Loading...
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22/**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48#include <linux/kernel.h>
49#include <linux/export.h>
50#include <linux/slab.h>
51#include <linux/list.h>
52#include <linux/ctype.h>
53#include <linux/nl80211.h>
54#include <linux/platform_device.h>
55#include <linux/moduleparam.h>
56#include <net/cfg80211.h>
57#include "core.h"
58#include "reg.h"
59#include "rdev-ops.h"
60#include "regdb.h"
61#include "nl80211.h"
62
63/*
64 * Grace period we give before making sure all current interfaces reside on
65 * channels allowed by the current regulatory domain.
66 */
67#define REG_ENFORCE_GRACE_MS 60000
68
69/**
70 * enum reg_request_treatment - regulatory request treatment
71 *
72 * @REG_REQ_OK: continue processing the regulatory request
73 * @REG_REQ_IGNORE: ignore the regulatory request
74 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
75 * be intersected with the current one.
76 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
77 * regulatory settings, and no further processing is required.
78 */
79enum reg_request_treatment {
80 REG_REQ_OK,
81 REG_REQ_IGNORE,
82 REG_REQ_INTERSECT,
83 REG_REQ_ALREADY_SET,
84};
85
86static struct regulatory_request core_request_world = {
87 .initiator = NL80211_REGDOM_SET_BY_CORE,
88 .alpha2[0] = '0',
89 .alpha2[1] = '0',
90 .intersect = false,
91 .processed = true,
92 .country_ie_env = ENVIRON_ANY,
93};
94
95/*
96 * Receipt of information from last regulatory request,
97 * protected by RTNL (and can be accessed with RCU protection)
98 */
99static struct regulatory_request __rcu *last_request =
100 (void __force __rcu *)&core_request_world;
101
102/* To trigger userspace events */
103static struct platform_device *reg_pdev;
104
105/*
106 * Central wireless core regulatory domains, we only need two,
107 * the current one and a world regulatory domain in case we have no
108 * information to give us an alpha2.
109 * (protected by RTNL, can be read under RCU)
110 */
111const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
112
113/*
114 * Number of devices that registered to the core
115 * that support cellular base station regulatory hints
116 * (protected by RTNL)
117 */
118static int reg_num_devs_support_basehint;
119
120/*
121 * State variable indicating if the platform on which the devices
122 * are attached is operating in an indoor environment. The state variable
123 * is relevant for all registered devices.
124 */
125static bool reg_is_indoor;
126static spinlock_t reg_indoor_lock;
127
128/* Used to track the userspace process controlling the indoor setting */
129static u32 reg_is_indoor_portid;
130
131static void restore_regulatory_settings(bool reset_user);
132
133static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
134{
135 return rtnl_dereference(cfg80211_regdomain);
136}
137
138const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
139{
140 return rtnl_dereference(wiphy->regd);
141}
142
143static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
144{
145 switch (dfs_region) {
146 case NL80211_DFS_UNSET:
147 return "unset";
148 case NL80211_DFS_FCC:
149 return "FCC";
150 case NL80211_DFS_ETSI:
151 return "ETSI";
152 case NL80211_DFS_JP:
153 return "JP";
154 }
155 return "Unknown";
156}
157
158enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
159{
160 const struct ieee80211_regdomain *regd = NULL;
161 const struct ieee80211_regdomain *wiphy_regd = NULL;
162
163 regd = get_cfg80211_regdom();
164 if (!wiphy)
165 goto out;
166
167 wiphy_regd = get_wiphy_regdom(wiphy);
168 if (!wiphy_regd)
169 goto out;
170
171 if (wiphy_regd->dfs_region == regd->dfs_region)
172 goto out;
173
174 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
175 dev_name(&wiphy->dev),
176 reg_dfs_region_str(wiphy_regd->dfs_region),
177 reg_dfs_region_str(regd->dfs_region));
178
179out:
180 return regd->dfs_region;
181}
182
183static void rcu_free_regdom(const struct ieee80211_regdomain *r)
184{
185 if (!r)
186 return;
187 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
188}
189
190static struct regulatory_request *get_last_request(void)
191{
192 return rcu_dereference_rtnl(last_request);
193}
194
195/* Used to queue up regulatory hints */
196static LIST_HEAD(reg_requests_list);
197static spinlock_t reg_requests_lock;
198
199/* Used to queue up beacon hints for review */
200static LIST_HEAD(reg_pending_beacons);
201static spinlock_t reg_pending_beacons_lock;
202
203/* Used to keep track of processed beacon hints */
204static LIST_HEAD(reg_beacon_list);
205
206struct reg_beacon {
207 struct list_head list;
208 struct ieee80211_channel chan;
209};
210
211static void reg_check_chans_work(struct work_struct *work);
212static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
213
214static void reg_todo(struct work_struct *work);
215static DECLARE_WORK(reg_work, reg_todo);
216
217/* We keep a static world regulatory domain in case of the absence of CRDA */
218static const struct ieee80211_regdomain world_regdom = {
219 .n_reg_rules = 8,
220 .alpha2 = "00",
221 .reg_rules = {
222 /* IEEE 802.11b/g, channels 1..11 */
223 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
224 /* IEEE 802.11b/g, channels 12..13. */
225 REG_RULE(2467-10, 2472+10, 20, 6, 20,
226 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
227 /* IEEE 802.11 channel 14 - Only JP enables
228 * this and for 802.11b only */
229 REG_RULE(2484-10, 2484+10, 20, 6, 20,
230 NL80211_RRF_NO_IR |
231 NL80211_RRF_NO_OFDM),
232 /* IEEE 802.11a, channel 36..48 */
233 REG_RULE(5180-10, 5240+10, 80, 6, 20,
234 NL80211_RRF_NO_IR |
235 NL80211_RRF_AUTO_BW),
236
237 /* IEEE 802.11a, channel 52..64 - DFS required */
238 REG_RULE(5260-10, 5320+10, 80, 6, 20,
239 NL80211_RRF_NO_IR |
240 NL80211_RRF_AUTO_BW |
241 NL80211_RRF_DFS),
242
243 /* IEEE 802.11a, channel 100..144 - DFS required */
244 REG_RULE(5500-10, 5720+10, 160, 6, 20,
245 NL80211_RRF_NO_IR |
246 NL80211_RRF_DFS),
247
248 /* IEEE 802.11a, channel 149..165 */
249 REG_RULE(5745-10, 5825+10, 80, 6, 20,
250 NL80211_RRF_NO_IR),
251
252 /* IEEE 802.11ad (60GHz), channels 1..3 */
253 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
254 }
255};
256
257/* protected by RTNL */
258static const struct ieee80211_regdomain *cfg80211_world_regdom =
259 &world_regdom;
260
261static char *ieee80211_regdom = "00";
262static char user_alpha2[2];
263
264module_param(ieee80211_regdom, charp, 0444);
265MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
266
267static void reg_free_request(struct regulatory_request *request)
268{
269 if (request == &core_request_world)
270 return;
271
272 if (request != get_last_request())
273 kfree(request);
274}
275
276static void reg_free_last_request(void)
277{
278 struct regulatory_request *lr = get_last_request();
279
280 if (lr != &core_request_world && lr)
281 kfree_rcu(lr, rcu_head);
282}
283
284static void reg_update_last_request(struct regulatory_request *request)
285{
286 struct regulatory_request *lr;
287
288 lr = get_last_request();
289 if (lr == request)
290 return;
291
292 reg_free_last_request();
293 rcu_assign_pointer(last_request, request);
294}
295
296static void reset_regdomains(bool full_reset,
297 const struct ieee80211_regdomain *new_regdom)
298{
299 const struct ieee80211_regdomain *r;
300
301 ASSERT_RTNL();
302
303 r = get_cfg80211_regdom();
304
305 /* avoid freeing static information or freeing something twice */
306 if (r == cfg80211_world_regdom)
307 r = NULL;
308 if (cfg80211_world_regdom == &world_regdom)
309 cfg80211_world_regdom = NULL;
310 if (r == &world_regdom)
311 r = NULL;
312
313 rcu_free_regdom(r);
314 rcu_free_regdom(cfg80211_world_regdom);
315
316 cfg80211_world_regdom = &world_regdom;
317 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
318
319 if (!full_reset)
320 return;
321
322 reg_update_last_request(&core_request_world);
323}
324
325/*
326 * Dynamic world regulatory domain requested by the wireless
327 * core upon initialization
328 */
329static void update_world_regdomain(const struct ieee80211_regdomain *rd)
330{
331 struct regulatory_request *lr;
332
333 lr = get_last_request();
334
335 WARN_ON(!lr);
336
337 reset_regdomains(false, rd);
338
339 cfg80211_world_regdom = rd;
340}
341
342bool is_world_regdom(const char *alpha2)
343{
344 if (!alpha2)
345 return false;
346 return alpha2[0] == '0' && alpha2[1] == '0';
347}
348
349static bool is_alpha2_set(const char *alpha2)
350{
351 if (!alpha2)
352 return false;
353 return alpha2[0] && alpha2[1];
354}
355
356static bool is_unknown_alpha2(const char *alpha2)
357{
358 if (!alpha2)
359 return false;
360 /*
361 * Special case where regulatory domain was built by driver
362 * but a specific alpha2 cannot be determined
363 */
364 return alpha2[0] == '9' && alpha2[1] == '9';
365}
366
367static bool is_intersected_alpha2(const char *alpha2)
368{
369 if (!alpha2)
370 return false;
371 /*
372 * Special case where regulatory domain is the
373 * result of an intersection between two regulatory domain
374 * structures
375 */
376 return alpha2[0] == '9' && alpha2[1] == '8';
377}
378
379static bool is_an_alpha2(const char *alpha2)
380{
381 if (!alpha2)
382 return false;
383 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
384}
385
386static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
387{
388 if (!alpha2_x || !alpha2_y)
389 return false;
390 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
391}
392
393static bool regdom_changes(const char *alpha2)
394{
395 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
396
397 if (!r)
398 return true;
399 return !alpha2_equal(r->alpha2, alpha2);
400}
401
402/*
403 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
404 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
405 * has ever been issued.
406 */
407static bool is_user_regdom_saved(void)
408{
409 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
410 return false;
411
412 /* This would indicate a mistake on the design */
413 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
414 "Unexpected user alpha2: %c%c\n",
415 user_alpha2[0], user_alpha2[1]))
416 return false;
417
418 return true;
419}
420
421static const struct ieee80211_regdomain *
422reg_copy_regd(const struct ieee80211_regdomain *src_regd)
423{
424 struct ieee80211_regdomain *regd;
425 int size_of_regd;
426 unsigned int i;
427
428 size_of_regd =
429 sizeof(struct ieee80211_regdomain) +
430 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
431
432 regd = kzalloc(size_of_regd, GFP_KERNEL);
433 if (!regd)
434 return ERR_PTR(-ENOMEM);
435
436 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
437
438 for (i = 0; i < src_regd->n_reg_rules; i++)
439 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
440 sizeof(struct ieee80211_reg_rule));
441
442 return regd;
443}
444
445#ifdef CONFIG_CFG80211_INTERNAL_REGDB
446struct reg_regdb_apply_request {
447 struct list_head list;
448 const struct ieee80211_regdomain *regdom;
449};
450
451static LIST_HEAD(reg_regdb_apply_list);
452static DEFINE_MUTEX(reg_regdb_apply_mutex);
453
454static void reg_regdb_apply(struct work_struct *work)
455{
456 struct reg_regdb_apply_request *request;
457
458 rtnl_lock();
459
460 mutex_lock(®_regdb_apply_mutex);
461 while (!list_empty(®_regdb_apply_list)) {
462 request = list_first_entry(®_regdb_apply_list,
463 struct reg_regdb_apply_request,
464 list);
465 list_del(&request->list);
466
467 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
468 kfree(request);
469 }
470 mutex_unlock(®_regdb_apply_mutex);
471
472 rtnl_unlock();
473}
474
475static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
476
477static int reg_query_builtin(const char *alpha2)
478{
479 const struct ieee80211_regdomain *regdom = NULL;
480 struct reg_regdb_apply_request *request;
481 unsigned int i;
482
483 for (i = 0; i < reg_regdb_size; i++) {
484 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
485 regdom = reg_regdb[i];
486 break;
487 }
488 }
489
490 if (!regdom)
491 return -ENODATA;
492
493 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
494 if (!request)
495 return -ENOMEM;
496
497 request->regdom = reg_copy_regd(regdom);
498 if (IS_ERR_OR_NULL(request->regdom)) {
499 kfree(request);
500 return -ENOMEM;
501 }
502
503 mutex_lock(®_regdb_apply_mutex);
504 list_add_tail(&request->list, ®_regdb_apply_list);
505 mutex_unlock(®_regdb_apply_mutex);
506
507 schedule_work(®_regdb_work);
508
509 return 0;
510}
511
512/* Feel free to add any other sanity checks here */
513static void reg_regdb_size_check(void)
514{
515 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
516 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
517}
518#else
519static inline void reg_regdb_size_check(void) {}
520static inline int reg_query_builtin(const char *alpha2)
521{
522 return -ENODATA;
523}
524#endif /* CONFIG_CFG80211_INTERNAL_REGDB */
525
526#ifdef CONFIG_CFG80211_CRDA_SUPPORT
527/* Max number of consecutive attempts to communicate with CRDA */
528#define REG_MAX_CRDA_TIMEOUTS 10
529
530static u32 reg_crda_timeouts;
531
532static void crda_timeout_work(struct work_struct *work);
533static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535static void crda_timeout_work(struct work_struct *work)
536{
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 rtnl_lock();
539 reg_crda_timeouts++;
540 restore_regulatory_settings(true);
541 rtnl_unlock();
542}
543
544static void cancel_crda_timeout(void)
545{
546 cancel_delayed_work(&crda_timeout);
547}
548
549static void cancel_crda_timeout_sync(void)
550{
551 cancel_delayed_work_sync(&crda_timeout);
552}
553
554static void reset_crda_timeouts(void)
555{
556 reg_crda_timeouts = 0;
557}
558
559/*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
563static int call_crda(const char *alpha2)
564{
565 char country[12];
566 char *env[] = { country, NULL };
567 int ret;
568
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
571
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 return -EINVAL;
575 }
576
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
580 else
581 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
584 if (ret)
585 return ret;
586
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
589 return 0;
590}
591#else
592static inline void cancel_crda_timeout(void) {}
593static inline void cancel_crda_timeout_sync(void) {}
594static inline void reset_crda_timeouts(void) {}
595static inline int call_crda(const char *alpha2)
596{
597 return -ENODATA;
598}
599#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601static bool reg_query_database(struct regulatory_request *request)
602{
603 /* query internal regulatory database (if it exists) */
604 if (reg_query_builtin(request->alpha2) == 0)
605 return true;
606
607 if (call_crda(request->alpha2) == 0)
608 return true;
609
610 return false;
611}
612
613bool reg_is_valid_request(const char *alpha2)
614{
615 struct regulatory_request *lr = get_last_request();
616
617 if (!lr || lr->processed)
618 return false;
619
620 return alpha2_equal(lr->alpha2, alpha2);
621}
622
623static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
624{
625 struct regulatory_request *lr = get_last_request();
626
627 /*
628 * Follow the driver's regulatory domain, if present, unless a country
629 * IE has been processed or a user wants to help complaince further
630 */
631 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
632 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
633 wiphy->regd)
634 return get_wiphy_regdom(wiphy);
635
636 return get_cfg80211_regdom();
637}
638
639static unsigned int
640reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
641 const struct ieee80211_reg_rule *rule)
642{
643 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
644 const struct ieee80211_freq_range *freq_range_tmp;
645 const struct ieee80211_reg_rule *tmp;
646 u32 start_freq, end_freq, idx, no;
647
648 for (idx = 0; idx < rd->n_reg_rules; idx++)
649 if (rule == &rd->reg_rules[idx])
650 break;
651
652 if (idx == rd->n_reg_rules)
653 return 0;
654
655 /* get start_freq */
656 no = idx;
657
658 while (no) {
659 tmp = &rd->reg_rules[--no];
660 freq_range_tmp = &tmp->freq_range;
661
662 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
663 break;
664
665 freq_range = freq_range_tmp;
666 }
667
668 start_freq = freq_range->start_freq_khz;
669
670 /* get end_freq */
671 freq_range = &rule->freq_range;
672 no = idx;
673
674 while (no < rd->n_reg_rules - 1) {
675 tmp = &rd->reg_rules[++no];
676 freq_range_tmp = &tmp->freq_range;
677
678 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
679 break;
680
681 freq_range = freq_range_tmp;
682 }
683
684 end_freq = freq_range->end_freq_khz;
685
686 return end_freq - start_freq;
687}
688
689unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
690 const struct ieee80211_reg_rule *rule)
691{
692 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
693
694 if (rule->flags & NL80211_RRF_NO_160MHZ)
695 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
696 if (rule->flags & NL80211_RRF_NO_80MHZ)
697 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
698
699 /*
700 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
701 * are not allowed.
702 */
703 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
704 rule->flags & NL80211_RRF_NO_HT40PLUS)
705 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
706
707 return bw;
708}
709
710/* Sanity check on a regulatory rule */
711static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
712{
713 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
714 u32 freq_diff;
715
716 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
717 return false;
718
719 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
720 return false;
721
722 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
723
724 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
725 freq_range->max_bandwidth_khz > freq_diff)
726 return false;
727
728 return true;
729}
730
731static bool is_valid_rd(const struct ieee80211_regdomain *rd)
732{
733 const struct ieee80211_reg_rule *reg_rule = NULL;
734 unsigned int i;
735
736 if (!rd->n_reg_rules)
737 return false;
738
739 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
740 return false;
741
742 for (i = 0; i < rd->n_reg_rules; i++) {
743 reg_rule = &rd->reg_rules[i];
744 if (!is_valid_reg_rule(reg_rule))
745 return false;
746 }
747
748 return true;
749}
750
751static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
752 u32 center_freq_khz, u32 bw_khz)
753{
754 u32 start_freq_khz, end_freq_khz;
755
756 start_freq_khz = center_freq_khz - (bw_khz/2);
757 end_freq_khz = center_freq_khz + (bw_khz/2);
758
759 if (start_freq_khz >= freq_range->start_freq_khz &&
760 end_freq_khz <= freq_range->end_freq_khz)
761 return true;
762
763 return false;
764}
765
766/**
767 * freq_in_rule_band - tells us if a frequency is in a frequency band
768 * @freq_range: frequency rule we want to query
769 * @freq_khz: frequency we are inquiring about
770 *
771 * This lets us know if a specific frequency rule is or is not relevant to
772 * a specific frequency's band. Bands are device specific and artificial
773 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
774 * however it is safe for now to assume that a frequency rule should not be
775 * part of a frequency's band if the start freq or end freq are off by more
776 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
777 * 60 GHz band.
778 * This resolution can be lowered and should be considered as we add
779 * regulatory rule support for other "bands".
780 **/
781static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
782 u32 freq_khz)
783{
784#define ONE_GHZ_IN_KHZ 1000000
785 /*
786 * From 802.11ad: directional multi-gigabit (DMG):
787 * Pertaining to operation in a frequency band containing a channel
788 * with the Channel starting frequency above 45 GHz.
789 */
790 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
791 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
792 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
793 return true;
794 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
795 return true;
796 return false;
797#undef ONE_GHZ_IN_KHZ
798}
799
800/*
801 * Later on we can perhaps use the more restrictive DFS
802 * region but we don't have information for that yet so
803 * for now simply disallow conflicts.
804 */
805static enum nl80211_dfs_regions
806reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
807 const enum nl80211_dfs_regions dfs_region2)
808{
809 if (dfs_region1 != dfs_region2)
810 return NL80211_DFS_UNSET;
811 return dfs_region1;
812}
813
814/*
815 * Helper for regdom_intersect(), this does the real
816 * mathematical intersection fun
817 */
818static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
819 const struct ieee80211_regdomain *rd2,
820 const struct ieee80211_reg_rule *rule1,
821 const struct ieee80211_reg_rule *rule2,
822 struct ieee80211_reg_rule *intersected_rule)
823{
824 const struct ieee80211_freq_range *freq_range1, *freq_range2;
825 struct ieee80211_freq_range *freq_range;
826 const struct ieee80211_power_rule *power_rule1, *power_rule2;
827 struct ieee80211_power_rule *power_rule;
828 u32 freq_diff, max_bandwidth1, max_bandwidth2;
829
830 freq_range1 = &rule1->freq_range;
831 freq_range2 = &rule2->freq_range;
832 freq_range = &intersected_rule->freq_range;
833
834 power_rule1 = &rule1->power_rule;
835 power_rule2 = &rule2->power_rule;
836 power_rule = &intersected_rule->power_rule;
837
838 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
839 freq_range2->start_freq_khz);
840 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
841 freq_range2->end_freq_khz);
842
843 max_bandwidth1 = freq_range1->max_bandwidth_khz;
844 max_bandwidth2 = freq_range2->max_bandwidth_khz;
845
846 if (rule1->flags & NL80211_RRF_AUTO_BW)
847 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
848 if (rule2->flags & NL80211_RRF_AUTO_BW)
849 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
850
851 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
852
853 intersected_rule->flags = rule1->flags | rule2->flags;
854
855 /*
856 * In case NL80211_RRF_AUTO_BW requested for both rules
857 * set AUTO_BW in intersected rule also. Next we will
858 * calculate BW correctly in handle_channel function.
859 * In other case remove AUTO_BW flag while we calculate
860 * maximum bandwidth correctly and auto calculation is
861 * not required.
862 */
863 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
864 (rule2->flags & NL80211_RRF_AUTO_BW))
865 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
866 else
867 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
868
869 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
870 if (freq_range->max_bandwidth_khz > freq_diff)
871 freq_range->max_bandwidth_khz = freq_diff;
872
873 power_rule->max_eirp = min(power_rule1->max_eirp,
874 power_rule2->max_eirp);
875 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
876 power_rule2->max_antenna_gain);
877
878 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
879 rule2->dfs_cac_ms);
880
881 if (!is_valid_reg_rule(intersected_rule))
882 return -EINVAL;
883
884 return 0;
885}
886
887/* check whether old rule contains new rule */
888static bool rule_contains(struct ieee80211_reg_rule *r1,
889 struct ieee80211_reg_rule *r2)
890{
891 /* for simplicity, currently consider only same flags */
892 if (r1->flags != r2->flags)
893 return false;
894
895 /* verify r1 is more restrictive */
896 if ((r1->power_rule.max_antenna_gain >
897 r2->power_rule.max_antenna_gain) ||
898 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
899 return false;
900
901 /* make sure r2's range is contained within r1 */
902 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
903 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
904 return false;
905
906 /* and finally verify that r1.max_bw >= r2.max_bw */
907 if (r1->freq_range.max_bandwidth_khz <
908 r2->freq_range.max_bandwidth_khz)
909 return false;
910
911 return true;
912}
913
914/* add or extend current rules. do nothing if rule is already contained */
915static void add_rule(struct ieee80211_reg_rule *rule,
916 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
917{
918 struct ieee80211_reg_rule *tmp_rule;
919 int i;
920
921 for (i = 0; i < *n_rules; i++) {
922 tmp_rule = ®_rules[i];
923 /* rule is already contained - do nothing */
924 if (rule_contains(tmp_rule, rule))
925 return;
926
927 /* extend rule if possible */
928 if (rule_contains(rule, tmp_rule)) {
929 memcpy(tmp_rule, rule, sizeof(*rule));
930 return;
931 }
932 }
933
934 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
935 (*n_rules)++;
936}
937
938/**
939 * regdom_intersect - do the intersection between two regulatory domains
940 * @rd1: first regulatory domain
941 * @rd2: second regulatory domain
942 *
943 * Use this function to get the intersection between two regulatory domains.
944 * Once completed we will mark the alpha2 for the rd as intersected, "98",
945 * as no one single alpha2 can represent this regulatory domain.
946 *
947 * Returns a pointer to the regulatory domain structure which will hold the
948 * resulting intersection of rules between rd1 and rd2. We will
949 * kzalloc() this structure for you.
950 */
951static struct ieee80211_regdomain *
952regdom_intersect(const struct ieee80211_regdomain *rd1,
953 const struct ieee80211_regdomain *rd2)
954{
955 int r, size_of_regd;
956 unsigned int x, y;
957 unsigned int num_rules = 0;
958 const struct ieee80211_reg_rule *rule1, *rule2;
959 struct ieee80211_reg_rule intersected_rule;
960 struct ieee80211_regdomain *rd;
961
962 if (!rd1 || !rd2)
963 return NULL;
964
965 /*
966 * First we get a count of the rules we'll need, then we actually
967 * build them. This is to so we can malloc() and free() a
968 * regdomain once. The reason we use reg_rules_intersect() here
969 * is it will return -EINVAL if the rule computed makes no sense.
970 * All rules that do check out OK are valid.
