Loading...
1/*
2 * cfg80211 scan result handling
3 *
4 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 * Copyright 2016 Intel Deutschland GmbH
7 */
8#include <linux/kernel.h>
9#include <linux/slab.h>
10#include <linux/module.h>
11#include <linux/netdevice.h>
12#include <linux/wireless.h>
13#include <linux/nl80211.h>
14#include <linux/etherdevice.h>
15#include <net/arp.h>
16#include <net/cfg80211.h>
17#include <net/cfg80211-wext.h>
18#include <net/iw_handler.h>
19#include "core.h"
20#include "nl80211.h"
21#include "wext-compat.h"
22#include "rdev-ops.h"
23
24/**
25 * DOC: BSS tree/list structure
26 *
27 * At the top level, the BSS list is kept in both a list in each
28 * registered device (@bss_list) as well as an RB-tree for faster
29 * lookup. In the RB-tree, entries can be looked up using their
30 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
31 * for other BSSes.
32 *
33 * Due to the possibility of hidden SSIDs, there's a second level
34 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
35 * The hidden_list connects all BSSes belonging to a single AP
36 * that has a hidden SSID, and connects beacon and probe response
37 * entries. For a probe response entry for a hidden SSID, the
38 * hidden_beacon_bss pointer points to the BSS struct holding the
39 * beacon's information.
40 *
41 * Reference counting is done for all these references except for
42 * the hidden_list, so that a beacon BSS struct that is otherwise
43 * not referenced has one reference for being on the bss_list and
44 * one for each probe response entry that points to it using the
45 * hidden_beacon_bss pointer. When a BSS struct that has such a
46 * pointer is get/put, the refcount update is also propagated to
47 * the referenced struct, this ensure that it cannot get removed
48 * while somebody is using the probe response version.
49 *
50 * Note that the hidden_beacon_bss pointer never changes, due to
51 * the reference counting. Therefore, no locking is needed for
52 * it.
53 *
54 * Also note that the hidden_beacon_bss pointer is only relevant
55 * if the driver uses something other than the IEs, e.g. private
56 * data stored stored in the BSS struct, since the beacon IEs are
57 * also linked into the probe response struct.
58 */
59
60/*
61 * Limit the number of BSS entries stored in mac80211. Each one is
62 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
63 * If somebody wants to really attack this though, they'd likely
64 * use small beacons, and only one type of frame, limiting each of
65 * the entries to a much smaller size (in order to generate more
66 * entries in total, so overhead is bigger.)
67 */
68static int bss_entries_limit = 1000;
69module_param(bss_entries_limit, int, 0644);
70MODULE_PARM_DESC(bss_entries_limit,
71 "limit to number of scan BSS entries (per wiphy, default 1000)");
72
73#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
74
75static void bss_free(struct cfg80211_internal_bss *bss)
76{
77 struct cfg80211_bss_ies *ies;
78
79 if (WARN_ON(atomic_read(&bss->hold)))
80 return;
81
82 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
83 if (ies && !bss->pub.hidden_beacon_bss)
84 kfree_rcu(ies, rcu_head);
85 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
86 if (ies)
87 kfree_rcu(ies, rcu_head);
88
89 /*
90 * This happens when the module is removed, it doesn't
91 * really matter any more save for completeness
92 */
93 if (!list_empty(&bss->hidden_list))
94 list_del(&bss->hidden_list);
95
96 kfree(bss);
97}
98
99static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
100 struct cfg80211_internal_bss *bss)
101{
102 lockdep_assert_held(&rdev->bss_lock);
103
104 bss->refcount++;
105 if (bss->pub.hidden_beacon_bss) {
106 bss = container_of(bss->pub.hidden_beacon_bss,
107 struct cfg80211_internal_bss,
108 pub);
109 bss->refcount++;
110 }
111}
112
113static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
114 struct cfg80211_internal_bss *bss)
115{
116 lockdep_assert_held(&rdev->bss_lock);
117
118 if (bss->pub.hidden_beacon_bss) {
119 struct cfg80211_internal_bss *hbss;
120 hbss = container_of(bss->pub.hidden_beacon_bss,
121 struct cfg80211_internal_bss,
122 pub);
123 hbss->refcount--;
124 if (hbss->refcount == 0)
125 bss_free(hbss);
126 }
127 bss->refcount--;
128 if (bss->refcount == 0)
129 bss_free(bss);
130}
131
132static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
133 struct cfg80211_internal_bss *bss)
134{
135 lockdep_assert_held(&rdev->bss_lock);
136
137 if (!list_empty(&bss->hidden_list)) {
138 /*
139 * don't remove the beacon entry if it has
140 * probe responses associated with it
141 */
142 if (!bss->pub.hidden_beacon_bss)
143 return false;
144 /*
145 * if it's a probe response entry break its
146 * link to the other entries in the group
147 */
148 list_del_init(&bss->hidden_list);
149 }
150
151 list_del_init(&bss->list);
152 rb_erase(&bss->rbn, &rdev->bss_tree);
153 rdev->bss_entries--;
154 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
155 "rdev bss entries[%d]/list[empty:%d] corruption\n",
156 rdev->bss_entries, list_empty(&rdev->bss_list));
157 bss_ref_put(rdev, bss);
158 return true;
159}
160
161static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
162 unsigned long expire_time)
163{
164 struct cfg80211_internal_bss *bss, *tmp;
165 bool expired = false;
166
167 lockdep_assert_held(&rdev->bss_lock);
168
169 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
170 if (atomic_read(&bss->hold))
171 continue;
172 if (!time_after(expire_time, bss->ts))
173 continue;
174
175 if (__cfg80211_unlink_bss(rdev, bss))
176 expired = true;
177 }
178
179 if (expired)
180 rdev->bss_generation++;
181}
182
183static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
184{
185 struct cfg80211_internal_bss *bss, *oldest = NULL;
186 bool ret;
187
188 lockdep_assert_held(&rdev->bss_lock);
189
190 list_for_each_entry(bss, &rdev->bss_list, list) {
191 if (atomic_read(&bss->hold))
192 continue;
193
194 if (!list_empty(&bss->hidden_list) &&
195 !bss->pub.hidden_beacon_bss)
196 continue;
197
198 if (oldest && time_before(oldest->ts, bss->ts))
199 continue;
200 oldest = bss;
201 }
202
203 if (WARN_ON(!oldest))
204 return false;
205
206 /*
207 * The callers make sure to increase rdev->bss_generation if anything
208 * gets removed (and a new entry added), so there's no need to also do
209 * it here.
210 */
211
212 ret = __cfg80211_unlink_bss(rdev, oldest);
213 WARN_ON(!ret);
214 return ret;
215}
216
217void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
218 bool send_message)
219{
220 struct cfg80211_scan_request *request;
221 struct wireless_dev *wdev;
222 struct sk_buff *msg;
223#ifdef CONFIG_CFG80211_WEXT
224 union iwreq_data wrqu;
225#endif
226
227 ASSERT_RTNL();
228
229 if (rdev->scan_msg) {
230 nl80211_send_scan_result(rdev, rdev->scan_msg);
231 rdev->scan_msg = NULL;
232 return;
233 }
234
235 request = rdev->scan_req;
236 if (!request)
237 return;
238
239 wdev = request->wdev;
240
241 /*
242 * This must be before sending the other events!
243 * Otherwise, wpa_supplicant gets completely confused with
244 * wext events.
245 */
246 if (wdev->netdev)
247 cfg80211_sme_scan_done(wdev->netdev);
248
249 if (!request->info.aborted &&
250 request->flags & NL80211_SCAN_FLAG_FLUSH) {
251 /* flush entries from previous scans */
252 spin_lock_bh(&rdev->bss_lock);
253 __cfg80211_bss_expire(rdev, request->scan_start);
254 spin_unlock_bh(&rdev->bss_lock);
255 }
256
257 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
258
259#ifdef CONFIG_CFG80211_WEXT
260 if (wdev->netdev && !request->info.aborted) {
261 memset(&wrqu, 0, sizeof(wrqu));
262
263 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
264 }
265#endif
266
267 if (wdev->netdev)
268 dev_put(wdev->netdev);
269
270 rdev->scan_req = NULL;
271 kfree(request);
272
273 if (!send_message)
274 rdev->scan_msg = msg;
275 else
276 nl80211_send_scan_result(rdev, msg);
277}
278
279void __cfg80211_scan_done(struct work_struct *wk)
280{
281 struct cfg80211_registered_device *rdev;
282
283 rdev = container_of(wk, struct cfg80211_registered_device,
284 scan_done_wk);
285
286 rtnl_lock();
287 ___cfg80211_scan_done(rdev, true);
288 rtnl_unlock();
289}
290
291void cfg80211_scan_done(struct cfg80211_scan_request *request,
292 struct cfg80211_scan_info *info)
293{
294 trace_cfg80211_scan_done(request, info);
295 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req);
296
297 request->info = *info;
298 request->notified = true;
299 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
300}
301EXPORT_SYMBOL(cfg80211_scan_done);
302
303void __cfg80211_sched_scan_results(struct work_struct *wk)
304{
305 struct cfg80211_registered_device *rdev;
306 struct cfg80211_sched_scan_request *request;
307
308 rdev = container_of(wk, struct cfg80211_registered_device,
309 sched_scan_results_wk);
310
311 rtnl_lock();
312
313 request = rtnl_dereference(rdev->sched_scan_req);
314
315 /* we don't have sched_scan_req anymore if the scan is stopping */
316 if (request) {
317 if (request->flags & NL80211_SCAN_FLAG_FLUSH) {
318 /* flush entries from previous scans */
319 spin_lock_bh(&rdev->bss_lock);
320 __cfg80211_bss_expire(rdev, request->scan_start);
321 spin_unlock_bh(&rdev->bss_lock);
322 request->scan_start = jiffies;
323 }
324 nl80211_send_sched_scan_results(rdev, request->dev);
325 }
326
327 rtnl_unlock();
328}
329
330void cfg80211_sched_scan_results(struct wiphy *wiphy)
331{
332 trace_cfg80211_sched_scan_results(wiphy);
333 /* ignore if we're not scanning */
334
335 if (rcu_access_pointer(wiphy_to_rdev(wiphy)->sched_scan_req))
336 queue_work(cfg80211_wq,
337 &wiphy_to_rdev(wiphy)->sched_scan_results_wk);
338}
339EXPORT_SYMBOL(cfg80211_sched_scan_results);
340
341void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy)
342{
343 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
344
345 ASSERT_RTNL();
346
347 trace_cfg80211_sched_scan_stopped(wiphy);
348
349 __cfg80211_stop_sched_scan(rdev, true);
350}
351EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
352
353void cfg80211_sched_scan_stopped(struct wiphy *wiphy)
354{
355 rtnl_lock();
356 cfg80211_sched_scan_stopped_rtnl(wiphy);
357 rtnl_unlock();
358}
359EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
360
361int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
362 bool driver_initiated)
363{
364 struct cfg80211_sched_scan_request *sched_scan_req;
365 struct net_device *dev;
366
367 ASSERT_RTNL();
368
369 if (!rdev->sched_scan_req)
370 return -ENOENT;
371
372 sched_scan_req = rtnl_dereference(rdev->sched_scan_req);
373 dev = sched_scan_req->dev;
374
375 if (!driver_initiated) {
376 int err = rdev_sched_scan_stop(rdev, dev);
377 if (err)
378 return err;
379 }
380
381 nl80211_send_sched_scan(rdev, dev, NL80211_CMD_SCHED_SCAN_STOPPED);
382
383 RCU_INIT_POINTER(rdev->sched_scan_req, NULL);
384 kfree_rcu(sched_scan_req, rcu_head);
385
386 return 0;
387}
388
389void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
390 unsigned long age_secs)
391{
392 struct cfg80211_internal_bss *bss;
393 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
394
395 spin_lock_bh(&rdev->bss_lock);
396 list_for_each_entry(bss, &rdev->bss_list, list)
397 bss->ts -= age_jiffies;
398 spin_unlock_bh(&rdev->bss_lock);
399}
400
401void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
402{
403 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
404}
405
406const u8 *cfg80211_find_ie_match(u8 eid, const u8 *ies, int len,
407 const u8 *match, int match_len,
408 int match_offset)
409{
410 /* match_offset can't be smaller than 2, unless match_len is
411 * zero, in which case match_offset must be zero as well.
412 */
413 if (WARN_ON((match_len && match_offset < 2) ||
414 (!match_len && match_offset)))
415 return NULL;
416
417 while (len >= 2 && len >= ies[1] + 2) {
418 if ((ies[0] == eid) &&
419 (ies[1] + 2 >= match_offset + match_len) &&
420 !memcmp(ies + match_offset, match, match_len))
421 return ies;
422
423 len -= ies[1] + 2;
424 ies += ies[1] + 2;
425 }
426
427 return NULL;
428}
429EXPORT_SYMBOL(cfg80211_find_ie_match);
430
431const u8 *cfg80211_find_vendor_ie(unsigned int oui, int oui_type,
432 const u8 *ies, int len)
433{
434 const u8 *ie;
435 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
436 int match_len = (oui_type < 0) ? 3 : sizeof(match);
437
438 if (WARN_ON(oui_type > 0xff))
439 return NULL;
440
441 ie = cfg80211_find_ie_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
442 match, match_len, 2);
443
444 if (ie && (ie[1] < 4))
445 return NULL;
446
447 return ie;
448}
449EXPORT_SYMBOL(cfg80211_find_vendor_ie);
450
451static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
452 const u8 *ssid, size_t ssid_len)
453{
454 const struct cfg80211_bss_ies *ies;
455 const u8 *ssidie;
456
457 if (bssid && !ether_addr_equal(a->bssid, bssid))
458 return false;
459
460 if (!ssid)
461 return true;
462
463 ies = rcu_access_pointer(a->ies);
464 if (!ies)
465 return false;
466 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
467 if (!ssidie)
468 return false;
469 if (ssidie[1] != ssid_len)
470 return false;
471 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
472}
473
474/**
475 * enum bss_compare_mode - BSS compare mode
476 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
477 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
478 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
479 */
480enum bss_compare_mode {
481 BSS_CMP_REGULAR,
482 BSS_CMP_HIDE_ZLEN,
483 BSS_CMP_HIDE_NUL,
484};
485
486static int cmp_bss(struct cfg80211_bss *a,
487 struct cfg80211_bss *b,
488 enum bss_compare_mode mode)
489{
490 const struct cfg80211_bss_ies *a_ies, *b_ies;
491 const u8 *ie1 = NULL;
492 const u8 *ie2 = NULL;
493 int i, r;
494
495 if (a->channel != b->channel)
496 return b->channel->center_freq - a->channel->center_freq;
497
498 a_ies = rcu_access_pointer(a->ies);
499 if (!a_ies)
500 return -1;
501 b_ies = rcu_access_pointer(b->ies);
502 if (!b_ies)
503 return 1;
504
505 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
506 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
507 a_ies->data, a_ies->len);
508 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
509 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
510 b_ies->data, b_ies->len);
511 if (ie1 && ie2) {
512 int mesh_id_cmp;
513
514 if (ie1[1] == ie2[1])
515 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
516 else
517 mesh_id_cmp = ie2[1] - ie1[1];
518
519 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
520 a_ies->data, a_ies->len);
521 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
522 b_ies->data, b_ies->len);
523 if (ie1 && ie2) {
524 if (mesh_id_cmp)
525 return mesh_id_cmp;
526 if (ie1[1] != ie2[1])
527 return ie2[1] - ie1[1];
528 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
529 }
530 }
531
532 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
533 if (r)
534 return r;
535
536 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
537 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
538
539 if (!ie1 && !ie2)
540 return 0;
541
542 /*
543 * Note that with "hide_ssid", the function returns a match if
544 * the already-present BSS ("b") is a hidden SSID beacon for
545 * the new BSS ("a").
546 */
547
548 /* sort missing IE before (left of) present IE */
549 if (!ie1)
550 return -1;
551 if (!ie2)
552 return 1;
553
554 switch (mode) {
555 case BSS_CMP_HIDE_ZLEN:
556 /*
557 * In ZLEN mode we assume the BSS entry we're
558 * looking for has a zero-length SSID. So if
559 * the one we're looking at right now has that,
560 * return 0. Otherwise, return the difference
561 * in length, but since we're looking for the
562 * 0-length it's really equivalent to returning
563 * the length of the one we're looking at.
564 *
565 * No content comparison is needed as we assume
566 * the content length is zero.
