Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * linux/kernel/power/snapshot.c
   3 *
   4 * This file provides system snapshot/restore functionality for swsusp.
   5 *
   6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   8 *
   9 * This file is released under the GPLv2.
  10 *
  11 */
  12
 
 
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/bootmem.h>
 
  25#include <linux/syscalls.h>
  26#include <linux/console.h>
  27#include <linux/highmem.h>
  28#include <linux/list.h>
  29#include <linux/slab.h>
  30#include <linux/compiler.h>
  31#include <linux/ktime.h>
 
  32
  33#include <linux/uaccess.h>
  34#include <asm/mmu_context.h>
  35#include <asm/pgtable.h>
  36#include <asm/tlbflush.h>
  37#include <asm/io.h>
  38
  39#include "power.h"
  40
  41#ifdef CONFIG_DEBUG_RODATA
  42static bool hibernate_restore_protection;
  43static bool hibernate_restore_protection_active;
  44
  45void enable_restore_image_protection(void)
  46{
  47	hibernate_restore_protection = true;
  48}
  49
  50static inline void hibernate_restore_protection_begin(void)
  51{
  52	hibernate_restore_protection_active = hibernate_restore_protection;
  53}
  54
  55static inline void hibernate_restore_protection_end(void)
  56{
  57	hibernate_restore_protection_active = false;
  58}
  59
  60static inline void hibernate_restore_protect_page(void *page_address)
  61{
  62	if (hibernate_restore_protection_active)
  63		set_memory_ro((unsigned long)page_address, 1);
  64}
  65
  66static inline void hibernate_restore_unprotect_page(void *page_address)
  67{
  68	if (hibernate_restore_protection_active)
  69		set_memory_rw((unsigned long)page_address, 1);
  70}
  71#else
  72static inline void hibernate_restore_protection_begin(void) {}
  73static inline void hibernate_restore_protection_end(void) {}
  74static inline void hibernate_restore_protect_page(void *page_address) {}
  75static inline void hibernate_restore_unprotect_page(void *page_address) {}
  76#endif /* CONFIG_DEBUG_RODATA */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77
  78static int swsusp_page_is_free(struct page *);
  79static void swsusp_set_page_forbidden(struct page *);
  80static void swsusp_unset_page_forbidden(struct page *);
  81
  82/*
  83 * Number of bytes to reserve for memory allocations made by device drivers
  84 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  85 * cause image creation to fail (tunable via /sys/power/reserved_size).
  86 */
  87unsigned long reserved_size;
  88
  89void __init hibernate_reserved_size_init(void)
  90{
  91	reserved_size = SPARE_PAGES * PAGE_SIZE;
  92}
  93
  94/*
  95 * Preferred image size in bytes (tunable via /sys/power/image_size).
  96 * When it is set to N, swsusp will do its best to ensure the image
  97 * size will not exceed N bytes, but if that is impossible, it will
  98 * try to create the smallest image possible.
  99 */
 100unsigned long image_size;
 101
 102void __init hibernate_image_size_init(void)
 103{
 104	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
 105}
 106
 107/*
 108 * List of PBEs needed for restoring the pages that were allocated before
 109 * the suspend and included in the suspend image, but have also been
 110 * allocated by the "resume" kernel, so their contents cannot be written
 111 * directly to their "original" page frames.
 112 */
 113struct pbe *restore_pblist;
 114
 115/* struct linked_page is used to build chains of pages */
 116
 117#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 118
 119struct linked_page {
 120	struct linked_page *next;
 121	char data[LINKED_PAGE_DATA_SIZE];
 122} __packed;
 123
 124/*
 125 * List of "safe" pages (ie. pages that were not used by the image kernel
 126 * before hibernation) that may be used as temporary storage for image kernel
 127 * memory contents.
 128 */
 129static struct linked_page *safe_pages_list;
 130
 131/* Pointer to an auxiliary buffer (1 page) */
 132static void *buffer;
 133
 134#define PG_ANY		0
 135#define PG_SAFE		1
 136#define PG_UNSAFE_CLEAR	1
 137#define PG_UNSAFE_KEEP	0
 138
 139static unsigned int allocated_unsafe_pages;
 140
 141/**
 142 * get_image_page - Allocate a page for a hibernation image.
 143 * @gfp_mask: GFP mask for the allocation.
 144 * @safe_needed: Get pages that were not used before hibernation (restore only)
 145 *
 146 * During image restoration, for storing the PBE list and the image data, we can
 147 * only use memory pages that do not conflict with the pages used before
 148 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 149 * using allocated_unsafe_pages.
 150 *
 151 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 152 * swsusp_free() can release it.
 153 */
 154static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 155{
 156	void *res;
 157
 158	res = (void *)get_zeroed_page(gfp_mask);
 159	if (safe_needed)
 160		while (res && swsusp_page_is_free(virt_to_page(res))) {
 161			/* The page is unsafe, mark it for swsusp_free() */
 162			swsusp_set_page_forbidden(virt_to_page(res));
 163			allocated_unsafe_pages++;
 164			res = (void *)get_zeroed_page(gfp_mask);
 165		}
 166	if (res) {
 167		swsusp_set_page_forbidden(virt_to_page(res));
 168		swsusp_set_page_free(virt_to_page(res));
 169	}
 170	return res;
 171}
 172
 173static void *__get_safe_page(gfp_t gfp_mask)
 174{
 175	if (safe_pages_list) {
 176		void *ret = safe_pages_list;
 177
 178		safe_pages_list = safe_pages_list->next;
 179		memset(ret, 0, PAGE_SIZE);
 180		return ret;
 181	}
 182	return get_image_page(gfp_mask, PG_SAFE);
 183}
 184
 185unsigned long get_safe_page(gfp_t gfp_mask)
 186{
 187	return (unsigned long)__get_safe_page(gfp_mask);
 188}
 189
 190static struct page *alloc_image_page(gfp_t gfp_mask)
 191{
 192	struct page *page;
 193
 194	page = alloc_page(gfp_mask);
 195	if (page) {
 196		swsusp_set_page_forbidden(page);
 197		swsusp_set_page_free(page);
 198	}
 199	return page;
 200}
 201
 202static void recycle_safe_page(void *page_address)
 203{
 204	struct linked_page *lp = page_address;
 205
 206	lp->next = safe_pages_list;
 207	safe_pages_list = lp;
 208}
 209
 210/**
 211 * free_image_page - Free a page allocated for hibernation image.
 212 * @addr: Address of the page to free.
 213 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 214 *
 215 * The page to free should have been allocated by get_image_page() (page flags
 216 * set by it are affected).
 217 */
 218static inline void free_image_page(void *addr, int clear_nosave_free)
 219{
 220	struct page *page;
 221
 222	BUG_ON(!virt_addr_valid(addr));
 223
 224	page = virt_to_page(addr);
 225
 226	swsusp_unset_page_forbidden(page);
 227	if (clear_nosave_free)
 228		swsusp_unset_page_free(page);
 229
 230	__free_page(page);
 231}
 232
 233static inline void free_list_of_pages(struct linked_page *list,
 234				      int clear_page_nosave)
 235{
 236	while (list) {
 237		struct linked_page *lp = list->next;
 238
 239		free_image_page(list, clear_page_nosave);
 240		list = lp;
 241	}
 242}
 243
 244/*
 245 * struct chain_allocator is used for allocating small objects out of
 246 * a linked list of pages called 'the chain'.
 247 *
 248 * The chain grows each time when there is no room for a new object in
 249 * the current page.  The allocated objects cannot be freed individually.
 250 * It is only possible to free them all at once, by freeing the entire
 251 * chain.
 252 *
 253 * NOTE: The chain allocator may be inefficient if the allocated objects
 254 * are not much smaller than PAGE_SIZE.
 255 */
 256struct chain_allocator {
 257	struct linked_page *chain;	/* the chain */
 258	unsigned int used_space;	/* total size of objects allocated out
 259					   of the current page */
 260	gfp_t gfp_mask;		/* mask for allocating pages */
 261	int safe_needed;	/* if set, only "safe" pages are allocated */
 262};
 263
 264static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
 265		       int safe_needed)
 266{
 267	ca->chain = NULL;
 268	ca->used_space = LINKED_PAGE_DATA_SIZE;
 269	ca->gfp_mask = gfp_mask;
 270	ca->safe_needed = safe_needed;
 271}
 272
 273static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 274{
 275	void *ret;
 276
 277	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 278		struct linked_page *lp;
 279
 280		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
 281					get_image_page(ca->gfp_mask, PG_ANY);
 282		if (!lp)
 283			return NULL;
 284
 285		lp->next = ca->chain;
 286		ca->chain = lp;
 287		ca->used_space = 0;
 288	}
 289	ret = ca->chain->data + ca->used_space;
 290	ca->used_space += size;
 291	return ret;
 292}
 293
 294/**
 295 * Data types related to memory bitmaps.
 296 *
 297 * Memory bitmap is a structure consiting of many linked lists of
 298 * objects.  The main list's elements are of type struct zone_bitmap
 299 * and each of them corresonds to one zone.  For each zone bitmap
 300 * object there is a list of objects of type struct bm_block that
 301 * represent each blocks of bitmap in which information is stored.
 302 *
 303 * struct memory_bitmap contains a pointer to the main list of zone
 304 * bitmap objects, a struct bm_position used for browsing the bitmap,
 305 * and a pointer to the list of pages used for allocating all of the
 306 * zone bitmap objects and bitmap block objects.
 307 *
 308 * NOTE: It has to be possible to lay out the bitmap in memory
 309 * using only allocations of order 0.  Additionally, the bitmap is
 310 * designed to work with arbitrary number of zones (this is over the
 311 * top for now, but let's avoid making unnecessary assumptions ;-).
 312 *
 313 * struct zone_bitmap contains a pointer to a list of bitmap block
 314 * objects and a pointer to the bitmap block object that has been
 315 * most recently used for setting bits.  Additionally, it contains the
 316 * PFNs that correspond to the start and end of the represented zone.
 317 *
 318 * struct bm_block contains a pointer to the memory page in which
 319 * information is stored (in the form of a block of bitmap)
 320 * It also contains the pfns that correspond to the start and end of
 321 * the represented memory area.
 322 *
 323 * The memory bitmap is organized as a radix tree to guarantee fast random
 324 * access to the bits. There is one radix tree for each zone (as returned
 325 * from create_mem_extents).
 326 *
 327 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 328 * two linked lists for the nodes of the tree, one for the inner nodes and
 329 * one for the leave nodes. The linked leave nodes are used for fast linear
 330 * access of the memory bitmap.
 331 *
 332 * The struct rtree_node represents one node of the radix tree.
 333 */
 334
 335#define BM_END_OF_MAP	(~0UL)
 336
 337#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 338#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 339#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 340
 341/*
 342 * struct rtree_node is a wrapper struct to link the nodes
 343 * of the rtree together for easy linear iteration over
 344 * bits and easy freeing
 345 */
 346struct rtree_node {
 347	struct list_head list;
 348	unsigned long *data;
 349};
 350
 351/*
 352 * struct mem_zone_bm_rtree represents a bitmap used for one
 353 * populated memory zone.
 354 */
 355struct mem_zone_bm_rtree {
 356	struct list_head list;		/* Link Zones together         */
 357	struct list_head nodes;		/* Radix Tree inner nodes      */
 358	struct list_head leaves;	/* Radix Tree leaves           */
 359	unsigned long start_pfn;	/* Zone start page frame       */
 360	unsigned long end_pfn;		/* Zone end page frame + 1     */
 361	struct rtree_node *rtree;	/* Radix Tree Root             */
 362	int levels;			/* Number of Radix Tree Levels */
 363	unsigned int blocks;		/* Number of Bitmap Blocks     */
 364};
 365
 366/* strcut bm_position is used for browsing memory bitmaps */
 367
 368struct bm_position {
 369	struct mem_zone_bm_rtree *zone;
 370	struct rtree_node *node;
 371	unsigned long node_pfn;
 
 372	int node_bit;
 373};
 374
 375struct memory_bitmap {
 376	struct list_head zones;
 377	struct linked_page *p_list;	/* list of pages used to store zone
 378					   bitmap objects and bitmap block
 379					   objects */
 380	struct bm_position cur;	/* most recently used bit position */
 381};
 382
 383/* Functions that operate on memory bitmaps */
 384
 385#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 386#if BITS_PER_LONG == 32
 387#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 388#else
 389#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 390#endif
 391#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 392
 393/**
 394 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
 
 
 
 
 395 *
 396 * This function is used to allocate inner nodes as well as the
 397 * leave nodes of the radix tree. It also adds the node to the
 398 * corresponding linked list passed in by the *list parameter.
 399 */
 400static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 401					   struct chain_allocator *ca,
 402					   struct list_head *list)
 403{
 404	struct rtree_node *node;
 405
 406	node = chain_alloc(ca, sizeof(struct rtree_node));
 407	if (!node)
 408		return NULL;
 409
 410	node->data = get_image_page(gfp_mask, safe_needed);
 411	if (!node->data)
 412		return NULL;
 413
 414	list_add_tail(&node->list, list);
 415
 416	return node;
 417}
 418
 419/**
 420 * add_rtree_block - Add a new leave node to the radix tree.
 421 *
 422 * The leave nodes need to be allocated in order to keep the leaves
 423 * linked list in order. This is guaranteed by the zone->blocks
 424 * counter.
 425 */
 426static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 427			   int safe_needed, struct chain_allocator *ca)
 428{
 429	struct rtree_node *node, *block, **dst;
 430	unsigned int levels_needed, block_nr;
 431	int i;
 432
 433	block_nr = zone->blocks;
 434	levels_needed = 0;
 435
 436	/* How many levels do we need for this block nr? */
 437	while (block_nr) {
 438		levels_needed += 1;
 439		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 440	}
 441
 442	/* Make sure the rtree has enough levels */
 443	for (i = zone->levels; i < levels_needed; i++) {
 444		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 445					&zone->nodes);
 446		if (!node)
 447			return -ENOMEM;
 448
 449		node->data[0] = (unsigned long)zone->rtree;
 450		zone->rtree = node;
 451		zone->levels += 1;
 452	}
 453
 454	/* Allocate new block */
 455	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 456	if (!block)
 457		return -ENOMEM;
 458
 459	/* Now walk the rtree to insert the block */
 460	node = zone->rtree;
 461	dst = &zone->rtree;
 462	block_nr = zone->blocks;
 463	for (i = zone->levels; i > 0; i--) {
 464		int index;
 465
 466		if (!node) {
 467			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 468						&zone->nodes);
 469			if (!node)
 470				return -ENOMEM;
 471			*dst = node;
 472		}
 473
 474		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 475		index &= BM_RTREE_LEVEL_MASK;
 476		dst = (struct rtree_node **)&((*dst)->data[index]);
 477		node = *dst;
 478	}
 479
 480	zone->blocks += 1;
 481	*dst = block;
 482
 483	return 0;
 484}
 485
 486static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 487			       int clear_nosave_free);
 488
 489/**
 490 * create_zone_bm_rtree - Create a radix tree for one zone.
 491 *
 492 * Allocated the mem_zone_bm_rtree structure and initializes it.
 493 * This function also allocated and builds the radix tree for the
 494 * zone.
 495 */
 496static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
 497						      int safe_needed,
 498						      struct chain_allocator *ca,
 499						      unsigned long start,
 500						      unsigned long end)
 501{
 502	struct mem_zone_bm_rtree *zone;
 503	unsigned int i, nr_blocks;
 504	unsigned long pages;
 505
 506	pages = end - start;
 507	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 508	if (!zone)
 509		return NULL;
 510
 511	INIT_LIST_HEAD(&zone->nodes);
 512	INIT_LIST_HEAD(&zone->leaves);
 513	zone->start_pfn = start;
 514	zone->end_pfn = end;
 515	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 516
 517	for (i = 0; i < nr_blocks; i++) {
 518		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 519			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 520			return NULL;
 521		}
 522	}
 523
 524	return zone;
 525}
 526
 527/**
 528 * free_zone_bm_rtree - Free the memory of the radix tree.
 529 *
 530 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 531 * structure itself is not freed here nor are the rtree_node
 532 * structs.
 533 */
 534static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 535			       int clear_nosave_free)
 536{
 537	struct rtree_node *node;
 538
 539	list_for_each_entry(node, &zone->nodes, list)
 540		free_image_page(node->data, clear_nosave_free);
 541
 542	list_for_each_entry(node, &zone->leaves, list)
 543		free_image_page(node->data, clear_nosave_free);
 544}
 545
 546static void memory_bm_position_reset(struct memory_bitmap *bm)
 547{
 548	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 549				  list);
 550	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 551				  struct rtree_node, list);
 552	bm->cur.node_pfn = 0;
 
 553	bm->cur.node_bit = 0;
 554}
 555
 556static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 557
 558struct mem_extent {
 559	struct list_head hook;
 560	unsigned long start;
 561	unsigned long end;
 562};
 563
 564/**
 565 * free_mem_extents - Free a list of memory extents.
 566 * @list: List of extents to free.
 567 */
 568static void free_mem_extents(struct list_head *list)
 569{
 570	struct mem_extent *ext, *aux;
 571
 572	list_for_each_entry_safe(ext, aux, list, hook) {
 573		list_del(&ext->hook);
 574		kfree(ext);
 575	}
 576}
 577
 578/**
 579 * create_mem_extents - Create a list of memory extents.
 580 * @list: List to put the extents into.
 581 * @gfp_mask: Mask to use for memory allocations.
 582 *
 583 * The extents represent contiguous ranges of PFNs.
 584 */
 585static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 586{
 587	struct zone *zone;
 588
 589	INIT_LIST_HEAD(list);
 590
 591	for_each_populated_zone(zone) {
 592		unsigned long zone_start, zone_end;
 593		struct mem_extent *ext, *cur, *aux;
 594
 595		zone_start = zone->zone_start_pfn;
 596		zone_end = zone_end_pfn(zone);
 597
 598		list_for_each_entry(ext, list, hook)
 599			if (zone_start <= ext->end)
 600				break;
 601
 602		if (&ext->hook == list || zone_end < ext->start) {
 603			/* New extent is necessary */
 604			struct mem_extent *new_ext;
 605
 606			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 607			if (!new_ext) {
 608				free_mem_extents(list);
 609				return -ENOMEM;
 610			}
 611			new_ext->start = zone_start;
 612			new_ext->end = zone_end;
 613			list_add_tail(&new_ext->hook, &ext->hook);
 614			continue;
 615		}
 616
 617		/* Merge this zone's range of PFNs with the existing one */
 618		if (zone_start < ext->start)
 619			ext->start = zone_start;
 620		if (zone_end > ext->end)
 621			ext->end = zone_end;
 622
 623		/* More merging may be possible */
 624		cur = ext;
 625		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 626			if (zone_end < cur->start)
 627				break;
 628			if (zone_end < cur->end)
 629				ext->end = cur->end;
 630			list_del(&cur->hook);
 631			kfree(cur);
 632		}
 633	}
 634
 635	return 0;
 636}
 637
 638/**
 639 * memory_bm_create - Allocate memory for a memory bitmap.
 640 */
 641static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
 642			    int safe_needed)
 643{
 644	struct chain_allocator ca;
 645	struct list_head mem_extents;
 646	struct mem_extent *ext;
 647	int error;
 648
 649	chain_init(&ca, gfp_mask, safe_needed);
 650	INIT_LIST_HEAD(&bm->zones);
 651
 652	error = create_mem_extents(&mem_extents, gfp_mask);
 653	if (error)
 654		return error;
 655
 656	list_for_each_entry(ext, &mem_extents, hook) {
 657		struct mem_zone_bm_rtree *zone;
 658
 659		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 660					    ext->start, ext->end);
 661		if (!zone) {
 662			error = -ENOMEM;
 663			goto Error;
 664		}
 665		list_add_tail(&zone->list, &bm->zones);
 666	}
 667
 668	bm->p_list = ca.chain;
 669	memory_bm_position_reset(bm);
 670 Exit:
 671	free_mem_extents(&mem_extents);
 672	return error;
 673
 674 Error:
 675	bm->p_list = ca.chain;
 676	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 677	goto Exit;
 678}
 679
 680/**
 681 * memory_bm_free - Free memory occupied by the memory bitmap.
 682 * @bm: Memory bitmap.
 683 */
 684static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 685{
 686	struct mem_zone_bm_rtree *zone;
 687
 688	list_for_each_entry(zone, &bm->zones, list)
 689		free_zone_bm_rtree(zone, clear_nosave_free);
 690
 691	free_list_of_pages(bm->p_list, clear_nosave_free);
 692
 693	INIT_LIST_HEAD(&bm->zones);
 694}
 695
 696/**
 697 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
 698 *
 699 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 700 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 701 *
 702 * Walk the radix tree to find the page containing the bit that represents @pfn
 703 * and return the position of the bit in @addr and @bit_nr.
 704 */
 705static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 706			      void **addr, unsigned int *bit_nr)
 707{
 708	struct mem_zone_bm_rtree *curr, *zone;
 709	struct rtree_node *node;
 710	int i, block_nr;
 711
 712	zone = bm->cur.zone;
 713
 714	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 715		goto zone_found;
 716
 717	zone = NULL;
 718
 719	/* Find the right zone */
 720	list_for_each_entry(curr, &bm->zones, list) {
 721		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 722			zone = curr;
 723			break;
 724		}
 725	}
 726
 727	if (!zone)
 728		return -EFAULT;
 729
 730zone_found:
 731	/*
 732	 * We have found the zone. Now walk the radix tree to find the leaf node
 733	 * for our PFN.
 734	 */
 