971 */
972
973 for (x = 0; x < rd1->n_reg_rules; x++) {
974 rule1 = &rd1->reg_rules[x];
975 for (y = 0; y < rd2->n_reg_rules; y++) {
976 rule2 = &rd2->reg_rules[y];
977 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
978 &intersected_rule))
979 num_rules++;
980 }
981 }
982
983 if (!num_rules)
984 return NULL;
985
986 size_of_regd = sizeof(struct ieee80211_regdomain) +
987 num_rules * sizeof(struct ieee80211_reg_rule);
988
989 rd = kzalloc(size_of_regd, GFP_KERNEL);
990 if (!rd)
991 return NULL;
992
993 for (x = 0; x < rd1->n_reg_rules; x++) {
994 rule1 = &rd1->reg_rules[x];
995 for (y = 0; y < rd2->n_reg_rules; y++) {
996 rule2 = &rd2->reg_rules[y];
997 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
998 &intersected_rule);
999 /*
1000 * No need to memset here the intersected rule here as
1001 * we're not using the stack anymore
1002 */
1003 if (r)
1004 continue;
1005
1006 add_rule(&intersected_rule, rd->reg_rules,
1007 &rd->n_reg_rules);
1008 }
1009 }
1010
1011 rd->alpha2[0] = '9';
1012 rd->alpha2[1] = '8';
1013 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1014 rd2->dfs_region);
1015
1016 return rd;
1017}
1018
1019/*
1020 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1021 * want to just have the channel structure use these
1022 */
1023static u32 map_regdom_flags(u32 rd_flags)
1024{
1025 u32 channel_flags = 0;
1026 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1027 channel_flags |= IEEE80211_CHAN_NO_IR;
1028 if (rd_flags & NL80211_RRF_DFS)
1029 channel_flags |= IEEE80211_CHAN_RADAR;
1030 if (rd_flags & NL80211_RRF_NO_OFDM)
1031 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1032 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1033 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1034 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1035 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1036 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1037 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1038 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1039 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1040 if (rd_flags & NL80211_RRF_NO_80MHZ)
1041 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1042 if (rd_flags & NL80211_RRF_NO_160MHZ)
1043 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1044 return channel_flags;
1045}
1046
1047static const struct ieee80211_reg_rule *
1048freq_reg_info_regd(u32 center_freq,
1049 const struct ieee80211_regdomain *regd, u32 bw)
1050{
1051 int i;
1052 bool band_rule_found = false;
1053 bool bw_fits = false;
1054
1055 if (!regd)
1056 return ERR_PTR(-EINVAL);
1057
1058 for (i = 0; i < regd->n_reg_rules; i++) {
1059 const struct ieee80211_reg_rule *rr;
1060 const struct ieee80211_freq_range *fr = NULL;
1061
1062 rr = ®d->reg_rules[i];
1063 fr = &rr->freq_range;
1064
1065 /*
1066 * We only need to know if one frequency rule was
1067 * was in center_freq's band, that's enough, so lets
1068 * not overwrite it once found
1069 */
1070 if (!band_rule_found)
1071 band_rule_found = freq_in_rule_band(fr, center_freq);
1072
1073 bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1074
1075 if (band_rule_found && bw_fits)
1076 return rr;
1077 }
1078
1079 if (!band_rule_found)
1080 return ERR_PTR(-ERANGE);
1081
1082 return ERR_PTR(-EINVAL);
1083}
1084
1085static const struct ieee80211_reg_rule *
1086__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1087{
1088 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1089 const struct ieee80211_reg_rule *reg_rule = NULL;
1090 u32 bw;
1091
1092 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1093 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1094 if (!IS_ERR(reg_rule))
1095 return reg_rule;
1096 }
1097
1098 return reg_rule;
1099}
1100
1101const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1102 u32 center_freq)
1103{
1104 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1105}
1106EXPORT_SYMBOL(freq_reg_info);
1107
1108const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1109{
1110 switch (initiator) {
1111 case NL80211_REGDOM_SET_BY_CORE:
1112 return "core";
1113 case NL80211_REGDOM_SET_BY_USER:
1114 return "user";
1115 case NL80211_REGDOM_SET_BY_DRIVER:
1116 return "driver";
1117 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1118 return "country IE";
1119 default:
1120 WARN_ON(1);
1121 return "bug";
1122 }
1123}
1124EXPORT_SYMBOL(reg_initiator_name);
1125
1126static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1127 const struct ieee80211_reg_rule *reg_rule,
1128 const struct ieee80211_channel *chan)
1129{
1130 const struct ieee80211_freq_range *freq_range = NULL;
1131 u32 max_bandwidth_khz, bw_flags = 0;
1132
1133 freq_range = ®_rule->freq_range;
1134
1135 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1136 /* Check if auto calculation requested */
1137 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1138 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1139
1140 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1141 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1142 MHZ_TO_KHZ(10)))
1143 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1144 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1145 MHZ_TO_KHZ(20)))
1146 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1147
1148 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1149 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1150 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1151 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1152 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1153 bw_flags |= IEEE80211_CHAN_NO_HT40;
1154 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1155 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1156 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1157 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1158 return bw_flags;
1159}
1160
1161/*
1162 * Note that right now we assume the desired channel bandwidth
1163 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1164 * per channel, the primary and the extension channel).
1165 */
1166static void handle_channel(struct wiphy *wiphy,
1167 enum nl80211_reg_initiator initiator,
1168 struct ieee80211_channel *chan)
1169{
1170 u32 flags, bw_flags = 0;
1171 const struct ieee80211_reg_rule *reg_rule = NULL;
1172 const struct ieee80211_power_rule *power_rule = NULL;
1173 struct wiphy *request_wiphy = NULL;
1174 struct regulatory_request *lr = get_last_request();
1175 const struct ieee80211_regdomain *regd;
1176
1177 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1178
1179 flags = chan->orig_flags;
1180
1181 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1182 if (IS_ERR(reg_rule)) {
1183 /*
1184 * We will disable all channels that do not match our
1185 * received regulatory rule unless the hint is coming
1186 * from a Country IE and the Country IE had no information
1187 * about a band. The IEEE 802.11 spec allows for an AP
1188 * to send only a subset of the regulatory rules allowed,
1189 * so an AP in the US that only supports 2.4 GHz may only send
1190 * a country IE with information for the 2.4 GHz band
1191 * while 5 GHz is still supported.
1192 */
1193 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1194 PTR_ERR(reg_rule) == -ERANGE)
1195 return;
1196
1197 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1198 request_wiphy && request_wiphy == wiphy &&
1199 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1200 pr_debug("Disabling freq %d MHz for good\n",
1201 chan->center_freq);
1202 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1203 chan->flags = chan->orig_flags;
1204 } else {
1205 pr_debug("Disabling freq %d MHz\n",
1206 chan->center_freq);
1207 chan->flags |= IEEE80211_CHAN_DISABLED;
1208 }
1209 return;
1210 }
1211
1212 regd = reg_get_regdomain(wiphy);
1213
1214 power_rule = ®_rule->power_rule;
1215 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1216
1217 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1218 request_wiphy && request_wiphy == wiphy &&
1219 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1220 /*
1221 * This guarantees the driver's requested regulatory domain
1222 * will always be used as a base for further regulatory
1223 * settings
1224 */
1225 chan->flags = chan->orig_flags =
1226 map_regdom_flags(reg_rule->flags) | bw_flags;
1227 chan->max_antenna_gain = chan->orig_mag =
1228 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1229 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1230 (int) MBM_TO_DBM(power_rule->max_eirp);
1231
1232 if (chan->flags & IEEE80211_CHAN_RADAR) {
1233 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1234 if (reg_rule->dfs_cac_ms)
1235 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1236 }
1237
1238 return;
1239 }
1240
1241 chan->dfs_state = NL80211_DFS_USABLE;
1242 chan->dfs_state_entered = jiffies;
1243
1244 chan->beacon_found = false;
1245 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1246 chan->max_antenna_gain =
1247 min_t(int, chan->orig_mag,
1248 MBI_TO_DBI(power_rule->max_antenna_gain));
1249 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1250
1251 if (chan->flags & IEEE80211_CHAN_RADAR) {
1252 if (reg_rule->dfs_cac_ms)
1253 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1254 else
1255 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1256 }
1257
1258 if (chan->orig_mpwr) {
1259 /*
1260 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1261 * will always follow the passed country IE power settings.
1262 */
1263 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1264 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1265 chan->max_power = chan->max_reg_power;
1266 else
1267 chan->max_power = min(chan->orig_mpwr,
1268 chan->max_reg_power);
1269 } else
1270 chan->max_power = chan->max_reg_power;
1271}
1272
1273static void handle_band(struct wiphy *wiphy,
1274 enum nl80211_reg_initiator initiator,
1275 struct ieee80211_supported_band *sband)
1276{
1277 unsigned int i;
1278
1279 if (!sband)
1280 return;
1281
1282 for (i = 0; i < sband->n_channels; i++)
1283 handle_channel(wiphy, initiator, &sband->channels[i]);
1284}
1285
1286static bool reg_request_cell_base(struct regulatory_request *request)
1287{
1288 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1289 return false;
1290 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1291}
1292
1293bool reg_last_request_cell_base(void)
1294{
1295 return reg_request_cell_base(get_last_request());
1296}
1297
1298#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1299/* Core specific check */
1300static enum reg_request_treatment
1301reg_ignore_cell_hint(struct regulatory_request *pending_request)
1302{
1303 struct regulatory_request *lr = get_last_request();
1304
1305 if (!reg_num_devs_support_basehint)
1306 return REG_REQ_IGNORE;
1307
1308 if (reg_request_cell_base(lr) &&
1309 !regdom_changes(pending_request->alpha2))
1310 return REG_REQ_ALREADY_SET;
1311
1312 return REG_REQ_OK;
1313}
1314
1315/* Device specific check */
1316static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1317{
1318 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1319}
1320#else
1321static enum reg_request_treatment
1322reg_ignore_cell_hint(struct regulatory_request *pending_request)
1323{
1324 return REG_REQ_IGNORE;
1325}
1326
1327static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1328{
1329 return true;
1330}
1331#endif
1332
1333static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1334{
1335 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1336 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1337 return true;
1338 return false;
1339}
1340
1341static bool ignore_reg_update(struct wiphy *wiphy,
1342 enum nl80211_reg_initiator initiator)
1343{
1344 struct regulatory_request *lr = get_last_request();
1345
1346 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1347 return true;
1348
1349 if (!lr) {
1350 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1351 reg_initiator_name(initiator));
1352 return true;
1353 }
1354
1355 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1356 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1357 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1358 reg_initiator_name(initiator));
1359 return true;
1360 }
1361
1362 /*
1363 * wiphy->regd will be set once the device has its own
1364 * desired regulatory domain set
1365 */
1366 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1367 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1368 !is_world_regdom(lr->alpha2)) {
1369 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1370 reg_initiator_name(initiator));
1371 return true;
1372 }
1373
1374 if (reg_request_cell_base(lr))
1375 return reg_dev_ignore_cell_hint(wiphy);
1376
1377 return false;
1378}
1379
1380static bool reg_is_world_roaming(struct wiphy *wiphy)
1381{
1382 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1383 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1384 struct regulatory_request *lr = get_last_request();
1385
1386 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1387 return true;
1388
1389 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1390 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1391 return true;
1392
1393 return false;
1394}
1395
1396static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1397 struct reg_beacon *reg_beacon)
1398{
1399 struct ieee80211_supported_band *sband;
1400 struct ieee80211_channel *chan;
1401 bool channel_changed = false;
1402 struct ieee80211_channel chan_before;
1403
1404 sband = wiphy->bands[reg_beacon->chan.band];
1405 chan = &sband->channels[chan_idx];
1406
1407 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1408 return;
1409
1410 if (chan->beacon_found)
1411 return;
1412
1413 chan->beacon_found = true;
1414
1415 if (!reg_is_world_roaming(wiphy))
1416 return;
1417
1418 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1419 return;
1420
1421 chan_before.center_freq = chan->center_freq;
1422 chan_before.flags = chan->flags;
1423
1424 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1425 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1426 channel_changed = true;
1427 }
1428
1429 if (channel_changed)
1430 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1431}
1432
1433/*
1434 * Called when a scan on a wiphy finds a beacon on
1435 * new channel
1436 */
1437static void wiphy_update_new_beacon(struct wiphy *wiphy,
1438 struct reg_beacon *reg_beacon)
1439{
1440 unsigned int i;
1441 struct ieee80211_supported_band *sband;
1442
1443 if (!wiphy->bands[reg_beacon->chan.band])
1444 return;
1445
1446 sband = wiphy->bands[reg_beacon->chan.band];
1447
1448 for (i = 0; i < sband->n_channels; i++)
1449 handle_reg_beacon(wiphy, i, reg_beacon);
1450}
1451
1452/*
1453 * Called upon reg changes or a new wiphy is added
1454 */
1455static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1456{
1457 unsigned int i;
1458 struct ieee80211_supported_band *sband;
1459 struct reg_beacon *reg_beacon;
1460
1461 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
1462 if (!wiphy->bands[reg_beacon->chan.band])
1463 continue;
1464 sband = wiphy->bands[reg_beacon->chan.band];
1465 for (i = 0; i < sband->n_channels; i++)
1466 handle_reg_beacon(wiphy, i, reg_beacon);
1467 }
1468}
1469
1470/* Reap the advantages of previously found beacons */
1471static void reg_process_beacons(struct wiphy *wiphy)
1472{
1473 /*
1474 * Means we are just firing up cfg80211, so no beacons would
1475 * have been processed yet.
1476 */
1477 if (!last_request)
1478 return;
1479 wiphy_update_beacon_reg(wiphy);
1480}
1481
1482static bool is_ht40_allowed(struct ieee80211_channel *chan)
1483{
1484 if (!chan)
1485 return false;
1486 if (chan->flags & IEEE80211_CHAN_DISABLED)
1487 return false;
1488 /* This would happen when regulatory rules disallow HT40 completely */
1489 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1490 return false;
1491 return true;
1492}
1493
1494static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1495 struct ieee80211_channel *channel)
1496{
1497 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1498 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1499 unsigned int i;
1500
1501 if (!is_ht40_allowed(channel)) {
1502 channel->flags |= IEEE80211_CHAN_NO_HT40;
1503 return;
1504 }
1505
1506 /*
1507 * We need to ensure the extension channels exist to
1508 * be able to use HT40- or HT40+, this finds them (or not)
1509 */
1510 for (i = 0; i < sband->n_channels; i++) {
1511 struct ieee80211_channel *c = &sband->channels[i];
1512
1513 if (c->center_freq == (channel->center_freq - 20))
1514 channel_before = c;
1515 if (c->center_freq == (channel->center_freq + 20))
1516 channel_after = c;
1517 }
1518
1519 /*
1520 * Please note that this assumes target bandwidth is 20 MHz,
1521 * if that ever changes we also need to change the below logic
1522 * to include that as well.
1523 */
1524 if (!is_ht40_allowed(channel_before))
1525 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1526 else
1527 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1528
1529 if (!is_ht40_allowed(channel_after))
1530 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1531 else
1532 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1533}
1534
1535static void reg_process_ht_flags_band(struct wiphy *wiphy,
1536 struct ieee80211_supported_band *sband)
1537{
1538 unsigned int i;
1539
1540 if (!sband)
1541 return;
1542
1543 for (i = 0; i < sband->n_channels; i++)
1544 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1545}
1546
1547static void reg_process_ht_flags(struct wiphy *wiphy)
1548{
1549 enum nl80211_band band;
1550
1551 if (!wiphy)
1552 return;
1553
1554 for (band = 0; band < NUM_NL80211_BANDS; band++)
1555 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1556}
1557
1558static void reg_call_notifier(struct wiphy *wiphy,
1559 struct regulatory_request *request)
1560{
1561 if (wiphy->reg_notifier)
1562 wiphy->reg_notifier(wiphy, request);
1563}
1564
1565static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1566{
1567 struct cfg80211_chan_def chandef;
1568 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1569 enum nl80211_iftype iftype;
1570
1571 wdev_lock(wdev);
1572 iftype = wdev->iftype;
1573
1574 /* make sure the interface is active */
1575 if (!wdev->netdev || !netif_running(wdev->netdev))
1576 goto wdev_inactive_unlock;
1577
1578 switch (iftype) {
1579 case NL80211_IFTYPE_AP:
1580 case NL80211_IFTYPE_P2P_GO:
1581 if (!wdev->beacon_interval)
1582 goto wdev_inactive_unlock;
1583 chandef = wdev->chandef;
1584 break;
1585 case NL80211_IFTYPE_ADHOC:
1586 if (!wdev->ssid_len)
1587 goto wdev_inactive_unlock;
1588 chandef = wdev->chandef;
1589 break;
1590 case NL80211_IFTYPE_STATION:
1591 case NL80211_IFTYPE_P2P_CLIENT:
1592 if (!wdev->current_bss ||
1593 !wdev->current_bss->pub.channel)
1594 goto wdev_inactive_unlock;
1595
1596 if (!rdev->ops->get_channel ||
1597 rdev_get_channel(rdev, wdev, &chandef))
1598 cfg80211_chandef_create(&chandef,
1599 wdev->current_bss->pub.channel,
1600 NL80211_CHAN_NO_HT);
1601 break;
1602 case NL80211_IFTYPE_MONITOR:
1603 case NL80211_IFTYPE_AP_VLAN:
1604 case NL80211_IFTYPE_P2P_DEVICE:
1605 /* no enforcement required */
1606 break;
1607 default:
1608 /* others not implemented for now */
1609 WARN_ON(1);
1610 break;
1611 }
1612
1613 wdev_unlock(wdev);
1614
1615 switch (iftype) {
1616 case NL80211_IFTYPE_AP:
1617 case NL80211_IFTYPE_P2P_GO:
1618 case NL80211_IFTYPE_ADHOC:
1619 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1620 case NL80211_IFTYPE_STATION:
1621 case NL80211_IFTYPE_P2P_CLIENT:
1622 return cfg80211_chandef_usable(wiphy, &chandef,
1623 IEEE80211_CHAN_DISABLED);
1624 default:
1625 break;
1626 }
1627
1628 return true;
1629
1630wdev_inactive_unlock:
1631 wdev_unlock(wdev);
1632 return true;
1633}
1634
1635static void reg_leave_invalid_chans(struct wiphy *wiphy)
1636{
1637 struct wireless_dev *wdev;
1638 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1639
1640 ASSERT_RTNL();
1641
1642 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1643 if (!reg_wdev_chan_valid(wiphy, wdev))
1644 cfg80211_leave(rdev, wdev);
1645}
1646
1647static void reg_check_chans_work(struct work_struct *work)
1648{
1649 struct cfg80211_registered_device *rdev;
1650
1651 pr_debug("Verifying active interfaces after reg change\n");
1652 rtnl_lock();
1653
1654 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1655 if (!(rdev->wiphy.regulatory_flags &
1656 REGULATORY_IGNORE_STALE_KICKOFF))
1657 reg_leave_invalid_chans(&rdev->wiphy);
1658
1659 rtnl_unlock();
1660}
1661
1662static void reg_check_channels(void)
1663{
1664 /*
1665 * Give usermode a chance to do something nicer (move to another
1666 * channel, orderly disconnection), before forcing a disconnection.
1667 */
1668 mod_delayed_work(system_power_efficient_wq,
1669 ®_check_chans,
1670 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1671}
1672
1673static void wiphy_update_regulatory(struct wiphy *wiphy,
1674 enum nl80211_reg_initiator initiator)
1675{
1676 enum nl80211_band band;
1677 struct regulatory_request *lr = get_last_request();
1678
1679 if (ignore_reg_update(wiphy, initiator)) {
1680 /*
1681 * Regulatory updates set by CORE are ignored for custom
1682 * regulatory cards. Let us notify the changes to the driver,
1683 * as some drivers used this to restore its orig_* reg domain.
1684 */
1685 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1686 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1687 reg_call_notifier(wiphy, lr);
1688 return;
1689 }
1690
1691 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1692
1693 for (band = 0; band < NUM_NL80211_BANDS; band++)
1694 handle_band(wiphy, initiator, wiphy->bands[band]);
1695
1696 reg_process_beacons(wiphy);
1697 reg_process_ht_flags(wiphy);
1698 reg_call_notifier(wiphy, lr);
1699}
1700
1701static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1702{
1703 struct cfg80211_registered_device *rdev;
1704 struct wiphy *wiphy;
1705
1706 ASSERT_RTNL();
1707
1708 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1709 wiphy = &rdev->wiphy;
1710 wiphy_update_regulatory(wiphy, initiator);
1711 }
1712
1713 reg_check_channels();
1714}
1715
1716static void handle_channel_custom(struct wiphy *wiphy,
1717 struct ieee80211_channel *chan,
1718 const struct ieee80211_regdomain *regd)
1719{
1720 u32 bw_flags = 0;
1721 const struct ieee80211_reg_rule *reg_rule = NULL;
1722 const struct ieee80211_power_rule *power_rule = NULL;
1723 u32 bw;
1724
1725 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1726 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1727 regd, bw);
1728 if (!IS_ERR(reg_rule))
1729 break;
1730 }
1731
1732 if (IS_ERR(reg_rule)) {
1733 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1734 chan->center_freq);
1735 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1736 chan->flags |= IEEE80211_CHAN_DISABLED;
1737 } else {
1738 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1739 chan->flags = chan->orig_flags;
1740 }
1741 return;
1742 }
1743
1744 power_rule = ®_rule->power_rule;
1745 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1746
1747 chan->dfs_state_entered = jiffies;
1748 chan->dfs_state = NL80211_DFS_USABLE;
1749
1750 chan->beacon_found = false;
1751
1752 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1753 chan->flags = chan->orig_flags | bw_flags |
1754 map_regdom_flags(reg_rule->flags);
1755 else
1756 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1757
1758 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1759 chan->max_reg_power = chan->max_power =
1760 (int) MBM_TO_DBM(power_rule->max_eirp);
1761
1762 if (chan->flags & IEEE80211_CHAN_RADAR) {
1763 if (reg_rule->dfs_cac_ms)
1764 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1765 else
1766 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1767 }
1768
1769 chan->max_power = chan->max_reg_power;
1770}
1771
1772static void handle_band_custom(struct wiphy *wiphy,
1773 struct ieee80211_supported_band *sband,
1774 const struct ieee80211_regdomain *regd)
1775{
1776 unsigned int i;
1777
1778 if (!sband)
1779 return;
1780
1781 for (i = 0; i < sband->n_channels; i++)
1782 handle_channel_custom(wiphy, &sband->channels[i], regd);
1783}
1784
1785/* Used by drivers prior to wiphy registration */
1786void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1787 const struct ieee80211_regdomain *regd)
1788{
1789 enum nl80211_band band;
1790 unsigned int bands_set = 0;
1791
1792 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1793 "wiphy should have REGULATORY_CUSTOM_REG\n");
1794 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1795
1796 for (band = 0; band < NUM_NL80211_BANDS; band++) {
1797 if (!wiphy->bands[band])
1798 continue;
1799 handle_band_custom(wiphy, wiphy->bands[band], regd);
1800 bands_set++;
1801 }
1802
1803 /*
1804 * no point in calling this if it won't have any effect
1805 * on your device's supported bands.
1806 */
1807 WARN_ON(!bands_set);
1808}
1809EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1810
1811static void reg_set_request_processed(void)
1812{
1813 bool need_more_processing = false;
1814 struct regulatory_request *lr = get_last_request();
1815
1816 lr->processed = true;
1817
1818 spin_lock(®_requests_lock);
1819 if (!list_empty(®_requests_list))
1820 need_more_processing = true;
1821 spin_unlock(®_requests_lock);
1822
1823 cancel_crda_timeout();
1824
1825 if (need_more_processing)
1826 schedule_work(®_work);
1827}
1828
1829/**
1830 * reg_process_hint_core - process core regulatory requests
1831 * @pending_request: a pending core regulatory request
1832 *
1833 * The wireless subsystem can use this function to process
1834 * a regulatory request issued by the regulatory core.
1835 */
1836static enum reg_request_treatment
1837reg_process_hint_core(struct regulatory_request *core_request)
1838{
1839 if (reg_query_database(core_request)) {
1840 core_request->intersect = false;
1841 core_request->processed = false;
1842 reg_update_last_request(core_request);
1843 return REG_REQ_OK;
1844 }
1845
1846 return REG_REQ_IGNORE;
1847}
1848
1849static enum reg_request_treatment
1850__reg_process_hint_user(struct regulatory_request *user_request)
1851{
1852 struct regulatory_request *lr = get_last_request();
1853
1854 if (reg_request_cell_base(user_request))
1855 return reg_ignore_cell_hint(user_request);
1856
1857 if (reg_request_cell_base(lr))
1858 return REG_REQ_IGNORE;
1859
1860 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1861 return REG_REQ_INTERSECT;
1862 /*
1863 * If the user knows better the user should set the regdom
1864 * to their country before the IE is picked up
1865 */
1866 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1867 lr->intersect)
1868 return REG_REQ_IGNORE;
1869 /*
1870 * Process user requests only after previous user/driver/core
1871 * requests have been processed
1872 */
1873 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1874 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1875 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1876 regdom_changes(lr->alpha2))
1877 return REG_REQ_IGNORE;
1878
1879 if (!regdom_changes(user_request->alpha2))
1880 return REG_REQ_ALREADY_SET;
1881
1882 return REG_REQ_OK;
1883}
1884
1885/**
1886 * reg_process_hint_user - process user regulatory requests
1887 * @user_request: a pending user regulatory request
1888 *
1889 * The wireless subsystem can use this function to process
1890 * a regulatory request initiated by userspace.
1891 */
1892static enum reg_request_treatment
1893reg_process_hint_user(struct regulatory_request *user_request)
1894{
1895 enum reg_request_treatment treatment;
1896
1897 treatment = __reg_process_hint_user(user_request);
1898 if (treatment == REG_REQ_IGNORE ||
1899 treatment == REG_REQ_ALREADY_SET)
1900 return REG_REQ_IGNORE;
1901
1902 user_request->intersect = treatment == REG_REQ_INTERSECT;
1903 user_request->processed = false;
1904
1905 if (reg_query_database(user_request)) {
1906 reg_update_last_request(user_request);
1907 user_alpha2[0] = user_request->alpha2[0];
1908 user_alpha2[1] = user_request->alpha2[1];
1909 return REG_REQ_OK;
1910 }
1911
1912 return REG_REQ_IGNORE;
1913}
1914
1915static enum reg_request_treatment
1916__reg_process_hint_driver(struct regulatory_request *driver_request)
1917{
1918 struct regulatory_request *lr = get_last_request();
1919
1920 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1921 if (regdom_changes(driver_request->alpha2))
1922 return REG_REQ_OK;
1923 return REG_REQ_ALREADY_SET;
1924 }
1925
1926 /*
1927 * This would happen if you unplug and plug your card
1928 * back in or if you add a new device for which the previously
1929 * loaded card also agrees on the regulatory domain.
1930 */
1931 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1932 !regdom_changes(driver_request->alpha2))
1933 return REG_REQ_ALREADY_SET;
1934
1935 return REG_REQ_INTERSECT;
1936}
1937
1938/**
1939 * reg_process_hint_driver - process driver regulatory requests
1940 * @driver_request: a pending driver regulatory request
1941 *
1942 * The wireless subsystem can use this function to process
1943 * a regulatory request issued by an 802.11 driver.
1944 *
1945 * Returns one of the different reg request treatment values.
