequent assignments to other
110	 * fields of the specified call_single_data structure:
111	 */
112	smp_wmb();
113}
114
115static __always_inline void csd_unlock(struct call_single_data *csd)
116{
117	WARN_ON(!(csd->flags & CSD_FLAG_LOCK));
118
119	/*
120	 * ensure we're all done before releasing data:
121	 */
122	smp_store_release(&csd->flags, 0);
123}
124
125static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_single_data, csd_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
127/*
128 * Insert a previously allocated call_single_data element
129 * for execution on the given CPU. data must already have
130 * ->func, ->info, and ->flags set.
131 */
132static int generic_exec_single(int cpu, struct call_single_data *csd,
133			       smp_call_func_t func, void *info)
134{
135	if (cpu == smp_processor_id()) {
 
 
136		unsigned long flags;
137
138		/*
139		 * We can unlock early even for the synchronous on-stack case,
140		 * since we're doing this from the same CPU..
141		 */
 
142		csd_unlock(csd);
143		local_irq_save(flags);
144		func(info);
 
145		local_irq_restore(flags);
146		return 0;
147	}
148
149
150	if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) {
151		csd_unlock(csd);
152		return -ENXIO;
153	}
154
155	csd->func = func;
156	csd->info = info;
157
158	/*
159	 * The list addition should be visible before sending the IPI
160	 * handler locks the list to pull the entry off it because of
161	 * normal cache coherency rules implied by spinlocks.
162	 *
163	 * If IPIs can go out of order to the cache coherency protocol
164	 * in an architecture, sufficient synchronisation should be added
165	 * to arch code to make it appear to obey cache coherency WRT
166	 * locking and barrier primitives. Generic code isn't really
167	 * equipped to do the right thing...
168	 */
169	if (llist_add(&csd->llist, &per_cpu(call_single_queue, cpu)))
170		arch_send_call_function_single_ipi(cpu);
171
172	return 0;
173}
174
175/**
176 * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
177 *
178 * Invoked by arch to handle an IPI for call function single.
179 * Must be called with interrupts disabled.
180 */
181void generic_smp_call_function_single_interrupt(void)
182{
183	flush_smp_call_function_queue(true);
184}
185
186/**
187 * flush_smp_call_function_queue - Flush pending smp-call-function callbacks
188 *
189 * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
190 *		      offline CPU. Skip this check if set to 'false'.
191 *
192 * Flush any pending smp-call-function callbacks queued on this CPU. This is
193 * invoked by the generic IPI handler, as well as by a CPU about to go offline,
194 * to ensure that all pending IPI callbacks are run before it goes completely
195 * offline.
196 *
197 * Loop through the call_single_queue and run all the queued callbacks.
198 * Must be called with interrupts disabled.
199 */
200static void flush_smp_call_function_queue(bool warn_cpu_offline)
201{
 
 
202	struct llist_head *head;
203	struct llist_node *entry;
204	struct call_single_data *csd, *csd_next;
205	static bool warned;
 
206
207	WARN_ON(!irqs_disabled());
 
 
 
 
208
209	head = this_cpu_ptr(&call_single_queue);
210	entry = llist_del_all(head);
211	entry = llist_reverse_order(entry);
212
213	/* There shouldn't be any pending callbacks on an offline CPU. */
214	if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
215		     !warned && !llist_empty(head))) {
216		warned = true;
217		WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
218
219		/*
220		 * We don't have to use the _safe() variant here
221		 * because we are not invoking the IPI handlers yet.
222		 */
223		llist_for_each_entry(csd, entry, llist)
224			pr_warn("IPI callback %pS sent to offline CPU\n",
225				csd->func);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226	}
227
228	llist_for_each_entry_safe(csd, csd_next, entry, llist) {
229		smp_call_func_t func = csd->func;
230		void *info = csd->info;
231
 
232		/* Do we wait until *after* callback? */
233		if (csd->flags & CSD_FLAG_SYNCHRONOUS) {
234			func(info);
 
 
 
 
 
 
 
 
 
 
235			csd_unlock(csd);
 
236		} else {
237			csd_unlock(csd);
238			func(info);
239		}
240	}
241
 
 
 
242	/*
243	 * Handle irq works queued remotely by irq_work_queue_on().
244	 * Smp functions above are typically synchronous so they
245	 * better run first since some other CPUs may be busy waiting
246	 * for them.
247	 */
248	irq_work_run();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249}
250
251/*
252 * smp_call_function_single - Run a function on a specific CPU
253 * @func: The function to run. This must be fast and non-blocking.
254 * @info: An arbitrary pointer to pass to the function.
255 * @wait: If true, wait until function has completed on other CPUs.
256 *
257 * Returns 0 on success, else a negative status code.
258 */
259int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
260			     int wait)
261{
262	struct call_single_data *csd;
263	struct call_single_data csd_stack = { .flags = CSD_FLAG_LOCK | CSD_FLAG_SYNCHRONOUS };
 
 
264	int this_cpu;
265	int err;
266
267	/*
268	 * prevent preemption and reschedule on another processor,
269	 * as well as CPU removal
270	 */
271	this_cpu = get_cpu();
272
273	/*
274	 * Can deadlock when called with interrupts disabled.
275	 * We allow cpu's that are not yet online though, as no one else can
276	 * send smp call function interrupt to this cpu and as such deadlocks
277	 * can't happen.
278	 */
279	WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
280		     && !oops_in_progress);
281
 
 
 
 
 
 
 
 
282	csd = &csd_stack;
283	if (!wait) {
284		csd = this_cpu_ptr(&csd_data);
285		csd_lock(csd);
286	}
287
288	err = generic_exec_single(cpu, csd, func, info);
 
 
 
 
 
 
 
289
290	if (wait)
291		csd_lock_wait(csd);
292
293	put_cpu();
294
295	return err;
296}
297EXPORT_SYMBOL(smp_call_function_single);
298
299/**
300 * smp_call_function_single_async(): Run an asynchronous function on a
301 * 			         specific CPU.
302 * @cpu: The CPU to run on.
303 * @csd: Pre-allocated and setup data structure
304 *
305 * Like smp_call_function_single(), but the call is asynchonous and
306 * can thus be done from contexts with disabled interrupts.
307 *
308 * The caller passes his own pre-allocated data structure
309 * (ie: embedded in an object) and is responsible for synchronizing it
310 * such that the IPIs performed on the @csd are strictly serialized.
311 *
 
 
 
 
 
312 * NOTE: Be careful, there is unfortunately no current debugging facility to
313 * validate the correctness of this serialization.
 
 
314 */
315int smp_call_function_single_async(int cpu, struct call_single_data *csd)
316{
317	int err = 0;
318
319	preempt_disable();
320
321	/* We could deadlock if we have to wait here with interrupts disabled! */
322	if (WARN_ON_ONCE(csd->flags & CSD_FLAG_LOCK))
323		csd_lock_wait(csd);
 
324
325	csd->flags = CSD_FLAG_LOCK;
326	smp_wmb();
327
328	err = generic_exec_single(cpu, csd, csd->func, csd->info);
 
