Loading...
1/* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6#include <linux/proc_fs.h>
7#include <linux/smp.h>
8#include <linux/init.h>
9#include <linux/notifier.h>
10#include <linux/sched.h>
11#include <linux/unistd.h>
12#include <linux/cpu.h>
13#include <linux/oom.h>
14#include <linux/rcupdate.h>
15#include <linux/export.h>
16#include <linux/bug.h>
17#include <linux/kthread.h>
18#include <linux/stop_machine.h>
19#include <linux/mutex.h>
20#include <linux/gfp.h>
21#include <linux/suspend.h>
22#include <linux/lockdep.h>
23#include <linux/tick.h>
24#include <linux/irq.h>
25#include <linux/smpboot.h>
26#include <linux/relay.h>
27#include <linux/slab.h>
28
29#include <trace/events/power.h>
30#define CREATE_TRACE_POINTS
31#include <trace/events/cpuhp.h>
32
33#include "smpboot.h"
34
35/**
36 * cpuhp_cpu_state - Per cpu hotplug state storage
37 * @state: The current cpu state
38 * @target: The target state
39 * @thread: Pointer to the hotplug thread
40 * @should_run: Thread should execute
41 * @rollback: Perform a rollback
42 * @single: Single callback invocation
43 * @bringup: Single callback bringup or teardown selector
44 * @cb_state: The state for a single callback (install/uninstall)
45 * @result: Result of the operation
46 * @done: Signal completion to the issuer of the task
47 */
48struct cpuhp_cpu_state {
49 enum cpuhp_state state;
50 enum cpuhp_state target;
51#ifdef CONFIG_SMP
52 struct task_struct *thread;
53 bool should_run;
54 bool rollback;
55 bool single;
56 bool bringup;
57 struct hlist_node *node;
58 enum cpuhp_state cb_state;
59 int result;
60 struct completion done;
61#endif
62};
63
64static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
65
66/**
67 * cpuhp_step - Hotplug state machine step
68 * @name: Name of the step
69 * @startup: Startup function of the step
70 * @teardown: Teardown function of the step
71 * @skip_onerr: Do not invoke the functions on error rollback
72 * Will go away once the notifiers are gone
73 * @cant_stop: Bringup/teardown can't be stopped at this step
74 */
75struct cpuhp_step {
76 const char *name;
77 union {
78 int (*single)(unsigned int cpu);
79 int (*multi)(unsigned int cpu,
80 struct hlist_node *node);
81 } startup;
82 union {
83 int (*single)(unsigned int cpu);
84 int (*multi)(unsigned int cpu,
85 struct hlist_node *node);
86 } teardown;
87 struct hlist_head list;
88 bool skip_onerr;
89 bool cant_stop;
90 bool multi_instance;
91};
92
93static DEFINE_MUTEX(cpuhp_state_mutex);
94static struct cpuhp_step cpuhp_bp_states[];
95static struct cpuhp_step cpuhp_ap_states[];
96
97static bool cpuhp_is_ap_state(enum cpuhp_state state)
98{
99 /*
100 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
101 * purposes as that state is handled explicitly in cpu_down.
102 */
103 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
104}
105
106static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
107{
108 struct cpuhp_step *sp;
109
110 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
111 return sp + state;
112}
113
114/**
115 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
116 * @cpu: The cpu for which the callback should be invoked
117 * @step: The step in the state machine
118 * @bringup: True if the bringup callback should be invoked
119 *
120 * Called from cpu hotplug and from the state register machinery.
121 */
122static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
123 bool bringup, struct hlist_node *node)
124{
125 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
126 struct cpuhp_step *step = cpuhp_get_step(state);
127 int (*cbm)(unsigned int cpu, struct hlist_node *node);
128 int (*cb)(unsigned int cpu);
129 int ret, cnt;
130
131 if (!step->multi_instance) {
132 cb = bringup ? step->startup.single : step->teardown.single;
133 if (!cb)
134 return 0;
135 trace_cpuhp_enter(cpu, st->target, state, cb);
136 ret = cb(cpu);
137 trace_cpuhp_exit(cpu, st->state, state, ret);
138 return ret;
139 }
140 cbm = bringup ? step->startup.multi : step->teardown.multi;
141 if (!cbm)
142 return 0;
143
144 /* Single invocation for instance add/remove */
145 if (node) {
146 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
147 ret = cbm(cpu, node);
148 trace_cpuhp_exit(cpu, st->state, state, ret);
149 return ret;
150 }
151
152 /* State transition. Invoke on all instances */
153 cnt = 0;
154 hlist_for_each(node, &step->list) {
155 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
156 ret = cbm(cpu, node);
157 trace_cpuhp_exit(cpu, st->state, state, ret);
158 if (ret)
159 goto err;
160 cnt++;
161 }
162 return 0;
163err:
164 /* Rollback the instances if one failed */
165 cbm = !bringup ? step->startup.multi : step->teardown.multi;
166 if (!cbm)
167 return ret;
168
169 hlist_for_each(node, &step->list) {
170 if (!cnt--)
171 break;
172 cbm(cpu, node);
173 }
174 return ret;
175}
176
177#ifdef CONFIG_SMP
178/* Serializes the updates to cpu_online_mask, cpu_present_mask */
179static DEFINE_MUTEX(cpu_add_remove_lock);
180bool cpuhp_tasks_frozen;
181EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
182
183/*
184 * The following two APIs (cpu_maps_update_begin/done) must be used when
185 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
186 */
187void cpu_maps_update_begin(void)
188{
189 mutex_lock(&cpu_add_remove_lock);
190}
191
192void cpu_maps_update_done(void)
193{
194 mutex_unlock(&cpu_add_remove_lock);
195}
196
197/* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
198 * Should always be manipulated under cpu_add_remove_lock
199 */
200static int cpu_hotplug_disabled;
201
202#ifdef CONFIG_HOTPLUG_CPU
203
204static struct {
205 struct task_struct *active_writer;
206 /* wait queue to wake up the active_writer */
207 wait_queue_head_t wq;
208 /* verifies that no writer will get active while readers are active */
209 struct mutex lock;
210 /*
211 * Also blocks the new readers during
212 * an ongoing cpu hotplug operation.
213 */
214 atomic_t refcount;
215
216#ifdef CONFIG_DEBUG_LOCK_ALLOC
217 struct lockdep_map dep_map;
218#endif
219} cpu_hotplug = {
220 .active_writer = NULL,
221 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
222 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
223#ifdef CONFIG_DEBUG_LOCK_ALLOC
224 .dep_map = STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug.dep_map),
225#endif
226};
227
228/* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
229#define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
230#define cpuhp_lock_acquire_tryread() \
231 lock_map_acquire_tryread(&cpu_hotplug.dep_map)
232#define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map)
233#define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map)
234
235
236void get_online_cpus(void)
237{
238 might_sleep();
239 if (cpu_hotplug.active_writer == current)
240 return;
241 cpuhp_lock_acquire_read();
242 mutex_lock(&cpu_hotplug.lock);
243 atomic_inc(&cpu_hotplug.refcount);
244 mutex_unlock(&cpu_hotplug.lock);
245}
246EXPORT_SYMBOL_GPL(get_online_cpus);
247
248void put_online_cpus(void)
249{
250 int refcount;
251
252 if (cpu_hotplug.active_writer == current)
253 return;
254
255 refcount = atomic_dec_return(&cpu_hotplug.refcount);
256 if (WARN_ON(refcount < 0)) /* try to fix things up */
257 atomic_inc(&cpu_hotplug.refcount);
258
259 if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
260 wake_up(&cpu_hotplug.wq);
261
262 cpuhp_lock_release();
263
264}
265EXPORT_SYMBOL_GPL(put_online_cpus);
266
267/*
268 * This ensures that the hotplug operation can begin only when the
269 * refcount goes to zero.
270 *
271 * Note that during a cpu-hotplug operation, the new readers, if any,
272 * will be blocked by the cpu_hotplug.lock
273 *
274 * Since cpu_hotplug_begin() is always called after invoking
275 * cpu_maps_update_begin(), we can be sure that only one writer is active.
276 *
277 * Note that theoretically, there is a possibility of a livelock:
278 * - Refcount goes to zero, last reader wakes up the sleeping
279 * writer.
280 * - Last reader unlocks the cpu_hotplug.lock.
281 * - A new reader arrives at this moment, bumps up the refcount.
282 * - The writer acquires the cpu_hotplug.lock finds the refcount
283 * non zero and goes to sleep again.
284 *
285 * However, this is very difficult to achieve in practice since
286 * get_online_cpus() not an api which is called all that often.
287 *
288 */
289void cpu_hotplug_begin(void)
290{
291 DEFINE_WAIT(wait);
292
293 cpu_hotplug.active_writer = current;
294 cpuhp_lock_acquire();
295
296 for (;;) {
297 mutex_lock(&cpu_hotplug.lock);
298 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
299 if (likely(!atomic_read(&cpu_hotplug.refcount)))
300 break;
301 mutex_unlock(&cpu_hotplug.lock);
302 schedule();
303 }
304 finish_wait(&cpu_hotplug.wq, &wait);
305}
306
307void cpu_hotplug_done(void)
308{
309 cpu_hotplug.active_writer = NULL;
310 mutex_unlock(&cpu_hotplug.lock);
311 cpuhp_lock_release();
312}
313
314/*
315 * Wait for currently running CPU hotplug operations to complete (if any) and
316 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
317 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
318 * hotplug path before performing hotplug operations. So acquiring that lock
319 * guarantees mutual exclusion from any currently running hotplug operations.
320 */
321void cpu_hotplug_disable(void)
322{
323 cpu_maps_update_begin();
324 cpu_hotplug_disabled++;
325 cpu_maps_update_done();
326}
327EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
328
329static void __cpu_hotplug_enable(void)
330{
331 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
332 return;
333 cpu_hotplug_disabled--;
334}
335
336void cpu_hotplug_enable(void)
337{
338 cpu_maps_update_begin();
339 __cpu_hotplug_enable();
340 cpu_maps_update_done();
341}
342EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
343#endif /* CONFIG_HOTPLUG_CPU */
344
345/* Notifier wrappers for transitioning to state machine */
346
347static int bringup_wait_for_ap(unsigned int cpu)
348{
349 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
350
351 wait_for_completion(&st->done);
352 return st->result;
353}
354
355static int bringup_cpu(unsigned int cpu)
356{
357 struct task_struct *idle = idle_thread_get(cpu);
358 int ret;
359
360 /*
361 * Some architectures have to walk the irq descriptors to
362 * setup the vector space for the cpu which comes online.
363 * Prevent irq alloc/free across the bringup.
364 */
365 irq_lock_sparse();
366
367 /* Arch-specific enabling code. */
368 ret = __cpu_up(cpu, idle);
369 irq_unlock_sparse();
370 if (ret)
371 return ret;
372 ret = bringup_wait_for_ap(cpu);
373 BUG_ON(!cpu_online(cpu));
374 return ret;
375}
376
377/*
378 * Hotplug state machine related functions
379 */
380static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
381{
382 for (st->state++; st->state < st->target; st->state++) {
383 struct cpuhp_step *step = cpuhp_get_step(st->state);
384
385 if (!step->skip_onerr)
386 cpuhp_invoke_callback(cpu, st->state, true, NULL);
387 }
388}
389
390static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
391 enum cpuhp_state target)
392{
393 enum cpuhp_state prev_state = st->state;
394 int ret = 0;
395
396 for (; st->state > target; st->state--) {
397 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
398 if (ret) {
399 st->target = prev_state;
400 undo_cpu_down(cpu, st);
401 break;
402 }
403 }
404 return ret;
405}
406
407static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
408{
409 for (st->state--; st->state > st->target; st->state--) {
410 struct cpuhp_step *step = cpuhp_get_step(st->state);
411
412 if (!step->skip_onerr)
413 cpuhp_invoke_callback(cpu, st->state, false, NULL);
414 }
415}
416
417static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
418 enum cpuhp_state target)
419{
420 enum cpuhp_state prev_state = st->state;
421 int ret = 0;
422
423 while (st->state < target) {
424 st->state++;
425 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
426 if (ret) {
427 st->target = prev_state;
428 undo_cpu_up(cpu, st);
429 break;
430 }
431 }
432 return ret;
433}
434
435/*
436 * The cpu hotplug threads manage the bringup and teardown of the cpus
437 */
438static void cpuhp_create(unsigned int cpu)
439{
440 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
441
442 init_completion(&st->done);
443}
444
445static int cpuhp_should_run(unsigned int cpu)
446{
447 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
448
449 return st->should_run;
450}
451
452/* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
453static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
454{
455 enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
456
457 return cpuhp_down_callbacks(cpu, st, target);
458}
459
460/* Execute the online startup callbacks. Used to be CPU_ONLINE */
461static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
462{
463 return cpuhp_up_callbacks(cpu, st, st->target);
464}
465
466/*
467 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
468 * callbacks when a state gets [un]installed at runtime.
469 */
470static void cpuhp_thread_fun(unsigned int cpu)
471{
472 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
473 int ret = 0;
474
475 /*
476 * Paired with the mb() in cpuhp_kick_ap_work and
477 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
478 */
479 smp_mb();
480 if (!st->should_run)
481 return;
482
483 st->should_run = false;
484
485 /* Single callback invocation for [un]install ? */
486 if (st->single) {
487 if (st->cb_state < CPUHP_AP_ONLINE) {
488 local_irq_disable();
489 ret = cpuhp_invoke_callback(cpu, st->cb_state,
490 st->bringup, st->node);
491 local_irq_enable();
492 } else {
493 ret = cpuhp_invoke_callback(cpu, st->cb_state,
494 st->bringup, st->node);
495 }
496 } else if (st->rollback) {
497 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
498
499 undo_cpu_down(cpu, st);
500 st->rollback = false;
501 } else {
502 /* Cannot happen .... */
503 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
504
505 /* Regular hotplug work */
506 if (st->state < st->target)
507 ret = cpuhp_ap_online(cpu, st);
508 else if (st->state > st->target)
509 ret = cpuhp_ap_offline(cpu, st);
510 }
511 st->result = ret;
512 complete(&st->done);
513}
514
515/* Invoke a single callback on a remote cpu */
516static int
517cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
518 struct hlist_node *node)
519{
520 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
521
522 if (!cpu_online(cpu))
523 return 0;
524
525 /*
526 * If we are up and running, use the hotplug thread. For early calls
527 * we invoke the thread function directly.
528 */
529 if (!st->thread)
530 return cpuhp_invoke_callback(cpu, state, bringup, node);
531
532 st->cb_state = state;
533 st->single = true;
534 st->bringup = bringup;
535 st->node = node;
536
537 /*
538 * Make sure the above stores are visible before should_run becomes
539 * true. Paired with the mb() above in cpuhp_thread_fun()
540 */
541 smp_mb();
542 st->should_run = true;
543 wake_up_process(st->thread);
544 wait_for_completion(&st->done);
545 return st->result;
546}
547
548/* Regular hotplug invocation of the AP hotplug thread */
549static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
550{
551 st->result = 0;
552 st->single = false;
553 /*
554 * Make sure the above stores are visible before should_run becomes
555 * true. Paired with the mb() above in cpuhp_thread_fun()
556 */
557 smp_mb();
558 st->should_run = true;
559 wake_up_process(st->thread);
560}
561
562static int cpuhp_kick_ap_work(unsigned int cpu)
563{
564 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
565 enum cpuhp_state state = st->state;
566
567 trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
568 __cpuhp_kick_ap_work(st);
569 wait_for_completion(&st->done);
570 trace_cpuhp_exit(cpu, st->state, state, st->result);
571 return st->result;
572}
573
574static struct smp_hotplug_thread cpuhp_threads = {
575 .store = &cpuhp_state.thread,
576 .create = &cpuhp_create,
577 .thread_should_run = cpuhp_should_run,
578 .thread_fn = cpuhp_thread_fun,
579 .thread_comm = "cpuhp/%u",
580 .selfparking = true,
581};
582
583void __init cpuhp_threads_init(void)
584{
585 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
586 kthread_unpark(this_cpu_read(cpuhp_state.thread));
587}
588
589#ifdef CONFIG_HOTPLUG_CPU
590/**
591 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
592 * @cpu: a CPU id
593 *
594 * This function walks all processes, finds a valid mm struct for each one and
595 * then clears a corresponding bit in mm's cpumask. While this all sounds
596 * trivial, there are various non-obvious corner cases, which this function
597 * tries to solve in a safe manner.
598 *
599 * Also note that the function uses a somewhat relaxed locking scheme, so it may
600 * be called only for an already offlined CPU.
601 */
602void clear_tasks_mm_cpumask(int cpu)
603{
604 struct task_struct *p;
605
606 /*
607 * This function is called after the cpu is taken down and marked
608 * offline, so its not like new tasks will ever get this cpu set in
609 * their mm mask. -- Peter Zijlstra
610 * Thus, we may use rcu_read_lock() here, instead of grabbing
611 * full-fledged tasklist_lock.
612 */
613 WARN_ON(cpu_online(cpu));
614 rcu_read_lock();
615 for_each_process(p) {
616 struct task_struct *t;
617
618 /*
619 * Main thread might exit, but other threads may still have
620 * a valid mm. Find one.
621 */
622 t = find_lock_task_mm(p);
623 if (!t)
624 continue;
625 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
626 task_unlock(t);
627 }
628 rcu_read_unlock();
629}
630
631static inline void check_for_tasks(int dead_cpu)
632{
633 struct task_struct *g, *p;
634
635 read_lock(&tasklist_lock);
636 for_each_process_thread(g, p) {
637 if (!p->on_rq)
638 continue;
639 /*
640 * We do the check with unlocked task_rq(p)->lock.
641 * Order the reading to do not warn about a task,
642 * which was running on this cpu in the past, and
643 * it's just been woken on another cpu.