 
 
 
 
 
 735	node = bm->cur.node;
 736	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 
 737		goto node_found;
 738
 739	node      = zone->rtree;
 740	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 741
 742	for (i = zone->levels; i > 0; i--) {
 743		int index;
 744
 745		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 746		index &= BM_RTREE_LEVEL_MASK;
 747		BUG_ON(node->data[index] == 0);
 748		node = (struct rtree_node *)node->data[index];
 749	}
 750
 751node_found:
 752	/* Update last position */
 753	bm->cur.zone = zone;
 754	bm->cur.node = node;
 755	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 
 756
 757	/* Set return values */
 758	*addr = node->data;
 759	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 760
 761	return 0;
 762}
 763
 764static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 765{
 766	void *addr;
 767	unsigned int bit;
 768	int error;
 769
 770	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 771	BUG_ON(error);
 772	set_bit(bit, addr);
 773}
 774
 775static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 776{
 777	void *addr;
 778	unsigned int bit;
 779	int error;
 780
 781	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 782	if (!error)
 783		set_bit(bit, addr);
 784
 785	return error;
 786}
 787
 788static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 789{
 790	void *addr;
 791	unsigned int bit;
 792	int error;
 793
 794	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 795	BUG_ON(error);
 796	clear_bit(bit, addr);
 797}
 798
 799static void memory_bm_clear_current(struct memory_bitmap *bm)
 800{
 801	int bit;
 802
 803	bit = max(bm->cur.node_bit - 1, 0);
 804	clear_bit(bit, bm->cur.node->data);
 805}
 806
 
 
 
 
 
 807static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 808{
 809	void *addr;
 810	unsigned int bit;
 811	int error;
 812
 813	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 814	BUG_ON(error);
 815	return test_bit(bit, addr);
 816}
 817
 818static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 819{
 820	void *addr;
 821	unsigned int bit;
 822
 823	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 824}
 825
 826/*
 827 * rtree_next_node - Jump to the next leaf node.
 828 *
 829 * Set the position to the beginning of the next node in the
 830 * memory bitmap. This is either the next node in the current
 831 * zone's radix tree or the first node in the radix tree of the
 832 * next zone.
 833 *
 834 * Return true if there is a next node, false otherwise.
 835 */
 836static bool rtree_next_node(struct memory_bitmap *bm)
 837{
 838	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
 839		bm->cur.node = list_entry(bm->cur.node->list.next,
 840					  struct rtree_node, list);
 841		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 842		bm->cur.node_bit  = 0;
 843		touch_softlockup_watchdog();
 844		return true;
 845	}
 846
 847	/* No more nodes, goto next zone */
 848	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
 849		bm->cur.zone = list_entry(bm->cur.zone->list.next,
 850				  struct mem_zone_bm_rtree, list);
 851		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 852					  struct rtree_node, list);
 853		bm->cur.node_pfn = 0;
 854		bm->cur.node_bit = 0;
 855		return true;
 856	}
 857
 858	/* No more zones */
 859	return false;
 860}
 861
 862/**
 863 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 864 * @bm: Memory bitmap.
 865 *
 866 * Starting from the last returned position this function searches for the next
 867 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 868 * set, BM_END_OF_MAP is returned.
 869 *
 870 * It is required to run memory_bm_position_reset() before the first call to
 871 * this function for the given memory bitmap.
 872 */
 873static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 874{
 875	unsigned long bits, pfn, pages;
 876	int bit;
 877
 878	do {
 879		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 880		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 881		bit	  = find_next_bit(bm->cur.node->data, bits,
 882					  bm->cur.node_bit);
 883		if (bit < bits) {
 884			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 885			bm->cur.node_bit = bit + 1;
 
 886			return pfn;
 887		}
 888	} while (rtree_next_node(bm));
 889
 
 890	return BM_END_OF_MAP;
 891}
 892
 893/*
 894 * This structure represents a range of page frames the contents of which
 895 * should not be saved during hibernation.
 896 */
 897struct nosave_region {
 898	struct list_head list;
 899	unsigned long start_pfn;
 900	unsigned long end_pfn;
 901};
 902
 903static LIST_HEAD(nosave_regions);
 904
 905static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
 906{
 907	struct rtree_node *node;
 908
 909	list_for_each_entry(node, &zone->nodes, list)
 910		recycle_safe_page(node->data);
 911
 912	list_for_each_entry(node, &zone->leaves, list)
 913		recycle_safe_page(node->data);
 914}
 915
 916static void memory_bm_recycle(struct memory_bitmap *bm)
 917{
 918	struct mem_zone_bm_rtree *zone;
 919	struct linked_page *p_list;
 920
 921	list_for_each_entry(zone, &bm->zones, list)
 922		recycle_zone_bm_rtree(zone);
 923
 924	p_list = bm->p_list;
 925	while (p_list) {
 926		struct linked_page *lp = p_list;
 927
 928		p_list = lp->next;
 929		recycle_safe_page(lp);
 930	}
 931}
 932
 933/**
 934 * register_nosave_region - Register a region of unsaveable memory.
 935 *
 936 * Register a range of page frames the contents of which should not be saved
 937 * during hibernation (to be used in the early initialization code).
 938 */
 939void __init __register_nosave_region(unsigned long start_pfn,
 940				     unsigned long end_pfn, int use_kmalloc)
 941{
 942	struct nosave_region *region;
 943
 944	if (start_pfn >= end_pfn)
 945		return;
 946
 947	if (!list_empty(&nosave_regions)) {
 948		/* Try to extend the previous region (they should be sorted) */
 949		region = list_entry(nosave_regions.prev,
 950					struct nosave_region, list);
 951		if (region->end_pfn == start_pfn) {
 952			region->end_pfn = end_pfn;
 953			goto Report;
 954		}
 955	}
 956	if (use_kmalloc) {
 957		/* During init, this shouldn't fail */
 958		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 959		BUG_ON(!region);
 960	} else {
 961		/* This allocation cannot fail */
 962		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
 963	}
 964	region->start_pfn = start_pfn;
 965	region->end_pfn = end_pfn;
 966	list_add_tail(&region->list, &nosave_regions);
 967 Report:
 968	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
 969		(unsigned long long) start_pfn << PAGE_SHIFT,
 970		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 971}
 972
 973/*
 974 * Set bits in this map correspond to the page frames the contents of which
 975 * should not be saved during the suspend.
 976 */
 977static struct memory_bitmap *forbidden_pages_map;
 978
 979/* Set bits in this map correspond to free page frames. */
 980static struct memory_bitmap *free_pages_map;
 981
 982/*
 983 * Each page frame allocated for creating the image is marked by setting the
 984 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 985 */
 986
 987void swsusp_set_page_free(struct page *page)
 988{
 989	if (free_pages_map)
 990		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 991}
 992
 993static int swsusp_page_is_free(struct page *page)
 994{
 995	return free_pages_map ?
 996		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
 997}
 998
 999void swsusp_unset_page_free(struct page *page)
1000{
1001	if (free_pages_map)
1002		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1003}
1004
1005static void swsusp_set_page_forbidden(struct page *page)
1006{
1007	if (forbidden_pages_map)
1008		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1009}
1010
1011int swsusp_page_is_forbidden(struct page *page)
1012{
1013	return forbidden_pages_map ?
1014		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1015}
1016
1017static void swsusp_unset_page_forbidden(struct page *page)
1018{
1019	if (forbidden_pages_map)
1020		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1021}
1022
1023/**
1024 * mark_nosave_pages - Mark pages that should not be saved.
1025 * @bm: Memory bitmap.
1026 *
1027 * Set the bits in @bm that correspond to the page frames the contents of which
1028 * should not be saved.
1029 */
1030static void mark_nosave_pages(struct memory_bitmap *bm)
1031{
1032	struct nosave_region *region;
1033
1034	if (list_empty(&nosave_regions))
1035		return;
1036
1037	list_for_each_entry(region, &nosave_regions, list) {
1038		unsigned long pfn;
1039
1040		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
1041			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1042			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1043				- 1);
1044
1045		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1046			if (pfn_valid(pfn)) {
1047				/*
1048				 * It is safe to ignore the result of
1049				 * mem_bm_set_bit_check() here, since we won't
1050				 * touch the PFNs for which the error is
1051				 * returned anyway.
1052				 */
1053				mem_bm_set_bit_check(bm, pfn);
1054			}
1055	}
1056}
1057
1058/**
1059 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1060 *
1061 * Create bitmaps needed for marking page frames that should not be saved and
1062 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1063 * only modified if everything goes well, because we don't want the bits to be
1064 * touched before both bitmaps are set up.
1065 */
1066int create_basic_memory_bitmaps(void)
1067{
1068	struct memory_bitmap *bm1, *bm2;
1069	int error = 0;
1070
1071	if (forbidden_pages_map && free_pages_map)
1072		return 0;
1073	else
1074		BUG_ON(forbidden_pages_map || free_pages_map);
1075
1076	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1077	if (!bm1)
1078		return -ENOMEM;
1079
1080	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1081	if (error)
1082		goto Free_first_object;
1083
1084	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1085	if (!bm2)
1086		goto Free_first_bitmap;
1087
1088	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1089	if (error)
1090		goto Free_second_object;
1091
1092	forbidden_pages_map = bm1;
1093	free_pages_map = bm2;
1094	mark_nosave_pages(forbidden_pages_map);
1095
1096	pr_debug("PM: Basic memory bitmaps created\n");
1097
1098	return 0;
1099
1100 Free_second_object:
1101	kfree(bm2);
1102 Free_first_bitmap:
1103 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1104 Free_first_object:
1105	kfree(bm1);
1106	return -ENOMEM;
1107}
1108
1109/**
1110 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1111 *
1112 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1113 * auxiliary pointers are necessary so that the bitmaps themselves are not
1114 * referred to while they are being freed.
1115 */
1116void free_basic_memory_bitmaps(void)
1117{
1118	struct memory_bitmap *bm1, *bm2;
1119
1120	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1121		return;
1122
1123	bm1 = forbidden_pages_map;
1124	bm2 = free_pages_map;
1125	forbidden_pages_map = NULL;
1126	free_pages_map = NULL;
1127	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1128	kfree(bm1);
1129	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1130	kfree(bm2);
1131
1132	pr_debug("PM: Basic memory bitmaps freed\n");
1133}
1134
1135void clear_free_pages(void)
 
 
 
 
 
 
 
 
1136{
1137#ifdef CONFIG_PAGE_POISONING_ZERO
1138	struct memory_bitmap *bm = free_pages_map;
1139	unsigned long pfn;
1140
1141	if (WARN_ON(!(free_pages_map)))
1142		return;
1143
1144	memory_bm_position_reset(bm);
1145	pfn = memory_bm_next_pfn(bm);
1146	while (pfn != BM_END_OF_MAP) {
1147		if (pfn_valid(pfn))
1148			clear_highpage(pfn_to_page(pfn));
1149
1150		pfn = memory_bm_next_pfn(bm);
 
 
 
 
 
 
 
 
1151	}
1152	memory_bm_position_reset(bm);
1153	pr_info("PM: free pages cleared after restore\n");
1154#endif /* PAGE_POISONING_ZERO */
1155}
1156
1157/**
1158 * snapshot_additional_pages - Estimate the number of extra pages needed.
1159 * @zone: Memory zone to carry out the computation for.
1160 *
1161 * Estimate the number of additional pages needed for setting up a hibernation
1162 * image data structures for @zone (usually, the returned value is greater than
1163 * the exact number).
1164 */
1165unsigned int snapshot_additional_pages(struct zone *zone)
1166{
1167	unsigned int rtree, nodes;
1168
1169	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1170	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1171			      LINKED_PAGE_DATA_SIZE);
1172	while (nodes > 1) {
1173		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1174		rtree += nodes;
1175	}
1176
1177	return 2 * rtree;
1178}
1179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180#ifdef CONFIG_HIGHMEM
1181/**
1182 * count_free_highmem_pages - Compute the total number of free highmem pages.
1183 *
1184 * The returned number is system-wide.
1185 */
1186static unsigned int count_free_highmem_pages(void)
1187{
1188	struct zone *zone;
1189	unsigned int cnt = 0;
1190
1191	for_each_populated_zone(zone)
1192		if (is_highmem(zone))
1193			cnt += zone_page_state(zone, NR_FREE_PAGES);
1194
1195	return cnt;
1196}
1197
1198/**
1199 * saveable_highmem_page - Check if a highmem page is saveable.
1200 *
1201 * Determine whether a highmem page should be included in a hibernation image.
1202 *
1203 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1204 * and it isn't part of a free chunk of pages.
1205 */
1206static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1207{
1208	struct page *page;
1209
1210	if (!pfn_valid(pfn))
1211		return NULL;
1212
1213	page = pfn_to_page(pfn);
1214	if (page_zone(page) != zone)
1215		return NULL;
1216
1217	BUG_ON(!PageHighMem(page));
1218
1219	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1220	    PageReserved(page))
 
 
1221		return NULL;
1222
1223	if (page_is_guard(page))
1224		return NULL;
1225
1226	return page;
1227}
1228
1229/**
1230 * count_highmem_pages - Compute the total number of saveable highmem pages.
1231 */
1232static unsigned int count_highmem_pages(void)
1233{
1234	struct zone *zone;
1235	unsigned int n = 0;
1236
1237	for_each_populated_zone(zone) {
1238		unsigned long pfn, max_zone_pfn;
1239
1240		if (!is_highmem(zone))
1241			continue;
1242
1243		mark_free_pages(zone);
1244		max_zone_pfn = zone_end_pfn(zone);
1245		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1246			if (saveable_highmem_page(zone, pfn))
1247				n++;
1248	}
1249	return n;
1250}
1251#else
1252static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1253{
1254	return NULL;
1255}
1256#endif /* CONFIG_HIGHMEM */
1257
1258/**
1259 * saveable_page - Check if the given page is saveable.
1260 *
1261 * Determine whether a non-highmem page should be included in a hibernation
1262 * image.
1263 *
1264 * We should save the page if it isn't Nosave, and is not in the range
1265 * of pages statically defined as 'unsaveable', and it isn't part of
1266 * a free chunk of pages.
1267 */
1268static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1269{
1270	struct page *page;
1271
1272	if (!pfn_valid(pfn))
1273		return NULL;
1274
1275	page = pfn_to_page(pfn);
1276	if (page_zone(page) != zone)
1277		return NULL;
1278
1279	BUG_ON(PageHighMem(page));
1280
1281	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1282		return NULL;
1283
 
 
 
1284	if (PageReserved(page)
1285	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1286		return NULL;
1287
1288	if (page_is_guard(page))
1289		return NULL;
1290
1291	return page;
1292}
1293
1294/**
1295 * count_data_pages - Compute the total number of saveable non-highmem pages.
1296 */
1297static unsigned int count_data_pages(void)
1298{
1299	struct zone *zone;
1300	unsigned long pfn, max_zone_pfn;
1301	unsigned int n = 0;
1302
1303	for_each_populated_zone(zone) {
1304		if (is_highmem(zone))
1305			continue;
1306
1307		mark_free_pages(zone);
1308		max_zone_pfn = zone_end_pfn(zone);
1309		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1310			if (saveable_page(zone, pfn))
1311				n++;
1312	}
1313	return n;
1314}
1315
1316/*
1317 * This is needed, because copy_page and memcpy are not usable for copying
1318 * task structs.
 
1319 */
1320static inline void do_copy_page(long *dst, long *src)
1321{
 
1322	int n;
1323
1324	for (n = PAGE_SIZE / sizeof(long); n; n--)
 
1325		*dst++ = *src++;
 
 
1326}
1327
1328/**
1329 * safe_copy_page - Copy a page in a safe way.
1330 *
1331 * Check if the page we are going to copy is marked as present in the kernel
1332 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1333 * and in that case kernel_page_present() always returns 'true').
 
 
1334 */
1335static void safe_copy_page(void *dst, struct page *s_page)
1336{
 
 
1337	if (kernel_page_present(s_page)) {
1338		do_copy_page(dst, page_address(s_page));
1339	} else {
1340		kernel_map_pages(s_page, 1, 1);
1341		do_copy_page(dst, page_address(s_page));
1342		kernel_map_pages(s_page, 1, 0);
1343	}
 
1344}
1345
1346#ifdef CONFIG_HIGHMEM
1347static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1348{
1349	return is_highmem(zone) ?
1350		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1351}
1352
1353static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1354{
1355	struct page *s_page, *d_page;
1356	void *src, *dst;
 
1357
1358	s_page = pfn_to_page(src_pfn);
1359	d_page = pfn_to_page(dst_pfn);
1360	if (PageHighMem(s_page)) {
1361		src = kmap_atomic(s_page);
1362		dst = kmap_atomic(d_page);
1363		do_copy_page(dst, src);
1364		kunmap_atomic(dst);
1365		kunmap_atomic(src);
1366	} else {
1367		if (PageHighMem(d_page)) {
1368			/*
1369			 * The page pointed to by src may contain some kernel
1370			 * data modified by kmap_atomic()
1371			 */
1372			safe_copy_page(buffer, s_page);
1373			dst = kmap_atomic(d_page);
1374			copy_page(dst, buffer);
1375			kunmap_atomic(dst);
1376		} else {
1377			safe_copy_page(page_address(d_page), s_page);
1378		}
1379	}
 
1380}
1381#else
1382#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1383
1384static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1385{
1386	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1387				pfn_to_page(src_pfn));
1388}
1389#endif /* CONFIG_HIGHMEM */
1390
1391static void copy_data_pages(struct memory_bitmap *copy_bm,
1392			    struct memory_bitmap *orig_bm)
 
 
 
 
 
 
 
1393{
 
1394	struct zone *zone;
1395	unsigned long pfn;
1396
1397	for_each_populated_zone(zone) {
1398		unsigned long max_zone_pfn;
1399
1400		mark_free_pages(zone);
1401		max_zone_pfn = zone_end_pfn(zone);
1402		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1403			if (page_is_saveable(zone, pfn))
1404				memory_bm_set_bit(orig_bm, pfn);
1405	}
1406	memory_bm_position_reset(orig_bm);
1407	memory_bm_position_reset(copy_bm);
 
1408	for(;;) {
1409		pfn = memory_bm_next_pfn(orig_bm);
1410		if (unlikely(pfn == BM_END_OF_MAP))
1411			break;
1412		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
 
 
 
 
 
 
1413	}
 
1414}
1415
1416/* Total number of image pages */
1417static unsigned int nr_copy_pages;
1418/* Number of pages needed for saving the original pfns of the image pages */
1419static unsigned int nr_meta_pages;
 
 
 
1420/*
1421 * Numbers of normal and highmem page frames allocated for hibernation image
1422 * before suspending devices.
1423 */
1424unsigned int alloc_normal, alloc_highmem;
1425/*
1426 * Memory bitmap used for marking saveable pages (during hibernation) or
1427 * hibernation image pages (during restore)
1428 */
1429static struct memory_bitmap orig_bm;
1430/*
1431 * Memory bitmap used during hibernation for marking allocated page frames that
1432 * will contain copies of saveable pages.  During restore it is initially used
1433 * for marking hibernation image pages, but then the set bits from it are
1434 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1435 * used for marking "safe" highmem pages, but it has to be reinitialized for
1436 * this purpose.
1437 */
1438static struct memory_bitmap copy_bm;
1439
 
 
 
1440/**
1441 * swsusp_free - Free pages allocated for hibernation image.
1442 *
1443 * Image pages are alocated before snapshot creation, so they need to be
1444 * released after resume.
1445 */
1446void swsusp_free(void)
1447{
1448	unsigned long fb_pfn, fr_pfn;
1449
1450	if (!forbidden_pages_map || !free_pages_map)
1451		goto out;
1452
1453	memory_bm_position_reset(forbidden_pages_map);
1454	memory_bm_position_reset(free_pages_map);
1455
1456loop:
1457	fr_pfn = memory_bm_next_pfn(free_pages_map);
1458	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1459
1460	/*
1461	 * Find the next bit set in both bitmaps. This is guaranteed to
1462	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1463	 */
1464	do {
1465		if (fb_pfn < fr_pfn)
1466			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1467		if (fr_pfn < fb_pfn)
1468			fr_pfn = memory_bm_next_pfn(free_pages_map);
1469	} while (fb_pfn != fr_pfn);
1470
1471	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1472		struct page *page = pfn_to_page(fr_pfn);
1473
1474		memory_bm_clear_current(forbidden_pages_map);
1475		memory_bm_clear_current(free_pages_map);
1476		hibernate_restore_unprotect_page(page_address(page));
1477		__free_page(page);
1478		goto loop;
1479	}
1480
1481out:
1482	nr_copy_pages = 0;
1483	nr_meta_pages = 0;
 