567 */
568 return ie2[1];
569 case BSS_CMP_REGULAR:
570 default:
571 /* sort by length first, then by contents */
572 if (ie1[1] != ie2[1])
573 return ie2[1] - ie1[1];
574 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
575 case BSS_CMP_HIDE_NUL:
576 if (ie1[1] != ie2[1])
577 return ie2[1] - ie1[1];
578 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
579 for (i = 0; i < ie2[1]; i++)
580 if (ie2[i + 2])
581 return -1;
582 return 0;
583 }
584}
585
586static bool cfg80211_bss_type_match(u16 capability,
587 enum nl80211_band band,
588 enum ieee80211_bss_type bss_type)
589{
590 bool ret = true;
591 u16 mask, val;
592
593 if (bss_type == IEEE80211_BSS_TYPE_ANY)
594 return ret;
595
596 if (band == NL80211_BAND_60GHZ) {
597 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
598 switch (bss_type) {
599 case IEEE80211_BSS_TYPE_ESS:
600 val = WLAN_CAPABILITY_DMG_TYPE_AP;
601 break;
602 case IEEE80211_BSS_TYPE_PBSS:
603 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
604 break;
605 case IEEE80211_BSS_TYPE_IBSS:
606 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
607 break;
608 default:
609 return false;
610 }
611 } else {
612 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
613 switch (bss_type) {
614 case IEEE80211_BSS_TYPE_ESS:
615 val = WLAN_CAPABILITY_ESS;
616 break;
617 case IEEE80211_BSS_TYPE_IBSS:
618 val = WLAN_CAPABILITY_IBSS;
619 break;
620 case IEEE80211_BSS_TYPE_MBSS:
621 val = 0;
622 break;
623 default:
624 return false;
625 }
626 }
627
628 ret = ((capability & mask) == val);
629 return ret;
630}
631
632/* Returned bss is reference counted and must be cleaned up appropriately. */
633struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
634 struct ieee80211_channel *channel,
635 const u8 *bssid,
636 const u8 *ssid, size_t ssid_len,
637 enum ieee80211_bss_type bss_type,
638 enum ieee80211_privacy privacy)
639{
640 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
641 struct cfg80211_internal_bss *bss, *res = NULL;
642 unsigned long now = jiffies;
643 int bss_privacy;
644
645 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
646 privacy);
647
648 spin_lock_bh(&rdev->bss_lock);
649
650 list_for_each_entry(bss, &rdev->bss_list, list) {
651 if (!cfg80211_bss_type_match(bss->pub.capability,
652 bss->pub.channel->band, bss_type))
653 continue;
654
655 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
656 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
657 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
658 continue;
659 if (channel && bss->pub.channel != channel)
660 continue;
661 if (!is_valid_ether_addr(bss->pub.bssid))
662 continue;
663 /* Don't get expired BSS structs */
664 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
665 !atomic_read(&bss->hold))
666 continue;
667 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
668 res = bss;
669 bss_ref_get(rdev, res);
670 break;
671 }
672 }
673
674 spin_unlock_bh(&rdev->bss_lock);
675 if (!res)
676 return NULL;
677 trace_cfg80211_return_bss(&res->pub);
678 return &res->pub;
679}
680EXPORT_SYMBOL(cfg80211_get_bss);
681
682static void rb_insert_bss(struct cfg80211_registered_device *rdev,
683 struct cfg80211_internal_bss *bss)
684{
685 struct rb_node **p = &rdev->bss_tree.rb_node;
686 struct rb_node *parent = NULL;
687 struct cfg80211_internal_bss *tbss;
688 int cmp;
689
690 while (*p) {
691 parent = *p;
692 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
693
694 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
695
696 if (WARN_ON(!cmp)) {
697 /* will sort of leak this BSS */
698 return;
699 }
700
701 if (cmp < 0)
702 p = &(*p)->rb_left;
703 else
704 p = &(*p)->rb_right;
705 }
706
707 rb_link_node(&bss->rbn, parent, p);
708 rb_insert_color(&bss->rbn, &rdev->bss_tree);
709}
710
711static struct cfg80211_internal_bss *
712rb_find_bss(struct cfg80211_registered_device *rdev,
713 struct cfg80211_internal_bss *res,
714 enum bss_compare_mode mode)
715{
716 struct rb_node *n = rdev->bss_tree.rb_node;
717 struct cfg80211_internal_bss *bss;
718 int r;
719
720 while (n) {
721 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
722 r = cmp_bss(&res->pub, &bss->pub, mode);
723
724 if (r == 0)
725 return bss;
726 else if (r < 0)
727 n = n->rb_left;
728 else
729 n = n->rb_right;
730 }
731
732 return NULL;
733}
734
735static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
736 struct cfg80211_internal_bss *new)
737{
738 const struct cfg80211_bss_ies *ies;
739 struct cfg80211_internal_bss *bss;
740 const u8 *ie;
741 int i, ssidlen;
742 u8 fold = 0;
743 u32 n_entries = 0;
744
745 ies = rcu_access_pointer(new->pub.beacon_ies);
746 if (WARN_ON(!ies))
747 return false;
748
749 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
750 if (!ie) {
751 /* nothing to do */
752 return true;
753 }
754
755 ssidlen = ie[1];
756 for (i = 0; i < ssidlen; i++)
757 fold |= ie[2 + i];
758
759 if (fold) {
760 /* not a hidden SSID */
761 return true;
762 }
763
764 /* This is the bad part ... */
765
766 list_for_each_entry(bss, &rdev->bss_list, list) {
767 /*
768 * we're iterating all the entries anyway, so take the
769 * opportunity to validate the list length accounting
770 */
771 n_entries++;
772
773 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
774 continue;
775 if (bss->pub.channel != new->pub.channel)
776 continue;
777 if (bss->pub.scan_width != new->pub.scan_width)
778 continue;
779 if (rcu_access_pointer(bss->pub.beacon_ies))
780 continue;
781 ies = rcu_access_pointer(bss->pub.ies);
782 if (!ies)
783 continue;
784 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
785 if (!ie)
786 continue;
787 if (ssidlen && ie[1] != ssidlen)
788 continue;
789 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
790 continue;
791 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
792 list_del(&bss->hidden_list);
793 /* combine them */
794 list_add(&bss->hidden_list, &new->hidden_list);
795 bss->pub.hidden_beacon_bss = &new->pub;
796 new->refcount += bss->refcount;
797 rcu_assign_pointer(bss->pub.beacon_ies,
798 new->pub.beacon_ies);
799 }
800
801 WARN_ONCE(n_entries != rdev->bss_entries,
802 "rdev bss entries[%d]/list[len:%d] corruption\n",
803 rdev->bss_entries, n_entries);
804
805 return true;
806}
807
808/* Returned bss is reference counted and must be cleaned up appropriately. */
809static struct cfg80211_internal_bss *
810cfg80211_bss_update(struct cfg80211_registered_device *rdev,
811 struct cfg80211_internal_bss *tmp,
812 bool signal_valid)
813{
814 struct cfg80211_internal_bss *found = NULL;
815
816 if (WARN_ON(!tmp->pub.channel))
817 return NULL;
818
819 tmp->ts = jiffies;
820
821 spin_lock_bh(&rdev->bss_lock);
822
823 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
824 spin_unlock_bh(&rdev->bss_lock);
825 return NULL;
826 }
827
828 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
829
830 if (found) {
831 /* Update IEs */
832 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
833 const struct cfg80211_bss_ies *old;
834
835 old = rcu_access_pointer(found->pub.proberesp_ies);
836
837 rcu_assign_pointer(found->pub.proberesp_ies,
838 tmp->pub.proberesp_ies);
839 /* Override possible earlier Beacon frame IEs */
840 rcu_assign_pointer(found->pub.ies,
841 tmp->pub.proberesp_ies);
842 if (old)
843 kfree_rcu((struct cfg80211_bss_ies *)old,
844 rcu_head);
845 } else if (rcu_access_pointer(tmp->pub.beacon_ies)) {
846 const struct cfg80211_bss_ies *old;
847 struct cfg80211_internal_bss *bss;
848
849 if (found->pub.hidden_beacon_bss &&
850 !list_empty(&found->hidden_list)) {
851 const struct cfg80211_bss_ies *f;
852
853 /*
854 * The found BSS struct is one of the probe
855 * response members of a group, but we're
856 * receiving a beacon (beacon_ies in the tmp
857 * bss is used). This can only mean that the
858 * AP changed its beacon from not having an
859 * SSID to showing it, which is confusing so
860 * drop this information.
861 */
862
863 f = rcu_access_pointer(tmp->pub.beacon_ies);
864 kfree_rcu((struct cfg80211_bss_ies *)f,
865 rcu_head);
866 goto drop;
867 }
868
869 old = rcu_access_pointer(found->pub.beacon_ies);
870
871 rcu_assign_pointer(found->pub.beacon_ies,
872 tmp->pub.beacon_ies);
873
874 /* Override IEs if they were from a beacon before */
875 if (old == rcu_access_pointer(found->pub.ies))
876 rcu_assign_pointer(found->pub.ies,
877 tmp->pub.beacon_ies);
878
879 /* Assign beacon IEs to all sub entries */
880 list_for_each_entry(bss, &found->hidden_list,
881 hidden_list) {
882 const struct cfg80211_bss_ies *ies;
883
884 ies = rcu_access_pointer(bss->pub.beacon_ies);
885 WARN_ON(ies != old);
886
887 rcu_assign_pointer(bss->pub.beacon_ies,
888 tmp->pub.beacon_ies);
889 }
890
891 if (old)
892 kfree_rcu((struct cfg80211_bss_ies *)old,
893 rcu_head);
894 }
895
896 found->pub.beacon_interval = tmp->pub.beacon_interval;
897 /*
898 * don't update the signal if beacon was heard on
899 * adjacent channel.
900 */
901 if (signal_valid)
902 found->pub.signal = tmp->pub.signal;
903 found->pub.capability = tmp->pub.capability;
904 found->ts = tmp->ts;
905 found->ts_boottime = tmp->ts_boottime;
906 found->parent_tsf = tmp->parent_tsf;
907 ether_addr_copy(found->parent_bssid, tmp->parent_bssid);
908 } else {
909 struct cfg80211_internal_bss *new;
910 struct cfg80211_internal_bss *hidden;
911 struct cfg80211_bss_ies *ies;
912
913 /*
914 * create a copy -- the "res" variable that is passed in
915 * is allocated on the stack since it's not needed in the
916 * more common case of an update
917 */
918 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
919 GFP_ATOMIC);
920 if (!new) {
921 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
922 if (ies)
923 kfree_rcu(ies, rcu_head);
924 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
925 if (ies)
926 kfree_rcu(ies, rcu_head);
927 goto drop;
928 }
929 memcpy(new, tmp, sizeof(*new));
930 new->refcount = 1;
931 INIT_LIST_HEAD(&new->hidden_list);
932
933 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
934 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
935 if (!hidden)
936 hidden = rb_find_bss(rdev, tmp,
937 BSS_CMP_HIDE_NUL);
938 if (hidden) {
939 new->pub.hidden_beacon_bss = &hidden->pub;
940 list_add(&new->hidden_list,
941 &hidden->hidden_list);
942 hidden->refcount++;
943 rcu_assign_pointer(new->pub.beacon_ies,
944 hidden->pub.beacon_ies);
945 }
946 } else {
947 /*
948 * Ok so we found a beacon, and don't have an entry. If
949 * it's a beacon with hidden SSID, we might be in for an
950 * expensive search for any probe responses that should
951 * be grouped with this beacon for updates ...
952 */
953 if (!cfg80211_combine_bsses(rdev, new)) {
954 kfree(new);
955 goto drop;
956 }
957 }
958
959 if (rdev->bss_entries >= bss_entries_limit &&
960 !cfg80211_bss_expire_oldest(rdev)) {
961 kfree(new);
962 goto drop;
963 }
964
965 list_add_tail(&new->list, &rdev->bss_list);
966 rdev->bss_entries++;
967 rb_insert_bss(rdev, new);
968 found = new;
969 }
970
971 rdev->bss_generation++;
972 bss_ref_get(rdev, found);
973 spin_unlock_bh(&rdev->bss_lock);
974
975 return found;
976 drop:
977 spin_unlock_bh(&rdev->bss_lock);
978 return NULL;
979}
980
981static struct ieee80211_channel *
982cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
983 struct ieee80211_channel *channel)
984{
985 const u8 *tmp;
986 u32 freq;
987 int channel_number = -1;
988
989 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
990 if (tmp && tmp[1] == 1) {
991 channel_number = tmp[2];
992 } else {
993 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
994 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
995 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
996
997 channel_number = htop->primary_chan;
998 }
999 }
1000
1001 if (channel_number < 0)
1002 return channel;
1003
1004 freq = ieee80211_channel_to_frequency(channel_number, channel->band);
1005 channel = ieee80211_get_channel(wiphy, freq);
1006 if (!channel)
1007 return NULL;
1008 if (channel->flags & IEEE80211_CHAN_DISABLED)
1009 return NULL;
1010 return channel;
1011}
1012
1013/* Returned bss is reference counted and must be cleaned up appropriately. */
1014struct cfg80211_bss *
1015cfg80211_inform_bss_data(struct wiphy *wiphy,
1016 struct cfg80211_inform_bss *data,
1017 enum cfg80211_bss_frame_type ftype,
1018 const u8 *bssid, u64 tsf, u16 capability,
1019 u16 beacon_interval, const u8 *ie, size_t ielen,
1020 gfp_t gfp)
1021{
1022 struct cfg80211_bss_ies *ies;
1023 struct ieee80211_channel *channel;
1024 struct cfg80211_internal_bss tmp = {}, *res;
1025 int bss_type;
1026 bool signal_valid;
1027
1028 if (WARN_ON(!wiphy))
1029 return NULL;
1030
1031 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1032 (data->signal < 0 || data->signal > 100)))
1033 return NULL;
1034
1035 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan);
1036 if (!channel)
1037 return NULL;
1038
1039 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1040 tmp.pub.channel = channel;
1041 tmp.pub.scan_width = data->scan_width;
1042 tmp.pub.signal = data->signal;
1043 tmp.pub.beacon_interval = beacon_interval;
1044 tmp.pub.capability = capability;
1045 tmp.ts_boottime = data->boottime_ns;
1046
1047 /*
1048 * If we do not know here whether the IEs are from a Beacon or Probe
1049 * Response frame, we need to pick one of the options and only use it
1050 * with the driver that does not provide the full Beacon/Probe Response
1051 * frame. Use Beacon frame pointer to avoid indicating that this should
1052 * override the IEs pointer should we have received an earlier
1053 * indication of Probe Response data.
1054 */
1055 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1056 if (!ies)
1057 return NULL;
1058 ies->len = ielen;
1059 ies->tsf = tsf;
1060 ies->from_beacon = false;
1061 memcpy(ies->data, ie, ielen);
1062
1063 switch (ftype) {
1064 case CFG80211_BSS_FTYPE_BEACON:
1065 ies->from_beacon = true;
1066 /* fall through to assign */
1067 case CFG80211_BSS_FTYPE_UNKNOWN:
1068 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1069 break;
1070 case CFG80211_BSS_FTYPE_PRESP:
1071 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1072 break;
1073 }
1074 rcu_assign_pointer(tmp.pub.ies, ies);
1075
1076 signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1077 wiphy->max_adj_channel_rssi_comp;
1078 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid);
1079 if (!res)
1080 return NULL;
1081
1082 if (channel->band == NL80211_BAND_60GHZ) {
1083 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1084 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1085 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1086 regulatory_hint_found_beacon(wiphy, channel, gfp);
1087 } else {
1088 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1089 regulatory_hint_found_beacon(wiphy, channel, gfp);
1090 }
1091
1092 trace_cfg80211_return_bss(&res->pub);
1093 /* cfg80211_bss_update gives us a referenced result */
1094 return &res->pub;
1095}
1096EXPORT_SYMBOL(cfg80211_inform_bss_data);
1097
1098/* cfg80211_inform_bss_width_frame helper */
1099struct cfg80211_bss *
1100cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1101 struct cfg80211_inform_bss *data,
1102 struct ieee80211_mgmt *mgmt, size_t len,
1103 gfp_t gfp)
1104
1105{
1106 struct cfg80211_internal_bss tmp = {}, *res;
1107 struct cfg80211_bss_ies *ies;
1108 struct ieee80211_channel *channel;
1109 bool signal_valid;
1110 size_t ielen = len - offsetof(struct ieee80211_mgmt,
1111 u.probe_resp.variable);
1112 int bss_type;
1113
1114 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
1115 offsetof(struct ieee80211_mgmt, u.beacon.variable));
1116
1117 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
1118
1119 if (WARN_ON(!mgmt))
1120 return NULL;
1121
1122 if (WARN_ON(!wiphy))
1123 return NULL;
1124
1125 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1126 (data->signal < 0 || data->signal > 100)))
1127 return NULL;
1128
1129 if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable)))
1130 return NULL;
1131
1132 channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable,
1133 ielen, data->chan);
1134 if (!channel)
1135 return NULL;
1136
1137 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1138 if (!ies)
1139 return NULL;
1140 ies->len = ielen;
1141 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1142 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1143 memcpy(ies->data, mgmt->u.probe_resp.variable, ielen);
1144
1145 if (ieee80211_is_probe_resp(mgmt->frame_control))
1146 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1147 else
1148 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1149 rcu_assign_pointer(tmp.pub.ies, ies);
1150
1151 memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN);
1152 tmp.pub.channel = channel;
1153 tmp.pub.scan_width = data->scan_width;
1154 tmp.pub.signal = data->signal;
1155 tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
1156 tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
1157 tmp.ts_boottime = data->boottime_ns;
1158 tmp.parent_tsf = data->parent_tsf;
1159 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1160
1161 signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1162 wiphy->max_adj_channel_rssi_comp;
1163 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid);
1164 if (!res)
1165 return NULL;
1166
1167 if (channel->band == NL80211_BAND_60GHZ) {
1168 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1169 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1170 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1171 regulatory_hint_found_beacon(wiphy, channel, gfp);
1172 } else {
1173 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1174 regulatory_hint_found_beacon(wiphy, channel, gfp);
1175 }
1176
1177 trace_cfg80211_return_bss(&res->pub);
1178 /* cfg80211_bss_update gives us a referenced result */
1179 return &res->pub;
1180}
1181EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
1182
1183void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1184{
1185 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1186 struct cfg80211_internal_bss *bss;
1187
1188 if (!pub)
1189 return;
1190
1191 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1192
1193 spin_lock_bh(&rdev->bss_lock);
1194 bss_ref_get(rdev, bss);
1195 spin_unlock_bh(&rdev->bss_lock);
1196}
1197EXPORT_SYMBOL(cfg80211_ref_bss);
1198
1199void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1200{
1201 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1202 struct cfg80211_internal_bss *bss;
1203
1204 if (!pub)
1205 return;
1206
1207 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1208
1209 spin_lock_bh(&rdev->bss_lock);
1210 bss_ref_put(rdev, bss);
1211 spin_unlock_bh(&rdev->bss_lock);
1212}
1213EXPORT_SYMBOL(cfg80211_put_bss);
1214
1215void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1216{
1217 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1218 struct cfg80211_internal_bss *bss;
1219
1220 if (WARN_ON(!pub))
1221 return;
1222
1223 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1224
1225 spin_lock_bh(&rdev->bss_lock);
1226 if (!list_empty(&bss->list)) {
1227 if (__cfg80211_unlink_bss(rdev, bss))
1228 rdev->bss_generation++;
1229 }
1230 spin_unlock_bh(&rdev->bss_lock);
1231}
1232EXPORT_SYMBOL(cfg80211_unlink_bss);
1233
1234#ifdef CONFIG_CFG80211_WEXT
1235static struct cfg80211_registered_device *
1236cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
1237{
1238 struct cfg80211_registered_device *rdev;
1239 struct net_device *dev;
1240
1241 ASSERT_RTNL();
1242
1243 dev = dev_get_by_index(net, ifindex);
1244 if (!dev)
1245 return ERR_PTR(-ENODEV);
1246 if (dev->ieee80211_ptr)
1247 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
1248 else
1249 rdev = ERR_PTR(-ENODEV);
1250 dev_put(dev);
1251 return rdev;
1252}
1253
1254int cfg80211_wext_siwscan(struct net_device *dev,
1255 struct iw_request_info *info,
1256 union iwreq_data *wrqu, char *extra)
1257{
1258 struct cfg80211_registered_device *rdev;
1259 struct wiphy *wiphy;
1260 struct iw_scan_req *wreq = NULL;
1261 struct cfg80211_scan_request *creq = NULL;
1262 int i, err, n_channels = 0;
1263 enum nl80211_band band;
1264
1265 if (!netif_running(dev))
1266 return -ENETDOWN;
1267
1268 if (wrqu->data.length == sizeof(struct iw_scan_req))
1269 wreq = (struct iw_scan_req *)extra;
1270
1271 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
1272
1273 if (IS_ERR(rdev))
1274 return PTR_ERR(rdev);
1275
1276 if (rdev->scan_req || rdev->scan_msg) {
1277 err = -EBUSY;
1278 goto out;
1279 }
1280
1281 wiphy = &rdev->wiphy;
1282
1283 /* Determine number of channels, needed to allocate creq */
1284 if (wreq && wreq->num_channels)
1285 n_channels = wreq->num_channels;
1286 else
1287 n_channels = ieee80211_get_num_supported_channels(wiphy);
1288
1289 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
1290 n_channels * sizeof(void *),
1291 GFP_ATOMIC);
1292 if (!creq) {
1293 err = -ENOMEM;
1294 goto out;
1295 }
1296
1297 creq->wiphy = wiphy;
1298 creq->wdev = dev->ieee80211_ptr;
1299 /* SSIDs come after channels */
1300 creq->ssids = (void *)&creq->channels[n_channels];
1301 creq->n_channels = n_channels;
1302 creq->n_ssids = 1;
1303 creq->scan_start = jiffies;
1304
1305 /* translate "Scan on frequencies" request */
1306 i = 0;
1307 for (band = 0; band < NUM_NL80211_BANDS; band++) {
1308 int j;
1309
1310 if (!wiphy->bands[band])
1311 continue;
1312
1313 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
1314 /* ignore disabled channels */
1315 if (wiphy->bands[band]->channels[j].flags &
1316 IEEE80211_CHAN_DISABLED)
1317 continue;
1318
1319 /* If we have a wireless request structure and the
1320 * wireless request specifies frequencies, then search
1321 * for the matching hardware channel.