 
329	preempt_enable();
330
331	return err;
332}
333EXPORT_SYMBOL_GPL(smp_call_function_single_async);
334
335/*
336 * smp_call_function_any - Run a function on any of the given cpus
337 * @mask: The mask of cpus it can run on.
338 * @func: The function to run. This must be fast and non-blocking.
339 * @info: An arbitrary pointer to pass to the function.
340 * @wait: If true, wait until function has completed.
341 *
342 * Returns 0 on success, else a negative status code (if no cpus were online).
343 *
344 * Selection preference:
345 *	1) current cpu if in @mask
346 *	2) any cpu of current node if in @mask
347 *	3) any other online cpu in @mask
348 */
349int smp_call_function_any(const struct cpumask *mask,
350			  smp_call_func_t func, void *info, int wait)
351{
352	unsigned int cpu;
353	const struct cpumask *nodemask;
354	int ret;
355
356	/* Try for same CPU (cheapest) */
357	cpu = get_cpu();
358	if (cpumask_test_cpu(cpu, mask))
359		goto call;
360
361	/* Try for same node. */
362	nodemask = cpumask_of_node(cpu_to_node(cpu));
363	for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
364	     cpu = cpumask_next_and(cpu, nodemask, mask)) {
365		if (cpu_online(cpu))
366			goto call;
367	}
368
369	/* Any online will do: smp_call_function_single handles nr_cpu_ids. */
370	cpu = cpumask_any_and(mask, cpu_online_mask);
371call:
372	ret = smp_call_function_single(cpu, func, info, wait);
373	put_cpu();
374	return ret;
375}
376EXPORT_SYMBOL_GPL(smp_call_function_any);
377
378/**
379 * smp_call_function_many(): Run a function on a set of other CPUs.
380 * @mask: The set of cpus to run on (only runs on online subset).
381 * @func: The function to run. This must be fast and non-blocking.
382 * @info: An arbitrary pointer to pass to the function.
383 * @wait: If true, wait (atomically) until function has completed
384 *        on other CPUs.
385 *
386 * If @wait is true, then returns once @func has returned.
387 *
388 * You must not call this function with disabled interrupts or from a
389 * hardware interrupt handler or from a bottom half handler. Preemption
390 * must be disabled when calling this function.
391 */
392void smp_call_function_many(const struct cpumask *mask,
393			    smp_call_func_t func, void *info, bool wait)
 
 
 
 
 
394{
 
395	struct call_function_data *cfd;
396	int cpu, next_cpu, this_cpu = smp_processor_id();
 
 
 
 
 
397
398	/*
399	 * Can deadlock when called with interrupts disabled.
400	 * We allow cpu's that are not yet online though, as no one else can
401	 * send smp call function interrupt to this cpu and as such deadlocks
402	 * can't happen.
403	 */
404	WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
405		     && !oops_in_progress && !early_boot_irqs_disabled);
 
406
407	/* Try to fastpath.  So, what's a CPU they want? Ignoring this one. */
 
 
 
 
 
 
 
 
 
 
 
 
408	cpu = cpumask_first_and(mask, cpu_online_mask);
409	if (cpu == this_cpu)
410		cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
 
 
411
412	/* No online cpus?  We're done. */
413	if (cpu >= nr_cpu_ids)
414		return;
 
415
416	/* Do we have another CPU which isn't us? */
417	next_cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
418	if (next_cpu == this_cpu)
419		next_cpu = cpumask_next_and(next_cpu, mask, cpu_online_mask);
420
421	/* Fastpath: do that cpu by itself. */
422	if (next_cpu >= nr_cpu_ids) {
423		smp_call_function_single(cpu, func, info, wait);
424		return;
425	}
426
427	cfd = this_cpu_ptr(&cfd_data);
 
 
 
428
429	cpumask_and(cfd->cpumask, mask, cpu_online_mask);
430	cpumask_clear_cpu(this_cpu, cfd->cpumask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431
432	/* Some callers race with other cpus changing the passed mask */
433	if (unlikely(!cpumask_weight(cfd->cpumask)))
434		return;
 
 
 
 
 
 
 
435
436	for_each_cpu(cpu, cfd->cpumask) {
437		struct call_single_data *csd = per_cpu_ptr(cfd->csd, cpu);
438
439		csd_lock(csd);
440		if (wait)
441			csd->flags |= CSD_FLAG_SYNCHRONOUS;
442		csd->func = func;
443		csd->info = info;
444		llist_add(&csd->llist, &per_cpu(call_single_queue, cpu));
445	}
446
447	/* Send a message to all CPUs in the map */
448	arch_send_call_function_ipi_mask(cfd->cpumask);
449
450	if (wait) {
451		for_each_cpu(cpu, cfd->cpumask) {
452			struct call_single_data *csd;
453
454			csd = per_cpu_ptr(cfd->csd, cpu);
455			csd_lock_wait(csd);
456		}
457	}
458}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459EXPORT_SYMBOL(smp_call_function_many);
460
461/**
462 * smp_call_function(): Run a function on all other CPUs.
463 * @func: The function to run. This must be fast and non-blocking.
464 * @info: An arbitrary pointer to pass to the function.
465 * @wait: If true, wait (atomically) until function has completed
466 *        on other CPUs.
467 *
468 * Returns 0.
469 *
470 * If @wait is true, then returns once @func has returned; otherwise
471 * it returns just before the target cpu calls @func.
472 *
473 * You must not call this function with disabled interrupts or from a
474 * hardware interrupt handler or from a bottom half handler.
475 */
476int smp_call_function(smp_call_func_t func, void *info, int wait)
477{
478	preempt_disable();
479	smp_call_function_many(cpu_online_mask, func, info, wait);
480	preempt_enable();
481
482	return 0;
483}
484EXPORT_SYMBOL(smp_call_function);
485
486/* Setup configured maximum number of CPUs to activate */
487unsigned int setup_max_cpus = NR_CPUS;
488EXPORT_SYMBOL(setup_max_cpus);
489
490
491/*
492 * Setup routine for controlling SMP activation
493 *
494 * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
495 * activation entirely (the MPS table probe still happens, though).
496 *
497 * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
498 * greater than 0, limits the maximum number of CPUs activated in
499 * SMP mode to <NUM>.
500 */
501
502void __weak arch_disable_smp_support(void) { }
503
504static int __init nosmp(char *str)
505{
506	setup_max_cpus = 0;
507	arch_disable_smp_support();
508
509	return 0;
510}
511
512early_param("nosmp", nosmp);
513
514/* this is hard limit */
515static int __init nrcpus(char *str)
516{
517	int nr_cpus;
518
519	get_option(&str, &nr_cpus);
520	if (nr_cpus > 0 && nr_cpus < nr_cpu_ids)
521		nr_cpu_ids = nr_cpus;
522
523	return 0;
524}
525
526early_param("nr_cpus", nrcpus);
527
528static int __init maxcpus(char *str)
529{
530	get_option(&str, &setup_max_cpus);
531	if (setup_max_cpus == 0)
532		arch_disable_smp_support();
533
534	return 0;
535}
536
537early_param("maxcpus", maxcpus);
538
 
539/* Setup number of possible processor ids */
540int nr_cpu_ids __read_mostly = NR_CPUS;
541EXPORT_SYMBOL(nr_cpu_ids);
 