1484	restore_pblist = NULL;
1485	buffer = NULL;
1486	alloc_normal = 0;
1487	alloc_highmem = 0;
1488	hibernate_restore_protection_end();
1489}
1490
1491/* Helper functions used for the shrinking of memory. */
1492
1493#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1494
1495/**
1496 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1497 * @nr_pages: Number of page frames to allocate.
1498 * @mask: GFP flags to use for the allocation.
1499 *
1500 * Return value: Number of page frames actually allocated
1501 */
1502static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1503{
1504	unsigned long nr_alloc = 0;
1505
1506	while (nr_pages > 0) {
1507		struct page *page;
1508
1509		page = alloc_image_page(mask);
1510		if (!page)
1511			break;
1512		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1513		if (PageHighMem(page))
1514			alloc_highmem++;
1515		else
1516			alloc_normal++;
1517		nr_pages--;
1518		nr_alloc++;
1519	}
1520
1521	return nr_alloc;
1522}
1523
1524static unsigned long preallocate_image_memory(unsigned long nr_pages,
1525					      unsigned long avail_normal)
1526{
1527	unsigned long alloc;
1528
1529	if (avail_normal <= alloc_normal)
1530		return 0;
1531
1532	alloc = avail_normal - alloc_normal;
1533	if (nr_pages < alloc)
1534		alloc = nr_pages;
1535
1536	return preallocate_image_pages(alloc, GFP_IMAGE);
1537}
1538
1539#ifdef CONFIG_HIGHMEM
1540static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1541{
1542	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1543}
1544
1545/**
1546 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1547 */
1548static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1549{
1550	x *= multiplier;
1551	do_div(x, base);
1552	return (unsigned long)x;
1553}
1554
1555static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1556						  unsigned long highmem,
1557						  unsigned long total)
1558{
1559	unsigned long alloc = __fraction(nr_pages, highmem, total);
1560
1561	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1562}
1563#else /* CONFIG_HIGHMEM */
1564static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1565{
1566	return 0;
1567}
1568
1569static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1570							 unsigned long highmem,
1571							 unsigned long total)
1572{
1573	return 0;
1574}
1575#endif /* CONFIG_HIGHMEM */
1576
1577/**
1578 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1579 */
1580static unsigned long free_unnecessary_pages(void)
1581{
1582	unsigned long save, to_free_normal, to_free_highmem, free;
1583
1584	save = count_data_pages();
1585	if (alloc_normal >= save) {
1586		to_free_normal = alloc_normal - save;
1587		save = 0;
1588	} else {
1589		to_free_normal = 0;
1590		save -= alloc_normal;
1591	}
1592	save += count_highmem_pages();
1593	if (alloc_highmem >= save) {
1594		to_free_highmem = alloc_highmem - save;
1595	} else {
1596		to_free_highmem = 0;
1597		save -= alloc_highmem;
1598		if (to_free_normal > save)
1599			to_free_normal -= save;
1600		else
1601			to_free_normal = 0;
1602	}
1603	free = to_free_normal + to_free_highmem;
1604
1605	memory_bm_position_reset(&copy_bm);
1606
1607	while (to_free_normal > 0 || to_free_highmem > 0) {
1608		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1609		struct page *page = pfn_to_page(pfn);
1610
1611		if (PageHighMem(page)) {
1612			if (!to_free_highmem)
1613				continue;
1614			to_free_highmem--;
1615			alloc_highmem--;
1616		} else {
1617			if (!to_free_normal)
1618				continue;
1619			to_free_normal--;
1620			alloc_normal--;
1621		}
1622		memory_bm_clear_bit(&copy_bm, pfn);
1623		swsusp_unset_page_forbidden(page);
1624		swsusp_unset_page_free(page);
1625		__free_page(page);
1626	}
1627
1628	return free;
1629}
1630
1631/**
1632 * minimum_image_size - Estimate the minimum acceptable size of an image.
1633 * @saveable: Number of saveable pages in the system.
1634 *
1635 * We want to avoid attempting to free too much memory too hard, so estimate the
1636 * minimum acceptable size of a hibernation image to use as the lower limit for
1637 * preallocating memory.
1638 *
1639 * We assume that the minimum image size should be proportional to
1640 *
1641 * [number of saveable pages] - [number of pages that can be freed in theory]
1642 *
1643 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1644 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1645 * minus mapped file pages.
1646 */
1647static unsigned long minimum_image_size(unsigned long saveable)
1648{
1649	unsigned long size;
1650
1651	size = global_page_state(NR_SLAB_RECLAIMABLE)
1652		+ global_node_page_state(NR_ACTIVE_ANON)
1653		+ global_node_page_state(NR_INACTIVE_ANON)
1654		+ global_node_page_state(NR_ACTIVE_FILE)
1655		+ global_node_page_state(NR_INACTIVE_FILE)
1656		- global_node_page_state(NR_FILE_MAPPED);
1657
1658	return saveable <= size ? 0 : saveable - size;
1659}
1660
1661/**
1662 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1663 *
1664 * To create a hibernation image it is necessary to make a copy of every page
1665 * frame in use.  We also need a number of page frames to be free during
1666 * hibernation for allocations made while saving the image and for device
1667 * drivers, in case they need to allocate memory from their hibernation
1668 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1669 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1670 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1671 * total number of available page frames and allocate at least
1672 *
1673 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1674 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1675 *
1676 * of them, which corresponds to the maximum size of a hibernation image.
1677 *
1678 * If image_size is set below the number following from the above formula,
1679 * the preallocation of memory is continued until the total number of saveable
1680 * pages in the system is below the requested image size or the minimum
1681 * acceptable image size returned by minimum_image_size(), whichever is greater.
1682 */
1683int hibernate_preallocate_memory(void)
1684{
1685	struct zone *zone;
1686	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1687	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1688	ktime_t start, stop;
1689	int error;
1690
1691	printk(KERN_INFO "PM: Preallocating image memory... ");
1692	start = ktime_get();
1693
1694	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1695	if (error)
 
1696		goto err_out;
 
1697
1698	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1699	if (error)
 
 
 
 
 
 
 
1700		goto err_out;
 
1701
1702	alloc_normal = 0;
1703	alloc_highmem = 0;
 
1704
1705	/* Count the number of saveable data pages. */
1706	save_highmem = count_highmem_pages();
1707	saveable = count_data_pages();
1708
1709	/*
1710	 * Compute the total number of page frames we can use (count) and the
1711	 * number of pages needed for image metadata (size).
1712	 */
1713	count = saveable;
1714	saveable += save_highmem;
1715	highmem = save_highmem;
1716	size = 0;
1717	for_each_populated_zone(zone) {
1718		size += snapshot_additional_pages(zone);
1719		if (is_highmem(zone))
1720			highmem += zone_page_state(zone, NR_FREE_PAGES);
1721		else
1722			count += zone_page_state(zone, NR_FREE_PAGES);
1723	}
1724	avail_normal = count;
1725	count += highmem;
1726	count -= totalreserve_pages;
1727
1728	/* Add number of pages required for page keys (s390 only). */
1729	size += page_key_additional_pages(saveable);
1730
1731	/* Compute the maximum number of saveable pages to leave in memory. */
1732	max_size = (count - (size + PAGES_FOR_IO)) / 2
1733			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1734	/* Compute the desired number of image pages specified by image_size. */
1735	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1736	if (size > max_size)
1737		size = max_size;
1738	/*
1739	 * If the desired number of image pages is at least as large as the
1740	 * current number of saveable pages in memory, allocate page frames for
1741	 * the image and we're done.
1742	 */
1743	if (size >= saveable) {
1744		pages = preallocate_image_highmem(save_highmem);
1745		pages += preallocate_image_memory(saveable - pages, avail_normal);
1746		goto out;
1747	}
1748
1749	/* Estimate the minimum size of the image. */
1750	pages = minimum_image_size(saveable);
1751	/*
1752	 * To avoid excessive pressure on the normal zone, leave room in it to
1753	 * accommodate an image of the minimum size (unless it's already too
1754	 * small, in which case don't preallocate pages from it at all).
1755	 */
1756	if (avail_normal > pages)
1757		avail_normal -= pages;
1758	else
1759		avail_normal = 0;
1760	if (size < pages)
1761		size = min_t(unsigned long, pages, max_size);
1762
1763	/*
1764	 * Let the memory management subsystem know that we're going to need a
1765	 * large number of page frames to allocate and make it free some memory.
1766	 * NOTE: If this is not done, performance will be hurt badly in some
1767	 * test cases.
1768	 */
1769	shrink_all_memory(saveable - size);
1770
1771	/*
1772	 * The number of saveable pages in memory was too high, so apply some
1773	 * pressure to decrease it.  First, make room for the largest possible
1774	 * image and fail if that doesn't work.  Next, try to decrease the size
1775	 * of the image as much as indicated by 'size' using allocations from
1776	 * highmem and non-highmem zones separately.
1777	 */
1778	pages_highmem = preallocate_image_highmem(highmem / 2);
1779	alloc = count - max_size;
1780	if (alloc > pages_highmem)
1781		alloc -= pages_highmem;
1782	else
1783		alloc = 0;
1784	pages = preallocate_image_memory(alloc, avail_normal);
1785	if (pages < alloc) {
1786		/* We have exhausted non-highmem pages, try highmem. */
1787		alloc -= pages;
1788		pages += pages_highmem;
1789		pages_highmem = preallocate_image_highmem(alloc);
1790		if (pages_highmem < alloc)
 
 
1791			goto err_out;
 
1792		pages += pages_highmem;
1793		/*
1794		 * size is the desired number of saveable pages to leave in
1795		 * memory, so try to preallocate (all memory - size) pages.
1796		 */
1797		alloc = (count - pages) - size;
1798		pages += preallocate_image_highmem(alloc);
1799	} else {
1800		/*
1801		 * There are approximately max_size saveable pages at this point
1802		 * and we want to reduce this number down to size.
1803		 */
1804		alloc = max_size - size;
1805		size = preallocate_highmem_fraction(alloc, highmem, count);
1806		pages_highmem += size;
1807		alloc -= size;
1808		size = preallocate_image_memory(alloc, avail_normal);
1809		pages_highmem += preallocate_image_highmem(alloc - size);
1810		pages += pages_highmem + size;
1811	}
1812
1813	/*
1814	 * We only need as many page frames for the image as there are saveable
1815	 * pages in memory, but we have allocated more.  Release the excessive
1816	 * ones now.
1817	 */
1818	pages -= free_unnecessary_pages();
1819
1820 out:
1821	stop = ktime_get();
1822	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1823	swsusp_show_speed(start, stop, pages, "Allocated");
1824
1825	return 0;
1826
1827 err_out:
1828	printk(KERN_CONT "\n");
1829	swsusp_free();
1830	return -ENOMEM;
1831}
1832
1833#ifdef CONFIG_HIGHMEM
1834/**
1835 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1836 *
1837 * Compute the number of non-highmem pages that will be necessary for creating
1838 * copies of highmem pages.
1839 */
1840static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1841{
1842	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1843
1844	if (free_highmem >= nr_highmem)
1845		nr_highmem = 0;
1846	else
1847		nr_highmem -= free_highmem;
1848
1849	return nr_highmem;
1850}
1851#else
1852static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1853#endif /* CONFIG_HIGHMEM */
1854
1855/**
1856 * enough_free_mem - Check if there is enough free memory for the image.
1857 */
1858static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1859{
1860	struct zone *zone;
1861	unsigned int free = alloc_normal;
1862
1863	for_each_populated_zone(zone)
1864		if (!is_highmem(zone))
1865			free += zone_page_state(zone, NR_FREE_PAGES);
1866
1867	nr_pages += count_pages_for_highmem(nr_highmem);
1868	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1869		nr_pages, PAGES_FOR_IO, free);
1870
1871	return free > nr_pages + PAGES_FOR_IO;
1872}
1873
1874#ifdef CONFIG_HIGHMEM
1875/**
1876 * get_highmem_buffer - Allocate a buffer for highmem pages.
1877 *
1878 * If there are some highmem pages in the hibernation image, we may need a
1879 * buffer to copy them and/or load their data.
1880 */
1881static inline int get_highmem_buffer(int safe_needed)
1882{
1883	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1884	return buffer ? 0 : -ENOMEM;
1885}
1886
1887/**
1888 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1889 *
1890 * Try to allocate as many pages as needed, but if the number of free highmem
1891 * pages is less than that, allocate them all.
1892 */
1893static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1894					       unsigned int nr_highmem)
1895{
1896	unsigned int to_alloc = count_free_highmem_pages();
1897
1898	if (to_alloc > nr_highmem)
1899		to_alloc = nr_highmem;
1900
1901	nr_highmem -= to_alloc;
1902	while (to_alloc-- > 0) {
1903		struct page *page;
1904
1905		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1906		memory_bm_set_bit(bm, page_to_pfn(page));
1907	}
1908	return nr_highmem;
1909}
1910#else
1911static inline int get_highmem_buffer(int safe_needed) { return 0; }
1912
1913static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1914					       unsigned int n) { return 0; }
1915#endif /* CONFIG_HIGHMEM */
1916
1917/**
1918 * swsusp_alloc - Allocate memory for hibernation image.
1919 *
1920 * We first try to allocate as many highmem pages as there are
1921 * saveable highmem pages in the system.  If that fails, we allocate
1922 * non-highmem pages for the copies of the remaining highmem ones.
1923 *
1924 * In this approach it is likely that the copies of highmem pages will
1925 * also be located in the high memory, because of the way in which
1926 * copy_data_pages() works.
1927 */
1928static int swsusp_alloc(struct memory_bitmap *orig_bm,
1929			struct memory_bitmap *copy_bm,
1930			unsigned int nr_pages, unsigned int nr_highmem)
1931{
1932	if (nr_highmem > 0) {
1933		if (get_highmem_buffer(PG_ANY))
1934			goto err_out;
1935		if (nr_highmem > alloc_highmem) {
1936			nr_highmem -= alloc_highmem;
1937			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1938		}
1939	}
1940	if (nr_pages > alloc_normal) {
1941		nr_pages -= alloc_normal;
1942		while (nr_pages-- > 0) {
1943			struct page *page;
1944
1945			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1946			if (!page)
1947				goto err_out;
1948			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1949		}
1950	}
1951
1952	return 0;
1953
1954 err_out:
1955	swsusp_free();
1956	return -ENOMEM;
1957}
1958
1959asmlinkage __visible int swsusp_save(void)
1960{
1961	unsigned int nr_pages, nr_highmem;
1962
1963	printk(KERN_INFO "PM: Creating hibernation image:\n");
1964
1965	drain_local_pages(NULL);
1966	nr_pages = count_data_pages();
1967	nr_highmem = count_highmem_pages();
1968	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1969
1970	if (!enough_free_mem(nr_pages, nr_highmem)) {
1971		printk(KERN_ERR "PM: Not enough free memory\n");
1972		return -ENOMEM;
1973	}
1974
1975	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1976		printk(KERN_ERR "PM: Memory allocation failed\n");
1977		return -ENOMEM;
1978	}
1979
1980	/*
1981	 * During allocating of suspend pagedir, new cold pages may appear.
1982	 * Kill them.
1983	 */
1984	drain_local_pages(NULL);
1985	copy_data_pages(&copy_bm, &orig_bm);
1986
1987	/*
1988	 * End of critical section. From now on, we can write to memory,
1989	 * but we should not touch disk. This specially means we must _not_
1990	 * touch swap space! Except we must write out our image of course.
1991	 */
1992
1993	nr_pages += nr_highmem;
1994	nr_copy_pages = nr_pages;
 
1995	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1996
1997	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1998		nr_pages);
1999
2000	return 0;
2001}
2002
2003#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2004static int init_header_complete(struct swsusp_info *info)
2005{
2006	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2007	info->version_code = LINUX_VERSION_CODE;
2008	return 0;
2009}
2010
2011static char *check_image_kernel(struct swsusp_info *info)
2012{
2013	if (info->version_code != LINUX_VERSION_CODE)
2014		return "kernel version";
2015	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2016		return "system type";
2017	if (strcmp(info->uts.release,init_utsname()->release))
2018		return "kernel release";
2019	if (strcmp(info->uts.version,init_utsname()->version))
2020		return "version";
2021	if (strcmp(info->uts.machine,init_utsname()->machine))
2022		return "machine";
2023	return NULL;
2024}
2025#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2026
2027unsigned long snapshot_get_image_size(void)
2028{
2029	return nr_copy_pages + nr_meta_pages + 1;
2030}
2031
2032static int init_header(struct swsusp_info *info)
2033{
2034	memset(info, 0, sizeof(struct swsusp_info));
2035	info->num_physpages = get_num_physpages();
2036	info->image_pages = nr_copy_pages;
2037	info->pages = snapshot_get_image_size();
2038	info->size = info->pages;
2039	info->size <<= PAGE_SHIFT;
2040	return init_header_complete(info);
2041}
2042
 
 
 
2043/**
2044 * pack_pfns - Prepare PFNs for saving.
2045 * @bm: Memory bitmap.
2046 * @buf: Memory buffer to store the PFNs in.
 
2047 *
2048 * PFNs corresponding to set bits in @bm are stored in the area of memory
2049 * pointed to by @buf (1 page at a time).
 
 
2050 */
2051static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
 
2052{
2053	int j;
2054
2055	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2056		buf[j] = memory_bm_next_pfn(bm);
2057		if (unlikely(buf[j] == BM_END_OF_MAP))
2058			break;
2059		/* Save page key for data page (s390 only). */
2060		page_key_read(buf + j);
2061	}
2062}
2063
2064/**
2065 * snapshot_read_next - Get the address to read the next image page from.
2066 * @handle: Snapshot handle to be used for the reading.
2067 *
2068 * On the first call, @handle should point to a zeroed snapshot_handle
2069 * structure.  The structure gets populated then and a pointer to it should be
2070 * passed to this function every next time.
2071 *
2072 * On success, the function returns a positive number.  Then, the caller
2073 * is allowed to read up to the returned number of bytes from the memory
2074 * location computed by the data_of() macro.
2075 *
2076 * The function returns 0 to indicate the end of the data stream condition,
2077 * and negative numbers are returned on errors.  If that happens, the structure
2078 * pointed to by @handle is not updated and should not be used any more.
2079 */
2080int snapshot_read_next(struct snapshot_handle *handle)
2081{
2082	if (handle->cur > nr_meta_pages + nr_copy_pages)
2083		return 0;
2084
2085	if (!buffer) {
2086		/* This makes the buffer be freed by swsusp_free() */
2087		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2088		if (!buffer)
2089			return -ENOMEM;
2090	}
2091	if (!handle->cur) {
2092		int error;
2093
2094		error = init_header((struct swsusp_info *)buffer);
2095		if (error)
2096			return error;
2097		handle->buffer = buffer;
2098		memory_bm_position_reset(&orig_bm);
2099		memory_bm_position_reset(&copy_bm);
2100	} else if (handle->cur <= nr_meta_pages) {
2101		clear_page(buffer);
2102		pack_pfns(buffer, &orig_bm);
2103	} else {
2104		struct page *page;
2105
2106		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2107		if (PageHighMem(page)) {
2108			/*
2109			 * Highmem pages are copied to the buffer,
2110			 * because we can't return with a kmapped
2111			 * highmem page (we may not be called again).
2112			 */
2113			void *kaddr;
2114
2115			kaddr = kmap_atomic(page);
2116			copy_page(buffer, kaddr);
2117			kunmap_atomic(kaddr);
2118			handle->buffer = buffer;
2119		} else {
2120			handle->buffer = page_address(page);
2121		}
2122	}
2123	handle->cur++;
2124	return PAGE_SIZE;
2125}
2126
2127static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2128				    struct memory_bitmap *src)
2129{
2130	unsigned long pfn;
2131
2132	memory_bm_position_reset(src);
2133	pfn = memory_bm_next_pfn(src);
2134	while (pfn != BM_END_OF_MAP) {
2135		memory_bm_set_bit(dst, pfn);
2136		pfn = memory_bm_next_pfn(src);
2137	}
2138}
2139
2140/**
2141 * mark_unsafe_pages - Mark pages that were used before hibernation.
2142 *
2143 * Mark the pages that cannot be used for storing the image during restoration,
2144 * because they conflict with the pages that had been used before hibernation.
2145 */
2146static void mark_unsafe_pages(struct memory_bitmap *bm)
2147{
2148	unsigned long pfn;
2149
2150	/* Clear the "free"/"unsafe" bit for all PFNs */
2151	memory_bm_position_reset(free_pages_map);
2152	pfn = memory_bm_next_pfn(free_pages_map);
2153	while (pfn != BM_END_OF_MAP) {
2154		memory_bm_clear_current(free_pages_map);
2155		pfn = memory_bm_next_pfn(free_pages_map);
2156	}
2157
2158	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2159	duplicate_memory_bitmap(free_pages_map, bm);
2160
2161	allocated_unsafe_pages = 0;
2162}
2163
2164static int check_header(struct swsusp_info *info)
2165{
2166	char *reason;
2167
2168	reason = check_image_kernel(info);
2169	if (!reason && info->num_physpages != get_num_physpages())
2170		reason = "memory size";
2171	if (reason) {
2172		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2173		return -EPERM;
2174	}
2175	return 0;
2176}
2177
2178/**
2179 * load header - Check the image header and copy the data from it.
2180 */
2181static int load_header(struct swsusp_info *info)
2182{
2183	int error;
2184
2185	restore_pblist = NULL;
2186	error = check_header(info);
2187	if (!error) {
2188		nr_copy_pages = info->image_pages;
2189		nr_meta_pages = info->pages - info->image_pages - 1;
2190	}
2191	return error;
2192}
2193
2194/**
2195 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2196 * @bm: Memory bitmap.
2197 * @buf: Area of memory containing the PFNs.
 
