Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
  3 *
  4 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
  5 *
  6 * Copyright (C) IBM Corporation, 2004. All rights reserved.
  7 * Copyright (C) Red Hat Inc., 2014. All rights reserved.
  8 * Authors:
  9 *      Vivek Goyal <vgoyal@redhat.com>
 10 *
 11 */
 12
 13#define pr_fmt(fmt)	"kexec: " fmt
 14
 15#include <linux/types.h>
 16#include <linux/kernel.h>
 17#include <linux/smp.h>
 18#include <linux/reboot.h>
 19#include <linux/kexec.h>
 20#include <linux/delay.h>
 21#include <linux/elf.h>
 22#include <linux/elfcore.h>
 23#include <linux/export.h>
 24#include <linux/slab.h>
 25#include <linux/vmalloc.h>
 
 26
 27#include <asm/processor.h>
 28#include <asm/hardirq.h>
 29#include <asm/nmi.h>
 30#include <asm/hw_irq.h>
 31#include <asm/apic.h>
 
 32#include <asm/io_apic.h>
 33#include <asm/hpet.h>
 34#include <linux/kdebug.h>
 35#include <asm/cpu.h>
 36#include <asm/reboot.h>
 37#include <asm/virtext.h>
 38#include <asm/intel_pt.h>
 39
 40/* Alignment required for elf header segment */
 41#define ELF_CORE_HEADER_ALIGN   4096
 42
 43/* This primarily represents number of split ranges due to exclusion */
 44#define CRASH_MAX_RANGES	16
 45
 46struct crash_mem_range {
 47	u64 start, end;
 48};
 49
 50struct crash_mem {
 51	unsigned int nr_ranges;
 52	struct crash_mem_range ranges[CRASH_MAX_RANGES];
 53};
 54
 55/* Misc data about ram ranges needed to prepare elf headers */
 56struct crash_elf_data {
 57	struct kimage *image;
 58	/*
 59	 * Total number of ram ranges we have after various adjustments for
 60	 * crash reserved region, etc.
 61	 */
 62	unsigned int max_nr_ranges;
 63
 64	/* Pointer to elf header */
 65	void *ehdr;
 66	/* Pointer to next phdr */
 67	void *bufp;
 68	struct crash_mem mem;
 69};
 70
 71/* Used while preparing memory map entries for second kernel */
 72struct crash_memmap_data {
 73	struct boot_params *params;
 74	/* Type of memory */
 75	unsigned int type;
 76};
 77
 78/*
 79 * This is used to VMCLEAR all VMCSs loaded on the
 80 * processor. And when loading kvm_intel module, the
 81 * callback function pointer will be assigned.
 82 *
 83 * protected by rcu.
 84 */
 85crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
 86EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
 87unsigned long crash_zero_bytes;
 88
 89static inline void cpu_crash_vmclear_loaded_vmcss(void)
 90{
 91	crash_vmclear_fn *do_vmclear_operation = NULL;
 92
 93	rcu_read_lock();
 94	do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
 95	if (do_vmclear_operation)
 96		do_vmclear_operation();
 97	rcu_read_unlock();
 98}
 99
100#if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
101
102static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
103{
104#ifdef CONFIG_X86_32
105	struct pt_regs fixed_regs;
106
107	if (!user_mode(regs)) {
108		crash_fixup_ss_esp(&fixed_regs, regs);
109		regs = &fixed_regs;
110	}
111#endif
112	crash_save_cpu(regs, cpu);
113
114	/*
115	 * VMCLEAR VMCSs loaded on all cpus if needed.
116	 */
117	cpu_crash_vmclear_loaded_vmcss();
118
119	/* Disable VMX or SVM if needed.
120	 *
121	 * We need to disable virtualization on all CPUs.
122	 * Having VMX or SVM enabled on any CPU may break rebooting
123	 * after the kdump kernel has finished its task.
124	 */
125	cpu_emergency_vmxoff();
126	cpu_emergency_svm_disable();
127
128	/*
129	 * Disable Intel PT to stop its logging
130	 */
131	cpu_emergency_stop_pt();
132
133	disable_local_APIC();
134}
135
136void kdump_nmi_shootdown_cpus(void)
137{
138	nmi_shootdown_cpus(kdump_nmi_callback);
139
140	disable_local_APIC();
141}
142
143/* Override the weak function in kernel/panic.c */
144void crash_smp_send_stop(void)
145{
146	static int cpus_stopped;
147
148	if (cpus_stopped)
149		return;
150
151	if (smp_ops.crash_stop_other_cpus)
152		smp_ops.crash_stop_other_cpus();
153	else
154		smp_send_stop();
155
156	cpus_stopped = 1;
157}
158
159#else
160void crash_smp_send_stop(void)
161{
162	/* There are no cpus to shootdown */
163}
164#endif
165
166void native_machine_crash_shutdown(struct pt_regs *regs)
167{
168	/* This function is only called after the system
169	 * has panicked or is otherwise in a critical state.
170	 * The minimum amount of code to allow a kexec'd kernel
171	 * to run successfully needs to happen here.
172	 *
173	 * In practice this means shooting down the other cpus in
174	 * an SMP system.
175	 */
176	/* The kernel is broken so disable interrupts */
177	local_irq_disable();
178
179	crash_smp_send_stop();
180
181	/*
182	 * VMCLEAR VMCSs loaded on this cpu if needed.
183	 */
184	cpu_crash_vmclear_loaded_vmcss();
185
186	/* Booting kdump kernel with VMX or SVM enabled won't work,
187	 * because (among other limitations) we can't disable paging
188	 * with the virt flags.
189	 */
190	cpu_emergency_vmxoff();
191	cpu_emergency_svm_disable();
192
193	/*
194	 * Disable Intel PT to stop its logging
195	 */
196	cpu_emergency_stop_pt();
197
198#ifdef CONFIG_X86_IO_APIC
199	/* Prevent crash_kexec() from deadlocking on ioapic_lock. */
200	ioapic_zap_locks();
201	disable_IO_APIC();
202#endif
203	lapic_shutdown();
 