542
543/* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
544void __init setup_nr_cpu_ids(void)
545{
546	nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1;
547}
548
549/* Called by boot processor to activate the rest. */
550void __init smp_init(void)
551{
552	int num_nodes, num_cpus;
553	unsigned int cpu;
554
555	idle_threads_init();
556	cpuhp_threads_init();
557
558	pr_info("Bringing up secondary CPUs ...\n");
559
560	/* FIXME: This should be done in userspace --RR */
561	for_each_present_cpu(cpu) {
562		if (num_online_cpus() >= setup_max_cpus)
563			break;
564		if (!cpu_online(cpu))
565			cpu_up(cpu);
566	}
567
568	num_nodes = num_online_nodes();
569	num_cpus  = num_online_cpus();
570	pr_info("Brought up %d node%s, %d CPU%s\n",
571		num_nodes, (num_nodes > 1 ? "s" : ""),
572		num_cpus,  (num_cpus  > 1 ? "s" : ""));
573
574	/* Any cleanup work */
575	smp_cpus_done(setup_max_cpus);
576}
577
578/*
579 * Call a function on all processors.  May be used during early boot while
580 * early_boot_irqs_disabled is set.  Use local_irq_save/restore() instead
581 * of local_irq_disable/enable().
582 */
583int on_each_cpu(void (*func) (void *info), void *info, int wait)
584{
585	unsigned long flags;
586	int ret = 0;
587
588	preempt_disable();
589	ret = smp_call_function(func, info, wait);
590	local_irq_save(flags);
591	func(info);
592	local_irq_restore(flags);
593	preempt_enable();
594	return ret;
595}
596EXPORT_SYMBOL(on_each_cpu);
597
598/**
599 * on_each_cpu_mask(): Run a function on processors specified by
600 * cpumask, which may include the local processor.
601 * @mask: The set of cpus to run on (only runs on online subset).
602 * @func: The function to run. This must be fast and non-blocking.
603 * @info: An arbitrary pointer to pass to the function.
604 * @wait: If true, wait (atomically) until function has completed
605 *        on other CPUs.
606 *
607 * If @wait is true, then returns once @func has returned.
608 *
609 * You must not call this function with disabled interrupts or from a
610 * hardware interrupt handler or from a bottom half handler.  The
611 * exception is that it may be used during early boot while
612 * early_boot_irqs_disabled is set.
613 */
614void on_each_cpu_mask(const struct cpumask *mask, smp_call_func_t func,
615			void *info, bool wait)
616{
617	int cpu = get_cpu();
618
619	smp_call_function_many(mask, func, info, wait);
620	if (cpumask_test_cpu(cpu, mask)) {
621		unsigned long flags;
622		local_irq_save(flags);
623		func(info);
624		local_irq_restore(flags);
625	}
626	put_cpu();
627}
628EXPORT_SYMBOL(on_each_cpu_mask);
629
630/*
631 * on_each_cpu_cond(): Call a function on each processor for which
632 * the supplied function cond_func returns true, optionally waiting
633 * for all the required CPUs to finish. This may include the local
634 * processor.
635 * @cond_func:	A callback function that is passed a cpu id and
636 *		the the info parameter. The function is called
637 *		with preemption disabled. The function should
638 *		return a blooean value indicating whether to IPI
639 *		the specified CPU.
640 * @func:	The function to run on all applicable CPUs.
641 *		This must be fast and non-blocking.
642 * @info:	An arbitrary pointer to pass to both functions.
643 * @wait:	If true, wait (atomically) until function has
644 *		completed on other CPUs.
645 * @gfp_flags:	GFP flags to use when allocating the cpumask
646 *		used internally by the function.
647 *
648 * The function might sleep if the GFP flags indicates a non
649 * atomic allocation is allowed.
650 *
651 * Preemption is disabled to protect against CPUs going offline but not online.
652 * CPUs going online during the call will not be seen or sent an IPI.
653 *
654 * You must not call this function with disabled interrupts or
655 * from a hardware interrupt handler or from a bottom half handler.
656 */
657void on_each_cpu_cond(bool (*cond_func)(int cpu, void *info),
658			smp_call_func_t func, void *info, bool wait,
659			gfp_t gfp_flags)
660{
661	cpumask_var_t cpus;
662	int cpu, ret;
663
664	might_sleep_if(gfpflags_allow_blocking(gfp_flags));
 
665
666	if (likely(zalloc_cpumask_var(&cpus, (gfp_flags|__GFP_NOWARN)))) {
667		preempt_disable();
668		for_each_online_cpu(cpu)
669			if (cond_func(cpu, info))
670				cpumask_set_cpu(cpu, cpus);
671		on_each_cpu_mask(cpus, func, info, wait);
672		preempt_enable();
673		free_cpumask_var(cpus);
674	} else {
675		/*
676		 * No free cpumask, bother. No matter, we'll
677		 * just have to IPI them one by one.
678		 */
679		preempt_disable();
680		for_each_online_cpu(cpu)
681			if (cond_func(cpu, info)) {
682				ret = smp_call_function_single(cpu, func,
683								info, wait);
684				WARN_ON_ONCE(ret);
685			}
686		preempt_enable();
687	}
688}
689EXPORT_SYMBOL(on_each_cpu_cond);
690
691static void do_nothing(void *unused)
692{
693}
694
695/**
696 * kick_all_cpus_sync - Force all cpus out of idle
697 *
698 * Used to synchronize the update of pm_idle function pointer. It's
699 * called after the pointer is updated and returns after the dummy
700 * callback function has been executed on all cpus. The execution of
701 * the function can only happen on the remote cpus after they have
702 * left the idle function which had been called via pm_idle function
703 * pointer. So it's guaranteed that nothing uses the previous pointer
704 * anymore.
705 */
706void kick_all_cpus_sync(void)
707{
708	/* Make sure the change is visible before we kick the cpus */
709	smp_mb();
710	smp_call_function(do_nothing, NULL, 1);
711}
712EXPORT_SYMBOL_GPL(kick_all_cpus_sync);
713
714/**
715 * wake_up_all_idle_cpus - break all cpus out of idle
716 * wake_up_all_idle_cpus try to break all cpus which is in idle state even
717 * including idle polling cpus, for non-idle cpus, we will do nothing
718 * for them.
719 */
720void wake_up_all_idle_cpus(void)
721{
722	int cpu;
723
724	preempt_disable();
725	for_each_online_cpu(cpu) {
726		if (cpu == smp_processor_id())
727			continue;
728
729		wake_up_if_idle(cpu);
730	}
731	preempt_enable();
732}
733EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
734
735/**
736 * smp_call_on_cpu - Call a function on a specific cpu
 
 
 
 
 
 
737 *
738 * Used to call a function on a specific cpu and wait for it to return.
739 * Optionally make sure the call is done on a specified physical cpu via vcpu
740 * pinning in order to support virtualized environments.
741 */
742struct smp_call_on_cpu_struct {
743	struct work_struct	work;
744	struct completion	done;
745	int			(*func)(void *);
746	void			*data;
747	int			ret;
748	int			cpu;
749};
750
751static void smp_call_on_cpu_callback(struct work_struct *work)
752{
753	struct smp_call_on_cpu_struct *sscs;
754
755	sscs = container_of(work, struct smp_call_on_cpu_struct, work);
756	if (sscs->cpu >= 0)
757		hypervisor_pin_vcpu(sscs->cpu);
758	sscs->ret = sscs->func(sscs->data);
759	if (sscs->cpu >= 0)
760		hypervisor_pin_vcpu(-1);
761
762	complete(&sscs->done);
763}
764
765int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys)
766{
767	struct smp_call_on_cpu_struct sscs = {
768		.done = COMPLETION_INITIALIZER_ONSTACK(sscs.done),
769		.func = func,
770		.data = par,
771		.cpu  = phys ? cpu : -1,
772	};
773
774	INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback);
775
776	if (cpu >= nr_cpu_ids || !cpu_online(cpu))
777		return -ENXIO;
778
779	queue_work_on(cpu, system_wq, &sscs.work);
780	wait_for_completion(&sscs.done);
781
782	return sscs.ret;
783}
784EXPORT_SYMBOL_GPL(smp_call_on_cpu);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic helpers for smp ipi calls
   4 *
   5 * (C) Jens Axboe <jens.axboe@oracle.com> 2008
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/irq_work.h>
  11#include <linux/rcupdate.h>
  12#include <linux/rculist.h>
  13#include <linux/kernel.h>
  14#include <linux/export.h>
  15#include <linux/percpu.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/gfp.h>
  19#include <linux/smp.h>
  20#include <linux/cpu.h>
  21#include <linux/sched.h>
  22#include <linux/sched/idle.h>
  23#include <linux/hypervisor.h>
  24#include <linux/sched/clock.h>
  25#include <linux/nmi.h>
  26#include <linux/sched/debug.h>
  27#include <linux/jump_label.h>
  28
  29#include <trace/events/ipi.h>
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/csd.h>
  32#undef CREATE_TRACE_POINTS
  33
  34#include "smpboot.h"
  35#include "sched/smp.h"
  36
  37#define CSD_TYPE(_csd)	((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK)
 