2198 *
2199 * For each element of the array pointed to by @buf (1 page at a time), set the
2200 * corresponding bit in @bm.
 
2201 */
2202static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
 
2203{
 
 
2204	int j;
2205
2206	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2207		if (unlikely(buf[j] == BM_END_OF_MAP))
2208			break;
2209
2210		/* Extract and buffer page key for data page (s390 only). */
2211		page_key_memorize(buf + j);
2212
2213		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2214			memory_bm_set_bit(bm, buf[j]);
2215		else
 
 
 
 
 
 
2216			return -EFAULT;
 
2217	}
2218
2219	return 0;
2220}
2221
2222#ifdef CONFIG_HIGHMEM
2223/*
2224 * struct highmem_pbe is used for creating the list of highmem pages that
2225 * should be restored atomically during the resume from disk, because the page
2226 * frames they have occupied before the suspend are in use.
2227 */
2228struct highmem_pbe {
2229	struct page *copy_page;	/* data is here now */
2230	struct page *orig_page;	/* data was here before the suspend */
2231	struct highmem_pbe *next;
2232};
2233
2234/*
2235 * List of highmem PBEs needed for restoring the highmem pages that were
2236 * allocated before the suspend and included in the suspend image, but have
2237 * also been allocated by the "resume" kernel, so their contents cannot be
2238 * written directly to their "original" page frames.
2239 */
2240static struct highmem_pbe *highmem_pblist;
2241
2242/**
2243 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2244 * @bm: Memory bitmap.
2245 *
2246 * The bits in @bm that correspond to image pages are assumed to be set.
2247 */
2248static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2249{
2250	unsigned long pfn;
2251	unsigned int cnt = 0;
2252
2253	memory_bm_position_reset(bm);
2254	pfn = memory_bm_next_pfn(bm);
2255	while (pfn != BM_END_OF_MAP) {
2256		if (PageHighMem(pfn_to_page(pfn)))
2257			cnt++;
2258
2259		pfn = memory_bm_next_pfn(bm);
2260	}
2261	return cnt;
2262}
2263
2264static unsigned int safe_highmem_pages;
2265
2266static struct memory_bitmap *safe_highmem_bm;
2267
2268/**
2269 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2270 * @bm: Pointer to an uninitialized memory bitmap structure.
2271 * @nr_highmem_p: Pointer to the number of highmem image pages.
2272 *
2273 * Try to allocate as many highmem pages as there are highmem image pages
2274 * (@nr_highmem_p points to the variable containing the number of highmem image
2275 * pages).  The pages that are "safe" (ie. will not be overwritten when the
2276 * hibernation image is restored entirely) have the corresponding bits set in
2277 * @bm (it must be unitialized).
2278 *
2279 * NOTE: This function should not be called if there are no highmem image pages.
2280 */
2281static int prepare_highmem_image(struct memory_bitmap *bm,
2282				 unsigned int *nr_highmem_p)
2283{
2284	unsigned int to_alloc;
2285
2286	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2287		return -ENOMEM;
2288
2289	if (get_highmem_buffer(PG_SAFE))
2290		return -ENOMEM;
2291
2292	to_alloc = count_free_highmem_pages();
2293	if (to_alloc > *nr_highmem_p)
2294		to_alloc = *nr_highmem_p;
2295	else
2296		*nr_highmem_p = to_alloc;
2297
2298	safe_highmem_pages = 0;
2299	while (to_alloc-- > 0) {
2300		struct page *page;
2301
2302		page = alloc_page(__GFP_HIGHMEM);
2303		if (!swsusp_page_is_free(page)) {
2304			/* The page is "safe", set its bit the bitmap */
2305			memory_bm_set_bit(bm, page_to_pfn(page));
2306			safe_highmem_pages++;
2307		}
2308		/* Mark the page as allocated */
2309		swsusp_set_page_forbidden(page);
2310		swsusp_set_page_free(page);
2311	}
2312	memory_bm_position_reset(bm);
2313	safe_highmem_bm = bm;
2314	return 0;
2315}
2316
2317static struct page *last_highmem_page;
2318
2319/**
2320 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2321 *
2322 * For a given highmem image page get a buffer that suspend_write_next() should
2323 * return to its caller to write to.
2324 *
2325 * If the page is to be saved to its "original" page frame or a copy of
2326 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2327 * the copy of the page is to be made in normal memory, so the address of
2328 * the copy is returned.
2329 *
2330 * If @buffer is returned, the caller of suspend_write_next() will write
2331 * the page's contents to @buffer, so they will have to be copied to the
2332 * right location on the next call to suspend_write_next() and it is done
2333 * with the help of copy_last_highmem_page().  For this purpose, if
2334 * @buffer is returned, @last_highmem_page is set to the page to which
2335 * the data will have to be copied from @buffer.
2336 */
2337static void *get_highmem_page_buffer(struct page *page,
2338				     struct chain_allocator *ca)
2339{
2340	struct highmem_pbe *pbe;
2341	void *kaddr;
2342
2343	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2344		/*
2345		 * We have allocated the "original" page frame and we can
2346		 * use it directly to store the loaded page.
2347		 */
2348		last_highmem_page = page;
2349		return buffer;
2350	}
2351	/*
2352	 * The "original" page frame has not been allocated and we have to
2353	 * use a "safe" page frame to store the loaded page.
2354	 */
2355	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2356	if (!pbe) {
2357		swsusp_free();
2358		return ERR_PTR(-ENOMEM);
2359	}
2360	pbe->orig_page = page;
2361	if (safe_highmem_pages > 0) {
2362		struct page *tmp;
2363
2364		/* Copy of the page will be stored in high memory */
2365		kaddr = buffer;
2366		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2367		safe_highmem_pages--;
2368		last_highmem_page = tmp;
2369		pbe->copy_page = tmp;
2370	} else {
2371		/* Copy of the page will be stored in normal memory */
2372		kaddr = safe_pages_list;
2373		safe_pages_list = safe_pages_list->next;
 
2374		pbe->copy_page = virt_to_page(kaddr);
2375	}
2376	pbe->next = highmem_pblist;
2377	highmem_pblist = pbe;
2378	return kaddr;
2379}
2380
2381/**
2382 * copy_last_highmem_page - Copy most the most recent highmem image page.
2383 *
2384 * Copy the contents of a highmem image from @buffer, where the caller of
2385 * snapshot_write_next() has stored them, to the right location represented by
2386 * @last_highmem_page .
2387 */
2388static void copy_last_highmem_page(void)
2389{
2390	if (last_highmem_page) {
2391		void *dst;
2392
2393		dst = kmap_atomic(last_highmem_page);
2394		copy_page(dst, buffer);
2395		kunmap_atomic(dst);
2396		last_highmem_page = NULL;
2397	}
2398}
2399
2400static inline int last_highmem_page_copied(void)
2401{
2402	return !last_highmem_page;
2403}
2404
2405static inline void free_highmem_data(void)
2406{
2407	if (safe_highmem_bm)
2408		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2409
2410	if (buffer)
2411		free_image_page(buffer, PG_UNSAFE_CLEAR);
2412}
2413#else
2414static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2415
2416static inline int prepare_highmem_image(struct memory_bitmap *bm,
2417					unsigned int *nr_highmem_p) { return 0; }
2418
2419static inline void *get_highmem_page_buffer(struct page *page,
2420					    struct chain_allocator *ca)
2421{
2422	return ERR_PTR(-EINVAL);
2423}
2424
2425static inline void copy_last_highmem_page(void) {}
2426static inline int last_highmem_page_copied(void) { return 1; }
2427static inline void free_highmem_data(void) {}
2428#endif /* CONFIG_HIGHMEM */
2429
2430#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2431
2432/**
2433 * prepare_image - Make room for loading hibernation image.
2434 * @new_bm: Unitialized memory bitmap structure.
2435 * @bm: Memory bitmap with unsafe pages marked.
 
2436 *
2437 * Use @bm to mark the pages that will be overwritten in the process of
2438 * restoring the system memory state from the suspend image ("unsafe" pages)
2439 * and allocate memory for the image.
2440 *
2441 * The idea is to allocate a new memory bitmap first and then allocate
2442 * as many pages as needed for image data, but without specifying what those
2443 * pages will be used for just yet.  Instead, we mark them all as allocated and
2444 * create a lists of "safe" pages to be used later.  On systems with high
2445 * memory a list of "safe" highmem pages is created too.
 
 
 
2446 */
2447static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
 
2448{
2449	unsigned int nr_pages, nr_highmem;
 
2450	struct linked_page *lp;
2451	int error;
2452
2453	/* If there is no highmem, the buffer will not be necessary */
2454	free_image_page(buffer, PG_UNSAFE_CLEAR);
2455	buffer = NULL;
2456
2457	nr_highmem = count_highmem_image_pages(bm);
2458	mark_unsafe_pages(bm);
2459
2460	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2461	if (error)
2462		goto Free;
2463
2464	duplicate_memory_bitmap(new_bm, bm);
2465	memory_bm_free(bm, PG_UNSAFE_KEEP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2466	if (nr_highmem > 0) {
2467		error = prepare_highmem_image(bm, &nr_highmem);
2468		if (error)
2469			goto Free;
2470	}
2471	/*
2472	 * Reserve some safe pages for potential later use.
2473	 *
2474	 * NOTE: This way we make sure there will be enough safe pages for the
2475	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2476	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2477	 *
2478	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2479	 */
2480	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2481	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2482	while (nr_pages > 0) {
2483		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2484		if (!lp) {
2485			error = -ENOMEM;
2486			goto Free;
2487		}
2488		lp->next = safe_pages_list;
2489		safe_pages_list = lp;
2490		nr_pages--;
2491	}
2492	/* Preallocate memory for the image */
2493	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2494	while (nr_pages > 0) {
2495		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2496		if (!lp) {
2497			error = -ENOMEM;
2498			goto Free;
2499		}
2500		if (!swsusp_page_is_free(virt_to_page(lp))) {
2501			/* The page is "safe", add it to the list */
2502			lp->next = safe_pages_list;
2503			safe_pages_list = lp;
2504		}
2505		/* Mark the page as allocated */
2506		swsusp_set_page_forbidden(virt_to_page(lp));
2507		swsusp_set_page_free(virt_to_page(lp));
2508		nr_pages--;
2509	}
2510	return 0;
2511
2512 Free:
2513	swsusp_free();
2514	return error;
2515}
2516
2517/**
2518 * get_buffer - Get the address to store the next image data page.
2519 *
2520 * Get the address that snapshot_write_next() should return to its caller to
2521 * write to.
2522 */
2523static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2524{
2525	struct pbe *pbe;
2526	struct page *page;
2527	unsigned long pfn = memory_bm_next_pfn(bm);
2528
2529	if (pfn == BM_END_OF_MAP)
2530		return ERR_PTR(-EFAULT);
2531
2532	page = pfn_to_page(pfn);
2533	if (PageHighMem(page))
2534		return get_highmem_page_buffer(page, ca);
2535
2536	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2537		/*
2538		 * We have allocated the "original" page frame and we can
2539		 * use it directly to store the loaded page.
2540		 */
2541		return page_address(page);
2542
2543	/*
2544	 * The "original" page frame has not been allocated and we have to
2545	 * use a "safe" page frame to store the loaded page.
2546	 */
2547	pbe = chain_alloc(ca, sizeof(struct pbe));
2548	if (!pbe) {
2549		swsusp_free();
2550		return ERR_PTR(-ENOMEM);
2551	}
2552	pbe->orig_address = page_address(page);
2553	pbe->address = safe_pages_list;
2554	safe_pages_list = safe_pages_list->next;
 
2555	pbe->next = restore_pblist;
2556	restore_pblist = pbe;
2557	return pbe->address;
2558}
2559
2560/**
2561 * snapshot_write_next - Get the address to store the next image page.
2562 * @handle: Snapshot handle structure to guide the writing.
2563 *
2564 * On the first call, @handle should point to a zeroed snapshot_handle
2565 * structure.  The structure gets populated then and a pointer to it should be
2566 * passed to this function every next time.
2567 *
2568 * On success, the function returns a positive number.  Then, the caller
2569 * is allowed to write up to the returned number of bytes to the memory
2570 * location computed by the data_of() macro.
2571 *
2572 * The function returns 0 to indicate the "end of file" condition.  Negative
2573 * numbers are returned on errors, in which cases the structure pointed to by
2574 * @handle is not updated and should not be used any more.
2575 */
2576int snapshot_write_next(struct snapshot_handle *handle)
2577{
2578	static struct chain_allocator ca;
2579	int error = 0;
2580
 
2581	/* Check if we have already loaded the entire image */
2582	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2583		return 0;
2584
2585	handle->sync_read = 1;
2586
2587	if (!handle->cur) {
2588		if (!buffer)
2589			/* This makes the buffer be freed by swsusp_free() */
2590			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2591
2592		if (!buffer)
2593			return -ENOMEM;
2594
2595		handle->buffer = buffer;
2596	} else if (handle->cur == 1) {
2597		error = load_header(buffer);
2598		if (error)
2599			return error;
2600
2601		safe_pages_list = NULL;
2602
2603		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2604		if (error)
2605			return error;
2606
2607		/* Allocate buffer for page keys. */
2608		error = page_key_alloc(nr_copy_pages);
2609		if (error)
2610			return error;
2611
 
 
2612		hibernate_restore_protection_begin();
2613	} else if (handle->cur <= nr_meta_pages + 1) {
2614		error = unpack_orig_pfns(buffer, &copy_bm);
2615		if (error)
2616			return error;
2617
2618		if (handle->cur == nr_meta_pages + 1) {
2619			error = prepare_image(&orig_bm, &copy_bm);
2620			if (error)
2621				return error;
2622
2623			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2624			memory_bm_position_reset(&orig_bm);
 
2625			restore_pblist = NULL;
2626			handle->buffer = get_buffer(&orig_bm, &ca);
2627			handle->sync_read = 0;
2628			if (IS_ERR(handle->buffer))
2629				return PTR_ERR(handle->buffer);
2630		}
2631	} else {
2632		copy_last_highmem_page();
2633		/* Restore page key for data page (s390 only). */
2634		page_key_write(handle->buffer);
2635		hibernate_restore_protect_page(handle->buffer);
2636		handle->buffer = get_buffer(&orig_bm, &ca);
2637		if (IS_ERR(handle->buffer))
2638			return PTR_ERR(handle->buffer);
2639		if (handle->buffer != buffer)
2640			handle->sync_read = 0;
2641	}
 
2642	handle->cur++;
 
 
 
 
 
 
 
 
2643	return PAGE_SIZE;
2644}
2645
2646/**
2647 * snapshot_write_finalize - Complete the loading of a hibernation image.
2648 *
2649 * Must be called after the last call to snapshot_write_next() in case the last
2650 * page in the image happens to be a highmem page and its contents should be
2651 * stored in highmem.  Additionally, it recycles bitmap memory that's not
2652 * necessary any more.
2653 */
2654void snapshot_write_finalize(struct snapshot_handle *handle)
2655{
2656	copy_last_highmem_page();
2657	/* Restore page key for data page (s390 only). */
2658	page_key_write(handle->buffer);
2659	page_key_free();
2660	hibernate_restore_protect_page(handle->buffer);
2661	/* Do that only if we have loaded the image entirely */
2662	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2663		memory_bm_recycle(&orig_bm);
2664		free_highmem_data();
2665	}
2666}
2667
2668int snapshot_image_loaded(struct snapshot_handle *handle)
2669{
2670	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2671			handle->cur <= nr_meta_pages + nr_copy_pages);
2672}
2673
2674#ifdef CONFIG_HIGHMEM
2675/* Assumes that @buf is ready and points to a "safe" page */
2676static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2677				       void *buf)
2678{
2679	void *kaddr1, *kaddr2;
2680
2681	kaddr1 = kmap_atomic(p1);
2682	kaddr2 = kmap_atomic(p2);
2683	copy_page(buf, kaddr1);
2684	copy_page(kaddr1, kaddr2);
2685	copy_page(kaddr2, buf);
2686	kunmap_atomic(kaddr2);
2687	kunmap_atomic(kaddr1);
2688}
2689
2690/**
2691 * restore_highmem - Put highmem image pages into their original locations.
2692 *
2693 * For each highmem page that was in use before hibernation and is included in
2694 * the image, and also has been allocated by the "restore" kernel, swap its
2695 * current contents with the previous (ie. "before hibernation") ones.
2696 *
2697 * If the restore eventually fails, we can call this function once again and
2698 * restore the highmem state as seen by the restore kernel.
2699 */
2700int restore_highmem(void)
2701{
2702	struct highmem_pbe *pbe = highmem_pblist;
2703	void *buf;
2704
2705	if (!pbe)
2706		return 0;
2707
2708	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2709	if (!buf)
2710		return -ENOMEM;
2711
2712	while (pbe) {
2713		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2714		pbe = pbe->next;
2715	}
2716	free_image_page(buf, PG_UNSAFE_CLEAR);
2717	return 0;
2718}
2719#endif /* CONFIG_HIGHMEM */
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/snapshot.c
   4 *
   5 * This file provides system snapshot/restore functionality for swsusp.
   6 *
   7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
 
 
 
   9 */
  10
  11#define pr_fmt(fmt) "PM: hibernation: " fmt
  12
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/memblock.h>
  25#include <linux/nmi.h>
  26#include <linux/syscalls.h>
  27#include <linux/console.h>
  28#include <linux/highmem.h>
  29#include <linux/list.h>
  30#include <linux/slab.h>
  31#include <linux/compiler.h>
  32#include <linux/ktime.h>
  33#include <linux/set_memory.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/mmu_context.h>
 
