Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include "bcachefs.h"
  4#include "btree_locking.h"
  5#include "btree_update.h"
  6#include "btree_update_interior.h"
  7#include "btree_write_buffer.h"
  8#include "error.h"
  9#include "journal.h"
 10#include "journal_io.h"
 11#include "journal_reclaim.h"
 12
 13#include <linux/prefetch.h>
 14
 15static int bch2_btree_write_buffer_journal_flush(struct journal *,
 16				struct journal_entry_pin *, u64);
 17
 18static int bch2_journal_keys_to_write_buffer(struct bch_fs *, struct journal_buf *);
 19
 20static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
 21{
 22	return (cmp_int(l->hi, r->hi) ?:
 23		cmp_int(l->mi, r->mi) ?:
 24		cmp_int(l->lo, r->lo)) >= 0;
 25}
 26
 27static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
 28{
 29#ifdef CONFIG_X86_64
 30	int cmp;
 31
 32	asm("mov   (%[l]), %%rax;"
 33	    "sub   (%[r]), %%rax;"
 34	    "mov  8(%[l]), %%rax;"
 35	    "sbb  8(%[r]), %%rax;"
 36	    "mov 16(%[l]), %%rax;"
 37	    "sbb 16(%[r]), %%rax;"
 38	    : "=@ccae" (cmp)
 39	    : [l] "r" (l), [r] "r" (r)
 40	    : "rax", "cc");
 41
 42	EBUG_ON(cmp != __wb_key_ref_cmp(l, r));
 43	return cmp;
 44#else
 45	return __wb_key_ref_cmp(l, r);
 46#endif
 47}
 48
 49/* Compare excluding idx, the low 24 bits: */
 50static inline bool wb_key_eq(const void *_l, const void *_r)
 51{
 52	const struct wb_key_ref *l = _l;
 53	const struct wb_key_ref *r = _r;
 54
 55	return !((l->hi ^ r->hi)|
 56		 (l->mi ^ r->mi)|
 57		 ((l->lo >> 24) ^ (r->lo >> 24)));
 58}
 59
 60static noinline void wb_sort(struct wb_key_ref *base, size_t num)
 61{
 62	size_t n = num, a = num / 2;
 63
 64	if (!a)		/* num < 2 || size == 0 */
 65		return;
 66
 67	for (;;) {
 68		size_t b, c, d;
 69
 70		if (a)			/* Building heap: sift down --a */
 71			--a;
 72		else if (--n)		/* Sorting: Extract root to --n */
 73			swap(base[0], base[n]);
 74		else			/* Sort complete */
 75			break;
 76
 77		/*
 78		 * Sift element at "a" down into heap.  This is the
 79		 * "bottom-up" variant, which significantly reduces
 80		 * calls to cmp_func(): we find the sift-down path all
 81		 * the way to the leaves (one compare per level), then
 82		 * backtrack to find where to insert the target element.
 83		 *
 84		 * Because elements tend to sift down close to the leaves,
 85		 * this uses fewer compares than doing two per level
 86		 * on the way down.  (A bit more than half as many on
 87		 * average, 3/4 worst-case.)