 
 
  38
  39struct call_function_data {
  40	call_single_data_t	__percpu *csd;
  41	cpumask_var_t		cpumask;
  42	cpumask_var_t		cpumask_ipi;
  43};
  44
  45static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data);
  46
  47static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
  48
  49static DEFINE_PER_CPU(atomic_t, trigger_backtrace) = ATOMIC_INIT(1);
  50
  51static void __flush_smp_call_function_queue(bool warn_cpu_offline);
  52
  53int smpcfd_prepare_cpu(unsigned int cpu)
  54{
  55	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
  56
  57	if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
  58				     cpu_to_node(cpu)))
  59		return -ENOMEM;
  60	if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL,
  61				     cpu_to_node(cpu))) {
  62		free_cpumask_var(cfd->cpumask);
  63		return -ENOMEM;
  64	}
  65	cfd->csd = alloc_percpu(call_single_data_t);
  66	if (!cfd->csd) {
  67		free_cpumask_var(cfd->cpumask);
  68		free_cpumask_var(cfd->cpumask_ipi);
  69		return -ENOMEM;
  70	}
  71
  72	return 0;
  73}
  74
  75int smpcfd_dead_cpu(unsigned int cpu)
  76{
  77	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
  78
  79	free_cpumask_var(cfd->cpumask);
  80	free_cpumask_var(cfd->cpumask_ipi);
  81	free_percpu(cfd->csd);
  82	return 0;
  83}
  84
  85int smpcfd_dying_cpu(unsigned int cpu)
  86{
  87	/*
  88	 * The IPIs for the smp-call-function callbacks queued by other
  89	 * CPUs might arrive late, either due to hardware latencies or
  90	 * because this CPU disabled interrupts (inside stop-machine)
  91	 * before the IPIs were sent. So flush out any pending callbacks
  92	 * explicitly (without waiting for the IPIs to arrive), to
  93	 * ensure that the outgoing CPU doesn't go offline with work
  94	 * still pending.
  95	 */
  96	__flush_smp_call_function_queue(false);
  97	irq_work_run();
  98	return 0;
  99}
 100
 101void __init call_function_init(void)
 102{
 103	int i;
 104
 105	for_each_possible_cpu(i)
 106		init_llist_head(&per_cpu(call_single_queue, i));
 107
 108	smpcfd_prepare_cpu(smp_processor_id());
 109}
 110
 111static __always_inline void
 112send_call_function_single_ipi(int cpu)
 113{
 114	if (call_function_single_prep_ipi(cpu)) {
 115		trace_ipi_send_cpu(cpu, _RET_IP_,
 116				   generic_smp_call_function_single_interrupt);
 117		arch_send_call_function_single_ipi(cpu);
 118	}
 119}
 120
 121static __always_inline void
 122send_call_function_ipi_mask(struct cpumask *mask)
 123{
 124	trace_ipi_send_cpumask(mask, _RET_IP_,
 125			       generic_smp_call_function_single_interrupt);
 126	arch_send_call_function_ipi_mask(mask);
 127}
 128
 129static __always_inline void
 130csd_do_func(smp_call_func_t func, void *info, call_single_data_t *csd)
 131{
 132	trace_csd_function_entry(func, csd);
 133	func(info);
 134	trace_csd_function_exit(func, csd);
 135}
 136
 137#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 138
 139static DEFINE_STATIC_KEY_MAYBE(CONFIG_CSD_LOCK_WAIT_DEBUG_DEFAULT, csdlock_debug_enabled);
 140
 141/*
 142 * Parse the csdlock_debug= kernel boot parameter.
 143 *
 144 * If you need to restore the old "ext" value that once provided
 145 * additional debugging information, reapply the following commits:
 146 *
 147 * de7b09ef658d ("locking/csd_lock: Prepare more CSD lock debugging")
 148 * a5aabace5fb8 ("locking/csd_lock: Add more data to CSD lock debugging")
 149 */
 150static int __init csdlock_debug(char *str)
 151{
 152	int ret;
 153	unsigned int val = 0;
 154
 155	ret = get_option(&str, &val);
 156	if (ret) {
 157		if (val)
 158			static_branch_enable(&csdlock_debug_enabled);
 159		else
 160			static_branch_disable(&csdlock_debug_enabled);
 161	}
 162
 163	return 1;
 164}
 165__setup("csdlock_debug=", csdlock_debug);
 166
 167static DEFINE_PER_CPU(call_single_data_t *, cur_csd);
 168static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func);
 169static DEFINE_PER_CPU(void *, cur_csd_info);
 170
 171static ulong csd_lock_timeout = 5000;  /* CSD lock timeout in milliseconds. */
 172module_param(csd_lock_timeout, ulong, 0444);
 173static int panic_on_ipistall;  /* CSD panic timeout in milliseconds, 300000 for five minutes. */
 174module_param(panic_on_ipistall, int, 0444);
 175
 176static atomic_t csd_bug_count = ATOMIC_INIT(0);
 177
 178/* Record current CSD work for current CPU, NULL to erase. */
 179static void __csd_lock_record(call_single_data_t *csd)
 180{
 181	if (!csd) {
 182		smp_mb(); /* NULL cur_csd after unlock. */
 183		__this_cpu_write(cur_csd, NULL);
 184		return;
 185	}
 186	__this_cpu_write(cur_csd_func, csd->func);
 187	__this_cpu_write(cur_csd_info, csd->info);
 188	smp_wmb(); /* func and info before csd. */
 189	__this_cpu_write(cur_csd, csd);
 190	smp_mb(); /* Update cur_csd before function call. */
 191		  /* Or before unlock, as the case may be. */
 192}
 193
 194static __always_inline void csd_lock_record(call_single_data_t *csd)
 195{
 196	if (static_branch_unlikely(&csdlock_debug_enabled))
 197		__csd_lock_record(csd);
 198}
 199
 200static int csd_lock_wait_getcpu(call_single_data_t *csd)
 201{
 202	unsigned int csd_type;
 203
 204	csd_type = CSD_TYPE(csd);
 205	if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC)
 206		return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */
 207	return -1;
 208}
 209
 210/*
 211 * Complain if too much time spent waiting.  Note that only
 212 * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU,
 213 * so waiting on other types gets much less information.
 214 */
 215static bool csd_lock_wait_toolong(call_single_data_t *csd, u64 ts0, u64 *ts1, int *bug_id)
 216{
 217	int cpu = -1;
 218	int cpux;
 219	bool firsttime;
 220	u64 ts2, ts_delta;
 221	call_single_data_t *cpu_cur_csd;
 222	unsigned int flags = READ_ONCE(csd->node.u_flags);
 223	unsigned long long csd_lock_timeout_ns = csd_lock_timeout * NSEC_PER_MSEC;
 224
 225	if (!(flags & CSD_FLAG_LOCK)) {
 226		if (!unlikely(*bug_id))
 227			return true;
 228		cpu = csd_lock_wait_getcpu(csd);
 229		pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n",
 230			 *bug_id, raw_smp_processor_id(), cpu);
 231		return true;
 232	}
 233
 234	ts2 = sched_clock();
 235	/* How long since we last checked for a stuck CSD lock.*/
 236	ts_delta = ts2 - *ts1;
 237	if (likely(ts_delta <= csd_lock_timeout_ns || csd_lock_timeout_ns == 0))
 238		return false;
 239
 240	firsttime = !*bug_id;
 241	if (firsttime)
 242		*bug_id = atomic_inc_return(&csd_bug_count);
 243	cpu = csd_lock_wait_getcpu(csd);
 244	if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu))
 245		cpux = 0;
 246	else
 247		cpux = cpu;
 248	cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */
 249	/* How long since this CSD lock was stuck. */
 250	ts_delta = ts2 - ts0;
 251	pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %llu ns for CPU#%02d %pS(%ps).\n",
 252		 firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), ts_delta,
 253		 cpu, csd->func, csd->info);
 254	/*
 255	 * If the CSD lock is still stuck after 5 minutes, it is unlikely
 256	 * to become unstuck. Use a signed comparison to avoid triggering
 257	 * on underflows when the TSC is out of sync between sockets.
 258	 */
 259	BUG_ON(panic_on_ipistall > 0 && (s64)ts_delta > ((s64)panic_on_ipistall * NSEC_PER_MSEC));
 260	if (cpu_cur_csd && csd != cpu_cur_csd) {
 261		pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n",
 262			 *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)),
 263			 READ_ONCE(per_cpu(cur_csd_info, cpux)));
 264	} else {
 265		pr_alert("\tcsd: CSD lock (#%d) %s.\n",
 266			 *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request");
 267	}
 268	if (cpu >= 0) {
 269		if (atomic_cmpxchg_acquire(&per_cpu(trigger_backtrace, cpu), 1, 0))
 270			dump_cpu_task(cpu);
 271		if (!cpu_cur_csd) {
 272			pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu);
 273			arch_send_call_function_single_ipi(cpu);
 274		}
 275	}
 276	if (firsttime)
 277		dump_stack();
 278	*ts1 = ts2;
 279
 280	return false;
 281}
 282
 283/*
 284 * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
 285 *
 286 * For non-synchronous ipi calls the csd can still be in use by the
 287 * previous function call. For multi-cpu calls its even more interesting
 288 * as we'll have to ensure no other cpu is observing our csd.
 289 */
 290static void __csd_lock_wait(call_single_data_t *csd)
 291{
 292	int bug_id = 0;
 293	u64 ts0, ts1;
 294
 295	ts1 = ts0 = sched_clock();
 296	for (;;) {
 297		if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id))
 298			break;
 299		cpu_relax();
 300	}
 301	smp_acquire__after_ctrl_dep();
 302}
 303
 304static __always_inline void csd_lock_wait(call_single_data_t *csd)
 305{
 306	if (static_branch_unlikely(&csdlock_debug_enabled)) {
 307		__csd_lock_wait(csd);
 308		return;
 309	}
 310
 311	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
 312}
 313#else
 314static void csd_lock_record(call_single_data_t *csd)
 315{
 