  37#include <asm/tlbflush.h>
  38#include <asm/io.h>
  39
  40#include "power.h"
  41
  42#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
  43static bool hibernate_restore_protection;
  44static bool hibernate_restore_protection_active;
  45
  46void enable_restore_image_protection(void)
  47{
  48	hibernate_restore_protection = true;
  49}
  50
  51static inline void hibernate_restore_protection_begin(void)
  52{
  53	hibernate_restore_protection_active = hibernate_restore_protection;
  54}
  55
  56static inline void hibernate_restore_protection_end(void)
  57{
  58	hibernate_restore_protection_active = false;
  59}
  60
  61static inline void hibernate_restore_protect_page(void *page_address)
  62{
  63	if (hibernate_restore_protection_active)
  64		set_memory_ro((unsigned long)page_address, 1);
  65}
  66
  67static inline void hibernate_restore_unprotect_page(void *page_address)
  68{
  69	if (hibernate_restore_protection_active)
  70		set_memory_rw((unsigned long)page_address, 1);
  71}
  72#else
  73static inline void hibernate_restore_protection_begin(void) {}
  74static inline void hibernate_restore_protection_end(void) {}
  75static inline void hibernate_restore_protect_page(void *page_address) {}
  76static inline void hibernate_restore_unprotect_page(void *page_address) {}
  77#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
  78
  79
  80/*
  81 * The calls to set_direct_map_*() should not fail because remapping a page
  82 * here means that we only update protection bits in an existing PTE.
  83 * It is still worth to have a warning here if something changes and this
  84 * will no longer be the case.
  85 */
  86static inline void hibernate_map_page(struct page *page)
  87{
  88	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
  89		int ret = set_direct_map_default_noflush(page);
  90
  91		if (ret)
  92			pr_warn_once("Failed to remap page\n");
  93	} else {
  94		debug_pagealloc_map_pages(page, 1);
  95	}
  96}
  97
  98static inline void hibernate_unmap_page(struct page *page)
  99{
 100	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
 101		unsigned long addr = (unsigned long)page_address(page);
 102		int ret  = set_direct_map_invalid_noflush(page);
 103
 104		if (ret)
 105			pr_warn_once("Failed to remap page\n");
 106
 107		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
 108	} else {
 109		debug_pagealloc_unmap_pages(page, 1);
 110	}
 111}
 112
 113static int swsusp_page_is_free(struct page *);
 114static void swsusp_set_page_forbidden(struct page *);
 115static void swsusp_unset_page_forbidden(struct page *);
 116
 117/*
 118 * Number of bytes to reserve for memory allocations made by device drivers
 119 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 120 * cause image creation to fail (tunable via /sys/power/reserved_size).
 121 */
 122unsigned long reserved_size;
 123
 124void __init hibernate_reserved_size_init(void)
 125{
 126	reserved_size = SPARE_PAGES * PAGE_SIZE;
 127}
 128
 129/*
 130 * Preferred image size in bytes (tunable via /sys/power/image_size).
 131 * When it is set to N, swsusp will do its best to ensure the image
 132 * size will not exceed N bytes, but if that is impossible, it will
 133 * try to create the smallest image possible.
 134 */
 135unsigned long image_size;
 136
 137void __init hibernate_image_size_init(void)
 138{
 139	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
 140}
 141
 142/*
 143 * List of PBEs needed for restoring the pages that were allocated before
 144 * the suspend and included in the suspend image, but have also been
 145 * allocated by the "resume" kernel, so their contents cannot be written
 146 * directly to their "original" page frames.
 147 */
 148struct pbe *restore_pblist;
 149
 150/* struct linked_page is used to build chains of pages */
 151
 152#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 153
 154struct linked_page {
 155	struct linked_page *next;
 156	char data[LINKED_PAGE_DATA_SIZE];
 157} __packed;
 158
 159/*
 160 * List of "safe" pages (ie. pages that were not used by the image kernel
 161 * before hibernation) that may be used as temporary storage for image kernel
 162 * memory contents.
 163 */
 164static struct linked_page *safe_pages_list;
 165
 166/* Pointer to an auxiliary buffer (1 page) */
 167static void *buffer;
 168
 169#define PG_ANY		0
 170#define PG_SAFE		1
 171#define PG_UNSAFE_CLEAR	1
 172#define PG_UNSAFE_KEEP	0
 173
 174static unsigned int allocated_unsafe_pages;
 175
 176/**
 177 * get_image_page - Allocate a page for a hibernation image.
 178 * @gfp_mask: GFP mask for the allocation.
 179 * @safe_needed: Get pages that were not used before hibernation (restore only)
 180 *
 181 * During image restoration, for storing the PBE list and the image data, we can
 182 * only use memory pages that do not conflict with the pages used before
 183 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 184 * using allocated_unsafe_pages.
 185 *
 186 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 187 * swsusp_free() can release it.
 188 */
 189static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 190{
 191	void *res;
 192
 193	res = (void *)get_zeroed_page(gfp_mask);
 194	if (safe_needed)
 195		while (res && swsusp_page_is_free(virt_to_page(res))) {
 196			/* The page is unsafe, mark it for swsusp_free() */
 197			swsusp_set_page_forbidden(virt_to_page(res));
 198			allocated_unsafe_pages++;
 199			res = (void *)get_zeroed_page(gfp_mask);
 200		}
 201	if (res) {
 202		swsusp_set_page_forbidden(virt_to_page(res));
 203		swsusp_set_page_free(virt_to_page(res));
 204	}
 205	return res;
 206}
 207
 208static void *__get_safe_page(gfp_t gfp_mask)
 209{
 210	if (safe_pages_list) {
 211		void *ret = safe_pages_list;
 212
 213		safe_pages_list = safe_pages_list->next;
 214		memset(ret, 0, PAGE_SIZE);
 215		return ret;
 216	}
 217	return get_image_page(gfp_mask, PG_SAFE);
 218}
 219
 220unsigned long get_safe_page(gfp_t gfp_mask)
 221{
 222	return (unsigned long)__get_safe_page(gfp_mask);
 223}
 224
 225static struct page *alloc_image_page(gfp_t gfp_mask)
 226{
 227	struct page *page;
 228
 229	page = alloc_page(gfp_mask);
 230	if (page) {
 231		swsusp_set_page_forbidden(page);
 232		swsusp_set_page_free(page);
 233	}
 234	return page;
 235}
 236
 237static void recycle_safe_page(void *page_address)
 238{
 239	struct linked_page *lp = page_address;
 240
 241	lp->next = safe_pages_list;
 242	safe_pages_list = lp;
 243}
 244
 245/**
 246 * free_image_page - Free a page allocated for hibernation image.
 247 * @addr: Address of the page to free.
 248 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 249 *
 250 * The page to free should have been allocated by get_image_page() (page flags
 251 * set by it are affected).
 252 */
 253static inline void free_image_page(void *addr, int clear_nosave_free)
 254{
 255	struct page *page;
 256
 257	BUG_ON(!virt_addr_valid(addr));
 258
 259	page = virt_to_page(addr);
 260
 261	swsusp_unset_page_forbidden(page);
 262	if (clear_nosave_free)
 263		swsusp_unset_page_free(page);
 264
 265	__free_page(page);
 266}
 267
 268static inline void free_list_of_pages(struct linked_page *list,
 269				      int clear_page_nosave)
 270{
 271	while (list) {
 272		struct linked_page *lp = list->next;
 273
 274		free_image_page(list, clear_page_nosave);
 275		list = lp;
 276	}
 277}
 278
 279/*
 280 * struct chain_allocator is used for allocating small objects out of
 281 * a linked list of pages called 'the chain'.
 282 *
 283 * The chain grows each time when there is no room for a new object in
 284 * the current page.  The allocated objects cannot be freed individually.
 285 * It is only possible to free them all at once, by freeing the entire
 286 * chain.
 287 *
 288 * NOTE: The chain allocator may be inefficient if the allocated objects
 289 * are not much smaller than PAGE_SIZE.
 290 */
 291struct chain_allocator {
 292	struct linked_page *chain;	/* the chain */
 293	unsigned int used_space;	/* total size of objects allocated out
 294					   of the current page */
 295	gfp_t gfp_mask;		/* mask for allocating pages */
 296	int safe_needed;	/* if set, only "safe" pages are allocated */
 297};
 298
 299static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
 300		       int safe_needed)
 301{
 302	ca->chain = NULL;
 303	ca->used_space = LINKED_PAGE_DATA_SIZE;
 304	ca->gfp_mask = gfp_mask;
 305	ca->safe_needed = safe_needed;
 306}
 307
 308static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 309{
 310	void *ret;
 311
 312	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 313		struct linked_page *lp;
 314
 315		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
 316					get_image_page(ca->gfp_mask, PG_ANY);
 317		if (!lp)
 318			return NULL;
 319
 320		lp->next = ca->chain;
 321		ca->chain = lp;
 322		ca->used_space = 0;
 323	}
 324	ret = ca->chain->data + ca->used_space;
 325	ca->used_space += size;
 326	return ret;
 327}
 328
 329/*
 330 * Data types related to memory bitmaps.
 331 *
 332 * Memory bitmap is a structure consisting of many linked lists of
 333 * objects.  The main list's elements are of type struct zone_bitmap
 334 * and each of them corresponds to one zone.  For each zone bitmap
 335 * object there is a list of objects of type struct bm_block that
 336 * represent each blocks of bitmap in which information is stored.
 337 *
 338 * struct memory_bitmap contains a pointer to the main list of zone
 339 * bitmap objects, a struct bm_position used for browsing the bitmap,
 340 * and a pointer to the list of pages used for allocating all of the
 341 * zone bitmap objects and bitmap block objects.
 342 *
 343 * NOTE: It has to be possible to lay out the bitmap in memory
 344 * using only allocations of order 0.  Additionally, the bitmap is
 345 * designed to work with arbitrary number of zones (this is over the
 346 * top for now, but let's avoid making unnecessary assumptions ;-).
 347 *
 348 * struct zone_bitmap contains a pointer to a list of bitmap block
 349 * objects and a pointer to the bitmap block object that has been
 350 * most recently used for setting bits.  Additionally, it contains the
 351 * PFNs that correspond to the start and end of the represented zone.
 352 *
 353 * struct bm_block contains a pointer to the memory page in which
 354 * information is stored (in the form of a block of bitmap)
 355 * It also contains the pfns that correspond to the start and end of
 356 * the represented memory area.
 357 *
 358 * The memory bitmap is organized as a radix tree to guarantee fast random
 359 * access to the bits. There is one radix tree for each zone (as returned
 360 * from create_mem_extents).
 361 *
 362 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 363 * two linked lists for the nodes of the tree, one for the inner nodes and
 364 * one for the leave nodes. The linked leave nodes are used for fast linear
 365 * access of the memory bitmap.
 366 *
 367 * The struct rtree_node represents one node of the radix tree.
 368 */
 369
 370#define BM_END_OF_MAP	(~0UL)
 371
 372#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 373#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 374#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 375
 376/*
 377 * struct rtree_node is a wrapper struct to link the nodes
 378 * of the rtree together for easy linear iteration over
 379 * bits and easy freeing
 380 */
 381struct rtree_node {
 382	struct list_head list;
 383	unsigned long *data;
 384};
 385
 386/*
 387 * struct mem_zone_bm_rtree represents a bitmap used for one
 388 * populated memory zone.
 389 */
 390struct mem_zone_bm_rtree {
 391	struct list_head list;		/* Link Zones together         */
 392	struct list_head nodes;		/* Radix Tree inner nodes      */
 393	struct list_head leaves;	/* Radix Tree leaves           */
 394	unsigned long start_pfn;	/* Zone start page frame       */
 395	unsigned long end_pfn;		/* Zone end page frame + 1     */
 396	struct rtree_node *rtree;	/* Radix Tree Root             */
 397	int levels;			/* Number of Radix Tree Levels */
 398	unsigned int blocks;		/* Number of Bitmap Blocks     */
 399};
 400
 401/* struct bm_position is used for browsing memory bitmaps */
 402
 403struct bm_position {
 404	struct mem_zone_bm_rtree *zone;
 405	struct rtree_node *node;
 406	unsigned long node_pfn;
 407	unsigned long cur_pfn;
 408	int node_bit;
 409};
 410
 411struct memory_bitmap {
 412	struct list_head zones;
 413	struct linked_page *p_list;	/* list of pages used to store zone
 414					   bitmap objects and bitmap block
 415					   objects */
 416	struct bm_position cur;	/* most recently used bit position */
 417};
 418
 419/* Functions that operate on memory bitmaps */
 420
 421#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 422#if BITS_PER_LONG == 32
 423#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 424#else
 425#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 426#endif
 427#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 428
 429/**
 430 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
 431 * @gfp_mask: GFP mask for the allocation.
 432 * @safe_needed: Get pages not used before hibernation (restore only)
 433 * @ca: Pointer to a linked list of pages ("a chain") to allocate from
 434 * @list: Radix Tree node to add.
 435 *
 436 * This function is used to allocate inner nodes as well as the
 437 * leave nodes of the radix tree. It also adds the node to the
 438 * corresponding linked list passed in by the *list parameter.
 439 */
 440static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 441					   struct chain_allocator *ca,
 442					   struct list_head *list)
 443{
 444	struct rtree_node *node;
 445
 446	node = chain_alloc(ca, sizeof(struct rtree_node));
 447	if (!node)
 448		return NULL;
 449
 450	node->data = get_image_page(gfp_mask, safe_needed);
 451	if (!node->data)
 452		return NULL;
 453
 454	list_add_tail(&node->list, list);
 455
 456	return node;
 457}
 458
 459/**
 460 * add_rtree_block - Add a new leave node to the radix tree.
 461 *
 462 * The leave nodes need to be allocated in order to keep the leaves
 463 * linked list in order. This is guaranteed by the zone->blocks
 464 * counter.
 465 */
 466static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 467			   int safe_needed, struct chain_allocator *ca)
 468{
 469	struct rtree_node *node, *block, **dst;
 470	unsigned int levels_needed, block_nr;
 471	int i;
 472
 473	block_nr = zone->blocks;
 474	levels_needed = 0;
 475
 476	/* How many levels do we need for this block nr? */
 477	while (block_nr) {
 478		levels_needed += 1;
 479		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 480	}
 481
 482	/* Make sure the rtree has enough levels */
 483	for (i = zone->levels; i < levels_needed; i++) {
 484		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 485					&zone->nodes);
 486		if (!node)
 487			return -ENOMEM;
 488
 489		node->data[0] = (unsigned long)zone->rtree;
 490		zone->rtree = node;
 491		zone->levels += 1;
 492	}
 493
 494	/* Allocate new block */
 495	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 496	if (!block)
 497		return -ENOMEM;
 498
 499	/* Now walk the rtree to insert the block */
 500	node = zone->rtree;
 501	dst = &zone->rtree;
 502	block_nr = zone->blocks;
 503	for (i = zone->levels; i > 0; i--) {
 504		int index;
 505
 506		if (!node) {
 507			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 508						&zone->nodes);
 509			if (!node)
 510				return -ENOMEM;
 511			*dst = node;
 512		}
 513
 514		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 515		index &= BM_RTREE_LEVEL_MASK;
 516		dst = (struct rtree_node **)&((*dst)->data[index]);
 517		node = *dst;
 518	}
 519
 520	zone->blocks += 1;
 521	*dst = block;
 522
 523	return 0;
 524}
 525
 526static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 527			       int clear_nosave_free);
 528
 529/**
 530 * create_zone_bm_rtree - Create a radix tree for one zone.
 531 *
 532 * Allocated the mem_zone_bm_rtree structure and initializes it.
 533 * This function also allocated and builds the radix tree for the
 534 * zone.
 535 */
 536static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
 537						      int safe_needed,
 538						      struct chain_allocator *ca,
 539						      unsigned long start,
 540						      unsigned long end)
 541{
 542	struct mem_zone_bm_rtree *zone;
 543	unsigned int i, nr_blocks;
 544	unsigned long pages;
 545
 546	pages = end - start;
 547	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 548	if (!zone)
 549		return NULL;
 550
 551	INIT_LIST_HEAD(&zone->nodes);
 552	INIT_LIST_HEAD(&zone->leaves);
 553	zone->start_pfn = start;
 554	zone->end_pfn = end;
 555	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 556
 557	for (i = 0; i < nr_blocks; i++) {
 558		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 559			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 560			return NULL;
 561		}
 562	}
 563
 564	return zone;
 565}
 566
 567/**
 568 * free_zone_bm_rtree - Free the memory of the radix tree.
 569 *
 570 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 571 * structure itself is not freed here nor are the rtree_node
 572 * structs.
 573 */
 574static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 575			       int clear_nosave_free)
 576{
 577	struct rtree_node *node;
 578
 579	list_for_each_entry(node, &zone->nodes, list)
 580		free_image_page(node->data, clear_nosave_free);
 581
 582	list_for_each_entry(node, &zone->leaves, list)
 583		free_image_page(node->data, clear_nosave_free);
 584}
 585
 586static void memory_bm_position_reset(struct memory_bitmap *bm)
 587{
 588	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 589				  list);
 590	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 591				  struct rtree_node, list);
 592	bm->cur.node_pfn = 0;
 593	bm->cur.cur_pfn = BM_END_OF_MAP;
 594	bm->cur.node_bit = 0;
 595}
 596
 597static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 598
 599struct mem_extent {
 600	struct list_head hook;
 601	unsigned long start;
 602	unsigned long end;
 603};
 604
 605/**
 606 * free_mem_extents - Free a list of memory extents.
 607 * @list: List of extents to free.
 608 */
 609static void free_mem_extents(struct list_head *list)
 610{
 611	struct mem_extent *ext, *aux;
 612
 613	list_for_each_entry_safe(ext, aux, list, hook) {
 614		list_del(&ext->hook);
 615		kfree(ext);
 616	}
 617}
 618
 619/**
 620 * create_mem_extents - Create a list of memory extents.
 621 * @list: List to put the extents into.
 622 * @gfp_mask: Mask to use for memory allocations.
 623 *
 624 * The extents represent contiguous ranges of PFNs.
 625 */
 626static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 627{
 628	struct zone *zone;
 629
 630	INIT_LIST_HEAD(list);
 631
 632	for_each_populated_zone(zone) {
 633		unsigned long zone_start, zone_end;
 634		struct mem_extent *ext, *cur, *aux;
 635
 636		zone_start = zone->zone_start_pfn;
 637		zone_end = zone_end_pfn(zone);
 638
 639		list_for_each_entry(ext, list, hook)
 640			if (zone_start <= ext->end)
 641				break;
 642
 643		if (&ext->hook == list || zone_end < ext->start) {
 644			/* New extent is necessary */
 645			struct mem_extent *new_ext;
 646
 647			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 648			if (!new_ext) {
 649				free_mem_extents(list);
 650				return -ENOMEM;
 651			}
 652			new_ext->start = zone_start;
 653			new_ext->end = zone_end;
 654			list_add_tail(&new_ext->hook, &ext->hook);
 655			continue;
 656		}
 657
 658		/* Merge this zone's range of PFNs with the existing one */
 659		if (zone_start < ext->start)
 660			ext->start = zone_start;
 661		if (zone_end > ext->end)
 662			ext->end = zone_end;
 663
 664		/* More merging may be possible */
 665		cur = ext;
 666		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 667			if (zone_end < cur->start)
 668				break;
 669			if (zone_end < cur->end)
 670				ext->end = cur->end;
 671			list_del(&cur->hook);
 672			kfree(cur);
 673		}
 674	}
 675
 676	return 0;
 677}
 678
 679/**
 680 * memory_bm_create - Allocate memory for a memory bitmap.
 681 */
 682static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
 683			    int safe_needed)
 684{
 685	struct chain_allocator ca;
 686	struct list_head mem_extents;
 687	struct mem_extent *ext;
 688	int error;
 689
 690	chain_init(&ca, gfp_mask, safe_needed);
 691	INIT_LIST_HEAD(&bm->zones);
 692
 693	error = create_mem_extents(&mem_extents, gfp_mask);
 694	if (error)
 695		return error;
 696
 697	list_for_each_entry(ext, &mem_extents, hook) {
 698		struct mem_zone_bm_rtree *zone;
 699
 700		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 701					    ext->start, ext->end);
 702		if (!zone) {
 703			error = -ENOMEM;
 704			goto Error;
 705		}
 706		list_add_tail(&zone->list, &bm->zones);
 707	}
 708
 709	bm->p_list = ca.chain;
 710	memory_bm_position_reset(bm);
 711 Exit:
 712	free_mem_extents(&mem_extents);
 713	return error;
 714
 715 Error:
 716	bm->p_list = ca.chain;
 717	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 718	goto Exit;
 719}
 720
 721/**
 722 * memory_bm_free - Free memory occupied by the memory bitmap.
 723 * @bm: Memory bitmap.
 724 */
 725static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 726{
 727	struct mem_zone_bm_rtree *zone;
 728
 729	list_for_each_entry(zone, &bm->zones, list)
 730		free_zone_bm_rtree(zone, clear_nosave_free);
 731
 732	free_list_of_pages(bm->p_list, clear_nosave_free);
 733
 734	INIT_LIST_HEAD(&bm->zones);
 735}
 736
 737/**
 738 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
 739 *
 740 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 741 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 742 *
 743 * Walk the radix tree to find the page containing the bit that represents @pfn
 744 * and return the position of the bit in @addr and @bit_nr.
 745 */
 746static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 747			      void **addr, unsigned int *bit_nr)
 748{
 749	struct mem_zone_bm_rtree *curr, *zone;
 750	struct rtree_node *node;
 751	int i, block_nr;
 752
 753	zone = bm->cur.zone;
 754
 755	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 756		goto zone_found;
 757
 758	zone = NULL;
 759
 760	/* Find the right zone */
 761	list_for_each_entry(curr, &bm->zones, list) {
 762		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 763			zone = curr;
 764			break;
 765		}
 766	}
 767
 768	if (!zone)
 769		return -EFAULT;
 770
 771zone_found:
 772	/*
 773	 * We have found the zone. Now walk the radix tree to find the leaf node
 774	 * for our PFN.
 775	 */
 776
 777	/*
 778	 * If the zone we wish to scan is the current zone and the
 779	 * pfn falls into the current node then we do not need to walk
 780	 * the tree.
 781	 */
 782	node = bm->cur.node;
 783	if (zone == bm->cur.zone &&
 784	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 785		goto node_found;
 786
 787	node      = zone->rtree;
 788	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 789
 790	for (i = zone->levels; i > 0; i--) {
 791		int index;
 792
 793		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 794		index &= BM_RTREE_LEVEL_MASK;
 795		BUG_ON(node->data[index] == 0);
 796		node = (struct rtree_node *)node->data[index];
 797	}
 798
 799node_found:
 800	/* Update last position */
 801	bm->cur.zone = zone;
 802	bm->cur.node = node;
 803	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 804	bm->cur.cur_pfn = pfn;
 805
 806	/* Set return values */
 807	*addr = node->data;
 808	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 809
 810	return 0;
 811}
 812
 813static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 814{
 815	void *addr;
 816	unsigned int bit;
 817	int error;
 818
 819	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 820	BUG_ON(error);
 821	set_bit(bit, addr);
 822}
 823
 824static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 825{
 826	void *addr;
 827	unsigned int bit;
 828	int error;
 829
 830	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 831	if (!error)
 832		set_bit(bit, addr);
 833
 834	return error;
 835}
 836
 837static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 838{
 839	void *addr;
 840	unsigned int bit;
 841	int error;
 842
 843	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 844	BUG_ON(error);
 845	clear_bit(bit, addr);
 846}
 847
 848static void memory_bm_clear_current(struct memory_bitmap *bm)
 849{
 850	int bit;
 851
 852	bit = max(bm->cur.node_bit - 1, 0);
 853	clear_bit(bit, bm->cur.node->data);
 854}
 855
 856static unsigned long memory_bm_get_current(struct memory_bitmap *bm)
 857{
 858	return bm->cur.cur_pfn;
 859}
 860
 861static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 862{
 863	void *addr;
 864	unsigned int bit;
 865	int error;
 866
 867	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 868	BUG_ON(error);
 869	return test_bit(bit, addr);
 870}
 871
 872static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 873{
 874	void *addr;
 875	unsigned int bit;
 876
 877	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 878}
 879
 880/*
 881 * rtree_next_node - Jump to the next leaf node.
 882 *
 883 * Set the position to the beginning of the next node in the
 884 * memory bitmap. This is either the next node in the current
 885 * zone's radix tree or the first node in the radix tree of the
 886 * next zone.
 887 *
 888 * Return true if there is a next node, false otherwise.
 889 */
 890static bool rtree_next_node(struct memory_bitmap *bm)
 891{
 892	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
 893		bm->cur.node = list_entry(bm->cur.node->list.next,
 894					  struct rtree_node, list);
 895		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 896		bm->cur.node_bit  = 0;
 897		touch_softlockup_watchdog();
 898		return true;
 899	}
 900
 901	/* No more nodes, goto next zone */
 902	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
 903		bm->cur.zone = list_entry(bm->cur.zone->list.next,
 904				  struct mem_zone_bm_rtree, list);
 905		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 906					  struct rtree_node, list);
 907		bm->cur.node_pfn = 0;
 908		bm->cur.node_bit = 0;
 909		return true;
 910	}
 911
 912	/* No more zones */
 913	return false;
 914}
 915
 916/**
 917 * memory_bm_next_pfn - Find the next set bit in a memory bitmap.
 918 * @bm: Memory bitmap.
 919 *
 920 * Starting from the last returned position this function searches for the next
 921 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 922 * set, BM_END_OF_MAP is returned.
 923 *
 924 * It is required to run memory_bm_position_reset() before the first call to
 925 * this function for the given memory bitmap.
 926 */
 927static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 928{
 929	unsigned long bits, pfn, pages;
 930	int bit;
 931
 932	do {
 933		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 934		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 935		bit	  = find_next_bit(bm->cur.node->data, bits,
 936					  bm->cur.node_bit);
 937		if (bit < bits) {
 938			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 939			bm->cur.node_bit = bit + 1;
 940			bm->cur.cur_pfn = pfn;
 941			return pfn;
 942		}
 943	} while (rtree_next_node(bm));
 944
 945	bm->cur.cur_pfn = BM_END_OF_MAP;
 946	return BM_END_OF_MAP;
 947}
 948
 949/*
 950 * This structure represents a range of page frames the contents of which
 951 * should not be saved during hibernation.
 952 */
 953struct nosave_region {
 954	struct list_head list;
 955	unsigned long start_pfn;
 956	unsigned long end_pfn;
 957};
 958
 959static LIST_HEAD(nosave_regions);
 960
 961static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
 962{
 963	struct rtree_node *node;
 964
 965	list_for_each_entry(node, &zone->nodes, list)
 966		recycle_safe_page(node->data);
 967
 968	list_for_each_entry(node, &zone->leaves, list)
 969		recycle_safe_page(node->data);
 970}
 971
 972static void memory_bm_recycle(struct memory_bitmap *bm)
 973{
 974	struct mem_zone_bm_rtree *zone;
 975	struct linked_page *p_list;
 976
 977	list_for_each_entry(zone, &bm->zones, list)
 978		recycle_zone_bm_rtree(zone);
 979
 980	p_list = bm->p_list;
 981	while (p_list) {
 982		struct linked_page *lp = p_list;
 983
 984		p_list = lp->next;
 985		recycle_safe_page(lp);
 986	}
 987}
 988
 989/**
 990 * register_nosave_region - Register a region of unsaveable memory.
 991 *
 992 * Register a range of page frames the contents of which should not be saved
 993 * during hibernation (to be used in the early initialization code).
 994 */
 995void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
 