1322 */
1323 if (wreq && wreq->num_channels) {
1324 int k;
1325 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
1326 for (k = 0; k < wreq->num_channels; k++) {
1327 struct iw_freq *freq =
1328 &wreq->channel_list[k];
1329 int wext_freq =
1330 cfg80211_wext_freq(freq);
1331
1332 if (wext_freq == wiphy_freq)
1333 goto wext_freq_found;
1334 }
1335 goto wext_freq_not_found;
1336 }
1337
1338 wext_freq_found:
1339 creq->channels[i] = &wiphy->bands[band]->channels[j];
1340 i++;
1341 wext_freq_not_found: ;
1342 }
1343 }
1344 /* No channels found? */
1345 if (!i) {
1346 err = -EINVAL;
1347 goto out;
1348 }
1349
1350 /* Set real number of channels specified in creq->channels[] */
1351 creq->n_channels = i;
1352
1353 /* translate "Scan for SSID" request */
1354 if (wreq) {
1355 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
1356 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
1357 err = -EINVAL;
1358 goto out;
1359 }
1360 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
1361 creq->ssids[0].ssid_len = wreq->essid_len;
1362 }
1363 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
1364 creq->n_ssids = 0;
1365 }
1366
1367 for (i = 0; i < NUM_NL80211_BANDS; i++)
1368 if (wiphy->bands[i])
1369 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
1370
1371 eth_broadcast_addr(creq->bssid);
1372
1373 rdev->scan_req = creq;
1374 err = rdev_scan(rdev, creq);
1375 if (err) {
1376 rdev->scan_req = NULL;
1377 /* creq will be freed below */
1378 } else {
1379 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
1380 /* creq now owned by driver */
1381 creq = NULL;
1382 dev_hold(dev);
1383 }
1384 out:
1385 kfree(creq);
1386 return err;
1387}
1388EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
1389
1390static char *ieee80211_scan_add_ies(struct iw_request_info *info,
1391 const struct cfg80211_bss_ies *ies,
1392 char *current_ev, char *end_buf)
1393{
1394 const u8 *pos, *end, *next;
1395 struct iw_event iwe;
1396
1397 if (!ies)
1398 return current_ev;
1399
1400 /*
1401 * If needed, fragment the IEs buffer (at IE boundaries) into short
1402 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
1403 */
1404 pos = ies->data;
1405 end = pos + ies->len;
1406
1407 while (end - pos > IW_GENERIC_IE_MAX) {
1408 next = pos + 2 + pos[1];
1409 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
1410 next = next + 2 + next[1];
1411
1412 memset(&iwe, 0, sizeof(iwe));
1413 iwe.cmd = IWEVGENIE;
1414 iwe.u.data.length = next - pos;
1415 current_ev = iwe_stream_add_point_check(info, current_ev,
1416 end_buf, &iwe,
1417 (void *)pos);
1418 if (IS_ERR(current_ev))
1419 return current_ev;
1420 pos = next;
1421 }
1422
1423 if (end > pos) {
1424 memset(&iwe, 0, sizeof(iwe));
1425 iwe.cmd = IWEVGENIE;
1426 iwe.u.data.length = end - pos;
1427 current_ev = iwe_stream_add_point_check(info, current_ev,
1428 end_buf, &iwe,
1429 (void *)pos);
1430 if (IS_ERR(current_ev))
1431 return current_ev;
1432 }
1433
1434 return current_ev;
1435}
1436
1437static char *
1438ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
1439 struct cfg80211_internal_bss *bss, char *current_ev,
1440 char *end_buf)
1441{
1442 const struct cfg80211_bss_ies *ies;
1443 struct iw_event iwe;
1444 const u8 *ie;
1445 u8 buf[50];
1446 u8 *cfg, *p, *tmp;
1447 int rem, i, sig;
1448 bool ismesh = false;
1449
1450 memset(&iwe, 0, sizeof(iwe));
1451 iwe.cmd = SIOCGIWAP;
1452 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
1453 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
1454 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1455 IW_EV_ADDR_LEN);
1456 if (IS_ERR(current_ev))
1457 return current_ev;
1458
1459 memset(&iwe, 0, sizeof(iwe));
1460 iwe.cmd = SIOCGIWFREQ;
1461 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
1462 iwe.u.freq.e = 0;
1463 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1464 IW_EV_FREQ_LEN);
1465 if (IS_ERR(current_ev))
1466 return current_ev;
1467
1468 memset(&iwe, 0, sizeof(iwe));
1469 iwe.cmd = SIOCGIWFREQ;
1470 iwe.u.freq.m = bss->pub.channel->center_freq;
1471 iwe.u.freq.e = 6;
1472 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1473 IW_EV_FREQ_LEN);
1474 if (IS_ERR(current_ev))
1475 return current_ev;
1476
1477 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
1478 memset(&iwe, 0, sizeof(iwe));
1479 iwe.cmd = IWEVQUAL;
1480 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
1481 IW_QUAL_NOISE_INVALID |
1482 IW_QUAL_QUAL_UPDATED;
1483 switch (wiphy->signal_type) {
1484 case CFG80211_SIGNAL_TYPE_MBM:
1485 sig = bss->pub.signal / 100;
1486 iwe.u.qual.level = sig;
1487 iwe.u.qual.updated |= IW_QUAL_DBM;
1488 if (sig < -110) /* rather bad */
1489 sig = -110;
1490 else if (sig > -40) /* perfect */
1491 sig = -40;
1492 /* will give a range of 0 .. 70 */
1493 iwe.u.qual.qual = sig + 110;
1494 break;
1495 case CFG80211_SIGNAL_TYPE_UNSPEC:
1496 iwe.u.qual.level = bss->pub.signal;
1497 /* will give range 0 .. 100 */
1498 iwe.u.qual.qual = bss->pub.signal;
1499 break;
1500 default:
1501 /* not reached */
1502 break;
1503 }
1504 current_ev = iwe_stream_add_event_check(info, current_ev,
1505 end_buf, &iwe,
1506 IW_EV_QUAL_LEN);
1507 if (IS_ERR(current_ev))
1508 return current_ev;
1509 }
1510
1511 memset(&iwe, 0, sizeof(iwe));
1512 iwe.cmd = SIOCGIWENCODE;
1513 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
1514 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
1515 else
1516 iwe.u.data.flags = IW_ENCODE_DISABLED;
1517 iwe.u.data.length = 0;
1518 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
1519 &iwe, "");
1520 if (IS_ERR(current_ev))
1521 return current_ev;
1522
1523 rcu_read_lock();
1524 ies = rcu_dereference(bss->pub.ies);
1525 rem = ies->len;
1526 ie = ies->data;
1527
1528 while (rem >= 2) {
1529 /* invalid data */
1530 if (ie[1] > rem - 2)
1531 break;
1532
1533 switch (ie[0]) {
1534 case WLAN_EID_SSID:
1535 memset(&iwe, 0, sizeof(iwe));
1536 iwe.cmd = SIOCGIWESSID;
1537 iwe.u.data.length = ie[1];
1538 iwe.u.data.flags = 1;
1539 current_ev = iwe_stream_add_point_check(info,
1540 current_ev,
1541 end_buf, &iwe,
1542 (u8 *)ie + 2);
1543 if (IS_ERR(current_ev))
1544 goto unlock;
1545 break;
1546 case WLAN_EID_MESH_ID:
1547 memset(&iwe, 0, sizeof(iwe));
1548 iwe.cmd = SIOCGIWESSID;
1549 iwe.u.data.length = ie[1];
1550 iwe.u.data.flags = 1;
1551 current_ev = iwe_stream_add_point_check(info,
1552 current_ev,
1553 end_buf, &iwe,
1554 (u8 *)ie + 2);
1555 if (IS_ERR(current_ev))
1556 goto unlock;
1557 break;
1558 case WLAN_EID_MESH_CONFIG:
1559 ismesh = true;
1560 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
1561 break;
1562 cfg = (u8 *)ie + 2;
1563 memset(&iwe, 0, sizeof(iwe));
1564 iwe.cmd = IWEVCUSTOM;
1565 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
1566 "0x%02X", cfg[0]);
1567 iwe.u.data.length = strlen(buf);
1568 current_ev = iwe_stream_add_point_check(info,
1569 current_ev,
1570 end_buf,
1571 &iwe, buf);
1572 if (IS_ERR(current_ev))
1573 goto unlock;
1574 sprintf(buf, "Path Selection Metric ID: 0x%02X",
1575 cfg[1]);
1576 iwe.u.data.length = strlen(buf);
1577 current_ev = iwe_stream_add_point_check(info,
1578 current_ev,
1579 end_buf,
1580 &iwe, buf);
1581 if (IS_ERR(current_ev))
1582 goto unlock;
1583 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
1584 cfg[2]);
1585 iwe.u.data.length = strlen(buf);
1586 current_ev = iwe_stream_add_point_check(info,
1587 current_ev,
1588 end_buf,
1589 &iwe, buf);
1590 if (IS_ERR(current_ev))
1591 goto unlock;
1592 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
1593 iwe.u.data.length = strlen(buf);
1594 current_ev = iwe_stream_add_point_check(info,
1595 current_ev,
1596 end_buf,
1597 &iwe, buf);
1598 if (IS_ERR(current_ev))
1599 goto unlock;
1600 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
1601 iwe.u.data.length = strlen(buf);
1602 current_ev = iwe_stream_add_point_check(info,
1603 current_ev,
1604 end_buf,
1605 &iwe, buf);
1606 if (IS_ERR(current_ev))
1607 goto unlock;
1608 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
1609 iwe.u.data.length = strlen(buf);
1610 current_ev = iwe_stream_add_point_check(info,
1611 current_ev,
1612 end_buf,
1613 &iwe, buf);
1614 if (IS_ERR(current_ev))
1615 goto unlock;
1616 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
1617 iwe.u.data.length = strlen(buf);
1618 current_ev = iwe_stream_add_point_check(info,
1619 current_ev,
1620 end_buf,
1621 &iwe, buf);
1622 if (IS_ERR(current_ev))
1623 goto unlock;
1624 break;
1625 case WLAN_EID_SUPP_RATES:
1626 case WLAN_EID_EXT_SUPP_RATES:
1627 /* display all supported rates in readable format */
1628 p = current_ev + iwe_stream_lcp_len(info);
1629
1630 memset(&iwe, 0, sizeof(iwe));
1631 iwe.cmd = SIOCGIWRATE;
1632 /* Those two flags are ignored... */
1633 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
1634
1635 for (i = 0; i < ie[1]; i++) {
1636 iwe.u.bitrate.value =
1637 ((ie[i + 2] & 0x7f) * 500000);
1638 tmp = p;
1639 p = iwe_stream_add_value(info, current_ev, p,
1640 end_buf, &iwe,
1641 IW_EV_PARAM_LEN);
1642 if (p == tmp) {
1643 current_ev = ERR_PTR(-E2BIG);
1644 goto unlock;
1645 }
1646 }
1647 current_ev = p;
1648 break;
1649 }
1650 rem -= ie[1] + 2;
1651 ie += ie[1] + 2;
1652 }
1653
1654 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
1655 ismesh) {
1656 memset(&iwe, 0, sizeof(iwe));
1657 iwe.cmd = SIOCGIWMODE;
1658 if (ismesh)
1659 iwe.u.mode = IW_MODE_MESH;
1660 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
1661 iwe.u.mode = IW_MODE_MASTER;
1662 else
1663 iwe.u.mode = IW_MODE_ADHOC;
1664 current_ev = iwe_stream_add_event_check(info, current_ev,
1665 end_buf, &iwe,
1666 IW_EV_UINT_LEN);
1667 if (IS_ERR(current_ev))
1668 goto unlock;
1669 }
1670
1671 memset(&iwe, 0, sizeof(iwe));
1672 iwe.cmd = IWEVCUSTOM;
1673 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
1674 iwe.u.data.length = strlen(buf);
1675 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
1676 &iwe, buf);
1677 if (IS_ERR(current_ev))
1678 goto unlock;
1679 memset(&iwe, 0, sizeof(iwe));
1680 iwe.cmd = IWEVCUSTOM;
1681 sprintf(buf, " Last beacon: %ums ago",
1682 elapsed_jiffies_msecs(bss->ts));
1683 iwe.u.data.length = strlen(buf);
1684 current_ev = iwe_stream_add_point_check(info, current_ev,
1685 end_buf, &iwe, buf);
1686 if (IS_ERR(current_ev))
1687 goto unlock;
1688
1689 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
1690
1691 unlock:
1692 rcu_read_unlock();
1693 return current_ev;
1694}
1695
1696
1697static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
1698 struct iw_request_info *info,
1699 char *buf, size_t len)
1700{
1701 char *current_ev = buf;
1702 char *end_buf = buf + len;
1703 struct cfg80211_internal_bss *bss;
1704 int err = 0;
1705
1706 spin_lock_bh(&rdev->bss_lock);
1707 cfg80211_bss_expire(rdev);
1708
1709 list_for_each_entry(bss, &rdev->bss_list, list) {
1710 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
1711 err = -E2BIG;
1712 break;
1713 }
1714 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
1715 current_ev, end_buf);
1716 if (IS_ERR(current_ev)) {
1717 err = PTR_ERR(current_ev);
1718 break;
1719 }
1720 }
1721 spin_unlock_bh(&rdev->bss_lock);
1722
1723 if (err)
1724 return err;
1725 return current_ev - buf;
1726}
1727
1728
1729int cfg80211_wext_giwscan(struct net_device *dev,
1730 struct iw_request_info *info,
1731 struct iw_point *data, char *extra)
1732{
1733 struct cfg80211_registered_device *rdev;
1734 int res;
1735
1736 if (!netif_running(dev))
1737 return -ENETDOWN;
1738
1739 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
1740
1741 if (IS_ERR(rdev))
1742 return PTR_ERR(rdev);
1743
1744 if (rdev->scan_req || rdev->scan_msg)
1745 return -EAGAIN;
1746
1747 res = ieee80211_scan_results(rdev, info, extra, data->length);
1748 data->length = 0;
1749 if (res >= 0) {
1750 data->length = res;
1751 res = 0;
1752 }
1753
1754 return res;
1755}
1756EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
1757#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2022 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include "core.h"
24#include "nl80211.h"
25#include "wext-compat.h"
26#include "rdev-ops.h"
27
28/**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64/*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72static int bss_entries_limit = 1000;
73module_param(bss_entries_limit, int, 0644);
74MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79/**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 */
100struct cfg80211_colocated_ap {
101 struct list_head list;
102 u8 bssid[ETH_ALEN];
103 u8 ssid[IEEE80211_MAX_SSID_LEN];
104 size_t ssid_len;
105 u32 short_ssid;
106 u32 center_freq;
107 u8 unsolicited_probe:1,
108 oct_recommended:1,
109 same_ssid:1,
110 multi_bss:1,
111 transmitted_bssid:1,
112 colocated_ess:1,
113 short_ssid_valid:1;
114};
115
116static void bss_free(struct cfg80211_internal_bss *bss)
117{
118 struct cfg80211_bss_ies *ies;
119
120 if (WARN_ON(atomic_read(&bss->hold)))
121 return;
122
123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 if (ies && !bss->pub.hidden_beacon_bss)
125 kfree_rcu(ies, rcu_head);
126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 if (ies)
128 kfree_rcu(ies, rcu_head);
129
130 /*
131 * This happens when the module is removed, it doesn't
132 * really matter any more save for completeness
133 */
134 if (!list_empty(&bss->hidden_list))
135 list_del(&bss->hidden_list);
136
137 kfree(bss);
138}
139
140static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 struct cfg80211_internal_bss *bss)
142{
143 lockdep_assert_held(&rdev->bss_lock);
144
145 bss->refcount++;
146
147 if (bss->pub.hidden_beacon_bss)
148 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
149
150 if (bss->pub.transmitted_bss)
151 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
152}
153
154static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
155 struct cfg80211_internal_bss *bss)
156{
157 lockdep_assert_held(&rdev->bss_lock);
158
159 if (bss->pub.hidden_beacon_bss) {
160 struct cfg80211_internal_bss *hbss;
161
162 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
163 hbss->refcount--;
164 if (hbss->refcount == 0)
165 bss_free(hbss);
166 }
167
168 if (bss->pub.transmitted_bss) {
169 struct cfg80211_internal_bss *tbss;
170
171 tbss = bss_from_pub(bss->pub.transmitted_bss);
172 tbss->refcount--;
173 if (tbss->refcount == 0)
174 bss_free(tbss);
175 }
176
177 bss->refcount--;
178 if (bss->refcount == 0)
179 bss_free(bss);
180}
181
182static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
183 struct cfg80211_internal_bss *bss)
184{
185 lockdep_assert_held(&rdev->bss_lock);
186
187 if (!list_empty(&bss->hidden_list)) {
188 /*
189 * don't remove the beacon entry if it has
190 * probe responses associated with it
191 */
192 if (!bss->pub.hidden_beacon_bss)
193 return false;
194 /*
195 * if it's a probe response entry break its
196 * link to the other entries in the group
197 */
198 list_del_init(&bss->hidden_list);
199 }
200
201 list_del_init(&bss->list);
202 list_del_init(&bss->pub.nontrans_list);
203 rb_erase(&bss->rbn, &rdev->bss_tree);
204 rdev->bss_entries--;
205 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
206 "rdev bss entries[%d]/list[empty:%d] corruption\n",
207 rdev->bss_entries, list_empty(&rdev->bss_list));
208 bss_ref_put(rdev, bss);
209 return true;
210}
211
212bool cfg80211_is_element_inherited(const struct element *elem,
213 const struct element *non_inherit_elem)
214{
215 u8 id_len, ext_id_len, i, loop_len, id;
216 const u8 *list;
217
218 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
219 return false;
220
221 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
222 return true;
223
224 /*
225 * non inheritance element format is:
226 * ext ID (56) | IDs list len | list | extension IDs list len | list
227 * Both lists are optional. Both lengths are mandatory.