644 */
645 rmb();
646 if (task_cpu(p) != dead_cpu)
647 continue;
648
649 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
650 p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
651 }
652 read_unlock(&tasklist_lock);
653}
654
655/* Take this CPU down. */
656static int take_cpu_down(void *_param)
657{
658 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
659 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
660 int err, cpu = smp_processor_id();
661
662 /* Ensure this CPU doesn't handle any more interrupts. */
663 err = __cpu_disable();
664 if (err < 0)
665 return err;
666
667 /*
668 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
669 * do this step again.
670 */
671 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
672 st->state--;
673 /* Invoke the former CPU_DYING callbacks */
674 for (; st->state > target; st->state--)
675 cpuhp_invoke_callback(cpu, st->state, false, NULL);
676
677 /* Give up timekeeping duties */
678 tick_handover_do_timer();
679 /* Park the stopper thread */
680 stop_machine_park(cpu);
681 return 0;
682}
683
684static int takedown_cpu(unsigned int cpu)
685{
686 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
687 int err;
688
689 /* Park the smpboot threads */
690 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
691 smpboot_park_threads(cpu);
692
693 /*
694 * Prevent irq alloc/free while the dying cpu reorganizes the
695 * interrupt affinities.
696 */
697 irq_lock_sparse();
698
699 /*
700 * So now all preempt/rcu users must observe !cpu_active().
701 */
702 err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
703 if (err) {
704 /* CPU refused to die */
705 irq_unlock_sparse();
706 /* Unpark the hotplug thread so we can rollback there */
707 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
708 return err;
709 }
710 BUG_ON(cpu_online(cpu));
711
712 /*
713 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
714 * runnable tasks from the cpu, there's only the idle task left now
715 * that the migration thread is done doing the stop_machine thing.
716 *
717 * Wait for the stop thread to go away.
718 */
719 wait_for_completion(&st->done);
720 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
721
722 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
723 irq_unlock_sparse();
724
725 hotplug_cpu__broadcast_tick_pull(cpu);
726 /* This actually kills the CPU. */
727 __cpu_die(cpu);
728
729 tick_cleanup_dead_cpu(cpu);
730 return 0;
731}
732
733static void cpuhp_complete_idle_dead(void *arg)
734{
735 struct cpuhp_cpu_state *st = arg;
736
737 complete(&st->done);
738}
739
740void cpuhp_report_idle_dead(void)
741{
742 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
743
744 BUG_ON(st->state != CPUHP_AP_OFFLINE);
745 rcu_report_dead(smp_processor_id());
746 st->state = CPUHP_AP_IDLE_DEAD;
747 /*
748 * We cannot call complete after rcu_report_dead() so we delegate it
749 * to an online cpu.
750 */
751 smp_call_function_single(cpumask_first(cpu_online_mask),
752 cpuhp_complete_idle_dead, st, 0);
753}
754
755#else
756#define takedown_cpu NULL
757#endif
758
759#ifdef CONFIG_HOTPLUG_CPU
760
761/* Requires cpu_add_remove_lock to be held */
762static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
763 enum cpuhp_state target)
764{
765 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
766 int prev_state, ret = 0;
767
768 if (num_online_cpus() == 1)
769 return -EBUSY;
770
771 if (!cpu_present(cpu))
772 return -EINVAL;
773
774 cpu_hotplug_begin();
775
776 cpuhp_tasks_frozen = tasks_frozen;
777
778 prev_state = st->state;
779 st->target = target;
780 /*
781 * If the current CPU state is in the range of the AP hotplug thread,
782 * then we need to kick the thread.
783 */
784 if (st->state > CPUHP_TEARDOWN_CPU) {
785 ret = cpuhp_kick_ap_work(cpu);
786 /*
787 * The AP side has done the error rollback already. Just
788 * return the error code..
789 */
790 if (ret)
791 goto out;
792
793 /*
794 * We might have stopped still in the range of the AP hotplug
795 * thread. Nothing to do anymore.
796 */
797 if (st->state > CPUHP_TEARDOWN_CPU)
798 goto out;
799 }
800 /*
801 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
802 * to do the further cleanups.
803 */
804 ret = cpuhp_down_callbacks(cpu, st, target);
805 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
806 st->target = prev_state;
807 st->rollback = true;
808 cpuhp_kick_ap_work(cpu);
809 }
810
811out:
812 cpu_hotplug_done();
813 return ret;
814}
815
816static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
817{
818 int err;
819
820 cpu_maps_update_begin();
821
822 if (cpu_hotplug_disabled) {
823 err = -EBUSY;
824 goto out;
825 }
826
827 err = _cpu_down(cpu, 0, target);
828
829out:
830 cpu_maps_update_done();
831 return err;
832}
833int cpu_down(unsigned int cpu)
834{
835 return do_cpu_down(cpu, CPUHP_OFFLINE);
836}
837EXPORT_SYMBOL(cpu_down);
838#endif /*CONFIG_HOTPLUG_CPU*/
839
840/**
841 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
842 * @cpu: cpu that just started
843 *
844 * It must be called by the arch code on the new cpu, before the new cpu
845 * enables interrupts and before the "boot" cpu returns from __cpu_up().
846 */
847void notify_cpu_starting(unsigned int cpu)
848{
849 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
850 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
851
852 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
853 while (st->state < target) {
854 st->state++;
855 cpuhp_invoke_callback(cpu, st->state, true, NULL);
856 }
857}
858
859/*
860 * Called from the idle task. We need to set active here, so we can kick off
861 * the stopper thread and unpark the smpboot threads. If the target state is
862 * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
863 * cpu further.
864 */
865void cpuhp_online_idle(enum cpuhp_state state)
866{
867 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
868 unsigned int cpu = smp_processor_id();
869
870 /* Happens for the boot cpu */
871 if (state != CPUHP_AP_ONLINE_IDLE)
872 return;
873
874 st->state = CPUHP_AP_ONLINE_IDLE;
875
876 /* Unpark the stopper thread and the hotplug thread of this cpu */
877 stop_machine_unpark(cpu);
878 kthread_unpark(st->thread);
879
880 /* Should we go further up ? */
881 if (st->target > CPUHP_AP_ONLINE_IDLE)
882 __cpuhp_kick_ap_work(st);
883 else
884 complete(&st->done);
885}
886
887/* Requires cpu_add_remove_lock to be held */
888static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
889{
890 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
891 struct task_struct *idle;
892 int ret = 0;
893
894 cpu_hotplug_begin();
895
896 if (!cpu_present(cpu)) {
897 ret = -EINVAL;
898 goto out;
899 }
900
901 /*
902 * The caller of do_cpu_up might have raced with another
903 * caller. Ignore it for now.
904 */
905 if (st->state >= target)
906 goto out;
907
908 if (st->state == CPUHP_OFFLINE) {
909 /* Let it fail before we try to bring the cpu up */
910 idle = idle_thread_get(cpu);
911 if (IS_ERR(idle)) {
912 ret = PTR_ERR(idle);
913 goto out;
914 }
915 }
916
917 cpuhp_tasks_frozen = tasks_frozen;
918
919 st->target = target;
920 /*
921 * If the current CPU state is in the range of the AP hotplug thread,
922 * then we need to kick the thread once more.
923 */
924 if (st->state > CPUHP_BRINGUP_CPU) {
925 ret = cpuhp_kick_ap_work(cpu);
926 /*
927 * The AP side has done the error rollback already. Just
928 * return the error code..
929 */
930 if (ret)
931 goto out;
932 }
933
934 /*
935 * Try to reach the target state. We max out on the BP at
936 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
937 * responsible for bringing it up to the target state.
938 */
939 target = min((int)target, CPUHP_BRINGUP_CPU);
940 ret = cpuhp_up_callbacks(cpu, st, target);
941out:
942 cpu_hotplug_done();
943 return ret;
944}
945
946static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
947{
948 int err = 0;
949
950 if (!cpu_possible(cpu)) {
951 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
952 cpu);
953#if defined(CONFIG_IA64)
954 pr_err("please check additional_cpus= boot parameter\n");
955#endif
956 return -EINVAL;
957 }
958
959 err = try_online_node(cpu_to_node(cpu));
960 if (err)
961 return err;
962
963 cpu_maps_update_begin();
964
965 if (cpu_hotplug_disabled) {
966 err = -EBUSY;
967 goto out;
968 }
969
970 err = _cpu_up(cpu, 0, target);
971out:
972 cpu_maps_update_done();
973 return err;
974}
975
976int cpu_up(unsigned int cpu)
977{
978 return do_cpu_up(cpu, CPUHP_ONLINE);
979}
980EXPORT_SYMBOL_GPL(cpu_up);
981
982#ifdef CONFIG_PM_SLEEP_SMP
983static cpumask_var_t frozen_cpus;
984
985int freeze_secondary_cpus(int primary)
986{
987 int cpu, error = 0;
988
989 cpu_maps_update_begin();
990 if (!cpu_online(primary))
991 primary = cpumask_first(cpu_online_mask);
992 /*
993 * We take down all of the non-boot CPUs in one shot to avoid races
994 * with the userspace trying to use the CPU hotplug at the same time
995 */
996 cpumask_clear(frozen_cpus);
997
998 pr_info("Disabling non-boot CPUs ...\n");
999 for_each_online_cpu(cpu) {
1000 if (cpu == primary)
1001 continue;
1002 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1003 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1004 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1005 if (!error)
1006 cpumask_set_cpu(cpu, frozen_cpus);
1007 else {
1008 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1009 break;
1010 }
1011 }
1012
1013 if (!error)
1014 BUG_ON(num_online_cpus() > 1);
1015 else
1016 pr_err("Non-boot CPUs are not disabled\n");
1017
1018 /*
1019 * Make sure the CPUs won't be enabled by someone else. We need to do
1020 * this even in case of failure as all disable_nonboot_cpus() users are
1021 * supposed to do enable_nonboot_cpus() on the failure path.
1022 */
1023 cpu_hotplug_disabled++;
1024
1025 cpu_maps_update_done();
1026 return error;
1027}
1028
1029void __weak arch_enable_nonboot_cpus_begin(void)
1030{
1031}
1032
1033void __weak arch_enable_nonboot_cpus_end(void)
1034{
1035}
1036
1037void enable_nonboot_cpus(void)
1038{
1039 int cpu, error;
1040
1041 /* Allow everyone to use the CPU hotplug again */
1042 cpu_maps_update_begin();
1043 __cpu_hotplug_enable();
1044 if (cpumask_empty(frozen_cpus))
1045 goto out;
1046
1047 pr_info("Enabling non-boot CPUs ...\n");
1048
1049 arch_enable_nonboot_cpus_begin();
1050
1051 for_each_cpu(cpu, frozen_cpus) {
1052 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1053 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1054 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1055 if (!error) {
1056 pr_info("CPU%d is up\n", cpu);
1057 continue;
1058 }
1059 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1060 }
1061
1062 arch_enable_nonboot_cpus_end();
1063
1064 cpumask_clear(frozen_cpus);
1065out:
1066 cpu_maps_update_done();
1067}
1068
1069static int __init alloc_frozen_cpus(void)
1070{
1071 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1072 return -ENOMEM;
1073 return 0;
1074}
1075core_initcall(alloc_frozen_cpus);
1076
1077/*
1078 * When callbacks for CPU hotplug notifications are being executed, we must
1079 * ensure that the state of the system with respect to the tasks being frozen
1080 * or not, as reported by the notification, remains unchanged *throughout the
1081 * duration* of the execution of the callbacks.
1082 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1083 *
1084 * This synchronization is implemented by mutually excluding regular CPU
1085 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1086 * Hibernate notifications.
1087 */
1088static int
1089cpu_hotplug_pm_callback(struct notifier_block *nb,
1090 unsigned long action, void *ptr)
1091{
1092 switch (action) {
1093
1094 case PM_SUSPEND_PREPARE:
1095 case PM_HIBERNATION_PREPARE:
1096 cpu_hotplug_disable();
1097 break;
1098
1099 case PM_POST_SUSPEND:
1100 case PM_POST_HIBERNATION:
1101 cpu_hotplug_enable();
1102 break;
1103
1104 default:
1105 return NOTIFY_DONE;
1106 }
1107
1108 return NOTIFY_OK;
1109}
1110
1111
1112static int __init cpu_hotplug_pm_sync_init(void)
1113{
1114 /*
1115 * cpu_hotplug_pm_callback has higher priority than x86
1116 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1117 * to disable cpu hotplug to avoid cpu hotplug race.
1118 */
1119 pm_notifier(cpu_hotplug_pm_callback, 0);
1120 return 0;
1121}
1122core_initcall(cpu_hotplug_pm_sync_init);
1123
1124#endif /* CONFIG_PM_SLEEP_SMP */
1125
1126#endif /* CONFIG_SMP */
1127
1128/* Boot processor state steps */
1129static struct cpuhp_step cpuhp_bp_states[] = {
1130 [CPUHP_OFFLINE] = {
1131 .name = "offline",
1132 .startup.single = NULL,
1133 .teardown.single = NULL,
1134 },
1135#ifdef CONFIG_SMP
1136 [CPUHP_CREATE_THREADS]= {
1137 .name = "threads:prepare",
1138 .startup.single = smpboot_create_threads,
1139 .teardown.single = NULL,
1140 .cant_stop = true,
1141 },
1142 [CPUHP_PERF_PREPARE] = {
1143 .name = "perf:prepare",
1144 .startup.single = perf_event_init_cpu,
1145 .teardown.single = perf_event_exit_cpu,
1146 },
1147 [CPUHP_WORKQUEUE_PREP] = {
1148 .name = "workqueue:prepare",
1149 .startup.single = workqueue_prepare_cpu,
1150 .teardown.single = NULL,
1151 },
1152 [CPUHP_HRTIMERS_PREPARE] = {
1153 .name = "hrtimers:prepare",
1154 .startup.single = hrtimers_prepare_cpu,
1155 .teardown.single = hrtimers_dead_cpu,
1156 },
1157 [CPUHP_SMPCFD_PREPARE] = {
1158 .name = "smpcfd:prepare",
1159 .startup.single = smpcfd_prepare_cpu,
1160 .teardown.single = smpcfd_dead_cpu,
1161 },
1162 [CPUHP_RELAY_PREPARE] = {
1163 .name = "relay:prepare",
1164 .startup.single = relay_prepare_cpu,
1165 .teardown.single = NULL,
1166 },
1167 [CPUHP_SLAB_PREPARE] = {
1168 .name = "slab:prepare",
1169 .startup.single = slab_prepare_cpu,
1170 .teardown.single = slab_dead_cpu,
1171 },
1172 [CPUHP_RCUTREE_PREP] = {
1173 .name = "RCU/tree:prepare",
1174 .startup.single = rcutree_prepare_cpu,
1175 .teardown.single = rcutree_dead_cpu,
1176 },
1177 /*
1178 * On the tear-down path, timers_dead_cpu() must be invoked
1179 * before blk_mq_queue_reinit_notify() from notify_dead(),
1180 * otherwise a RCU stall occurs.
1181 */
1182 [CPUHP_TIMERS_DEAD] = {
1183 .name = "timers:dead",
1184 .startup.single = NULL,
1185 .teardown.single = timers_dead_cpu,
1186 },
1187 /* Kicks the plugged cpu into life */
1188 [CPUHP_BRINGUP_CPU] = {
1189 .name = "cpu:bringup",
1190 .startup.single = bringup_cpu,
1191 .teardown.single = NULL,
1192 .cant_stop = true,
1193 },
1194 [CPUHP_AP_SMPCFD_DYING] = {
1195 .name = "smpcfd:dying",
1196 .startup.single = NULL,
1197 .teardown.single = smpcfd_dying_cpu,
1198 },
1199 /*
1200 * Handled on controll processor until the plugged processor manages
1201 * this itself.
1202 */
1203 [CPUHP_TEARDOWN_CPU] = {
1204 .name = "cpu:teardown",
1205 .startup.single = NULL,
1206 .teardown.single = takedown_cpu,
1207 .cant_stop = true,
1208 },
1209#else
1210 [CPUHP_BRINGUP_CPU] = { },
1211#endif
1212};
1213
1214/* Application processor state steps */
1215static struct cpuhp_step cpuhp_ap_states[] = {
1216#ifdef CONFIG_SMP
1217 /* Final state before CPU kills itself */
1218 [CPUHP_AP_IDLE_DEAD] = {
1219 .name = "idle:dead",
1220 },
1221 /*
1222 * Last state before CPU enters the idle loop to die. Transient state
1223 * for synchronization.
1224 */
1225 [CPUHP_AP_OFFLINE] = {
1226 .name = "ap:offline",
1227 .cant_stop = true,
1228 },
1229 /* First state is scheduler control. Interrupts are disabled */
1230 [CPUHP_AP_SCHED_STARTING] = {
1231 .name = "sched:starting",
1232 .startup.single = sched_cpu_starting,
1233 .teardown.single = sched_cpu_dying,
1234 },
1235 [CPUHP_AP_RCUTREE_DYING] = {
1236 .name = "RCU/tree:dying",
1237 .startup.single = NULL,
1238 .teardown.single = rcutree_dying_cpu,
1239 },
1240 /* Entry state on starting. Interrupts enabled from here on. Transient
1241 * state for synchronsization */
1242 [CPUHP_AP_ONLINE] = {
1243 .name = "ap:online",
1244 },
1245 /* Handle smpboot threads park/unpark */
1246 [CPUHP_AP_SMPBOOT_THREADS] = {
1247 .name = "smpboot/threads:online",
1248 .startup.single = smpboot_unpark_threads,
1249 .teardown.single = NULL,
1250 },
1251 [CPUHP_AP_PERF_ONLINE] = {
1252 .name = "perf:online",
1253 .startup.single = perf_event_init_cpu,
1254 .teardown.single = perf_event_exit_cpu,
1255 },
1256 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1257 .name = "workqueue:online",
1258 .startup.single = workqueue_online_cpu,
1259 .teardown.single = workqueue_offline_cpu,
1260 },
1261 [CPUHP_AP_RCUTREE_ONLINE] = {
1262 .name = "RCU/tree:online",
1263 .startup.single = rcutree_online_cpu,
1264 .teardown.single = rcutree_offline_cpu,
1265 },
1266#endif
1267 /*
1268 * The dynamically registered state space is here
1269 */
1270
1271#ifdef CONFIG_SMP
1272 /* Last state is scheduler control setting the cpu active */
1273 [CPUHP_AP_ACTIVE] = {
1274 .name = "sched:active",
1275 .startup.single = sched_cpu_activate,
1276 .teardown.single = sched_cpu_deactivate,
1277 },
1278#endif
1279
1280 /* CPU is fully up and running. */
1281 [CPUHP_ONLINE] = {
1282 .name = "online",
1283 .startup.single = NULL,
1284 .teardown.single = NULL,
1285 },
1286};
1287
1288/* Sanity check for callbacks */
1289static int cpuhp_cb_check(enum cpuhp_state state)
1290{
1291 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1292 return -EINVAL;
1293 return 0;
1294}
1295
1296/*
1297 * Returns a free for dynamic slot assignment of the Online state. The states
1298 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1299 * by having no name assigned.