 996{
 997	struct nosave_region *region;
 998
 999	if (start_pfn >= end_pfn)
1000		return;
1001
1002	if (!list_empty(&nosave_regions)) {
1003		/* Try to extend the previous region (they should be sorted) */
1004		region = list_entry(nosave_regions.prev,
1005					struct nosave_region, list);
1006		if (region->end_pfn == start_pfn) {
1007			region->end_pfn = end_pfn;
1008			goto Report;
1009		}
1010	}
1011	/* This allocation cannot fail */
1012	region = memblock_alloc(sizeof(struct nosave_region),
1013				SMP_CACHE_BYTES);
1014	if (!region)
1015		panic("%s: Failed to allocate %zu bytes\n", __func__,
1016		      sizeof(struct nosave_region));
 
 
1017	region->start_pfn = start_pfn;
1018	region->end_pfn = end_pfn;
1019	list_add_tail(&region->list, &nosave_regions);
1020 Report:
1021	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1022		(unsigned long long) start_pfn << PAGE_SHIFT,
1023		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1024}
1025
1026/*
1027 * Set bits in this map correspond to the page frames the contents of which
1028 * should not be saved during the suspend.
1029 */
1030static struct memory_bitmap *forbidden_pages_map;
1031
1032/* Set bits in this map correspond to free page frames. */
1033static struct memory_bitmap *free_pages_map;
1034
1035/*
1036 * Each page frame allocated for creating the image is marked by setting the
1037 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1038 */
1039
1040void swsusp_set_page_free(struct page *page)
1041{
1042	if (free_pages_map)
1043		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1044}
1045
1046static int swsusp_page_is_free(struct page *page)
1047{
1048	return free_pages_map ?
1049		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1050}
1051
1052void swsusp_unset_page_free(struct page *page)
1053{
1054	if (free_pages_map)
1055		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1056}
1057
1058static void swsusp_set_page_forbidden(struct page *page)
1059{
1060	if (forbidden_pages_map)
1061		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1062}
1063
1064int swsusp_page_is_forbidden(struct page *page)
1065{
1066	return forbidden_pages_map ?
1067		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1068}
1069
1070static void swsusp_unset_page_forbidden(struct page *page)
1071{
1072	if (forbidden_pages_map)
1073		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1074}
1075
1076/**
1077 * mark_nosave_pages - Mark pages that should not be saved.
1078 * @bm: Memory bitmap.
1079 *
1080 * Set the bits in @bm that correspond to the page frames the contents of which
1081 * should not be saved.
1082 */
1083static void mark_nosave_pages(struct memory_bitmap *bm)
1084{
1085	struct nosave_region *region;
1086
1087	if (list_empty(&nosave_regions))
1088		return;
1089
1090	list_for_each_entry(region, &nosave_regions, list) {
1091		unsigned long pfn;
1092
1093		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1094			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1095			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1096				- 1);
1097
1098		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1099			if (pfn_valid(pfn)) {
1100				/*
1101				 * It is safe to ignore the result of
1102				 * mem_bm_set_bit_check() here, since we won't
1103				 * touch the PFNs for which the error is
1104				 * returned anyway.
1105				 */
1106				mem_bm_set_bit_check(bm, pfn);
1107			}
1108	}
1109}
1110
1111/**
1112 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1113 *
1114 * Create bitmaps needed for marking page frames that should not be saved and
1115 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1116 * only modified if everything goes well, because we don't want the bits to be
1117 * touched before both bitmaps are set up.
1118 */
1119int create_basic_memory_bitmaps(void)
1120{
1121	struct memory_bitmap *bm1, *bm2;
1122	int error;
1123
1124	if (forbidden_pages_map && free_pages_map)
1125		return 0;
1126	else
1127		BUG_ON(forbidden_pages_map || free_pages_map);
1128
1129	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1130	if (!bm1)
1131		return -ENOMEM;
1132
1133	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1134	if (error)
1135		goto Free_first_object;
1136
1137	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1138	if (!bm2)
1139		goto Free_first_bitmap;
1140
1141	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1142	if (error)
1143		goto Free_second_object;
1144
1145	forbidden_pages_map = bm1;
1146	free_pages_map = bm2;
1147	mark_nosave_pages(forbidden_pages_map);
1148
1149	pr_debug("Basic memory bitmaps created\n");
1150
1151	return 0;
1152
1153 Free_second_object:
1154	kfree(bm2);
1155 Free_first_bitmap:
1156	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1157 Free_first_object:
1158	kfree(bm1);
1159	return -ENOMEM;
1160}
1161
1162/**
1163 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1164 *
1165 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1166 * auxiliary pointers are necessary so that the bitmaps themselves are not
1167 * referred to while they are being freed.
1168 */
1169void free_basic_memory_bitmaps(void)
1170{
1171	struct memory_bitmap *bm1, *bm2;
1172
1173	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1174		return;
1175
1176	bm1 = forbidden_pages_map;
1177	bm2 = free_pages_map;
1178	forbidden_pages_map = NULL;
1179	free_pages_map = NULL;
1180	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1181	kfree(bm1);
1182	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1183	kfree(bm2);
1184
1185	pr_debug("Basic memory bitmaps freed\n");
1186}
1187
1188static void clear_or_poison_free_page(struct page *page)
1189{
1190	if (page_poisoning_enabled_static())
1191		__kernel_poison_pages(page, 1);
1192	else if (want_init_on_free())
1193		clear_highpage(page);
1194}
1195
1196void clear_or_poison_free_pages(void)
1197{
 
1198	struct memory_bitmap *bm = free_pages_map;
1199	unsigned long pfn;
1200
1201	if (WARN_ON(!(free_pages_map)))
1202		return;
1203
1204	if (page_poisoning_enabled() || want_init_on_free()) {
1205		memory_bm_position_reset(bm);
 
 
 
 
1206		pfn = memory_bm_next_pfn(bm);
1207		while (pfn != BM_END_OF_MAP) {
1208			if (pfn_valid(pfn))
1209				clear_or_poison_free_page(pfn_to_page(pfn));
1210
1211			pfn = memory_bm_next_pfn(bm);
1212		}
1213		memory_bm_position_reset(bm);
1214		pr_info("free pages cleared after restore\n");
1215	}
 
 
 
1216}
1217
1218/**
1219 * snapshot_additional_pages - Estimate the number of extra pages needed.
1220 * @zone: Memory zone to carry out the computation for.
1221 *
1222 * Estimate the number of additional pages needed for setting up a hibernation
1223 * image data structures for @zone (usually, the returned value is greater than
1224 * the exact number).
1225 */
1226unsigned int snapshot_additional_pages(struct zone *zone)
1227{
1228	unsigned int rtree, nodes;
1229
1230	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1231	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1232			      LINKED_PAGE_DATA_SIZE);
1233	while (nodes > 1) {
1234		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1235		rtree += nodes;
1236	}
1237
1238	return 2 * rtree;
1239}
1240
1241/*
1242 * Touch the watchdog for every WD_PAGE_COUNT pages.
1243 */
1244#define WD_PAGE_COUNT	(128*1024)
1245
1246static void mark_free_pages(struct zone *zone)
1247{
1248	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
1249	unsigned long flags;
1250	unsigned int order, t;
1251	struct page *page;
1252
1253	if (zone_is_empty(zone))
1254		return;
1255
1256	spin_lock_irqsave(&zone->lock, flags);
1257
1258	max_zone_pfn = zone_end_pfn(zone);
1259	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1260		if (pfn_valid(pfn)) {
1261			page = pfn_to_page(pfn);
1262
1263			if (!--page_count) {
1264				touch_nmi_watchdog();
1265				page_count = WD_PAGE_COUNT;
1266			}
1267
1268			if (page_zone(page) != zone)
1269				continue;
1270
1271			if (!swsusp_page_is_forbidden(page))
1272				swsusp_unset_page_free(page);
1273		}
1274
1275	for_each_migratetype_order(order, t) {
1276		list_for_each_entry(page,
1277				&zone->free_area[order].free_list[t], buddy_list) {
1278			unsigned long i;
1279
1280			pfn = page_to_pfn(page);
1281			for (i = 0; i < (1UL << order); i++) {
1282				if (!--page_count) {
1283					touch_nmi_watchdog();
1284					page_count = WD_PAGE_COUNT;
1285				}
1286				swsusp_set_page_free(pfn_to_page(pfn + i));
1287			}
1288		}
1289	}
1290	spin_unlock_irqrestore(&zone->lock, flags);
1291}
1292
1293#ifdef CONFIG_HIGHMEM
1294/**
1295 * count_free_highmem_pages - Compute the total number of free highmem pages.
1296 *
1297 * The returned number is system-wide.
1298 */
1299static unsigned int count_free_highmem_pages(void)
1300{
1301	struct zone *zone;
1302	unsigned int cnt = 0;
1303
1304	for_each_populated_zone(zone)
1305		if (is_highmem(zone))
1306			cnt += zone_page_state(zone, NR_FREE_PAGES);
1307
1308	return cnt;
1309}
1310
1311/**
1312 * saveable_highmem_page - Check if a highmem page is saveable.
1313 *
1314 * Determine whether a highmem page should be included in a hibernation image.
1315 *
1316 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1317 * and it isn't part of a free chunk of pages.
1318 */
1319static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1320{
1321	struct page *page;
1322
1323	if (!pfn_valid(pfn))
1324		return NULL;
1325
1326	page = pfn_to_online_page(pfn);
1327	if (!page || page_zone(page) != zone)
1328		return NULL;
1329
1330	BUG_ON(!PageHighMem(page));
1331
1332	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1333		return NULL;
1334
1335	if (PageReserved(page) || PageOffline(page))
1336		return NULL;
1337
1338	if (page_is_guard(page))
1339		return NULL;
1340
1341	return page;
1342}
1343
1344/**
1345 * count_highmem_pages - Compute the total number of saveable highmem pages.
1346 */
1347static unsigned int count_highmem_pages(void)
1348{
1349	struct zone *zone;
1350	unsigned int n = 0;
1351
1352	for_each_populated_zone(zone) {
1353		unsigned long pfn, max_zone_pfn;
1354
1355		if (!is_highmem(zone))
1356			continue;
1357
1358		mark_free_pages(zone);
1359		max_zone_pfn = zone_end_pfn(zone);
1360		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1361			if (saveable_highmem_page(zone, pfn))
1362				n++;
1363	}
1364	return n;
1365}
1366#else
1367static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1368{
1369	return NULL;
1370}
1371#endif /* CONFIG_HIGHMEM */
1372
1373/**
1374 * saveable_page - Check if the given page is saveable.
1375 *
1376 * Determine whether a non-highmem page should be included in a hibernation
1377 * image.
1378 *
1379 * We should save the page if it isn't Nosave, and is not in the range
1380 * of pages statically defined as 'unsaveable', and it isn't part of
1381 * a free chunk of pages.
1382 */
1383static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1384{
1385	struct page *page;
1386
1387	if (!pfn_valid(pfn))
1388		return NULL;
1389
1390	page = pfn_to_online_page(pfn);
1391	if (!page || page_zone(page) != zone)
1392		return NULL;
1393
1394	BUG_ON(PageHighMem(page));
1395
1396	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1397		return NULL;
1398
1399	if (PageOffline(page))
1400		return NULL;
1401
1402	if (PageReserved(page)
1403	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1404		return NULL;
1405
1406	if (page_is_guard(page))
1407		return NULL;
1408
1409	return page;
1410}
1411
1412/**
1413 * count_data_pages - Compute the total number of saveable non-highmem pages.
1414 */
1415static unsigned int count_data_pages(void)
1416{
1417	struct zone *zone;
1418	unsigned long pfn, max_zone_pfn;
1419	unsigned int n = 0;
1420
1421	for_each_populated_zone(zone) {
1422		if (is_highmem(zone))
1423			continue;
1424
1425		mark_free_pages(zone);
1426		max_zone_pfn = zone_end_pfn(zone);
1427		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1428			if (saveable_page(zone, pfn))
1429				n++;
1430	}
1431	return n;
1432}
1433
1434/*
1435 * This is needed, because copy_page and memcpy are not usable for copying
1436 * task structs. Returns true if the page was filled with only zeros,
1437 * otherwise false.
1438 */
1439static inline bool do_copy_page(long *dst, long *src)
1440{
1441	long z = 0;
1442	int n;
1443
1444	for (n = PAGE_SIZE / sizeof(long); n; n--) {
1445		z |= *src;
1446		*dst++ = *src++;
1447	}
1448	return !z;
1449}
1450
1451/**
1452 * safe_copy_page - Copy a page in a safe way.
1453 *
1454 * Check if the page we are going to copy is marked as present in the kernel
1455 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1456 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1457 * always returns 'true'. Returns true if the page was entirely composed of
1458 * zeros, otherwise it will return false.
1459 */
1460static bool safe_copy_page(void *dst, struct page *s_page)
1461{
1462	bool zeros_only;
1463
1464	if (kernel_page_present(s_page)) {
1465		zeros_only = do_copy_page(dst, page_address(s_page));
1466	} else {
1467		hibernate_map_page(s_page);
1468		zeros_only = do_copy_page(dst, page_address(s_page));
1469		hibernate_unmap_page(s_page);
1470	}
1471	return zeros_only;
1472}
1473
1474#ifdef CONFIG_HIGHMEM
1475static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1476{
1477	return is_highmem(zone) ?
1478		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1479}
1480
1481static bool copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1482{
1483	struct page *s_page, *d_page;
1484	void *src, *dst;
1485	bool zeros_only;
1486
1487	s_page = pfn_to_page(src_pfn);
1488	d_page = pfn_to_page(dst_pfn);
1489	if (PageHighMem(s_page)) {
1490		src = kmap_local_page(s_page);
1491		dst = kmap_local_page(d_page);
1492		zeros_only = do_copy_page(dst, src);
1493		kunmap_local(dst);
1494		kunmap_local(src);
1495	} else {
1496		if (PageHighMem(d_page)) {
1497			/*
1498			 * The page pointed to by src may contain some kernel
1499			 * data modified by kmap_atomic()
1500			 */
1501			zeros_only = safe_copy_page(buffer, s_page);
1502			dst = kmap_local_page(d_page);
1503			copy_page(dst, buffer);
1504			kunmap_local(dst);
1505		} else {
1506			zeros_only = safe_copy_page(page_address(d_page), s_page);
1507		}
1508	}
1509	return zeros_only;
1510}
1511#else
1512#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1513
1514static inline int copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1515{
1516	return safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1517				pfn_to_page(src_pfn));
1518}
1519#endif /* CONFIG_HIGHMEM */
1520
1521/*
1522 * Copy data pages will copy all pages into pages pulled from the copy_bm.
1523 * If a page was entirely filled with zeros it will be marked in the zero_bm.
1524 *
1525 * Returns the number of pages copied.
1526 */
1527static unsigned long copy_data_pages(struct memory_bitmap *copy_bm,
1528			    struct memory_bitmap *orig_bm,
1529			    struct memory_bitmap *zero_bm)
1530{
1531	unsigned long copied_pages = 0;
1532	struct zone *zone;
1533	unsigned long pfn, copy_pfn;
1534
1535	for_each_populated_zone(zone) {
1536		unsigned long max_zone_pfn;
1537
1538		mark_free_pages(zone);
1539		max_zone_pfn = zone_end_pfn(zone);
1540		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1541			if (page_is_saveable(zone, pfn))
1542				memory_bm_set_bit(orig_bm, pfn);
1543	}
1544	memory_bm_position_reset(orig_bm);
1545	memory_bm_position_reset(copy_bm);
1546	copy_pfn = memory_bm_next_pfn(copy_bm);
1547	for(;;) {
1548		pfn = memory_bm_next_pfn(orig_bm);
1549		if (unlikely(pfn == BM_END_OF_MAP))
1550			break;
1551		if (copy_data_page(copy_pfn, pfn)) {
1552			memory_bm_set_bit(zero_bm, pfn);
1553			/* Use this copy_pfn for a page that is not full of zeros */
1554			continue;
1555		}
1556		copied_pages++;
1557		copy_pfn = memory_bm_next_pfn(copy_bm);
1558	}
1559	return copied_pages;
1560}
1561
1562/* Total number of image pages */
1563static unsigned int nr_copy_pages;
1564/* Number of pages needed for saving the original pfns of the image pages */
1565static unsigned int nr_meta_pages;
1566/* Number of zero pages */
1567static unsigned int nr_zero_pages;
1568
1569/*
1570 * Numbers of normal and highmem page frames allocated for hibernation image
1571 * before suspending devices.
1572 */
1573static unsigned int alloc_normal, alloc_highmem;
1574/*
1575 * Memory bitmap used for marking saveable pages (during hibernation) or
1576 * hibernation image pages (during restore)
1577 */
1578static struct memory_bitmap orig_bm;
1579/*
1580 * Memory bitmap used during hibernation for marking allocated page frames that
1581 * will contain copies of saveable pages.  During restore it is initially used
1582 * for marking hibernation image pages, but then the set bits from it are
1583 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1584 * used for marking "safe" highmem pages, but it has to be reinitialized for
1585 * this purpose.
1586 */
1587static struct memory_bitmap copy_bm;
1588
1589/* Memory bitmap which tracks which saveable pages were zero filled. */
1590static struct memory_bitmap zero_bm;
1591
1592/**
1593 * swsusp_free - Free pages allocated for hibernation image.
1594 *
1595 * Image pages are allocated before snapshot creation, so they need to be
1596 * released after resume.
1597 */
1598void swsusp_free(void)
1599{
1600	unsigned long fb_pfn, fr_pfn;
1601
1602	if (!forbidden_pages_map || !free_pages_map)
1603		goto out;
1604
1605	memory_bm_position_reset(forbidden_pages_map);
1606	memory_bm_position_reset(free_pages_map);
1607
1608loop:
1609	fr_pfn = memory_bm_next_pfn(free_pages_map);
1610	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1611
1612	/*
1613	 * Find the next bit set in both bitmaps. This is guaranteed to
1614	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1615	 */
1616	do {
1617		if (fb_pfn < fr_pfn)
1618			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1619		if (fr_pfn < fb_pfn)
1620			fr_pfn = memory_bm_next_pfn(free_pages_map);
1621	} while (fb_pfn != fr_pfn);
1622
1623	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1624		struct page *page = pfn_to_page(fr_pfn);
1625
1626		memory_bm_clear_current(forbidden_pages_map);
1627		memory_bm_clear_current(free_pages_map);
1628		hibernate_restore_unprotect_page(page_address(page));
1629		__free_page(page);
1630		goto loop;
1631	}
1632
1633out:
1634	nr_copy_pages = 0;
1635	nr_meta_pages = 0;
1636	nr_zero_pages = 0;
1637	restore_pblist = NULL;
1638	buffer = NULL;
1639	alloc_normal = 0;
1640	alloc_highmem = 0;
1641	hibernate_restore_protection_end();
1642}
1643
1644/* Helper functions used for the shrinking of memory. */
1645
1646#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1647
1648/**
1649 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1650 * @nr_pages: Number of page frames to allocate.
1651 * @mask: GFP flags to use for the allocation.
1652 *
1653 * Return value: Number of page frames actually allocated
1654 */
1655static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1656{
1657	unsigned long nr_alloc = 0;
1658
1659	while (nr_pages > 0) {
1660		struct page *page;
1661
1662		page = alloc_image_page(mask);
1663		if (!page)
1664			break;
1665		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1666		if (PageHighMem(page))
1667			alloc_highmem++;
1668		else
1669			alloc_normal++;
1670		nr_pages--;
1671		nr_alloc++;
1672	}
1673
1674	return nr_alloc;
1675}
1676
1677static unsigned long preallocate_image_memory(unsigned long nr_pages,
1678					      unsigned long avail_normal)
1679{
1680	unsigned long alloc;
1681
1682	if (avail_normal <= alloc_normal)
1683		return 0;
1684
1685	alloc = avail_normal - alloc_normal;
1686	if (nr_pages < alloc)
1687		alloc = nr_pages;
1688
1689	return preallocate_image_pages(alloc, GFP_IMAGE);
1690}
1691
1692#ifdef CONFIG_HIGHMEM
1693static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1694{
1695	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1696}
1697
1698/**
1699 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1700 */
1701static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1702{
1703	return div64_u64(x * multiplier, base);
 