1946 */
1947static enum reg_request_treatment
1948reg_process_hint_driver(struct wiphy *wiphy,
1949 struct regulatory_request *driver_request)
1950{
1951 const struct ieee80211_regdomain *regd, *tmp;
1952 enum reg_request_treatment treatment;
1953
1954 treatment = __reg_process_hint_driver(driver_request);
1955
1956 switch (treatment) {
1957 case REG_REQ_OK:
1958 break;
1959 case REG_REQ_IGNORE:
1960 return REG_REQ_IGNORE;
1961 case REG_REQ_INTERSECT:
1962 case REG_REQ_ALREADY_SET:
1963 regd = reg_copy_regd(get_cfg80211_regdom());
1964 if (IS_ERR(regd))
1965 return REG_REQ_IGNORE;
1966
1967 tmp = get_wiphy_regdom(wiphy);
1968 rcu_assign_pointer(wiphy->regd, regd);
1969 rcu_free_regdom(tmp);
1970 }
1971
1972
1973 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1974 driver_request->processed = false;
1975
1976 /*
1977 * Since CRDA will not be called in this case as we already
1978 * have applied the requested regulatory domain before we just
1979 * inform userspace we have processed the request
1980 */
1981 if (treatment == REG_REQ_ALREADY_SET) {
1982 nl80211_send_reg_change_event(driver_request);
1983 reg_update_last_request(driver_request);
1984 reg_set_request_processed();
1985 return REG_REQ_ALREADY_SET;
1986 }
1987
1988 if (reg_query_database(driver_request)) {
1989 reg_update_last_request(driver_request);
1990 return REG_REQ_OK;
1991 }
1992
1993 return REG_REQ_IGNORE;
1994}
1995
1996static enum reg_request_treatment
1997__reg_process_hint_country_ie(struct wiphy *wiphy,
1998 struct regulatory_request *country_ie_request)
1999{
2000 struct wiphy *last_wiphy = NULL;
2001 struct regulatory_request *lr = get_last_request();
2002
2003 if (reg_request_cell_base(lr)) {
2004 /* Trust a Cell base station over the AP's country IE */
2005 if (regdom_changes(country_ie_request->alpha2))
2006 return REG_REQ_IGNORE;
2007 return REG_REQ_ALREADY_SET;
2008 } else {
2009 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2010 return REG_REQ_IGNORE;
2011 }
2012
2013 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2014 return -EINVAL;
2015
2016 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2017 return REG_REQ_OK;
2018
2019 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2020
2021 if (last_wiphy != wiphy) {
2022 /*
2023 * Two cards with two APs claiming different
2024 * Country IE alpha2s. We could
2025 * intersect them, but that seems unlikely
2026 * to be correct. Reject second one for now.
2027 */
2028 if (regdom_changes(country_ie_request->alpha2))
2029 return REG_REQ_IGNORE;
2030 return REG_REQ_ALREADY_SET;
2031 }
2032
2033 if (regdom_changes(country_ie_request->alpha2))
2034 return REG_REQ_OK;
2035 return REG_REQ_ALREADY_SET;
2036}
2037
2038/**
2039 * reg_process_hint_country_ie - process regulatory requests from country IEs
2040 * @country_ie_request: a regulatory request from a country IE
2041 *
2042 * The wireless subsystem can use this function to process
2043 * a regulatory request issued by a country Information Element.
2044 *
2045 * Returns one of the different reg request treatment values.
2046 */
2047static enum reg_request_treatment
2048reg_process_hint_country_ie(struct wiphy *wiphy,
2049 struct regulatory_request *country_ie_request)
2050{
2051 enum reg_request_treatment treatment;
2052
2053 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2054
2055 switch (treatment) {
2056 case REG_REQ_OK:
2057 break;
2058 case REG_REQ_IGNORE:
2059 return REG_REQ_IGNORE;
2060 case REG_REQ_ALREADY_SET:
2061 reg_free_request(country_ie_request);
2062 return REG_REQ_ALREADY_SET;
2063 case REG_REQ_INTERSECT:
2064 /*
2065 * This doesn't happen yet, not sure we
2066 * ever want to support it for this case.
2067 */
2068 WARN_ONCE(1, "Unexpected intersection for country IEs");
2069 return REG_REQ_IGNORE;
2070 }
2071
2072 country_ie_request->intersect = false;
2073 country_ie_request->processed = false;
2074
2075 if (reg_query_database(country_ie_request)) {
2076 reg_update_last_request(country_ie_request);
2077 return REG_REQ_OK;
2078 }
2079
2080 return REG_REQ_IGNORE;
2081}
2082
2083/* This processes *all* regulatory hints */
2084static void reg_process_hint(struct regulatory_request *reg_request)
2085{
2086 struct wiphy *wiphy = NULL;
2087 enum reg_request_treatment treatment;
2088
2089 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2090 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2091
2092 switch (reg_request->initiator) {
2093 case NL80211_REGDOM_SET_BY_CORE:
2094 treatment = reg_process_hint_core(reg_request);
2095 break;
2096 case NL80211_REGDOM_SET_BY_USER:
2097 treatment = reg_process_hint_user(reg_request);
2098 break;
2099 case NL80211_REGDOM_SET_BY_DRIVER:
2100 if (!wiphy)
2101 goto out_free;
2102 treatment = reg_process_hint_driver(wiphy, reg_request);
2103 break;
2104 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2105 if (!wiphy)
2106 goto out_free;
2107 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2108 break;
2109 default:
2110 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2111 goto out_free;
2112 }
2113
2114 if (treatment == REG_REQ_IGNORE)
2115 goto out_free;
2116
2117 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2118 "unexpected treatment value %d\n", treatment);
2119
2120 /* This is required so that the orig_* parameters are saved.
2121 * NOTE: treatment must be set for any case that reaches here!
2122 */
2123 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2124 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2125 wiphy_update_regulatory(wiphy, reg_request->initiator);
2126 reg_check_channels();
2127 }
2128
2129 return;
2130
2131out_free:
2132 reg_free_request(reg_request);
2133}
2134
2135static bool reg_only_self_managed_wiphys(void)
2136{
2137 struct cfg80211_registered_device *rdev;
2138 struct wiphy *wiphy;
2139 bool self_managed_found = false;
2140
2141 ASSERT_RTNL();
2142
2143 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2144 wiphy = &rdev->wiphy;
2145 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2146 self_managed_found = true;
2147 else
2148 return false;
2149 }
2150
2151 /* make sure at least one self-managed wiphy exists */
2152 return self_managed_found;
2153}
2154
2155/*
2156 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2157 * Regulatory hints come on a first come first serve basis and we
2158 * must process each one atomically.
2159 */
2160static void reg_process_pending_hints(void)
2161{
2162 struct regulatory_request *reg_request, *lr;
2163
2164 lr = get_last_request();
2165
2166 /* When last_request->processed becomes true this will be rescheduled */
2167 if (lr && !lr->processed) {
2168 reg_process_hint(lr);
2169 return;
2170 }
2171
2172 spin_lock(®_requests_lock);
2173
2174 if (list_empty(®_requests_list)) {
2175 spin_unlock(®_requests_lock);
2176 return;
2177 }
2178
2179 reg_request = list_first_entry(®_requests_list,
2180 struct regulatory_request,
2181 list);
2182 list_del_init(®_request->list);
2183
2184 spin_unlock(®_requests_lock);
2185
2186 if (reg_only_self_managed_wiphys()) {
2187 reg_free_request(reg_request);
2188 return;
2189 }
2190
2191 reg_process_hint(reg_request);
2192
2193 lr = get_last_request();
2194
2195 spin_lock(®_requests_lock);
2196 if (!list_empty(®_requests_list) && lr && lr->processed)
2197 schedule_work(®_work);
2198 spin_unlock(®_requests_lock);
2199}
2200
2201/* Processes beacon hints -- this has nothing to do with country IEs */
2202static void reg_process_pending_beacon_hints(void)
2203{
2204 struct cfg80211_registered_device *rdev;
2205 struct reg_beacon *pending_beacon, *tmp;
2206
2207 /* This goes through the _pending_ beacon list */
2208 spin_lock_bh(®_pending_beacons_lock);
2209
2210 list_for_each_entry_safe(pending_beacon, tmp,
2211 ®_pending_beacons, list) {
2212 list_del_init(&pending_beacon->list);
2213
2214 /* Applies the beacon hint to current wiphys */
2215 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2216 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2217
2218 /* Remembers the beacon hint for new wiphys or reg changes */
2219 list_add_tail(&pending_beacon->list, ®_beacon_list);
2220 }
2221
2222 spin_unlock_bh(®_pending_beacons_lock);
2223}
2224
2225static void reg_process_self_managed_hints(void)
2226{
2227 struct cfg80211_registered_device *rdev;
2228 struct wiphy *wiphy;
2229 const struct ieee80211_regdomain *tmp;
2230 const struct ieee80211_regdomain *regd;
2231 enum nl80211_band band;
2232 struct regulatory_request request = {};
2233
2234 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2235 wiphy = &rdev->wiphy;
2236
2237 spin_lock(®_requests_lock);
2238 regd = rdev->requested_regd;
2239 rdev->requested_regd = NULL;
2240 spin_unlock(®_requests_lock);
2241
2242 if (regd == NULL)
2243 continue;
2244
2245 tmp = get_wiphy_regdom(wiphy);
2246 rcu_assign_pointer(wiphy->regd, regd);
2247 rcu_free_regdom(tmp);
2248
2249 for (band = 0; band < NUM_NL80211_BANDS; band++)
2250 handle_band_custom(wiphy, wiphy->bands[band], regd);
2251
2252 reg_process_ht_flags(wiphy);
2253
2254 request.wiphy_idx = get_wiphy_idx(wiphy);
2255 request.alpha2[0] = regd->alpha2[0];
2256 request.alpha2[1] = regd->alpha2[1];
2257 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2258
2259 nl80211_send_wiphy_reg_change_event(&request);
2260 }
2261
2262 reg_check_channels();
2263}
2264
2265static void reg_todo(struct work_struct *work)
2266{
2267 rtnl_lock();
2268 reg_process_pending_hints();
2269 reg_process_pending_beacon_hints();
2270 reg_process_self_managed_hints();
2271 rtnl_unlock();
2272}
2273
2274static void queue_regulatory_request(struct regulatory_request *request)
2275{
2276 request->alpha2[0] = toupper(request->alpha2[0]);
2277 request->alpha2[1] = toupper(request->alpha2[1]);
2278
2279 spin_lock(®_requests_lock);
2280 list_add_tail(&request->list, ®_requests_list);
2281 spin_unlock(®_requests_lock);
2282
2283 schedule_work(®_work);
2284}
2285
2286/*
2287 * Core regulatory hint -- happens during cfg80211_init()
2288 * and when we restore regulatory settings.
2289 */
2290static int regulatory_hint_core(const char *alpha2)
2291{
2292 struct regulatory_request *request;
2293
2294 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2295 if (!request)
2296 return -ENOMEM;
2297
2298 request->alpha2[0] = alpha2[0];
2299 request->alpha2[1] = alpha2[1];
2300 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2301
2302 queue_regulatory_request(request);
2303
2304 return 0;
2305}
2306
2307/* User hints */
2308int regulatory_hint_user(const char *alpha2,
2309 enum nl80211_user_reg_hint_type user_reg_hint_type)
2310{
2311 struct regulatory_request *request;
2312
2313 if (WARN_ON(!alpha2))
2314 return -EINVAL;
2315
2316 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2317 if (!request)
2318 return -ENOMEM;
2319
2320 request->wiphy_idx = WIPHY_IDX_INVALID;
2321 request->alpha2[0] = alpha2[0];
2322 request->alpha2[1] = alpha2[1];
2323 request->initiator = NL80211_REGDOM_SET_BY_USER;
2324 request->user_reg_hint_type = user_reg_hint_type;
2325
2326 /* Allow calling CRDA again */
2327 reset_crda_timeouts();
2328
2329 queue_regulatory_request(request);
2330
2331 return 0;
2332}
2333
2334int regulatory_hint_indoor(bool is_indoor, u32 portid)
2335{
2336 spin_lock(®_indoor_lock);
2337
2338 /* It is possible that more than one user space process is trying to
2339 * configure the indoor setting. To handle such cases, clear the indoor
2340 * setting in case that some process does not think that the device
2341 * is operating in an indoor environment. In addition, if a user space
2342 * process indicates that it is controlling the indoor setting, save its
2343 * portid, i.e., make it the owner.
2344 */
2345 reg_is_indoor = is_indoor;
2346 if (reg_is_indoor) {
2347 if (!reg_is_indoor_portid)
2348 reg_is_indoor_portid = portid;
2349 } else {
2350 reg_is_indoor_portid = 0;
2351 }
2352
2353 spin_unlock(®_indoor_lock);
2354
2355 if (!is_indoor)
2356 reg_check_channels();
2357
2358 return 0;
2359}
2360
2361void regulatory_netlink_notify(u32 portid)
2362{
2363 spin_lock(®_indoor_lock);
2364
2365 if (reg_is_indoor_portid != portid) {
2366 spin_unlock(®_indoor_lock);
2367 return;
2368 }
2369
2370 reg_is_indoor = false;
2371 reg_is_indoor_portid = 0;
2372
2373 spin_unlock(®_indoor_lock);
2374
2375 reg_check_channels();
2376}
2377
2378/* Driver hints */
2379int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2380{
2381 struct regulatory_request *request;
2382
2383 if (WARN_ON(!alpha2 || !wiphy))
2384 return -EINVAL;
2385
2386 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2387
2388 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2389 if (!request)
2390 return -ENOMEM;
2391
2392 request->wiphy_idx = get_wiphy_idx(wiphy);
2393
2394 request->alpha2[0] = alpha2[0];
2395 request->alpha2[1] = alpha2[1];
2396 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2397
2398 /* Allow calling CRDA again */
2399 reset_crda_timeouts();
2400
2401 queue_regulatory_request(request);
2402
2403 return 0;
2404}
2405EXPORT_SYMBOL(regulatory_hint);
2406
2407void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2408 const u8 *country_ie, u8 country_ie_len)
2409{
2410 char alpha2[2];
2411 enum environment_cap env = ENVIRON_ANY;
2412 struct regulatory_request *request = NULL, *lr;
2413
2414 /* IE len must be evenly divisible by 2 */
2415 if (country_ie_len & 0x01)
2416 return;
2417
2418 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2419 return;
2420
2421 request = kzalloc(sizeof(*request), GFP_KERNEL);
2422 if (!request)
2423 return;
2424
2425 alpha2[0] = country_ie[0];
2426 alpha2[1] = country_ie[1];
2427
2428 if (country_ie[2] == 'I')
2429 env = ENVIRON_INDOOR;
2430 else if (country_ie[2] == 'O')
2431 env = ENVIRON_OUTDOOR;
2432
2433 rcu_read_lock();
2434 lr = get_last_request();
2435
2436 if (unlikely(!lr))
2437 goto out;
2438
2439 /*
2440 * We will run this only upon a successful connection on cfg80211.
2441 * We leave conflict resolution to the workqueue, where can hold
2442 * the RTNL.
2443 */
2444 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2445 lr->wiphy_idx != WIPHY_IDX_INVALID)
2446 goto out;
2447
2448 request->wiphy_idx = get_wiphy_idx(wiphy);
2449 request->alpha2[0] = alpha2[0];
2450 request->alpha2[1] = alpha2[1];
2451 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2452 request->country_ie_env = env;
2453
2454 /* Allow calling CRDA again */
2455 reset_crda_timeouts();
2456
2457 queue_regulatory_request(request);
2458 request = NULL;
2459out:
2460 kfree(request);
2461 rcu_read_unlock();
2462}
2463
2464static void restore_alpha2(char *alpha2, bool reset_user)
2465{
2466 /* indicates there is no alpha2 to consider for restoration */
2467 alpha2[0] = '9';
2468 alpha2[1] = '7';
2469
2470 /* The user setting has precedence over the module parameter */
2471 if (is_user_regdom_saved()) {
2472 /* Unless we're asked to ignore it and reset it */
2473 if (reset_user) {
2474 pr_debug("Restoring regulatory settings including user preference\n");
2475 user_alpha2[0] = '9';
2476 user_alpha2[1] = '7';
2477
2478 /*
2479 * If we're ignoring user settings, we still need to
2480 * check the module parameter to ensure we put things
2481 * back as they were for a full restore.
2482 */
2483 if (!is_world_regdom(ieee80211_regdom)) {
2484 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2485 ieee80211_regdom[0], ieee80211_regdom[1]);
2486 alpha2[0] = ieee80211_regdom[0];
2487 alpha2[1] = ieee80211_regdom[1];
2488 }
2489 } else {
2490 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2491 user_alpha2[0], user_alpha2[1]);
2492 alpha2[0] = user_alpha2[0];
2493 alpha2[1] = user_alpha2[1];
2494 }
2495 } else if (!is_world_regdom(ieee80211_regdom)) {
2496 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2497 ieee80211_regdom[0], ieee80211_regdom[1]);
2498 alpha2[0] = ieee80211_regdom[0];
2499 alpha2[1] = ieee80211_regdom[1];
2500 } else
2501 pr_debug("Restoring regulatory settings\n");
2502}
2503
2504static void restore_custom_reg_settings(struct wiphy *wiphy)
2505{
2506 struct ieee80211_supported_band *sband;
2507 enum nl80211_band band;
2508 struct ieee80211_channel *chan;
2509 int i;
2510
2511 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2512 sband = wiphy->bands[band];
2513 if (!sband)
2514 continue;
2515 for (i = 0; i < sband->n_channels; i++) {
2516 chan = &sband->channels[i];
2517 chan->flags = chan->orig_flags;
2518 chan->max_antenna_gain = chan->orig_mag;
2519 chan->max_power = chan->orig_mpwr;
2520 chan->beacon_found = false;
2521 }
2522 }
2523}
2524
2525/*
2526 * Restoring regulatory settings involves ingoring any
2527 * possibly stale country IE information and user regulatory
2528 * settings if so desired, this includes any beacon hints
2529 * learned as we could have traveled outside to another country
2530 * after disconnection. To restore regulatory settings we do
2531 * exactly what we did at bootup:
2532 *
2533 * - send a core regulatory hint
2534 * - send a user regulatory hint if applicable
2535 *
2536 * Device drivers that send a regulatory hint for a specific country
2537 * keep their own regulatory domain on wiphy->regd so that does does
2538 * not need to be remembered.
2539 */
2540static void restore_regulatory_settings(bool reset_user)
2541{
2542 char alpha2[2];
2543 char world_alpha2[2];
2544 struct reg_beacon *reg_beacon, *btmp;
2545 LIST_HEAD(tmp_reg_req_list);
2546 struct cfg80211_registered_device *rdev;
2547
2548 ASSERT_RTNL();
2549
2550 /*
2551 * Clear the indoor setting in case that it is not controlled by user
2552 * space, as otherwise there is no guarantee that the device is still
2553 * operating in an indoor environment.
2554 */
2555 spin_lock(®_indoor_lock);
2556 if (reg_is_indoor && !reg_is_indoor_portid) {
2557 reg_is_indoor = false;
2558 reg_check_channels();
2559 }
2560 spin_unlock(®_indoor_lock);
2561
2562 reset_regdomains(true, &world_regdom);
2563 restore_alpha2(alpha2, reset_user);
2564
2565 /*
2566 * If there's any pending requests we simply
2567 * stash them to a temporary pending queue and
2568 * add then after we've restored regulatory
2569 * settings.
2570 */
2571 spin_lock(®_requests_lock);
2572 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
2573 spin_unlock(®_requests_lock);
2574
2575 /* Clear beacon hints */
2576 spin_lock_bh(®_pending_beacons_lock);
2577 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
2578 list_del(®_beacon->list);
2579 kfree(reg_beacon);
2580 }
2581 spin_unlock_bh(®_pending_beacons_lock);
2582
2583 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
2584 list_del(®_beacon->list);
2585 kfree(reg_beacon);
2586 }
2587
2588 /* First restore to the basic regulatory settings */
2589 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2590 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2591
2592 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2593 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2594 continue;
2595 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2596 restore_custom_reg_settings(&rdev->wiphy);
2597 }
2598
2599 regulatory_hint_core(world_alpha2);
2600
2601 /*
2602 * This restores the ieee80211_regdom module parameter
2603 * preference or the last user requested regulatory
2604 * settings, user regulatory settings takes precedence.
2605 */
2606 if (is_an_alpha2(alpha2))
2607 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2608
2609 spin_lock(®_requests_lock);
2610 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
2611 spin_unlock(®_requests_lock);
2612
2613 pr_debug("Kicking the queue\n");
2614
2615 schedule_work(®_work);
2616}
2617
2618void regulatory_hint_disconnect(void)
2619{
2620 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
2621 restore_regulatory_settings(false);
2622}
2623
2624static bool freq_is_chan_12_13_14(u16 freq)
2625{
2626 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
2627 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
2628 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
2629 return true;
2630 return false;
2631}
2632
2633static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2634{
2635 struct reg_beacon *pending_beacon;
2636
2637 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
2638 if (beacon_chan->center_freq ==
2639 pending_beacon->chan.center_freq)
2640 return true;
2641 return false;
2642}
2643
2644int regulatory_hint_found_beacon(struct wiphy *wiphy,
2645 struct ieee80211_channel *beacon_chan,
2646 gfp_t gfp)
2647{
2648 struct reg_beacon *reg_beacon;
2649 bool processing;
2650
2651 if (beacon_chan->beacon_found ||
2652 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2653 (beacon_chan->band == NL80211_BAND_2GHZ &&
2654 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2655 return 0;
2656
2657 spin_lock_bh(®_pending_beacons_lock);
2658 processing = pending_reg_beacon(beacon_chan);
2659 spin_unlock_bh(®_pending_beacons_lock);
2660
2661 if (processing)
2662 return 0;
2663
2664 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2665 if (!reg_beacon)
2666 return -ENOMEM;
2667
2668 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2669 beacon_chan->center_freq,
2670 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2671 wiphy_name(wiphy));
2672
2673 memcpy(®_beacon->chan, beacon_chan,
2674 sizeof(struct ieee80211_channel));
2675
2676 /*
2677 * Since we can be called from BH or and non-BH context
2678 * we must use spin_lock_bh()
2679 */
2680 spin_lock_bh(®_pending_beacons_lock);
2681 list_add_tail(®_beacon->list, ®_pending_beacons);
2682 spin_unlock_bh(®_pending_beacons_lock);
2683
2684 schedule_work(®_work);
2685
2686 return 0;
2687}
2688
2689static void print_rd_rules(const struct ieee80211_regdomain *rd)
2690{
2691 unsigned int i;
2692 const struct ieee80211_reg_rule *reg_rule = NULL;
2693 const struct ieee80211_freq_range *freq_range = NULL;
2694 const struct ieee80211_power_rule *power_rule = NULL;
2695 char bw[32], cac_time[32];
2696
2697 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2698
2699 for (i = 0; i < rd->n_reg_rules; i++) {
2700 reg_rule = &rd->reg_rules[i];
2701 freq_range = ®_rule->freq_range;
2702 power_rule = ®_rule->power_rule;
2703
2704 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2705 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2706 freq_range->max_bandwidth_khz,
2707 reg_get_max_bandwidth(rd, reg_rule));
2708 else
2709 snprintf(bw, sizeof(bw), "%d KHz",
2710 freq_range->max_bandwidth_khz);
2711
2712 if (reg_rule->flags & NL80211_RRF_DFS)
2713 scnprintf(cac_time, sizeof(cac_time), "%u s",
2714 reg_rule->dfs_cac_ms/1000);
2715 else
2716 scnprintf(cac_time, sizeof(cac_time), "N/A");
2717
2718
2719 /*
2720 * There may not be documentation for max antenna gain
2721 * in certain regions
2722 */
2723 if (power_rule->max_antenna_gain)
2724 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2725 freq_range->start_freq_khz,
2726 freq_range->end_freq_khz,
2727 bw,
2728 power_rule->max_antenna_gain,
2729 power_rule->max_eirp,
2730 cac_time);
2731 else
2732 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2733 freq_range->start_freq_khz,
2734 freq_range->end_freq_khz,
2735 bw,
2736 power_rule->max_eirp,
2737 cac_time);
2738 }
2739}
2740
2741bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2742{
2743 switch (dfs_region) {
2744 case NL80211_DFS_UNSET:
2745 case NL80211_DFS_FCC:
2746 case NL80211_DFS_ETSI:
2747 case NL80211_DFS_JP:
2748 return true;
2749 default:
2750 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
2751 return false;
2752 }
2753}
2754
2755static void print_regdomain(const struct ieee80211_regdomain *rd)
2756{
2757 struct regulatory_request *lr = get_last_request();
2758
2759 if (is_intersected_alpha2(rd->alpha2)) {
2760 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2761 struct cfg80211_registered_device *rdev;
2762 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2763 if (rdev) {
2764 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2765 rdev->country_ie_alpha2[0],
2766 rdev->country_ie_alpha2[1]);
2767 } else
2768 pr_debug("Current regulatory domain intersected:\n");
2769 } else
2770 pr_debug("Current regulatory domain intersected:\n");
2771 } else if (is_world_regdom(rd->alpha2)) {
2772 pr_debug("World regulatory domain updated:\n");
2773 } else {
2774 if (is_unknown_alpha2(rd->alpha2))
2775 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2776 else {
2777 if (reg_request_cell_base(lr))
2778 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2779 rd->alpha2[0], rd->alpha2[1]);
2780 else
2781 pr_debug("Regulatory domain changed to country: %c%c\n",
2782 rd->alpha2[0], rd->alpha2[1]);
2783 }
2784 }
2785
2786 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2787 print_rd_rules(rd);
2788}
2789
2790static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2791{
2792 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2793 print_rd_rules(rd);
2794}
2795
2796static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2797{
2798 if (!is_world_regdom(rd->alpha2))
2799 return -EINVAL;
2800 update_world_regdomain(rd);
2801 return 0;
2802}
2803
2804static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2805 struct regulatory_request *user_request)
2806{
2807 const struct ieee80211_regdomain *intersected_rd = NULL;
2808
2809 if (!regdom_changes(rd->alpha2))
2810 return -EALREADY;
2811
2812 if (!is_valid_rd(rd)) {
2813 pr_err("Invalid regulatory domain detected: %c%c\n",
2814 rd->alpha2[0], rd->alpha2[1]);
2815 print_regdomain_info(rd);
2816 return -EINVAL;
2817 }
2818
2819 if (!user_request->intersect) {
2820 reset_regdomains(false, rd);
2821 return 0;
2822 }
2823
2824 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2825 if (!intersected_rd)
2826 return -EINVAL;
2827
2828 kfree(rd);
2829 rd = NULL;
2830 reset_regdomains(false, intersected_rd);
2831
2832 return 0;
2833}
2834
2835static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2836 struct regulatory_request *driver_request)
2837{
2838 const struct ieee80211_regdomain *regd;
2839 const struct ieee80211_regdomain *intersected_rd = NULL;
2840 const struct ieee80211_regdomain *tmp;
2841 struct wiphy *request_wiphy;
2842
2843 if (is_world_regdom(rd->alpha2))
2844 return -EINVAL;
2845
2846 if (!regdom_changes(rd->alpha2))
2847 return -EALREADY;
2848
2849 if (!is_valid_rd(rd)) {
2850 pr_err("Invalid regulatory domain detected: %c%c\n",
2851 rd->alpha2[0], rd->alpha2[1]);
2852 print_regdomain_info(rd);
2853 return -EINVAL;
2854 }
2855
2856 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2857 if (!request_wiphy)
2858 return -ENODEV;
2859
2860 if (!driver_request->intersect) {
2861 if (request_wiphy->regd)
2862 return -EALREADY;
2863
2864 regd = reg_copy_regd(rd);
2865 if (IS_ERR(regd))
2866 return PTR_ERR(regd);
2867
2868 rcu_assign_pointer(request_wiphy->regd, regd);
2869 reset_regdomains(false, rd);
2870 return 0;
2871 }
2872
2873 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2874 if (!intersected_rd)
2875 return -EINVAL;
2876
2877 /*
2878 * We can trash what CRDA provided now.