1300 */
1301static int cpuhp_reserve_state(enum cpuhp_state state)
1302{
1303 enum cpuhp_state i, end;
1304 struct cpuhp_step *step;
1305
1306 switch (state) {
1307 case CPUHP_AP_ONLINE_DYN:
1308 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1309 end = CPUHP_AP_ONLINE_DYN_END;
1310 break;
1311 case CPUHP_BP_PREPARE_DYN:
1312 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1313 end = CPUHP_BP_PREPARE_DYN_END;
1314 break;
1315 default:
1316 return -EINVAL;
1317 }
1318
1319 for (i = state; i <= end; i++, step++) {
1320 if (!step->name)
1321 return i;
1322 }
1323 WARN(1, "No more dynamic states available for CPU hotplug\n");
1324 return -ENOSPC;
1325}
1326
1327static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1328 int (*startup)(unsigned int cpu),
1329 int (*teardown)(unsigned int cpu),
1330 bool multi_instance)
1331{
1332 /* (Un)Install the callbacks for further cpu hotplug operations */
1333 struct cpuhp_step *sp;
1334 int ret = 0;
1335
1336 mutex_lock(&cpuhp_state_mutex);
1337
1338 if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) {
1339 ret = cpuhp_reserve_state(state);
1340 if (ret < 0)
1341 goto out;
1342 state = ret;
1343 }
1344 sp = cpuhp_get_step(state);
1345 if (name && sp->name) {
1346 ret = -EBUSY;
1347 goto out;
1348 }
1349 sp->startup.single = startup;
1350 sp->teardown.single = teardown;
1351 sp->name = name;
1352 sp->multi_instance = multi_instance;
1353 INIT_HLIST_HEAD(&sp->list);
1354out:
1355 mutex_unlock(&cpuhp_state_mutex);
1356 return ret;
1357}
1358
1359static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1360{
1361 return cpuhp_get_step(state)->teardown.single;
1362}
1363
1364/*
1365 * Call the startup/teardown function for a step either on the AP or
1366 * on the current CPU.
1367 */
1368static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1369 struct hlist_node *node)
1370{
1371 struct cpuhp_step *sp = cpuhp_get_step(state);
1372 int ret;
1373
1374 if ((bringup && !sp->startup.single) ||
1375 (!bringup && !sp->teardown.single))
1376 return 0;
1377 /*
1378 * The non AP bound callbacks can fail on bringup. On teardown
1379 * e.g. module removal we crash for now.
1380 */
1381#ifdef CONFIG_SMP
1382 if (cpuhp_is_ap_state(state))
1383 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1384 else
1385 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1386#else
1387 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1388#endif
1389 BUG_ON(ret && !bringup);
1390 return ret;
1391}
1392
1393/*
1394 * Called from __cpuhp_setup_state on a recoverable failure.
1395 *
1396 * Note: The teardown callbacks for rollback are not allowed to fail!
1397 */
1398static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1399 struct hlist_node *node)
1400{
1401 int cpu;
1402
1403 /* Roll back the already executed steps on the other cpus */
1404 for_each_present_cpu(cpu) {
1405 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1406 int cpustate = st->state;
1407
1408 if (cpu >= failedcpu)
1409 break;
1410
1411 /* Did we invoke the startup call on that cpu ? */
1412 if (cpustate >= state)
1413 cpuhp_issue_call(cpu, state, false, node);
1414 }
1415}
1416
1417int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1418 bool invoke)
1419{
1420 struct cpuhp_step *sp;
1421 int cpu;
1422 int ret;
1423
1424 sp = cpuhp_get_step(state);
1425 if (sp->multi_instance == false)
1426 return -EINVAL;
1427
1428 get_online_cpus();
1429
1430 if (!invoke || !sp->startup.multi)
1431 goto add_node;
1432
1433 /*
1434 * Try to call the startup callback for each present cpu
1435 * depending on the hotplug state of the cpu.
1436 */
1437 for_each_present_cpu(cpu) {
1438 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1439 int cpustate = st->state;
1440
1441 if (cpustate < state)
1442 continue;
1443
1444 ret = cpuhp_issue_call(cpu, state, true, node);
1445 if (ret) {
1446 if (sp->teardown.multi)
1447 cpuhp_rollback_install(cpu, state, node);
1448 goto err;
1449 }
1450 }
1451add_node:
1452 ret = 0;
1453 mutex_lock(&cpuhp_state_mutex);
1454 hlist_add_head(node, &sp->list);
1455 mutex_unlock(&cpuhp_state_mutex);
1456
1457err:
1458 put_online_cpus();
1459 return ret;
1460}
1461EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1462
1463/**
1464 * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1465 * @state: The state to setup
1466 * @invoke: If true, the startup function is invoked for cpus where
1467 * cpu state >= @state
1468 * @startup: startup callback function
1469 * @teardown: teardown callback function
1470 * @multi_instance: State is set up for multiple instances which get
1471 * added afterwards.
1472 *
1473 * Returns:
1474 * On success:
1475 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1476 * 0 for all other states
1477 * On failure: proper (negative) error code
1478 */
1479int __cpuhp_setup_state(enum cpuhp_state state,
1480 const char *name, bool invoke,
1481 int (*startup)(unsigned int cpu),
1482 int (*teardown)(unsigned int cpu),
1483 bool multi_instance)
1484{
1485 int cpu, ret = 0;
1486 bool dynstate;
1487
1488 if (cpuhp_cb_check(state) || !name)
1489 return -EINVAL;
1490
1491 get_online_cpus();
1492
1493 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1494 multi_instance);
1495
1496 dynstate = state == CPUHP_AP_ONLINE_DYN;
1497 if (ret > 0 && dynstate) {
1498 state = ret;
1499 ret = 0;
1500 }
1501
1502 if (ret || !invoke || !startup)
1503 goto out;
1504
1505 /*
1506 * Try to call the startup callback for each present cpu
1507 * depending on the hotplug state of the cpu.
1508 */
1509 for_each_present_cpu(cpu) {
1510 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1511 int cpustate = st->state;
1512
1513 if (cpustate < state)
1514 continue;
1515
1516 ret = cpuhp_issue_call(cpu, state, true, NULL);
1517 if (ret) {
1518 if (teardown)
1519 cpuhp_rollback_install(cpu, state, NULL);
1520 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1521 goto out;
1522 }
1523 }
1524out:
1525 put_online_cpus();
1526 /*
1527 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1528 * dynamically allocated state in case of success.
1529 */
1530 if (!ret && dynstate)
1531 return state;
1532 return ret;
1533}
1534EXPORT_SYMBOL(__cpuhp_setup_state);
1535
1536int __cpuhp_state_remove_instance(enum cpuhp_state state,
1537 struct hlist_node *node, bool invoke)
1538{
1539 struct cpuhp_step *sp = cpuhp_get_step(state);
1540 int cpu;
1541
1542 BUG_ON(cpuhp_cb_check(state));
1543
1544 if (!sp->multi_instance)
1545 return -EINVAL;
1546
1547 get_online_cpus();
1548 if (!invoke || !cpuhp_get_teardown_cb(state))
1549 goto remove;
1550 /*
1551 * Call the teardown callback for each present cpu depending
1552 * on the hotplug state of the cpu. This function is not
1553 * allowed to fail currently!
1554 */
1555 for_each_present_cpu(cpu) {
1556 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1557 int cpustate = st->state;
1558
1559 if (cpustate >= state)
1560 cpuhp_issue_call(cpu, state, false, node);
1561 }
1562
1563remove:
1564 mutex_lock(&cpuhp_state_mutex);
1565 hlist_del(node);
1566 mutex_unlock(&cpuhp_state_mutex);
1567 put_online_cpus();
1568
1569 return 0;
1570}
1571EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1572/**
1573 * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1574 * @state: The state to remove
1575 * @invoke: If true, the teardown function is invoked for cpus where
1576 * cpu state >= @state
1577 *
1578 * The teardown callback is currently not allowed to fail. Think
1579 * about module removal!
1580 */
1581void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1582{
1583 struct cpuhp_step *sp = cpuhp_get_step(state);
1584 int cpu;
1585
1586 BUG_ON(cpuhp_cb_check(state));
1587
1588 get_online_cpus();
1589
1590 if (sp->multi_instance) {
1591 WARN(!hlist_empty(&sp->list),
1592 "Error: Removing state %d which has instances left.\n",
1593 state);
1594 goto remove;
1595 }
1596
1597 if (!invoke || !cpuhp_get_teardown_cb(state))
1598 goto remove;
1599
1600 /*
1601 * Call the teardown callback for each present cpu depending
1602 * on the hotplug state of the cpu. This function is not
1603 * allowed to fail currently!
1604 */
1605 for_each_present_cpu(cpu) {
1606 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1607 int cpustate = st->state;
1608
1609 if (cpustate >= state)
1610 cpuhp_issue_call(cpu, state, false, NULL);
1611 }
1612remove:
1613 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1614 put_online_cpus();
1615}
1616EXPORT_SYMBOL(__cpuhp_remove_state);
1617
1618#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1619static ssize_t show_cpuhp_state(struct device *dev,
1620 struct device_attribute *attr, char *buf)
1621{
1622 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1623
1624 return sprintf(buf, "%d\n", st->state);
1625}
1626static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1627
1628static ssize_t write_cpuhp_target(struct device *dev,
1629 struct device_attribute *attr,
1630 const char *buf, size_t count)
1631{
1632 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1633 struct cpuhp_step *sp;
1634 int target, ret;
1635
1636 ret = kstrtoint(buf, 10, &target);
1637 if (ret)
1638 return ret;
1639
1640#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1641 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1642 return -EINVAL;
1643#else
1644 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1645 return -EINVAL;
1646#endif
1647
1648 ret = lock_device_hotplug_sysfs();
1649 if (ret)
1650 return ret;
1651
1652 mutex_lock(&cpuhp_state_mutex);
1653 sp = cpuhp_get_step(target);
1654 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1655 mutex_unlock(&cpuhp_state_mutex);
1656 if (ret)
1657 return ret;
1658
1659 if (st->state < target)
1660 ret = do_cpu_up(dev->id, target);
1661 else
1662 ret = do_cpu_down(dev->id, target);
1663
1664 unlock_device_hotplug();
1665 return ret ? ret : count;
1666}
1667
1668static ssize_t show_cpuhp_target(struct device *dev,
1669 struct device_attribute *attr, char *buf)
1670{
1671 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1672
1673 return sprintf(buf, "%d\n", st->target);
1674}
1675static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1676
1677static struct attribute *cpuhp_cpu_attrs[] = {
1678 &dev_attr_state.attr,
1679 &dev_attr_target.attr,
1680 NULL
1681};
1682
1683static struct attribute_group cpuhp_cpu_attr_group = {
1684 .attrs = cpuhp_cpu_attrs,
1685 .name = "hotplug",
1686 NULL
1687};
1688
1689static ssize_t show_cpuhp_states(struct device *dev,
1690 struct device_attribute *attr, char *buf)
1691{
1692 ssize_t cur, res = 0;
1693 int i;
1694
1695 mutex_lock(&cpuhp_state_mutex);
1696 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1697 struct cpuhp_step *sp = cpuhp_get_step(i);
1698
1699 if (sp->name) {
1700 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1701 buf += cur;
1702 res += cur;
1703 }
1704 }
1705 mutex_unlock(&cpuhp_state_mutex);
1706 return res;
1707}
1708static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1709
1710static struct attribute *cpuhp_cpu_root_attrs[] = {
1711 &dev_attr_states.attr,
1712 NULL
1713};
1714
1715static struct attribute_group cpuhp_cpu_root_attr_group = {
1716 .attrs = cpuhp_cpu_root_attrs,
1717 .name = "hotplug",
1718 NULL
1719};
1720
1721static int __init cpuhp_sysfs_init(void)
1722{
1723 int cpu, ret;
1724
1725 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1726 &cpuhp_cpu_root_attr_group);
1727 if (ret)
1728 return ret;
1729
1730 for_each_possible_cpu(cpu) {
1731 struct device *dev = get_cpu_device(cpu);
1732
1733 if (!dev)
1734 continue;
1735 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1736 if (ret)
1737 return ret;
1738 }
1739 return 0;
1740}
1741device_initcall(cpuhp_sysfs_init);
1742#endif
1743
1744/*
1745 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1746 * represents all NR_CPUS bits binary values of 1<<nr.
1747 *
1748 * It is used by cpumask_of() to get a constant address to a CPU
1749 * mask value that has a single bit set only.
1750 */
1751
1752/* cpu_bit_bitmap[0] is empty - so we can back into it */
1753#define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1754#define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1755#define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1756#define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1757
1758const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1759
1760 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1761 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1762#if BITS_PER_LONG > 32
1763 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1764 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1765#endif
1766};
1767EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1768
1769const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1770EXPORT_SYMBOL(cpu_all_bits);
1771
1772#ifdef CONFIG_INIT_ALL_POSSIBLE
1773struct cpumask __cpu_possible_mask __read_mostly
1774 = {CPU_BITS_ALL};
1775#else
1776struct cpumask __cpu_possible_mask __read_mostly;
1777#endif
1778EXPORT_SYMBOL(__cpu_possible_mask);
1779
1780struct cpumask __cpu_online_mask __read_mostly;
1781EXPORT_SYMBOL(__cpu_online_mask);
1782
1783struct cpumask __cpu_present_mask __read_mostly;
1784EXPORT_SYMBOL(__cpu_present_mask);
1785
1786struct cpumask __cpu_active_mask __read_mostly;
1787EXPORT_SYMBOL(__cpu_active_mask);
1788
1789void init_cpu_present(const struct cpumask *src)
1790{
1791 cpumask_copy(&__cpu_present_mask, src);
1792}
1793
1794void init_cpu_possible(const struct cpumask *src)
1795{
1796 cpumask_copy(&__cpu_possible_mask, src);
1797}
1798
1799void init_cpu_online(const struct cpumask *src)
1800{
1801 cpumask_copy(&__cpu_online_mask, src);
1802}
1803
1804/*
1805 * Activate the first processor.