204#ifdef CONFIG_HPET_TIMER
205	hpet_disable();
206#endif
207	crash_save_cpu(regs, safe_smp_processor_id());
208}
209
210#ifdef CONFIG_KEXEC_FILE
211static int get_nr_ram_ranges_callback(u64 start, u64 end, void *arg)
212{
213	unsigned int *nr_ranges = arg;
214
215	(*nr_ranges)++;
216	return 0;
217}
218
219
220/* Gather all the required information to prepare elf headers for ram regions */
221static void fill_up_crash_elf_data(struct crash_elf_data *ced,
222				   struct kimage *image)
223{
224	unsigned int nr_ranges = 0;
 
225
226	ced->image = image;
227
228	walk_system_ram_res(0, -1, &nr_ranges,
229				get_nr_ram_ranges_callback);
230
231	ced->max_nr_ranges = nr_ranges;
232
233	/* Exclusion of crash region could split memory ranges */
234	ced->max_nr_ranges++;
235
236	/* If crashk_low_res is not 0, another range split possible */
237	if (crashk_low_res.end)
238		ced->max_nr_ranges++;
239}
240
241static int exclude_mem_range(struct crash_mem *mem,
242		unsigned long long mstart, unsigned long long mend)
243{
244	int i, j;
245	unsigned long long start, end;
246	struct crash_mem_range temp_range = {0, 0};
247
248	for (i = 0; i < mem->nr_ranges; i++) {
249		start = mem->ranges[i].start;
250		end = mem->ranges[i].end;
251
252		if (mstart > end || mend < start)
253			continue;
254
255		/* Truncate any area outside of range */
256		if (mstart < start)
257			mstart = start;
258		if (mend > end)
259			mend = end;
260
261		/* Found completely overlapping range */
262		if (mstart == start && mend == end) {
263			mem->ranges[i].start = 0;
264			mem->ranges[i].end = 0;
265			if (i < mem->nr_ranges - 1) {
266				/* Shift rest of the ranges to left */
267				for (j = i; j < mem->nr_ranges - 1; j++) {
268					mem->ranges[j].start =
269						mem->ranges[j+1].start;
270					mem->ranges[j].end =
271							mem->ranges[j+1].end;
272				}
273			}
274			mem->nr_ranges--;
275			return 0;
276		}
277
278		if (mstart > start && mend < end) {
279			/* Split original range */
280			mem->ranges[i].end = mstart - 1;
281			temp_range.start = mend + 1;
282			temp_range.end = end;
283		} else if (mstart != start)
284			mem->ranges[i].end = mstart - 1;
285		else
286			mem->ranges[i].start = mend + 1;
287		break;
288	}
289
290	/* If a split happend, add the split to array */
291	if (!temp_range.end)
292		return 0;
293
294	/* Split happened */
295	if (i == CRASH_MAX_RANGES - 1) {
296		pr_err("Too many crash ranges after split\n");
297		return -ENOMEM;
298	}
299
300	/* Location where new range should go */
301	j = i + 1;
302	if (j < mem->nr_ranges) {
303		/* Move over all ranges one slot towards the end */
304		for (i = mem->nr_ranges - 1; i >= j; i--)
305			mem->ranges[i + 1] = mem->ranges[i];
306	}
307
308	mem->ranges[j].start = temp_range.start;
309	mem->ranges[j].end = temp_range.end;
310	mem->nr_ranges++;
311	return 0;
312}
313
314/*
315 * Look for any unwanted ranges between mstart, mend and remove them. This
316 * might lead to split and split ranges are put in ced->mem.ranges[] array
317 */
318static int elf_header_exclude_ranges(struct crash_elf_data *ced,
319		unsigned long long mstart, unsigned long long mend)
320{
321	struct crash_mem *cmem = &ced->mem;
322	int ret = 0;
323
324	memset(cmem->ranges, 0, sizeof(cmem->ranges));
325
326	cmem->ranges[0].start = mstart;
327	cmem->ranges[0].end = mend;
328	cmem->nr_ranges = 1;
329
330	/* Exclude crashkernel region */
331	ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
332	if (ret)
333		return ret;
334
335	if (crashk_low_res.end) {
336		ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
337		if (ret)
338			return ret;
339	}
340
341	return ret;
342}
343
344static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg)
345{
346	struct crash_elf_data *ced = arg;
347	Elf64_Ehdr *ehdr;
348	Elf64_Phdr *phdr;
349	unsigned long mstart, mend;
350	struct kimage *image = ced->image;
351	struct crash_mem *cmem;
352	int ret, i;
353
354	ehdr = ced->ehdr;
355
356	/* Exclude unwanted mem ranges */
357	ret = elf_header_exclude_ranges(ced, start, end);
358	if (ret)
359		return ret;
360
361	/* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
362	cmem = &ced->mem;
363
364	for (i = 0; i < cmem->nr_ranges; i++) {
365		mstart = cmem->ranges[i].start;