228 * This means valid length is:
229 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
230 */
231 id_len = non_inherit_elem->data[1];
232 if (non_inherit_elem->datalen < 3 + id_len)
233 return true;
234
235 ext_id_len = non_inherit_elem->data[2 + id_len];
236 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
237 return true;
238
239 if (elem->id == WLAN_EID_EXTENSION) {
240 if (!ext_id_len)
241 return true;
242 loop_len = ext_id_len;
243 list = &non_inherit_elem->data[3 + id_len];
244 id = elem->data[0];
245 } else {
246 if (!id_len)
247 return true;
248 loop_len = id_len;
249 list = &non_inherit_elem->data[2];
250 id = elem->id;
251 }
252
253 for (i = 0; i < loop_len; i++) {
254 if (list[i] == id)
255 return false;
256 }
257
258 return true;
259}
260EXPORT_SYMBOL(cfg80211_is_element_inherited);
261
262static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
263 const u8 *subelement, size_t subie_len,
264 u8 *new_ie, gfp_t gfp)
265{
266 u8 *pos, *tmp;
267 const u8 *tmp_old, *tmp_new;
268 const struct element *non_inherit_elem;
269 u8 *sub_copy;
270
271 /* copy subelement as we need to change its content to
272 * mark an ie after it is processed.
273 */
274 sub_copy = kmemdup(subelement, subie_len, gfp);
275 if (!sub_copy)
276 return 0;
277
278 pos = &new_ie[0];
279
280 /* set new ssid */
281 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
282 if (tmp_new) {
283 memcpy(pos, tmp_new, tmp_new[1] + 2);
284 pos += (tmp_new[1] + 2);
285 }
286
287 /* get non inheritance list if exists */
288 non_inherit_elem =
289 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
290 sub_copy, subie_len);
291
292 /* go through IEs in ie (skip SSID) and subelement,
293 * merge them into new_ie
294 */
295 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
296 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
297
298 while (tmp_old + 2 - ie <= ielen &&
299 tmp_old + tmp_old[1] + 2 - ie <= ielen) {
300 if (tmp_old[0] == 0) {
301 tmp_old++;
302 continue;
303 }
304
305 if (tmp_old[0] == WLAN_EID_EXTENSION)
306 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
307 subie_len);
308 else
309 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
310 subie_len);
311
312 if (!tmp) {
313 const struct element *old_elem = (void *)tmp_old;
314
315 /* ie in old ie but not in subelement */
316 if (cfg80211_is_element_inherited(old_elem,
317 non_inherit_elem)) {
318 memcpy(pos, tmp_old, tmp_old[1] + 2);
319 pos += tmp_old[1] + 2;
320 }
321 } else {
322 /* ie in transmitting ie also in subelement,
323 * copy from subelement and flag the ie in subelement
324 * as copied (by setting eid field to WLAN_EID_SSID,
325 * which is skipped anyway).
326 * For vendor ie, compare OUI + type + subType to
327 * determine if they are the same ie.
328 */
329 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
330 if (tmp_old[1] >= 5 && tmp[1] >= 5 &&
331 !memcmp(tmp_old + 2, tmp + 2, 5)) {
332 /* same vendor ie, copy from
333 * subelement
334 */
335 memcpy(pos, tmp, tmp[1] + 2);
336 pos += tmp[1] + 2;
337 tmp[0] = WLAN_EID_SSID;
338 } else {
339 memcpy(pos, tmp_old, tmp_old[1] + 2);
340 pos += tmp_old[1] + 2;
341 }
342 } else {
343 /* copy ie from subelement into new ie */
344 memcpy(pos, tmp, tmp[1] + 2);
345 pos += tmp[1] + 2;
346 tmp[0] = WLAN_EID_SSID;
347 }
348 }
349
350 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
351 break;
352
353 tmp_old += tmp_old[1] + 2;
354 }
355
356 /* go through subelement again to check if there is any ie not
357 * copied to new ie, skip ssid, capability, bssid-index ie
358 */
359 tmp_new = sub_copy;
360 while (tmp_new + 2 - sub_copy <= subie_len &&
361 tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
362 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
363 tmp_new[0] == WLAN_EID_SSID)) {
364 memcpy(pos, tmp_new, tmp_new[1] + 2);
365 pos += tmp_new[1] + 2;
366 }
367 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
368 break;
369 tmp_new += tmp_new[1] + 2;
370 }
371
372 kfree(sub_copy);
373 return pos - new_ie;
374}
375
376static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
377 const u8 *ssid, size_t ssid_len)
378{
379 const struct cfg80211_bss_ies *ies;
380 const struct element *ssid_elem;
381
382 if (bssid && !ether_addr_equal(a->bssid, bssid))
383 return false;
384
385 if (!ssid)
386 return true;
387
388 ies = rcu_access_pointer(a->ies);
389 if (!ies)
390 return false;
391 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
392 if (!ssid_elem)
393 return false;
394 if (ssid_elem->datalen != ssid_len)
395 return false;
396 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
397}
398
399static int
400cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
401 struct cfg80211_bss *nontrans_bss)
402{
403 const struct element *ssid_elem;
404 struct cfg80211_bss *bss = NULL;
405
406 rcu_read_lock();
407 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
408 if (!ssid_elem) {
409 rcu_read_unlock();
410 return -EINVAL;
411 }
412
413 /* check if nontrans_bss is in the list */
414 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
415 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
416 ssid_elem->datalen)) {
417 rcu_read_unlock();
418 return 0;
419 }
420 }
421
422 rcu_read_unlock();
423
424 /*
425 * This is a bit weird - it's not on the list, but already on another
426 * one! The only way that could happen is if there's some BSSID/SSID
427 * shared by multiple APs in their multi-BSSID profiles, potentially
428 * with hidden SSID mixed in ... ignore it.
429 */
430 if (!list_empty(&nontrans_bss->nontrans_list))
431 return -EINVAL;
432
433 /* add to the list */
434 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
435 return 0;
436}
437
438static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
439 unsigned long expire_time)
440{
441 struct cfg80211_internal_bss *bss, *tmp;
442 bool expired = false;
443
444 lockdep_assert_held(&rdev->bss_lock);
445
446 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
447 if (atomic_read(&bss->hold))
448 continue;
449 if (!time_after(expire_time, bss->ts))
450 continue;
451
452 if (__cfg80211_unlink_bss(rdev, bss))
453 expired = true;
454 }
455
456 if (expired)
457 rdev->bss_generation++;
458}
459
460static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
461{
462 struct cfg80211_internal_bss *bss, *oldest = NULL;
463 bool ret;
464
465 lockdep_assert_held(&rdev->bss_lock);
466
467 list_for_each_entry(bss, &rdev->bss_list, list) {
468 if (atomic_read(&bss->hold))
469 continue;
470
471 if (!list_empty(&bss->hidden_list) &&
472 !bss->pub.hidden_beacon_bss)
473 continue;
474
475 if (oldest && time_before(oldest->ts, bss->ts))
476 continue;
477 oldest = bss;
478 }
479
480 if (WARN_ON(!oldest))
481 return false;
482
483 /*
484 * The callers make sure to increase rdev->bss_generation if anything
485 * gets removed (and a new entry added), so there's no need to also do
486 * it here.
487 */
488
489 ret = __cfg80211_unlink_bss(rdev, oldest);
490 WARN_ON(!ret);
491 return ret;
492}
493
494static u8 cfg80211_parse_bss_param(u8 data,
495 struct cfg80211_colocated_ap *coloc_ap)
496{
497 coloc_ap->oct_recommended =
498 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
499 coloc_ap->same_ssid =
500 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
501 coloc_ap->multi_bss =
502 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
503 coloc_ap->transmitted_bssid =
504 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
505 coloc_ap->unsolicited_probe =
506 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
507 coloc_ap->colocated_ess =
508 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
509
510 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
511}
512
513static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
514 const struct element **elem, u32 *s_ssid)
515{
516
517 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
518 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
519 return -EINVAL;
520
521 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
522 return 0;
523}
524
525static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
526{
527 struct cfg80211_colocated_ap *ap, *tmp_ap;
528
529 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
530 list_del(&ap->list);
531 kfree(ap);
532 }
533}
534
535static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
536 const u8 *pos, u8 length,
537 const struct element *ssid_elem,
538 int s_ssid_tmp)
539{
540 /* skip the TBTT offset */
541 pos++;
542
543 memcpy(entry->bssid, pos, ETH_ALEN);
544 pos += ETH_ALEN;
545
546 if (length >= IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
547 memcpy(&entry->short_ssid, pos,
548 sizeof(entry->short_ssid));
549 entry->short_ssid_valid = true;
550 pos += 4;
551 }
552
553 /* skip non colocated APs */
554 if (!cfg80211_parse_bss_param(*pos, entry))
555 return -EINVAL;
556 pos++;
557
558 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
559 /*
560 * no information about the short ssid. Consider the entry valid
561 * for now. It would later be dropped in case there are explicit
562 * SSIDs that need to be matched
563 */
564 if (!entry->same_ssid)
565 return 0;
566 }
567
568 if (entry->same_ssid) {
569 entry->short_ssid = s_ssid_tmp;
570 entry->short_ssid_valid = true;
571
572 /*
573 * This is safe because we validate datalen in
574 * cfg80211_parse_colocated_ap(), before calling this
575 * function.
576 */
577 memcpy(&entry->ssid, &ssid_elem->data,
578 ssid_elem->datalen);
579 entry->ssid_len = ssid_elem->datalen;
580 }
581 return 0;
582}
583
584static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
585 struct list_head *list)
586{
587 struct ieee80211_neighbor_ap_info *ap_info;
588 const struct element *elem, *ssid_elem;
589 const u8 *pos, *end;
590 u32 s_ssid_tmp;
591 int n_coloc = 0, ret;
592 LIST_HEAD(ap_list);
593
594 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
595 ies->len);
596 if (!elem)
597 return 0;
598
599 pos = elem->data;
600 end = pos + elem->datalen;
601
602 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
603 if (ret)
604 return ret;
605
606 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
607 while (pos + sizeof(*ap_info) <= end) {
608 enum nl80211_band band;
609 int freq;
610 u8 length, i, count;
611
612 ap_info = (void *)pos;
613 count = u8_get_bits(ap_info->tbtt_info_hdr,
614 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
615 length = ap_info->tbtt_info_len;
616
617 pos += sizeof(*ap_info);
618
619 if (!ieee80211_operating_class_to_band(ap_info->op_class,
620 &band))
621 break;
622
623 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
624
625 if (end - pos < count * length)
626 break;
627
628 /*
629 * TBTT info must include bss param + BSSID +
630 * (short SSID or same_ssid bit to be set).
631 * ignore other options, and move to the
632 * next AP info
633 */
634 if (band != NL80211_BAND_6GHZ ||
635 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
636 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
637 pos += count * length;
638 continue;
639 }
640
641 for (i = 0; i < count; i++) {
642 struct cfg80211_colocated_ap *entry;
643
644 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
645 GFP_ATOMIC);
646
647 if (!entry)
648 break;
649
650 entry->center_freq = freq;
651
652 if (!cfg80211_parse_ap_info(entry, pos, length,
653 ssid_elem, s_ssid_tmp)) {
654 n_coloc++;
655 list_add_tail(&entry->list, &ap_list);
656 } else {
657 kfree(entry);
658 }
659
660 pos += length;
661 }
662 }
663
664 if (pos != end) {
665 cfg80211_free_coloc_ap_list(&ap_list);
666 return 0;
667 }
668
669 list_splice_tail(&ap_list, list);
670 return n_coloc;
671}
672
673static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
674 struct ieee80211_channel *chan,
675 bool add_to_6ghz)
676{
677 int i;
678 u32 n_channels = request->n_channels;
679 struct cfg80211_scan_6ghz_params *params =
680 &request->scan_6ghz_params[request->n_6ghz_params];
681
682 for (i = 0; i < n_channels; i++) {
683 if (request->channels[i] == chan) {
684 if (add_to_6ghz)
685 params->channel_idx = i;
686 return;
687 }
688 }
689
690 request->channels[n_channels] = chan;
691 if (add_to_6ghz)
692 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
693 n_channels;
694
695 request->n_channels++;
696}
697
698static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
699 struct cfg80211_scan_request *request)
700{
701 int i;
702 u32 s_ssid;
703
704 for (i = 0; i < request->n_ssids; i++) {
705 /* wildcard ssid in the scan request */
706 if (!request->ssids[i].ssid_len) {
707 if (ap->multi_bss && !ap->transmitted_bssid)
708 continue;
709
710 return true;
711 }
712
713 if (ap->ssid_len &&
714 ap->ssid_len == request->ssids[i].ssid_len) {
715 if (!memcmp(request->ssids[i].ssid, ap->ssid,
716 ap->ssid_len))
717 return true;
718 } else if (ap->short_ssid_valid) {
719 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
720 request->ssids[i].ssid_len);
721
722 if (ap->short_ssid == s_ssid)
723 return true;
724 }
725 }
726
727 return false;
728}
729
730static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
731{
732 u8 i;
733 struct cfg80211_colocated_ap *ap;
734 int n_channels, count = 0, err;
735 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
736 LIST_HEAD(coloc_ap_list);
737 bool need_scan_psc = true;
738 const struct ieee80211_sband_iftype_data *iftd;
739
740 rdev_req->scan_6ghz = true;
741
742 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
743 return -EOPNOTSUPP;
744
745 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
746 rdev_req->wdev->iftype);
747 if (!iftd || !iftd->he_cap.has_he)
748 return -EOPNOTSUPP;
749
750 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
751
752 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
753 struct cfg80211_internal_bss *intbss;
754
755 spin_lock_bh(&rdev->bss_lock);
756 list_for_each_entry(intbss, &rdev->bss_list, list) {
757 struct cfg80211_bss *res = &intbss->pub;
758 const struct cfg80211_bss_ies *ies;
759
760 ies = rcu_access_pointer(res->ies);
761 count += cfg80211_parse_colocated_ap(ies,
762 &coloc_ap_list);
763 }
764 spin_unlock_bh(&rdev->bss_lock);
765 }
766
767 request = kzalloc(struct_size(request, channels, n_channels) +
768 sizeof(*request->scan_6ghz_params) * count +
769 sizeof(*request->ssids) * rdev_req->n_ssids,
770 GFP_KERNEL);
771 if (!request) {
772 cfg80211_free_coloc_ap_list(&coloc_ap_list);
773 return -ENOMEM;
774 }
775
776 *request = *rdev_req;
777 request->n_channels = 0;
778 request->scan_6ghz_params =
779 (void *)&request->channels[n_channels];
780
781 /*
782 * PSC channels should not be scanned in case of direct scan with 1 SSID
783 * and at least one of the reported co-located APs with same SSID
784 * indicating that all APs in the same ESS are co-located
785 */
786 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
787 list_for_each_entry(ap, &coloc_ap_list, list) {
788 if (ap->colocated_ess &&
789 cfg80211_find_ssid_match(ap, request)) {
790 need_scan_psc = false;
791 break;
792 }
793 }
794 }
795
796 /*
797 * add to the scan request the channels that need to be scanned
798 * regardless of the collocated APs (PSC channels or all channels
799 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
800 */
801 for (i = 0; i < rdev_req->n_channels; i++) {
802 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
803 ((need_scan_psc &&
804 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
805 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
806 cfg80211_scan_req_add_chan(request,
807 rdev_req->channels[i],
808 false);
809 }
810 }
811
812 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
813 goto skip;
814
815 list_for_each_entry(ap, &coloc_ap_list, list) {
816 bool found = false;
817 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
818 &request->scan_6ghz_params[request->n_6ghz_params];
819 struct ieee80211_channel *chan =
820 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
821
822 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
823 continue;
824
825 for (i = 0; i < rdev_req->n_channels; i++) {
826 if (rdev_req->channels[i] == chan)
827 found = true;
828 }
829
830 if (!found)
831 continue;
832
833 if (request->n_ssids > 0 &&
834 !cfg80211_find_ssid_match(ap, request))
835 continue;
836
837 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
838 continue;
839
840 cfg80211_scan_req_add_chan(request, chan, true);
841 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
842 scan_6ghz_params->short_ssid = ap->short_ssid;
843 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
844 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
845
846 /*
847 * If a PSC channel is added to the scan and 'need_scan_psc' is
848 * set to false, then all the APs that the scan logic is
849 * interested with on the channel are collocated and thus there
850 * is no need to perform the initial PSC channel listen.