2879 * However if a driver requested this specific regulatory
2880 * domain we keep it for its private use
2881 */
2882 tmp = get_wiphy_regdom(request_wiphy);
2883 rcu_assign_pointer(request_wiphy->regd, rd);
2884 rcu_free_regdom(tmp);
2885
2886 rd = NULL;
2887
2888 reset_regdomains(false, intersected_rd);
2889
2890 return 0;
2891}
2892
2893static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2894 struct regulatory_request *country_ie_request)
2895{
2896 struct wiphy *request_wiphy;
2897
2898 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2899 !is_unknown_alpha2(rd->alpha2))
2900 return -EINVAL;
2901
2902 /*
2903 * Lets only bother proceeding on the same alpha2 if the current
2904 * rd is non static (it means CRDA was present and was used last)
2905 * and the pending request came in from a country IE
2906 */
2907
2908 if (!is_valid_rd(rd)) {
2909 pr_err("Invalid regulatory domain detected: %c%c\n",
2910 rd->alpha2[0], rd->alpha2[1]);
2911 print_regdomain_info(rd);
2912 return -EINVAL;
2913 }
2914
2915 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2916 if (!request_wiphy)
2917 return -ENODEV;
2918
2919 if (country_ie_request->intersect)
2920 return -EINVAL;
2921
2922 reset_regdomains(false, rd);
2923 return 0;
2924}
2925
2926/*
2927 * Use this call to set the current regulatory domain. Conflicts with
2928 * multiple drivers can be ironed out later. Caller must've already
2929 * kmalloc'd the rd structure.
2930 */
2931int set_regdom(const struct ieee80211_regdomain *rd,
2932 enum ieee80211_regd_source regd_src)
2933{
2934 struct regulatory_request *lr;
2935 bool user_reset = false;
2936 int r;
2937
2938 if (!reg_is_valid_request(rd->alpha2)) {
2939 kfree(rd);
2940 return -EINVAL;
2941 }
2942
2943 if (regd_src == REGD_SOURCE_CRDA)
2944 reset_crda_timeouts();
2945
2946 lr = get_last_request();
2947
2948 /* Note that this doesn't update the wiphys, this is done below */
2949 switch (lr->initiator) {
2950 case NL80211_REGDOM_SET_BY_CORE:
2951 r = reg_set_rd_core(rd);
2952 break;
2953 case NL80211_REGDOM_SET_BY_USER:
2954 r = reg_set_rd_user(rd, lr);
2955 user_reset = true;
2956 break;
2957 case NL80211_REGDOM_SET_BY_DRIVER:
2958 r = reg_set_rd_driver(rd, lr);
2959 break;
2960 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2961 r = reg_set_rd_country_ie(rd, lr);
2962 break;
2963 default:
2964 WARN(1, "invalid initiator %d\n", lr->initiator);
2965 kfree(rd);
2966 return -EINVAL;
2967 }
2968
2969 if (r) {
2970 switch (r) {
2971 case -EALREADY:
2972 reg_set_request_processed();
2973 break;
2974 default:
2975 /* Back to world regulatory in case of errors */
2976 restore_regulatory_settings(user_reset);
2977 }
2978
2979 kfree(rd);
2980 return r;
2981 }
2982
2983 /* This would make this whole thing pointless */
2984 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2985 return -EINVAL;
2986
2987 /* update all wiphys now with the new established regulatory domain */
2988 update_all_wiphy_regulatory(lr->initiator);
2989
2990 print_regdomain(get_cfg80211_regdom());
2991
2992 nl80211_send_reg_change_event(lr);
2993
2994 reg_set_request_processed();
2995
2996 return 0;
2997}
2998
2999static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3000 struct ieee80211_regdomain *rd)
3001{
3002 const struct ieee80211_regdomain *regd;
3003 const struct ieee80211_regdomain *prev_regd;
3004 struct cfg80211_registered_device *rdev;
3005
3006 if (WARN_ON(!wiphy || !rd))
3007 return -EINVAL;
3008
3009 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3010 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3011 return -EPERM;
3012
3013 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3014 print_regdomain_info(rd);
3015 return -EINVAL;
3016 }
3017
3018 regd = reg_copy_regd(rd);
3019 if (IS_ERR(regd))
3020 return PTR_ERR(regd);
3021
3022 rdev = wiphy_to_rdev(wiphy);
3023
3024 spin_lock(®_requests_lock);
3025 prev_regd = rdev->requested_regd;
3026 rdev->requested_regd = regd;
3027 spin_unlock(®_requests_lock);
3028
3029 kfree(prev_regd);
3030 return 0;
3031}
3032
3033int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3034 struct ieee80211_regdomain *rd)
3035{
3036 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3037
3038 if (ret)
3039 return ret;
3040
3041 schedule_work(®_work);
3042 return 0;
3043}
3044EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3045
3046int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3047 struct ieee80211_regdomain *rd)
3048{
3049 int ret;
3050
3051 ASSERT_RTNL();
3052
3053 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3054 if (ret)
3055 return ret;
3056
3057 /* process the request immediately */
3058 reg_process_self_managed_hints();
3059 return 0;
3060}
3061EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3062
3063void wiphy_regulatory_register(struct wiphy *wiphy)
3064{
3065 struct regulatory_request *lr;
3066
3067 /* self-managed devices ignore external hints */
3068 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3069 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3070 REGULATORY_COUNTRY_IE_IGNORE;
3071
3072 if (!reg_dev_ignore_cell_hint(wiphy))
3073 reg_num_devs_support_basehint++;
3074
3075 lr = get_last_request();
3076 wiphy_update_regulatory(wiphy, lr->initiator);
3077}
3078
3079void wiphy_regulatory_deregister(struct wiphy *wiphy)
3080{
3081 struct wiphy *request_wiphy = NULL;
3082 struct regulatory_request *lr;
3083
3084 lr = get_last_request();
3085
3086 if (!reg_dev_ignore_cell_hint(wiphy))
3087 reg_num_devs_support_basehint--;
3088
3089 rcu_free_regdom(get_wiphy_regdom(wiphy));
3090 RCU_INIT_POINTER(wiphy->regd, NULL);
3091
3092 if (lr)
3093 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3094
3095 if (!request_wiphy || request_wiphy != wiphy)
3096 return;
3097
3098 lr->wiphy_idx = WIPHY_IDX_INVALID;
3099 lr->country_ie_env = ENVIRON_ANY;
3100}
3101
3102/*
3103 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3104 * UNII band definitions
3105 */
3106int cfg80211_get_unii(int freq)
3107{
3108 /* UNII-1 */
3109 if (freq >= 5150 && freq <= 5250)
3110 return 0;
3111
3112 /* UNII-2A */
3113 if (freq > 5250 && freq <= 5350)
3114 return 1;
3115
3116 /* UNII-2B */
3117 if (freq > 5350 && freq <= 5470)
3118 return 2;
3119
3120 /* UNII-2C */
3121 if (freq > 5470 && freq <= 5725)
3122 return 3;
3123
3124 /* UNII-3 */
3125 if (freq > 5725 && freq <= 5825)
3126 return 4;
3127
3128 return -EINVAL;
3129}
3130
3131bool regulatory_indoor_allowed(void)
3132{
3133 return reg_is_indoor;
3134}
3135
3136int __init regulatory_init(void)
3137{
3138 int err = 0;
3139
3140 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3141 if (IS_ERR(reg_pdev))
3142 return PTR_ERR(reg_pdev);
3143
3144 spin_lock_init(®_requests_lock);
3145 spin_lock_init(®_pending_beacons_lock);
3146 spin_lock_init(®_indoor_lock);
3147
3148 reg_regdb_size_check();
3149
3150 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3151
3152 user_alpha2[0] = '9';
3153 user_alpha2[1] = '7';
3154
3155 /* We always try to get an update for the static regdomain */
3156 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3157 if (err) {
3158 if (err == -ENOMEM) {
3159 platform_device_unregister(reg_pdev);
3160 return err;
3161 }
3162 /*
3163 * N.B. kobject_uevent_env() can fail mainly for when we're out
3164 * memory which is handled and propagated appropriately above
3165 * but it can also fail during a netlink_broadcast() or during
3166 * early boot for call_usermodehelper(). For now treat these
3167 * errors as non-fatal.
3168 */
3169 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3170 }
3171
3172 /*
3173 * Finally, if the user set the module parameter treat it
3174 * as a user hint.
3175 */
3176 if (!is_world_regdom(ieee80211_regdom))
3177 regulatory_hint_user(ieee80211_regdom,
3178 NL80211_USER_REG_HINT_USER);
3179
3180 return 0;
3181}
3182
3183void regulatory_exit(void)
3184{
3185 struct regulatory_request *reg_request, *tmp;
3186 struct reg_beacon *reg_beacon, *btmp;
3187
3188 cancel_work_sync(®_work);
3189 cancel_crda_timeout_sync();
3190 cancel_delayed_work_sync(®_check_chans);
3191
3192 /* Lock to suppress warnings */
3193 rtnl_lock();
3194 reset_regdomains(true, NULL);
3195 rtnl_unlock();
3196
3197 dev_set_uevent_suppress(®_pdev->dev, true);
3198
3199 platform_device_unregister(reg_pdev);
3200
3201 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3202 list_del(®_beacon->list);
3203 kfree(reg_beacon);
3204 }
3205
3206 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3207 list_del(®_beacon->list);
3208 kfree(reg_beacon);
3209 }
3210
3211 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
3212 list_del(®_request->list);
3213 kfree(reg_request);
3214 }
3215}
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2022 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/platform_device.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <net/cfg80211.h>
61#include "core.h"
62#include "reg.h"
63#include "rdev-ops.h"
64#include "nl80211.h"
65
66/*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70#define REG_ENFORCE_GRACE_MS 60000
71
72/**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87};
88
89static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96};
97
98/*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105/* To trigger userspace events and load firmware */
106static struct platform_device *reg_pdev;
107
108/*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116/*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121static int reg_num_devs_support_basehint;
122
123/*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128static bool reg_is_indoor;
129static DEFINE_SPINLOCK(reg_indoor_lock);
130
131/* Used to track the userspace process controlling the indoor setting */
132static u32 reg_is_indoor_portid;
133
134static void restore_regulatory_settings(bool reset_user, bool cached);
135static void print_regdomain(const struct ieee80211_regdomain *rd);
136static void reg_process_hint(struct regulatory_request *reg_request);
137
138static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139{
140 return rcu_dereference_rtnl(cfg80211_regdomain);
141}
142
143/*
144 * Returns the regulatory domain associated with the wiphy.
145 *
146 * Requires any of RTNL, wiphy mutex or RCU protection.
147 */
148const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149{
150 return rcu_dereference_check(wiphy->regd,
151 lockdep_is_held(&wiphy->mtx) ||
152 lockdep_rtnl_is_held());
153}
154EXPORT_SYMBOL(get_wiphy_regdom);
155
156static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157{
158 switch (dfs_region) {
159 case NL80211_DFS_UNSET:
160 return "unset";
161 case NL80211_DFS_FCC:
162 return "FCC";
163 case NL80211_DFS_ETSI:
164 return "ETSI";
165 case NL80211_DFS_JP:
166 return "JP";
167 }
168 return "Unknown";
169}
170
171enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172{
173 const struct ieee80211_regdomain *regd = NULL;
174 const struct ieee80211_regdomain *wiphy_regd = NULL;
175 enum nl80211_dfs_regions dfs_region;
176
177 rcu_read_lock();
178 regd = get_cfg80211_regdom();
179 dfs_region = regd->dfs_region;
180
181 if (!wiphy)
182 goto out;
183
184 wiphy_regd = get_wiphy_regdom(wiphy);
185 if (!wiphy_regd)
186 goto out;
187
188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 dfs_region = wiphy_regd->dfs_region;
190 goto out;
191 }
192
193 if (wiphy_regd->dfs_region == regd->dfs_region)
194 goto out;
195
196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 dev_name(&wiphy->dev),
198 reg_dfs_region_str(wiphy_regd->dfs_region),
199 reg_dfs_region_str(regd->dfs_region));
200
201out:
202 rcu_read_unlock();
203
204 return dfs_region;
205}
206
207static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208{
209 if (!r)
210 return;
211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212}
213
214static struct regulatory_request *get_last_request(void)
215{
216 return rcu_dereference_rtnl(last_request);
217}
218
219/* Used to queue up regulatory hints */
220static LIST_HEAD(reg_requests_list);
221static DEFINE_SPINLOCK(reg_requests_lock);
222
223/* Used to queue up beacon hints for review */
224static LIST_HEAD(reg_pending_beacons);
225static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227/* Used to keep track of processed beacon hints */
228static LIST_HEAD(reg_beacon_list);
229
230struct reg_beacon {
231 struct list_head list;
232 struct ieee80211_channel chan;
233};
234
235static void reg_check_chans_work(struct work_struct *work);
236static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238static void reg_todo(struct work_struct *work);
239static DECLARE_WORK(reg_work, reg_todo);
240
241/* We keep a static world regulatory domain in case of the absence of CRDA */
242static const struct ieee80211_regdomain world_regdom = {
243 .n_reg_rules = 8,
244 .alpha2 = "00",
245 .reg_rules = {
246 /* IEEE 802.11b/g, channels 1..11 */
247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 /* IEEE 802.11b/g, channels 12..13. */
249 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 /* IEEE 802.11 channel 14 - Only JP enables
252 * this and for 802.11b only */
253 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 NL80211_RRF_NO_IR |
255 NL80211_RRF_NO_OFDM),
256 /* IEEE 802.11a, channel 36..48 */
257 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_AUTO_BW),
260
261 /* IEEE 802.11a, channel 52..64 - DFS required */
262 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 NL80211_RRF_NO_IR |
264 NL80211_RRF_AUTO_BW |
265 NL80211_RRF_DFS),
266
267 /* IEEE 802.11a, channel 100..144 - DFS required */
268 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 NL80211_RRF_NO_IR |
270 NL80211_RRF_DFS),
271
272 /* IEEE 802.11a, channel 149..165 */
273 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 NL80211_RRF_NO_IR),
275
276 /* IEEE 802.11ad (60GHz), channels 1..3 */
277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 }
279};
280
281/* protected by RTNL */
282static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 &world_regdom;
284
285static char *ieee80211_regdom = "00";
286static char user_alpha2[2];
287static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289module_param(ieee80211_regdom, charp, 0444);
290MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292static void reg_free_request(struct regulatory_request *request)
293{
294 if (request == &core_request_world)
295 return;
296
297 if (request != get_last_request())
298 kfree(request);
299}
300
301static void reg_free_last_request(void)
302{
303 struct regulatory_request *lr = get_last_request();
304
305 if (lr != &core_request_world && lr)
306 kfree_rcu(lr, rcu_head);
307}
308
309static void reg_update_last_request(struct regulatory_request *request)
310{
311 struct regulatory_request *lr;
312
313 lr = get_last_request();
314 if (lr == request)
315 return;
316
317 reg_free_last_request();
318 rcu_assign_pointer(last_request, request);
319}
320
321static void reset_regdomains(bool full_reset,
322 const struct ieee80211_regdomain *new_regdom)
323{
324 const struct ieee80211_regdomain *r;
325
326 ASSERT_RTNL();
327
328 r = get_cfg80211_regdom();
329
330 /* avoid freeing static information or freeing something twice */
331 if (r == cfg80211_world_regdom)
332 r = NULL;
333 if (cfg80211_world_regdom == &world_regdom)
334 cfg80211_world_regdom = NULL;
335 if (r == &world_regdom)
336 r = NULL;
337
338 rcu_free_regdom(r);
339 rcu_free_regdom(cfg80211_world_regdom);
340
341 cfg80211_world_regdom = &world_regdom;
342 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344 if (!full_reset)
345 return;
346
347 reg_update_last_request(&core_request_world);
348}
349
350/*
351 * Dynamic world regulatory domain requested by the wireless
352 * core upon initialization
353 */
354static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355{
356 struct regulatory_request *lr;
357
358 lr = get_last_request();
359
360 WARN_ON(!lr);
361
362 reset_regdomains(false, rd);
363
364 cfg80211_world_regdom = rd;
365}
366
367bool is_world_regdom(const char *alpha2)
368{
369 if (!alpha2)
370 return false;
371 return alpha2[0] == '0' && alpha2[1] == '0';
372}
373
374static bool is_alpha2_set(const char *alpha2)
375{
376 if (!alpha2)
377 return false;
378 return alpha2[0] && alpha2[1];
379}
380
381static bool is_unknown_alpha2(const char *alpha2)
382{
383 if (!alpha2)
384 return false;
385 /*
386 * Special case where regulatory domain was built by driver
387 * but a specific alpha2 cannot be determined
388 */
389 return alpha2[0] == '9' && alpha2[1] == '9';
390}
391
392static bool is_intersected_alpha2(const char *alpha2)
393{
394 if (!alpha2)
395 return false;
396 /*
397 * Special case where regulatory domain is the
398 * result of an intersection between two regulatory domain
399 * structures
400 */
401 return alpha2[0] == '9' && alpha2[1] == '8';
402}
403
404static bool is_an_alpha2(const char *alpha2)
405{
406 if (!alpha2)
407 return false;
408 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409}
410
411static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412{
413 if (!alpha2_x || !alpha2_y)
414 return false;
415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416}
417
418static bool regdom_changes(const char *alpha2)
419{
420 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422 if (!r)
423 return true;
424 return !alpha2_equal(r->alpha2, alpha2);
425}
426
427/*
428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430 * has ever been issued.
431 */
432static bool is_user_regdom_saved(void)
433{
434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 return false;
436
437 /* This would indicate a mistake on the design */
438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 "Unexpected user alpha2: %c%c\n",
440 user_alpha2[0], user_alpha2[1]))
441 return false;
442
443 return true;
444}
445
446static const struct ieee80211_regdomain *
447reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448{
449 struct ieee80211_regdomain *regd;
450 unsigned int i;
451
452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 GFP_KERNEL);
454 if (!regd)
455 return ERR_PTR(-ENOMEM);
456
457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459 for (i = 0; i < src_regd->n_reg_rules; i++)
460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
461 sizeof(struct ieee80211_reg_rule));
462
463 return regd;
464}
465
466static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467{
468 ASSERT_RTNL();
469
470 if (!IS_ERR(cfg80211_user_regdom))
471 kfree(cfg80211_user_regdom);
472 cfg80211_user_regdom = reg_copy_regd(rd);
473}
474
475struct reg_regdb_apply_request {
476 struct list_head list;
477 const struct ieee80211_regdomain *regdom;
478};
479
480static LIST_HEAD(reg_regdb_apply_list);
481static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483static void reg_regdb_apply(struct work_struct *work)
484{
485 struct reg_regdb_apply_request *request;
486
487 rtnl_lock();
488
489 mutex_lock(®_regdb_apply_mutex);
490 while (!list_empty(®_regdb_apply_list)) {
491 request = list_first_entry(®_regdb_apply_list,
492 struct reg_regdb_apply_request,
493 list);
494 list_del(&request->list);
495
496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 kfree(request);
498 }
499 mutex_unlock(®_regdb_apply_mutex);
500
501 rtnl_unlock();
502}
503
504static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507{
508 struct reg_regdb_apply_request *request;
509
510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 if (!request) {
512 kfree(regdom);
513 return -ENOMEM;
514 }
515
516 request->regdom = regdom;
517
518 mutex_lock(®_regdb_apply_mutex);
519 list_add_tail(&request->list, ®_regdb_apply_list);
520 mutex_unlock(®_regdb_apply_mutex);
521
522 schedule_work(®_regdb_work);
523 return 0;
524}
525
526#ifdef CONFIG_CFG80211_CRDA_SUPPORT
527/* Max number of consecutive attempts to communicate with CRDA */
528#define REG_MAX_CRDA_TIMEOUTS 10
529
530static u32 reg_crda_timeouts;
531
532static void crda_timeout_work(struct work_struct *work);
533static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535static void crda_timeout_work(struct work_struct *work)
536{
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 rtnl_lock();
539 reg_crda_timeouts++;
540 restore_regulatory_settings(true, false);
541 rtnl_unlock();
542}
543
544static void cancel_crda_timeout(void)
545{
546 cancel_delayed_work(&crda_timeout);
547}
548
549static void cancel_crda_timeout_sync(void)
550{
551 cancel_delayed_work_sync(&crda_timeout);
552}
553
554static void reset_crda_timeouts(void)
555{
556 reg_crda_timeouts = 0;
557}
558
559/*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
563static int call_crda(const char *alpha2)
564{
565 char country[12];
566 char *env[] = { country, NULL };
567 int ret;
568
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
571
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 return -EINVAL;
575 }
576
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
580 else
581 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
584 if (ret)
585 return ret;
586
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
589 return 0;
590}
591#else
592static inline void cancel_crda_timeout(void) {}
593static inline void cancel_crda_timeout_sync(void) {}
594static inline void reset_crda_timeouts(void) {}
595static inline int call_crda(const char *alpha2)
596{
597 return -ENODATA;
598}
599#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601/* code to directly load a firmware database through request_firmware */
602static const struct fwdb_header *regdb;
603
604struct fwdb_country {
605 u8 alpha2[2];
606 __be16 coll_ptr;
607 /* this struct cannot be extended */
608} __packed __aligned(4);
609
610struct fwdb_collection {
611 u8 len;
612 u8 n_rules;
613 u8 dfs_region;
614 /* no optional data yet */
615 /* aligned to 2, then followed by __be16 array of rule pointers */
616} __packed __aligned(4);
617
618enum fwdb_flags {
619 FWDB_FLAG_NO_OFDM = BIT(0),
620 FWDB_FLAG_NO_OUTDOOR = BIT(1),
621 FWDB_FLAG_DFS = BIT(2),
622 FWDB_FLAG_NO_IR = BIT(3),
623 FWDB_FLAG_AUTO_BW = BIT(4),
624};
625
626struct fwdb_wmm_ac {
627 u8 ecw;
628 u8 aifsn;
629 __be16 cot;
630} __packed;
631
632struct fwdb_wmm_rule {
633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635} __packed;
636
637struct fwdb_rule {
638 u8 len;
639 u8 flags;
640 __be16 max_eirp;
641 __be32 start, end, max_bw;
642 /* start of optional data */
643 __be16 cac_timeout;
644 __be16 wmm_ptr;
645} __packed __aligned(4);
646
647#define FWDB_MAGIC 0x52474442
648#define FWDB_VERSION 20
649
650struct fwdb_header {
651 __be32 magic;
652 __be32 version;
653 struct fwdb_country country[];
654} __packed __aligned(4);
655
656static int ecw2cw(int ecw)
657{
658 return (1 << ecw) - 1;
659}
660
661static bool valid_wmm(struct fwdb_wmm_rule *rule)
662{
663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 int i;
665
666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 u8 aifsn = ac[i].aifsn;
670
671 if (cw_min >= cw_max)
672 return false;
673
674 if (aifsn < 1)
675 return false;
676 }
677
678 return true;
679}
680
681static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682{
683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685 if ((u8 *)rule + sizeof(rule->len) > data + size)
686 return false;
687
688 /* mandatory fields */
689 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 return false;
691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 struct fwdb_wmm_rule *wmm;
694
695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 return false;
697
698 wmm = (void *)(data + wmm_ptr);
699
700 if (!valid_wmm(wmm))
701 return false;
702 }
703 return true;
704}
705
706static bool valid_country(const u8 *data, unsigned int size,
707 const struct fwdb_country *country)
708{
709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 struct fwdb_collection *coll = (void *)(data + ptr);
711 __be16 *rules_ptr;
712 unsigned int i;
713
714 /* make sure we can read len/n_rules */
715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 return false;
717
718 /* make sure base struct and all rules fit */
719 if ((u8 *)coll + ALIGN(coll->len, 2) +
720 (coll->n_rules * 2) > data + size)
721 return false;
722
723 /* mandatory fields must exist */
724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 return false;
726
727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729 for (i = 0; i < coll->n_rules; i++) {
730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732 if (!valid_rule(data, size, rule_ptr))
733 return false;
734 }
735
736 return true;
737}
738
739#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740static struct key *builtin_regdb_keys;
741
742static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
743{
744 const u8 *end = p + buflen;
745 size_t plen;
746 key_ref_t key;
747
748 while (p < end) {
749 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750 * than 256 bytes in size.