366		mend = cmem->ranges[i].end;
367
368		phdr = ced->bufp;
369		ced->bufp += sizeof(Elf64_Phdr);
370
371		phdr->p_type = PT_LOAD;
372		phdr->p_flags = PF_R|PF_W|PF_X;
373		phdr->p_offset  = mstart;
374
375		/*
376		 * If a range matches backup region, adjust offset to backup
377		 * segment.
378		 */
379		if (mstart == image->arch.backup_src_start &&
380		    (mend - mstart + 1) == image->arch.backup_src_sz)
381			phdr->p_offset = image->arch.backup_load_addr;
382
383		phdr->p_paddr = mstart;
384		phdr->p_vaddr = (unsigned long long) __va(mstart);
385		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
386		phdr->p_align = 0;
387		ehdr->e_phnum++;
388		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
389			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
390			ehdr->e_phnum, phdr->p_offset);
391	}
392
393	return ret;
394}
395
396static int prepare_elf64_headers(struct crash_elf_data *ced,
397		void **addr, unsigned long *sz)
398{
399	Elf64_Ehdr *ehdr;
400	Elf64_Phdr *phdr;
401	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
402	unsigned char *buf, *bufp;
403	unsigned int cpu;
404	unsigned long long notes_addr;
405	int ret;
406
407	/* extra phdr for vmcoreinfo elf note */
408	nr_phdr = nr_cpus + 1;
409	nr_phdr += ced->max_nr_ranges;
410
411	/*
412	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
413	 * area on x86_64 (ffffffff80000000 - ffffffffa0000000).
414	 * I think this is required by tools like gdb. So same physical
415	 * memory will be mapped in two elf headers. One will contain kernel
416	 * text virtual addresses and other will have __va(physical) addresses.
417	 */
418
419	nr_phdr++;
420	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
421	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
422
423	buf = vzalloc(elf_sz);
424	if (!buf)
425		return -ENOMEM;
426
427	bufp = buf;
428	ehdr = (Elf64_Ehdr *)bufp;
429	bufp += sizeof(Elf64_Ehdr);
430	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
431	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
432	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
433	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
434	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
435	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
436	ehdr->e_type = ET_CORE;
437	ehdr->e_machine = ELF_ARCH;
438	ehdr->e_version = EV_CURRENT;
439	ehdr->e_phoff = sizeof(Elf64_Ehdr);
440	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
441	ehdr->e_phentsize = sizeof(Elf64_Phdr);
442
443	/* Prepare one phdr of type PT_NOTE for each present cpu */
444	for_each_present_cpu(cpu) {
445		phdr = (Elf64_Phdr *)bufp;
446		bufp += sizeof(Elf64_Phdr);
447		phdr->p_type = PT_NOTE;
448		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
449		phdr->p_offset = phdr->p_paddr = notes_addr;
450		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
451		(ehdr->e_phnum)++;
452	}
453
454	/* Prepare one PT_NOTE header for vmcoreinfo */
455	phdr = (Elf64_Phdr *)bufp;
456	bufp += sizeof(Elf64_Phdr);
457	phdr->p_type = PT_NOTE;
458	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
459	phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note);
460	(ehdr->e_phnum)++;
461
462#ifdef CONFIG_X86_64
463	/* Prepare PT_LOAD type program header for kernel text region */
464	phdr = (Elf64_Phdr *)bufp;
465	bufp += sizeof(Elf64_Phdr);
466	phdr->p_type = PT_LOAD;
467	phdr->p_flags = PF_R|PF_W|PF_X;
468	phdr->p_vaddr = (Elf64_Addr)_text;
469	phdr->p_filesz = phdr->p_memsz = _end - _text;
470	phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
471	(ehdr->e_phnum)++;
472#endif
473
474	/* Prepare PT_LOAD headers for system ram chunks. */
475	ced->ehdr = ehdr;
476	ced->bufp = bufp;
477	ret = walk_system_ram_res(0, -1, ced,
478			prepare_elf64_ram_headers_callback);
479	if (ret < 0)
480		return ret;
481
482	*addr = buf;
483	*sz = elf_sz;
484	return 0;
485}
486
487/* Prepare elf headers. Return addr and size */
488static int prepare_elf_headers(struct kimage *image, void **addr,
489					unsigned long *sz)
490{
491	struct crash_elf_data *ced;
492	int ret;
493
494	ced = kzalloc(sizeof(*ced), GFP_KERNEL);
495	if (!ced)
496		return -ENOMEM;
497
498	fill_up_crash_elf_data(ced, image);
 