 316}
 317
 318static __always_inline void csd_lock_wait(call_single_data_t *csd)
 319{
 320	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
 321}
 322#endif
 323
 324static __always_inline void csd_lock(call_single_data_t *csd)
 325{
 326	csd_lock_wait(csd);
 327	csd->node.u_flags |= CSD_FLAG_LOCK;
 328
 329	/*
 330	 * prevent CPU from reordering the above assignment
 331	 * to ->flags with any subsequent assignments to other
 332	 * fields of the specified call_single_data_t structure:
 333	 */
 334	smp_wmb();
 335}
 336
 337static __always_inline void csd_unlock(call_single_data_t *csd)
 338{
 339	WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK));
 340
 341	/*
 342	 * ensure we're all done before releasing data:
 343	 */
 344	smp_store_release(&csd->node.u_flags, 0);
 345}
 346
 347static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data);
 348
 349void __smp_call_single_queue(int cpu, struct llist_node *node)
 350{
 351	/*
 352	 * We have to check the type of the CSD before queueing it, because
 353	 * once queued it can have its flags cleared by
 354	 *   flush_smp_call_function_queue()
 355	 * even if we haven't sent the smp_call IPI yet (e.g. the stopper
 356	 * executes migration_cpu_stop() on the remote CPU).
 357	 */
 358	if (trace_csd_queue_cpu_enabled()) {
 359		call_single_data_t *csd;
 360		smp_call_func_t func;
 361
 362		csd = container_of(node, call_single_data_t, node.llist);
 363		func = CSD_TYPE(csd) == CSD_TYPE_TTWU ?
 364			sched_ttwu_pending : csd->func;
 365
 366		trace_csd_queue_cpu(cpu, _RET_IP_, func, csd);
 367	}
 368
 369	/*
 370	 * The list addition should be visible to the target CPU when it pops
 371	 * the head of the list to pull the entry off it in the IPI handler
 372	 * because of normal cache coherency rules implied by the underlying
 373	 * llist ops.
 374	 *
 375	 * If IPIs can go out of order to the cache coherency protocol
 376	 * in an architecture, sufficient synchronisation should be added
 377	 * to arch code to make it appear to obey cache coherency WRT
 378	 * locking and barrier primitives. Generic code isn't really
 379	 * equipped to do the right thing...
 380	 */
 381	if (llist_add(node, &per_cpu(call_single_queue, cpu)))
 382		send_call_function_single_ipi(cpu);
 383}
 384
 385/*
 386 * Insert a previously allocated call_single_data_t element
 387 * for execution on the given CPU. data must already have
 388 * ->func, ->info, and ->flags set.
 389 */
 390static int generic_exec_single(int cpu, call_single_data_t *csd)
 
 391{
 392	if (cpu == smp_processor_id()) {
 393		smp_call_func_t func = csd->func;
 394		void *info = csd->info;
 395		unsigned long flags;
 396
 397		/*
 398		 * We can unlock early even for the synchronous on-stack case,
 399		 * since we're doing this from the same CPU..
 400		 */
 401		csd_lock_record(csd);
 402		csd_unlock(csd);
 403		local_irq_save(flags);
 404		csd_do_func(func, info, NULL);
 405		csd_lock_record(NULL);
 406		local_irq_restore(flags);
 407		return 0;
 408	}
 409
 
 410	if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) {
 411		csd_unlock(csd);
 412		return -ENXIO;
 413	}
 414
 415	__smp_call_single_queue(cpu, &csd->node.llist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 416
 417	return 0;
 418}
 419
 420/**
 421 * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
 422 *
 423 * Invoked by arch to handle an IPI for call function single.
 424 * Must be called with interrupts disabled.
 425 */
 426void generic_smp_call_function_single_interrupt(void)
 427{
 428	__flush_smp_call_function_queue(true);
 429}
 430
 431/**
 432 * __flush_smp_call_function_queue - Flush pending smp-call-function callbacks
 433 *
 434 * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
 435 *		      offline CPU. Skip this check if set to 'false'.
 436 *
 437 * Flush any pending smp-call-function callbacks queued on this CPU. This is
 438 * invoked by the generic IPI handler, as well as by a CPU about to go offline,
 439 * to ensure that all pending IPI callbacks are run before it goes completely
 440 * offline.
 441 *
 442 * Loop through the call_single_queue and run all the queued callbacks.
 443 * Must be called with interrupts disabled.
 444 */
 445static void __flush_smp_call_function_queue(bool warn_cpu_offline)
 446{
 447	call_single_data_t *csd, *csd_next;
 448	struct llist_node *entry, *prev;
 449	struct llist_head *head;
 