751 */
752 if (end - p < 4)
753 goto dodgy_cert;
754 if (p[0] != 0x30 &&
755 p[1] != 0x82)
756 goto dodgy_cert;
757 plen = (p[2] << 8) | p[3];
758 plen += 4;
759 if (plen > end - p)
760 goto dodgy_cert;
761
762 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763 "asymmetric", NULL, p, plen,
764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 KEY_USR_VIEW | KEY_USR_READ),
766 KEY_ALLOC_NOT_IN_QUOTA |
767 KEY_ALLOC_BUILT_IN |
768 KEY_ALLOC_BYPASS_RESTRICTION);
769 if (IS_ERR(key)) {
770 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
771 PTR_ERR(key));
772 } else {
773 pr_notice("Loaded X.509 cert '%s'\n",
774 key_ref_to_ptr(key)->description);
775 key_ref_put(key);
776 }
777 p += plen;
778 }
779
780 return;
781
782dodgy_cert:
783 pr_err("Problem parsing in-kernel X.509 certificate list\n");
784}
785
786static int __init load_builtin_regdb_keys(void)
787{
788 builtin_regdb_keys =
789 keyring_alloc(".builtin_regdb_keys",
790 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794 if (IS_ERR(builtin_regdb_keys))
795 return PTR_ERR(builtin_regdb_keys);
796
797 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
798
799#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
801#endif
802#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
805#endif
806
807 return 0;
808}
809
810MODULE_FIRMWARE("regulatory.db.p7s");
811
812static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
813{
814 const struct firmware *sig;
815 bool result;
816
817 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
818 return false;
819
820 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
821 builtin_regdb_keys,
822 VERIFYING_UNSPECIFIED_SIGNATURE,
823 NULL, NULL) == 0;
824
825 release_firmware(sig);
826
827 return result;
828}
829
830static void free_regdb_keyring(void)
831{
832 key_put(builtin_regdb_keys);
833}
834#else
835static int load_builtin_regdb_keys(void)
836{
837 return 0;
838}
839
840static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
841{
842 return true;
843}
844
845static void free_regdb_keyring(void)
846{
847}
848#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
849
850static bool valid_regdb(const u8 *data, unsigned int size)
851{
852 const struct fwdb_header *hdr = (void *)data;
853 const struct fwdb_country *country;
854
855 if (size < sizeof(*hdr))
856 return false;
857
858 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
859 return false;
860
861 if (hdr->version != cpu_to_be32(FWDB_VERSION))
862 return false;
863
864 if (!regdb_has_valid_signature(data, size))
865 return false;
866
867 country = &hdr->country[0];
868 while ((u8 *)(country + 1) <= data + size) {
869 if (!country->coll_ptr)
870 break;
871 if (!valid_country(data, size, country))
872 return false;
873 country++;
874 }
875
876 return true;
877}
878
879static void set_wmm_rule(const struct fwdb_header *db,
880 const struct fwdb_country *country,
881 const struct fwdb_rule *rule,
882 struct ieee80211_reg_rule *rrule)
883{
884 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
885 struct fwdb_wmm_rule *wmm;
886 unsigned int i, wmm_ptr;
887
888 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
889 wmm = (void *)((u8 *)db + wmm_ptr);
890
891 if (!valid_wmm(wmm)) {
892 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
893 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
894 country->alpha2[0], country->alpha2[1]);
895 return;
896 }
897
898 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
899 wmm_rule->client[i].cw_min =
900 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
901 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
902 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
903 wmm_rule->client[i].cot =
904 1000 * be16_to_cpu(wmm->client[i].cot);
905 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
906 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
907 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
908 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
909 }
910
911 rrule->has_wmm = true;
912}
913
914static int __regdb_query_wmm(const struct fwdb_header *db,
915 const struct fwdb_country *country, int freq,
916 struct ieee80211_reg_rule *rrule)
917{
918 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
919 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
920 int i;
921
922 for (i = 0; i < coll->n_rules; i++) {
923 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
924 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
925 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
926
927 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
928 continue;
929
930 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
931 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
932 set_wmm_rule(db, country, rule, rrule);
933 return 0;
934 }
935 }
936
937 return -ENODATA;
938}
939
940int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
941{
942 const struct fwdb_header *hdr = regdb;
943 const struct fwdb_country *country;
944
945 if (!regdb)
946 return -ENODATA;
947
948 if (IS_ERR(regdb))
949 return PTR_ERR(regdb);
950
951 country = &hdr->country[0];
952 while (country->coll_ptr) {
953 if (alpha2_equal(alpha2, country->alpha2))
954 return __regdb_query_wmm(regdb, country, freq, rule);
955
956 country++;
957 }
958
959 return -ENODATA;
960}
961EXPORT_SYMBOL(reg_query_regdb_wmm);
962
963static int regdb_query_country(const struct fwdb_header *db,
964 const struct fwdb_country *country)
965{
966 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
967 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
968 struct ieee80211_regdomain *regdom;
969 unsigned int i;
970
971 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
972 GFP_KERNEL);
973 if (!regdom)
974 return -ENOMEM;
975
976 regdom->n_reg_rules = coll->n_rules;
977 regdom->alpha2[0] = country->alpha2[0];
978 regdom->alpha2[1] = country->alpha2[1];
979 regdom->dfs_region = coll->dfs_region;
980
981 for (i = 0; i < regdom->n_reg_rules; i++) {
982 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
983 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
984 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
985 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
986
987 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
988 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
989 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
990
991 rrule->power_rule.max_antenna_gain = 0;
992 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
993
994 rrule->flags = 0;
995 if (rule->flags & FWDB_FLAG_NO_OFDM)
996 rrule->flags |= NL80211_RRF_NO_OFDM;
997 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
998 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
999 if (rule->flags & FWDB_FLAG_DFS)
1000 rrule->flags |= NL80211_RRF_DFS;
1001 if (rule->flags & FWDB_FLAG_NO_IR)
1002 rrule->flags |= NL80211_RRF_NO_IR;
1003 if (rule->flags & FWDB_FLAG_AUTO_BW)
1004 rrule->flags |= NL80211_RRF_AUTO_BW;
1005
1006 rrule->dfs_cac_ms = 0;
1007
1008 /* handle optional data */
1009 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1010 rrule->dfs_cac_ms =
1011 1000 * be16_to_cpu(rule->cac_timeout);
1012 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1013 set_wmm_rule(db, country, rule, rrule);
1014 }
1015
1016 return reg_schedule_apply(regdom);
1017}
1018
1019static int query_regdb(const char *alpha2)
1020{
1021 const struct fwdb_header *hdr = regdb;
1022 const struct fwdb_country *country;
1023
1024 ASSERT_RTNL();
1025
1026 if (IS_ERR(regdb))
1027 return PTR_ERR(regdb);
1028
1029 country = &hdr->country[0];
1030 while (country->coll_ptr) {
1031 if (alpha2_equal(alpha2, country->alpha2))
1032 return regdb_query_country(regdb, country);
1033 country++;
1034 }
1035
1036 return -ENODATA;
1037}
1038
1039static void regdb_fw_cb(const struct firmware *fw, void *context)
1040{
1041 int set_error = 0;
1042 bool restore = true;
1043 void *db;
1044
1045 if (!fw) {
1046 pr_info("failed to load regulatory.db\n");
1047 set_error = -ENODATA;
1048 } else if (!valid_regdb(fw->data, fw->size)) {
1049 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1050 set_error = -EINVAL;
1051 }
1052
1053 rtnl_lock();
1054 if (regdb && !IS_ERR(regdb)) {
1055 /* negative case - a bug
1056 * positive case - can happen due to race in case of multiple cb's in
1057 * queue, due to usage of asynchronous callback
1058 *
1059 * Either case, just restore and free new db.
1060 */
1061 } else if (set_error) {
1062 regdb = ERR_PTR(set_error);
1063 } else if (fw) {
1064 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1065 if (db) {
1066 regdb = db;
1067 restore = context && query_regdb(context);
1068 } else {
1069 restore = true;
1070 }
1071 }
1072
1073 if (restore)
1074 restore_regulatory_settings(true, false);
1075
1076 rtnl_unlock();
1077
1078 kfree(context);
1079
1080 release_firmware(fw);
1081}
1082
1083MODULE_FIRMWARE("regulatory.db");
1084
1085static int query_regdb_file(const char *alpha2)
1086{
1087 int err;
1088
1089 ASSERT_RTNL();
1090
1091 if (regdb)
1092 return query_regdb(alpha2);
1093
1094 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1095 if (!alpha2)
1096 return -ENOMEM;
1097
1098 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1099 ®_pdev->dev, GFP_KERNEL,
1100 (void *)alpha2, regdb_fw_cb);
1101 if (err)
1102 kfree(alpha2);
1103
1104 return err;
1105}
1106
1107int reg_reload_regdb(void)
1108{
1109 const struct firmware *fw;
1110 void *db;
1111 int err;
1112 const struct ieee80211_regdomain *current_regdomain;
1113 struct regulatory_request *request;
1114
1115 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1116 if (err)
1117 return err;
1118
1119 if (!valid_regdb(fw->data, fw->size)) {
1120 err = -ENODATA;
1121 goto out;
1122 }
1123
1124 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1125 if (!db) {
1126 err = -ENOMEM;
1127 goto out;
1128 }
1129
1130 rtnl_lock();
1131 if (!IS_ERR_OR_NULL(regdb))
1132 kfree(regdb);
1133 regdb = db;
1134
1135 /* reset regulatory domain */
1136 current_regdomain = get_cfg80211_regdom();
1137
1138 request = kzalloc(sizeof(*request), GFP_KERNEL);
1139 if (!request) {
1140 err = -ENOMEM;
1141 goto out_unlock;
1142 }
1143
1144 request->wiphy_idx = WIPHY_IDX_INVALID;
1145 request->alpha2[0] = current_regdomain->alpha2[0];
1146 request->alpha2[1] = current_regdomain->alpha2[1];
1147 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1148 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1149
1150 reg_process_hint(request);
1151
1152out_unlock:
1153 rtnl_unlock();
1154 out:
1155 release_firmware(fw);
1156 return err;
1157}
1158
1159static bool reg_query_database(struct regulatory_request *request)
1160{
1161 if (query_regdb_file(request->alpha2) == 0)
1162 return true;
1163
1164 if (call_crda(request->alpha2) == 0)
1165 return true;
1166
1167 return false;
1168}
1169
1170bool reg_is_valid_request(const char *alpha2)
1171{
1172 struct regulatory_request *lr = get_last_request();
1173
1174 if (!lr || lr->processed)
1175 return false;
1176
1177 return alpha2_equal(lr->alpha2, alpha2);
1178}
1179
1180static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1181{
1182 struct regulatory_request *lr = get_last_request();
1183
1184 /*
1185 * Follow the driver's regulatory domain, if present, unless a country
1186 * IE has been processed or a user wants to help complaince further
1187 */
1188 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1189 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1190 wiphy->regd)
1191 return get_wiphy_regdom(wiphy);
1192
1193 return get_cfg80211_regdom();
1194}
1195
1196static unsigned int
1197reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1198 const struct ieee80211_reg_rule *rule)
1199{
1200 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1201 const struct ieee80211_freq_range *freq_range_tmp;
1202 const struct ieee80211_reg_rule *tmp;
1203 u32 start_freq, end_freq, idx, no;
1204
1205 for (idx = 0; idx < rd->n_reg_rules; idx++)
1206 if (rule == &rd->reg_rules[idx])
1207 break;
1208
1209 if (idx == rd->n_reg_rules)
1210 return 0;
1211
1212 /* get start_freq */
1213 no = idx;
1214
1215 while (no) {
1216 tmp = &rd->reg_rules[--no];
1217 freq_range_tmp = &tmp->freq_range;
1218
1219 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1220 break;
1221
1222 freq_range = freq_range_tmp;
1223 }
1224
1225 start_freq = freq_range->start_freq_khz;
1226
1227 /* get end_freq */
1228 freq_range = &rule->freq_range;
1229 no = idx;
1230
1231 while (no < rd->n_reg_rules - 1) {
1232 tmp = &rd->reg_rules[++no];
1233 freq_range_tmp = &tmp->freq_range;
1234
1235 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1236 break;
1237
1238 freq_range = freq_range_tmp;
1239 }
1240
1241 end_freq = freq_range->end_freq_khz;
1242
1243 return end_freq - start_freq;
1244}
1245
1246unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1247 const struct ieee80211_reg_rule *rule)
1248{
1249 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1250
1251 if (rule->flags & NL80211_RRF_NO_320MHZ)
1252 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1253 if (rule->flags & NL80211_RRF_NO_160MHZ)
1254 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1255 if (rule->flags & NL80211_RRF_NO_80MHZ)
1256 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1257
1258 /*
1259 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1260 * are not allowed.
1261 */
1262 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1263 rule->flags & NL80211_RRF_NO_HT40PLUS)
1264 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1265
1266 return bw;
1267}
1268
1269/* Sanity check on a regulatory rule */
1270static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1271{
1272 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1273 u32 freq_diff;
1274
1275 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1276 return false;
1277
1278 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1279 return false;
1280
1281 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1282
1283 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1284 freq_range->max_bandwidth_khz > freq_diff)
1285 return false;
1286
1287 return true;
1288}
1289
1290static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1291{
1292 const struct ieee80211_reg_rule *reg_rule = NULL;
1293 unsigned int i;
1294
1295 if (!rd->n_reg_rules)
1296 return false;
1297
1298 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1299 return false;
1300
1301 for (i = 0; i < rd->n_reg_rules; i++) {
1302 reg_rule = &rd->reg_rules[i];
1303 if (!is_valid_reg_rule(reg_rule))
1304 return false;
1305 }
1306
1307 return true;
1308}
1309
1310/**
1311 * freq_in_rule_band - tells us if a frequency is in a frequency band
1312 * @freq_range: frequency rule we want to query
1313 * @freq_khz: frequency we are inquiring about
1314 *
1315 * This lets us know if a specific frequency rule is or is not relevant to
1316 * a specific frequency's band. Bands are device specific and artificial
1317 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1318 * however it is safe for now to assume that a frequency rule should not be
1319 * part of a frequency's band if the start freq or end freq are off by more
1320 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1321 * 60 GHz band.
1322 * This resolution can be lowered and should be considered as we add
1323 * regulatory rule support for other "bands".
1324 **/
1325static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1326 u32 freq_khz)
1327{
1328#define ONE_GHZ_IN_KHZ 1000000
1329 /*
1330 * From 802.11ad: directional multi-gigabit (DMG):
1331 * Pertaining to operation in a frequency band containing a channel
1332 * with the Channel starting frequency above 45 GHz.
1333 */
1334 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1335 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1336 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1337 return true;
1338 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1339 return true;
1340 return false;
1341#undef ONE_GHZ_IN_KHZ
1342}
1343
1344/*
1345 * Later on we can perhaps use the more restrictive DFS
1346 * region but we don't have information for that yet so
1347 * for now simply disallow conflicts.
1348 */
1349static enum nl80211_dfs_regions
1350reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1351 const enum nl80211_dfs_regions dfs_region2)
1352{
1353 if (dfs_region1 != dfs_region2)
1354 return NL80211_DFS_UNSET;
1355 return dfs_region1;
1356}
1357
1358static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1359 const struct ieee80211_wmm_ac *wmm_ac2,
1360 struct ieee80211_wmm_ac *intersect)
1361{
1362 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1363 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1364 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1365 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1366}
1367
1368/*
1369 * Helper for regdom_intersect(), this does the real
1370 * mathematical intersection fun
1371 */
1372static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1373 const struct ieee80211_regdomain *rd2,
1374 const struct ieee80211_reg_rule *rule1,
1375 const struct ieee80211_reg_rule *rule2,
1376 struct ieee80211_reg_rule *intersected_rule)
1377{
1378 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1379 struct ieee80211_freq_range *freq_range;
1380 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1381 struct ieee80211_power_rule *power_rule;
1382 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1383 struct ieee80211_wmm_rule *wmm_rule;
1384 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1385
1386 freq_range1 = &rule1->freq_range;
1387 freq_range2 = &rule2->freq_range;
1388 freq_range = &intersected_rule->freq_range;
1389
1390 power_rule1 = &rule1->power_rule;
1391 power_rule2 = &rule2->power_rule;
1392 power_rule = &intersected_rule->power_rule;
1393
1394 wmm_rule1 = &rule1->wmm_rule;
1395 wmm_rule2 = &rule2->wmm_rule;
1396 wmm_rule = &intersected_rule->wmm_rule;
1397
1398 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1399 freq_range2->start_freq_khz);
1400 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1401 freq_range2->end_freq_khz);
1402
1403 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1404 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1405
1406 if (rule1->flags & NL80211_RRF_AUTO_BW)
1407 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1408 if (rule2->flags & NL80211_RRF_AUTO_BW)
1409 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1410
1411 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1412
1413 intersected_rule->flags = rule1->flags | rule2->flags;
1414
1415 /*
1416 * In case NL80211_RRF_AUTO_BW requested for both rules
1417 * set AUTO_BW in intersected rule also. Next we will
1418 * calculate BW correctly in handle_channel function.
1419 * In other case remove AUTO_BW flag while we calculate
1420 * maximum bandwidth correctly and auto calculation is
1421 * not required.
1422 */
1423 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1424 (rule2->flags & NL80211_RRF_AUTO_BW))
1425 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1426 else
1427 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1428
1429 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1430 if (freq_range->max_bandwidth_khz > freq_diff)
1431 freq_range->max_bandwidth_khz = freq_diff;
1432
1433 power_rule->max_eirp = min(power_rule1->max_eirp,
1434 power_rule2->max_eirp);
1435 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1436 power_rule2->max_antenna_gain);
1437
1438 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1439 rule2->dfs_cac_ms);
1440
1441 if (rule1->has_wmm && rule2->has_wmm) {
1442 u8 ac;
1443
1444 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1445 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1446 &wmm_rule2->client[ac],
1447 &wmm_rule->client[ac]);
1448 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1449 &wmm_rule2->ap[ac],
1450 &wmm_rule->ap[ac]);
1451 }
1452
1453 intersected_rule->has_wmm = true;
1454 } else if (rule1->has_wmm) {
1455 *wmm_rule = *wmm_rule1;
1456 intersected_rule->has_wmm = true;
1457 } else if (rule2->has_wmm) {
1458 *wmm_rule = *wmm_rule2;
1459 intersected_rule->has_wmm = true;
1460 } else {
1461 intersected_rule->has_wmm = false;
1462 }
1463
1464 if (!is_valid_reg_rule(intersected_rule))
1465 return -EINVAL;
1466
1467 return 0;
1468}
1469
1470/* check whether old rule contains new rule */
1471static bool rule_contains(struct ieee80211_reg_rule *r1,
1472 struct ieee80211_reg_rule *r2)
1473{
1474 /* for simplicity, currently consider only same flags */
1475 if (r1->flags != r2->flags)
1476 return false;
1477
1478 /* verify r1 is more restrictive */
1479 if ((r1->power_rule.max_antenna_gain >
1480 r2->power_rule.max_antenna_gain) ||
1481 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1482 return false;
1483
1484 /* make sure r2's range is contained within r1 */
1485 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1486 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1487 return false;
1488
1489 /* and finally verify that r1.max_bw >= r2.max_bw */
1490 if (r1->freq_range.max_bandwidth_khz <
1491 r2->freq_range.max_bandwidth_khz)
1492 return false;
1493
1494 return true;
1495}
1496
1497/* add or extend current rules. do nothing if rule is already contained */
1498static void add_rule(struct ieee80211_reg_rule *rule,
1499 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1500{
1501 struct ieee80211_reg_rule *tmp_rule;
1502 int i;
1503
1504 for (i = 0; i < *n_rules; i++) {
1505 tmp_rule = ®_rules[i];
1506 /* rule is already contained - do nothing */
1507 if (rule_contains(tmp_rule, rule))
1508 return;
1509
1510 /* extend rule if possible */
1511 if (rule_contains(rule, tmp_rule)) {
1512 memcpy(tmp_rule, rule, sizeof(*rule));
1513 return;
1514 }
1515 }
1516
1517 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1518 (*n_rules)++;
1519}
1520
1521/**
1522 * regdom_intersect - do the intersection between two regulatory domains
1523 * @rd1: first regulatory domain
1524 * @rd2: second regulatory domain
1525 *
1526 * Use this function to get the intersection between two regulatory domains.
1527 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1528 * as no one single alpha2 can represent this regulatory domain.
1529 *
1530 * Returns a pointer to the regulatory domain structure which will hold the
1531 * resulting intersection of rules between rd1 and rd2. We will
1532 * kzalloc() this structure for you.
1533 */
1534static struct ieee80211_regdomain *
1535regdom_intersect(const struct ieee80211_regdomain *rd1,
1536 const struct ieee80211_regdomain *rd2)
1537{
1538 int r;
1539 unsigned int x, y;
1540 unsigned int num_rules = 0;
1541 const struct ieee80211_reg_rule *rule1, *rule2;
1542 struct ieee80211_reg_rule intersected_rule;
1543 struct ieee80211_regdomain *rd;
1544
1545 if (!rd1 || !rd2)
1546 return NULL;
1547
1548 /*
1549 * First we get a count of the rules we'll need, then we actually
1550 * build them. This is to so we can malloc() and free() a
1551 * regdomain once. The reason we use reg_rules_intersect() here
1552 * is it will return -EINVAL if the rule computed makes no sense.
1553 * All rules that do check out OK are valid.
1554 */
1555
1556 for (x = 0; x < rd1->n_reg_rules; x++) {
1557 rule1 = &rd1->reg_rules[x];
1558 for (y = 0; y < rd2->n_reg_rules; y++) {
1559 rule2 = &rd2->reg_rules[y];
1560 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1561 &intersected_rule))
1562 num_rules++;
1563 }
1564 }
1565
1566 if (!num_rules)
1567 return NULL;
1568
1569 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1570 if (!rd)
1571 return NULL;
1572
1573 for (x = 0; x < rd1->n_reg_rules; x++) {
1574 rule1 = &rd1->reg_rules[x];
1575 for (y = 0; y < rd2->n_reg_rules; y++) {
1576 rule2 = &rd2->reg_rules[y];
1577 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1578 &intersected_rule);
1579 /*
1580 * No need to memset here the intersected rule here as
1581 * we're not using the stack anymore
1582 */
1583 if (r)
1584 continue;
1585
1586 add_rule(&intersected_rule, rd->reg_rules,
1587 &rd->n_reg_rules);
1588 }
1589 }
1590
1591 rd->alpha2[0] = '9';
1592 rd->alpha2[1] = '8';
1593 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1594 rd2->dfs_region);
1595
1596 return rd;
1597}
1598
1599/*
1600 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1601 * want to just have the channel structure use these
1602 */
1603static u32 map_regdom_flags(u32 rd_flags)
1604{
1605 u32 channel_flags = 0;
1606 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1607 channel_flags |= IEEE80211_CHAN_NO_IR;
1608 if (rd_flags & NL80211_RRF_DFS)
1609 channel_flags |= IEEE80211_CHAN_RADAR;
1610 if (rd_flags & NL80211_RRF_NO_OFDM)
1611 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1612 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1613 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1614 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1615 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1616 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1617 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1618 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1619 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1620 if (rd_flags & NL80211_RRF_NO_80MHZ)
1621 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1622 if (rd_flags & NL80211_RRF_NO_160MHZ)
1623 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1624 if (rd_flags & NL80211_RRF_NO_HE)
1625 channel_flags |= IEEE80211_CHAN_NO_HE;
1626 if (rd_flags & NL80211_RRF_NO_320MHZ)
1627 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1628 return channel_flags;
1629}
1630
1631static const struct ieee80211_reg_rule *
1632freq_reg_info_regd(u32 center_freq,
1633 const struct ieee80211_regdomain *regd, u32 bw)
1634{
1635 int i;
1636 bool band_rule_found = false;
1637 bool bw_fits = false;
1638
1639 if (!regd)
1640 return ERR_PTR(-EINVAL);
1641
1642 for (i = 0; i < regd->n_reg_rules; i++) {
1643 const struct ieee80211_reg_rule *rr;
1644 const struct ieee80211_freq_range *fr = NULL;
1645
1646 rr = ®d->reg_rules[i];
1647 fr = &rr->freq_range;
1648
1649 /*
1650 * We only need to know if one frequency rule was
1651 * in center_freq's band, that's enough, so let's
1652 * not overwrite it once found
1653 */
1654 if (!band_rule_found)
1655 band_rule_found = freq_in_rule_band(fr, center_freq);
1656
1657 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1658
1659 if (band_rule_found && bw_fits)
1660 return rr;
1661 }
1662
1663 if (!band_rule_found)
1664 return ERR_PTR(-ERANGE);
1665
1666 return ERR_PTR(-EINVAL);
1667}
1668
1669static const struct ieee80211_reg_rule *
1670__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1671{
1672 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1673 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1674 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1675 int i = ARRAY_SIZE(bws) - 1;
1676 u32 bw;
1677
1678 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1679 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1680 if (!IS_ERR(reg_rule))
1681 return reg_rule;
1682 }
1683
1684 return reg_rule;
1685}
1686
1687const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1688 u32 center_freq)
1689{
1690 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1691
1692 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1693}
1694EXPORT_SYMBOL(freq_reg_info);
1695
1696const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1697{
1698 switch (initiator) {
1699 case NL80211_REGDOM_SET_BY_CORE:
1700 return "core";
1701 case NL80211_REGDOM_SET_BY_USER:
1702 return "user";
1703 case NL80211_REGDOM_SET_BY_DRIVER:
1704 return "driver";
1705 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1706 return "country element";
1707 default:
1708 WARN_ON(1);
1709 return "bug";
1710 }
1711}
1712EXPORT_SYMBOL(reg_initiator_name);
1713
1714static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1715 const struct ieee80211_reg_rule *reg_rule,
1716 const struct ieee80211_channel *chan)
1717{
1718 const struct ieee80211_freq_range *freq_range = NULL;
1719 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1720 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1721
1722 freq_range = ®_rule->freq_range;
1723
1724 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1725 center_freq_khz = ieee80211_channel_to_khz(chan);
1726 /* Check if auto calculation requested */
1727 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1728 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1729
1730 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1731 if (!cfg80211_does_bw_fit_range(freq_range,
1732 center_freq_khz,
1733 MHZ_TO_KHZ(10)))
1734 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1735 if (!cfg80211_does_bw_fit_range(freq_range,
1736 center_freq_khz,
1737 MHZ_TO_KHZ(20)))
1738 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1739
1740 if (is_s1g) {
1741 /* S1G is strict about non overlapping channels. We can
1742 * calculate which bandwidth is allowed per channel by finding
1743 * the largest bandwidth which cleanly divides the freq_range.