1806 */
1807void __init boot_cpu_init(void)
1808{
1809 int cpu = smp_processor_id();
1810
1811 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1812 set_cpu_online(cpu, true);
1813 set_cpu_active(cpu, true);
1814 set_cpu_present(cpu, true);
1815 set_cpu_possible(cpu, true);
1816}
1817
1818/*
1819 * Must be called _AFTER_ setting up the per_cpu areas
1820 */
1821void __init boot_cpu_state_init(void)
1822{
1823 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1824}
1/* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6#include <linux/sched/mm.h>
7#include <linux/proc_fs.h>
8#include <linux/smp.h>
9#include <linux/init.h>
10#include <linux/notifier.h>
11#include <linux/sched/signal.h>
12#include <linux/sched/hotplug.h>
13#include <linux/sched/isolation.h>
14#include <linux/sched/task.h>
15#include <linux/sched/smt.h>
16#include <linux/unistd.h>
17#include <linux/cpu.h>
18#include <linux/oom.h>
19#include <linux/rcupdate.h>
20#include <linux/delay.h>
21#include <linux/export.h>
22#include <linux/bug.h>
23#include <linux/kthread.h>
24#include <linux/stop_machine.h>
25#include <linux/mutex.h>
26#include <linux/gfp.h>
27#include <linux/suspend.h>
28#include <linux/lockdep.h>
29#include <linux/tick.h>
30#include <linux/irq.h>
31#include <linux/nmi.h>
32#include <linux/smpboot.h>
33#include <linux/relay.h>
34#include <linux/slab.h>
35#include <linux/scs.h>
36#include <linux/percpu-rwsem.h>
37#include <linux/cpuset.h>
38#include <linux/random.h>
39#include <linux/cc_platform.h>
40
41#include <trace/events/power.h>
42#define CREATE_TRACE_POINTS
43#include <trace/events/cpuhp.h>
44
45#include "smpboot.h"
46
47/**
48 * struct cpuhp_cpu_state - Per cpu hotplug state storage
49 * @state: The current cpu state
50 * @target: The target state
51 * @fail: Current CPU hotplug callback state
52 * @thread: Pointer to the hotplug thread
53 * @should_run: Thread should execute
54 * @rollback: Perform a rollback
55 * @single: Single callback invocation
56 * @bringup: Single callback bringup or teardown selector
57 * @cpu: CPU number
58 * @node: Remote CPU node; for multi-instance, do a
59 * single entry callback for install/remove
60 * @last: For multi-instance rollback, remember how far we got
61 * @cb_state: The state for a single callback (install/uninstall)
62 * @result: Result of the operation
63 * @ap_sync_state: State for AP synchronization
64 * @done_up: Signal completion to the issuer of the task for cpu-up
65 * @done_down: Signal completion to the issuer of the task for cpu-down
66 */
67struct cpuhp_cpu_state {
68 enum cpuhp_state state;
69 enum cpuhp_state target;
70 enum cpuhp_state fail;
71#ifdef CONFIG_SMP
72 struct task_struct *thread;
73 bool should_run;
74 bool rollback;
75 bool single;
76 bool bringup;
77 struct hlist_node *node;
78 struct hlist_node *last;
79 enum cpuhp_state cb_state;
80 int result;
81 atomic_t ap_sync_state;
82 struct completion done_up;
83 struct completion done_down;
84#endif
85};
86
87static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88 .fail = CPUHP_INVALID,
89};
90
91#ifdef CONFIG_SMP
92cpumask_t cpus_booted_once_mask;
93#endif
94
95#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96static struct lockdep_map cpuhp_state_up_map =
97 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98static struct lockdep_map cpuhp_state_down_map =
99 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
100
101
102static inline void cpuhp_lock_acquire(bool bringup)
103{
104 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105}
106
107static inline void cpuhp_lock_release(bool bringup)
108{
109 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
110}
111#else
112
113static inline void cpuhp_lock_acquire(bool bringup) { }
114static inline void cpuhp_lock_release(bool bringup) { }
115
116#endif
117
118/**
119 * struct cpuhp_step - Hotplug state machine step
120 * @name: Name of the step
121 * @startup: Startup function of the step
122 * @teardown: Teardown function of the step
123 * @cant_stop: Bringup/teardown can't be stopped at this step
124 * @multi_instance: State has multiple instances which get added afterwards
125 */
126struct cpuhp_step {
127 const char *name;
128 union {
129 int (*single)(unsigned int cpu);
130 int (*multi)(unsigned int cpu,
131 struct hlist_node *node);
132 } startup;
133 union {
134 int (*single)(unsigned int cpu);
135 int (*multi)(unsigned int cpu,
136 struct hlist_node *node);
137 } teardown;
138 /* private: */
139 struct hlist_head list;
140 /* public: */
141 bool cant_stop;
142 bool multi_instance;
143};
144
145static DEFINE_MUTEX(cpuhp_state_mutex);
146static struct cpuhp_step cpuhp_hp_states[];
147
148static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
149{
150 return cpuhp_hp_states + state;
151}
152
153static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
154{
155 return bringup ? !step->startup.single : !step->teardown.single;
156}
157
158/**
159 * cpuhp_invoke_callback - Invoke the callbacks for a given state
160 * @cpu: The cpu for which the callback should be invoked
161 * @state: The state to do callbacks for
162 * @bringup: True if the bringup callback should be invoked
163 * @node: For multi-instance, do a single entry callback for install/remove
164 * @lastp: For multi-instance rollback, remember how far we got
165 *
166 * Called from cpu hotplug and from the state register machinery.
167 *
168 * Return: %0 on success or a negative errno code
169 */
170static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171 bool bringup, struct hlist_node *node,
172 struct hlist_node **lastp)
173{
174 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175 struct cpuhp_step *step = cpuhp_get_step(state);
176 int (*cbm)(unsigned int cpu, struct hlist_node *node);
177 int (*cb)(unsigned int cpu);
178 int ret, cnt;
179
180 if (st->fail == state) {
181 st->fail = CPUHP_INVALID;
182 return -EAGAIN;
183 }
184
185 if (cpuhp_step_empty(bringup, step)) {
186 WARN_ON_ONCE(1);
187 return 0;
188 }
189
190 if (!step->multi_instance) {
191 WARN_ON_ONCE(lastp && *lastp);
192 cb = bringup ? step->startup.single : step->teardown.single;
193
194 trace_cpuhp_enter(cpu, st->target, state, cb);
195 ret = cb(cpu);
196 trace_cpuhp_exit(cpu, st->state, state, ret);
197 return ret;
198 }
199 cbm = bringup ? step->startup.multi : step->teardown.multi;
200
201 /* Single invocation for instance add/remove */
202 if (node) {
203 WARN_ON_ONCE(lastp && *lastp);
204 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205 ret = cbm(cpu, node);
206 trace_cpuhp_exit(cpu, st->state, state, ret);
207 return ret;
208 }
209
210 /* State transition. Invoke on all instances */
211 cnt = 0;
212 hlist_for_each(node, &step->list) {
213 if (lastp && node == *lastp)
214 break;
215
216 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 ret = cbm(cpu, node);
218 trace_cpuhp_exit(cpu, st->state, state, ret);
219 if (ret) {
220 if (!lastp)
221 goto err;
222
223 *lastp = node;
224 return ret;
225 }
226 cnt++;
227 }
228 if (lastp)
229 *lastp = NULL;
230 return 0;
231err:
232 /* Rollback the instances if one failed */
233 cbm = !bringup ? step->startup.multi : step->teardown.multi;
234 if (!cbm)
235 return ret;
236
237 hlist_for_each(node, &step->list) {
238 if (!cnt--)
239 break;
240
241 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242 ret = cbm(cpu, node);
243 trace_cpuhp_exit(cpu, st->state, state, ret);
244 /*
245 * Rollback must not fail,
246 */
247 WARN_ON_ONCE(ret);
248 }
249 return ret;
250}
251
252#ifdef CONFIG_SMP
253static bool cpuhp_is_ap_state(enum cpuhp_state state)
254{
255 /*
256 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
257 * purposes as that state is handled explicitly in cpu_down.
258 */
259 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
260}
261
262static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
263{
264 struct completion *done = bringup ? &st->done_up : &st->done_down;
265 wait_for_completion(done);
266}
267
268static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
269{
270 struct completion *done = bringup ? &st->done_up : &st->done_down;
271 complete(done);
272}
273
274/*
275 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
276 */
277static bool cpuhp_is_atomic_state(enum cpuhp_state state)
278{
279 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
280}
281
282/* Synchronization state management */
283enum cpuhp_sync_state {
284 SYNC_STATE_DEAD,
285 SYNC_STATE_KICKED,
286 SYNC_STATE_SHOULD_DIE,
287 SYNC_STATE_ALIVE,
288 SYNC_STATE_SHOULD_ONLINE,
289 SYNC_STATE_ONLINE,
290};
291
292#ifdef CONFIG_HOTPLUG_CORE_SYNC
293/**
294 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295 * @state: The synchronization state to set
296 *
297 * No synchronization point. Just update of the synchronization state, but implies
298 * a full barrier so that the AP changes are visible before the control CPU proceeds.
299 */
300static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
301{
302 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
303
304 (void)atomic_xchg(st, state);
305}
306
307void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308
309static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310 enum cpuhp_sync_state next_state)
311{
312 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313 ktime_t now, end, start = ktime_get();
314 int sync;
315
316 end = start + 10ULL * NSEC_PER_SEC;
317
318 sync = atomic_read(st);
319 while (1) {
320 if (sync == state) {
321 if (!atomic_try_cmpxchg(st, &sync, next_state))
322 continue;
323 return true;
324 }
325
326 now = ktime_get();
327 if (now > end) {
328 /* Timeout. Leave the state unchanged */
329 return false;
330 } else if (now - start < NSEC_PER_MSEC) {
331 /* Poll for one millisecond */
332 arch_cpuhp_sync_state_poll();
333 } else {
334 usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
335 }
336 sync = atomic_read(st);
337 }
338 return true;
339}
340#else /* CONFIG_HOTPLUG_CORE_SYNC */
341static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342#endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343
344#ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345/**
346 * cpuhp_ap_report_dead - Update synchronization state to DEAD
347 *
348 * No synchronization point. Just update of the synchronization state.
349 */
350void cpuhp_ap_report_dead(void)
351{
352 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
353}
354
355void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
356
357/*
358 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359 * because the AP cannot issue complete() at this stage.
360 */
361static void cpuhp_bp_sync_dead(unsigned int cpu)
362{
363 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364 int sync = atomic_read(st);
365
366 do {
367 /* CPU can have reported dead already. Don't overwrite that! */
368 if (sync == SYNC_STATE_DEAD)
369 break;
370 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
371
372 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373 /* CPU reached dead state. Invoke the cleanup function */
374 arch_cpuhp_cleanup_dead_cpu(cpu);
375 return;
376 }
377
378 /* No further action possible. Emit message and give up. */
379 pr_err("CPU%u failed to report dead state\n", cpu);
380}
381#else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
382static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383#endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384
385#ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386/**
387 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388 *
389 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390 * for the BP to release it.
391 */
392void cpuhp_ap_sync_alive(void)
393{
394 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
395
396 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
397
398 /* Wait for the control CPU to release it. */
399 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
400 cpu_relax();
401}
402
403static bool cpuhp_can_boot_ap(unsigned int cpu)
404{
405 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406 int sync = atomic_read(st);
407
408again:
409 switch (sync) {
410 case SYNC_STATE_DEAD:
411 /* CPU is properly dead */
412 break;
413 case SYNC_STATE_KICKED:
414 /* CPU did not come up in previous attempt */
415 break;
416 case SYNC_STATE_ALIVE:
417 /* CPU is stuck cpuhp_ap_sync_alive(). */
418 break;
419 default:
420 /* CPU failed to report online or dead and is in limbo state. */
421 return false;
422 }
423
424 /* Prepare for booting */
425 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
426 goto again;
427
428 return true;
429}
430
431void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
432
433/*
434 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435 * because the AP cannot issue complete() so early in the bringup.
436 */
437static int cpuhp_bp_sync_alive(unsigned int cpu)
438{
439 int ret = 0;
440
441 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
442 return 0;
443
444 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445 pr_err("CPU%u failed to report alive state\n", cpu);
446 ret = -EIO;
447 }
448
449 /* Let the architecture cleanup the kick alive mechanics. */
450 arch_cpuhp_cleanup_kick_cpu(cpu);
451 return ret;
452}
453#else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
454static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
455static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456#endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457
458/* Serializes the updates to cpu_online_mask, cpu_present_mask */
459static DEFINE_MUTEX(cpu_add_remove_lock);
460bool cpuhp_tasks_frozen;
461EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
462
463/*
464 * The following two APIs (cpu_maps_update_begin/done) must be used when
465 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466 */
467void cpu_maps_update_begin(void)
468{
469 mutex_lock(&cpu_add_remove_lock);
470}
471
472void cpu_maps_update_done(void)
473{
474 mutex_unlock(&cpu_add_remove_lock);
475}
476
477/*
478 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479 * Should always be manipulated under cpu_add_remove_lock
480 */
481static int cpu_hotplug_disabled;
482
483#ifdef CONFIG_HOTPLUG_CPU
484
485DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
486
487void cpus_read_lock(void)
488{
489 percpu_down_read(&cpu_hotplug_lock);
490}
491EXPORT_SYMBOL_GPL(cpus_read_lock);
492
493int cpus_read_trylock(void)
494{
495 return percpu_down_read_trylock(&cpu_hotplug_lock);
496}
497EXPORT_SYMBOL_GPL(cpus_read_trylock);
498
499void cpus_read_unlock(void)
500{
501 percpu_up_read(&cpu_hotplug_lock);
502}
503EXPORT_SYMBOL_GPL(cpus_read_unlock);
504
505void cpus_write_lock(void)
506{
507 percpu_down_write(&cpu_hotplug_lock);
508}
509
510void cpus_write_unlock(void)
511{
512 percpu_up_write(&cpu_hotplug_lock);
513}
514
515void lockdep_assert_cpus_held(void)
516{
517 /*
518 * We can't have hotplug operations before userspace starts running,
519 * and some init codepaths will knowingly not take the hotplug lock.
520 * This is all valid, so mute lockdep until it makes sense to report
521 * unheld locks.
522 */
523 if (system_state < SYSTEM_RUNNING)
524 return;
525
526 percpu_rwsem_assert_held(&cpu_hotplug_lock);
527}
528
529#ifdef CONFIG_LOCKDEP
530int lockdep_is_cpus_held(void)
531{
532 return percpu_rwsem_is_held(&cpu_hotplug_lock);
533}
534#endif
535
536static void lockdep_acquire_cpus_lock(void)
537{
538 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
539}
540
541static void lockdep_release_cpus_lock(void)
542{
543 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
544}
545
546/*
547 * Wait for currently running CPU hotplug operations to complete (if any) and
548 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
549 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
550 * hotplug path before performing hotplug operations. So acquiring that lock
551 * guarantees mutual exclusion from any currently running hotplug operations.
552 */
553void cpu_hotplug_disable(void)
554{
555 cpu_maps_update_begin();
556 cpu_hotplug_disabled++;
557 cpu_maps_update_done();
558}
559EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
560
561static void __cpu_hotplug_enable(void)
562{
563 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
564 return;
565 cpu_hotplug_disabled--;
566}
567
568void cpu_hotplug_enable(void)
569{
570 cpu_maps_update_begin();
571 __cpu_hotplug_enable();
572 cpu_maps_update_done();
573}
574EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
575
576#else
577
578static void lockdep_acquire_cpus_lock(void)
579{
580}
581
582static void lockdep_release_cpus_lock(void)
583{
584}
585
586#endif /* CONFIG_HOTPLUG_CPU */
587
588/*
589 * Architectures that need SMT-specific errata handling during SMT hotplug
590 * should override this.
591 */
592void __weak arch_smt_update(void) { }
593
594#ifdef CONFIG_HOTPLUG_SMT
595
596enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
597static unsigned int cpu_smt_max_threads __ro_after_init;
598unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
599
600void __init cpu_smt_disable(bool force)
601{
602 if (!cpu_smt_possible())
603 return;
604
605 if (force) {
606 pr_info("SMT: Force disabled\n");
607 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
608 } else {
609 pr_info("SMT: disabled\n");
610 cpu_smt_control = CPU_SMT_DISABLED;
611 }
612 cpu_smt_num_threads = 1;
613}
614
615/*
616 * The decision whether SMT is supported can only be done after the full
617 * CPU identification. Called from architecture code.
618 */
619void __init cpu_smt_set_num_threads(unsigned int num_threads,
620 unsigned int max_threads)
621{
622 WARN_ON(!num_threads || (num_threads > max_threads));
623
624 if (max_threads == 1)
625 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
626
627 cpu_smt_max_threads = max_threads;
628
629 /*
630 * If SMT has been disabled via the kernel command line or SMT is
631 * not supported, set cpu_smt_num_threads to 1 for consistency.
632 * If enabled, take the architecture requested number of threads
633 * to bring up into account.
634 */
635 if (cpu_smt_control != CPU_SMT_ENABLED)
636 cpu_smt_num_threads = 1;
637 else if (num_threads < cpu_smt_num_threads)
638 cpu_smt_num_threads = num_threads;
639}
640
641static int __init smt_cmdline_disable(char *str)
642{
643 cpu_smt_disable(str && !strcmp(str, "force"));
644 return 0;
645}
646early_param("nosmt", smt_cmdline_disable);
647
648/*
649 * For Archicture supporting partial SMT states check if the thread is allowed.
650 * Otherwise this has already been checked through cpu_smt_max_threads when
651 * setting the SMT level.
652 */
653static inline bool cpu_smt_thread_allowed(unsigned int cpu)
654{
655#ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
656 return topology_smt_thread_allowed(cpu);
657#else
658 return true;
659#endif
660}
661
662static inline bool cpu_bootable(unsigned int cpu)
663{
664 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
665 return true;
666
667 /* All CPUs are bootable if controls are not configured */
668 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
669 return true;
670
671 /* All CPUs are bootable if CPU is not SMT capable */
672 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
673 return true;
674
675 if (topology_is_primary_thread(cpu))
676 return true;
677
678 /*
679 * On x86 it's required to boot all logical CPUs at least once so
680 * that the init code can get a chance to set CR4.MCE on each
681 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
682 * core will shutdown the machine.
683 */
684 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
685}
686
687/* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
688bool cpu_smt_possible(void)
689{
690 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
691 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
692}
693EXPORT_SYMBOL_GPL(cpu_smt_possible);
694
695#else
696static inline bool cpu_bootable(unsigned int cpu) { return true; }
697#endif
698
699static inline enum cpuhp_state
700cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
701{
702 enum cpuhp_state prev_state = st->state;
703 bool bringup = st->state < target;
704
705 st->rollback = false;
706 st->last = NULL;
707
708 st->target = target;
709 st->single = false;
710 st->bringup = bringup;
711 if (cpu_dying(cpu) != !bringup)
712 set_cpu_dying(cpu, !bringup);
713
714 return prev_state;
715}
716
717static inline void
718cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
719 enum cpuhp_state prev_state)
720{
721 bool bringup = !st->bringup;
722
723 st->target = prev_state;
724
725 /*
726 * Already rolling back. No need invert the bringup value or to change
727 * the current state.
728 */
729 if (st->rollback)
730 return;
731
732 st->rollback = true;
733
734 /*
735 * If we have st->last we need to undo partial multi_instance of this
736 * state first. Otherwise start undo at the previous state.