851 */
852 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
853 scan_6ghz_params->psc_no_listen = true;
854
855 request->n_6ghz_params++;
856 }
857
858skip:
859 cfg80211_free_coloc_ap_list(&coloc_ap_list);
860
861 if (request->n_channels) {
862 struct cfg80211_scan_request *old = rdev->int_scan_req;
863 rdev->int_scan_req = request;
864
865 /*
866 * Add the ssids from the parent scan request to the new scan
867 * request, so the driver would be able to use them in its
868 * probe requests to discover hidden APs on PSC channels.
869 */
870 request->ssids = (void *)&request->channels[request->n_channels];
871 request->n_ssids = rdev_req->n_ssids;
872 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
873 request->n_ssids);
874
875 /*
876 * If this scan follows a previous scan, save the scan start
877 * info from the first part of the scan
878 */
879 if (old)
880 rdev->int_scan_req->info = old->info;
881
882 err = rdev_scan(rdev, request);
883 if (err) {
884 rdev->int_scan_req = old;
885 kfree(request);
886 } else {
887 kfree(old);
888 }
889
890 return err;
891 }
892
893 kfree(request);
894 return -EINVAL;
895}
896
897int cfg80211_scan(struct cfg80211_registered_device *rdev)
898{
899 struct cfg80211_scan_request *request;
900 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
901 u32 n_channels = 0, idx, i;
902
903 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
904 return rdev_scan(rdev, rdev_req);
905
906 for (i = 0; i < rdev_req->n_channels; i++) {
907 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
908 n_channels++;
909 }
910
911 if (!n_channels)
912 return cfg80211_scan_6ghz(rdev);
913
914 request = kzalloc(struct_size(request, channels, n_channels),
915 GFP_KERNEL);
916 if (!request)
917 return -ENOMEM;
918
919 *request = *rdev_req;
920 request->n_channels = n_channels;
921
922 for (i = idx = 0; i < rdev_req->n_channels; i++) {
923 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
924 request->channels[idx++] = rdev_req->channels[i];
925 }
926
927 rdev_req->scan_6ghz = false;
928 rdev->int_scan_req = request;
929 return rdev_scan(rdev, request);
930}
931
932void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
933 bool send_message)
934{
935 struct cfg80211_scan_request *request, *rdev_req;
936 struct wireless_dev *wdev;
937 struct sk_buff *msg;
938#ifdef CONFIG_CFG80211_WEXT
939 union iwreq_data wrqu;
940#endif
941
942 lockdep_assert_held(&rdev->wiphy.mtx);
943
944 if (rdev->scan_msg) {
945 nl80211_send_scan_msg(rdev, rdev->scan_msg);
946 rdev->scan_msg = NULL;
947 return;
948 }
949
950 rdev_req = rdev->scan_req;
951 if (!rdev_req)
952 return;
953
954 wdev = rdev_req->wdev;
955 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
956
957 if (wdev_running(wdev) &&
958 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
959 !rdev_req->scan_6ghz && !request->info.aborted &&
960 !cfg80211_scan_6ghz(rdev))
961 return;
962
963 /*
964 * This must be before sending the other events!
965 * Otherwise, wpa_supplicant gets completely confused with
966 * wext events.
967 */
968 if (wdev->netdev)
969 cfg80211_sme_scan_done(wdev->netdev);
970
971 if (!request->info.aborted &&
972 request->flags & NL80211_SCAN_FLAG_FLUSH) {
973 /* flush entries from previous scans */
974 spin_lock_bh(&rdev->bss_lock);
975 __cfg80211_bss_expire(rdev, request->scan_start);
976 spin_unlock_bh(&rdev->bss_lock);
977 }
978
979 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
980
981#ifdef CONFIG_CFG80211_WEXT
982 if (wdev->netdev && !request->info.aborted) {
983 memset(&wrqu, 0, sizeof(wrqu));
984
985 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
986 }
987#endif
988
989 dev_put(wdev->netdev);
990
991 kfree(rdev->int_scan_req);
992 rdev->int_scan_req = NULL;
993
994 kfree(rdev->scan_req);
995 rdev->scan_req = NULL;
996
997 if (!send_message)
998 rdev->scan_msg = msg;
999 else
1000 nl80211_send_scan_msg(rdev, msg);
1001}
1002
1003void __cfg80211_scan_done(struct work_struct *wk)
1004{
1005 struct cfg80211_registered_device *rdev;
1006
1007 rdev = container_of(wk, struct cfg80211_registered_device,
1008 scan_done_wk);
1009
1010 wiphy_lock(&rdev->wiphy);
1011 ___cfg80211_scan_done(rdev, true);
1012 wiphy_unlock(&rdev->wiphy);
1013}
1014
1015void cfg80211_scan_done(struct cfg80211_scan_request *request,
1016 struct cfg80211_scan_info *info)
1017{
1018 struct cfg80211_scan_info old_info = request->info;
1019
1020 trace_cfg80211_scan_done(request, info);
1021 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1022 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1023
1024 request->info = *info;
1025
1026 /*
1027 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1028 * be of the first part. In such a case old_info.scan_start_tsf should
1029 * be non zero.
1030 */
1031 if (request->scan_6ghz && old_info.scan_start_tsf) {
1032 request->info.scan_start_tsf = old_info.scan_start_tsf;
1033 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1034 sizeof(request->info.tsf_bssid));
1035 }
1036
1037 request->notified = true;
1038 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1039}
1040EXPORT_SYMBOL(cfg80211_scan_done);
1041
1042void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1043 struct cfg80211_sched_scan_request *req)
1044{
1045 lockdep_assert_held(&rdev->wiphy.mtx);
1046
1047 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1048}
1049
1050static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1051 struct cfg80211_sched_scan_request *req)
1052{
1053 lockdep_assert_held(&rdev->wiphy.mtx);
1054
1055 list_del_rcu(&req->list);
1056 kfree_rcu(req, rcu_head);
1057}
1058
1059static struct cfg80211_sched_scan_request *
1060cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1061{
1062 struct cfg80211_sched_scan_request *pos;
1063
1064 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1065 lockdep_is_held(&rdev->wiphy.mtx)) {
1066 if (pos->reqid == reqid)
1067 return pos;
1068 }
1069 return NULL;
1070}
1071
1072/*
1073 * Determines if a scheduled scan request can be handled. When a legacy
1074 * scheduled scan is running no other scheduled scan is allowed regardless
1075 * whether the request is for legacy or multi-support scan. When a multi-support
1076 * scheduled scan is running a request for legacy scan is not allowed. In this
1077 * case a request for multi-support scan can be handled if resources are
1078 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1079 */
1080int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1081 bool want_multi)
1082{
1083 struct cfg80211_sched_scan_request *pos;
1084 int i = 0;
1085
1086 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1087 /* request id zero means legacy in progress */
1088 if (!i && !pos->reqid)
1089 return -EINPROGRESS;
1090 i++;
1091 }
1092
1093 if (i) {
1094 /* no legacy allowed when multi request(s) are active */
1095 if (!want_multi)
1096 return -EINPROGRESS;
1097
1098 /* resource limit reached */
1099 if (i == rdev->wiphy.max_sched_scan_reqs)
1100 return -ENOSPC;
1101 }
1102 return 0;
1103}
1104
1105void cfg80211_sched_scan_results_wk(struct work_struct *work)
1106{
1107 struct cfg80211_registered_device *rdev;
1108 struct cfg80211_sched_scan_request *req, *tmp;
1109
1110 rdev = container_of(work, struct cfg80211_registered_device,
1111 sched_scan_res_wk);
1112
1113 wiphy_lock(&rdev->wiphy);
1114 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1115 if (req->report_results) {
1116 req->report_results = false;
1117 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1118 /* flush entries from previous scans */
1119 spin_lock_bh(&rdev->bss_lock);
1120 __cfg80211_bss_expire(rdev, req->scan_start);
1121 spin_unlock_bh(&rdev->bss_lock);
1122 req->scan_start = jiffies;
1123 }
1124 nl80211_send_sched_scan(req,
1125 NL80211_CMD_SCHED_SCAN_RESULTS);
1126 }
1127 }
1128 wiphy_unlock(&rdev->wiphy);
1129}
1130
1131void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1132{
1133 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1134 struct cfg80211_sched_scan_request *request;
1135
1136 trace_cfg80211_sched_scan_results(wiphy, reqid);
1137 /* ignore if we're not scanning */
1138
1139 rcu_read_lock();
1140 request = cfg80211_find_sched_scan_req(rdev, reqid);
1141 if (request) {
1142 request->report_results = true;
1143 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1144 }
1145 rcu_read_unlock();
1146}
1147EXPORT_SYMBOL(cfg80211_sched_scan_results);
1148
1149void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1150{
1151 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1152
1153 lockdep_assert_held(&wiphy->mtx);
1154
1155 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1156
1157 __cfg80211_stop_sched_scan(rdev, reqid, true);
1158}
1159EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1160
1161void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1162{
1163 wiphy_lock(wiphy);
1164 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1165 wiphy_unlock(wiphy);
1166}
1167EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1168
1169int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1170 struct cfg80211_sched_scan_request *req,
1171 bool driver_initiated)
1172{
1173 lockdep_assert_held(&rdev->wiphy.mtx);
1174
1175 if (!driver_initiated) {
1176 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1177 if (err)
1178 return err;
1179 }
1180
1181 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1182
1183 cfg80211_del_sched_scan_req(rdev, req);
1184
1185 return 0;
1186}
1187
1188int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1189 u64 reqid, bool driver_initiated)
1190{
1191 struct cfg80211_sched_scan_request *sched_scan_req;
1192
1193 lockdep_assert_held(&rdev->wiphy.mtx);
1194
1195 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1196 if (!sched_scan_req)
1197 return -ENOENT;
1198
1199 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1200 driver_initiated);
1201}
1202
1203void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1204 unsigned long age_secs)
1205{
1206 struct cfg80211_internal_bss *bss;
1207 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1208
1209 spin_lock_bh(&rdev->bss_lock);
1210 list_for_each_entry(bss, &rdev->bss_list, list)
1211 bss->ts -= age_jiffies;
1212 spin_unlock_bh(&rdev->bss_lock);
1213}
1214
1215void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1216{
1217 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1218}
1219
1220void cfg80211_bss_flush(struct wiphy *wiphy)
1221{
1222 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1223
1224 spin_lock_bh(&rdev->bss_lock);
1225 __cfg80211_bss_expire(rdev, jiffies);
1226 spin_unlock_bh(&rdev->bss_lock);
1227}
1228EXPORT_SYMBOL(cfg80211_bss_flush);
1229
1230const struct element *
1231cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1232 const u8 *match, unsigned int match_len,
1233 unsigned int match_offset)
1234{
1235 const struct element *elem;
1236
1237 for_each_element_id(elem, eid, ies, len) {
1238 if (elem->datalen >= match_offset + match_len &&
1239 !memcmp(elem->data + match_offset, match, match_len))
1240 return elem;
1241 }
1242
1243 return NULL;
1244}
1245EXPORT_SYMBOL(cfg80211_find_elem_match);
1246
1247const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1248 const u8 *ies,
1249 unsigned int len)
1250{
1251 const struct element *elem;
1252 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1253 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1254
1255 if (WARN_ON(oui_type > 0xff))
1256 return NULL;
1257
1258 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1259 match, match_len, 0);
1260
1261 if (!elem || elem->datalen < 4)
1262 return NULL;
1263
1264 return elem;
1265}
1266EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1267
1268/**
1269 * enum bss_compare_mode - BSS compare mode
1270 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1271 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1272 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1273 */
1274enum bss_compare_mode {
1275 BSS_CMP_REGULAR,
1276 BSS_CMP_HIDE_ZLEN,
1277 BSS_CMP_HIDE_NUL,
1278};
1279
1280static int cmp_bss(struct cfg80211_bss *a,
1281 struct cfg80211_bss *b,
1282 enum bss_compare_mode mode)
1283{
1284 const struct cfg80211_bss_ies *a_ies, *b_ies;
1285 const u8 *ie1 = NULL;
1286 const u8 *ie2 = NULL;
1287 int i, r;
1288
1289 if (a->channel != b->channel)
1290 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1291 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1292
1293 a_ies = rcu_access_pointer(a->ies);
1294 if (!a_ies)
1295 return -1;
1296 b_ies = rcu_access_pointer(b->ies);
1297 if (!b_ies)
1298 return 1;
1299
1300 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1301 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1302 a_ies->data, a_ies->len);
1303 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1304 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1305 b_ies->data, b_ies->len);
1306 if (ie1 && ie2) {
1307 int mesh_id_cmp;
1308
1309 if (ie1[1] == ie2[1])
1310 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1311 else
1312 mesh_id_cmp = ie2[1] - ie1[1];
1313
1314 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1315 a_ies->data, a_ies->len);
1316 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1317 b_ies->data, b_ies->len);
1318 if (ie1 && ie2) {
1319 if (mesh_id_cmp)
1320 return mesh_id_cmp;
1321 if (ie1[1] != ie2[1])
1322 return ie2[1] - ie1[1];
1323 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1324 }
1325 }
1326
1327 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1328 if (r)
1329 return r;
1330
1331 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1332 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1333
1334 if (!ie1 && !ie2)
1335 return 0;
1336
1337 /*
1338 * Note that with "hide_ssid", the function returns a match if
1339 * the already-present BSS ("b") is a hidden SSID beacon for
1340 * the new BSS ("a").
1341 */
1342
1343 /* sort missing IE before (left of) present IE */
1344 if (!ie1)
1345 return -1;
1346 if (!ie2)
1347 return 1;
1348
1349 switch (mode) {
1350 case BSS_CMP_HIDE_ZLEN:
1351 /*
1352 * In ZLEN mode we assume the BSS entry we're
1353 * looking for has a zero-length SSID. So if
1354 * the one we're looking at right now has that,
1355 * return 0. Otherwise, return the difference
1356 * in length, but since we're looking for the
1357 * 0-length it's really equivalent to returning
1358 * the length of the one we're looking at.
1359 *
1360 * No content comparison is needed as we assume
1361 * the content length is zero.