 88		 */
 89		for (b = a; c = 2*b + 1, (d = c + 1) < n;)
 90			b = wb_key_ref_cmp(base + c, base + d) ? c : d;
 91		if (d == n)		/* Special case last leaf with no sibling */
 92			b = c;
 93
 94		/* Now backtrack from "b" to the correct location for "a" */
 95		while (b != a && wb_key_ref_cmp(base + a, base + b))
 96			b = (b - 1) / 2;
 97		c = b;			/* Where "a" belongs */
 98		while (b != a) {	/* Shift it into place */
 99			b = (b - 1) / 2;
100			swap(base[b], base[c]);
101		}
102	}
103}
104
105static noinline int wb_flush_one_slowpath(struct btree_trans *trans,
106					  struct btree_iter *iter,
107					  struct btree_write_buffered_key *wb)
108{
109	struct btree_path *path = btree_iter_path(trans, iter);
110
111	bch2_btree_node_unlock_write(trans, path, path->l[0].b);
112
113	trans->journal_res.seq = wb->journal_seq;
114
115	return bch2_trans_update(trans, iter, &wb->k,
116				 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?:
117		bch2_trans_commit(trans, NULL, NULL,
118				  BCH_TRANS_COMMIT_no_enospc|
119				  BCH_TRANS_COMMIT_no_check_rw|
120				  BCH_TRANS_COMMIT_no_journal_res|
121				  BCH_TRANS_COMMIT_journal_reclaim);
122}
123
124static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter,
125			       struct btree_write_buffered_key *wb,
126			       bool *write_locked, size_t *fast)
127{
128	struct btree_path *path;
129	int ret;
130
131	EBUG_ON(!wb->journal_seq);
132	EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq);
133	EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq);
134
135	ret = bch2_btree_iter_traverse(iter);
136	if (ret)
137		return ret;
138
139	/*
140	 * We can't clone a path that has write locks: unshare it now, before
141	 * set_pos and traverse():
142	 */
143	if (btree_iter_path(trans, iter)->ref > 1)
144		iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_);
145
146	path = btree_iter_path(trans, iter);
147
148	if (!*write_locked) {
149		ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c);
150		if (ret)
151			return ret;
152
153		bch2_btree_node_prep_for_write(trans, path, path->l[0].b);
154		*write_locked = true;
155	}
156
157	if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) {
158		*write_locked = false;
159		return wb_flush_one_slowpath(trans, iter, wb);
160	}
161
162	bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq);
163	(*fast)++;
164	return 0;
165}
166
167/*
168 * Update a btree with a write buffered key using the journal seq of the
169 * original write buffer insert.
170 *
171 * It is not safe to rejournal the key once it has been inserted into the write
172 * buffer because that may break recovery ordering. For example, the key may
173 * have already been modified in the active write buffer in a seq that comes
174 * before the current transaction. If we were to journal this key again and
175 * crash, recovery would process updates in the wrong order.
176 */
177static int
178btree_write_buffered_insert(struct btree_trans *trans,
179			  struct btree_write_buffered_key *wb)
180{
181	struct btree_iter iter;
182	int ret;
183
184	bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k),
185			     BTREE_ITER_CACHED|BTREE_ITER_INTENT);
186
187	trans->journal_res.seq = wb->journal_seq;
188
189	ret   = bch2_btree_iter_traverse(&iter) ?:
190		bch2_trans_update(trans, &iter, &wb->k,
191				  BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
192	bch2_trans_iter_exit(trans, &iter);
193	return ret;
194}
195
196static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb)
197{
198	struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer);
199	struct journal *j = &c->journal;
200
201	if (!wb->inc.keys.nr)
202		return;
203
204	bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin,
205			     bch2_btree_write_buffer_journal_flush);
206
207	darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr));
208	darray_resize(&wb->sorted, wb->flushing.keys.size);
209
210	if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) {
211		swap(wb->flushing.keys, wb->inc.keys);
212		goto out;
213	}
214
215	size_t nr = min(darray_room(wb->flushing.keys),
216			wb->sorted.size - wb->flushing.keys.nr);
217	nr = min(nr, wb->inc.keys.nr);
218
219	memcpy(&darray_top(wb->flushing.keys),
220	       wb->inc.keys.data,
221	       sizeof(wb->inc.keys.data[0]) * nr);
222
223	memmove(wb->inc.keys.data,
224		wb->inc.keys.data + nr,
225	       sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr));
226
227	wb->flushing.keys.nr	+= nr;
228	wb->inc.keys.nr		-= nr;
229out:
230	if (!wb->inc.keys.nr)
231		bch2_journal_pin_drop(j, &wb->inc.pin);
232	else
233		bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin,
234					bch2_btree_write_buffer_journal_flush);
235
236	if (j->watermark) {
237		spin_lock(&j->lock);
238		bch2_journal_set_watermark(j);
239		spin_unlock(&j->lock);
240	}
241
242	BUG_ON(wb->sorted.size < wb->flushing.keys.nr);
243}
244
245static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans)
246{
247	struct bch_fs *c = trans->c;
248	struct journal *j = &c->journal;
249	struct btree_write_buffer *wb = &c->btree_write_buffer;
250	struct btree_iter iter = { NULL };
251	size_t skipped = 0, fast = 0, slowpath = 0;
252	bool write_locked = false;
253	int ret = 0;
254
255	bch2_trans_unlock(trans);
256	bch2_trans_begin(trans);
257
258	mutex_lock(&wb->inc.lock);
259	move_keys_from_inc_to_flushing(wb);
260	mutex_unlock(&wb->inc.lock);
261
262	for (size_t i = 0; i < wb->flushing.keys.nr; i++) {
263		wb->sorted.data[i].idx = i;
264		wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree;
265		memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos));
266	}
267	wb->sorted.nr = wb->flushing.keys.nr;
268
269	/*
270	 * We first sort so that we can detect and skip redundant updates, and
271	 * then we attempt to flush in sorted btree order, as this is most
272	 * efficient.