737 */
738 if (!st->last) {
739 if (st->bringup)
740 st->state--;
741 else
742 st->state++;
743 }
744
745 st->bringup = bringup;
746 if (cpu_dying(cpu) != !bringup)
747 set_cpu_dying(cpu, !bringup);
748}
749
750/* Regular hotplug invocation of the AP hotplug thread */
751static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
752{
753 if (!st->single && st->state == st->target)
754 return;
755
756 st->result = 0;
757 /*
758 * Make sure the above stores are visible before should_run becomes
759 * true. Paired with the mb() above in cpuhp_thread_fun()
760 */
761 smp_mb();
762 st->should_run = true;
763 wake_up_process(st->thread);
764 wait_for_ap_thread(st, st->bringup);
765}
766
767static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
768 enum cpuhp_state target)
769{
770 enum cpuhp_state prev_state;
771 int ret;
772
773 prev_state = cpuhp_set_state(cpu, st, target);
774 __cpuhp_kick_ap(st);
775 if ((ret = st->result)) {
776 cpuhp_reset_state(cpu, st, prev_state);
777 __cpuhp_kick_ap(st);
778 }
779
780 return ret;
781}
782
783static int bringup_wait_for_ap_online(unsigned int cpu)
784{
785 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
786
787 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
788 wait_for_ap_thread(st, true);
789 if (WARN_ON_ONCE((!cpu_online(cpu))))
790 return -ECANCELED;
791
792 /* Unpark the hotplug thread of the target cpu */
793 kthread_unpark(st->thread);
794
795 /*
796 * SMT soft disabling on X86 requires to bring the CPU out of the
797 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
798 * CPU marked itself as booted_once in notify_cpu_starting() so the
799 * cpu_bootable() check will now return false if this is not the
800 * primary sibling.
801 */
802 if (!cpu_bootable(cpu))
803 return -ECANCELED;
804 return 0;
805}
806
807#ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
808static int cpuhp_kick_ap_alive(unsigned int cpu)
809{
810 if (!cpuhp_can_boot_ap(cpu))
811 return -EAGAIN;
812
813 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
814}
815
816static int cpuhp_bringup_ap(unsigned int cpu)
817{
818 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
819 int ret;
820
821 /*
822 * Some architectures have to walk the irq descriptors to
823 * setup the vector space for the cpu which comes online.
824 * Prevent irq alloc/free across the bringup.
825 */
826 irq_lock_sparse();
827
828 ret = cpuhp_bp_sync_alive(cpu);
829 if (ret)
830 goto out_unlock;
831
832 ret = bringup_wait_for_ap_online(cpu);
833 if (ret)
834 goto out_unlock;
835
836 irq_unlock_sparse();
837
838 if (st->target <= CPUHP_AP_ONLINE_IDLE)
839 return 0;
840
841 return cpuhp_kick_ap(cpu, st, st->target);
842
843out_unlock:
844 irq_unlock_sparse();
845 return ret;
846}
847#else
848static int bringup_cpu(unsigned int cpu)
849{
850 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
851 struct task_struct *idle = idle_thread_get(cpu);
852 int ret;
853
854 if (!cpuhp_can_boot_ap(cpu))
855 return -EAGAIN;
856
857 /*
858 * Some architectures have to walk the irq descriptors to
859 * setup the vector space for the cpu which comes online.
860 *
861 * Prevent irq alloc/free across the bringup by acquiring the
862 * sparse irq lock. Hold it until the upcoming CPU completes the
863 * startup in cpuhp_online_idle() which allows to avoid
864 * intermediate synchronization points in the architecture code.
865 */
866 irq_lock_sparse();
867
868 ret = __cpu_up(cpu, idle);
869 if (ret)
870 goto out_unlock;
871
872 ret = cpuhp_bp_sync_alive(cpu);
873 if (ret)
874 goto out_unlock;
875
876 ret = bringup_wait_for_ap_online(cpu);
877 if (ret)
878 goto out_unlock;
879
880 irq_unlock_sparse();
881
882 if (st->target <= CPUHP_AP_ONLINE_IDLE)
883 return 0;
884
885 return cpuhp_kick_ap(cpu, st, st->target);
886
887out_unlock:
888 irq_unlock_sparse();
889 return ret;
890}
891#endif
892
893static int finish_cpu(unsigned int cpu)
894{
895 struct task_struct *idle = idle_thread_get(cpu);
896 struct mm_struct *mm = idle->active_mm;
897
898 /*
899 * idle_task_exit() will have switched to &init_mm, now
900 * clean up any remaining active_mm state.
901 */
902 if (mm != &init_mm)
903 idle->active_mm = &init_mm;
904 mmdrop_lazy_tlb(mm);
905 return 0;
906}
907
908/*
909 * Hotplug state machine related functions
910 */
911
912/*
913 * Get the next state to run. Empty ones will be skipped. Returns true if a
914 * state must be run.
915 *
916 * st->state will be modified ahead of time, to match state_to_run, as if it
917 * has already ran.
918 */
919static bool cpuhp_next_state(bool bringup,
920 enum cpuhp_state *state_to_run,
921 struct cpuhp_cpu_state *st,
922 enum cpuhp_state target)
923{
924 do {
925 if (bringup) {
926 if (st->state >= target)
927 return false;
928
929 *state_to_run = ++st->state;
930 } else {
931 if (st->state <= target)
932 return false;
933
934 *state_to_run = st->state--;
935 }
936
937 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
938 break;
939 } while (true);
940
941 return true;
942}
943
944static int __cpuhp_invoke_callback_range(bool bringup,
945 unsigned int cpu,
946 struct cpuhp_cpu_state *st,
947 enum cpuhp_state target,
948 bool nofail)
949{
950 enum cpuhp_state state;
951 int ret = 0;
952
953 while (cpuhp_next_state(bringup, &state, st, target)) {
954 int err;
955
956 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
957 if (!err)
958 continue;
959
960 if (nofail) {
961 pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
962 cpu, bringup ? "UP" : "DOWN",
963 cpuhp_get_step(st->state)->name,
964 st->state, err);
965 ret = -1;
966 } else {
967 ret = err;
968 break;
969 }
970 }
971
972 return ret;
973}
974
975static inline int cpuhp_invoke_callback_range(bool bringup,
976 unsigned int cpu,
977 struct cpuhp_cpu_state *st,
978 enum cpuhp_state target)
979{
980 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
981}
982
983static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
984 unsigned int cpu,
985 struct cpuhp_cpu_state *st,
986 enum cpuhp_state target)
987{
988 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
989}
990
991static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
992{
993 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
994 return true;
995 /*
996 * When CPU hotplug is disabled, then taking the CPU down is not
997 * possible because takedown_cpu() and the architecture and
998 * subsystem specific mechanisms are not available. So the CPU
999 * which would be completely unplugged again needs to stay around
1000 * in the current state.
1001 */
1002 return st->state <= CPUHP_BRINGUP_CPU;
1003}
1004
1005static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1006 enum cpuhp_state target)
1007{
1008 enum cpuhp_state prev_state = st->state;
1009 int ret = 0;
1010
1011 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1012 if (ret) {
1013 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1014 ret, cpu, cpuhp_get_step(st->state)->name,
1015 st->state);
1016
1017 cpuhp_reset_state(cpu, st, prev_state);
1018 if (can_rollback_cpu(st))
1019 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1020 prev_state));
1021 }
1022 return ret;
1023}
1024
1025/*
1026 * The cpu hotplug threads manage the bringup and teardown of the cpus
1027 */
1028static int cpuhp_should_run(unsigned int cpu)
1029{
1030 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1031
1032 return st->should_run;
1033}
1034
1035/*
1036 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1037 * callbacks when a state gets [un]installed at runtime.
1038 *
1039 * Each invocation of this function by the smpboot thread does a single AP
1040 * state callback.
1041 *
1042 * It has 3 modes of operation:
1043 * - single: runs st->cb_state
1044 * - up: runs ++st->state, while st->state < st->target
1045 * - down: runs st->state--, while st->state > st->target
1046 *
1047 * When complete or on error, should_run is cleared and the completion is fired.
1048 */
1049static void cpuhp_thread_fun(unsigned int cpu)
1050{
1051 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1052 bool bringup = st->bringup;
1053 enum cpuhp_state state;
1054
1055 if (WARN_ON_ONCE(!st->should_run))
1056 return;
1057
1058 /*
1059 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1060 * that if we see ->should_run we also see the rest of the state.
1061 */
1062 smp_mb();
1063
1064 /*
1065 * The BP holds the hotplug lock, but we're now running on the AP,
1066 * ensure that anybody asserting the lock is held, will actually find
1067 * it so.
1068 */
1069 lockdep_acquire_cpus_lock();
1070 cpuhp_lock_acquire(bringup);
1071
1072 if (st->single) {
1073 state = st->cb_state;
1074 st->should_run = false;
1075 } else {
1076 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1077 if (!st->should_run)
1078 goto end;
1079 }
1080
1081 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1082
1083 if (cpuhp_is_atomic_state(state)) {
1084 local_irq_disable();
1085 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1086 local_irq_enable();
1087
1088 /*
1089 * STARTING/DYING must not fail!
1090 */
1091 WARN_ON_ONCE(st->result);
1092 } else {
1093 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1094 }
1095
1096 if (st->result) {
1097 /*
1098 * If we fail on a rollback, we're up a creek without no
1099 * paddle, no way forward, no way back. We loose, thanks for
1100 * playing.
1101 */
1102 WARN_ON_ONCE(st->rollback);
1103 st->should_run = false;
1104 }
1105
1106end:
1107 cpuhp_lock_release(bringup);
1108 lockdep_release_cpus_lock();
1109
1110 if (!st->should_run)
1111 complete_ap_thread(st, bringup);
1112}
1113
1114/* Invoke a single callback on a remote cpu */
1115static int
1116cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1117 struct hlist_node *node)
1118{
1119 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1120 int ret;
1121
1122 if (!cpu_online(cpu))
1123 return 0;
1124
1125 cpuhp_lock_acquire(false);
1126 cpuhp_lock_release(false);
1127
1128 cpuhp_lock_acquire(true);
1129 cpuhp_lock_release(true);
1130
1131 /*
1132 * If we are up and running, use the hotplug thread. For early calls
1133 * we invoke the thread function directly.
1134 */
1135 if (!st->thread)
1136 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1137
1138 st->rollback = false;
1139 st->last = NULL;
1140
1141 st->node = node;
1142 st->bringup = bringup;
1143 st->cb_state = state;
1144 st->single = true;
1145
1146 __cpuhp_kick_ap(st);
1147
1148 /*
1149 * If we failed and did a partial, do a rollback.
1150 */
1151 if ((ret = st->result) && st->last) {
1152 st->rollback = true;
1153 st->bringup = !bringup;
1154
1155 __cpuhp_kick_ap(st);
1156 }
1157
1158 /*
1159 * Clean up the leftovers so the next hotplug operation wont use stale
1160 * data.
1161 */
1162 st->node = st->last = NULL;
1163 return ret;
1164}
1165
1166static int cpuhp_kick_ap_work(unsigned int cpu)
1167{
1168 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1169 enum cpuhp_state prev_state = st->state;
1170 int ret;
1171
1172 cpuhp_lock_acquire(false);
1173 cpuhp_lock_release(false);
1174
1175 cpuhp_lock_acquire(true);
1176 cpuhp_lock_release(true);
1177
1178 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1179 ret = cpuhp_kick_ap(cpu, st, st->target);
1180 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1181
1182 return ret;
1183}
1184
1185static struct smp_hotplug_thread cpuhp_threads = {
1186 .store = &cpuhp_state.thread,
1187 .thread_should_run = cpuhp_should_run,
1188 .thread_fn = cpuhp_thread_fun,
1189 .thread_comm = "cpuhp/%u",
1190 .selfparking = true,
1191};
1192
1193static __init void cpuhp_init_state(void)
1194{
1195 struct cpuhp_cpu_state *st;
1196 int cpu;
1197
1198 for_each_possible_cpu(cpu) {
1199 st = per_cpu_ptr(&cpuhp_state, cpu);
1200 init_completion(&st->done_up);
1201 init_completion(&st->done_down);
1202 }
1203}
1204
1205void __init cpuhp_threads_init(void)
1206{
1207 cpuhp_init_state();
1208 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1209 kthread_unpark(this_cpu_read(cpuhp_state.thread));
1210}
1211
1212/*
1213 *
1214 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1215 * protected region.
1216 *
1217 * The operation is still serialized against concurrent CPU hotplug via
1218 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_
1219 * serialized against other hotplug related activity like adding or
1220 * removing of state callbacks and state instances, which invoke either the
1221 * startup or the teardown callback of the affected state.
1222 *
1223 * This is required for subsystems which are unfixable vs. CPU hotplug and
1224 * evade lock inversion problems by scheduling work which has to be
1225 * completed _before_ cpu_up()/_cpu_down() returns.
1226 *
1227 * Don't even think about adding anything to this for any new code or even
1228 * drivers. It's only purpose is to keep existing lock order trainwrecks
1229 * working.
1230 *
1231 * For cpu_down() there might be valid reasons to finish cleanups which are
1232 * not required to be done under cpu_hotplug_lock, but that's a different
1233 * story and would be not invoked via this.
1234 */
1235static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1236{
1237 /*
1238 * cpusets delegate hotplug operations to a worker to "solve" the
1239 * lock order problems. Wait for the worker, but only if tasks are
1240 * _not_ frozen (suspend, hibernate) as that would wait forever.
1241 *
1242 * The wait is required because otherwise the hotplug operation
1243 * returns with inconsistent state, which could even be observed in
1244 * user space when a new CPU is brought up. The CPU plug uevent
1245 * would be delivered and user space reacting on it would fail to
1246 * move tasks to the newly plugged CPU up to the point where the
1247 * work has finished because up to that point the newly plugged CPU
1248 * is not assignable in cpusets/cgroups. On unplug that's not
1249 * necessarily a visible issue, but it is still inconsistent state,
1250 * which is the real problem which needs to be "fixed". This can't
1251 * prevent the transient state between scheduling the work and
1252 * returning from waiting for it.
1253 */
1254 if (!tasks_frozen)
1255 cpuset_wait_for_hotplug();
1256}
1257
1258#ifdef CONFIG_HOTPLUG_CPU
1259#ifndef arch_clear_mm_cpumask_cpu
1260#define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1261#endif
1262
1263/**
1264 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1265 * @cpu: a CPU id
1266 *
1267 * This function walks all processes, finds a valid mm struct for each one and
1268 * then clears a corresponding bit in mm's cpumask. While this all sounds
1269 * trivial, there are various non-obvious corner cases, which this function
1270 * tries to solve in a safe manner.
1271 *
1272 * Also note that the function uses a somewhat relaxed locking scheme, so it may
1273 * be called only for an already offlined CPU.
1274 */
1275void clear_tasks_mm_cpumask(int cpu)
1276{
1277 struct task_struct *p;
1278
1279 /*
1280 * This function is called after the cpu is taken down and marked
1281 * offline, so its not like new tasks will ever get this cpu set in
1282 * their mm mask. -- Peter Zijlstra
1283 * Thus, we may use rcu_read_lock() here, instead of grabbing
1284 * full-fledged tasklist_lock.
1285 */
1286 WARN_ON(cpu_online(cpu));
1287 rcu_read_lock();
1288 for_each_process(p) {
1289 struct task_struct *t;
1290
1291 /*
1292 * Main thread might exit, but other threads may still have
1293 * a valid mm. Find one.
1294 */
1295 t = find_lock_task_mm(p);
1296 if (!t)
1297 continue;
1298 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1299 task_unlock(t);
1300 }
1301 rcu_read_unlock();
1302}
1303
1304/* Take this CPU down. */
1305static int take_cpu_down(void *_param)
1306{
1307 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1308 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1309 int err, cpu = smp_processor_id();
1310
1311 /* Ensure this CPU doesn't handle any more interrupts. */
1312 err = __cpu_disable();
1313 if (err < 0)
1314 return err;
1315
1316 /*
1317 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1318 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1319 */
1320 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1321
1322 /*
1323 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1324 */
1325 cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1326
1327 /* Give up timekeeping duties */
1328 tick_handover_do_timer();
1329 /* Remove CPU from timer broadcasting */
1330 tick_offline_cpu(cpu);
1331 /* Park the stopper thread */
1332 stop_machine_park(cpu);
1333 return 0;
1334}
1335
1336static int takedown_cpu(unsigned int cpu)
1337{
1338 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1339 int err;
1340
1341 /* Park the smpboot threads */
1342 kthread_park(st->thread);
1343
1344 /*
1345 * Prevent irq alloc/free while the dying cpu reorganizes the
1346 * interrupt affinities.
1347 */
1348 irq_lock_sparse();
1349
1350 /*
1351 * So now all preempt/rcu users must observe !cpu_active().
1352 */
1353 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1354 if (err) {
1355 /* CPU refused to die */
1356 irq_unlock_sparse();
1357 /* Unpark the hotplug thread so we can rollback there */
1358 kthread_unpark(st->thread);
1359 return err;
1360 }
1361 BUG_ON(cpu_online(cpu));
1362
1363 /*
1364 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1365 * all runnable tasks from the CPU, there's only the idle task left now
1366 * that the migration thread is done doing the stop_machine thing.
1367 *
1368 * Wait for the stop thread to go away.
1369 */
1370 wait_for_ap_thread(st, false);
1371 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1372
1373 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1374 irq_unlock_sparse();
1375
1376 hotplug_cpu__broadcast_tick_pull(cpu);
1377 /* This actually kills the CPU. */
1378 __cpu_die(cpu);
1379
1380 cpuhp_bp_sync_dead(cpu);
1381
1382 tick_cleanup_dead_cpu(cpu);
1383
1384 /*
1385 * Callbacks must be re-integrated right away to the RCU state machine.
1386 * Otherwise an RCU callback could block a further teardown function
1387 * waiting for its completion.
1388 */
1389 rcutree_migrate_callbacks(cpu);
1390
1391 return 0;
1392}
1393
1394static void cpuhp_complete_idle_dead(void *arg)
1395{
1396 struct cpuhp_cpu_state *st = arg;
1397
1398 complete_ap_thread(st, false);
1399}
1400
1401void cpuhp_report_idle_dead(void)
1402{
1403 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1404
1405 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1406 rcutree_report_cpu_dead();
1407 st->state = CPUHP_AP_IDLE_DEAD;
1408 /*
1409 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1410 * to an online cpu.