1362 */
1363 return ie2[1];
1364 case BSS_CMP_REGULAR:
1365 default:
1366 /* sort by length first, then by contents */
1367 if (ie1[1] != ie2[1])
1368 return ie2[1] - ie1[1];
1369 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1370 case BSS_CMP_HIDE_NUL:
1371 if (ie1[1] != ie2[1])
1372 return ie2[1] - ie1[1];
1373 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1374 for (i = 0; i < ie2[1]; i++)
1375 if (ie2[i + 2])
1376 return -1;
1377 return 0;
1378 }
1379}
1380
1381static bool cfg80211_bss_type_match(u16 capability,
1382 enum nl80211_band band,
1383 enum ieee80211_bss_type bss_type)
1384{
1385 bool ret = true;
1386 u16 mask, val;
1387
1388 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1389 return ret;
1390
1391 if (band == NL80211_BAND_60GHZ) {
1392 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1393 switch (bss_type) {
1394 case IEEE80211_BSS_TYPE_ESS:
1395 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1396 break;
1397 case IEEE80211_BSS_TYPE_PBSS:
1398 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1399 break;
1400 case IEEE80211_BSS_TYPE_IBSS:
1401 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1402 break;
1403 default:
1404 return false;
1405 }
1406 } else {
1407 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1408 switch (bss_type) {
1409 case IEEE80211_BSS_TYPE_ESS:
1410 val = WLAN_CAPABILITY_ESS;
1411 break;
1412 case IEEE80211_BSS_TYPE_IBSS:
1413 val = WLAN_CAPABILITY_IBSS;
1414 break;
1415 case IEEE80211_BSS_TYPE_MBSS:
1416 val = 0;
1417 break;
1418 default:
1419 return false;
1420 }
1421 }
1422
1423 ret = ((capability & mask) == val);
1424 return ret;
1425}
1426
1427/* Returned bss is reference counted and must be cleaned up appropriately. */
1428struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1429 struct ieee80211_channel *channel,
1430 const u8 *bssid,
1431 const u8 *ssid, size_t ssid_len,
1432 enum ieee80211_bss_type bss_type,
1433 enum ieee80211_privacy privacy)
1434{
1435 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1436 struct cfg80211_internal_bss *bss, *res = NULL;
1437 unsigned long now = jiffies;
1438 int bss_privacy;
1439
1440 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1441 privacy);
1442
1443 spin_lock_bh(&rdev->bss_lock);
1444
1445 list_for_each_entry(bss, &rdev->bss_list, list) {
1446 if (!cfg80211_bss_type_match(bss->pub.capability,
1447 bss->pub.channel->band, bss_type))
1448 continue;
1449
1450 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1451 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1452 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1453 continue;
1454 if (channel && bss->pub.channel != channel)
1455 continue;
1456 if (!is_valid_ether_addr(bss->pub.bssid))
1457 continue;
1458 /* Don't get expired BSS structs */
1459 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1460 !atomic_read(&bss->hold))
1461 continue;
1462 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1463 res = bss;
1464 bss_ref_get(rdev, res);
1465 break;
1466 }
1467 }
1468
1469 spin_unlock_bh(&rdev->bss_lock);
1470 if (!res)
1471 return NULL;
1472 trace_cfg80211_return_bss(&res->pub);
1473 return &res->pub;
1474}
1475EXPORT_SYMBOL(cfg80211_get_bss);
1476
1477static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1478 struct cfg80211_internal_bss *bss)
1479{
1480 struct rb_node **p = &rdev->bss_tree.rb_node;
1481 struct rb_node *parent = NULL;
1482 struct cfg80211_internal_bss *tbss;
1483 int cmp;
1484
1485 while (*p) {
1486 parent = *p;
1487 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1488
1489 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1490
1491 if (WARN_ON(!cmp)) {
1492 /* will sort of leak this BSS */
1493 return;
1494 }
1495
1496 if (cmp < 0)
1497 p = &(*p)->rb_left;
1498 else
1499 p = &(*p)->rb_right;
1500 }
1501
1502 rb_link_node(&bss->rbn, parent, p);
1503 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1504}
1505
1506static struct cfg80211_internal_bss *
1507rb_find_bss(struct cfg80211_registered_device *rdev,
1508 struct cfg80211_internal_bss *res,
1509 enum bss_compare_mode mode)
1510{
1511 struct rb_node *n = rdev->bss_tree.rb_node;
1512 struct cfg80211_internal_bss *bss;
1513 int r;
1514
1515 while (n) {
1516 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1517 r = cmp_bss(&res->pub, &bss->pub, mode);
1518
1519 if (r == 0)
1520 return bss;
1521 else if (r < 0)
1522 n = n->rb_left;
1523 else
1524 n = n->rb_right;
1525 }
1526
1527 return NULL;
1528}
1529
1530static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1531 struct cfg80211_internal_bss *new)
1532{
1533 const struct cfg80211_bss_ies *ies;
1534 struct cfg80211_internal_bss *bss;
1535 const u8 *ie;
1536 int i, ssidlen;
1537 u8 fold = 0;
1538 u32 n_entries = 0;
1539
1540 ies = rcu_access_pointer(new->pub.beacon_ies);
1541 if (WARN_ON(!ies))
1542 return false;
1543
1544 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1545 if (!ie) {
1546 /* nothing to do */
1547 return true;
1548 }
1549
1550 ssidlen = ie[1];
1551 for (i = 0; i < ssidlen; i++)
1552 fold |= ie[2 + i];
1553
1554 if (fold) {
1555 /* not a hidden SSID */
1556 return true;
1557 }
1558
1559 /* This is the bad part ... */
1560
1561 list_for_each_entry(bss, &rdev->bss_list, list) {
1562 /*
1563 * we're iterating all the entries anyway, so take the
1564 * opportunity to validate the list length accounting
1565 */
1566 n_entries++;
1567
1568 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1569 continue;
1570 if (bss->pub.channel != new->pub.channel)
1571 continue;
1572 if (bss->pub.scan_width != new->pub.scan_width)
1573 continue;
1574 if (rcu_access_pointer(bss->pub.beacon_ies))
1575 continue;
1576 ies = rcu_access_pointer(bss->pub.ies);
1577 if (!ies)
1578 continue;
1579 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1580 if (!ie)
1581 continue;
1582 if (ssidlen && ie[1] != ssidlen)
1583 continue;
1584 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1585 continue;
1586 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1587 list_del(&bss->hidden_list);
1588 /* combine them */
1589 list_add(&bss->hidden_list, &new->hidden_list);
1590 bss->pub.hidden_beacon_bss = &new->pub;
1591 new->refcount += bss->refcount;
1592 rcu_assign_pointer(bss->pub.beacon_ies,
1593 new->pub.beacon_ies);
1594 }
1595
1596 WARN_ONCE(n_entries != rdev->bss_entries,
1597 "rdev bss entries[%d]/list[len:%d] corruption\n",
1598 rdev->bss_entries, n_entries);
1599
1600 return true;
1601}
1602
1603struct cfg80211_non_tx_bss {
1604 struct cfg80211_bss *tx_bss;
1605 u8 max_bssid_indicator;
1606 u8 bssid_index;
1607};
1608
1609static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1610 const struct cfg80211_bss_ies *new_ies,
1611 const struct cfg80211_bss_ies *old_ies)
1612{
1613 struct cfg80211_internal_bss *bss;
1614
1615 /* Assign beacon IEs to all sub entries */
1616 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1617 const struct cfg80211_bss_ies *ies;
1618
1619 ies = rcu_access_pointer(bss->pub.beacon_ies);
1620 WARN_ON(ies != old_ies);
1621
1622 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1623 }
1624}
1625
1626static bool
1627cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1628 struct cfg80211_internal_bss *known,
1629 struct cfg80211_internal_bss *new,
1630 bool signal_valid)
1631{
1632 lockdep_assert_held(&rdev->bss_lock);
1633
1634 /* Update IEs */
1635 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1636 const struct cfg80211_bss_ies *old;
1637
1638 old = rcu_access_pointer(known->pub.proberesp_ies);
1639
1640 rcu_assign_pointer(known->pub.proberesp_ies,
1641 new->pub.proberesp_ies);
1642 /* Override possible earlier Beacon frame IEs */
1643 rcu_assign_pointer(known->pub.ies,
1644 new->pub.proberesp_ies);
1645 if (old)
1646 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1647 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1648 const struct cfg80211_bss_ies *old;
1649
1650 if (known->pub.hidden_beacon_bss &&
1651 !list_empty(&known->hidden_list)) {
1652 const struct cfg80211_bss_ies *f;
1653
1654 /* The known BSS struct is one of the probe
1655 * response members of a group, but we're
1656 * receiving a beacon (beacon_ies in the new
1657 * bss is used). This can only mean that the
1658 * AP changed its beacon from not having an
1659 * SSID to showing it, which is confusing so
1660 * drop this information.
1661 */
1662
1663 f = rcu_access_pointer(new->pub.beacon_ies);
1664 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1665 return false;
1666 }
1667
1668 old = rcu_access_pointer(known->pub.beacon_ies);
1669
1670 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1671
1672 /* Override IEs if they were from a beacon before */
1673 if (old == rcu_access_pointer(known->pub.ies))
1674 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1675
1676 cfg80211_update_hidden_bsses(known,
1677 rcu_access_pointer(new->pub.beacon_ies),
1678 old);
1679
1680 if (old)
1681 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1682 }
1683
1684 known->pub.beacon_interval = new->pub.beacon_interval;
1685
1686 /* don't update the signal if beacon was heard on
1687 * adjacent channel.
1688 */
1689 if (signal_valid)
1690 known->pub.signal = new->pub.signal;
1691 known->pub.capability = new->pub.capability;
1692 known->ts = new->ts;
1693 known->ts_boottime = new->ts_boottime;
1694 known->parent_tsf = new->parent_tsf;
1695 known->pub.chains = new->pub.chains;
1696 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1697 IEEE80211_MAX_CHAINS);
1698 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1699 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1700 known->pub.bssid_index = new->pub.bssid_index;
1701
1702 return true;
1703}
1704
1705/* Returned bss is reference counted and must be cleaned up appropriately. */
1706struct cfg80211_internal_bss *
1707cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1708 struct cfg80211_internal_bss *tmp,
1709 bool signal_valid, unsigned long ts)
1710{
1711 struct cfg80211_internal_bss *found = NULL;
1712
1713 if (WARN_ON(!tmp->pub.channel))
1714 return NULL;
1715
1716 tmp->ts = ts;
1717
1718 spin_lock_bh(&rdev->bss_lock);
1719
1720 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1721 spin_unlock_bh(&rdev->bss_lock);
1722 return NULL;
1723 }
1724
1725 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1726
1727 if (found) {
1728 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1729 goto drop;
1730 } else {
1731 struct cfg80211_internal_bss *new;
1732 struct cfg80211_internal_bss *hidden;
1733 struct cfg80211_bss_ies *ies;
1734
1735 /*
1736 * create a copy -- the "res" variable that is passed in
1737 * is allocated on the stack since it's not needed in the
1738 * more common case of an update
1739 */
1740 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1741 GFP_ATOMIC);
1742 if (!new) {
1743 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1744 if (ies)
1745 kfree_rcu(ies, rcu_head);
1746 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1747 if (ies)
1748 kfree_rcu(ies, rcu_head);
1749 goto drop;
1750 }
1751 memcpy(new, tmp, sizeof(*new));
1752 new->refcount = 1;
1753 INIT_LIST_HEAD(&new->hidden_list);
1754 INIT_LIST_HEAD(&new->pub.nontrans_list);
1755 /* we'll set this later if it was non-NULL */
1756 new->pub.transmitted_bss = NULL;
1757
1758 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1759 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1760 if (!hidden)
1761 hidden = rb_find_bss(rdev, tmp,
1762 BSS_CMP_HIDE_NUL);
1763 if (hidden) {
1764 new->pub.hidden_beacon_bss = &hidden->pub;
1765 list_add(&new->hidden_list,
1766 &hidden->hidden_list);
1767 hidden->refcount++;
1768 rcu_assign_pointer(new->pub.beacon_ies,
1769 hidden->pub.beacon_ies);
1770 }
1771 } else {
1772 /*
1773 * Ok so we found a beacon, and don't have an entry. If
1774 * it's a beacon with hidden SSID, we might be in for an
1775 * expensive search for any probe responses that should
1776 * be grouped with this beacon for updates ...
1777 */
1778 if (!cfg80211_combine_bsses(rdev, new)) {
1779 bss_ref_put(rdev, new);
1780 goto drop;
1781 }
1782 }
1783
1784 if (rdev->bss_entries >= bss_entries_limit &&
1785 !cfg80211_bss_expire_oldest(rdev)) {
1786 bss_ref_put(rdev, new);
1787 goto drop;
1788 }
1789
1790 /* This must be before the call to bss_ref_get */
1791 if (tmp->pub.transmitted_bss) {
1792 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1793 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1794 }
1795
1796 list_add_tail(&new->list, &rdev->bss_list);
1797 rdev->bss_entries++;
1798 rb_insert_bss(rdev, new);
1799 found = new;
1800 }
1801
1802 rdev->bss_generation++;
1803 bss_ref_get(rdev, found);
1804 spin_unlock_bh(&rdev->bss_lock);
1805
1806 return found;
1807 drop:
1808 spin_unlock_bh(&rdev->bss_lock);
1809 return NULL;
1810}
1811
1812int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1813 enum nl80211_band band,
1814 enum cfg80211_bss_frame_type ftype)
1815{
1816 const struct element *tmp;
1817
1818 if (band == NL80211_BAND_6GHZ) {
1819 struct ieee80211_he_operation *he_oper;
1820
1821 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1822 ielen);
1823 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1824 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1825 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1826
1827 he_oper = (void *)&tmp->data[1];
1828
1829 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1830 if (!he_6ghz_oper)
1831 return -1;
1832
1833 if (ftype != CFG80211_BSS_FTYPE_BEACON ||
1834 he_6ghz_oper->control & IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON)
1835 return he_6ghz_oper->primary;
1836 }
1837 } else if (band == NL80211_BAND_S1GHZ) {
1838 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1839 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1840 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1841
1842 return s1gop->oper_ch;
1843 }
1844 } else {
1845 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1846 if (tmp && tmp->datalen == 1)
1847 return tmp->data[0];
1848
1849 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1850 if (tmp &&
1851 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1852 struct ieee80211_ht_operation *htop = (void *)tmp->data;
1853
1854 return htop->primary_chan;
1855 }
1856 }
1857
1858 return -1;
1859}
1860EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1861
1862/*
1863 * Update RX channel information based on the available frame payload
1864 * information. This is mainly for the 2.4 GHz band where frames can be received
1865 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1866 * element to indicate the current (transmitting) channel, but this might also
1867 * be needed on other bands if RX frequency does not match with the actual
1868 * operating channel of a BSS, or if the AP reports a different primary channel.
1869 */
1870static struct ieee80211_channel *
1871cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1872 struct ieee80211_channel *channel,
1873 enum nl80211_bss_scan_width scan_width,
1874 enum cfg80211_bss_frame_type ftype)
1875{
1876 u32 freq;
1877 int channel_number;
1878 struct ieee80211_channel *alt_channel;
1879
1880 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1881 channel->band, ftype);
1882
1883 if (channel_number < 0) {
1884 /* No channel information in frame payload */
1885 return channel;
1886 }
1887
1888 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1889
1890 /*
1891 * In 6GHz, duplicated beacon indication is relevant for
1892 * beacons only.
1893 */
1894 if (channel->band == NL80211_BAND_6GHZ &&
1895 (freq == channel->center_freq ||
1896 abs(freq - channel->center_freq) > 80))
1897 return channel;
1898
1899 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1900 if (!alt_channel) {
1901 if (channel->band == NL80211_BAND_2GHZ) {
1902 /*
1903 * Better not allow unexpected channels when that could
1904 * be going beyond the 1-11 range (e.g., discovering
1905 * BSS on channel 12 when radio is configured for
1906 * channel 11.
1907 */
1908 return NULL;
1909 }
1910
1911 /* No match for the payload channel number - ignore it */
1912 return channel;
1913 }
1914
1915 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1916 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1917 /*
1918 * Ignore channel number in 5 and 10 MHz channels where there
1919 * may not be an n:1 or 1:n mapping between frequencies and
1920 * channel numbers.
1921 */
1922 return channel;
1923 }
1924
1925 /*
1926 * Use the channel determined through the payload channel number
1927 * instead of the RX channel reported by the driver.
1928 */
1929 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1930 return NULL;
1931 return alt_channel;
1932}
1933
1934/* Returned bss is reference counted and must be cleaned up appropriately. */
1935static struct cfg80211_bss *
1936cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1937 struct cfg80211_inform_bss *data,
1938 enum cfg80211_bss_frame_type ftype,
1939 const u8 *bssid, u64 tsf, u16 capability,
1940 u16 beacon_interval, const u8 *ie, size_t ielen,
1941 struct cfg80211_non_tx_bss *non_tx_data,
1942 gfp_t gfp)
1943{
1944 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1945 struct cfg80211_bss_ies *ies;
1946 struct ieee80211_channel *channel;
1947 struct cfg80211_internal_bss tmp = {}, *res;
1948 int bss_type;
1949 bool signal_valid;
1950 unsigned long ts;
1951
1952 if (WARN_ON(!wiphy))
1953 return NULL;
1954
1955 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1956 (data->signal < 0 || data->signal > 100)))
1957 return NULL;
1958
1959 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1960 data->scan_width, ftype);
1961 if (!channel)
1962 return NULL;
1963
1964 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1965 tmp.pub.channel = channel;
1966 tmp.pub.scan_width = data->scan_width;
1967 tmp.pub.signal = data->signal;
1968 tmp.pub.beacon_interval = beacon_interval;
1969 tmp.pub.capability = capability;
1970 tmp.ts_boottime = data->boottime_ns;
1971 tmp.parent_tsf = data->parent_tsf;
1972 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1973
1974 if (non_tx_data) {
1975 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1976 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1977 tmp.pub.bssid_index = non_tx_data->bssid_index;
1978 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1979 } else {
1980 ts = jiffies;
1981 }
1982
1983 /*
1984 * If we do not know here whether the IEs are from a Beacon or Probe
1985 * Response frame, we need to pick one of the options and only use it
1986 * with the driver that does not provide the full Beacon/Probe Response
1987 * frame. Use Beacon frame pointer to avoid indicating that this should
1988 * override the IEs pointer should we have received an earlier
1989 * indication of Probe Response data.
1990 */
1991 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1992 if (!ies)
1993 return NULL;
1994 ies->len = ielen;
1995 ies->tsf = tsf;
1996 ies->from_beacon = false;
1997 memcpy(ies->data, ie, ielen);
1998
1999 switch (ftype) {
2000 case CFG80211_BSS_FTYPE_BEACON:
2001 ies->from_beacon = true;
2002 fallthrough;
2003 case CFG80211_BSS_FTYPE_UNKNOWN:
2004 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2005 break;
2006 case CFG80211_BSS_FTYPE_PRESP:
2007 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2008 break;
2009 }
2010 rcu_assign_pointer(tmp.pub.ies, ies);
2011
2012 signal_valid = data->chan == channel;
2013 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
2014 if (!res)
2015 return NULL;
2016
2017 if (channel->band == NL80211_BAND_60GHZ) {
2018 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2019 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2020 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2021 regulatory_hint_found_beacon(wiphy, channel, gfp);
2022 } else {
2023 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2024 regulatory_hint_found_beacon(wiphy, channel, gfp);
2025 }
2026
2027 if (non_tx_data) {
2028 /* this is a nontransmitting bss, we need to add it to
2029 * transmitting bss' list if it is not there
2030 */
2031 spin_lock_bh(&rdev->bss_lock);
2032 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
2033 &res->pub)) {
2034 if (__cfg80211_unlink_bss(rdev, res)) {
2035 rdev->bss_generation++;
2036 res = NULL;
2037 }
2038 }
2039 spin_unlock_bh(&rdev->bss_lock);
2040
2041 if (!res)
2042 return NULL;
2043 }
2044
2045 trace_cfg80211_return_bss(&res->pub);
2046 /* cfg80211_bss_update gives us a referenced result */
2047 return &res->pub;
2048}
2049
2050static const struct element
2051*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2052 const struct element *mbssid_elem,
2053 const struct element *sub_elem)
2054{
2055 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2056 const struct element *next_mbssid;
2057 const struct element *next_sub;
2058
2059 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2060 mbssid_end,
2061 ielen - (mbssid_end - ie));
2062
2063 /*
2064 * If it is not the last subelement in current MBSSID IE or there isn't
2065 * a next MBSSID IE - profile is complete.