 
 450	static bool warned;
 451	atomic_t *tbt;
 452
 453	lockdep_assert_irqs_disabled();
 454
 455	/* Allow waiters to send backtrace NMI from here onwards */
 456	tbt = this_cpu_ptr(&trigger_backtrace);
 457	atomic_set_release(tbt, 1);
 458
 459	head = this_cpu_ptr(&call_single_queue);
 460	entry = llist_del_all(head);
 461	entry = llist_reverse_order(entry);
 462
 463	/* There shouldn't be any pending callbacks on an offline CPU. */
 464	if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
 465		     !warned && entry != NULL)) {
 466		warned = true;
 467		WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
 468
 469		/*
 470		 * We don't have to use the _safe() variant here
 471		 * because we are not invoking the IPI handlers yet.
 472		 */
 473		llist_for_each_entry(csd, entry, node.llist) {
 474			switch (CSD_TYPE(csd)) {
 475			case CSD_TYPE_ASYNC:
 476			case CSD_TYPE_SYNC:
 477			case CSD_TYPE_IRQ_WORK:
 478				pr_warn("IPI callback %pS sent to offline CPU\n",
 479					csd->func);
 480				break;
 481
 482			case CSD_TYPE_TTWU:
 483				pr_warn("IPI task-wakeup sent to offline CPU\n");
 484				break;
 485
 486			default:
 487				pr_warn("IPI callback, unknown type %d, sent to offline CPU\n",
 488					CSD_TYPE(csd));
 489				break;
 490			}
 491		}
 492	}
 493
 494	/*
 495	 * First; run all SYNC callbacks, people are waiting for us.
 496	 */
 497	prev = NULL;
 498	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
 499		/* Do we wait until *after* callback? */
 500		if (CSD_TYPE(csd) == CSD_TYPE_SYNC) {
 501			smp_call_func_t func = csd->func;
 502			void *info = csd->info;
 503
 504			if (prev) {
 505				prev->next = &csd_next->node.llist;
 506			} else {
 507				entry = &csd_next->node.llist;
 508			}
 509
 510			csd_lock_record(csd);
 511			csd_do_func(func, info, csd);
 512			csd_unlock(csd);
 513			csd_lock_record(NULL);
 514		} else {
 515			prev = &csd->node.llist;
 
 516		}
 517	}
 518
 519	if (!entry)
 520		return;
 521
 522	/*
 523	 * Second; run all !SYNC callbacks.
 
 
 
 524	 */
 525	prev = NULL;
 526	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
 527		int type = CSD_TYPE(csd);
 528
 529		if (type != CSD_TYPE_TTWU) {
 530			if (prev) {
 531				prev->next = &csd_next->node.llist;
 532			} else {
 533				entry = &csd_next->node.llist;
 534			}
 535
 536			if (type == CSD_TYPE_ASYNC) {
 537				smp_call_func_t func = csd->func;
 538				void *info = csd->info;
 539
 540				csd_lock_record(csd);
 541				csd_unlock(csd);
 542				csd_do_func(func, info, csd);
 543				csd_lock_record(NULL);
 544			} else if (type == CSD_TYPE_IRQ_WORK) {
 545				irq_work_single(csd);
 546			}
 547
 548		} else {
 549			prev = &csd->node.llist;
 550		}
 551	}
 552
 553	/*
 554	 * Third; only CSD_TYPE_TTWU is left, issue those.
 555	 */
 556	if (entry) {
 557		csd = llist_entry(entry, typeof(*csd), node.llist);
 558		csd_do_func(sched_ttwu_pending, entry, csd);
 559	}
 560}
 561
 562
 563/**
 564 * flush_smp_call_function_queue - Flush pending smp-call-function callbacks
 565 *				   from task context (idle, migration thread)
 566 *
 567 * When TIF_POLLING_NRFLAG is supported and a CPU is in idle and has it
 568 * set, then remote CPUs can avoid sending IPIs and wake the idle CPU by
 569 * setting TIF_NEED_RESCHED. The idle task on the woken up CPU has to
 570 * handle queued SMP function calls before scheduling.
 571 *
 572 * The migration thread has to ensure that an eventually pending wakeup has
 573 * been handled before it migrates a task.
 574 */
 575void flush_smp_call_function_queue(void)
 576{
 577	unsigned int was_pending;
 578	unsigned long flags;
 579
 580	if (llist_empty(this_cpu_ptr(&call_single_queue)))
 581		return;
 582
 583	local_irq_save(flags);
 584	/* Get the already pending soft interrupts for RT enabled kernels */
 585	was_pending = local_softirq_pending();
 586	__flush_smp_call_function_queue(true);
 587	if (local_softirq_pending())
 588		do_softirq_post_smp_call_flush(was_pending);
 589
 590	local_irq_restore(flags);
 591}
 592
 593/*
 594 * smp_call_function_single - Run a function on a specific CPU
 595 * @func: The function to run. This must be fast and non-blocking.
 596 * @info: An arbitrary pointer to pass to the function.
 597 * @wait: If true, wait until function has completed on other CPUs.
 598 *
 599 * Returns 0 on success, else a negative status code.
 600 */
 601int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
 602			     int wait)
 603{
 604	call_single_data_t *csd;
 605	call_single_data_t csd_stack = {
 606		.node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, },
 607	};
 608	int this_cpu;
 609	int err;
 610
 611	/*
 612	 * prevent preemption and reschedule on another processor,
 613	 * as well as CPU removal
 614	 */
 615	this_cpu = get_cpu();
 616
 617	/*
 618	 * Can deadlock when called with interrupts disabled.
 619	 * We allow cpu's that are not yet online though, as no one else can
 620	 * send smp call function interrupt to this cpu and as such deadlocks
 621	 * can't happen.
 622	 */
 623	WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
 624		     && !oops_in_progress);
 625
 626	/*
 627	 * When @wait we can deadlock when we interrupt between llist_add() and
 628	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
 629	 * csd_lock() on because the interrupt context uses the same csd
 630	 * storage.
 631	 */
 632	WARN_ON_ONCE(!in_task());
 633
 634	csd = &csd_stack;
 635	if (!wait) {
 636		csd = this_cpu_ptr(&csd_data);
 637		csd_lock(csd);
 638	}
 639
 640	csd->func = func;
 641	csd->info = info;
 642#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 643	csd->node.src = smp_processor_id();
 644	csd->node.dst = cpu;
 645#endif
 646
 647	err = generic_exec_single(cpu, csd);
 648
 649	if (wait)
 650		csd_lock_wait(csd);
 651
 652	put_cpu();
 653
 654	return err;
 655}
 656EXPORT_SYMBOL(smp_call_function_single);
 657
 658/**
 659 * smp_call_function_single_async() - Run an asynchronous function on a
 660 * 			         specific CPU.
 661 * @cpu: The CPU to run on.
 662 * @csd: Pre-allocated and setup data structure
 663 *
 664 * Like smp_call_function_single(), but the call is asynchonous and
 665 * can thus be done from contexts with disabled interrupts.
 666 *
 667 * The caller passes his own pre-allocated data structure
 668 * (ie: embedded in an object) and is responsible for synchronizing it
 669 * such that the IPIs performed on the @csd are strictly serialized.
 670 *
 671 * If the function is called with one csd which has not yet been
 672 * processed by previous call to smp_call_function_single_async(), the
 673 * function will return immediately with -EBUSY showing that the csd
 674 * object is still in progress.
 675 *
 676 * NOTE: Be careful, there is unfortunately no current debugging facility to
 677 * validate the correctness of this serialization.
 678 *
 679 * Return: %0 on success or negative errno value on error
 680 */
 681int smp_call_function_single_async(int cpu, call_single_data_t *csd)
 682{
 683	int err = 0;
 684
 685	preempt_disable();
 686
 687	if (csd->node.u_flags & CSD_FLAG_LOCK) {
 688		err = -EBUSY;
 689		goto out;
 690	}
 691
 692	csd->node.u_flags = CSD_FLAG_LOCK;
 693	smp_wmb();
 694
 695	err = generic_exec_single(cpu, csd);
 696
 697out:
 698	preempt_enable();
 699
 700	return err;
 701}
 702EXPORT_SYMBOL_GPL(smp_call_function_single_async);
 703
 704/*
 705 * smp_call_function_any - Run a function on any of the given cpus
 706 * @mask: The mask of cpus it can run on.
 707 * @func: The function to run. This must be fast and non-blocking.
 708 * @info: An arbitrary pointer to pass to the function.
 709 * @wait: If true, wait until function has completed.
 710 *
 711 * Returns 0 on success, else a negative status code (if no cpus were online).
 712 *
 713 * Selection preference:
 714 *	1) current cpu if in @mask
 715 *	2) any cpu of current node if in @mask
 716 *	3) any other online cpu in @mask
 717 */
 718int smp_call_function_any(const struct cpumask *mask,
 719			  smp_call_func_t func, void *info, int wait)
 720{
 721	unsigned int cpu;
 722	const struct cpumask *nodemask;
 723	int ret;
 724
 725	/* Try for same CPU (cheapest) */
 726	cpu = get_cpu();
 727	if (cpumask_test_cpu(cpu, mask))
 728		goto call;
 729
 730	/* Try for same node. */
 731	nodemask = cpumask_of_node(cpu_to_node(cpu));
 732	for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
 733	     cpu = cpumask_next_and(cpu, nodemask, mask)) {
 734		if (cpu_online(cpu))
 735			goto call;
 736	}
 737
 738	/* Any online will do: smp_call_function_single handles nr_cpu_ids. */
 739	cpu = cpumask_any_and(mask, cpu_online_mask);
 740call:
 741	ret = smp_call_function_single(cpu, func, info, wait);
 742	put_cpu();
 743	return ret;
 744}
 745EXPORT_SYMBOL_GPL(smp_call_function_any);
 746
 747/*
 748 * Flags to be used as scf_flags argument of smp_call_function_many_cond().
 