 
1704}
1705
1706static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1707						  unsigned long highmem,
1708						  unsigned long total)
1709{
1710	unsigned long alloc = __fraction(nr_pages, highmem, total);
1711
1712	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1713}
1714#else /* CONFIG_HIGHMEM */
1715static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1716{
1717	return 0;
1718}
1719
1720static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1721							 unsigned long highmem,
1722							 unsigned long total)
1723{
1724	return 0;
1725}
1726#endif /* CONFIG_HIGHMEM */
1727
1728/**
1729 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1730 */
1731static unsigned long free_unnecessary_pages(void)
1732{
1733	unsigned long save, to_free_normal, to_free_highmem, free;
1734
1735	save = count_data_pages();
1736	if (alloc_normal >= save) {
1737		to_free_normal = alloc_normal - save;
1738		save = 0;
1739	} else {
1740		to_free_normal = 0;
1741		save -= alloc_normal;
1742	}
1743	save += count_highmem_pages();
1744	if (alloc_highmem >= save) {
1745		to_free_highmem = alloc_highmem - save;
1746	} else {
1747		to_free_highmem = 0;
1748		save -= alloc_highmem;
1749		if (to_free_normal > save)
1750			to_free_normal -= save;
1751		else
1752			to_free_normal = 0;
1753	}
1754	free = to_free_normal + to_free_highmem;
1755
1756	memory_bm_position_reset(&copy_bm);
1757
1758	while (to_free_normal > 0 || to_free_highmem > 0) {
1759		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1760		struct page *page = pfn_to_page(pfn);
1761
1762		if (PageHighMem(page)) {
1763			if (!to_free_highmem)
1764				continue;
1765			to_free_highmem--;
1766			alloc_highmem--;
1767		} else {
1768			if (!to_free_normal)
1769				continue;
1770			to_free_normal--;
1771			alloc_normal--;
1772		}
1773		memory_bm_clear_bit(&copy_bm, pfn);
1774		swsusp_unset_page_forbidden(page);
1775		swsusp_unset_page_free(page);
1776		__free_page(page);
1777	}
1778
1779	return free;
1780}
1781
1782/**
1783 * minimum_image_size - Estimate the minimum acceptable size of an image.
1784 * @saveable: Number of saveable pages in the system.
1785 *
1786 * We want to avoid attempting to free too much memory too hard, so estimate the
1787 * minimum acceptable size of a hibernation image to use as the lower limit for
1788 * preallocating memory.
1789 *
1790 * We assume that the minimum image size should be proportional to
1791 *
1792 * [number of saveable pages] - [number of pages that can be freed in theory]
1793 *
1794 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1795 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
 
1796 */
1797static unsigned long minimum_image_size(unsigned long saveable)
1798{
1799	unsigned long size;
1800
1801	size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1802		+ global_node_page_state(NR_ACTIVE_ANON)
1803		+ global_node_page_state(NR_INACTIVE_ANON)
1804		+ global_node_page_state(NR_ACTIVE_FILE)
1805		+ global_node_page_state(NR_INACTIVE_FILE);
 
1806
1807	return saveable <= size ? 0 : saveable - size;
1808}
1809
1810/**
1811 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1812 *
1813 * To create a hibernation image it is necessary to make a copy of every page
1814 * frame in use.  We also need a number of page frames to be free during
1815 * hibernation for allocations made while saving the image and for device
1816 * drivers, in case they need to allocate memory from their hibernation
1817 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1818 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1819 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1820 * total number of available page frames and allocate at least
1821 *
1822 * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2
1823 *  - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1824 *
1825 * of them, which corresponds to the maximum size of a hibernation image.
1826 *
1827 * If image_size is set below the number following from the above formula,
1828 * the preallocation of memory is continued until the total number of saveable
1829 * pages in the system is below the requested image size or the minimum
1830 * acceptable image size returned by minimum_image_size(), whichever is greater.
1831 */
1832int hibernate_preallocate_memory(void)
1833{
1834	struct zone *zone;
1835	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1836	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1837	ktime_t start, stop;
1838	int error;
1839
1840	pr_info("Preallocating image memory\n");
1841	start = ktime_get();
1842
1843	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1844	if (error) {
1845		pr_err("Cannot allocate original bitmap\n");
1846		goto err_out;
1847	}
1848
1849	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1850	if (error) {
1851		pr_err("Cannot allocate copy bitmap\n");
1852		goto err_out;
1853	}
1854
1855	error = memory_bm_create(&zero_bm, GFP_IMAGE, PG_ANY);
1856	if (error) {
1857		pr_err("Cannot allocate zero bitmap\n");
1858		goto err_out;
1859	}
1860
1861	alloc_normal = 0;
1862	alloc_highmem = 0;
1863	nr_zero_pages = 0;
1864
1865	/* Count the number of saveable data pages. */
1866	save_highmem = count_highmem_pages();
1867	saveable = count_data_pages();
1868
1869	/*
1870	 * Compute the total number of page frames we can use (count) and the
1871	 * number of pages needed for image metadata (size).
1872	 */
1873	count = saveable;
1874	saveable += save_highmem;
1875	highmem = save_highmem;
1876	size = 0;
1877	for_each_populated_zone(zone) {
1878		size += snapshot_additional_pages(zone);
1879		if (is_highmem(zone))
1880			highmem += zone_page_state(zone, NR_FREE_PAGES);
1881		else
1882			count += zone_page_state(zone, NR_FREE_PAGES);
1883	}
1884	avail_normal = count;
1885	count += highmem;
1886	count -= totalreserve_pages;
1887
 
 
 
1888	/* Compute the maximum number of saveable pages to leave in memory. */
1889	max_size = (count - (size + PAGES_FOR_IO)) / 2
1890			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1891	/* Compute the desired number of image pages specified by image_size. */
1892	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1893	if (size > max_size)
1894		size = max_size;
1895	/*
1896	 * If the desired number of image pages is at least as large as the
1897	 * current number of saveable pages in memory, allocate page frames for
1898	 * the image and we're done.
1899	 */
1900	if (size >= saveable) {
1901		pages = preallocate_image_highmem(save_highmem);
1902		pages += preallocate_image_memory(saveable - pages, avail_normal);
1903		goto out;
1904	}
1905
1906	/* Estimate the minimum size of the image. */
1907	pages = minimum_image_size(saveable);
1908	/*
1909	 * To avoid excessive pressure on the normal zone, leave room in it to
1910	 * accommodate an image of the minimum size (unless it's already too
1911	 * small, in which case don't preallocate pages from it at all).
1912	 */
1913	if (avail_normal > pages)
1914		avail_normal -= pages;
1915	else
1916		avail_normal = 0;
1917	if (size < pages)
1918		size = min_t(unsigned long, pages, max_size);
1919
1920	/*
1921	 * Let the memory management subsystem know that we're going to need a
1922	 * large number of page frames to allocate and make it free some memory.
1923	 * NOTE: If this is not done, performance will be hurt badly in some
1924	 * test cases.
1925	 */
1926	shrink_all_memory(saveable - size);
1927
1928	/*
1929	 * The number of saveable pages in memory was too high, so apply some
1930	 * pressure to decrease it.  First, make room for the largest possible
1931	 * image and fail if that doesn't work.  Next, try to decrease the size
1932	 * of the image as much as indicated by 'size' using allocations from
1933	 * highmem and non-highmem zones separately.
1934	 */
1935	pages_highmem = preallocate_image_highmem(highmem / 2);
1936	alloc = count - max_size;
1937	if (alloc > pages_highmem)
1938		alloc -= pages_highmem;
1939	else
1940		alloc = 0;
1941	pages = preallocate_image_memory(alloc, avail_normal);
1942	if (pages < alloc) {
1943		/* We have exhausted non-highmem pages, try highmem. */
1944		alloc -= pages;
1945		pages += pages_highmem;
1946		pages_highmem = preallocate_image_highmem(alloc);
1947		if (pages_highmem < alloc) {
1948			pr_err("Image allocation is %lu pages short\n",
1949				alloc - pages_highmem);
1950			goto err_out;
1951		}
1952		pages += pages_highmem;
1953		/*
1954		 * size is the desired number of saveable pages to leave in
1955		 * memory, so try to preallocate (all memory - size) pages.
1956		 */
1957		alloc = (count - pages) - size;
1958		pages += preallocate_image_highmem(alloc);
1959	} else {
1960		/*
1961		 * There are approximately max_size saveable pages at this point
1962		 * and we want to reduce this number down to size.
1963		 */
1964		alloc = max_size - size;
1965		size = preallocate_highmem_fraction(alloc, highmem, count);
1966		pages_highmem += size;
1967		alloc -= size;
1968		size = preallocate_image_memory(alloc, avail_normal);
1969		pages_highmem += preallocate_image_highmem(alloc - size);
1970		pages += pages_highmem + size;
1971	}
1972
1973	/*
1974	 * We only need as many page frames for the image as there are saveable
1975	 * pages in memory, but we have allocated more.  Release the excessive
1976	 * ones now.
1977	 */
1978	pages -= free_unnecessary_pages();
1979
1980 out:
1981	stop = ktime_get();
1982	pr_info("Allocated %lu pages for snapshot\n", pages);
1983	swsusp_show_speed(start, stop, pages, "Allocated");
1984
1985	return 0;
1986
1987 err_out:
 
1988	swsusp_free();
1989	return -ENOMEM;
1990}
1991
1992#ifdef CONFIG_HIGHMEM
1993/**
1994 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1995 *
1996 * Compute the number of non-highmem pages that will be necessary for creating
1997 * copies of highmem pages.
1998 */
1999static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
2000{
2001	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
2002
2003	if (free_highmem >= nr_highmem)
2004		nr_highmem = 0;
2005	else
2006		nr_highmem -= free_highmem;
2007
2008	return nr_highmem;
2009}
2010#else
2011static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
2012#endif /* CONFIG_HIGHMEM */
2013
2014/**
2015 * enough_free_mem - Check if there is enough free memory for the image.
2016 */
2017static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
2018{
2019	struct zone *zone;
2020	unsigned int free = alloc_normal;
2021
2022	for_each_populated_zone(zone)
2023		if (!is_highmem(zone))
2024			free += zone_page_state(zone, NR_FREE_PAGES);
2025
2026	nr_pages += count_pages_for_highmem(nr_highmem);
2027	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
2028		 nr_pages, PAGES_FOR_IO, free);
2029
2030	return free > nr_pages + PAGES_FOR_IO;
2031}
2032
2033#ifdef CONFIG_HIGHMEM
2034/**
2035 * get_highmem_buffer - Allocate a buffer for highmem pages.
2036 *
2037 * If there are some highmem pages in the hibernation image, we may need a
2038 * buffer to copy them and/or load their data.
2039 */
2040static inline int get_highmem_buffer(int safe_needed)
2041{
2042	buffer = get_image_page(GFP_ATOMIC, safe_needed);
2043	return buffer ? 0 : -ENOMEM;
2044}
2045
2046/**
2047 * alloc_highmem_pages - Allocate some highmem pages for the image.
2048 *
2049 * Try to allocate as many pages as needed, but if the number of free highmem
2050 * pages is less than that, allocate them all.
2051 */
2052static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2053					       unsigned int nr_highmem)
2054{
2055	unsigned int to_alloc = count_free_highmem_pages();
2056
2057	if (to_alloc > nr_highmem)
2058		to_alloc = nr_highmem;
2059
2060	nr_highmem -= to_alloc;
2061	while (to_alloc-- > 0) {
2062		struct page *page;
2063
2064		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
2065		memory_bm_set_bit(bm, page_to_pfn(page));
2066	}
2067	return nr_highmem;
2068}
2069#else
2070static inline int get_highmem_buffer(int safe_needed) { return 0; }
2071
2072static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2073					       unsigned int n) { return 0; }
2074#endif /* CONFIG_HIGHMEM */
2075
2076/**
2077 * swsusp_alloc - Allocate memory for hibernation image.
2078 *
2079 * We first try to allocate as many highmem pages as there are
2080 * saveable highmem pages in the system.  If that fails, we allocate
2081 * non-highmem pages for the copies of the remaining highmem ones.
2082 *
2083 * In this approach it is likely that the copies of highmem pages will
2084 * also be located in the high memory, because of the way in which
2085 * copy_data_pages() works.
2086 */
2087static int swsusp_alloc(struct memory_bitmap *copy_bm,
 
2088			unsigned int nr_pages, unsigned int nr_highmem)
2089{
2090	if (nr_highmem > 0) {
2091		if (get_highmem_buffer(PG_ANY))
2092			goto err_out;
2093		if (nr_highmem > alloc_highmem) {
2094			nr_highmem -= alloc_highmem;
2095			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
2096		}
2097	}
2098	if (nr_pages > alloc_normal) {
2099		nr_pages -= alloc_normal;
2100		while (nr_pages-- > 0) {
2101			struct page *page;
2102
2103			page = alloc_image_page(GFP_ATOMIC);
2104			if (!page)
2105				goto err_out;
2106			memory_bm_set_bit(copy_bm, page_to_pfn(page));
2107		}
2108	}
2109
2110	return 0;
2111
2112 err_out:
2113	swsusp_free();
2114	return -ENOMEM;
2115}
2116
2117asmlinkage __visible int swsusp_save(void)
2118{
2119	unsigned int nr_pages, nr_highmem;
2120
2121	pr_info("Creating image:\n");
2122
2123	drain_local_pages(NULL);
2124	nr_pages = count_data_pages();
2125	nr_highmem = count_highmem_pages();
2126	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
2127
2128	if (!enough_free_mem(nr_pages, nr_highmem)) {
2129		pr_err("Not enough free memory\n");
2130		return -ENOMEM;
2131	}
2132
2133	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
2134		pr_err("Memory allocation failed\n");
2135		return -ENOMEM;
2136	}
2137
2138	/*
2139	 * During allocating of suspend pagedir, new cold pages may appear.
2140	 * Kill them.
2141	 */
2142	drain_local_pages(NULL);
2143	nr_copy_pages = copy_data_pages(&copy_bm, &orig_bm, &zero_bm);
2144
2145	/*
2146	 * End of critical section. From now on, we can write to memory,
2147	 * but we should not touch disk. This specially means we must _not_
2148	 * touch swap space! Except we must write out our image of course.
2149	 */
 
2150	nr_pages += nr_highmem;
2151	/* We don't actually copy the zero pages */
2152	nr_zero_pages = nr_pages - nr_copy_pages;
2153	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2154
2155	pr_info("Image created (%d pages copied, %d zero pages)\n", nr_copy_pages, nr_zero_pages);
 