 
 
 
 
 
 
 
 
 
499
500	/* By default prepare 64bit headers */
501	ret =  prepare_elf64_headers(ced, addr, sz);
502	kfree(ced);
 
 
503	return ret;
504}
 
505
506static int add_e820_entry(struct boot_params *params, struct e820entry *entry)
 
507{
508	unsigned int nr_e820_entries;
509
510	nr_e820_entries = params->e820_entries;
511	if (nr_e820_entries >= E820MAX)
512		return 1;
513
514	memcpy(&params->e820_map[nr_e820_entries], entry,
515			sizeof(struct e820entry));
516	params->e820_entries++;
517	return 0;
518}
519
520static int memmap_entry_callback(u64 start, u64 end, void *arg)
521{
522	struct crash_memmap_data *cmd = arg;
523	struct boot_params *params = cmd->params;
524	struct e820entry ei;
525
526	ei.addr = start;
527	ei.size = end - start + 1;
528	ei.type = cmd->type;
529	add_e820_entry(params, &ei);
530
531	return 0;
532}
533
534static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
535				 unsigned long long mstart,
536				 unsigned long long mend)
537{
538	unsigned long start, end;
539	int ret = 0;
540
541	cmem->ranges[0].start = mstart;
542	cmem->ranges[0].end = mend;
543	cmem->nr_ranges = 1;
544
545	/* Exclude Backup region */
546	start = image->arch.backup_load_addr;
547	end = start + image->arch.backup_src_sz - 1;
548	ret = exclude_mem_range(cmem, start, end);
549	if (ret)
550		return ret;
551
552	/* Exclude elf header region */
553	start = image->arch.elf_load_addr;
554	end = start + image->arch.elf_headers_sz - 1;
555	return exclude_mem_range(cmem, start, end);
556}
557
558/* Prepare memory map for crash dump kernel */
559int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
560{
561	int i, ret = 0;
562	unsigned long flags;
563	struct e820entry ei;
564	struct crash_memmap_data cmd;
565	struct crash_mem *cmem;
566
567	cmem = vzalloc(sizeof(struct crash_mem));
568	if (!cmem)
569		return -ENOMEM;
570
571	memset(&cmd, 0, sizeof(struct crash_memmap_data));
572	cmd.params = params;
573
574	/* Add first 640K segment */
575	ei.addr = image->arch.backup_src_start;
576	ei.size = image->arch.backup_src_sz;
577	ei.type = E820_RAM;
578	add_e820_entry(params, &ei);
579
580	/* Add ACPI tables */
581	cmd.type = E820_ACPI;
582	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
583	walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
584		       memmap_entry_callback);
585
586	/* Add ACPI Non-volatile Storage */
587	cmd.type = E820_NVS;
588	walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
589			memmap_entry_callback);
 
 
 
 
 
 
590
591	/* Add crashk_low_res region */
592	if (crashk_low_res.end) {
593		ei.addr = crashk_low_res.start;
594		ei.size = crashk_low_res.end - crashk_low_res.start + 1;
595		ei.type = E820_RAM;
596		add_e820_entry(params, &ei);
597	}
598
599	/* Exclude some ranges from crashk_res and add rest to memmap */
600	ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
601						crashk_res.end);
602	if (ret)
603		goto out;
604
605	for (i = 0; i < cmem->nr_ranges; i++) {
606		ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
607
608		/* If entry is less than a page, skip it */
609		if (ei.size < PAGE_SIZE)
610			continue;
611		ei.addr = cmem->ranges[i].start;
612		ei.type = E820_RAM;
613		add_e820_entry(params, &ei);
614	}
615
616out:
617	vfree(cmem);
618	return ret;
619}
620
621static int determine_backup_region(u64 start, u64 end, void *arg)
622{
623	struct kimage *image = arg;
624
625	image->arch.backup_src_start = start;
626	image->arch.backup_src_sz = end - start + 1;
627
628	/* Expecting only one range for backup region */
629	return 1;
630}
631
632int crash_load_segments(struct kimage *image)
633{
634	int ret;
 