273	 *
274	 * However, since we're not flushing in the order they appear in the
275	 * journal we won't be able to drop our journal pin until everything is
276	 * flushed - which means this could deadlock the journal if we weren't
277	 * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail
278	 * if it would block taking a journal reservation.
279	 *
280	 * If that happens, simply skip the key so we can optimistically insert
281	 * as many keys as possible in the fast path.
282	 */
283	wb_sort(wb->sorted.data, wb->sorted.nr);
284
285	darray_for_each(wb->sorted, i) {
286		struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx];
287
288		for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++)
289			prefetch(&wb->flushing.keys.data[n->idx]);
290
291		BUG_ON(!k->journal_seq);
292
293		if (i + 1 < &darray_top(wb->sorted) &&
294		    wb_key_eq(i, i + 1)) {
295			struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx];
296
297			skipped++;
298			n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq);
299			k->journal_seq = 0;
300			continue;
301		}
302
303		if (write_locked) {
304			struct btree_path *path = btree_iter_path(trans, &iter);
305
306			if (path->btree_id != i->btree ||
307			    bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) {
308				bch2_btree_node_unlock_write(trans, path, path->l[0].b);
309				write_locked = false;
310			}
311		}
312
313		if (!iter.path || iter.btree_id != k->btree) {
314			bch2_trans_iter_exit(trans, &iter);
315			bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p,
316					     BTREE_ITER_INTENT|BTREE_ITER_ALL_SNAPSHOTS);
317		}
318
319		bch2_btree_iter_set_pos(&iter, k->k.k.p);
320		btree_iter_path(trans, &iter)->preserve = false;
321
322		do {
323			if (race_fault()) {
324				ret = -BCH_ERR_journal_reclaim_would_deadlock;
325				break;
326			}
327
328			ret = wb_flush_one(trans, &iter, k, &write_locked, &fast);
329			if (!write_locked)
330				bch2_trans_begin(trans);
331		} while (bch2_err_matches(ret, BCH_ERR_transaction_restart));
332
333		if (!ret) {
334			k->journal_seq = 0;
335		} else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) {
336			slowpath++;
337			ret = 0;
338		} else
339			break;
340	}
341
342	if (write_locked) {
343		struct btree_path *path = btree_iter_path(trans, &iter);
344		bch2_btree_node_unlock_write(trans, path, path->l[0].b);
345	}
346	bch2_trans_iter_exit(trans, &iter);
347
348	if (ret)
349		goto err;
350
351	if (slowpath) {
352		/*
353		 * Flush in the order they were present in the journal, so that
354		 * we can release journal pins:
355		 * The fastpath zapped the seq of keys that were successfully flushed so
356		 * we can skip those here.