1411 */
1412 smp_call_function_single(cpumask_first(cpu_online_mask),
1413 cpuhp_complete_idle_dead, st, 0);
1414}
1415
1416static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1417 enum cpuhp_state target)
1418{
1419 enum cpuhp_state prev_state = st->state;
1420 int ret = 0;
1421
1422 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1423 if (ret) {
1424 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1425 ret, cpu, cpuhp_get_step(st->state)->name,
1426 st->state);
1427
1428 cpuhp_reset_state(cpu, st, prev_state);
1429
1430 if (st->state < prev_state)
1431 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1432 prev_state));
1433 }
1434
1435 return ret;
1436}
1437
1438/* Requires cpu_add_remove_lock to be held */
1439static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1440 enum cpuhp_state target)
1441{
1442 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1443 int prev_state, ret = 0;
1444
1445 if (num_online_cpus() == 1)
1446 return -EBUSY;
1447
1448 if (!cpu_present(cpu))
1449 return -EINVAL;
1450
1451 cpus_write_lock();
1452
1453 cpuhp_tasks_frozen = tasks_frozen;
1454
1455 prev_state = cpuhp_set_state(cpu, st, target);
1456 /*
1457 * If the current CPU state is in the range of the AP hotplug thread,
1458 * then we need to kick the thread.
1459 */
1460 if (st->state > CPUHP_TEARDOWN_CPU) {
1461 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1462 ret = cpuhp_kick_ap_work(cpu);
1463 /*
1464 * The AP side has done the error rollback already. Just
1465 * return the error code..
1466 */
1467 if (ret)
1468 goto out;
1469
1470 /*
1471 * We might have stopped still in the range of the AP hotplug
1472 * thread. Nothing to do anymore.
1473 */
1474 if (st->state > CPUHP_TEARDOWN_CPU)
1475 goto out;
1476
1477 st->target = target;
1478 }
1479 /*
1480 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1481 * to do the further cleanups.
1482 */
1483 ret = cpuhp_down_callbacks(cpu, st, target);
1484 if (ret && st->state < prev_state) {
1485 if (st->state == CPUHP_TEARDOWN_CPU) {
1486 cpuhp_reset_state(cpu, st, prev_state);
1487 __cpuhp_kick_ap(st);
1488 } else {
1489 WARN(1, "DEAD callback error for CPU%d", cpu);
1490 }
1491 }
1492
1493out:
1494 cpus_write_unlock();
1495 /*
1496 * Do post unplug cleanup. This is still protected against
1497 * concurrent CPU hotplug via cpu_add_remove_lock.
1498 */
1499 lockup_detector_cleanup();
1500 arch_smt_update();
1501 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1502 return ret;
1503}
1504
1505struct cpu_down_work {
1506 unsigned int cpu;
1507 enum cpuhp_state target;
1508};
1509
1510static long __cpu_down_maps_locked(void *arg)
1511{
1512 struct cpu_down_work *work = arg;
1513
1514 return _cpu_down(work->cpu, 0, work->target);
1515}
1516
1517static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1518{
1519 struct cpu_down_work work = { .cpu = cpu, .target = target, };
1520
1521 /*
1522 * If the platform does not support hotplug, report it explicitly to
1523 * differentiate it from a transient offlining failure.
1524 */
1525 if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1526 return -EOPNOTSUPP;
1527 if (cpu_hotplug_disabled)
1528 return -EBUSY;
1529
1530 /*
1531 * Ensure that the control task does not run on the to be offlined
1532 * CPU to prevent a deadlock against cfs_b->period_timer.
1533 * Also keep at least one housekeeping cpu onlined to avoid generating
1534 * an empty sched_domain span.
1535 */
1536 for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1537 if (cpu != work.cpu)
1538 return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1539 }
1540 return -EBUSY;
1541}
1542
1543static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1544{
1545 int err;
1546
1547 cpu_maps_update_begin();
1548 err = cpu_down_maps_locked(cpu, target);
1549 cpu_maps_update_done();
1550 return err;
1551}
1552
1553/**
1554 * cpu_device_down - Bring down a cpu device
1555 * @dev: Pointer to the cpu device to offline
1556 *
1557 * This function is meant to be used by device core cpu subsystem only.
1558 *
1559 * Other subsystems should use remove_cpu() instead.
1560 *
1561 * Return: %0 on success or a negative errno code
1562 */
1563int cpu_device_down(struct device *dev)
1564{
1565 return cpu_down(dev->id, CPUHP_OFFLINE);
1566}
1567
1568int remove_cpu(unsigned int cpu)
1569{
1570 int ret;
1571
1572 lock_device_hotplug();
1573 ret = device_offline(get_cpu_device(cpu));
1574 unlock_device_hotplug();
1575
1576 return ret;
1577}
1578EXPORT_SYMBOL_GPL(remove_cpu);
1579
1580void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1581{
1582 unsigned int cpu;
1583 int error;
1584
1585 cpu_maps_update_begin();
1586
1587 /*
1588 * Make certain the cpu I'm about to reboot on is online.
1589 *
1590 * This is inline to what migrate_to_reboot_cpu() already do.
1591 */
1592 if (!cpu_online(primary_cpu))
1593 primary_cpu = cpumask_first(cpu_online_mask);
1594
1595 for_each_online_cpu(cpu) {
1596 if (cpu == primary_cpu)
1597 continue;
1598
1599 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1600 if (error) {
1601 pr_err("Failed to offline CPU%d - error=%d",
1602 cpu, error);
1603 break;
1604 }
1605 }
1606
1607 /*
1608 * Ensure all but the reboot CPU are offline.
1609 */
1610 BUG_ON(num_online_cpus() > 1);
1611
1612 /*
1613 * Make sure the CPUs won't be enabled by someone else after this
1614 * point. Kexec will reboot to a new kernel shortly resetting
1615 * everything along the way.
1616 */
1617 cpu_hotplug_disabled++;
1618
1619 cpu_maps_update_done();
1620}
1621
1622#else
1623#define takedown_cpu NULL
1624#endif /*CONFIG_HOTPLUG_CPU*/
1625
1626/**
1627 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1628 * @cpu: cpu that just started
1629 *
1630 * It must be called by the arch code on the new cpu, before the new cpu
1631 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1632 */
1633void notify_cpu_starting(unsigned int cpu)
1634{
1635 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1636 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1637
1638 rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1639 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1640
1641 /*
1642 * STARTING must not fail!
1643 */
1644 cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1645}
1646
1647/*
1648 * Called from the idle task. Wake up the controlling task which brings the
1649 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1650 * online bringup to the hotplug thread.
1651 */
1652void cpuhp_online_idle(enum cpuhp_state state)
1653{
1654 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1655
1656 /* Happens for the boot cpu */
1657 if (state != CPUHP_AP_ONLINE_IDLE)
1658 return;
1659
1660 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1661
1662 /*
1663 * Unpark the stopper thread before we start the idle loop (and start
1664 * scheduling); this ensures the stopper task is always available.
1665 */
1666 stop_machine_unpark(smp_processor_id());
1667
1668 st->state = CPUHP_AP_ONLINE_IDLE;
1669 complete_ap_thread(st, true);
1670}
1671
1672/* Requires cpu_add_remove_lock to be held */
1673static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1674{
1675 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1676 struct task_struct *idle;
1677 int ret = 0;
1678
1679 cpus_write_lock();
1680
1681 if (!cpu_present(cpu)) {
1682 ret = -EINVAL;
1683 goto out;
1684 }
1685
1686 /*
1687 * The caller of cpu_up() might have raced with another
1688 * caller. Nothing to do.
1689 */
1690 if (st->state >= target)
1691 goto out;
1692
1693 if (st->state == CPUHP_OFFLINE) {
1694 /* Let it fail before we try to bring the cpu up */
1695 idle = idle_thread_get(cpu);
1696 if (IS_ERR(idle)) {
1697 ret = PTR_ERR(idle);
1698 goto out;
1699 }
1700
1701 /*
1702 * Reset stale stack state from the last time this CPU was online.
1703 */
1704 scs_task_reset(idle);
1705 kasan_unpoison_task_stack(idle);
1706 }
1707
1708 cpuhp_tasks_frozen = tasks_frozen;
1709
1710 cpuhp_set_state(cpu, st, target);
1711 /*
1712 * If the current CPU state is in the range of the AP hotplug thread,
1713 * then we need to kick the thread once more.
1714 */
1715 if (st->state > CPUHP_BRINGUP_CPU) {
1716 ret = cpuhp_kick_ap_work(cpu);
1717 /*
1718 * The AP side has done the error rollback already. Just
1719 * return the error code..
1720 */
1721 if (ret)
1722 goto out;
1723 }
1724
1725 /*
1726 * Try to reach the target state. We max out on the BP at
1727 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1728 * responsible for bringing it up to the target state.
1729 */
1730 target = min((int)target, CPUHP_BRINGUP_CPU);
1731 ret = cpuhp_up_callbacks(cpu, st, target);
1732out:
1733 cpus_write_unlock();
1734 arch_smt_update();
1735 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1736 return ret;
1737}
1738
1739static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1740{
1741 int err = 0;
1742
1743 if (!cpu_possible(cpu)) {
1744 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1745 cpu);
1746 return -EINVAL;
1747 }
1748
1749 err = try_online_node(cpu_to_node(cpu));
1750 if (err)
1751 return err;
1752
1753 cpu_maps_update_begin();
1754
1755 if (cpu_hotplug_disabled) {
1756 err = -EBUSY;
1757 goto out;
1758 }
1759 if (!cpu_bootable(cpu)) {
1760 err = -EPERM;
1761 goto out;
1762 }
1763
1764 err = _cpu_up(cpu, 0, target);
1765out:
1766 cpu_maps_update_done();
1767 return err;
1768}
1769
1770/**
1771 * cpu_device_up - Bring up a cpu device
1772 * @dev: Pointer to the cpu device to online
1773 *
1774 * This function is meant to be used by device core cpu subsystem only.
1775 *
1776 * Other subsystems should use add_cpu() instead.
1777 *
1778 * Return: %0 on success or a negative errno code
1779 */
1780int cpu_device_up(struct device *dev)
1781{
1782 return cpu_up(dev->id, CPUHP_ONLINE);
1783}
1784
1785int add_cpu(unsigned int cpu)
1786{
1787 int ret;
1788
1789 lock_device_hotplug();
1790 ret = device_online(get_cpu_device(cpu));
1791 unlock_device_hotplug();
1792
1793 return ret;
1794}
1795EXPORT_SYMBOL_GPL(add_cpu);
1796
1797/**
1798 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1799 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1800 *
1801 * On some architectures like arm64, we can hibernate on any CPU, but on
1802 * wake up the CPU we hibernated on might be offline as a side effect of
1803 * using maxcpus= for example.
1804 *
1805 * Return: %0 on success or a negative errno code
1806 */
1807int bringup_hibernate_cpu(unsigned int sleep_cpu)
1808{
1809 int ret;
1810
1811 if (!cpu_online(sleep_cpu)) {
1812 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1813 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1814 if (ret) {
1815 pr_err("Failed to bring hibernate-CPU up!\n");
1816 return ret;
1817 }
1818 }
1819 return 0;
1820}
1821
1822static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1823 enum cpuhp_state target)
1824{
1825 unsigned int cpu;
1826
1827 for_each_cpu(cpu, mask) {
1828 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1829
1830 if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1831 /*
1832 * If this failed then cpu_up() might have only
1833 * rolled back to CPUHP_BP_KICK_AP for the final
1834 * online. Clean it up. NOOP if already rolled back.
1835 */
1836 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1837 }
1838
1839 if (!--ncpus)
1840 break;
1841 }
1842}
1843
1844#ifdef CONFIG_HOTPLUG_PARALLEL
1845static bool __cpuhp_parallel_bringup __ro_after_init = true;
1846
1847static int __init parallel_bringup_parse_param(char *arg)
1848{
1849 return kstrtobool(arg, &__cpuhp_parallel_bringup);
1850}
1851early_param("cpuhp.parallel", parallel_bringup_parse_param);
1852
1853static inline bool cpuhp_smt_aware(void)
1854{
1855 return cpu_smt_max_threads > 1;
1856}
1857
1858static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1859{
1860 return cpu_primary_thread_mask;
1861}
1862
1863/*
1864 * On architectures which have enabled parallel bringup this invokes all BP
1865 * prepare states for each of the to be onlined APs first. The last state
1866 * sends the startup IPI to the APs. The APs proceed through the low level
1867 * bringup code in parallel and then wait for the control CPU to release
1868 * them one by one for the final onlining procedure.
1869 *
1870 * This avoids waiting for each AP to respond to the startup IPI in
1871 * CPUHP_BRINGUP_CPU.
1872 */
1873static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1874{
1875 const struct cpumask *mask = cpu_present_mask;
1876
1877 if (__cpuhp_parallel_bringup)
1878 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1879 if (!__cpuhp_parallel_bringup)
1880 return false;
1881
1882 if (cpuhp_smt_aware()) {
1883 const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1884 static struct cpumask tmp_mask __initdata;
1885
1886 /*
1887 * X86 requires to prevent that SMT siblings stopped while
1888 * the primary thread does a microcode update for various
1889 * reasons. Bring the primary threads up first.
1890 */
1891 cpumask_and(&tmp_mask, mask, pmask);
1892 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1893 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1894 /* Account for the online CPUs */
1895 ncpus -= num_online_cpus();
1896 if (!ncpus)
1897 return true;
1898 /* Create the mask for secondary CPUs */
1899 cpumask_andnot(&tmp_mask, mask, pmask);
1900 mask = &tmp_mask;
1901 }
1902
1903 /* Bring the not-yet started CPUs up */
1904 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1905 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1906 return true;
1907}
1908#else
1909static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1910#endif /* CONFIG_HOTPLUG_PARALLEL */
1911
1912void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
1913{
1914 /* Try parallel bringup optimization if enabled */
1915 if (cpuhp_bringup_cpus_parallel(setup_max_cpus))
1916 return;
1917
1918 /* Full per CPU serialized bringup */
1919 cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE);
1920}
1921
1922#ifdef CONFIG_PM_SLEEP_SMP
1923static cpumask_var_t frozen_cpus;
1924
1925int freeze_secondary_cpus(int primary)
1926{
1927 int cpu, error = 0;
1928
1929 cpu_maps_update_begin();
1930 if (primary == -1) {
1931 primary = cpumask_first(cpu_online_mask);
1932 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1933 primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1934 } else {
1935 if (!cpu_online(primary))
1936 primary = cpumask_first(cpu_online_mask);
1937 }
1938
1939 /*
1940 * We take down all of the non-boot CPUs in one shot to avoid races
1941 * with the userspace trying to use the CPU hotplug at the same time
1942 */
1943 cpumask_clear(frozen_cpus);
1944
1945 pr_info("Disabling non-boot CPUs ...\n");
1946 for_each_online_cpu(cpu) {
1947 if (cpu == primary)
1948 continue;
1949
1950 if (pm_wakeup_pending()) {
1951 pr_info("Wakeup pending. Abort CPU freeze\n");
1952 error = -EBUSY;
1953 break;
1954 }
1955
1956 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1957 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1958 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1959 if (!error)
1960 cpumask_set_cpu(cpu, frozen_cpus);
1961 else {
1962 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1963 break;
1964 }
1965 }
1966
1967 if (!error)
1968 BUG_ON(num_online_cpus() > 1);
1969 else
1970 pr_err("Non-boot CPUs are not disabled\n");
1971
1972 /*
1973 * Make sure the CPUs won't be enabled by someone else. We need to do
1974 * this even in case of failure as all freeze_secondary_cpus() users are
1975 * supposed to do thaw_secondary_cpus() on the failure path.
1976 */
1977 cpu_hotplug_disabled++;
1978
1979 cpu_maps_update_done();
1980 return error;
1981}
1982
1983void __weak arch_thaw_secondary_cpus_begin(void)
1984{
1985}
1986
1987void __weak arch_thaw_secondary_cpus_end(void)
1988{
1989}
1990
1991void thaw_secondary_cpus(void)
1992{
1993 int cpu, error;
1994
1995 /* Allow everyone to use the CPU hotplug again */
1996 cpu_maps_update_begin();
1997 __cpu_hotplug_enable();
1998 if (cpumask_empty(frozen_cpus))
1999 goto out;
2000
2001 pr_info("Enabling non-boot CPUs ...\n");
2002
2003 arch_thaw_secondary_cpus_begin();
2004
2005 for_each_cpu(cpu, frozen_cpus) {
2006 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
2007 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
2008 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
2009 if (!error) {
2010 pr_info("CPU%d is up\n", cpu);
2011 continue;
2012 }
2013 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
2014 }
2015
2016 arch_thaw_secondary_cpus_end();
2017
2018 cpumask_clear(frozen_cpus);
2019out:
2020 cpu_maps_update_done();
2021}
2022
2023static int __init alloc_frozen_cpus(void)
2024{
2025 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2026 return -ENOMEM;
2027 return 0;
2028}
2029core_initcall(alloc_frozen_cpus);
2030
2031/*
2032 * When callbacks for CPU hotplug notifications are being executed, we must
2033 * ensure that the state of the system with respect to the tasks being frozen
2034 * or not, as reported by the notification, remains unchanged *throughout the
2035 * duration* of the execution of the callbacks.
2036 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2037 *
2038 * This synchronization is implemented by mutually excluding regular CPU
2039 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2040 * Hibernate notifications.
2041 */
2042static int
2043cpu_hotplug_pm_callback(struct notifier_block *nb,
2044 unsigned long action, void *ptr)
2045{
2046 switch (action) {
2047
2048 case PM_SUSPEND_PREPARE:
2049 case PM_HIBERNATION_PREPARE:
2050 cpu_hotplug_disable();
2051 break;
2052
2053 case PM_POST_SUSPEND:
2054 case PM_POST_HIBERNATION:
2055 cpu_hotplug_enable();
2056 break;
2057
2058 default:
2059 return NOTIFY_DONE;
2060 }
2061
2062 return NOTIFY_OK;
2063}
2064
2065
2066static int __init cpu_hotplug_pm_sync_init(void)
2067{
2068 /*
2069 * cpu_hotplug_pm_callback has higher priority than x86
2070 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2071 * to disable cpu hotplug to avoid cpu hotplug race.