2066 */
2067 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2068 !next_mbssid)
2069 return NULL;
2070
2071 /* For any length error, just return NULL */
2072
2073 if (next_mbssid->datalen < 4)
2074 return NULL;
2075
2076 next_sub = (void *)&next_mbssid->data[1];
2077
2078 if (next_mbssid->data + next_mbssid->datalen <
2079 next_sub->data + next_sub->datalen)
2080 return NULL;
2081
2082 if (next_sub->id != 0 || next_sub->datalen < 2)
2083 return NULL;
2084
2085 /*
2086 * Check if the first element in the next sub element is a start
2087 * of a new profile
2088 */
2089 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2090 NULL : next_mbssid;
2091}
2092
2093size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2094 const struct element *mbssid_elem,
2095 const struct element *sub_elem,
2096 u8 *merged_ie, size_t max_copy_len)
2097{
2098 size_t copied_len = sub_elem->datalen;
2099 const struct element *next_mbssid;
2100
2101 if (sub_elem->datalen > max_copy_len)
2102 return 0;
2103
2104 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2105
2106 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2107 mbssid_elem,
2108 sub_elem))) {
2109 const struct element *next_sub = (void *)&next_mbssid->data[1];
2110
2111 if (copied_len + next_sub->datalen > max_copy_len)
2112 break;
2113 memcpy(merged_ie + copied_len, next_sub->data,
2114 next_sub->datalen);
2115 copied_len += next_sub->datalen;
2116 }
2117
2118 return copied_len;
2119}
2120EXPORT_SYMBOL(cfg80211_merge_profile);
2121
2122static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2123 struct cfg80211_inform_bss *data,
2124 enum cfg80211_bss_frame_type ftype,
2125 const u8 *bssid, u64 tsf,
2126 u16 beacon_interval, const u8 *ie,
2127 size_t ielen,
2128 struct cfg80211_non_tx_bss *non_tx_data,
2129 gfp_t gfp)
2130{
2131 const u8 *mbssid_index_ie;
2132 const struct element *elem, *sub;
2133 size_t new_ie_len;
2134 u8 new_bssid[ETH_ALEN];
2135 u8 *new_ie, *profile;
2136 u64 seen_indices = 0;
2137 u16 capability;
2138 struct cfg80211_bss *bss;
2139
2140 if (!non_tx_data)
2141 return;
2142 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2143 return;
2144 if (!wiphy->support_mbssid)
2145 return;
2146 if (wiphy->support_only_he_mbssid &&
2147 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2148 return;
2149
2150 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2151 if (!new_ie)
2152 return;
2153
2154 profile = kmalloc(ielen, gfp);
2155 if (!profile)
2156 goto out;
2157
2158 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2159 if (elem->datalen < 4)
2160 continue;
2161 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2162 continue;
2163 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2164 u8 profile_len;
2165
2166 if (sub->id != 0 || sub->datalen < 4) {
2167 /* not a valid BSS profile */
2168 continue;
2169 }
2170
2171 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2172 sub->data[1] != 2) {
2173 /* The first element within the Nontransmitted
2174 * BSSID Profile is not the Nontransmitted
2175 * BSSID Capability element.
2176 */
2177 continue;
2178 }
2179
2180 memset(profile, 0, ielen);
2181 profile_len = cfg80211_merge_profile(ie, ielen,
2182 elem,
2183 sub,
2184 profile,
2185 ielen);
2186
2187 /* found a Nontransmitted BSSID Profile */
2188 mbssid_index_ie = cfg80211_find_ie
2189 (WLAN_EID_MULTI_BSSID_IDX,
2190 profile, profile_len);
2191 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2192 mbssid_index_ie[2] == 0 ||
2193 mbssid_index_ie[2] > 46) {
2194 /* No valid Multiple BSSID-Index element */
2195 continue;
2196 }
2197
2198 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2199 /* We don't support legacy split of a profile */
2200 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2201 mbssid_index_ie[2]);
2202
2203 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2204
2205 non_tx_data->bssid_index = mbssid_index_ie[2];
2206 non_tx_data->max_bssid_indicator = elem->data[0];
2207
2208 cfg80211_gen_new_bssid(bssid,
2209 non_tx_data->max_bssid_indicator,
2210 non_tx_data->bssid_index,
2211 new_bssid);
2212 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2213 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2214 profile,
2215 profile_len, new_ie,
2216 gfp);
2217 if (!new_ie_len)
2218 continue;
2219
2220 capability = get_unaligned_le16(profile + 2);
2221 bss = cfg80211_inform_single_bss_data(wiphy, data,
2222 ftype,
2223 new_bssid, tsf,
2224 capability,
2225 beacon_interval,
2226 new_ie,
2227 new_ie_len,
2228 non_tx_data,
2229 gfp);
2230 if (!bss)
2231 break;
2232 cfg80211_put_bss(wiphy, bss);
2233 }
2234 }
2235
2236out:
2237 kfree(new_ie);
2238 kfree(profile);
2239}
2240
2241struct cfg80211_bss *
2242cfg80211_inform_bss_data(struct wiphy *wiphy,
2243 struct cfg80211_inform_bss *data,
2244 enum cfg80211_bss_frame_type ftype,
2245 const u8 *bssid, u64 tsf, u16 capability,
2246 u16 beacon_interval, const u8 *ie, size_t ielen,
2247 gfp_t gfp)
2248{
2249 struct cfg80211_bss *res;
2250 struct cfg80211_non_tx_bss non_tx_data;
2251
2252 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2253 capability, beacon_interval, ie,
2254 ielen, NULL, gfp);
2255 if (!res)
2256 return NULL;
2257 non_tx_data.tx_bss = res;
2258 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2259 beacon_interval, ie, ielen, &non_tx_data,
2260 gfp);
2261 return res;
2262}
2263EXPORT_SYMBOL(cfg80211_inform_bss_data);
2264
2265static void
2266cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2267 struct cfg80211_inform_bss *data,
2268 struct ieee80211_mgmt *mgmt, size_t len,
2269 struct cfg80211_non_tx_bss *non_tx_data,
2270 gfp_t gfp)
2271{
2272 enum cfg80211_bss_frame_type ftype;
2273 const u8 *ie = mgmt->u.probe_resp.variable;
2274 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2275 u.probe_resp.variable);
2276
2277 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2278 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2279
2280 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2281 le64_to_cpu(mgmt->u.probe_resp.timestamp),
2282 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2283 ie, ielen, non_tx_data, gfp);
2284}
2285
2286static void
2287cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2288 struct cfg80211_bss *nontrans_bss,
2289 struct ieee80211_mgmt *mgmt, size_t len)
2290{
2291 u8 *ie, *new_ie, *pos;
2292 const struct element *nontrans_ssid;
2293 const u8 *trans_ssid, *mbssid;
2294 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2295 u.probe_resp.variable);
2296 size_t new_ie_len;
2297 struct cfg80211_bss_ies *new_ies;
2298 const struct cfg80211_bss_ies *old;
2299 size_t cpy_len;
2300
2301 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2302
2303 ie = mgmt->u.probe_resp.variable;
2304
2305 new_ie_len = ielen;
2306 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2307 if (!trans_ssid)
2308 return;
2309 new_ie_len -= trans_ssid[1];
2310 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2311 /*
2312 * It's not valid to have the MBSSID element before SSID
2313 * ignore if that happens - the code below assumes it is
2314 * after (while copying things inbetween).
2315 */
2316 if (!mbssid || mbssid < trans_ssid)
2317 return;
2318 new_ie_len -= mbssid[1];
2319
2320 nontrans_ssid = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
2321 if (!nontrans_ssid)
2322 return;
2323
2324 new_ie_len += nontrans_ssid->datalen;
2325
2326 /* generate new ie for nontrans BSS
2327 * 1. replace SSID with nontrans BSS' SSID
2328 * 2. skip MBSSID IE
2329 */
2330 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2331 if (!new_ie)
2332 return;
2333
2334 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2335 if (!new_ies)
2336 goto out_free;
2337
2338 pos = new_ie;
2339
2340 /* copy the nontransmitted SSID */
2341 cpy_len = nontrans_ssid->datalen + 2;
2342 memcpy(pos, nontrans_ssid, cpy_len);
2343 pos += cpy_len;
2344 /* copy the IEs between SSID and MBSSID */
2345 cpy_len = trans_ssid[1] + 2;
2346 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2347 pos += (mbssid - (trans_ssid + cpy_len));
2348 /* copy the IEs after MBSSID */
2349 cpy_len = mbssid[1] + 2;
2350 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2351
2352 /* update ie */
2353 new_ies->len = new_ie_len;
2354 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2355 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2356 memcpy(new_ies->data, new_ie, new_ie_len);
2357 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2358 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2359 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2360 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2361 if (old)
2362 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2363 } else {
2364 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2365 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2366 cfg80211_update_hidden_bsses(bss_from_pub(nontrans_bss),
2367 new_ies, old);
2368 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2369 if (old)
2370 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2371 }
2372
2373out_free:
2374 kfree(new_ie);
2375}
2376
2377/* cfg80211_inform_bss_width_frame helper */
2378static struct cfg80211_bss *
2379cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2380 struct cfg80211_inform_bss *data,
2381 struct ieee80211_mgmt *mgmt, size_t len,
2382 gfp_t gfp)
2383{
2384 struct cfg80211_internal_bss tmp = {}, *res;
2385 struct cfg80211_bss_ies *ies;
2386 struct ieee80211_channel *channel;
2387 bool signal_valid;
2388 struct ieee80211_ext *ext = NULL;
2389 u8 *bssid, *variable;
2390 u16 capability, beacon_int;
2391 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2392 u.probe_resp.variable);
2393 int bss_type;
2394 enum cfg80211_bss_frame_type ftype;
2395
2396 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2397 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2398
2399 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2400
2401 if (WARN_ON(!mgmt))
2402 return NULL;
2403
2404 if (WARN_ON(!wiphy))
2405 return NULL;
2406
2407 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2408 (data->signal < 0 || data->signal > 100)))
2409 return NULL;
2410
2411 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2412 ext = (void *) mgmt;
2413 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2414 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2415 min_hdr_len = offsetof(struct ieee80211_ext,
2416 u.s1g_short_beacon.variable);
2417 }
2418
2419 if (WARN_ON(len < min_hdr_len))
2420 return NULL;
2421
2422 ielen = len - min_hdr_len;
2423 variable = mgmt->u.probe_resp.variable;
2424 if (ext) {
2425 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2426 variable = ext->u.s1g_short_beacon.variable;
2427 else
2428 variable = ext->u.s1g_beacon.variable;
2429 }
2430
2431 if (ieee80211_is_beacon(mgmt->frame_control))
2432 ftype = CFG80211_BSS_FTYPE_BEACON;
2433 else if (ieee80211_is_probe_resp(mgmt->frame_control))
2434 ftype = CFG80211_BSS_FTYPE_PRESP;
2435 else
2436 ftype = CFG80211_BSS_FTYPE_UNKNOWN;
2437
2438 channel = cfg80211_get_bss_channel(wiphy, variable,
2439 ielen, data->chan, data->scan_width,
2440 ftype);
2441 if (!channel)
2442 return NULL;
2443
2444 if (ext) {
2445 const struct ieee80211_s1g_bcn_compat_ie *compat;
2446 const struct element *elem;
2447
2448 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2449 variable, ielen);
2450 if (!elem)
2451 return NULL;
2452 if (elem->datalen < sizeof(*compat))
2453 return NULL;
2454 compat = (void *)elem->data;
2455 bssid = ext->u.s1g_beacon.sa;
2456 capability = le16_to_cpu(compat->compat_info);
2457 beacon_int = le16_to_cpu(compat->beacon_int);
2458 } else {
2459 bssid = mgmt->bssid;
2460 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2461 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2462 }
2463
2464 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2465 if (!ies)
2466 return NULL;
2467 ies->len = ielen;
2468 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2469 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2470 ieee80211_is_s1g_beacon(mgmt->frame_control);
2471 memcpy(ies->data, variable, ielen);
2472
2473 if (ieee80211_is_probe_resp(mgmt->frame_control))
2474 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2475 else
2476 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2477 rcu_assign_pointer(tmp.pub.ies, ies);
2478
2479 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2480 tmp.pub.beacon_interval = beacon_int;
2481 tmp.pub.capability = capability;
2482 tmp.pub.channel = channel;
2483 tmp.pub.scan_width = data->scan_width;
2484 tmp.pub.signal = data->signal;
2485 tmp.ts_boottime = data->boottime_ns;
2486 tmp.parent_tsf = data->parent_tsf;
2487 tmp.pub.chains = data->chains;
2488 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2489 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2490
2491 signal_valid = data->chan == channel;
2492 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2493 jiffies);
2494 if (!res)
2495 return NULL;
2496
2497 if (channel->band == NL80211_BAND_60GHZ) {
2498 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2499 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2500 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2501 regulatory_hint_found_beacon(wiphy, channel, gfp);
2502 } else {
2503 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2504 regulatory_hint_found_beacon(wiphy, channel, gfp);
2505 }
2506
2507 trace_cfg80211_return_bss(&res->pub);
2508 /* cfg80211_bss_update gives us a referenced result */
2509 return &res->pub;
2510}
2511
2512struct cfg80211_bss *
2513cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2514 struct cfg80211_inform_bss *data,
2515 struct ieee80211_mgmt *mgmt, size_t len,
2516 gfp_t gfp)
2517{
2518 struct cfg80211_bss *res, *tmp_bss;
2519 const u8 *ie = mgmt->u.probe_resp.variable;
2520 const struct cfg80211_bss_ies *ies1, *ies2;
2521 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2522 u.probe_resp.variable);
2523 struct cfg80211_non_tx_bss non_tx_data = {};
2524
2525 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2526 len, gfp);
2527
2528 /* don't do any further MBSSID handling for S1G */
2529 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2530 return res;
2531
2532 if (!res || !wiphy->support_mbssid ||
2533 !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2534 return res;
2535 if (wiphy->support_only_he_mbssid &&
2536 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2537 return res;
2538
2539 non_tx_data.tx_bss = res;
2540 /* process each non-transmitting bss */
2541 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2542 &non_tx_data, gfp);
2543
2544 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2545
2546 /* check if the res has other nontransmitting bss which is not
2547 * in MBSSID IE
2548 */
2549 ies1 = rcu_access_pointer(res->ies);
2550
2551 /* go through nontrans_list, if the timestamp of the BSS is
2552 * earlier than the timestamp of the transmitting BSS then
2553 * update it
2554 */
2555 list_for_each_entry(tmp_bss, &res->nontrans_list,
2556 nontrans_list) {
2557 ies2 = rcu_access_pointer(tmp_bss->ies);
2558 if (ies2->tsf < ies1->tsf)
2559 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2560 mgmt, len);
2561 }
2562 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2563
2564 return res;
2565}
2566EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2567
2568void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2569{
2570 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2571
2572 if (!pub)
2573 return;
2574
2575 spin_lock_bh(&rdev->bss_lock);
2576 bss_ref_get(rdev, bss_from_pub(pub));
2577 spin_unlock_bh(&rdev->bss_lock);
2578}
2579EXPORT_SYMBOL(cfg80211_ref_bss);
2580
2581void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2582{
2583 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2584
2585 if (!pub)
2586 return;
2587
2588 spin_lock_bh(&rdev->bss_lock);
2589 bss_ref_put(rdev, bss_from_pub(pub));
2590 spin_unlock_bh(&rdev->bss_lock);
2591}
2592EXPORT_SYMBOL(cfg80211_put_bss);
2593
2594void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2595{
2596 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2597 struct cfg80211_internal_bss *bss, *tmp1;
2598 struct cfg80211_bss *nontrans_bss, *tmp;
2599
2600 if (WARN_ON(!pub))
2601 return;
2602
2603 bss = bss_from_pub(pub);
2604
2605 spin_lock_bh(&rdev->bss_lock);
2606 if (list_empty(&bss->list))
2607 goto out;
2608
2609 list_for_each_entry_safe(nontrans_bss, tmp,
2610 &pub->nontrans_list,
2611 nontrans_list) {
2612 tmp1 = bss_from_pub(nontrans_bss);
2613 if (__cfg80211_unlink_bss(rdev, tmp1))
2614 rdev->bss_generation++;
2615 }
2616
2617 if (__cfg80211_unlink_bss(rdev, bss))
2618 rdev->bss_generation++;
2619out:
2620 spin_unlock_bh(&rdev->bss_lock);
2621}
2622EXPORT_SYMBOL(cfg80211_unlink_bss);
2623
2624void cfg80211_bss_iter(struct wiphy *wiphy,
2625 struct cfg80211_chan_def *chandef,
2626 void (*iter)(struct wiphy *wiphy,
2627 struct cfg80211_bss *bss,
2628 void *data),
2629 void *iter_data)
2630{
2631 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2632 struct cfg80211_internal_bss *bss;
2633
2634 spin_lock_bh(&rdev->bss_lock);
2635
2636 list_for_each_entry(bss, &rdev->bss_list, list) {
2637 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
2638 false))
2639 iter(wiphy, &bss->pub, iter_data);
2640 }
2641
2642 spin_unlock_bh(&rdev->bss_lock);
2643}
2644EXPORT_SYMBOL(cfg80211_bss_iter);
2645
2646void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2647 unsigned int link_id,
2648 struct ieee80211_channel *chan)
2649{
2650 struct wiphy *wiphy = wdev->wiphy;
2651 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2652 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
2653 struct cfg80211_internal_bss *new = NULL;
2654 struct cfg80211_internal_bss *bss;
2655 struct cfg80211_bss *nontrans_bss;
2656 struct cfg80211_bss *tmp;
2657
2658 spin_lock_bh(&rdev->bss_lock);
2659
2660 /*
2661 * Some APs use CSA also for bandwidth changes, i.e., without actually
2662 * changing the control channel, so no need to update in such a case.