357		 */
358		trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr);
359
360		darray_for_each(wb->flushing.keys, i) {
361			if (!i->journal_seq)
362				continue;
363
364			bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin,
365						bch2_btree_write_buffer_journal_flush);
366
367			bch2_trans_begin(trans);
368
369			ret = commit_do(trans, NULL, NULL,
370					BCH_WATERMARK_reclaim|
371					BCH_TRANS_COMMIT_no_check_rw|
372					BCH_TRANS_COMMIT_no_enospc|
373					BCH_TRANS_COMMIT_no_journal_res|
374					BCH_TRANS_COMMIT_journal_reclaim,
375					btree_write_buffered_insert(trans, i));
376			if (ret)
377				goto err;
378		}
379	}
380err:
381	bch2_fs_fatal_err_on(ret, c, "%s: insert error %s", __func__, bch2_err_str(ret));
382	trace_write_buffer_flush(trans, wb->flushing.keys.nr, skipped, fast, 0);
383	bch2_journal_pin_drop(j, &wb->flushing.pin);
384	wb->flushing.keys.nr = 0;
385	return ret;
386}
387
388static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 seq)
389{
390	struct journal *j = &c->journal;
391	struct journal_buf *buf;
392	int ret = 0;
393
394	while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, seq))) {
395		ret = bch2_journal_keys_to_write_buffer(c, buf);
396		mutex_unlock(&j->buf_lock);
397	}
398
399	return ret;
400}
401
402static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 seq)
403{
404	struct bch_fs *c = trans->c;
405	struct btree_write_buffer *wb = &c->btree_write_buffer;
406	int ret = 0, fetch_from_journal_err;
407
408	do {
409		bch2_trans_unlock(trans);
410
411		fetch_from_journal_err = fetch_wb_keys_from_journal(c, seq);
412
413		/*
414		 * On memory allocation failure, bch2_btree_write_buffer_flush_locked()
415		 * is not guaranteed to empty wb->inc:
416		 */
417		mutex_lock(&wb->flushing.lock);
418		ret = bch2_btree_write_buffer_flush_locked(trans);
419		mutex_unlock(&wb->flushing.lock);
420	} while (!ret &&
421		 (fetch_from_journal_err ||
422		  (wb->inc.pin.seq && wb->inc.pin.seq <= seq) ||
423		  (wb->flushing.pin.seq && wb->flushing.pin.seq <= seq)));
424
425	return ret;
426}
427
428static int bch2_btree_write_buffer_journal_flush(struct journal *j,
429				struct journal_entry_pin *_pin, u64 seq)
430{
431	struct bch_fs *c = container_of(j, struct bch_fs, journal);
432
433	return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq));
434}
435
436int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans)
437{
438	struct bch_fs *c = trans->c;
439
440	trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_);
441
442	return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal));
443}
444
445int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans)
446{
447	struct bch_fs *c = trans->c;
448	struct btree_write_buffer *wb = &c->btree_write_buffer;
449	int ret = 0;
450
451	if (mutex_trylock(&wb->flushing.lock)) {
452		ret = bch2_btree_write_buffer_flush_locked(trans);
453		mutex_unlock(&wb->flushing.lock);
454	}
455
456	return ret;
457}
458
459int bch2_btree_write_buffer_tryflush(struct btree_trans *trans)
460{
461	struct bch_fs *c = trans->c;
462
463	if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer))
464		return -BCH_ERR_erofs_no_writes;
465
466	int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans);
467	bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
468	return ret;
469}
470
471static void bch2_btree_write_buffer_flush_work(struct work_struct *work)
472{
473	struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work);
474	struct btree_write_buffer *wb = &c->btree_write_buffer;
475	int ret;
476
477	mutex_lock(&wb->flushing.lock);
478	do {
479		ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans));
480	} while (!ret && bch2_btree_write_buffer_should_flush(c));
481	mutex_unlock(&wb->flushing.lock);
482
483	bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
484}
485
486int bch2_journal_key_to_wb_slowpath(struct bch_fs *c,
487			     struct journal_keys_to_wb *dst,
488			     enum btree_id btree, struct bkey_i *k)
489{
490	struct btree_write_buffer *wb = &c->btree_write_buffer;
491	int ret;
492retry:
493	ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL);
494	if (!ret && dst->wb == &wb->flushing)
495		ret = darray_resize(&wb->sorted, wb->flushing.keys.size);
496
497	if (unlikely(ret)) {