2072 */
2073 pm_notifier(cpu_hotplug_pm_callback, 0);
2074 return 0;
2075}
2076core_initcall(cpu_hotplug_pm_sync_init);
2077
2078#endif /* CONFIG_PM_SLEEP_SMP */
2079
2080int __boot_cpu_id;
2081
2082#endif /* CONFIG_SMP */
2083
2084/* Boot processor state steps */
2085static struct cpuhp_step cpuhp_hp_states[] = {
2086 [CPUHP_OFFLINE] = {
2087 .name = "offline",
2088 .startup.single = NULL,
2089 .teardown.single = NULL,
2090 },
2091#ifdef CONFIG_SMP
2092 [CPUHP_CREATE_THREADS]= {
2093 .name = "threads:prepare",
2094 .startup.single = smpboot_create_threads,
2095 .teardown.single = NULL,
2096 .cant_stop = true,
2097 },
2098 [CPUHP_PERF_PREPARE] = {
2099 .name = "perf:prepare",
2100 .startup.single = perf_event_init_cpu,
2101 .teardown.single = perf_event_exit_cpu,
2102 },
2103 [CPUHP_RANDOM_PREPARE] = {
2104 .name = "random:prepare",
2105 .startup.single = random_prepare_cpu,
2106 .teardown.single = NULL,
2107 },
2108 [CPUHP_WORKQUEUE_PREP] = {
2109 .name = "workqueue:prepare",
2110 .startup.single = workqueue_prepare_cpu,
2111 .teardown.single = NULL,
2112 },
2113 [CPUHP_HRTIMERS_PREPARE] = {
2114 .name = "hrtimers:prepare",
2115 .startup.single = hrtimers_prepare_cpu,
2116 .teardown.single = NULL,
2117 },
2118 [CPUHP_SMPCFD_PREPARE] = {
2119 .name = "smpcfd:prepare",
2120 .startup.single = smpcfd_prepare_cpu,
2121 .teardown.single = smpcfd_dead_cpu,
2122 },
2123 [CPUHP_RELAY_PREPARE] = {
2124 .name = "relay:prepare",
2125 .startup.single = relay_prepare_cpu,
2126 .teardown.single = NULL,
2127 },
2128 [CPUHP_RCUTREE_PREP] = {
2129 .name = "RCU/tree:prepare",
2130 .startup.single = rcutree_prepare_cpu,
2131 .teardown.single = rcutree_dead_cpu,
2132 },
2133 /*
2134 * On the tear-down path, timers_dead_cpu() must be invoked
2135 * before blk_mq_queue_reinit_notify() from notify_dead(),
2136 * otherwise a RCU stall occurs.
2137 */
2138 [CPUHP_TIMERS_PREPARE] = {
2139 .name = "timers:prepare",
2140 .startup.single = timers_prepare_cpu,
2141 .teardown.single = timers_dead_cpu,
2142 },
2143
2144#ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2145 /*
2146 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2147 * the next step will release it.
2148 */
2149 [CPUHP_BP_KICK_AP] = {
2150 .name = "cpu:kick_ap",
2151 .startup.single = cpuhp_kick_ap_alive,
2152 },
2153
2154 /*
2155 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2156 * releases it for the complete bringup.
2157 */
2158 [CPUHP_BRINGUP_CPU] = {
2159 .name = "cpu:bringup",
2160 .startup.single = cpuhp_bringup_ap,
2161 .teardown.single = finish_cpu,
2162 .cant_stop = true,
2163 },
2164#else
2165 /*
2166 * All-in-one CPU bringup state which includes the kick alive.
2167 */
2168 [CPUHP_BRINGUP_CPU] = {
2169 .name = "cpu:bringup",
2170 .startup.single = bringup_cpu,
2171 .teardown.single = finish_cpu,
2172 .cant_stop = true,
2173 },
2174#endif
2175 /* Final state before CPU kills itself */
2176 [CPUHP_AP_IDLE_DEAD] = {
2177 .name = "idle:dead",
2178 },
2179 /*
2180 * Last state before CPU enters the idle loop to die. Transient state
2181 * for synchronization.
2182 */
2183 [CPUHP_AP_OFFLINE] = {
2184 .name = "ap:offline",
2185 .cant_stop = true,
2186 },
2187 /* First state is scheduler control. Interrupts are disabled */
2188 [CPUHP_AP_SCHED_STARTING] = {
2189 .name = "sched:starting",
2190 .startup.single = sched_cpu_starting,
2191 .teardown.single = sched_cpu_dying,
2192 },
2193 [CPUHP_AP_RCUTREE_DYING] = {
2194 .name = "RCU/tree:dying",
2195 .startup.single = NULL,
2196 .teardown.single = rcutree_dying_cpu,
2197 },
2198 [CPUHP_AP_SMPCFD_DYING] = {
2199 .name = "smpcfd:dying",
2200 .startup.single = NULL,
2201 .teardown.single = smpcfd_dying_cpu,
2202 },
2203 [CPUHP_AP_HRTIMERS_DYING] = {
2204 .name = "hrtimers:dying",
2205 .startup.single = NULL,
2206 .teardown.single = hrtimers_cpu_dying,
2207 },
2208
2209 /* Entry state on starting. Interrupts enabled from here on. Transient
2210 * state for synchronsization */
2211 [CPUHP_AP_ONLINE] = {
2212 .name = "ap:online",
2213 },
2214 /*
2215 * Handled on control processor until the plugged processor manages
2216 * this itself.
2217 */
2218 [CPUHP_TEARDOWN_CPU] = {
2219 .name = "cpu:teardown",
2220 .startup.single = NULL,
2221 .teardown.single = takedown_cpu,
2222 .cant_stop = true,
2223 },
2224
2225 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
2226 .name = "sched:waitempty",
2227 .startup.single = NULL,
2228 .teardown.single = sched_cpu_wait_empty,
2229 },
2230
2231 /* Handle smpboot threads park/unpark */
2232 [CPUHP_AP_SMPBOOT_THREADS] = {
2233 .name = "smpboot/threads:online",
2234 .startup.single = smpboot_unpark_threads,
2235 .teardown.single = smpboot_park_threads,
2236 },
2237 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2238 .name = "irq/affinity:online",
2239 .startup.single = irq_affinity_online_cpu,
2240 .teardown.single = NULL,
2241 },
2242 [CPUHP_AP_PERF_ONLINE] = {
2243 .name = "perf:online",
2244 .startup.single = perf_event_init_cpu,
2245 .teardown.single = perf_event_exit_cpu,
2246 },
2247 [CPUHP_AP_WATCHDOG_ONLINE] = {
2248 .name = "lockup_detector:online",
2249 .startup.single = lockup_detector_online_cpu,
2250 .teardown.single = lockup_detector_offline_cpu,
2251 },
2252 [CPUHP_AP_WORKQUEUE_ONLINE] = {
2253 .name = "workqueue:online",
2254 .startup.single = workqueue_online_cpu,
2255 .teardown.single = workqueue_offline_cpu,
2256 },
2257 [CPUHP_AP_RANDOM_ONLINE] = {
2258 .name = "random:online",
2259 .startup.single = random_online_cpu,
2260 .teardown.single = NULL,
2261 },
2262 [CPUHP_AP_RCUTREE_ONLINE] = {
2263 .name = "RCU/tree:online",
2264 .startup.single = rcutree_online_cpu,
2265 .teardown.single = rcutree_offline_cpu,
2266 },
2267#endif
2268 /*
2269 * The dynamically registered state space is here
2270 */
2271
2272#ifdef CONFIG_SMP
2273 /* Last state is scheduler control setting the cpu active */
2274 [CPUHP_AP_ACTIVE] = {
2275 .name = "sched:active",
2276 .startup.single = sched_cpu_activate,
2277 .teardown.single = sched_cpu_deactivate,
2278 },
2279#endif
2280
2281 /* CPU is fully up and running. */
2282 [CPUHP_ONLINE] = {
2283 .name = "online",
2284 .startup.single = NULL,
2285 .teardown.single = NULL,
2286 },
2287};
2288
2289/* Sanity check for callbacks */
2290static int cpuhp_cb_check(enum cpuhp_state state)
2291{
2292 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2293 return -EINVAL;
2294 return 0;
2295}
2296
2297/*
2298 * Returns a free for dynamic slot assignment of the Online state. The states
2299 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2300 * by having no name assigned.
2301 */
2302static int cpuhp_reserve_state(enum cpuhp_state state)
2303{
2304 enum cpuhp_state i, end;
2305 struct cpuhp_step *step;
2306
2307 switch (state) {
2308 case CPUHP_AP_ONLINE_DYN:
2309 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2310 end = CPUHP_AP_ONLINE_DYN_END;
2311 break;
2312 case CPUHP_BP_PREPARE_DYN:
2313 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2314 end = CPUHP_BP_PREPARE_DYN_END;
2315 break;
2316 default:
2317 return -EINVAL;
2318 }
2319
2320 for (i = state; i <= end; i++, step++) {
2321 if (!step->name)
2322 return i;
2323 }
2324 WARN(1, "No more dynamic states available for CPU hotplug\n");
2325 return -ENOSPC;
2326}
2327
2328static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2329 int (*startup)(unsigned int cpu),
2330 int (*teardown)(unsigned int cpu),
2331 bool multi_instance)
2332{
2333 /* (Un)Install the callbacks for further cpu hotplug operations */
2334 struct cpuhp_step *sp;
2335 int ret = 0;
2336
2337 /*
2338 * If name is NULL, then the state gets removed.
2339 *
2340 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2341 * the first allocation from these dynamic ranges, so the removal
2342 * would trigger a new allocation and clear the wrong (already
2343 * empty) state, leaving the callbacks of the to be cleared state
2344 * dangling, which causes wreckage on the next hotplug operation.
2345 */
2346 if (name && (state == CPUHP_AP_ONLINE_DYN ||
2347 state == CPUHP_BP_PREPARE_DYN)) {
2348 ret = cpuhp_reserve_state(state);
2349 if (ret < 0)
2350 return ret;
2351 state = ret;
2352 }
2353 sp = cpuhp_get_step(state);
2354 if (name && sp->name)
2355 return -EBUSY;
2356
2357 sp->startup.single = startup;
2358 sp->teardown.single = teardown;
2359 sp->name = name;
2360 sp->multi_instance = multi_instance;
2361 INIT_HLIST_HEAD(&sp->list);
2362 return ret;
2363}
2364
2365static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2366{
2367 return cpuhp_get_step(state)->teardown.single;
2368}
2369
2370/*
2371 * Call the startup/teardown function for a step either on the AP or
2372 * on the current CPU.
2373 */
2374static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2375 struct hlist_node *node)
2376{
2377 struct cpuhp_step *sp = cpuhp_get_step(state);
2378 int ret;
2379
2380 /*
2381 * If there's nothing to do, we done.
2382 * Relies on the union for multi_instance.
2383 */
2384 if (cpuhp_step_empty(bringup, sp))
2385 return 0;
2386 /*
2387 * The non AP bound callbacks can fail on bringup. On teardown
2388 * e.g. module removal we crash for now.
2389 */
2390#ifdef CONFIG_SMP
2391 if (cpuhp_is_ap_state(state))
2392 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2393 else
2394 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2395#else
2396 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2397#endif
2398 BUG_ON(ret && !bringup);
2399 return ret;
2400}
2401
2402/*
2403 * Called from __cpuhp_setup_state on a recoverable failure.
2404 *
2405 * Note: The teardown callbacks for rollback are not allowed to fail!
2406 */
2407static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2408 struct hlist_node *node)
2409{
2410 int cpu;
2411
2412 /* Roll back the already executed steps on the other cpus */
2413 for_each_present_cpu(cpu) {
2414 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2415 int cpustate = st->state;
2416
2417 if (cpu >= failedcpu)
2418 break;
2419
2420 /* Did we invoke the startup call on that cpu ? */
2421 if (cpustate >= state)
2422 cpuhp_issue_call(cpu, state, false, node);
2423 }
2424}
2425
2426int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2427 struct hlist_node *node,
2428 bool invoke)
2429{
2430 struct cpuhp_step *sp;
2431 int cpu;
2432 int ret;
2433
2434 lockdep_assert_cpus_held();
2435
2436 sp = cpuhp_get_step(state);
2437 if (sp->multi_instance == false)
2438 return -EINVAL;
2439
2440 mutex_lock(&cpuhp_state_mutex);
2441
2442 if (!invoke || !sp->startup.multi)
2443 goto add_node;
2444
2445 /*
2446 * Try to call the startup callback for each present cpu
2447 * depending on the hotplug state of the cpu.
2448 */
2449 for_each_present_cpu(cpu) {
2450 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2451 int cpustate = st->state;
2452
2453 if (cpustate < state)
2454 continue;
2455
2456 ret = cpuhp_issue_call(cpu, state, true, node);
2457 if (ret) {
2458 if (sp->teardown.multi)
2459 cpuhp_rollback_install(cpu, state, node);
2460 goto unlock;
2461 }
2462 }
2463add_node:
2464 ret = 0;
2465 hlist_add_head(node, &sp->list);
2466unlock:
2467 mutex_unlock(&cpuhp_state_mutex);
2468 return ret;
2469}
2470
2471int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2472 bool invoke)
2473{
2474 int ret;
2475
2476 cpus_read_lock();
2477 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2478 cpus_read_unlock();
2479 return ret;
2480}
2481EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2482
2483/**
2484 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2485 * @state: The state to setup
2486 * @name: Name of the step
2487 * @invoke: If true, the startup function is invoked for cpus where
2488 * cpu state >= @state
2489 * @startup: startup callback function
2490 * @teardown: teardown callback function
2491 * @multi_instance: State is set up for multiple instances which get
2492 * added afterwards.
2493 *
2494 * The caller needs to hold cpus read locked while calling this function.
2495 * Return:
2496 * On success:
2497 * Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2498 * 0 for all other states
2499 * On failure: proper (negative) error code
2500 */
2501int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2502 const char *name, bool invoke,
2503 int (*startup)(unsigned int cpu),
2504 int (*teardown)(unsigned int cpu),
2505 bool multi_instance)
2506{
2507 int cpu, ret = 0;
2508 bool dynstate;
2509
2510 lockdep_assert_cpus_held();
2511
2512 if (cpuhp_cb_check(state) || !name)
2513 return -EINVAL;
2514
2515 mutex_lock(&cpuhp_state_mutex);
2516
2517 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2518 multi_instance);
2519
2520 dynstate = state == CPUHP_AP_ONLINE_DYN;
2521 if (ret > 0 && dynstate) {
2522 state = ret;
2523 ret = 0;
2524 }
2525
2526 if (ret || !invoke || !startup)
2527 goto out;
2528
2529 /*
2530 * Try to call the startup callback for each present cpu
2531 * depending on the hotplug state of the cpu.
2532 */
2533 for_each_present_cpu(cpu) {
2534 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2535 int cpustate = st->state;
2536
2537 if (cpustate < state)
2538 continue;
2539
2540 ret = cpuhp_issue_call(cpu, state, true, NULL);
2541 if (ret) {
2542 if (teardown)
2543 cpuhp_rollback_install(cpu, state, NULL);
2544 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2545 goto out;
2546 }
2547 }
2548out:
2549 mutex_unlock(&cpuhp_state_mutex);
2550 /*
2551 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2552 * dynamically allocated state in case of success.
2553 */
2554 if (!ret && dynstate)
2555 return state;
2556 return ret;
2557}
2558EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2559
2560int __cpuhp_setup_state(enum cpuhp_state state,
2561 const char *name, bool invoke,
2562 int (*startup)(unsigned int cpu),
2563 int (*teardown)(unsigned int cpu),
2564 bool multi_instance)
2565{
2566 int ret;
2567
2568 cpus_read_lock();
2569 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2570 teardown, multi_instance);
2571 cpus_read_unlock();
2572 return ret;
2573}
2574EXPORT_SYMBOL(__cpuhp_setup_state);
2575
2576int __cpuhp_state_remove_instance(enum cpuhp_state state,
2577 struct hlist_node *node, bool invoke)
2578{
2579 struct cpuhp_step *sp = cpuhp_get_step(state);
2580 int cpu;
2581
2582 BUG_ON(cpuhp_cb_check(state));
2583
2584 if (!sp->multi_instance)
2585 return -EINVAL;
2586
2587 cpus_read_lock();
2588 mutex_lock(&cpuhp_state_mutex);
2589
2590 if (!invoke || !cpuhp_get_teardown_cb(state))
2591 goto remove;
2592 /*
2593 * Call the teardown callback for each present cpu depending
2594 * on the hotplug state of the cpu. This function is not
2595 * allowed to fail currently!
2596 */
2597 for_each_present_cpu(cpu) {
2598 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2599 int cpustate = st->state;
2600
2601 if (cpustate >= state)
2602 cpuhp_issue_call(cpu, state, false, node);
2603 }
2604
2605remove:
2606 hlist_del(node);
2607 mutex_unlock(&cpuhp_state_mutex);
2608 cpus_read_unlock();
2609
2610 return 0;
2611}
2612EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2613
2614/**
2615 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2616 * @state: The state to remove
2617 * @invoke: If true, the teardown function is invoked for cpus where
2618 * cpu state >= @state
2619 *
2620 * The caller needs to hold cpus read locked while calling this function.
2621 * The teardown callback is currently not allowed to fail. Think
2622 * about module removal!