 
 
 
 
 
 
 749 *
 750 * %SCF_WAIT:		Wait until function execution is completed
 751 * %SCF_RUN_LOCAL:	Run also locally if local cpu is set in cpumask
 
 752 */
 753#define SCF_WAIT	(1U << 0)
 754#define SCF_RUN_LOCAL	(1U << 1)
 755
 756static void smp_call_function_many_cond(const struct cpumask *mask,
 757					smp_call_func_t func, void *info,
 758					unsigned int scf_flags,
 759					smp_cond_func_t cond_func)
 760{
 761	int cpu, last_cpu, this_cpu = smp_processor_id();
 762	struct call_function_data *cfd;
 763	bool wait = scf_flags & SCF_WAIT;
 764	int nr_cpus = 0;
 765	bool run_remote = false;
 766	bool run_local = false;
 767
 768	lockdep_assert_preemption_disabled();
 769
 770	/*
 771	 * Can deadlock when called with interrupts disabled.
 772	 * We allow cpu's that are not yet online though, as no one else can
 773	 * send smp call function interrupt to this cpu and as such deadlocks
 774	 * can't happen.
 775	 */
 776	if (cpu_online(this_cpu) && !oops_in_progress &&
 777	    !early_boot_irqs_disabled)
 778		lockdep_assert_irqs_enabled();
 779
 780	/*
 781	 * When @wait we can deadlock when we interrupt between llist_add() and
 782	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
 783	 * csd_lock() on because the interrupt context uses the same csd
 784	 * storage.
 785	 */
 786	WARN_ON_ONCE(!in_task());
 787
 788	/* Check if we need local execution. */
 789	if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask))
 790		run_local = true;
 791
 792	/* Check if we need remote execution, i.e., any CPU excluding this one. */
 793	cpu = cpumask_first_and(mask, cpu_online_mask);
 794	if (cpu == this_cpu)
 795		cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
 796	if (cpu < nr_cpu_ids)
 797		run_remote = true;
 798
 799	if (run_remote) {
 800		cfd = this_cpu_ptr(&cfd_data);
 801		cpumask_and(cfd->cpumask, mask, cpu_online_mask);
 802		__cpumask_clear_cpu(this_cpu, cfd->cpumask);
 803
 804		cpumask_clear(cfd->cpumask_ipi);
 805		for_each_cpu(cpu, cfd->cpumask) {
 806			call_single_data_t *csd = per_cpu_ptr(cfd->csd, cpu);
 
 
 
 
 
 
 
 807
 808			if (cond_func && !cond_func(cpu, info)) {
 809				__cpumask_clear_cpu(cpu, cfd->cpumask);
 810				continue;
 811			}
 812
 813			csd_lock(csd);
 814			if (wait)
 815				csd->node.u_flags |= CSD_TYPE_SYNC;
 816			csd->func = func;
 817			csd->info = info;
 818#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 819			csd->node.src = smp_processor_id();
 820			csd->node.dst = cpu;
 821#endif
 822			trace_csd_queue_cpu(cpu, _RET_IP_, func, csd);
 823
 824			if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) {
 825				__cpumask_set_cpu(cpu, cfd->cpumask_ipi);
 826				nr_cpus++;
 827				last_cpu = cpu;
 828			}
 829		}
 830
 831		/*
 832		 * Choose the most efficient way to send an IPI. Note that the
 833		 * number of CPUs might be zero due to concurrent changes to the
 834		 * provided mask.
 835		 */
 836		if (nr_cpus == 1)
 837			send_call_function_single_ipi(last_cpu);
 838		else if (likely(nr_cpus > 1))
 839			send_call_function_ipi_mask(cfd->cpumask_ipi);
 840	}
 841
 842	if (run_local && (!cond_func || cond_func(this_cpu, info))) {
 843		unsigned long flags;
 844
 845		local_irq_save(flags);
 846		csd_do_func(func, info, NULL);
 847		local_irq_restore(flags);
 
 
 
 848	}
 849
 850	if (run_remote && wait) {
 
 
 
 851		for_each_cpu(cpu, cfd->cpumask) {
 852			call_single_data_t *csd;
 853
 854			csd = per_cpu_ptr(cfd->csd, cpu);
 855			csd_lock_wait(csd);
 856		}
 857	}
 858}
 859
 860/**
 861 * smp_call_function_many(): Run a function on a set of CPUs.
 862 * @mask: The set of cpus to run on (only runs on online subset).
 863 * @func: The function to run. This must be fast and non-blocking.
 864 * @info: An arbitrary pointer to pass to the function.
 865 * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait
 866 *        (atomically) until function has completed on other CPUs. If
 867 *        %SCF_RUN_LOCAL is set, the function will also be run locally
 868 *        if the local CPU is set in the @cpumask.
 869 *
 870 * If @wait is true, then returns once @func has returned.
 871 *
 872 * You must not call this function with disabled interrupts or from a
 873 * hardware interrupt handler or from a bottom half handler. Preemption
 874 * must be disabled when calling this function.
 875 */
 876void smp_call_function_many(const struct cpumask *mask,
 877			    smp_call_func_t func, void *info, bool wait)
 878{
 879	smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL);
 880}
 881EXPORT_SYMBOL(smp_call_function_many);
 882
 883/**
 884 * smp_call_function(): Run a function on all other CPUs.
 885 * @func: The function to run. This must be fast and non-blocking.
 886 * @info: An arbitrary pointer to pass to the function.
 887 * @wait: If true, wait (atomically) until function has completed
 888 *        on other CPUs.
 889 *
 890 * Returns 0.
 891 *
 892 * If @wait is true, then returns once @func has returned; otherwise
 893 * it returns just before the target cpu calls @func.
 894 *
 895 * You must not call this function with disabled interrupts or from a
 896 * hardware interrupt handler or from a bottom half handler.
 897 */
 898void smp_call_function(smp_call_func_t func, void *info, int wait)
 899{
 900	preempt_disable();
 901	smp_call_function_many(cpu_online_mask, func, info, wait);
 902	preempt_enable();
 