1744 */
1745 int edge_offset;
1746 int ch_bw = max_bandwidth_khz;
1747
1748 while (ch_bw) {
1749 edge_offset = (center_freq_khz - ch_bw / 2) -
1750 freq_range->start_freq_khz;
1751 if (edge_offset % ch_bw == 0) {
1752 switch (KHZ_TO_MHZ(ch_bw)) {
1753 case 1:
1754 bw_flags |= IEEE80211_CHAN_1MHZ;
1755 break;
1756 case 2:
1757 bw_flags |= IEEE80211_CHAN_2MHZ;
1758 break;
1759 case 4:
1760 bw_flags |= IEEE80211_CHAN_4MHZ;
1761 break;
1762 case 8:
1763 bw_flags |= IEEE80211_CHAN_8MHZ;
1764 break;
1765 case 16:
1766 bw_flags |= IEEE80211_CHAN_16MHZ;
1767 break;
1768 default:
1769 /* If we got here, no bandwidths fit on
1770 * this frequency, ie. band edge.
1771 */
1772 bw_flags |= IEEE80211_CHAN_DISABLED;
1773 break;
1774 }
1775 break;
1776 }
1777 ch_bw /= 2;
1778 }
1779 } else {
1780 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1781 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1782 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1783 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1784 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1785 bw_flags |= IEEE80211_CHAN_NO_HT40;
1786 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1787 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1788 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1789 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1790 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1791 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1792 }
1793 return bw_flags;
1794}
1795
1796static void handle_channel_single_rule(struct wiphy *wiphy,
1797 enum nl80211_reg_initiator initiator,
1798 struct ieee80211_channel *chan,
1799 u32 flags,
1800 struct regulatory_request *lr,
1801 struct wiphy *request_wiphy,
1802 const struct ieee80211_reg_rule *reg_rule)
1803{
1804 u32 bw_flags = 0;
1805 const struct ieee80211_power_rule *power_rule = NULL;
1806 const struct ieee80211_regdomain *regd;
1807
1808 regd = reg_get_regdomain(wiphy);
1809
1810 power_rule = ®_rule->power_rule;
1811 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1812
1813 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1814 request_wiphy && request_wiphy == wiphy &&
1815 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1816 /*
1817 * This guarantees the driver's requested regulatory domain
1818 * will always be used as a base for further regulatory
1819 * settings
1820 */
1821 chan->flags = chan->orig_flags =
1822 map_regdom_flags(reg_rule->flags) | bw_flags;
1823 chan->max_antenna_gain = chan->orig_mag =
1824 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1825 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1826 (int) MBM_TO_DBM(power_rule->max_eirp);
1827
1828 if (chan->flags & IEEE80211_CHAN_RADAR) {
1829 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1830 if (reg_rule->dfs_cac_ms)
1831 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1832 }
1833
1834 return;
1835 }
1836
1837 chan->dfs_state = NL80211_DFS_USABLE;
1838 chan->dfs_state_entered = jiffies;
1839
1840 chan->beacon_found = false;
1841 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1842 chan->max_antenna_gain =
1843 min_t(int, chan->orig_mag,
1844 MBI_TO_DBI(power_rule->max_antenna_gain));
1845 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1846
1847 if (chan->flags & IEEE80211_CHAN_RADAR) {
1848 if (reg_rule->dfs_cac_ms)
1849 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1850 else
1851 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1852 }
1853
1854 if (chan->orig_mpwr) {
1855 /*
1856 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1857 * will always follow the passed country IE power settings.
1858 */
1859 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1860 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1861 chan->max_power = chan->max_reg_power;
1862 else
1863 chan->max_power = min(chan->orig_mpwr,
1864 chan->max_reg_power);
1865 } else
1866 chan->max_power = chan->max_reg_power;
1867}
1868
1869static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1870 enum nl80211_reg_initiator initiator,
1871 struct ieee80211_channel *chan,
1872 u32 flags,
1873 struct regulatory_request *lr,
1874 struct wiphy *request_wiphy,
1875 const struct ieee80211_reg_rule *rrule1,
1876 const struct ieee80211_reg_rule *rrule2,
1877 struct ieee80211_freq_range *comb_range)
1878{
1879 u32 bw_flags1 = 0;
1880 u32 bw_flags2 = 0;
1881 const struct ieee80211_power_rule *power_rule1 = NULL;
1882 const struct ieee80211_power_rule *power_rule2 = NULL;
1883 const struct ieee80211_regdomain *regd;
1884
1885 regd = reg_get_regdomain(wiphy);
1886
1887 power_rule1 = &rrule1->power_rule;
1888 power_rule2 = &rrule2->power_rule;
1889 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1890 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1891
1892 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1893 request_wiphy && request_wiphy == wiphy &&
1894 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1895 /* This guarantees the driver's requested regulatory domain
1896 * will always be used as a base for further regulatory
1897 * settings
1898 */
1899 chan->flags =
1900 map_regdom_flags(rrule1->flags) |
1901 map_regdom_flags(rrule2->flags) |
1902 bw_flags1 |
1903 bw_flags2;
1904 chan->orig_flags = chan->flags;
1905 chan->max_antenna_gain =
1906 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1907 MBI_TO_DBI(power_rule2->max_antenna_gain));
1908 chan->orig_mag = chan->max_antenna_gain;
1909 chan->max_reg_power =
1910 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1911 MBM_TO_DBM(power_rule2->max_eirp));
1912 chan->max_power = chan->max_reg_power;
1913 chan->orig_mpwr = chan->max_reg_power;
1914
1915 if (chan->flags & IEEE80211_CHAN_RADAR) {
1916 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1917 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1918 chan->dfs_cac_ms = max_t(unsigned int,
1919 rrule1->dfs_cac_ms,
1920 rrule2->dfs_cac_ms);
1921 }
1922
1923 return;
1924 }
1925
1926 chan->dfs_state = NL80211_DFS_USABLE;
1927 chan->dfs_state_entered = jiffies;
1928
1929 chan->beacon_found = false;
1930 chan->flags = flags | bw_flags1 | bw_flags2 |
1931 map_regdom_flags(rrule1->flags) |
1932 map_regdom_flags(rrule2->flags);
1933
1934 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1935 * (otherwise no adj. rule case), recheck therefore
1936 */
1937 if (cfg80211_does_bw_fit_range(comb_range,
1938 ieee80211_channel_to_khz(chan),
1939 MHZ_TO_KHZ(10)))
1940 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1941 if (cfg80211_does_bw_fit_range(comb_range,
1942 ieee80211_channel_to_khz(chan),
1943 MHZ_TO_KHZ(20)))
1944 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1945
1946 chan->max_antenna_gain =
1947 min_t(int, chan->orig_mag,
1948 min_t(int,
1949 MBI_TO_DBI(power_rule1->max_antenna_gain),
1950 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1951 chan->max_reg_power = min_t(int,
1952 MBM_TO_DBM(power_rule1->max_eirp),
1953 MBM_TO_DBM(power_rule2->max_eirp));
1954
1955 if (chan->flags & IEEE80211_CHAN_RADAR) {
1956 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1957 chan->dfs_cac_ms = max_t(unsigned int,
1958 rrule1->dfs_cac_ms,
1959 rrule2->dfs_cac_ms);
1960 else
1961 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1962 }
1963
1964 if (chan->orig_mpwr) {
1965 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1966 * will always follow the passed country IE power settings.
1967 */
1968 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1969 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1970 chan->max_power = chan->max_reg_power;
1971 else
1972 chan->max_power = min(chan->orig_mpwr,
1973 chan->max_reg_power);
1974 } else {
1975 chan->max_power = chan->max_reg_power;
1976 }
1977}
1978
1979/* Note that right now we assume the desired channel bandwidth
1980 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1981 * per channel, the primary and the extension channel).
1982 */
1983static void handle_channel(struct wiphy *wiphy,
1984 enum nl80211_reg_initiator initiator,
1985 struct ieee80211_channel *chan)
1986{
1987 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1988 struct regulatory_request *lr = get_last_request();
1989 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1990 const struct ieee80211_reg_rule *rrule = NULL;
1991 const struct ieee80211_reg_rule *rrule1 = NULL;
1992 const struct ieee80211_reg_rule *rrule2 = NULL;
1993
1994 u32 flags = chan->orig_flags;
1995
1996 rrule = freq_reg_info(wiphy, orig_chan_freq);
1997 if (IS_ERR(rrule)) {
1998 /* check for adjacent match, therefore get rules for
1999 * chan - 20 MHz and chan + 20 MHz and test
2000 * if reg rules are adjacent
2001 */
2002 rrule1 = freq_reg_info(wiphy,
2003 orig_chan_freq - MHZ_TO_KHZ(20));
2004 rrule2 = freq_reg_info(wiphy,
2005 orig_chan_freq + MHZ_TO_KHZ(20));
2006 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
2007 struct ieee80211_freq_range comb_range;
2008
2009 if (rrule1->freq_range.end_freq_khz !=
2010 rrule2->freq_range.start_freq_khz)
2011 goto disable_chan;
2012
2013 comb_range.start_freq_khz =
2014 rrule1->freq_range.start_freq_khz;
2015 comb_range.end_freq_khz =
2016 rrule2->freq_range.end_freq_khz;
2017 comb_range.max_bandwidth_khz =
2018 min_t(u32,
2019 rrule1->freq_range.max_bandwidth_khz,
2020 rrule2->freq_range.max_bandwidth_khz);
2021
2022 if (!cfg80211_does_bw_fit_range(&comb_range,
2023 orig_chan_freq,
2024 MHZ_TO_KHZ(20)))
2025 goto disable_chan;
2026
2027 handle_channel_adjacent_rules(wiphy, initiator, chan,
2028 flags, lr, request_wiphy,
2029 rrule1, rrule2,
2030 &comb_range);
2031 return;
2032 }
2033
2034disable_chan:
2035 /* We will disable all channels that do not match our
2036 * received regulatory rule unless the hint is coming
2037 * from a Country IE and the Country IE had no information
2038 * about a band. The IEEE 802.11 spec allows for an AP
2039 * to send only a subset of the regulatory rules allowed,
2040 * so an AP in the US that only supports 2.4 GHz may only send
2041 * a country IE with information for the 2.4 GHz band
2042 * while 5 GHz is still supported.
2043 */
2044 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2045 PTR_ERR(rrule) == -ERANGE)
2046 return;
2047
2048 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2049 request_wiphy && request_wiphy == wiphy &&
2050 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2051 pr_debug("Disabling freq %d.%03d MHz for good\n",
2052 chan->center_freq, chan->freq_offset);
2053 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2054 chan->flags = chan->orig_flags;
2055 } else {
2056 pr_debug("Disabling freq %d.%03d MHz\n",
2057 chan->center_freq, chan->freq_offset);
2058 chan->flags |= IEEE80211_CHAN_DISABLED;
2059 }
2060 return;
2061 }
2062
2063 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2064 request_wiphy, rrule);
2065}
2066
2067static void handle_band(struct wiphy *wiphy,
2068 enum nl80211_reg_initiator initiator,
2069 struct ieee80211_supported_band *sband)
2070{
2071 unsigned int i;
2072
2073 if (!sband)
2074 return;
2075
2076 for (i = 0; i < sband->n_channels; i++)
2077 handle_channel(wiphy, initiator, &sband->channels[i]);
2078}
2079
2080static bool reg_request_cell_base(struct regulatory_request *request)
2081{
2082 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2083 return false;
2084 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2085}
2086
2087bool reg_last_request_cell_base(void)
2088{
2089 return reg_request_cell_base(get_last_request());
2090}
2091
2092#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2093/* Core specific check */
2094static enum reg_request_treatment
2095reg_ignore_cell_hint(struct regulatory_request *pending_request)
2096{
2097 struct regulatory_request *lr = get_last_request();
2098
2099 if (!reg_num_devs_support_basehint)
2100 return REG_REQ_IGNORE;
2101
2102 if (reg_request_cell_base(lr) &&
2103 !regdom_changes(pending_request->alpha2))
2104 return REG_REQ_ALREADY_SET;
2105
2106 return REG_REQ_OK;
2107}
2108
2109/* Device specific check */
2110static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2111{
2112 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2113}
2114#else
2115static enum reg_request_treatment
2116reg_ignore_cell_hint(struct regulatory_request *pending_request)
2117{
2118 return REG_REQ_IGNORE;
2119}
2120
2121static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2122{
2123 return true;
2124}
2125#endif
2126
2127static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2128{
2129 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2130 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2131 return true;
2132 return false;
2133}
2134
2135static bool ignore_reg_update(struct wiphy *wiphy,
2136 enum nl80211_reg_initiator initiator)
2137{
2138 struct regulatory_request *lr = get_last_request();
2139
2140 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2141 return true;
2142
2143 if (!lr) {
2144 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2145 reg_initiator_name(initiator));
2146 return true;
2147 }
2148
2149 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2150 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2151 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2152 reg_initiator_name(initiator));
2153 return true;
2154 }
2155
2156 /*
2157 * wiphy->regd will be set once the device has its own
2158 * desired regulatory domain set
2159 */
2160 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2161 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2162 !is_world_regdom(lr->alpha2)) {
2163 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2164 reg_initiator_name(initiator));
2165 return true;
2166 }
2167
2168 if (reg_request_cell_base(lr))
2169 return reg_dev_ignore_cell_hint(wiphy);
2170
2171 return false;
2172}
2173
2174static bool reg_is_world_roaming(struct wiphy *wiphy)
2175{
2176 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2177 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2178 struct regulatory_request *lr = get_last_request();
2179
2180 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2181 return true;
2182
2183 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2184 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2185 return true;
2186
2187 return false;
2188}
2189
2190static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2191 struct reg_beacon *reg_beacon)
2192{
2193 struct ieee80211_supported_band *sband;
2194 struct ieee80211_channel *chan;
2195 bool channel_changed = false;
2196 struct ieee80211_channel chan_before;
2197
2198 sband = wiphy->bands[reg_beacon->chan.band];
2199 chan = &sband->channels[chan_idx];
2200
2201 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2202 return;
2203
2204 if (chan->beacon_found)
2205 return;
2206
2207 chan->beacon_found = true;
2208
2209 if (!reg_is_world_roaming(wiphy))
2210 return;
2211
2212 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2213 return;
2214
2215 chan_before = *chan;
2216
2217 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2218 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2219 channel_changed = true;
2220 }
2221
2222 if (channel_changed)
2223 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2224}
2225
2226/*
2227 * Called when a scan on a wiphy finds a beacon on
2228 * new channel
2229 */
2230static void wiphy_update_new_beacon(struct wiphy *wiphy,
2231 struct reg_beacon *reg_beacon)
2232{
2233 unsigned int i;
2234 struct ieee80211_supported_band *sband;
2235
2236 if (!wiphy->bands[reg_beacon->chan.band])
2237 return;
2238
2239 sband = wiphy->bands[reg_beacon->chan.band];
2240
2241 for (i = 0; i < sband->n_channels; i++)
2242 handle_reg_beacon(wiphy, i, reg_beacon);
2243}
2244
2245/*
2246 * Called upon reg changes or a new wiphy is added
2247 */
2248static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2249{
2250 unsigned int i;
2251 struct ieee80211_supported_band *sband;
2252 struct reg_beacon *reg_beacon;
2253
2254 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2255 if (!wiphy->bands[reg_beacon->chan.band])
2256 continue;
2257 sband = wiphy->bands[reg_beacon->chan.band];
2258 for (i = 0; i < sband->n_channels; i++)
2259 handle_reg_beacon(wiphy, i, reg_beacon);
2260 }
2261}
2262
2263/* Reap the advantages of previously found beacons */
2264static void reg_process_beacons(struct wiphy *wiphy)
2265{
2266 /*
2267 * Means we are just firing up cfg80211, so no beacons would
2268 * have been processed yet.
2269 */
2270 if (!last_request)
2271 return;
2272 wiphy_update_beacon_reg(wiphy);
2273}
2274
2275static bool is_ht40_allowed(struct ieee80211_channel *chan)
2276{
2277 if (!chan)
2278 return false;
2279 if (chan->flags & IEEE80211_CHAN_DISABLED)
2280 return false;
2281 /* This would happen when regulatory rules disallow HT40 completely */
2282 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2283 return false;
2284 return true;
2285}
2286
2287static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2288 struct ieee80211_channel *channel)
2289{
2290 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2291 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2292 const struct ieee80211_regdomain *regd;
2293 unsigned int i;
2294 u32 flags;
2295
2296 if (!is_ht40_allowed(channel)) {
2297 channel->flags |= IEEE80211_CHAN_NO_HT40;
2298 return;
2299 }
2300
2301 /*
2302 * We need to ensure the extension channels exist to
2303 * be able to use HT40- or HT40+, this finds them (or not)
2304 */
2305 for (i = 0; i < sband->n_channels; i++) {
2306 struct ieee80211_channel *c = &sband->channels[i];
2307
2308 if (c->center_freq == (channel->center_freq - 20))
2309 channel_before = c;
2310 if (c->center_freq == (channel->center_freq + 20))
2311 channel_after = c;
2312 }
2313
2314 flags = 0;
2315 regd = get_wiphy_regdom(wiphy);
2316 if (regd) {
2317 const struct ieee80211_reg_rule *reg_rule =
2318 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2319 regd, MHZ_TO_KHZ(20));
2320
2321 if (!IS_ERR(reg_rule))
2322 flags = reg_rule->flags;
2323 }
2324
2325 /*
2326 * Please note that this assumes target bandwidth is 20 MHz,
2327 * if that ever changes we also need to change the below logic
2328 * to include that as well.
2329 */
2330 if (!is_ht40_allowed(channel_before) ||
2331 flags & NL80211_RRF_NO_HT40MINUS)
2332 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2333 else
2334 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2335
2336 if (!is_ht40_allowed(channel_after) ||
2337 flags & NL80211_RRF_NO_HT40PLUS)
2338 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2339 else
2340 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2341}
2342
2343static void reg_process_ht_flags_band(struct wiphy *wiphy,
2344 struct ieee80211_supported_band *sband)
2345{
2346 unsigned int i;
2347
2348 if (!sband)
2349 return;
2350
2351 for (i = 0; i < sband->n_channels; i++)
2352 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2353}
2354
2355static void reg_process_ht_flags(struct wiphy *wiphy)
2356{
2357 enum nl80211_band band;
2358
2359 if (!wiphy)
2360 return;
2361
2362 for (band = 0; band < NUM_NL80211_BANDS; band++)
2363 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2364}
2365
2366static void reg_call_notifier(struct wiphy *wiphy,
2367 struct regulatory_request *request)
2368{
2369 if (wiphy->reg_notifier)
2370 wiphy->reg_notifier(wiphy, request);
2371}
2372
2373static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2374{
2375 struct cfg80211_chan_def chandef = {};
2376 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2377 enum nl80211_iftype iftype;
2378 bool ret;
2379 int link;
2380
2381 wdev_lock(wdev);
2382 iftype = wdev->iftype;
2383
2384 /* make sure the interface is active */
2385 if (!wdev->netdev || !netif_running(wdev->netdev))
2386 goto wdev_inactive_unlock;
2387
2388 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2389 struct ieee80211_channel *chan;
2390
2391 if (!wdev->valid_links && link > 0)
2392 break;
2393 if (!(wdev->valid_links & BIT(link)))
2394 continue;
2395 switch (iftype) {
2396 case NL80211_IFTYPE_AP:
2397 case NL80211_IFTYPE_P2P_GO:
2398 if (!wdev->links[link].ap.beacon_interval)
2399 continue;
2400 chandef = wdev->links[link].ap.chandef;
2401 break;
2402 case NL80211_IFTYPE_MESH_POINT:
2403 if (!wdev->u.mesh.beacon_interval)
2404 continue;
2405 chandef = wdev->u.mesh.chandef;
2406 break;
2407 case NL80211_IFTYPE_ADHOC:
2408 if (!wdev->u.ibss.ssid_len)
2409 continue;
2410 chandef = wdev->u.ibss.chandef;
2411 break;
2412 case NL80211_IFTYPE_STATION:
2413 case NL80211_IFTYPE_P2P_CLIENT:
2414 /* Maybe we could consider disabling that link only? */
2415 if (!wdev->links[link].client.current_bss)
2416 continue;
2417
2418 chan = wdev->links[link].client.current_bss->pub.channel;
2419 if (!chan)
2420 continue;
2421
2422 if (!rdev->ops->get_channel ||
2423 rdev_get_channel(rdev, wdev, link, &chandef))
2424 cfg80211_chandef_create(&chandef, chan,
2425 NL80211_CHAN_NO_HT);
2426 break;
2427 case NL80211_IFTYPE_MONITOR:
2428 case NL80211_IFTYPE_AP_VLAN:
2429 case NL80211_IFTYPE_P2P_DEVICE:
2430 /* no enforcement required */
2431 break;
2432 default:
2433 /* others not implemented for now */
2434 WARN_ON(1);
2435 break;
2436 }
2437
2438 wdev_unlock(wdev);
2439
2440 switch (iftype) {
2441 case NL80211_IFTYPE_AP:
2442 case NL80211_IFTYPE_P2P_GO:
2443 case NL80211_IFTYPE_ADHOC:
2444 case NL80211_IFTYPE_MESH_POINT:
2445 wiphy_lock(wiphy);
2446 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2447 iftype);
2448 wiphy_unlock(wiphy);
2449
2450 if (!ret)
2451 return ret;
2452 break;
2453 case NL80211_IFTYPE_STATION:
2454 case NL80211_IFTYPE_P2P_CLIENT:
2455 ret = cfg80211_chandef_usable(wiphy, &chandef,
2456 IEEE80211_CHAN_DISABLED);
2457 if (!ret)
2458 return ret;
2459 break;
2460 default:
2461 break;
2462 }
2463
2464 wdev_lock(wdev);
2465 }
2466
2467 wdev_unlock(wdev);
2468
2469 return true;
2470
2471wdev_inactive_unlock:
2472 wdev_unlock(wdev);
2473 return true;
2474}
2475
2476static void reg_leave_invalid_chans(struct wiphy *wiphy)
2477{
2478 struct wireless_dev *wdev;
2479 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2480
2481 ASSERT_RTNL();
2482
2483 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2484 if (!reg_wdev_chan_valid(wiphy, wdev))
2485 cfg80211_leave(rdev, wdev);
2486}
2487
2488static void reg_check_chans_work(struct work_struct *work)
2489{
2490 struct cfg80211_registered_device *rdev;
2491
2492 pr_debug("Verifying active interfaces after reg change\n");
2493 rtnl_lock();
2494
2495 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2496 if (!(rdev->wiphy.regulatory_flags &
2497 REGULATORY_IGNORE_STALE_KICKOFF))
2498 reg_leave_invalid_chans(&rdev->wiphy);
2499
2500 rtnl_unlock();
2501}
2502
2503static void reg_check_channels(void)
2504{
2505 /*
2506 * Give usermode a chance to do something nicer (move to another
2507 * channel, orderly disconnection), before forcing a disconnection.
2508 */
2509 mod_delayed_work(system_power_efficient_wq,
2510 ®_check_chans,
2511 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2512}
2513
2514static void wiphy_update_regulatory(struct wiphy *wiphy,
2515 enum nl80211_reg_initiator initiator)
2516{
2517 enum nl80211_band band;
2518 struct regulatory_request *lr = get_last_request();
2519
2520 if (ignore_reg_update(wiphy, initiator)) {
2521 /*
2522 * Regulatory updates set by CORE are ignored for custom
2523 * regulatory cards. Let us notify the changes to the driver,
2524 * as some drivers used this to restore its orig_* reg domain.
2525 */
2526 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2527 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2528 !(wiphy->regulatory_flags &
2529 REGULATORY_WIPHY_SELF_MANAGED))
2530 reg_call_notifier(wiphy, lr);
2531 return;
2532 }
2533
2534 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2535
2536 for (band = 0; band < NUM_NL80211_BANDS; band++)
2537 handle_band(wiphy, initiator, wiphy->bands[band]);
2538
2539 reg_process_beacons(wiphy);
2540 reg_process_ht_flags(wiphy);
2541 reg_call_notifier(wiphy, lr);
2542}
2543
2544static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2545{
2546 struct cfg80211_registered_device *rdev;
2547 struct wiphy *wiphy;
2548
2549 ASSERT_RTNL();
2550
2551 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2552 wiphy = &rdev->wiphy;
2553 wiphy_update_regulatory(wiphy, initiator);
2554 }
2555
2556 reg_check_channels();
2557}
2558
2559static void handle_channel_custom(struct wiphy *wiphy,
2560 struct ieee80211_channel *chan,
2561 const struct ieee80211_regdomain *regd,
2562 u32 min_bw)
2563{
2564 u32 bw_flags = 0;
2565 const struct ieee80211_reg_rule *reg_rule = NULL;
2566 const struct ieee80211_power_rule *power_rule = NULL;
2567 u32 bw, center_freq_khz;
2568
2569 center_freq_khz = ieee80211_channel_to_khz(chan);
2570 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2571 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2572 if (!IS_ERR(reg_rule))
2573 break;
2574 }
2575
2576 if (IS_ERR_OR_NULL(reg_rule)) {
2577 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2578 chan->center_freq, chan->freq_offset);
2579 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2580 chan->flags |= IEEE80211_CHAN_DISABLED;
2581 } else {
2582 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2583 chan->flags = chan->orig_flags;
2584 }
2585 return;
2586 }
2587
2588 power_rule = ®_rule->power_rule;
2589 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2590
2591 chan->dfs_state_entered = jiffies;
2592 chan->dfs_state = NL80211_DFS_USABLE;
2593
2594 chan->beacon_found = false;
2595
2596 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2597 chan->flags = chan->orig_flags | bw_flags |
2598 map_regdom_flags(reg_rule->flags);
2599 else
2600 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2601
2602 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2603 chan->max_reg_power = chan->max_power =
2604 (int) MBM_TO_DBM(power_rule->max_eirp);
2605
2606 if (chan->flags & IEEE80211_CHAN_RADAR) {
2607 if (reg_rule->dfs_cac_ms)
2608 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2609 else
2610 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2611 }
2612
2613 chan->max_power = chan->max_reg_power;
2614}
2615
2616static void handle_band_custom(struct wiphy *wiphy,
2617 struct ieee80211_supported_band *sband,
2618 const struct ieee80211_regdomain *regd)
2619{
2620 unsigned int i;
2621
2622 if (!sband)
2623 return;
2624
2625 /*
2626 * We currently assume that you always want at least 20 MHz,
2627 * otherwise channel 12 might get enabled if this rule is
2628 * compatible to US, which permits 2402 - 2472 MHz.