635	struct kexec_buf kbuf = { .image = image, .buf_min = 0,
636				  .buf_max = ULONG_MAX, .top_down = false };
637
638	/*
639	 * Determine and load a segment for backup area. First 640K RAM
640	 * region is backup source
641	 */
642
643	ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
644				image, determine_backup_region);
645
646	/* Zero or postive return values are ok */
647	if (ret < 0)
648		return ret;
649
650	/* Add backup segment. */
651	if (image->arch.backup_src_sz) {
652		kbuf.buffer = &crash_zero_bytes;
653		kbuf.bufsz = sizeof(crash_zero_bytes);
654		kbuf.memsz = image->arch.backup_src_sz;
655		kbuf.buf_align = PAGE_SIZE;
656		/*
657		 * Ideally there is no source for backup segment. This is
658		 * copied in purgatory after crash. Just add a zero filled
659		 * segment for now to make sure checksum logic works fine.
660		 */
661		ret = kexec_add_buffer(&kbuf);
662		if (ret)
663			return ret;
664		image->arch.backup_load_addr = kbuf.mem;
665		pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
666			 image->arch.backup_load_addr,
667			 image->arch.backup_src_start, kbuf.memsz);
668	}
669
670	/* Prepare elf headers and add a segment */
671	ret = prepare_elf_headers(image, &kbuf.buffer, &kbuf.bufsz);
672	if (ret)
673		return ret;
674
675	image->arch.elf_headers = kbuf.buffer;
676	image->arch.elf_headers_sz = kbuf.bufsz;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677
678	kbuf.memsz = kbuf.bufsz;
679	kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
 
680	ret = kexec_add_buffer(&kbuf);
681	if (ret) {
682		vfree((void *)image->arch.elf_headers);
683		return ret;
684	}
685	image->arch.elf_load_addr = kbuf.mem;
686	pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
687		 image->arch.elf_load_addr, kbuf.bufsz, kbuf.bufsz);
688
689	return ret;
690}
691#endif /* CONFIG_KEXEC_FILE */
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
  4 *
  5 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
  6 *
  7 * Copyright (C) IBM Corporation, 2004. All rights reserved.
  8 * Copyright (C) Red Hat Inc., 2014. All rights reserved.
  9 * Authors:
 10 *      Vivek Goyal <vgoyal@redhat.com>
 11 *
 12 */
 13
 14#define pr_fmt(fmt)	"kexec: " fmt
 15
 16#include <linux/types.h>
 17#include <linux/kernel.h>
 18#include <linux/smp.h>
 19#include <linux/reboot.h>
 20#include <linux/kexec.h>
 21#include <linux/delay.h>
 22#include <linux/elf.h>
 23#include <linux/elfcore.h>
 24#include <linux/export.h>
 25#include <linux/slab.h>
 26#include <linux/vmalloc.h>
 27#include <linux/memblock.h>
 28
 29#include <asm/processor.h>
 30#include <asm/hardirq.h>
 31#include <asm/nmi.h>
 32#include <asm/hw_irq.h>
 33#include <asm/apic.h>
 34#include <asm/e820/types.h>
 35#include <asm/io_apic.h>
 36#include <asm/hpet.h>
 37#include <linux/kdebug.h>
 38#include <asm/cpu.h>
 39#include <asm/reboot.h>
 
 40#include <asm/intel_pt.h>
 41#include <asm/crash.h>
 42#include <asm/cmdline.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 43
 44/* Used while preparing memory map entries for second kernel */
 45struct crash_memmap_data {
 46	struct boot_params *params;
 47	/* Type of memory */
 48	unsigned int type;
 49};
 50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 51#if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
 52
 53static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
 54{
 
 
 
 
 
 
 