 
 903}
 904EXPORT_SYMBOL(smp_call_function);
 905
 906/* Setup configured maximum number of CPUs to activate */
 907unsigned int setup_max_cpus = NR_CPUS;
 908EXPORT_SYMBOL(setup_max_cpus);
 909
 910
 911/*
 912 * Setup routine for controlling SMP activation
 913 *
 914 * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
 915 * activation entirely (the MPS table probe still happens, though).
 916 *
 917 * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
 918 * greater than 0, limits the maximum number of CPUs activated in
 919 * SMP mode to <NUM>.
 920 */
 921
 922void __weak __init arch_disable_smp_support(void) { }
 923
 924static int __init nosmp(char *str)
 925{
 926	setup_max_cpus = 0;
 927	arch_disable_smp_support();
 928
 929	return 0;
 930}
 931
 932early_param("nosmp", nosmp);
 933
 934/* this is hard limit */
 935static int __init nrcpus(char *str)
 936{
 937	int nr_cpus;
 938
 939	if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids)
 940		set_nr_cpu_ids(nr_cpus);
 
 941
 942	return 0;
 943}
 944
 945early_param("nr_cpus", nrcpus);
 946
 947static int __init maxcpus(char *str)
 948{
 949	get_option(&str, &setup_max_cpus);
 950	if (setup_max_cpus == 0)
 951		arch_disable_smp_support();
 952
 953	return 0;
 954}
 955
 956early_param("maxcpus", maxcpus);
 957
 958#if (NR_CPUS > 1) && !defined(CONFIG_FORCE_NR_CPUS)
 959/* Setup number of possible processor ids */
 960unsigned int nr_cpu_ids __read_mostly = NR_CPUS;
 961EXPORT_SYMBOL(nr_cpu_ids);
 962#endif
 963
 964/* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
 965void __init setup_nr_cpu_ids(void)
 966{
 967	set_nr_cpu_ids(find_last_bit(cpumask_bits(cpu_possible_mask), NR_CPUS) + 1);
 968}
 969
 970/* Called by boot processor to activate the rest. */
 971void __init smp_init(void)
 972{
 973	int num_nodes, num_cpus;
 
 974
 975	idle_threads_init();
 976	cpuhp_threads_init();
 977
 978	pr_info("Bringing up secondary CPUs ...\n");
 979
 980	bringup_nonboot_cpus(setup_max_cpus);
 
 
 
 
 
 
 981
 982	num_nodes = num_online_nodes();
 983	num_cpus  = num_online_cpus();
 984	pr_info("Brought up %d node%s, %d CPU%s\n",
 985		num_nodes, (num_nodes > 1 ? "s" : ""),
 986		num_cpus,  (num_cpus  > 1 ? "s" : ""));
 987
 988	/* Any cleanup work */
 989	smp_cpus_done(setup_max_cpus);
 990}
 991
 992/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993 * on_each_cpu_cond(): Call a function on each processor for which
 994 * the supplied function cond_func returns true, optionally waiting
 995 * for all the required CPUs to finish. This may include the local
 996 * processor.
 997 * @cond_func:	A callback function that is passed a cpu id and
 998 *		the info parameter. The function is called
 999 *		with preemption disabled. The function should
1000 *		return a blooean value indicating whether to IPI
1001 *		the specified CPU.
1002 * @func:	The function to run on all applicable CPUs.
1003 *		This must be fast and non-blocking.
1004 * @info:	An arbitrary pointer to pass to both functions.
1005 * @wait:	If true, wait (atomically) until function has
1006 *		completed on other CPUs.
 
 
 
 
 
1007 *
1008 * Preemption is disabled to protect against CPUs going offline but not online.
1009 * CPUs going online during the call will not be seen or sent an IPI.
1010 *
1011 * You must not call this function with disabled interrupts or
1012 * from a hardware interrupt handler or from a bottom half handler.
1013 */
1014void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func,
1015			   void *info, bool wait, const struct cpumask *mask)
 
1016{
1017	unsigned int scf_flags = SCF_RUN_LOCAL;
 
1018
1019	if (wait)
1020		scf_flags |= SCF_WAIT;
1021
1022	preempt_disable();
1023	smp_call_function_many_cond(mask, func, info, scf_flags, cond_func);
1024	preempt_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025}
1026EXPORT_SYMBOL(on_each_cpu_cond_mask);
1027
1028static void do_nothing(void *unused)
1029{
1030}
1031
1032/**
1033 * kick_all_cpus_sync - Force all cpus out of idle
1034 *
1035 * Used to synchronize the update of pm_idle function pointer. It's
1036 * called after the pointer is updated and returns after the dummy
1037 * callback function has been executed on all cpus. The execution of
1038 * the function can only happen on the remote cpus after they have
1039 * left the idle function which had been called via pm_idle function
1040 * pointer. So it's guaranteed that nothing uses the previous pointer
1041 * anymore.
1042 */
1043void kick_all_cpus_sync(void)
1044{
1045	/* Make sure the change is visible before we kick the cpus */
1046	smp_mb();
1047	smp_call_function(do_nothing, NULL, 1);
1048}
1049EXPORT_SYMBOL_GPL(kick_all_cpus_sync);
1050
1051/**
1052 * wake_up_all_idle_cpus - break all cpus out of idle
1053 * wake_up_all_idle_cpus try to break all cpus which is in idle state even
1054 * including idle polling cpus, for non-idle cpus, we will do nothing
1055 * for them.
1056 */
1057void wake_up_all_idle_cpus(void)
1058{
1059	int cpu;
1060
1061	for_each_possible_cpu(cpu) {
1062		preempt_disable();
1063		if (cpu != smp_processor_id() && cpu_online(cpu))
1064			wake_up_if_idle(cpu);
1065		preempt_enable();
 
1066	}
 
1067}
1068EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
1069
1070/**
1071 * struct smp_call_on_cpu_struct - Call a function on a specific CPU
1072 * @work: &work_struct
1073 * @done: &completion to signal
1074 * @func: function to call
1075 * @data: function's data argument
1076 * @ret: return value from @func
1077 * @cpu: target CPU (%-1 for any CPU)
1078 *
1079 * Used to call a function on a specific cpu and wait for it to return.
1080 * Optionally make sure the call is done on a specified physical cpu via vcpu
1081 * pinning in order to support virtualized environments.
1082 */
1083struct smp_call_on_cpu_struct {
1084	struct work_struct	work;
1085	struct completion	done;
1086	int			(*func)(void *);
1087	void			*data;
1088	int			ret;
1089	int			cpu;
1090};
1091
1092static void smp_call_on_cpu_callback(struct work_struct *work)
1093{
1094	struct smp_call_on_cpu_struct *sscs;
1095
1096	sscs = container_of(work, struct smp_call_on_cpu_struct, work);
1097	if (sscs->cpu >= 0)
1098		hypervisor_pin_vcpu(sscs->cpu);
1099	sscs->ret = sscs->func(sscs->data);
1100	if (sscs->cpu >= 0)
1101		hypervisor_pin_vcpu(-1);
1102
1103	complete(&sscs->done);
1104}
1105
1106int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys)
1107{
1108	struct smp_call_on_cpu_struct sscs = {
1109		.done = COMPLETION_INITIALIZER_ONSTACK(sscs.done),
1110		.func = func,
1111		.data = par,
1112		.cpu  = phys ? cpu : -1,
1113	};
1114
1115	INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback);
1116
1117	if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1118		return -ENXIO;
1119
1120	queue_work_on(cpu, system_wq, &sscs.work);
1121	wait_for_completion(&sscs.done);
1122
1123	return sscs.ret;
1124}
1125EXPORT_SYMBOL_GPL(smp_call_on_cpu);