2629 */
2630 for (i = 0; i < sband->n_channels; i++)
2631 handle_channel_custom(wiphy, &sband->channels[i], regd,
2632 MHZ_TO_KHZ(20));
2633}
2634
2635/* Used by drivers prior to wiphy registration */
2636void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2637 const struct ieee80211_regdomain *regd)
2638{
2639 const struct ieee80211_regdomain *new_regd, *tmp;
2640 enum nl80211_band band;
2641 unsigned int bands_set = 0;
2642
2643 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2644 "wiphy should have REGULATORY_CUSTOM_REG\n");
2645 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2646
2647 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2648 if (!wiphy->bands[band])
2649 continue;
2650 handle_band_custom(wiphy, wiphy->bands[band], regd);
2651 bands_set++;
2652 }
2653
2654 /*
2655 * no point in calling this if it won't have any effect
2656 * on your device's supported bands.
2657 */
2658 WARN_ON(!bands_set);
2659 new_regd = reg_copy_regd(regd);
2660 if (IS_ERR(new_regd))
2661 return;
2662
2663 rtnl_lock();
2664 wiphy_lock(wiphy);
2665
2666 tmp = get_wiphy_regdom(wiphy);
2667 rcu_assign_pointer(wiphy->regd, new_regd);
2668 rcu_free_regdom(tmp);
2669
2670 wiphy_unlock(wiphy);
2671 rtnl_unlock();
2672}
2673EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2674
2675static void reg_set_request_processed(void)
2676{
2677 bool need_more_processing = false;
2678 struct regulatory_request *lr = get_last_request();
2679
2680 lr->processed = true;
2681
2682 spin_lock(®_requests_lock);
2683 if (!list_empty(®_requests_list))
2684 need_more_processing = true;
2685 spin_unlock(®_requests_lock);
2686
2687 cancel_crda_timeout();
2688
2689 if (need_more_processing)
2690 schedule_work(®_work);
2691}
2692
2693/**
2694 * reg_process_hint_core - process core regulatory requests
2695 * @core_request: a pending core regulatory request
2696 *
2697 * The wireless subsystem can use this function to process
2698 * a regulatory request issued by the regulatory core.
2699 */
2700static enum reg_request_treatment
2701reg_process_hint_core(struct regulatory_request *core_request)
2702{
2703 if (reg_query_database(core_request)) {
2704 core_request->intersect = false;
2705 core_request->processed = false;
2706 reg_update_last_request(core_request);
2707 return REG_REQ_OK;
2708 }
2709
2710 return REG_REQ_IGNORE;
2711}
2712
2713static enum reg_request_treatment
2714__reg_process_hint_user(struct regulatory_request *user_request)
2715{
2716 struct regulatory_request *lr = get_last_request();
2717
2718 if (reg_request_cell_base(user_request))
2719 return reg_ignore_cell_hint(user_request);
2720
2721 if (reg_request_cell_base(lr))
2722 return REG_REQ_IGNORE;
2723
2724 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2725 return REG_REQ_INTERSECT;
2726 /*
2727 * If the user knows better the user should set the regdom
2728 * to their country before the IE is picked up
2729 */
2730 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2731 lr->intersect)
2732 return REG_REQ_IGNORE;
2733 /*
2734 * Process user requests only after previous user/driver/core
2735 * requests have been processed
2736 */
2737 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2738 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2739 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2740 regdom_changes(lr->alpha2))
2741 return REG_REQ_IGNORE;
2742
2743 if (!regdom_changes(user_request->alpha2))
2744 return REG_REQ_ALREADY_SET;
2745
2746 return REG_REQ_OK;
2747}
2748
2749/**
2750 * reg_process_hint_user - process user regulatory requests
2751 * @user_request: a pending user regulatory request
2752 *
2753 * The wireless subsystem can use this function to process
2754 * a regulatory request initiated by userspace.
2755 */
2756static enum reg_request_treatment
2757reg_process_hint_user(struct regulatory_request *user_request)
2758{
2759 enum reg_request_treatment treatment;
2760
2761 treatment = __reg_process_hint_user(user_request);
2762 if (treatment == REG_REQ_IGNORE ||
2763 treatment == REG_REQ_ALREADY_SET)
2764 return REG_REQ_IGNORE;
2765
2766 user_request->intersect = treatment == REG_REQ_INTERSECT;
2767 user_request->processed = false;
2768
2769 if (reg_query_database(user_request)) {
2770 reg_update_last_request(user_request);
2771 user_alpha2[0] = user_request->alpha2[0];
2772 user_alpha2[1] = user_request->alpha2[1];
2773 return REG_REQ_OK;
2774 }
2775
2776 return REG_REQ_IGNORE;
2777}
2778
2779static enum reg_request_treatment
2780__reg_process_hint_driver(struct regulatory_request *driver_request)
2781{
2782 struct regulatory_request *lr = get_last_request();
2783
2784 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2785 if (regdom_changes(driver_request->alpha2))
2786 return REG_REQ_OK;
2787 return REG_REQ_ALREADY_SET;
2788 }
2789
2790 /*
2791 * This would happen if you unplug and plug your card
2792 * back in or if you add a new device for which the previously
2793 * loaded card also agrees on the regulatory domain.
2794 */
2795 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2796 !regdom_changes(driver_request->alpha2))
2797 return REG_REQ_ALREADY_SET;
2798
2799 return REG_REQ_INTERSECT;
2800}
2801
2802/**
2803 * reg_process_hint_driver - process driver regulatory requests
2804 * @wiphy: the wireless device for the regulatory request
2805 * @driver_request: a pending driver regulatory request
2806 *
2807 * The wireless subsystem can use this function to process
2808 * a regulatory request issued by an 802.11 driver.
2809 *
2810 * Returns one of the different reg request treatment values.
2811 */
2812static enum reg_request_treatment
2813reg_process_hint_driver(struct wiphy *wiphy,
2814 struct regulatory_request *driver_request)
2815{
2816 const struct ieee80211_regdomain *regd, *tmp;
2817 enum reg_request_treatment treatment;
2818
2819 treatment = __reg_process_hint_driver(driver_request);
2820
2821 switch (treatment) {
2822 case REG_REQ_OK:
2823 break;
2824 case REG_REQ_IGNORE:
2825 return REG_REQ_IGNORE;
2826 case REG_REQ_INTERSECT:
2827 case REG_REQ_ALREADY_SET:
2828 regd = reg_copy_regd(get_cfg80211_regdom());
2829 if (IS_ERR(regd))
2830 return REG_REQ_IGNORE;
2831
2832 tmp = get_wiphy_regdom(wiphy);
2833 ASSERT_RTNL();
2834 wiphy_lock(wiphy);
2835 rcu_assign_pointer(wiphy->regd, regd);
2836 wiphy_unlock(wiphy);
2837 rcu_free_regdom(tmp);
2838 }
2839
2840
2841 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2842 driver_request->processed = false;
2843
2844 /*
2845 * Since CRDA will not be called in this case as we already
2846 * have applied the requested regulatory domain before we just
2847 * inform userspace we have processed the request
2848 */
2849 if (treatment == REG_REQ_ALREADY_SET) {
2850 nl80211_send_reg_change_event(driver_request);
2851 reg_update_last_request(driver_request);
2852 reg_set_request_processed();
2853 return REG_REQ_ALREADY_SET;
2854 }
2855
2856 if (reg_query_database(driver_request)) {
2857 reg_update_last_request(driver_request);
2858 return REG_REQ_OK;
2859 }
2860
2861 return REG_REQ_IGNORE;
2862}
2863
2864static enum reg_request_treatment
2865__reg_process_hint_country_ie(struct wiphy *wiphy,
2866 struct regulatory_request *country_ie_request)
2867{
2868 struct wiphy *last_wiphy = NULL;
2869 struct regulatory_request *lr = get_last_request();
2870
2871 if (reg_request_cell_base(lr)) {
2872 /* Trust a Cell base station over the AP's country IE */
2873 if (regdom_changes(country_ie_request->alpha2))
2874 return REG_REQ_IGNORE;
2875 return REG_REQ_ALREADY_SET;
2876 } else {
2877 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2878 return REG_REQ_IGNORE;
2879 }
2880
2881 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2882 return -EINVAL;
2883
2884 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2885 return REG_REQ_OK;
2886
2887 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2888
2889 if (last_wiphy != wiphy) {
2890 /*
2891 * Two cards with two APs claiming different
2892 * Country IE alpha2s. We could
2893 * intersect them, but that seems unlikely
2894 * to be correct. Reject second one for now.
2895 */
2896 if (regdom_changes(country_ie_request->alpha2))
2897 return REG_REQ_IGNORE;
2898 return REG_REQ_ALREADY_SET;
2899 }
2900
2901 if (regdom_changes(country_ie_request->alpha2))
2902 return REG_REQ_OK;
2903 return REG_REQ_ALREADY_SET;
2904}
2905
2906/**
2907 * reg_process_hint_country_ie - process regulatory requests from country IEs
2908 * @wiphy: the wireless device for the regulatory request
2909 * @country_ie_request: a regulatory request from a country IE
2910 *
2911 * The wireless subsystem can use this function to process
2912 * a regulatory request issued by a country Information Element.
2913 *
2914 * Returns one of the different reg request treatment values.
2915 */
2916static enum reg_request_treatment
2917reg_process_hint_country_ie(struct wiphy *wiphy,
2918 struct regulatory_request *country_ie_request)
2919{
2920 enum reg_request_treatment treatment;
2921
2922 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2923
2924 switch (treatment) {
2925 case REG_REQ_OK:
2926 break;
2927 case REG_REQ_IGNORE:
2928 return REG_REQ_IGNORE;
2929 case REG_REQ_ALREADY_SET:
2930 reg_free_request(country_ie_request);
2931 return REG_REQ_ALREADY_SET;
2932 case REG_REQ_INTERSECT:
2933 /*
2934 * This doesn't happen yet, not sure we
2935 * ever want to support it for this case.
2936 */
2937 WARN_ONCE(1, "Unexpected intersection for country elements");
2938 return REG_REQ_IGNORE;
2939 }
2940
2941 country_ie_request->intersect = false;
2942 country_ie_request->processed = false;
2943
2944 if (reg_query_database(country_ie_request)) {
2945 reg_update_last_request(country_ie_request);
2946 return REG_REQ_OK;
2947 }
2948
2949 return REG_REQ_IGNORE;
2950}
2951
2952bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2953{
2954 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2955 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2956 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2957 bool dfs_domain_same;
2958
2959 rcu_read_lock();
2960
2961 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2962 wiphy1_regd = rcu_dereference(wiphy1->regd);
2963 if (!wiphy1_regd)
2964 wiphy1_regd = cfg80211_regd;
2965
2966 wiphy2_regd = rcu_dereference(wiphy2->regd);
2967 if (!wiphy2_regd)
2968 wiphy2_regd = cfg80211_regd;
2969
2970 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2971
2972 rcu_read_unlock();
2973
2974 return dfs_domain_same;
2975}
2976
2977static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2978 struct ieee80211_channel *src_chan)
2979{
2980 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2981 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2982 return;
2983
2984 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2985 src_chan->flags & IEEE80211_CHAN_DISABLED)
2986 return;
2987
2988 if (src_chan->center_freq == dst_chan->center_freq &&
2989 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2990 dst_chan->dfs_state = src_chan->dfs_state;
2991 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2992 }
2993}
2994
2995static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2996 struct wiphy *src_wiphy)
2997{
2998 struct ieee80211_supported_band *src_sband, *dst_sband;
2999 struct ieee80211_channel *src_chan, *dst_chan;
3000 int i, j, band;
3001
3002 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
3003 return;
3004
3005 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3006 dst_sband = dst_wiphy->bands[band];
3007 src_sband = src_wiphy->bands[band];
3008 if (!dst_sband || !src_sband)
3009 continue;
3010
3011 for (i = 0; i < dst_sband->n_channels; i++) {
3012 dst_chan = &dst_sband->channels[i];
3013 for (j = 0; j < src_sband->n_channels; j++) {
3014 src_chan = &src_sband->channels[j];
3015 reg_copy_dfs_chan_state(dst_chan, src_chan);
3016 }
3017 }
3018 }
3019}
3020
3021static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3022{
3023 struct cfg80211_registered_device *rdev;
3024
3025 ASSERT_RTNL();
3026
3027 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3028 if (wiphy == &rdev->wiphy)
3029 continue;
3030 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3031 }
3032}
3033
3034/* This processes *all* regulatory hints */
3035static void reg_process_hint(struct regulatory_request *reg_request)
3036{
3037 struct wiphy *wiphy = NULL;
3038 enum reg_request_treatment treatment;
3039 enum nl80211_reg_initiator initiator = reg_request->initiator;
3040
3041 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3042 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3043
3044 switch (initiator) {
3045 case NL80211_REGDOM_SET_BY_CORE:
3046 treatment = reg_process_hint_core(reg_request);
3047 break;
3048 case NL80211_REGDOM_SET_BY_USER:
3049 treatment = reg_process_hint_user(reg_request);
3050 break;
3051 case NL80211_REGDOM_SET_BY_DRIVER:
3052 if (!wiphy)
3053 goto out_free;
3054 treatment = reg_process_hint_driver(wiphy, reg_request);
3055 break;
3056 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3057 if (!wiphy)
3058 goto out_free;
3059 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3060 break;
3061 default:
3062 WARN(1, "invalid initiator %d\n", initiator);
3063 goto out_free;
3064 }
3065
3066 if (treatment == REG_REQ_IGNORE)
3067 goto out_free;
3068
3069 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3070 "unexpected treatment value %d\n", treatment);
3071
3072 /* This is required so that the orig_* parameters are saved.
3073 * NOTE: treatment must be set for any case that reaches here!
3074 */
3075 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3076 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3077 wiphy_update_regulatory(wiphy, initiator);
3078 wiphy_all_share_dfs_chan_state(wiphy);
3079 reg_check_channels();
3080 }
3081
3082 return;
3083
3084out_free:
3085 reg_free_request(reg_request);
3086}
3087
3088static void notify_self_managed_wiphys(struct regulatory_request *request)
3089{
3090 struct cfg80211_registered_device *rdev;
3091 struct wiphy *wiphy;
3092
3093 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3094 wiphy = &rdev->wiphy;
3095 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3096 request->initiator == NL80211_REGDOM_SET_BY_USER)
3097 reg_call_notifier(wiphy, request);
3098 }
3099}
3100
3101/*
3102 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3103 * Regulatory hints come on a first come first serve basis and we
3104 * must process each one atomically.
3105 */
3106static void reg_process_pending_hints(void)
3107{
3108 struct regulatory_request *reg_request, *lr;
3109
3110 lr = get_last_request();
3111
3112 /* When last_request->processed becomes true this will be rescheduled */
3113 if (lr && !lr->processed) {
3114 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3115 return;
3116 }
3117
3118 spin_lock(®_requests_lock);
3119
3120 if (list_empty(®_requests_list)) {
3121 spin_unlock(®_requests_lock);
3122 return;
3123 }
3124
3125 reg_request = list_first_entry(®_requests_list,
3126 struct regulatory_request,
3127 list);
3128 list_del_init(®_request->list);
3129
3130 spin_unlock(®_requests_lock);
3131
3132 notify_self_managed_wiphys(reg_request);
3133
3134 reg_process_hint(reg_request);
3135
3136 lr = get_last_request();
3137
3138 spin_lock(®_requests_lock);
3139 if (!list_empty(®_requests_list) && lr && lr->processed)
3140 schedule_work(®_work);
3141 spin_unlock(®_requests_lock);
3142}
3143
3144/* Processes beacon hints -- this has nothing to do with country IEs */
3145static void reg_process_pending_beacon_hints(void)
3146{
3147 struct cfg80211_registered_device *rdev;
3148 struct reg_beacon *pending_beacon, *tmp;
3149
3150 /* This goes through the _pending_ beacon list */
3151 spin_lock_bh(®_pending_beacons_lock);
3152
3153 list_for_each_entry_safe(pending_beacon, tmp,
3154 ®_pending_beacons, list) {
3155 list_del_init(&pending_beacon->list);
3156
3157 /* Applies the beacon hint to current wiphys */
3158 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3159 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3160
3161 /* Remembers the beacon hint for new wiphys or reg changes */
3162 list_add_tail(&pending_beacon->list, ®_beacon_list);
3163 }
3164
3165 spin_unlock_bh(®_pending_beacons_lock);
3166}
3167
3168static void reg_process_self_managed_hint(struct wiphy *wiphy)
3169{
3170 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3171 const struct ieee80211_regdomain *tmp;
3172 const struct ieee80211_regdomain *regd;
3173 enum nl80211_band band;
3174 struct regulatory_request request = {};
3175
3176 ASSERT_RTNL();
3177 lockdep_assert_wiphy(wiphy);
3178
3179 spin_lock(®_requests_lock);
3180 regd = rdev->requested_regd;
3181 rdev->requested_regd = NULL;
3182 spin_unlock(®_requests_lock);
3183
3184 if (!regd)
3185 return;
3186
3187 tmp = get_wiphy_regdom(wiphy);
3188 rcu_assign_pointer(wiphy->regd, regd);
3189 rcu_free_regdom(tmp);
3190
3191 for (band = 0; band < NUM_NL80211_BANDS; band++)
3192 handle_band_custom(wiphy, wiphy->bands[band], regd);
3193
3194 reg_process_ht_flags(wiphy);
3195
3196 request.wiphy_idx = get_wiphy_idx(wiphy);
3197 request.alpha2[0] = regd->alpha2[0];
3198 request.alpha2[1] = regd->alpha2[1];
3199 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3200
3201 nl80211_send_wiphy_reg_change_event(&request);
3202}
3203
3204static void reg_process_self_managed_hints(void)
3205{
3206 struct cfg80211_registered_device *rdev;
3207
3208 ASSERT_RTNL();
3209
3210 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3211 wiphy_lock(&rdev->wiphy);
3212 reg_process_self_managed_hint(&rdev->wiphy);
3213 wiphy_unlock(&rdev->wiphy);
3214 }
3215
3216 reg_check_channels();
3217}
3218
3219static void reg_todo(struct work_struct *work)
3220{
3221 rtnl_lock();
3222 reg_process_pending_hints();
3223 reg_process_pending_beacon_hints();
3224 reg_process_self_managed_hints();
3225 rtnl_unlock();
3226}
3227
3228static void queue_regulatory_request(struct regulatory_request *request)
3229{
3230 request->alpha2[0] = toupper(request->alpha2[0]);
3231 request->alpha2[1] = toupper(request->alpha2[1]);
3232
3233 spin_lock(®_requests_lock);
3234 list_add_tail(&request->list, ®_requests_list);
3235 spin_unlock(®_requests_lock);
3236
3237 schedule_work(®_work);
3238}
3239
3240/*
3241 * Core regulatory hint -- happens during cfg80211_init()
3242 * and when we restore regulatory settings.
3243 */
3244static int regulatory_hint_core(const char *alpha2)
3245{
3246 struct regulatory_request *request;
3247
3248 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3249 if (!request)
3250 return -ENOMEM;
3251
3252 request->alpha2[0] = alpha2[0];
3253 request->alpha2[1] = alpha2[1];
3254 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3255 request->wiphy_idx = WIPHY_IDX_INVALID;
3256
3257 queue_regulatory_request(request);
3258
3259 return 0;
3260}
3261
3262/* User hints */
3263int regulatory_hint_user(const char *alpha2,
3264 enum nl80211_user_reg_hint_type user_reg_hint_type)
3265{
3266 struct regulatory_request *request;
3267
3268 if (WARN_ON(!alpha2))
3269 return -EINVAL;
3270
3271 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3272 return -EINVAL;
3273
3274 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3275 if (!request)
3276 return -ENOMEM;
3277
3278 request->wiphy_idx = WIPHY_IDX_INVALID;
3279 request->alpha2[0] = alpha2[0];
3280 request->alpha2[1] = alpha2[1];
3281 request->initiator = NL80211_REGDOM_SET_BY_USER;
3282 request->user_reg_hint_type = user_reg_hint_type;
3283
3284 /* Allow calling CRDA again */
3285 reset_crda_timeouts();
3286
3287 queue_regulatory_request(request);
3288
3289 return 0;
3290}
3291
3292int regulatory_hint_indoor(bool is_indoor, u32 portid)
3293{
3294 spin_lock(®_indoor_lock);
3295
3296 /* It is possible that more than one user space process is trying to
3297 * configure the indoor setting. To handle such cases, clear the indoor
3298 * setting in case that some process does not think that the device
3299 * is operating in an indoor environment. In addition, if a user space
3300 * process indicates that it is controlling the indoor setting, save its
3301 * portid, i.e., make it the owner.
3302 */
3303 reg_is_indoor = is_indoor;
3304 if (reg_is_indoor) {
3305 if (!reg_is_indoor_portid)
3306 reg_is_indoor_portid = portid;
3307 } else {
3308 reg_is_indoor_portid = 0;
3309 }
3310
3311 spin_unlock(®_indoor_lock);
3312
3313 if (!is_indoor)
3314 reg_check_channels();
3315
3316 return 0;
3317}
3318
3319void regulatory_netlink_notify(u32 portid)
3320{
3321 spin_lock(®_indoor_lock);
3322
3323 if (reg_is_indoor_portid != portid) {
3324 spin_unlock(®_indoor_lock);
3325 return;
3326 }
3327
3328 reg_is_indoor = false;
3329 reg_is_indoor_portid = 0;
3330
3331 spin_unlock(®_indoor_lock);
3332
3333 reg_check_channels();
3334}
3335
3336/* Driver hints */
3337int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3338{
3339 struct regulatory_request *request;
3340
3341 if (WARN_ON(!alpha2 || !wiphy))
3342 return -EINVAL;
3343
3344 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3345
3346 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3347 if (!request)
3348 return -ENOMEM;
3349
3350 request->wiphy_idx = get_wiphy_idx(wiphy);
3351
3352 request->alpha2[0] = alpha2[0];
3353 request->alpha2[1] = alpha2[1];
3354 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3355
3356 /* Allow calling CRDA again */
3357 reset_crda_timeouts();
3358
3359 queue_regulatory_request(request);
3360
3361 return 0;
3362}
3363EXPORT_SYMBOL(regulatory_hint);
3364
3365void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3366 const u8 *country_ie, u8 country_ie_len)
3367{
3368 char alpha2[2];
3369 enum environment_cap env = ENVIRON_ANY;
3370 struct regulatory_request *request = NULL, *lr;
3371
3372 /* IE len must be evenly divisible by 2 */
3373 if (country_ie_len & 0x01)
3374 return;
3375
3376 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3377 return;
3378
3379 request = kzalloc(sizeof(*request), GFP_KERNEL);
3380 if (!request)
3381 return;
3382
3383 alpha2[0] = country_ie[0];
3384 alpha2[1] = country_ie[1];
3385
3386 if (country_ie[2] == 'I')
3387 env = ENVIRON_INDOOR;
3388 else if (country_ie[2] == 'O')
3389 env = ENVIRON_OUTDOOR;
3390
3391 rcu_read_lock();
3392 lr = get_last_request();
3393
3394 if (unlikely(!lr))
3395 goto out;
3396
3397 /*
3398 * We will run this only upon a successful connection on cfg80211.
3399 * We leave conflict resolution to the workqueue, where can hold
3400 * the RTNL.
3401 */
3402 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3403 lr->wiphy_idx != WIPHY_IDX_INVALID)
3404 goto out;
3405
3406 request->wiphy_idx = get_wiphy_idx(wiphy);
3407 request->alpha2[0] = alpha2[0];
3408 request->alpha2[1] = alpha2[1];
3409 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3410 request->country_ie_env = env;
3411
3412 /* Allow calling CRDA again */
3413 reset_crda_timeouts();
3414
3415 queue_regulatory_request(request);
3416 request = NULL;
3417out:
3418 kfree(request);
3419 rcu_read_unlock();
3420}
3421
3422static void restore_alpha2(char *alpha2, bool reset_user)
3423{
3424 /* indicates there is no alpha2 to consider for restoration */
3425 alpha2[0] = '9';
3426 alpha2[1] = '7';
3427
3428 /* The user setting has precedence over the module parameter */
3429 if (is_user_regdom_saved()) {
3430 /* Unless we're asked to ignore it and reset it */
3431 if (reset_user) {
3432 pr_debug("Restoring regulatory settings including user preference\n");
3433 user_alpha2[0] = '9';
3434 user_alpha2[1] = '7';
3435
3436 /*
3437 * If we're ignoring user settings, we still need to
3438 * check the module parameter to ensure we put things
3439 * back as they were for a full restore.
3440 */
3441 if (!is_world_regdom(ieee80211_regdom)) {
3442 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3443 ieee80211_regdom[0], ieee80211_regdom[1]);
3444 alpha2[0] = ieee80211_regdom[0];
3445 alpha2[1] = ieee80211_regdom[1];
3446 }
3447 } else {
3448 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3449 user_alpha2[0], user_alpha2[1]);
3450 alpha2[0] = user_alpha2[0];
3451 alpha2[1] = user_alpha2[1];
3452 }
3453 } else if (!is_world_regdom(ieee80211_regdom)) {
3454 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3455 ieee80211_regdom[0], ieee80211_regdom[1]);
3456 alpha2[0] = ieee80211_regdom[0];
3457 alpha2[1] = ieee80211_regdom[1];
3458 } else
3459 pr_debug("Restoring regulatory settings\n");
3460}
3461
3462static void restore_custom_reg_settings(struct wiphy *wiphy)
3463{
3464 struct ieee80211_supported_band *sband;
3465 enum nl80211_band band;
3466 struct ieee80211_channel *chan;
3467 int i;
3468
3469 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3470 sband = wiphy->bands[band];
3471 if (!sband)
3472 continue;
3473 for (i = 0; i < sband->n_channels; i++) {
3474 chan = &sband->channels[i];
3475 chan->flags = chan->orig_flags;
3476 chan->max_antenna_gain = chan->orig_mag;
3477 chan->max_power = chan->orig_mpwr;
3478 chan->beacon_found = false;
3479 }
3480 }
3481}
3482
3483/*
3484 * Restoring regulatory settings involves ignoring any
3485 * possibly stale country IE information and user regulatory
3486 * settings if so desired, this includes any beacon hints
3487 * learned as we could have traveled outside to another country
3488 * after disconnection. To restore regulatory settings we do
3489 * exactly what we did at bootup:
3490 *
3491 * - send a core regulatory hint
3492 * - send a user regulatory hint if applicable
3493 *
3494 * Device drivers that send a regulatory hint for a specific country
3495 * keep their own regulatory domain on wiphy->regd so that does
3496 * not need to be remembered.