 
 55	crash_save_cpu(regs, cpu);
 56
 57	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58	 * Disable Intel PT to stop its logging
 59	 */
 60	cpu_emergency_stop_pt();
 61
 62	disable_local_APIC();
 63}
 64
 65void kdump_nmi_shootdown_cpus(void)
 66{
 67	nmi_shootdown_cpus(kdump_nmi_callback);
 68
 69	disable_local_APIC();
 70}
 71
 72/* Override the weak function in kernel/panic.c */
 73void crash_smp_send_stop(void)
 74{
 75	static int cpus_stopped;
 76
 77	if (cpus_stopped)
 78		return;
 79
 80	if (smp_ops.crash_stop_other_cpus)
 81		smp_ops.crash_stop_other_cpus();
 82	else
 83		smp_send_stop();
 84
 85	cpus_stopped = 1;
 86}
 87
 88#else
 89void crash_smp_send_stop(void)
 90{
 91	/* There are no cpus to shootdown */
 92}
 93#endif
 94
 95void native_machine_crash_shutdown(struct pt_regs *regs)
 96{
 97	/* This function is only called after the system
 98	 * has panicked or is otherwise in a critical state.
 99	 * The minimum amount of code to allow a kexec'd kernel
100	 * to run successfully needs to happen here.
101	 *
102	 * In practice this means shooting down the other cpus in
103	 * an SMP system.
104	 */
105	/* The kernel is broken so disable interrupts */
106	local_irq_disable();
107
108	crash_smp_send_stop();
109
110	cpu_emergency_disable_virtualization();
 
 
 
 
 
 
 
 
 
 
111
112	/*
113	 * Disable Intel PT to stop its logging
114	 */
115	cpu_emergency_stop_pt();
116
117#ifdef CONFIG_X86_IO_APIC
118	/* Prevent crash_kexec() from deadlocking on ioapic_lock. */
119	ioapic_zap_locks();
120	clear_IO_APIC();
121#endif
122	lapic_shutdown();
123	restore_boot_irq_mode();
124#ifdef CONFIG_HPET_TIMER
125	hpet_disable();
126#endif
127	crash_save_cpu(regs, safe_smp_processor_id());
128}
129
130#if defined(CONFIG_KEXEC_FILE) || defined(CONFIG_CRASH_HOTPLUG)
131static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
132{
133	unsigned int *nr_ranges = arg;
134
135	(*nr_ranges)++;
136	return 0;
137}
138
 
139/* Gather all the required information to prepare elf headers for ram regions */
140static struct crash_mem *fill_up_crash_elf_data(void)
 
141{
142	unsigned int nr_ranges = 0;
143	struct crash_mem *cmem;
144
145	walk_system_ram_res(0, -1, &nr_ranges, get_nr_ram_ranges_callback);
146	if (!nr_ranges)
147		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148
149	/*
150	 * Exclusion of crash region and/or crashk_low_res may cause
151	 * another range split. So add extra two slots here.
152	 */
153	nr_ranges += 2;
154	cmem = vzalloc(struct_size(cmem, ranges, nr_ranges));
155	if (!cmem)
156		return NULL;
 
157
158	cmem->max_nr_ranges = nr_ranges;
159	cmem->nr_ranges = 0;
 
 
 
 
 
160
161	return cmem;
 
 
 
162}
163
164/*
165 * Look for any unwanted ranges between mstart, mend and remove them. This
166 * might lead to split and split ranges are put in cmem->ranges[] array
167 */
168static int elf_header_exclude_ranges(struct crash_mem *cmem)
 
169{
 
170	int ret = 0;
171
172	/* Exclude the low 1M because it is always reserved */
173	ret = crash_exclude_mem_range(cmem, 0, SZ_1M - 1);
 
 
 
 
 
 
174	if (ret)
175		return ret;
176
177	/* Exclude crashkernel region */
178	ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179	if (ret)
180		return ret;
181
182	if (crashk_low_res.end)
183		ret = crash_exclude_mem_range(cmem, crashk_low_res.start,
184					      crashk_low_res.end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185
186	return ret;
187}
188
189static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
 
190{
191	struct crash_mem *cmem = arg;
 
 
 
 
 
 
192
193	cmem->ranges[cmem->nr_ranges].start = res->start;
194	cmem->ranges[cmem->nr_ranges].end = res->end;
195	cmem->nr_ranges++;
196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197	return 0;
198}
199
200/* Prepare elf headers. Return addr and size */
201static int prepare_elf_headers(void **addr, unsigned long *sz,
202			       unsigned long *nr_mem_ranges)
203{
204	struct crash_mem *cmem;
205	int ret;
206
207	cmem = fill_up_crash_elf_data();
208	if (!cmem)
209		return -ENOMEM;
210
211	ret = walk_system_ram_res(0, -1, cmem, prepare_elf64_ram_headers_callback);
212	if (ret)
213		goto out;
214
215	/* Exclude unwanted mem ranges */
216	ret = elf_header_exclude_ranges(cmem);
217	if (ret)
218		goto out;
219
220	/* Return the computed number of memory ranges, for hotplug usage */
221	*nr_mem_ranges = cmem->nr_ranges;
222
223	/* By default prepare 64bit headers */
224	ret = crash_prepare_elf64_headers(cmem, IS_ENABLED(CONFIG_X86_64), addr, sz);
225
226out:
227	vfree(cmem);
228	return ret;
229}
230#endif
231
232#ifdef CONFIG_KEXEC_FILE
233static int add_e820_entry(struct boot_params *params, struct e820_entry *entry)
234{
235	unsigned int nr_e820_entries;
236
237	nr_e820_entries = params->e820_entries;
238	if (nr_e820_entries >= E820_MAX_ENTRIES_ZEROPAGE)
239		return 1;
240
241	memcpy(&params->e820_table[nr_e820_entries], entry, sizeof(struct e820_entry));
 