2156
2157	return 0;
2158}
2159
2160#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2161static int init_header_complete(struct swsusp_info *info)
2162{
2163	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2164	info->version_code = LINUX_VERSION_CODE;
2165	return 0;
2166}
2167
2168static const char *check_image_kernel(struct swsusp_info *info)
2169{
2170	if (info->version_code != LINUX_VERSION_CODE)
2171		return "kernel version";
2172	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2173		return "system type";
2174	if (strcmp(info->uts.release,init_utsname()->release))
2175		return "kernel release";
2176	if (strcmp(info->uts.version,init_utsname()->version))
2177		return "version";
2178	if (strcmp(info->uts.machine,init_utsname()->machine))
2179		return "machine";
2180	return NULL;
2181}
2182#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2183
2184unsigned long snapshot_get_image_size(void)
2185{
2186	return nr_copy_pages + nr_meta_pages + 1;
2187}
2188
2189static int init_header(struct swsusp_info *info)
2190{
2191	memset(info, 0, sizeof(struct swsusp_info));
2192	info->num_physpages = get_num_physpages();
2193	info->image_pages = nr_copy_pages;
2194	info->pages = snapshot_get_image_size();
2195	info->size = info->pages;
2196	info->size <<= PAGE_SHIFT;
2197	return init_header_complete(info);
2198}
2199
2200#define ENCODED_PFN_ZERO_FLAG ((unsigned long)1 << (BITS_PER_LONG - 1))
2201#define ENCODED_PFN_MASK (~ENCODED_PFN_ZERO_FLAG)
2202
2203/**
2204 * pack_pfns - Prepare PFNs for saving.
2205 * @bm: Memory bitmap.
2206 * @buf: Memory buffer to store the PFNs in.
2207 * @zero_bm: Memory bitmap containing PFNs of zero pages.
2208 *
2209 * PFNs corresponding to set bits in @bm are stored in the area of memory
2210 * pointed to by @buf (1 page at a time). Pages which were filled with only
2211 * zeros will have the highest bit set in the packed format to distinguish
2212 * them from PFNs which will be contained in the image file.
2213 */
2214static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm,
2215		struct memory_bitmap *zero_bm)
2216{
2217	int j;
2218
2219	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2220		buf[j] = memory_bm_next_pfn(bm);
2221		if (unlikely(buf[j] == BM_END_OF_MAP))
2222			break;
2223		if (memory_bm_test_bit(zero_bm, buf[j]))
2224			buf[j] |= ENCODED_PFN_ZERO_FLAG;
2225	}
2226}
2227
2228/**
2229 * snapshot_read_next - Get the address to read the next image page from.
2230 * @handle: Snapshot handle to be used for the reading.
2231 *
2232 * On the first call, @handle should point to a zeroed snapshot_handle
2233 * structure.  The structure gets populated then and a pointer to it should be
2234 * passed to this function every next time.
2235 *
2236 * On success, the function returns a positive number.  Then, the caller
2237 * is allowed to read up to the returned number of bytes from the memory
2238 * location computed by the data_of() macro.
2239 *
2240 * The function returns 0 to indicate the end of the data stream condition,
2241 * and negative numbers are returned on errors.  If that happens, the structure
2242 * pointed to by @handle is not updated and should not be used any more.
2243 */
2244int snapshot_read_next(struct snapshot_handle *handle)
2245{
2246	if (handle->cur > nr_meta_pages + nr_copy_pages)
2247		return 0;
2248
2249	if (!buffer) {
2250		/* This makes the buffer be freed by swsusp_free() */
2251		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2252		if (!buffer)
2253			return -ENOMEM;
2254	}
2255	if (!handle->cur) {
2256		int error;
2257
2258		error = init_header((struct swsusp_info *)buffer);
2259		if (error)
2260			return error;
2261		handle->buffer = buffer;
2262		memory_bm_position_reset(&orig_bm);
2263		memory_bm_position_reset(&copy_bm);
2264	} else if (handle->cur <= nr_meta_pages) {
2265		clear_page(buffer);
2266		pack_pfns(buffer, &orig_bm, &zero_bm);
2267	} else {
2268		struct page *page;
2269
2270		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2271		if (PageHighMem(page)) {
2272			/*
2273			 * Highmem pages are copied to the buffer,
2274			 * because we can't return with a kmapped
2275			 * highmem page (we may not be called again).
2276			 */
2277			void *kaddr;
2278
2279			kaddr = kmap_atomic(page);
2280			copy_page(buffer, kaddr);
2281			kunmap_atomic(kaddr);
2282			handle->buffer = buffer;
2283		} else {
2284			handle->buffer = page_address(page);
2285		}
2286	}
2287	handle->cur++;
2288	return PAGE_SIZE;
2289}
2290
2291static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2292				    struct memory_bitmap *src)
2293{
2294	unsigned long pfn;
2295
2296	memory_bm_position_reset(src);
2297	pfn = memory_bm_next_pfn(src);
2298	while (pfn != BM_END_OF_MAP) {
2299		memory_bm_set_bit(dst, pfn);
2300		pfn = memory_bm_next_pfn(src);
2301	}
2302}
2303
2304/**
2305 * mark_unsafe_pages - Mark pages that were used before hibernation.
2306 *
2307 * Mark the pages that cannot be used for storing the image during restoration,
2308 * because they conflict with the pages that had been used before hibernation.
2309 */
2310static void mark_unsafe_pages(struct memory_bitmap *bm)
2311{
2312	unsigned long pfn;
2313
2314	/* Clear the "free"/"unsafe" bit for all PFNs */
2315	memory_bm_position_reset(free_pages_map);
2316	pfn = memory_bm_next_pfn(free_pages_map);
2317	while (pfn != BM_END_OF_MAP) {
2318		memory_bm_clear_current(free_pages_map);
2319		pfn = memory_bm_next_pfn(free_pages_map);
2320	}
2321
2322	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2323	duplicate_memory_bitmap(free_pages_map, bm);
2324
2325	allocated_unsafe_pages = 0;
2326}
2327
2328static int check_header(struct swsusp_info *info)
2329{
2330	const char *reason;
2331
2332	reason = check_image_kernel(info);
2333	if (!reason && info->num_physpages != get_num_physpages())
2334		reason = "memory size";
2335	if (reason) {
2336		pr_err("Image mismatch: %s\n", reason);
2337		return -EPERM;
2338	}
2339	return 0;
2340}
2341
2342/**
2343 * load_header - Check the image header and copy the data from it.
2344 */
2345static int load_header(struct swsusp_info *info)
2346{
2347	int error;
2348
2349	restore_pblist = NULL;
2350	error = check_header(info);
2351	if (!error) {
2352		nr_copy_pages = info->image_pages;
2353		nr_meta_pages = info->pages - info->image_pages - 1;
2354	}
2355	return error;
2356}
2357
2358/**
2359 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2360 * @bm: Memory bitmap.
2361 * @buf: Area of memory containing the PFNs.
2362 * @zero_bm: Memory bitmap with the zero PFNs marked.
2363 *
2364 * For each element of the array pointed to by @buf (1 page at a time), set the
2365 * corresponding bit in @bm. If the page was originally populated with only
2366 * zeros then a corresponding bit will also be set in @zero_bm.
2367 */
2368static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm,
2369		struct memory_bitmap *zero_bm)
2370{
2371	unsigned long decoded_pfn;
2372        bool zero;
2373	int j;
2374
2375	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2376		if (unlikely(buf[j] == BM_END_OF_MAP))
2377			break;
2378
2379		zero = !!(buf[j] & ENCODED_PFN_ZERO_FLAG);
2380		decoded_pfn = buf[j] & ENCODED_PFN_MASK;
2381		if (pfn_valid(decoded_pfn) && memory_bm_pfn_present(bm, decoded_pfn)) {
2382			memory_bm_set_bit(bm, decoded_pfn);
2383			if (zero) {
2384				memory_bm_set_bit(zero_bm, decoded_pfn);
2385				nr_zero_pages++;
2386			}
2387		} else {
2388			if (!pfn_valid(decoded_pfn))
2389				pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n",
2390				       (unsigned long long)PFN_PHYS(decoded_pfn));
2391			return -EFAULT;
2392		}
2393	}
2394
2395	return 0;
2396}
2397
2398#ifdef CONFIG_HIGHMEM
2399/*
2400 * struct highmem_pbe is used for creating the list of highmem pages that
2401 * should be restored atomically during the resume from disk, because the page
2402 * frames they have occupied before the suspend are in use.
2403 */
2404struct highmem_pbe {
2405	struct page *copy_page;	/* data is here now */
2406	struct page *orig_page;	/* data was here before the suspend */
2407	struct highmem_pbe *next;
2408};
2409
2410/*
2411 * List of highmem PBEs needed for restoring the highmem pages that were
2412 * allocated before the suspend and included in the suspend image, but have
2413 * also been allocated by the "resume" kernel, so their contents cannot be
2414 * written directly to their "original" page frames.
2415 */
2416static struct highmem_pbe *highmem_pblist;
2417
2418/**
2419 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2420 * @bm: Memory bitmap.
2421 *
2422 * The bits in @bm that correspond to image pages are assumed to be set.
2423 */
2424static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2425{
2426	unsigned long pfn;
2427	unsigned int cnt = 0;
2428
2429	memory_bm_position_reset(bm);
2430	pfn = memory_bm_next_pfn(bm);
2431	while (pfn != BM_END_OF_MAP) {
2432		if (PageHighMem(pfn_to_page(pfn)))
2433			cnt++;
2434
2435		pfn = memory_bm_next_pfn(bm);
2436	}
2437	return cnt;
2438}
2439
2440static unsigned int safe_highmem_pages;
2441
2442static struct memory_bitmap *safe_highmem_bm;
2443
2444/**
2445 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2446 * @bm: Pointer to an uninitialized memory bitmap structure.
2447 * @nr_highmem_p: Pointer to the number of highmem image pages.
2448 *
2449 * Try to allocate as many highmem pages as there are highmem image pages
2450 * (@nr_highmem_p points to the variable containing the number of highmem image
2451 * pages).  The pages that are "safe" (ie. will not be overwritten when the
2452 * hibernation image is restored entirely) have the corresponding bits set in
2453 * @bm (it must be uninitialized).
2454 *
2455 * NOTE: This function should not be called if there are no highmem image pages.
2456 */
2457static int prepare_highmem_image(struct memory_bitmap *bm,
2458				 unsigned int *nr_highmem_p)
2459{
2460	unsigned int to_alloc;
2461
2462	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2463		return -ENOMEM;
2464
2465	if (get_highmem_buffer(PG_SAFE))
2466		return -ENOMEM;
2467
2468	to_alloc = count_free_highmem_pages();
2469	if (to_alloc > *nr_highmem_p)
2470		to_alloc = *nr_highmem_p;
2471	else
2472		*nr_highmem_p = to_alloc;
2473
2474	safe_highmem_pages = 0;
2475	while (to_alloc-- > 0) {
2476		struct page *page;
2477
2478		page = alloc_page(__GFP_HIGHMEM);
2479		if (!swsusp_page_is_free(page)) {
2480			/* The page is "safe", set its bit the bitmap */
2481			memory_bm_set_bit(bm, page_to_pfn(page));
2482			safe_highmem_pages++;
2483		}
2484		/* Mark the page as allocated */
2485		swsusp_set_page_forbidden(page);
2486		swsusp_set_page_free(page);
2487	}
2488	memory_bm_position_reset(bm);
2489	safe_highmem_bm = bm;
2490	return 0;
2491}
2492
2493static struct page *last_highmem_page;
2494
2495/**
2496 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2497 *
2498 * For a given highmem image page get a buffer that suspend_write_next() should
2499 * return to its caller to write to.
2500 *
2501 * If the page is to be saved to its "original" page frame or a copy of
2502 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2503 * the copy of the page is to be made in normal memory, so the address of
2504 * the copy is returned.
2505 *
2506 * If @buffer is returned, the caller of suspend_write_next() will write
2507 * the page's contents to @buffer, so they will have to be copied to the
2508 * right location on the next call to suspend_write_next() and it is done
2509 * with the help of copy_last_highmem_page().  For this purpose, if
2510 * @buffer is returned, @last_highmem_page is set to the page to which
2511 * the data will have to be copied from @buffer.
2512 */
2513static void *get_highmem_page_buffer(struct page *page,
2514				     struct chain_allocator *ca)
2515{
2516	struct highmem_pbe *pbe;
2517	void *kaddr;
2518
2519	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2520		/*
2521		 * We have allocated the "original" page frame and we can
2522		 * use it directly to store the loaded page.
2523		 */
2524		last_highmem_page = page;
2525		return buffer;
2526	}
2527	/*
2528	 * The "original" page frame has not been allocated and we have to
2529	 * use a "safe" page frame to store the loaded page.
2530	 */
2531	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2532	if (!pbe) {
2533		swsusp_free();
2534		return ERR_PTR(-ENOMEM);
2535	}
2536	pbe->orig_page = page;
2537	if (safe_highmem_pages > 0) {
2538		struct page *tmp;
2539
2540		/* Copy of the page will be stored in high memory */
2541		kaddr = buffer;
2542		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2543		safe_highmem_pages--;
2544		last_highmem_page = tmp;
2545		pbe->copy_page = tmp;
2546	} else {
2547		/* Copy of the page will be stored in normal memory */
2548		kaddr = __get_safe_page(ca->gfp_mask);
2549		if (!kaddr)
2550			return ERR_PTR(-ENOMEM);
2551		pbe->copy_page = virt_to_page(kaddr);
2552	}
2553	pbe->next = highmem_pblist;
2554	highmem_pblist = pbe;
2555	return kaddr;
2556}
2557
2558/**
2559 * copy_last_highmem_page - Copy most the most recent highmem image page.
2560 *
2561 * Copy the contents of a highmem image from @buffer, where the caller of
2562 * snapshot_write_next() has stored them, to the right location represented by
2563 * @last_highmem_page .
2564 */
2565static void copy_last_highmem_page(void)
2566{
2567	if (last_highmem_page) {
2568		void *dst;
2569
2570		dst = kmap_atomic(last_highmem_page);
2571		copy_page(dst, buffer);
2572		kunmap_atomic(dst);
2573		last_highmem_page = NULL;
2574	}
2575}
2576
2577static inline int last_highmem_page_copied(void)
2578{
2579	return !last_highmem_page;
2580}
2581
2582static inline void free_highmem_data(void)
2583{
2584	if (safe_highmem_bm)
2585		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2586
2587	if (buffer)
2588		free_image_page(buffer, PG_UNSAFE_CLEAR);
2589}
2590#else
2591static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2592
2593static inline int prepare_highmem_image(struct memory_bitmap *bm,
2594					unsigned int *nr_highmem_p) { return 0; }
2595
2596static inline void *get_highmem_page_buffer(struct page *page,
2597					    struct chain_allocator *ca)
2598{
2599	return ERR_PTR(-EINVAL);
2600}
2601
2602static inline void copy_last_highmem_page(void) {}
2603static inline int last_highmem_page_copied(void) { return 1; }
2604static inline void free_highmem_data(void) {}
2605#endif /* CONFIG_HIGHMEM */
2606
2607#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2608
2609/**
2610 * prepare_image - Make room for loading hibernation image.
2611 * @new_bm: Uninitialized memory bitmap structure.
2612 * @bm: Memory bitmap with unsafe pages marked.
2613 * @zero_bm: Memory bitmap containing the zero pages.
2614 *
2615 * Use @bm to mark the pages that will be overwritten in the process of
2616 * restoring the system memory state from the suspend image ("unsafe" pages)
2617 * and allocate memory for the image.
2618 *
2619 * The idea is to allocate a new memory bitmap first and then allocate
2620 * as many pages as needed for image data, but without specifying what those
2621 * pages will be used for just yet.  Instead, we mark them all as allocated and
2622 * create a lists of "safe" pages to be used later.  On systems with high
2623 * memory a list of "safe" highmem pages is created too.
2624 *
2625 * Because it was not known which pages were unsafe when @zero_bm was created,
2626 * make a copy of it and recreate it within safe pages.
2627 */
2628static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm,
2629		struct memory_bitmap *zero_bm)
2630{
2631	unsigned int nr_pages, nr_highmem;
2632	struct memory_bitmap tmp;
2633	struct linked_page *lp;
2634	int error;
2635
2636	/* If there is no highmem, the buffer will not be necessary */
2637	free_image_page(buffer, PG_UNSAFE_CLEAR);
2638	buffer = NULL;
2639
2640	nr_highmem = count_highmem_image_pages(bm);
2641	mark_unsafe_pages(bm);
2642
2643	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2644	if (error)
2645		goto Free;
2646
2647	duplicate_memory_bitmap(new_bm, bm);
2648	memory_bm_free(bm, PG_UNSAFE_KEEP);
2649
2650	/* Make a copy of zero_bm so it can be created in safe pages */
2651	error = memory_bm_create(&tmp, GFP_ATOMIC, PG_SAFE);
2652	if (error)
2653		goto Free;
2654
2655	duplicate_memory_bitmap(&tmp, zero_bm);
2656	memory_bm_free(zero_bm, PG_UNSAFE_KEEP);
2657
2658	/* Recreate zero_bm in safe pages */
2659	error = memory_bm_create(zero_bm, GFP_ATOMIC, PG_SAFE);
2660	if (error)
2661		goto Free;
2662
2663	duplicate_memory_bitmap(zero_bm, &tmp);
2664	memory_bm_free(&tmp, PG_UNSAFE_CLEAR);
2665	/* At this point zero_bm is in safe pages and it can be used for restoring. */
2666
2667	if (nr_highmem > 0) {
2668		error = prepare_highmem_image(bm, &nr_highmem);
2669		if (error)
2670			goto Free;
2671	}
2672	/*
2673	 * Reserve some safe pages for potential later use.
2674	 *
2675	 * NOTE: This way we make sure there will be enough safe pages for the
2676	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2677	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2678	 *
2679	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2680	 */
2681	nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages;
2682	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2683	while (nr_pages > 0) {
2684		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2685		if (!lp) {
2686			error = -ENOMEM;
2687			goto Free;
2688		}
2689		lp->next = safe_pages_list;
2690		safe_pages_list = lp;
2691		nr_pages--;
2692	}
2693	/* Preallocate memory for the image */
2694	nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages;
2695	while (nr_pages > 0) {
2696		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2697		if (!lp) {
2698			error = -ENOMEM;
2699			goto Free;
2700		}
2701		if (!swsusp_page_is_free(virt_to_page(lp))) {
2702			/* The page is "safe", add it to the list */
2703			lp->next = safe_pages_list;
2704			safe_pages_list = lp;
2705		}
2706		/* Mark the page as allocated */
2707		swsusp_set_page_forbidden(virt_to_page(lp));
2708		swsusp_set_page_free(virt_to_page(lp));
2709		nr_pages--;
2710	}
2711	return 0;
2712
2713 Free:
2714	swsusp_free();
2715	return error;
2716}
2717
2718/**
2719 * get_buffer - Get the address to store the next image data page.
2720 *
2721 * Get the address that snapshot_write_next() should return to its caller to
2722 * write to.
2723 */
2724static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2725{
2726	struct pbe *pbe;
2727	struct page *page;
2728	unsigned long pfn = memory_bm_next_pfn(bm);
2729
2730	if (pfn == BM_END_OF_MAP)
2731		return ERR_PTR(-EFAULT);
2732
2733	page = pfn_to_page(pfn);
2734	if (PageHighMem(page))
2735		return get_highmem_page_buffer(page, ca);
2736
2737	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2738		/*
2739		 * We have allocated the "original" page frame and we can
2740		 * use it directly to store the loaded page.
2741		 */
2742		return page_address(page);
2743
2744	/*
2745	 * The "original" page frame has not been allocated and we have to
2746	 * use a "safe" page frame to store the loaded page.
2747	 */
2748	pbe = chain_alloc(ca, sizeof(struct pbe));
2749	if (!pbe) {
2750		swsusp_free();
2751		return ERR_PTR(-ENOMEM);
2752	}
2753	pbe->orig_address = page_address(page);
2754	pbe->address = __get_safe_page(ca->gfp_mask);
2755	if (!pbe->address)
2756		return ERR_PTR(-ENOMEM);
2757	pbe->next = restore_pblist;
2758	restore_pblist = pbe;
2759	return pbe->address;
2760}
2761
2762/**
2763 * snapshot_write_next - Get the address to store the next image page.
2764 * @handle: Snapshot handle structure to guide the writing.
2765 *
2766 * On the first call, @handle should point to a zeroed snapshot_handle
2767 * structure.  The structure gets populated then and a pointer to it should be
2768 * passed to this function every next time.
2769 *
2770 * On success, the function returns a positive number.  Then, the caller
2771 * is allowed to write up to the returned number of bytes to the memory
2772 * location computed by the data_of() macro.
2773 *
2774 * The function returns 0 to indicate the "end of file" condition.  Negative
2775 * numbers are returned on errors, in which cases the structure pointed to by
2776 * @handle is not updated and should not be used any more.
2777 */
2778int snapshot_write_next(struct snapshot_handle *handle)
2779{
2780	static struct chain_allocator ca;
2781	int error;
2782
2783next:
2784	/* Check if we have already loaded the entire image */
2785	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages)
2786		return 0;
2787
 
 
2788	if (!handle->cur) {
2789		if (!buffer)
2790			/* This makes the buffer be freed by swsusp_free() */
2791			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2792
2793		if (!buffer)
2794			return -ENOMEM;
2795
2796		handle->buffer = buffer;
2797	} else if (handle->cur == 1) {
2798		error = load_header(buffer);
2799		if (error)
2800			return error;
2801
2802		safe_pages_list = NULL;
2803
2804		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2805		if (error)
2806			return error;
2807
2808		error = memory_bm_create(&zero_bm, GFP_ATOMIC, PG_ANY);
 
2809		if (error)
2810			return error;
2811
2812		nr_zero_pages = 0;
2813
2814		hibernate_restore_protection_begin();
2815	} else if (handle->cur <= nr_meta_pages + 1) {
2816		error = unpack_orig_pfns(buffer, &copy_bm, &zero_bm);
2817		if (error)
2818			return error;
2819
2820		if (handle->cur == nr_meta_pages + 1) {
2821			error = prepare_image(&orig_bm, &copy_bm, &zero_bm);
2822			if (error)
2823				return error;
2824
2825			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2826			memory_bm_position_reset(&orig_bm);
2827			memory_bm_position_reset(&zero_bm);
2828			restore_pblist = NULL;
2829			handle->buffer = get_buffer(&orig_bm, &ca);
 
2830			if (IS_ERR(handle->buffer))
2831				return PTR_ERR(handle->buffer);
2832		}
2833	} else {
2834		copy_last_highmem_page();
 
 
2835		hibernate_restore_protect_page(handle->buffer);
2836		handle->buffer = get_buffer(&orig_bm, &ca);
2837		if (IS_ERR(handle->buffer))
2838			return PTR_ERR(handle->buffer);
 
 
2839	}
2840	handle->sync_read = (handle->buffer == buffer);
2841	handle->cur++;
2842
2843	/* Zero pages were not included in the image, memset it and move on. */
2844	if (handle->cur > nr_meta_pages + 1 &&
2845	    memory_bm_test_bit(&zero_bm, memory_bm_get_current(&orig_bm))) {
2846		memset(handle->buffer, 0, PAGE_SIZE);
2847		goto next;
2848	}
2849
2850	return PAGE_SIZE;
2851}
2852
2853/**
2854 * snapshot_write_finalize - Complete the loading of a hibernation image.
2855 *
2856 * Must be called after the last call to snapshot_write_next() in case the last
2857 * page in the image happens to be a highmem page and its contents should be
2858 * stored in highmem.  Additionally, it recycles bitmap memory that's not
2859 * necessary any more.
2860 */
2861void snapshot_write_finalize(struct snapshot_handle *handle)
2862{
2863	copy_last_highmem_page();
 
 
 
2864	hibernate_restore_protect_page(handle->buffer);
2865	/* Do that only if we have loaded the image entirely */
2866	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages) {
2867		memory_bm_recycle(&orig_bm);
2868		free_highmem_data();
2869	}
2870}
2871
2872int snapshot_image_loaded(struct snapshot_handle *handle)
2873{
2874	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2875			handle->cur <= nr_meta_pages + nr_copy_pages + nr_zero_pages);
2876}
2877
2878#ifdef CONFIG_HIGHMEM
2879/* Assumes that @buf is ready and points to a "safe" page */
2880static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2881				       void *buf)
2882{
2883	void *kaddr1, *kaddr2;
2884
2885	kaddr1 = kmap_atomic(p1);
2886	kaddr2 = kmap_atomic(p2);
2887	copy_page(buf, kaddr1);
2888	copy_page(kaddr1, kaddr2);
2889	copy_page(kaddr2, buf);
2890	kunmap_atomic(kaddr2);
2891	kunmap_atomic(kaddr1);
2892}
2893
2894/**
2895 * restore_highmem - Put highmem image pages into their original locations.
2896 *
2897 * For each highmem page that was in use before hibernation and is included in
2898 * the image, and also has been allocated by the "restore" kernel, swap its
2899 * current contents with the previous (ie. "before hibernation") ones.
2900 *
2901 * If the restore eventually fails, we can call this function once again and
2902 * restore the highmem state as seen by the restore kernel.
2903 */
2904int restore_highmem(void)
2905{
2906	struct highmem_pbe *pbe = highmem_pblist;
2907	void *buf;
2908
2909	if (!pbe)
2910		return 0;
2911
2912	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2913	if (!buf)
2914		return -ENOMEM;
2915
2916	while (pbe) {
2917		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2918		pbe = pbe->next;
2919	}
2920	free_image_page(buf, PG_UNSAFE_CLEAR);
2921	return 0;
2922}
2923#endif /* CONFIG_HIGHMEM */