2663 */
2664 if (cbss->pub.channel == chan)
2665 goto done;
2666
2667 /* use transmitting bss */
2668 if (cbss->pub.transmitted_bss)
2669 cbss = bss_from_pub(cbss->pub.transmitted_bss);
2670
2671 cbss->pub.channel = chan;
2672
2673 list_for_each_entry(bss, &rdev->bss_list, list) {
2674 if (!cfg80211_bss_type_match(bss->pub.capability,
2675 bss->pub.channel->band,
2676 wdev->conn_bss_type))
2677 continue;
2678
2679 if (bss == cbss)
2680 continue;
2681
2682 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2683 new = bss;
2684 break;
2685 }
2686 }
2687
2688 if (new) {
2689 /* to save time, update IEs for transmitting bss only */
2690 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2691 new->pub.proberesp_ies = NULL;
2692 new->pub.beacon_ies = NULL;
2693 }
2694
2695 list_for_each_entry_safe(nontrans_bss, tmp,
2696 &new->pub.nontrans_list,
2697 nontrans_list) {
2698 bss = bss_from_pub(nontrans_bss);
2699 if (__cfg80211_unlink_bss(rdev, bss))
2700 rdev->bss_generation++;
2701 }
2702
2703 WARN_ON(atomic_read(&new->hold));
2704 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2705 rdev->bss_generation++;
2706 }
2707
2708 rb_erase(&cbss->rbn, &rdev->bss_tree);
2709 rb_insert_bss(rdev, cbss);
2710 rdev->bss_generation++;
2711
2712 list_for_each_entry_safe(nontrans_bss, tmp,
2713 &cbss->pub.nontrans_list,
2714 nontrans_list) {
2715 bss = bss_from_pub(nontrans_bss);
2716 bss->pub.channel = chan;
2717 rb_erase(&bss->rbn, &rdev->bss_tree);
2718 rb_insert_bss(rdev, bss);
2719 rdev->bss_generation++;
2720 }
2721
2722done:
2723 spin_unlock_bh(&rdev->bss_lock);
2724}
2725
2726#ifdef CONFIG_CFG80211_WEXT
2727static struct cfg80211_registered_device *
2728cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2729{
2730 struct cfg80211_registered_device *rdev;
2731 struct net_device *dev;
2732
2733 ASSERT_RTNL();
2734
2735 dev = dev_get_by_index(net, ifindex);
2736 if (!dev)
2737 return ERR_PTR(-ENODEV);
2738 if (dev->ieee80211_ptr)
2739 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2740 else
2741 rdev = ERR_PTR(-ENODEV);
2742 dev_put(dev);
2743 return rdev;
2744}
2745
2746int cfg80211_wext_siwscan(struct net_device *dev,
2747 struct iw_request_info *info,
2748 union iwreq_data *wrqu, char *extra)
2749{
2750 struct cfg80211_registered_device *rdev;
2751 struct wiphy *wiphy;
2752 struct iw_scan_req *wreq = NULL;
2753 struct cfg80211_scan_request *creq;
2754 int i, err, n_channels = 0;
2755 enum nl80211_band band;
2756
2757 if (!netif_running(dev))
2758 return -ENETDOWN;
2759
2760 if (wrqu->data.length == sizeof(struct iw_scan_req))
2761 wreq = (struct iw_scan_req *)extra;
2762
2763 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2764
2765 if (IS_ERR(rdev))
2766 return PTR_ERR(rdev);
2767
2768 if (rdev->scan_req || rdev->scan_msg)
2769 return -EBUSY;
2770
2771 wiphy = &rdev->wiphy;
2772
2773 /* Determine number of channels, needed to allocate creq */
2774 if (wreq && wreq->num_channels)
2775 n_channels = wreq->num_channels;
2776 else
2777 n_channels = ieee80211_get_num_supported_channels(wiphy);
2778
2779 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2780 n_channels * sizeof(void *),
2781 GFP_ATOMIC);
2782 if (!creq)
2783 return -ENOMEM;
2784
2785 creq->wiphy = wiphy;
2786 creq->wdev = dev->ieee80211_ptr;
2787 /* SSIDs come after channels */
2788 creq->ssids = (void *)&creq->channels[n_channels];
2789 creq->n_channels = n_channels;
2790 creq->n_ssids = 1;
2791 creq->scan_start = jiffies;
2792
2793 /* translate "Scan on frequencies" request */
2794 i = 0;
2795 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2796 int j;
2797
2798 if (!wiphy->bands[band])
2799 continue;
2800
2801 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2802 /* ignore disabled channels */
2803 if (wiphy->bands[band]->channels[j].flags &
2804 IEEE80211_CHAN_DISABLED)
2805 continue;
2806
2807 /* If we have a wireless request structure and the
2808 * wireless request specifies frequencies, then search
2809 * for the matching hardware channel.
2810 */
2811 if (wreq && wreq->num_channels) {
2812 int k;
2813 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2814 for (k = 0; k < wreq->num_channels; k++) {
2815 struct iw_freq *freq =
2816 &wreq->channel_list[k];
2817 int wext_freq =
2818 cfg80211_wext_freq(freq);
2819
2820 if (wext_freq == wiphy_freq)
2821 goto wext_freq_found;
2822 }
2823 goto wext_freq_not_found;
2824 }
2825
2826 wext_freq_found:
2827 creq->channels[i] = &wiphy->bands[band]->channels[j];
2828 i++;
2829 wext_freq_not_found: ;
2830 }
2831 }
2832 /* No channels found? */
2833 if (!i) {
2834 err = -EINVAL;
2835 goto out;
2836 }
2837
2838 /* Set real number of channels specified in creq->channels[] */
2839 creq->n_channels = i;
2840
2841 /* translate "Scan for SSID" request */
2842 if (wreq) {
2843 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2844 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2845 err = -EINVAL;
2846 goto out;
2847 }
2848 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2849 creq->ssids[0].ssid_len = wreq->essid_len;
2850 }
2851 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2852 creq->n_ssids = 0;
2853 }
2854
2855 for (i = 0; i < NUM_NL80211_BANDS; i++)
2856 if (wiphy->bands[i])
2857 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2858
2859 eth_broadcast_addr(creq->bssid);
2860
2861 wiphy_lock(&rdev->wiphy);
2862
2863 rdev->scan_req = creq;
2864 err = rdev_scan(rdev, creq);
2865 if (err) {
2866 rdev->scan_req = NULL;
2867 /* creq will be freed below */
2868 } else {
2869 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2870 /* creq now owned by driver */
2871 creq = NULL;
2872 dev_hold(dev);
2873 }
2874 wiphy_unlock(&rdev->wiphy);
2875 out:
2876 kfree(creq);
2877 return err;
2878}
2879EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2880
2881static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2882 const struct cfg80211_bss_ies *ies,
2883 char *current_ev, char *end_buf)
2884{
2885 const u8 *pos, *end, *next;
2886 struct iw_event iwe;
2887
2888 if (!ies)
2889 return current_ev;
2890
2891 /*
2892 * If needed, fragment the IEs buffer (at IE boundaries) into short
2893 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2894 */
2895 pos = ies->data;
2896 end = pos + ies->len;
2897
2898 while (end - pos > IW_GENERIC_IE_MAX) {
2899 next = pos + 2 + pos[1];
2900 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2901 next = next + 2 + next[1];
2902
2903 memset(&iwe, 0, sizeof(iwe));
2904 iwe.cmd = IWEVGENIE;
2905 iwe.u.data.length = next - pos;
2906 current_ev = iwe_stream_add_point_check(info, current_ev,
2907 end_buf, &iwe,
2908 (void *)pos);
2909 if (IS_ERR(current_ev))
2910 return current_ev;
2911 pos = next;
2912 }
2913
2914 if (end > pos) {
2915 memset(&iwe, 0, sizeof(iwe));
2916 iwe.cmd = IWEVGENIE;
2917 iwe.u.data.length = end - pos;
2918 current_ev = iwe_stream_add_point_check(info, current_ev,
2919 end_buf, &iwe,
2920 (void *)pos);
2921 if (IS_ERR(current_ev))
2922 return current_ev;
2923 }
2924
2925 return current_ev;
2926}
2927
2928static char *
2929ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2930 struct cfg80211_internal_bss *bss, char *current_ev,
2931 char *end_buf)
2932{
2933 const struct cfg80211_bss_ies *ies;
2934 struct iw_event iwe;
2935 const u8 *ie;
2936 u8 buf[50];
2937 u8 *cfg, *p, *tmp;
2938 int rem, i, sig;
2939 bool ismesh = false;
2940
2941 memset(&iwe, 0, sizeof(iwe));
2942 iwe.cmd = SIOCGIWAP;
2943 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2944 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2945 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2946 IW_EV_ADDR_LEN);
2947 if (IS_ERR(current_ev))
2948 return current_ev;
2949
2950 memset(&iwe, 0, sizeof(iwe));
2951 iwe.cmd = SIOCGIWFREQ;
2952 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2953 iwe.u.freq.e = 0;
2954 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2955 IW_EV_FREQ_LEN);
2956 if (IS_ERR(current_ev))
2957 return current_ev;
2958
2959 memset(&iwe, 0, sizeof(iwe));
2960 iwe.cmd = SIOCGIWFREQ;
2961 iwe.u.freq.m = bss->pub.channel->center_freq;
2962 iwe.u.freq.e = 6;
2963 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2964 IW_EV_FREQ_LEN);
2965 if (IS_ERR(current_ev))
2966 return current_ev;
2967
2968 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2969 memset(&iwe, 0, sizeof(iwe));
2970 iwe.cmd = IWEVQUAL;
2971 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2972 IW_QUAL_NOISE_INVALID |
2973 IW_QUAL_QUAL_UPDATED;
2974 switch (wiphy->signal_type) {
2975 case CFG80211_SIGNAL_TYPE_MBM:
2976 sig = bss->pub.signal / 100;
2977 iwe.u.qual.level = sig;
2978 iwe.u.qual.updated |= IW_QUAL_DBM;
2979 if (sig < -110) /* rather bad */
2980 sig = -110;
2981 else if (sig > -40) /* perfect */
2982 sig = -40;
2983 /* will give a range of 0 .. 70 */
2984 iwe.u.qual.qual = sig + 110;
2985 break;
2986 case CFG80211_SIGNAL_TYPE_UNSPEC:
2987 iwe.u.qual.level = bss->pub.signal;
2988 /* will give range 0 .. 100 */
2989 iwe.u.qual.qual = bss->pub.signal;
2990 break;
2991 default:
2992 /* not reached */
2993 break;
2994 }
2995 current_ev = iwe_stream_add_event_check(info, current_ev,
2996 end_buf, &iwe,
2997 IW_EV_QUAL_LEN);
2998 if (IS_ERR(current_ev))
2999 return current_ev;
3000 }
3001
3002 memset(&iwe, 0, sizeof(iwe));
3003 iwe.cmd = SIOCGIWENCODE;
3004 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3005 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3006 else
3007 iwe.u.data.flags = IW_ENCODE_DISABLED;
3008 iwe.u.data.length = 0;
3009 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3010 &iwe, "");
3011 if (IS_ERR(current_ev))
3012 return current_ev;
3013
3014 rcu_read_lock();
3015 ies = rcu_dereference(bss->pub.ies);
3016 rem = ies->len;
3017 ie = ies->data;
3018
3019 while (rem >= 2) {
3020 /* invalid data */
3021 if (ie[1] > rem - 2)
3022 break;
3023
3024 switch (ie[0]) {
3025 case WLAN_EID_SSID:
3026 memset(&iwe, 0, sizeof(iwe));
3027 iwe.cmd = SIOCGIWESSID;
3028 iwe.u.data.length = ie[1];
3029 iwe.u.data.flags = 1;
3030 current_ev = iwe_stream_add_point_check(info,
3031 current_ev,
3032 end_buf, &iwe,
3033 (u8 *)ie + 2);
3034 if (IS_ERR(current_ev))
3035 goto unlock;
3036 break;
3037 case WLAN_EID_MESH_ID:
3038 memset(&iwe, 0, sizeof(iwe));
3039 iwe.cmd = SIOCGIWESSID;
3040 iwe.u.data.length = ie[1];
3041 iwe.u.data.flags = 1;
3042 current_ev = iwe_stream_add_point_check(info,
3043 current_ev,
3044 end_buf, &iwe,
3045 (u8 *)ie + 2);
3046 if (IS_ERR(current_ev))
3047 goto unlock;
3048 break;
3049 case WLAN_EID_MESH_CONFIG:
3050 ismesh = true;
3051 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3052 break;
3053 cfg = (u8 *)ie + 2;
3054 memset(&iwe, 0, sizeof(iwe));
3055 iwe.cmd = IWEVCUSTOM;
3056 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3057 "0x%02X", cfg[0]);
3058 iwe.u.data.length = strlen(buf);
3059 current_ev = iwe_stream_add_point_check(info,
3060 current_ev,
3061 end_buf,
3062 &iwe, buf);
3063 if (IS_ERR(current_ev))
3064 goto unlock;
3065 sprintf(buf, "Path Selection Metric ID: 0x%02X",
3066 cfg[1]);
3067 iwe.u.data.length = strlen(buf);
3068 current_ev = iwe_stream_add_point_check(info,
3069 current_ev,
3070 end_buf,
3071 &iwe, buf);
3072 if (IS_ERR(current_ev))
3073 goto unlock;
3074 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3075 cfg[2]);
3076 iwe.u.data.length = strlen(buf);
3077 current_ev = iwe_stream_add_point_check(info,
3078 current_ev,
3079 end_buf,
3080 &iwe, buf);
3081 if (IS_ERR(current_ev))
3082 goto unlock;
3083 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3084 iwe.u.data.length = strlen(buf);
3085 current_ev = iwe_stream_add_point_check(info,
3086 current_ev,
3087 end_buf,
3088 &iwe, buf);
3089 if (IS_ERR(current_ev))
3090 goto unlock;
3091 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3092 iwe.u.data.length = strlen(buf);
3093 current_ev = iwe_stream_add_point_check(info,
3094 current_ev,
3095 end_buf,
3096 &iwe, buf);
3097 if (IS_ERR(current_ev))
3098 goto unlock;
3099 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3100 iwe.u.data.length = strlen(buf);
3101 current_ev = iwe_stream_add_point_check(info,
3102 current_ev,
3103 end_buf,
3104 &iwe, buf);
3105 if (IS_ERR(current_ev))
3106 goto unlock;
3107 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3108 iwe.u.data.length = strlen(buf);
3109 current_ev = iwe_stream_add_point_check(info,
3110 current_ev,
3111 end_buf,
3112 &iwe, buf);
3113 if (IS_ERR(current_ev))
3114 goto unlock;
3115 break;
3116 case WLAN_EID_SUPP_RATES:
3117 case WLAN_EID_EXT_SUPP_RATES:
3118 /* display all supported rates in readable format */
3119 p = current_ev + iwe_stream_lcp_len(info);
3120
3121 memset(&iwe, 0, sizeof(iwe));
3122 iwe.cmd = SIOCGIWRATE;
3123 /* Those two flags are ignored... */
3124 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3125
3126 for (i = 0; i < ie[1]; i++) {
3127 iwe.u.bitrate.value =
3128 ((ie[i + 2] & 0x7f) * 500000);
3129 tmp = p;
3130 p = iwe_stream_add_value(info, current_ev, p,
3131 end_buf, &iwe,
3132 IW_EV_PARAM_LEN);
3133 if (p == tmp) {
3134 current_ev = ERR_PTR(-E2BIG);
3135 goto unlock;
3136 }
3137 }
3138 current_ev = p;
3139 break;
3140 }
3141 rem -= ie[1] + 2;
3142 ie += ie[1] + 2;
3143 }
3144
3145 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3146 ismesh) {
3147 memset(&iwe, 0, sizeof(iwe));
3148 iwe.cmd = SIOCGIWMODE;
3149 if (ismesh)
3150 iwe.u.mode = IW_MODE_MESH;
3151 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3152 iwe.u.mode = IW_MODE_MASTER;
3153 else
3154 iwe.u.mode = IW_MODE_ADHOC;
3155 current_ev = iwe_stream_add_event_check(info, current_ev,
3156 end_buf, &iwe,
3157 IW_EV_UINT_LEN);
3158 if (IS_ERR(current_ev))
3159 goto unlock;
3160 }
3161
3162 memset(&iwe, 0, sizeof(iwe));
3163 iwe.cmd = IWEVCUSTOM;
3164 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3165 iwe.u.data.length = strlen(buf);
3166 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3167 &iwe, buf);
3168 if (IS_ERR(current_ev))
3169 goto unlock;
3170 memset(&iwe, 0, sizeof(iwe));
3171 iwe.cmd = IWEVCUSTOM;
3172 sprintf(buf, " Last beacon: %ums ago",
3173 elapsed_jiffies_msecs(bss->ts));
3174 iwe.u.data.length = strlen(buf);
3175 current_ev = iwe_stream_add_point_check(info, current_ev,
3176 end_buf, &iwe, buf);
3177 if (IS_ERR(current_ev))
3178 goto unlock;
3179
3180 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3181
3182 unlock:
3183 rcu_read_unlock();
3184 return current_ev;
3185}
3186
3187
3188static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3189 struct iw_request_info *info,
3190 char *buf, size_t len)
3191{
3192 char *current_ev = buf;
3193 char *end_buf = buf + len;
3194 struct cfg80211_internal_bss *bss;
3195 int err = 0;
3196
3197 spin_lock_bh(&rdev->bss_lock);
3198 cfg80211_bss_expire(rdev);
3199
3200 list_for_each_entry(bss, &rdev->bss_list, list) {
3201 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3202 err = -E2BIG;
3203 break;
3204 }
3205 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3206 current_ev, end_buf);
3207 if (IS_ERR(current_ev)) {
3208 err = PTR_ERR(current_ev);
3209 break;
3210 }
3211 }
3212 spin_unlock_bh(&rdev->bss_lock);
3213
3214 if (err)
3215 return err;
3216 return current_ev - buf;
3217}
3218
3219
3220int cfg80211_wext_giwscan(struct net_device *dev,
3221 struct iw_request_info *info,
3222 union iwreq_data *wrqu, char *extra)
3223{
3224 struct iw_point *data = &wrqu->data;
3225 struct cfg80211_registered_device *rdev;
3226 int res;
3227
3228 if (!netif_running(dev))
3229 return -ENETDOWN;
3230
3231 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3232
3233 if (IS_ERR(rdev))
3234 return PTR_ERR(rdev);
3235
3236 if (rdev->scan_req || rdev->scan_msg)
3237 return -EAGAIN;
3238
3239 res = ieee80211_scan_results(rdev, info, extra, data->length);
3240 data->length = 0;
3241 if (res >= 0) {
3242 data->length = res;
3243 res = 0;
3244 }
3245
3246 return res;
3247}
3248EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3249#endif