498		if (dst->wb == &c->btree_write_buffer.flushing) {
499			mutex_unlock(&dst->wb->lock);
500			dst->wb = &c->btree_write_buffer.inc;
501			bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin,
502					     bch2_btree_write_buffer_journal_flush);
503			goto retry;
504		}
505
506		return ret;
507	}
508
509	dst->room = darray_room(dst->wb->keys);
510	if (dst->wb == &wb->flushing)
511		dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
512	BUG_ON(!dst->room);
513	BUG_ON(!dst->seq);
514
515	struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys);
516	wb_k->journal_seq	= dst->seq;
517	wb_k->btree		= btree;
518	bkey_copy(&wb_k->k, k);
519	dst->wb->keys.nr++;
520	dst->room--;
521	return 0;
522}
523
524void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq)
525{
526	struct btree_write_buffer *wb = &c->btree_write_buffer;
527
528	if (mutex_trylock(&wb->flushing.lock)) {
529		mutex_lock(&wb->inc.lock);
530		move_keys_from_inc_to_flushing(wb);
531
532		/*
533		 * Attempt to skip wb->inc, and add keys directly to
534		 * wb->flushing, saving us a copy later:
535		 */
536
537		if (!wb->inc.keys.nr) {
538			dst->wb = &wb->flushing;
539		} else {
540			mutex_unlock(&wb->flushing.lock);
541			dst->wb = &wb->inc;
542		}
543	} else {
544		mutex_lock(&wb->inc.lock);
545		dst->wb = &wb->inc;
546	}
547
548	dst->room = darray_room(dst->wb->keys);
549	if (dst->wb == &wb->flushing)
550		dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
551	dst->seq = seq;
552
553	bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin,
554			     bch2_btree_write_buffer_journal_flush);
555}
556
557void bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst)
558{
559	struct btree_write_buffer *wb = &c->btree_write_buffer;
560
561	if (!dst->wb->keys.nr)
562		bch2_journal_pin_drop(&c->journal, &dst->wb->pin);
563
564	if (bch2_btree_write_buffer_should_flush(c) &&
565	    __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) &&
566	    !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work))
567		bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
568
569	if (dst->wb == &wb->flushing)
570		mutex_unlock(&wb->flushing.lock);
571	mutex_unlock(&wb->inc.lock);
572}
573
574static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf)
575{
576	struct journal_keys_to_wb dst;
577	struct jset_entry *entry;
578	struct bkey_i *k;
579	int ret = 0;
580
581	bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq));
582
583	for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) {
584		jset_entry_for_each_key(entry, k) {
585			ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k);
586			if (ret)
587				goto out;
588		}
589
590		entry->type = BCH_JSET_ENTRY_btree_keys;
591	}
592
593	buf->need_flush_to_write_buffer = false;
594out:
595	bch2_journal_keys_to_write_buffer_end(c, &dst);
596	return ret;
597}
598
599static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size)
600{
601	if (wb->keys.size >= new_size)
602		return 0;
603
604	if (!mutex_trylock(&wb->lock))
605		return -EINTR;
606
607	int ret = darray_resize(&wb->keys, new_size);
608	mutex_unlock(&wb->lock);
609	return ret;
610}
611
612int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size)
613{
614	struct btree_write_buffer *wb = &c->btree_write_buffer;
615
616	return wb_keys_resize(&wb->flushing, new_size) ?:
617		wb_keys_resize(&wb->inc, new_size);
618}
619
620void bch2_fs_btree_write_buffer_exit(struct bch_fs *c)
621{
622	struct btree_write_buffer *wb = &c->btree_write_buffer;
623
624	BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) &&
625	       !bch2_journal_error(&c->journal));
626
627	darray_exit(&wb->sorted);
628	darray_exit(&wb->flushing.keys);
629	darray_exit(&wb->inc.keys);
630}
631
632int bch2_fs_btree_write_buffer_init(struct bch_fs *c)
633{
634	struct btree_write_buffer *wb = &c->btree_write_buffer;
635
636	mutex_init(&wb->inc.lock);
637	mutex_init(&wb->flushing.lock);
638	INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work);
639
640	/* Will be resized by journal as needed: */
641	unsigned initial_size = 1 << 16;
642
643	return  darray_make_room(&wb->inc.keys, initial_size) ?:
644		darray_make_room(&wb->flushing.keys, initial_size) ?:
645		darray_make_room(&wb->sorted, initial_size);
646}