3497 */
3498static void restore_regulatory_settings(bool reset_user, bool cached)
3499{
3500 char alpha2[2];
3501 char world_alpha2[2];
3502 struct reg_beacon *reg_beacon, *btmp;
3503 LIST_HEAD(tmp_reg_req_list);
3504 struct cfg80211_registered_device *rdev;
3505
3506 ASSERT_RTNL();
3507
3508 /*
3509 * Clear the indoor setting in case that it is not controlled by user
3510 * space, as otherwise there is no guarantee that the device is still
3511 * operating in an indoor environment.
3512 */
3513 spin_lock(®_indoor_lock);
3514 if (reg_is_indoor && !reg_is_indoor_portid) {
3515 reg_is_indoor = false;
3516 reg_check_channels();
3517 }
3518 spin_unlock(®_indoor_lock);
3519
3520 reset_regdomains(true, &world_regdom);
3521 restore_alpha2(alpha2, reset_user);
3522
3523 /*
3524 * If there's any pending requests we simply
3525 * stash them to a temporary pending queue and
3526 * add then after we've restored regulatory
3527 * settings.
3528 */
3529 spin_lock(®_requests_lock);
3530 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3531 spin_unlock(®_requests_lock);
3532
3533 /* Clear beacon hints */
3534 spin_lock_bh(®_pending_beacons_lock);
3535 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3536 list_del(®_beacon->list);
3537 kfree(reg_beacon);
3538 }
3539 spin_unlock_bh(®_pending_beacons_lock);
3540
3541 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3542 list_del(®_beacon->list);
3543 kfree(reg_beacon);
3544 }
3545
3546 /* First restore to the basic regulatory settings */
3547 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3548 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3549
3550 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3551 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3552 continue;
3553 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3554 restore_custom_reg_settings(&rdev->wiphy);
3555 }
3556
3557 if (cached && (!is_an_alpha2(alpha2) ||
3558 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3559 reset_regdomains(false, cfg80211_world_regdom);
3560 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3561 print_regdomain(get_cfg80211_regdom());
3562 nl80211_send_reg_change_event(&core_request_world);
3563 reg_set_request_processed();
3564
3565 if (is_an_alpha2(alpha2) &&
3566 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3567 struct regulatory_request *ureq;
3568
3569 spin_lock(®_requests_lock);
3570 ureq = list_last_entry(®_requests_list,
3571 struct regulatory_request,
3572 list);
3573 list_del(&ureq->list);
3574 spin_unlock(®_requests_lock);
3575
3576 notify_self_managed_wiphys(ureq);
3577 reg_update_last_request(ureq);
3578 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3579 REGD_SOURCE_CACHED);
3580 }
3581 } else {
3582 regulatory_hint_core(world_alpha2);
3583
3584 /*
3585 * This restores the ieee80211_regdom module parameter
3586 * preference or the last user requested regulatory
3587 * settings, user regulatory settings takes precedence.
3588 */
3589 if (is_an_alpha2(alpha2))
3590 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3591 }
3592
3593 spin_lock(®_requests_lock);
3594 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3595 spin_unlock(®_requests_lock);
3596
3597 pr_debug("Kicking the queue\n");
3598
3599 schedule_work(®_work);
3600}
3601
3602static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3603{
3604 struct cfg80211_registered_device *rdev;
3605 struct wireless_dev *wdev;
3606
3607 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3608 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3609 wdev_lock(wdev);
3610 if (!(wdev->wiphy->regulatory_flags & flag)) {
3611 wdev_unlock(wdev);
3612 return false;
3613 }
3614 wdev_unlock(wdev);
3615 }
3616 }
3617
3618 return true;
3619}
3620
3621void regulatory_hint_disconnect(void)
3622{
3623 /* Restore of regulatory settings is not required when wiphy(s)
3624 * ignore IE from connected access point but clearance of beacon hints
3625 * is required when wiphy(s) supports beacon hints.
3626 */
3627 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3628 struct reg_beacon *reg_beacon, *btmp;
3629
3630 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3631 return;
3632
3633 spin_lock_bh(®_pending_beacons_lock);
3634 list_for_each_entry_safe(reg_beacon, btmp,
3635 ®_pending_beacons, list) {
3636 list_del(®_beacon->list);
3637 kfree(reg_beacon);
3638 }
3639 spin_unlock_bh(®_pending_beacons_lock);
3640
3641 list_for_each_entry_safe(reg_beacon, btmp,
3642 ®_beacon_list, list) {
3643 list_del(®_beacon->list);
3644 kfree(reg_beacon);
3645 }
3646
3647 return;
3648 }
3649
3650 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3651 restore_regulatory_settings(false, true);
3652}
3653
3654static bool freq_is_chan_12_13_14(u32 freq)
3655{
3656 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3657 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3658 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3659 return true;
3660 return false;
3661}
3662
3663static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3664{
3665 struct reg_beacon *pending_beacon;
3666
3667 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3668 if (ieee80211_channel_equal(beacon_chan,
3669 &pending_beacon->chan))
3670 return true;
3671 return false;
3672}
3673
3674int regulatory_hint_found_beacon(struct wiphy *wiphy,
3675 struct ieee80211_channel *beacon_chan,
3676 gfp_t gfp)
3677{
3678 struct reg_beacon *reg_beacon;
3679 bool processing;
3680
3681 if (beacon_chan->beacon_found ||
3682 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3683 (beacon_chan->band == NL80211_BAND_2GHZ &&
3684 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3685 return 0;
3686
3687 spin_lock_bh(®_pending_beacons_lock);
3688 processing = pending_reg_beacon(beacon_chan);
3689 spin_unlock_bh(®_pending_beacons_lock);
3690
3691 if (processing)
3692 return 0;
3693
3694 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3695 if (!reg_beacon)
3696 return -ENOMEM;
3697
3698 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3699 beacon_chan->center_freq, beacon_chan->freq_offset,
3700 ieee80211_freq_khz_to_channel(
3701 ieee80211_channel_to_khz(beacon_chan)),
3702 wiphy_name(wiphy));
3703
3704 memcpy(®_beacon->chan, beacon_chan,
3705 sizeof(struct ieee80211_channel));
3706
3707 /*
3708 * Since we can be called from BH or and non-BH context
3709 * we must use spin_lock_bh()
3710 */
3711 spin_lock_bh(®_pending_beacons_lock);
3712 list_add_tail(®_beacon->list, ®_pending_beacons);
3713 spin_unlock_bh(®_pending_beacons_lock);
3714
3715 schedule_work(®_work);
3716
3717 return 0;
3718}
3719
3720static void print_rd_rules(const struct ieee80211_regdomain *rd)
3721{
3722 unsigned int i;
3723 const struct ieee80211_reg_rule *reg_rule = NULL;
3724 const struct ieee80211_freq_range *freq_range = NULL;
3725 const struct ieee80211_power_rule *power_rule = NULL;
3726 char bw[32], cac_time[32];
3727
3728 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3729
3730 for (i = 0; i < rd->n_reg_rules; i++) {
3731 reg_rule = &rd->reg_rules[i];
3732 freq_range = ®_rule->freq_range;
3733 power_rule = ®_rule->power_rule;
3734
3735 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3736 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3737 freq_range->max_bandwidth_khz,
3738 reg_get_max_bandwidth(rd, reg_rule));
3739 else
3740 snprintf(bw, sizeof(bw), "%d KHz",
3741 freq_range->max_bandwidth_khz);
3742
3743 if (reg_rule->flags & NL80211_RRF_DFS)
3744 scnprintf(cac_time, sizeof(cac_time), "%u s",
3745 reg_rule->dfs_cac_ms/1000);
3746 else
3747 scnprintf(cac_time, sizeof(cac_time), "N/A");
3748
3749
3750 /*
3751 * There may not be documentation for max antenna gain
3752 * in certain regions
3753 */
3754 if (power_rule->max_antenna_gain)
3755 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3756 freq_range->start_freq_khz,
3757 freq_range->end_freq_khz,
3758 bw,
3759 power_rule->max_antenna_gain,
3760 power_rule->max_eirp,
3761 cac_time);
3762 else
3763 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3764 freq_range->start_freq_khz,
3765 freq_range->end_freq_khz,
3766 bw,
3767 power_rule->max_eirp,
3768 cac_time);
3769 }
3770}
3771
3772bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3773{
3774 switch (dfs_region) {
3775 case NL80211_DFS_UNSET:
3776 case NL80211_DFS_FCC:
3777 case NL80211_DFS_ETSI:
3778 case NL80211_DFS_JP:
3779 return true;
3780 default:
3781 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3782 return false;
3783 }
3784}
3785
3786static void print_regdomain(const struct ieee80211_regdomain *rd)
3787{
3788 struct regulatory_request *lr = get_last_request();
3789
3790 if (is_intersected_alpha2(rd->alpha2)) {
3791 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3792 struct cfg80211_registered_device *rdev;
3793 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3794 if (rdev) {
3795 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3796 rdev->country_ie_alpha2[0],
3797 rdev->country_ie_alpha2[1]);
3798 } else
3799 pr_debug("Current regulatory domain intersected:\n");
3800 } else
3801 pr_debug("Current regulatory domain intersected:\n");
3802 } else if (is_world_regdom(rd->alpha2)) {
3803 pr_debug("World regulatory domain updated:\n");
3804 } else {
3805 if (is_unknown_alpha2(rd->alpha2))
3806 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3807 else {
3808 if (reg_request_cell_base(lr))
3809 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3810 rd->alpha2[0], rd->alpha2[1]);
3811 else
3812 pr_debug("Regulatory domain changed to country: %c%c\n",
3813 rd->alpha2[0], rd->alpha2[1]);
3814 }
3815 }
3816
3817 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3818 print_rd_rules(rd);
3819}
3820
3821static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3822{
3823 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3824 print_rd_rules(rd);
3825}
3826
3827static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3828{
3829 if (!is_world_regdom(rd->alpha2))
3830 return -EINVAL;
3831 update_world_regdomain(rd);
3832 return 0;
3833}
3834
3835static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3836 struct regulatory_request *user_request)
3837{
3838 const struct ieee80211_regdomain *intersected_rd = NULL;
3839
3840 if (!regdom_changes(rd->alpha2))
3841 return -EALREADY;
3842
3843 if (!is_valid_rd(rd)) {
3844 pr_err("Invalid regulatory domain detected: %c%c\n",
3845 rd->alpha2[0], rd->alpha2[1]);
3846 print_regdomain_info(rd);
3847 return -EINVAL;
3848 }
3849
3850 if (!user_request->intersect) {
3851 reset_regdomains(false, rd);
3852 return 0;
3853 }
3854
3855 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3856 if (!intersected_rd)
3857 return -EINVAL;
3858
3859 kfree(rd);
3860 rd = NULL;
3861 reset_regdomains(false, intersected_rd);
3862
3863 return 0;
3864}
3865
3866static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3867 struct regulatory_request *driver_request)
3868{
3869 const struct ieee80211_regdomain *regd;
3870 const struct ieee80211_regdomain *intersected_rd = NULL;
3871 const struct ieee80211_regdomain *tmp;
3872 struct wiphy *request_wiphy;
3873
3874 if (is_world_regdom(rd->alpha2))
3875 return -EINVAL;
3876
3877 if (!regdom_changes(rd->alpha2))
3878 return -EALREADY;
3879
3880 if (!is_valid_rd(rd)) {
3881 pr_err("Invalid regulatory domain detected: %c%c\n",
3882 rd->alpha2[0], rd->alpha2[1]);
3883 print_regdomain_info(rd);
3884 return -EINVAL;
3885 }
3886
3887 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3888 if (!request_wiphy)
3889 return -ENODEV;
3890
3891 if (!driver_request->intersect) {
3892 ASSERT_RTNL();
3893 wiphy_lock(request_wiphy);
3894 if (request_wiphy->regd) {
3895 wiphy_unlock(request_wiphy);
3896 return -EALREADY;
3897 }
3898
3899 regd = reg_copy_regd(rd);
3900 if (IS_ERR(regd)) {
3901 wiphy_unlock(request_wiphy);
3902 return PTR_ERR(regd);
3903 }
3904
3905 rcu_assign_pointer(request_wiphy->regd, regd);
3906 wiphy_unlock(request_wiphy);
3907 reset_regdomains(false, rd);
3908 return 0;
3909 }
3910
3911 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3912 if (!intersected_rd)
3913 return -EINVAL;
3914
3915 /*
3916 * We can trash what CRDA provided now.
3917 * However if a driver requested this specific regulatory
3918 * domain we keep it for its private use
3919 */
3920 tmp = get_wiphy_regdom(request_wiphy);
3921 rcu_assign_pointer(request_wiphy->regd, rd);
3922 rcu_free_regdom(tmp);
3923
3924 rd = NULL;
3925
3926 reset_regdomains(false, intersected_rd);
3927
3928 return 0;
3929}
3930
3931static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3932 struct regulatory_request *country_ie_request)
3933{
3934 struct wiphy *request_wiphy;
3935
3936 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3937 !is_unknown_alpha2(rd->alpha2))
3938 return -EINVAL;
3939
3940 /*
3941 * Lets only bother proceeding on the same alpha2 if the current
3942 * rd is non static (it means CRDA was present and was used last)
3943 * and the pending request came in from a country IE
3944 */
3945
3946 if (!is_valid_rd(rd)) {
3947 pr_err("Invalid regulatory domain detected: %c%c\n",
3948 rd->alpha2[0], rd->alpha2[1]);
3949 print_regdomain_info(rd);
3950 return -EINVAL;
3951 }
3952
3953 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3954 if (!request_wiphy)
3955 return -ENODEV;
3956
3957 if (country_ie_request->intersect)
3958 return -EINVAL;
3959
3960 reset_regdomains(false, rd);
3961 return 0;
3962}
3963
3964/*
3965 * Use this call to set the current regulatory domain. Conflicts with
3966 * multiple drivers can be ironed out later. Caller must've already
3967 * kmalloc'd the rd structure.
3968 */
3969int set_regdom(const struct ieee80211_regdomain *rd,
3970 enum ieee80211_regd_source regd_src)
3971{
3972 struct regulatory_request *lr;
3973 bool user_reset = false;
3974 int r;
3975
3976 if (IS_ERR_OR_NULL(rd))
3977 return -ENODATA;
3978
3979 if (!reg_is_valid_request(rd->alpha2)) {
3980 kfree(rd);
3981 return -EINVAL;
3982 }
3983
3984 if (regd_src == REGD_SOURCE_CRDA)
3985 reset_crda_timeouts();
3986
3987 lr = get_last_request();
3988
3989 /* Note that this doesn't update the wiphys, this is done below */
3990 switch (lr->initiator) {
3991 case NL80211_REGDOM_SET_BY_CORE:
3992 r = reg_set_rd_core(rd);
3993 break;
3994 case NL80211_REGDOM_SET_BY_USER:
3995 cfg80211_save_user_regdom(rd);
3996 r = reg_set_rd_user(rd, lr);
3997 user_reset = true;
3998 break;
3999 case NL80211_REGDOM_SET_BY_DRIVER:
4000 r = reg_set_rd_driver(rd, lr);
4001 break;
4002 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
4003 r = reg_set_rd_country_ie(rd, lr);
4004 break;
4005 default:
4006 WARN(1, "invalid initiator %d\n", lr->initiator);
4007 kfree(rd);
4008 return -EINVAL;
4009 }
4010
4011 if (r) {
4012 switch (r) {
4013 case -EALREADY:
4014 reg_set_request_processed();
4015 break;
4016 default:
4017 /* Back to world regulatory in case of errors */
4018 restore_regulatory_settings(user_reset, false);
4019 }
4020
4021 kfree(rd);
4022 return r;
4023 }
4024
4025 /* This would make this whole thing pointless */
4026 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4027 return -EINVAL;
4028
4029 /* update all wiphys now with the new established regulatory domain */
4030 update_all_wiphy_regulatory(lr->initiator);
4031
4032 print_regdomain(get_cfg80211_regdom());
4033
4034 nl80211_send_reg_change_event(lr);
4035
4036 reg_set_request_processed();
4037
4038 return 0;
4039}
4040
4041static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4042 struct ieee80211_regdomain *rd)
4043{
4044 const struct ieee80211_regdomain *regd;
4045 const struct ieee80211_regdomain *prev_regd;
4046 struct cfg80211_registered_device *rdev;
4047
4048 if (WARN_ON(!wiphy || !rd))
4049 return -EINVAL;
4050
4051 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4052 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4053 return -EPERM;
4054
4055 if (WARN(!is_valid_rd(rd),
4056 "Invalid regulatory domain detected: %c%c\n",
4057 rd->alpha2[0], rd->alpha2[1])) {
4058 print_regdomain_info(rd);
4059 return -EINVAL;
4060 }
4061
4062 regd = reg_copy_regd(rd);
4063 if (IS_ERR(regd))
4064 return PTR_ERR(regd);
4065
4066 rdev = wiphy_to_rdev(wiphy);
4067
4068 spin_lock(®_requests_lock);
4069 prev_regd = rdev->requested_regd;
4070 rdev->requested_regd = regd;
4071 spin_unlock(®_requests_lock);
4072
4073 kfree(prev_regd);
4074 return 0;
4075}
4076
4077int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4078 struct ieee80211_regdomain *rd)
4079{
4080 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4081
4082 if (ret)
4083 return ret;
4084
4085 schedule_work(®_work);
4086 return 0;
4087}
4088EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4089
4090int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4091 struct ieee80211_regdomain *rd)
4092{
4093 int ret;
4094
4095 ASSERT_RTNL();
4096
4097 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4098 if (ret)
4099 return ret;
4100
4101 /* process the request immediately */
4102 reg_process_self_managed_hint(wiphy);
4103 reg_check_channels();
4104 return 0;
4105}
4106EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4107
4108void wiphy_regulatory_register(struct wiphy *wiphy)
4109{
4110 struct regulatory_request *lr = get_last_request();
4111
4112 /* self-managed devices ignore beacon hints and country IE */
4113 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4114 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4115 REGULATORY_COUNTRY_IE_IGNORE;
4116
4117 /*
4118 * The last request may have been received before this
4119 * registration call. Call the driver notifier if
4120 * initiator is USER.
4121 */
4122 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4123 reg_call_notifier(wiphy, lr);
4124 }
4125
4126 if (!reg_dev_ignore_cell_hint(wiphy))
4127 reg_num_devs_support_basehint++;
4128
4129 wiphy_update_regulatory(wiphy, lr->initiator);
4130 wiphy_all_share_dfs_chan_state(wiphy);
4131 reg_process_self_managed_hints();
4132}
4133
4134void wiphy_regulatory_deregister(struct wiphy *wiphy)
4135{
4136 struct wiphy *request_wiphy = NULL;
4137 struct regulatory_request *lr;
4138
4139 lr = get_last_request();
4140
4141 if (!reg_dev_ignore_cell_hint(wiphy))
4142 reg_num_devs_support_basehint--;
4143
4144 rcu_free_regdom(get_wiphy_regdom(wiphy));
4145 RCU_INIT_POINTER(wiphy->regd, NULL);
4146
4147 if (lr)
4148 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4149
4150 if (!request_wiphy || request_wiphy != wiphy)
4151 return;
4152
4153 lr->wiphy_idx = WIPHY_IDX_INVALID;
4154 lr->country_ie_env = ENVIRON_ANY;
4155}
4156
4157/*
4158 * See FCC notices for UNII band definitions
4159 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4160 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4161 */
4162int cfg80211_get_unii(int freq)
4163{
4164 /* UNII-1 */
4165 if (freq >= 5150 && freq <= 5250)
4166 return 0;
4167
4168 /* UNII-2A */
4169 if (freq > 5250 && freq <= 5350)
4170 return 1;
4171
4172 /* UNII-2B */
4173 if (freq > 5350 && freq <= 5470)
4174 return 2;
4175
4176 /* UNII-2C */
4177 if (freq > 5470 && freq <= 5725)
4178 return 3;
4179
4180 /* UNII-3 */
4181 if (freq > 5725 && freq <= 5825)
4182 return 4;
4183
4184 /* UNII-5 */
4185 if (freq > 5925 && freq <= 6425)
4186 return 5;
4187
4188 /* UNII-6 */
4189 if (freq > 6425 && freq <= 6525)
4190 return 6;
4191
4192 /* UNII-7 */
4193 if (freq > 6525 && freq <= 6875)
4194 return 7;
4195
4196 /* UNII-8 */
4197 if (freq > 6875 && freq <= 7125)
4198 return 8;
4199
4200 return -EINVAL;
4201}
4202
4203bool regulatory_indoor_allowed(void)
4204{
4205 return reg_is_indoor;
4206}
4207
4208bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4209{
4210 const struct ieee80211_regdomain *regd = NULL;
4211 const struct ieee80211_regdomain *wiphy_regd = NULL;
4212 bool pre_cac_allowed = false;
4213
4214 rcu_read_lock();
4215
4216 regd = rcu_dereference(cfg80211_regdomain);
4217 wiphy_regd = rcu_dereference(wiphy->regd);
4218 if (!wiphy_regd) {
4219 if (regd->dfs_region == NL80211_DFS_ETSI)
4220 pre_cac_allowed = true;
4221
4222 rcu_read_unlock();
4223
4224 return pre_cac_allowed;
4225 }
4226
4227 if (regd->dfs_region == wiphy_regd->dfs_region &&
4228 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4229 pre_cac_allowed = true;
4230
4231 rcu_read_unlock();
4232
4233 return pre_cac_allowed;
4234}
4235EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4236
4237static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4238{
4239 struct wireless_dev *wdev;
4240 /* If we finished CAC or received radar, we should end any
4241 * CAC running on the same channels.
4242 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4243 * either all channels are available - those the CAC_FINISHED
4244 * event has effected another wdev state, or there is a channel
4245 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4246 * event has effected another wdev state.
4247 * In both cases we should end the CAC on the wdev.
4248 */
4249 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4250 struct cfg80211_chan_def *chandef;
4251
4252 if (!wdev->cac_started)
4253 continue;
4254
4255 /* FIXME: radar detection is tied to link 0 for now */
4256 chandef = wdev_chandef(wdev, 0);
4257 if (!chandef)
4258 continue;
4259
4260 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4261 rdev_end_cac(rdev, wdev->netdev);
4262 }
4263}
4264
4265void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4266 struct cfg80211_chan_def *chandef,
4267 enum nl80211_dfs_state dfs_state,
4268 enum nl80211_radar_event event)
4269{
4270 struct cfg80211_registered_device *rdev;
4271
4272 ASSERT_RTNL();
4273
4274 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4275 return;
4276
4277 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4278 if (wiphy == &rdev->wiphy)
4279 continue;
4280
4281 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4282 continue;
4283
4284 if (!ieee80211_get_channel(&rdev->wiphy,
4285 chandef->chan->center_freq))
4286 continue;
4287
4288 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4289
4290 if (event == NL80211_RADAR_DETECTED ||
4291 event == NL80211_RADAR_CAC_FINISHED) {
4292 cfg80211_sched_dfs_chan_update(rdev);
4293 cfg80211_check_and_end_cac(rdev);
4294 }
4295
4296 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4297 }
4298}
4299
4300static int __init regulatory_init_db(void)
4301{
4302 int err;
4303
4304 /*
4305 * It's possible that - due to other bugs/issues - cfg80211
4306 * never called regulatory_init() below, or that it failed;
4307 * in that case, don't try to do any further work here as
4308 * it's doomed to lead to crashes.
4309 */
4310 if (IS_ERR_OR_NULL(reg_pdev))
4311 return -EINVAL;
4312
4313 err = load_builtin_regdb_keys();
4314 if (err) {
4315 platform_device_unregister(reg_pdev);
4316 return err;
4317 }
4318
4319 /* We always try to get an update for the static regdomain */
4320 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4321 if (err) {
4322 if (err == -ENOMEM) {
4323 platform_device_unregister(reg_pdev);
4324 return err;
4325 }
4326 /*
4327 * N.B. kobject_uevent_env() can fail mainly for when we're out
4328 * memory which is handled and propagated appropriately above
4329 * but it can also fail during a netlink_broadcast() or during
4330 * early boot for call_usermodehelper(). For now treat these
4331 * errors as non-fatal.
4332 */
4333 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4334 }
4335
4336 /*
4337 * Finally, if the user set the module parameter treat it
4338 * as a user hint.
4339 */
4340 if (!is_world_regdom(ieee80211_regdom))
4341 regulatory_hint_user(ieee80211_regdom,
4342 NL80211_USER_REG_HINT_USER);
4343
4344 return 0;
4345}
4346#ifndef MODULE
4347late_initcall(regulatory_init_db);
4348#endif
4349
4350int __init regulatory_init(void)
4351{
4352 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4353 if (IS_ERR(reg_pdev))
4354 return PTR_ERR(reg_pdev);
4355
4356 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4357
4358 user_alpha2[0] = '9';
4359 user_alpha2[1] = '7';
4360
4361#ifdef MODULE
4362 return regulatory_init_db();
4363#else
4364 return 0;
4365#endif
4366}
4367
4368void regulatory_exit(void)
4369{
4370 struct regulatory_request *reg_request, *tmp;
4371 struct reg_beacon *reg_beacon, *btmp;
4372
4373 cancel_work_sync(®_work);
4374 cancel_crda_timeout_sync();
4375 cancel_delayed_work_sync(®_check_chans);
4376
4377 /* Lock to suppress warnings */
4378 rtnl_lock();
4379 reset_regdomains(true, NULL);
4380 rtnl_unlock();
4381
4382 dev_set_uevent_suppress(®_pdev->dev, true);
4383
4384 platform_device_unregister(reg_pdev);
4385
4386 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4387 list_del(®_beacon->list);
4388 kfree(reg_beacon);
4389 }
4390
4391 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4392 list_del(®_beacon->list);
4393 kfree(reg_beacon);
4394 }
4395
4396 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4397 list_del(®_request->list);
4398 kfree(reg_request);
4399 }
4400
4401 if (!IS_ERR_OR_NULL(regdb))
4402 kfree(regdb);
4403 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4404 kfree(cfg80211_user_regdom);
4405
4406 free_regdb_keyring();
4407}