242	params->e820_entries++;
243	return 0;
244}
245
246static int memmap_entry_callback(struct resource *res, void *arg)
247{
248	struct crash_memmap_data *cmd = arg;
249	struct boot_params *params = cmd->params;
250	struct e820_entry ei;
251
252	ei.addr = res->start;
253	ei.size = resource_size(res);
254	ei.type = cmd->type;
255	add_e820_entry(params, &ei);
256
257	return 0;
258}
259
260static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
261				 unsigned long long mstart,
262				 unsigned long long mend)
263{
264	unsigned long start, end;
 
265
266	cmem->ranges[0].start = mstart;
267	cmem->ranges[0].end = mend;
268	cmem->nr_ranges = 1;
269
 
 
 
 
 
 
 
270	/* Exclude elf header region */
271	start = image->elf_load_addr;
272	end = start + image->elf_headers_sz - 1;
273	return crash_exclude_mem_range(cmem, start, end);
274}
275
276/* Prepare memory map for crash dump kernel */
277int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
278{
279	int i, ret = 0;
280	unsigned long flags;
281	struct e820_entry ei;
282	struct crash_memmap_data cmd;
283	struct crash_mem *cmem;
284
285	cmem = vzalloc(struct_size(cmem, ranges, 1));
286	if (!cmem)
287		return -ENOMEM;
288
289	memset(&cmd, 0, sizeof(struct crash_memmap_data));
290	cmd.params = params;
291
292	/* Add the low 1M */
293	cmd.type = E820_TYPE_RAM;
294	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
295	walk_iomem_res_desc(IORES_DESC_NONE, flags, 0, (1<<20)-1, &cmd,
296			    memmap_entry_callback);
297
298	/* Add ACPI tables */
299	cmd.type = E820_TYPE_ACPI;
300	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
301	walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
302			    memmap_entry_callback);
303
304	/* Add ACPI Non-volatile Storage */
305	cmd.type = E820_TYPE_NVS;
306	walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
307			    memmap_entry_callback);
308
309	/* Add e820 reserved ranges */
310	cmd.type = E820_TYPE_RESERVED;
311	flags = IORESOURCE_MEM;
312	walk_iomem_res_desc(IORES_DESC_RESERVED, flags, 0, -1, &cmd,
313			    memmap_entry_callback);
314
315	/* Add crashk_low_res region */
316	if (crashk_low_res.end) {
317		ei.addr = crashk_low_res.start;
318		ei.size = resource_size(&crashk_low_res);
319		ei.type = E820_TYPE_RAM;
320		add_e820_entry(params, &ei);
321	}
322
323	/* Exclude some ranges from crashk_res and add rest to memmap */
324	ret = memmap_exclude_ranges(image, cmem, crashk_res.start, crashk_res.end);
 
325	if (ret)
326		goto out;
327
328	for (i = 0; i < cmem->nr_ranges; i++) {
329		ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
330
331		/* If entry is less than a page, skip it */
332		if (ei.size < PAGE_SIZE)
333			continue;
334		ei.addr = cmem->ranges[i].start;
335		ei.type = E820_TYPE_RAM;
336		add_e820_entry(params, &ei);
337	}
338
339out:
340	vfree(cmem);
341	return ret;
342}
343
 
 
 
 
 
 
 
 
 
 
 
344int crash_load_segments(struct kimage *image)
345{
346	int ret;
347	unsigned long pnum = 0;
348	struct kexec_buf kbuf = { .image = image, .buf_min = 0,
349				  .buf_max = ULONG_MAX, .top_down = false };
350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
351	/* Prepare elf headers and add a segment */
352	ret = prepare_elf_headers(&kbuf.buffer, &kbuf.bufsz, &pnum);
353	if (ret)
354		return ret;
355
356	image->elf_headers	= kbuf.buffer;
357	image->elf_headers_sz	= kbuf.bufsz;
358	kbuf.memsz		= kbuf.bufsz;
359
360#ifdef CONFIG_CRASH_HOTPLUG
361	/*
362	 * The elfcorehdr segment size accounts for VMCOREINFO, kernel_map,
363	 * maximum CPUs and maximum memory ranges.
364	 */
365	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
366		pnum = 2 + CONFIG_NR_CPUS_DEFAULT + CONFIG_CRASH_MAX_MEMORY_RANGES;
367	else
368		pnum += 2 + CONFIG_NR_CPUS_DEFAULT;
369
370	if (pnum < (unsigned long)PN_XNUM) {
371		kbuf.memsz = pnum * sizeof(Elf64_Phdr);
372		kbuf.memsz += sizeof(Elf64_Ehdr);
373
374		image->elfcorehdr_index = image->nr_segments;
375
376		/* Mark as usable to crash kernel, else crash kernel fails on boot */
377		image->elf_headers_sz = kbuf.memsz;
378	} else {
379		pr_err("number of Phdrs %lu exceeds max\n", pnum);
380	}
381#endif
382
 