2623 */
2624void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2625{
2626 struct cpuhp_step *sp = cpuhp_get_step(state);
2627 int cpu;
2628
2629 BUG_ON(cpuhp_cb_check(state));
2630
2631 lockdep_assert_cpus_held();
2632
2633 mutex_lock(&cpuhp_state_mutex);
2634 if (sp->multi_instance) {
2635 WARN(!hlist_empty(&sp->list),
2636 "Error: Removing state %d which has instances left.\n",
2637 state);
2638 goto remove;
2639 }
2640
2641 if (!invoke || !cpuhp_get_teardown_cb(state))
2642 goto remove;
2643
2644 /*
2645 * Call the teardown callback for each present cpu depending
2646 * on the hotplug state of the cpu. This function is not
2647 * allowed to fail currently!
2648 */
2649 for_each_present_cpu(cpu) {
2650 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2651 int cpustate = st->state;
2652
2653 if (cpustate >= state)
2654 cpuhp_issue_call(cpu, state, false, NULL);
2655 }
2656remove:
2657 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2658 mutex_unlock(&cpuhp_state_mutex);
2659}
2660EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2661
2662void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2663{
2664 cpus_read_lock();
2665 __cpuhp_remove_state_cpuslocked(state, invoke);
2666 cpus_read_unlock();
2667}
2668EXPORT_SYMBOL(__cpuhp_remove_state);
2669
2670#ifdef CONFIG_HOTPLUG_SMT
2671static void cpuhp_offline_cpu_device(unsigned int cpu)
2672{
2673 struct device *dev = get_cpu_device(cpu);
2674
2675 dev->offline = true;
2676 /* Tell user space about the state change */
2677 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2678}
2679
2680static void cpuhp_online_cpu_device(unsigned int cpu)
2681{
2682 struct device *dev = get_cpu_device(cpu);
2683
2684 dev->offline = false;
2685 /* Tell user space about the state change */
2686 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2687}
2688
2689int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2690{
2691 int cpu, ret = 0;
2692
2693 cpu_maps_update_begin();
2694 for_each_online_cpu(cpu) {
2695 if (topology_is_primary_thread(cpu))
2696 continue;
2697 /*
2698 * Disable can be called with CPU_SMT_ENABLED when changing
2699 * from a higher to lower number of SMT threads per core.
2700 */
2701 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2702 continue;
2703 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2704 if (ret)
2705 break;
2706 /*
2707 * As this needs to hold the cpu maps lock it's impossible
2708 * to call device_offline() because that ends up calling
2709 * cpu_down() which takes cpu maps lock. cpu maps lock
2710 * needs to be held as this might race against in kernel
2711 * abusers of the hotplug machinery (thermal management).
2712 *
2713 * So nothing would update device:offline state. That would
2714 * leave the sysfs entry stale and prevent onlining after
2715 * smt control has been changed to 'off' again. This is
2716 * called under the sysfs hotplug lock, so it is properly
2717 * serialized against the regular offline usage.
2718 */
2719 cpuhp_offline_cpu_device(cpu);
2720 }
2721 if (!ret)
2722 cpu_smt_control = ctrlval;
2723 cpu_maps_update_done();
2724 return ret;
2725}
2726
2727int cpuhp_smt_enable(void)
2728{
2729 int cpu, ret = 0;
2730
2731 cpu_maps_update_begin();
2732 cpu_smt_control = CPU_SMT_ENABLED;
2733 for_each_present_cpu(cpu) {
2734 /* Skip online CPUs and CPUs on offline nodes */
2735 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2736 continue;
2737 if (!cpu_smt_thread_allowed(cpu))
2738 continue;
2739 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2740 if (ret)
2741 break;
2742 /* See comment in cpuhp_smt_disable() */
2743 cpuhp_online_cpu_device(cpu);
2744 }
2745 cpu_maps_update_done();
2746 return ret;
2747}
2748#endif
2749
2750#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2751static ssize_t state_show(struct device *dev,
2752 struct device_attribute *attr, char *buf)
2753{
2754 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2755
2756 return sprintf(buf, "%d\n", st->state);
2757}
2758static DEVICE_ATTR_RO(state);
2759
2760static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2761 const char *buf, size_t count)
2762{
2763 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2764 struct cpuhp_step *sp;
2765 int target, ret;
2766
2767 ret = kstrtoint(buf, 10, &target);
2768 if (ret)
2769 return ret;
2770
2771#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2772 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2773 return -EINVAL;
2774#else
2775 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2776 return -EINVAL;
2777#endif
2778
2779 ret = lock_device_hotplug_sysfs();
2780 if (ret)
2781 return ret;
2782
2783 mutex_lock(&cpuhp_state_mutex);
2784 sp = cpuhp_get_step(target);
2785 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2786 mutex_unlock(&cpuhp_state_mutex);
2787 if (ret)
2788 goto out;
2789
2790 if (st->state < target)
2791 ret = cpu_up(dev->id, target);
2792 else if (st->state > target)
2793 ret = cpu_down(dev->id, target);
2794 else if (WARN_ON(st->target != target))
2795 st->target = target;
2796out:
2797 unlock_device_hotplug();
2798 return ret ? ret : count;
2799}
2800
2801static ssize_t target_show(struct device *dev,
2802 struct device_attribute *attr, char *buf)
2803{
2804 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2805
2806 return sprintf(buf, "%d\n", st->target);
2807}
2808static DEVICE_ATTR_RW(target);
2809
2810static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2811 const char *buf, size_t count)
2812{
2813 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2814 struct cpuhp_step *sp;
2815 int fail, ret;
2816
2817 ret = kstrtoint(buf, 10, &fail);
2818 if (ret)
2819 return ret;
2820
2821 if (fail == CPUHP_INVALID) {
2822 st->fail = fail;
2823 return count;
2824 }
2825
2826 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2827 return -EINVAL;
2828
2829 /*
2830 * Cannot fail STARTING/DYING callbacks.
2831 */
2832 if (cpuhp_is_atomic_state(fail))
2833 return -EINVAL;
2834
2835 /*
2836 * DEAD callbacks cannot fail...
2837 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2838 * triggering STARTING callbacks, a failure in this state would
2839 * hinder rollback.
2840 */
2841 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2842 return -EINVAL;
2843
2844 /*
2845 * Cannot fail anything that doesn't have callbacks.
2846 */
2847 mutex_lock(&cpuhp_state_mutex);
2848 sp = cpuhp_get_step(fail);
2849 if (!sp->startup.single && !sp->teardown.single)
2850 ret = -EINVAL;
2851 mutex_unlock(&cpuhp_state_mutex);
2852 if (ret)
2853 return ret;
2854
2855 st->fail = fail;
2856
2857 return count;
2858}
2859
2860static ssize_t fail_show(struct device *dev,
2861 struct device_attribute *attr, char *buf)
2862{
2863 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2864
2865 return sprintf(buf, "%d\n", st->fail);
2866}
2867
2868static DEVICE_ATTR_RW(fail);
2869
2870static struct attribute *cpuhp_cpu_attrs[] = {
2871 &dev_attr_state.attr,
2872 &dev_attr_target.attr,
2873 &dev_attr_fail.attr,
2874 NULL
2875};
2876
2877static const struct attribute_group cpuhp_cpu_attr_group = {
2878 .attrs = cpuhp_cpu_attrs,
2879 .name = "hotplug",
2880 NULL
2881};
2882
2883static ssize_t states_show(struct device *dev,
2884 struct device_attribute *attr, char *buf)
2885{
2886 ssize_t cur, res = 0;
2887 int i;
2888
2889 mutex_lock(&cpuhp_state_mutex);
2890 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2891 struct cpuhp_step *sp = cpuhp_get_step(i);
2892
2893 if (sp->name) {
2894 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2895 buf += cur;
2896 res += cur;
2897 }
2898 }
2899 mutex_unlock(&cpuhp_state_mutex);
2900 return res;
2901}
2902static DEVICE_ATTR_RO(states);
2903
2904static struct attribute *cpuhp_cpu_root_attrs[] = {
2905 &dev_attr_states.attr,
2906 NULL
2907};
2908
2909static const struct attribute_group cpuhp_cpu_root_attr_group = {
2910 .attrs = cpuhp_cpu_root_attrs,
2911 .name = "hotplug",
2912 NULL
2913};
2914
2915#ifdef CONFIG_HOTPLUG_SMT
2916
2917static bool cpu_smt_num_threads_valid(unsigned int threads)
2918{
2919 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2920 return threads >= 1 && threads <= cpu_smt_max_threads;
2921 return threads == 1 || threads == cpu_smt_max_threads;
2922}
2923
2924static ssize_t
2925__store_smt_control(struct device *dev, struct device_attribute *attr,
2926 const char *buf, size_t count)
2927{
2928 int ctrlval, ret, num_threads, orig_threads;
2929 bool force_off;
2930
2931 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2932 return -EPERM;
2933
2934 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2935 return -ENODEV;
2936
2937 if (sysfs_streq(buf, "on")) {
2938 ctrlval = CPU_SMT_ENABLED;
2939 num_threads = cpu_smt_max_threads;
2940 } else if (sysfs_streq(buf, "off")) {
2941 ctrlval = CPU_SMT_DISABLED;
2942 num_threads = 1;
2943 } else if (sysfs_streq(buf, "forceoff")) {
2944 ctrlval = CPU_SMT_FORCE_DISABLED;
2945 num_threads = 1;
2946 } else if (kstrtoint(buf, 10, &num_threads) == 0) {
2947 if (num_threads == 1)
2948 ctrlval = CPU_SMT_DISABLED;
2949 else if (cpu_smt_num_threads_valid(num_threads))
2950 ctrlval = CPU_SMT_ENABLED;
2951 else
2952 return -EINVAL;
2953 } else {
2954 return -EINVAL;
2955 }
2956
2957 ret = lock_device_hotplug_sysfs();
2958 if (ret)
2959 return ret;
2960
2961 orig_threads = cpu_smt_num_threads;
2962 cpu_smt_num_threads = num_threads;
2963
2964 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2965
2966 if (num_threads > orig_threads)
2967 ret = cpuhp_smt_enable();
2968 else if (num_threads < orig_threads || force_off)
2969 ret = cpuhp_smt_disable(ctrlval);
2970
2971 unlock_device_hotplug();
2972 return ret ? ret : count;
2973}
2974
2975#else /* !CONFIG_HOTPLUG_SMT */
2976static ssize_t
2977__store_smt_control(struct device *dev, struct device_attribute *attr,
2978 const char *buf, size_t count)
2979{
2980 return -ENODEV;
2981}
2982#endif /* CONFIG_HOTPLUG_SMT */
2983
2984static const char *smt_states[] = {
2985 [CPU_SMT_ENABLED] = "on",
2986 [CPU_SMT_DISABLED] = "off",
2987 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2988 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2989 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2990};
2991
2992static ssize_t control_show(struct device *dev,
2993 struct device_attribute *attr, char *buf)
2994{
2995 const char *state = smt_states[cpu_smt_control];
2996
2997#ifdef CONFIG_HOTPLUG_SMT
2998 /*
2999 * If SMT is enabled but not all threads are enabled then show the
3000 * number of threads. If all threads are enabled show "on". Otherwise
3001 * show the state name.
3002 */
3003 if (cpu_smt_control == CPU_SMT_ENABLED &&
3004 cpu_smt_num_threads != cpu_smt_max_threads)
3005 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
3006#endif
3007
3008 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
3009}
3010
3011static ssize_t control_store(struct device *dev, struct device_attribute *attr,
3012 const char *buf, size_t count)
3013{
3014 return __store_smt_control(dev, attr, buf, count);
3015}
3016static DEVICE_ATTR_RW(control);
3017
3018static ssize_t active_show(struct device *dev,
3019 struct device_attribute *attr, char *buf)
3020{
3021 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
3022}
3023static DEVICE_ATTR_RO(active);
3024
3025static struct attribute *cpuhp_smt_attrs[] = {
3026 &dev_attr_control.attr,
3027 &dev_attr_active.attr,
3028 NULL
3029};
3030
3031static const struct attribute_group cpuhp_smt_attr_group = {
3032 .attrs = cpuhp_smt_attrs,
3033 .name = "smt",
3034 NULL
3035};
3036
3037static int __init cpu_smt_sysfs_init(void)
3038{
3039 struct device *dev_root;
3040 int ret = -ENODEV;
3041
3042 dev_root = bus_get_dev_root(&cpu_subsys);
3043 if (dev_root) {
3044 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3045 put_device(dev_root);
3046 }
3047 return ret;
3048}
3049
3050static int __init cpuhp_sysfs_init(void)
3051{
3052 struct device *dev_root;
3053 int cpu, ret;
3054
3055 ret = cpu_smt_sysfs_init();
3056 if (ret)
3057 return ret;
3058
3059 dev_root = bus_get_dev_root(&cpu_subsys);
3060 if (dev_root) {
3061 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3062 put_device(dev_root);
3063 if (ret)
3064 return ret;
3065 }
3066
3067 for_each_possible_cpu(cpu) {
3068 struct device *dev = get_cpu_device(cpu);
3069
3070 if (!dev)
3071 continue;
3072 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3073 if (ret)
3074 return ret;
3075 }
3076 return 0;
3077}
3078device_initcall(cpuhp_sysfs_init);
3079#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3080
3081/*
3082 * cpu_bit_bitmap[] is a special, "compressed" data structure that
3083 * represents all NR_CPUS bits binary values of 1<<nr.
3084 *
3085 * It is used by cpumask_of() to get a constant address to a CPU
3086 * mask value that has a single bit set only.
3087 */
3088
3089/* cpu_bit_bitmap[0] is empty - so we can back into it */
3090#define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
3091#define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3092#define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3093#define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3094
3095const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3096
3097 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
3098 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
3099#if BITS_PER_LONG > 32
3100 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
3101 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
3102#endif
3103};
3104EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3105
3106const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3107EXPORT_SYMBOL(cpu_all_bits);
3108
3109#ifdef CONFIG_INIT_ALL_POSSIBLE
3110struct cpumask __cpu_possible_mask __read_mostly
3111 = {CPU_BITS_ALL};
3112#else
3113struct cpumask __cpu_possible_mask __read_mostly;
3114#endif
3115EXPORT_SYMBOL(__cpu_possible_mask);
3116
3117struct cpumask __cpu_online_mask __read_mostly;
3118EXPORT_SYMBOL(__cpu_online_mask);
3119
3120struct cpumask __cpu_present_mask __read_mostly;
3121EXPORT_SYMBOL(__cpu_present_mask);
3122
3123struct cpumask __cpu_active_mask __read_mostly;
3124EXPORT_SYMBOL(__cpu_active_mask);
3125
3126struct cpumask __cpu_dying_mask __read_mostly;
3127EXPORT_SYMBOL(__cpu_dying_mask);
3128
3129atomic_t __num_online_cpus __read_mostly;
3130EXPORT_SYMBOL(__num_online_cpus);
3131
3132void init_cpu_present(const struct cpumask *src)
3133{
3134 cpumask_copy(&__cpu_present_mask, src);
3135}
3136
3137void init_cpu_possible(const struct cpumask *src)
3138{
3139 cpumask_copy(&__cpu_possible_mask, src);
3140}
3141
3142void init_cpu_online(const struct cpumask *src)
3143{
3144 cpumask_copy(&__cpu_online_mask, src);
3145}
3146
3147void set_cpu_online(unsigned int cpu, bool online)
3148{
3149 /*
3150 * atomic_inc/dec() is required to handle the horrid abuse of this
3151 * function by the reboot and kexec code which invoke it from
3152 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3153 * regular CPU hotplug is properly serialized.
3154 *
3155 * Note, that the fact that __num_online_cpus is of type atomic_t
3156 * does not protect readers which are not serialized against
3157 * concurrent hotplug operations.
3158 */
3159 if (online) {
3160 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3161 atomic_inc(&__num_online_cpus);
3162 } else {
3163 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3164 atomic_dec(&__num_online_cpus);
3165 }
3166}
3167
3168/*
3169 * Activate the first processor.
3170 */
3171void __init boot_cpu_init(void)
3172{
3173 int cpu = smp_processor_id();
3174
3175 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
3176 set_cpu_online(cpu, true);
3177 set_cpu_active(cpu, true);
3178 set_cpu_present(cpu, true);
3179 set_cpu_possible(cpu, true);
3180
3181#ifdef CONFIG_SMP
3182 __boot_cpu_id = cpu;
3183#endif
3184}
3185
3186/*
3187 * Must be called _AFTER_ setting up the per_cpu areas
3188 */
3189void __init boot_cpu_hotplug_init(void)
3190{
3191#ifdef CONFIG_SMP
3192 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3193 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3194#endif
3195 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3196 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3197}
3198
3199/*
3200 * These are used for a global "mitigations=" cmdline option for toggling
3201 * optional CPU mitigations.
3202 */
3203enum cpu_mitigations {
3204 CPU_MITIGATIONS_OFF,
3205 CPU_MITIGATIONS_AUTO,
3206 CPU_MITIGATIONS_AUTO_NOSMT,
3207};
3208
3209static enum cpu_mitigations cpu_mitigations __ro_after_init =
3210 CPU_MITIGATIONS_AUTO;
3211
3212static int __init mitigations_parse_cmdline(char *arg)
3213{
3214 if (!strcmp(arg, "off"))
3215 cpu_mitigations = CPU_MITIGATIONS_OFF;
3216 else if (!strcmp(arg, "auto"))
3217 cpu_mitigations = CPU_MITIGATIONS_AUTO;
3218 else if (!strcmp(arg, "auto,nosmt"))
3219 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3220 else
3221 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3222 arg);
3223
3224 return 0;
3225}
3226early_param("mitigations", mitigations_parse_cmdline);
3227
3228/* mitigations=off */
3229bool cpu_mitigations_off(void)
3230{
3231 return cpu_mitigations == CPU_MITIGATIONS_OFF;
3232}
3233EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3234
3235/* mitigations=auto,nosmt */
3236bool cpu_mitigations_auto_nosmt(void)
3237{
3238 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3239}
3240EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);