383	kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
384	kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
385	ret = kexec_add_buffer(&kbuf);
386	if (ret)
 
387		return ret;
388	image->elf_load_addr = kbuf.mem;
389	kexec_dprintk("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
390		      image->elf_load_addr, kbuf.bufsz, kbuf.memsz);
 
391
392	return ret;
393}
394#endif /* CONFIG_KEXEC_FILE */
395
396#ifdef CONFIG_CRASH_HOTPLUG
397
398#undef pr_fmt
399#define pr_fmt(fmt) "crash hp: " fmt
400
401/* These functions provide the value for the sysfs crash_hotplug nodes */
402#ifdef CONFIG_HOTPLUG_CPU
403int arch_crash_hotplug_cpu_support(void)
404{
405	return crash_check_update_elfcorehdr();
406}
407#endif
408
409#ifdef CONFIG_MEMORY_HOTPLUG
410int arch_crash_hotplug_memory_support(void)
411{
412	return crash_check_update_elfcorehdr();
413}
414#endif
415
416unsigned int arch_crash_get_elfcorehdr_size(void)
417{
418	unsigned int sz;
419
420	/* kernel_map, VMCOREINFO and maximum CPUs */
421	sz = 2 + CONFIG_NR_CPUS_DEFAULT;
422	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
423		sz += CONFIG_CRASH_MAX_MEMORY_RANGES;
424	sz *= sizeof(Elf64_Phdr);
425	return sz;
426}
427
428/**
429 * arch_crash_handle_hotplug_event() - Handle hotplug elfcorehdr changes
430 * @image: a pointer to kexec_crash_image
431 *
432 * Prepare the new elfcorehdr and replace the existing elfcorehdr.
433 */
434void arch_crash_handle_hotplug_event(struct kimage *image)
435{
436	void *elfbuf = NULL, *old_elfcorehdr;
437	unsigned long nr_mem_ranges;
438	unsigned long mem, memsz;
439	unsigned long elfsz = 0;
440
441	/*
442	 * As crash_prepare_elf64_headers() has already described all
443	 * possible CPUs, there is no need to update the elfcorehdr
444	 * for additional CPU changes.
445	 */
446	if ((image->file_mode || image->elfcorehdr_updated) &&
447		((image->hp_action == KEXEC_CRASH_HP_ADD_CPU) ||
448		(image->hp_action == KEXEC_CRASH_HP_REMOVE_CPU)))
449		return;
450
451	/*
452	 * Create the new elfcorehdr reflecting the changes to CPU and/or
453	 * memory resources.
454	 */
455	if (prepare_elf_headers(&elfbuf, &elfsz, &nr_mem_ranges)) {
456		pr_err("unable to create new elfcorehdr");
457		goto out;
458	}
459
460	/*
461	 * Obtain address and size of the elfcorehdr segment, and
462	 * check it against the new elfcorehdr buffer.
463	 */
464	mem = image->segment[image->elfcorehdr_index].mem;
465	memsz = image->segment[image->elfcorehdr_index].memsz;
466	if (elfsz > memsz) {
467		pr_err("update elfcorehdr elfsz %lu > memsz %lu",
468			elfsz, memsz);
469		goto out;
470	}
471
472	/*
473	 * Copy new elfcorehdr over the old elfcorehdr at destination.
474	 */
475	old_elfcorehdr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
476	if (!old_elfcorehdr) {
477		pr_err("mapping elfcorehdr segment failed\n");
478		goto out;
479	}
480
481	/*
482	 * Temporarily invalidate the crash image while the
483	 * elfcorehdr is updated.
484	 */
485	xchg(&kexec_crash_image, NULL);
486	memcpy_flushcache(old_elfcorehdr, elfbuf, elfsz);
487	xchg(&kexec_crash_image, image);
488	kunmap_local(old_elfcorehdr);
489	pr_debug("updated elfcorehdr\n");
490
491out:
492	vfree(elfbuf);
493}
494#endif