Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Copyright 2002-2005, Instant802 Networks, Inc.
   3 * Copyright 2005-2006, Devicescape Software, Inc.
   4 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
 
 
   7 *
   8 * Permission to use, copy, modify, and/or distribute this software for any
   9 * purpose with or without fee is hereby granted, provided that the above
  10 * copyright notice and this permission notice appear in all copies.
  11 *
  12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  19 */
  20
  21
  22/**
  23 * DOC: Wireless regulatory infrastructure
  24 *
  25 * The usual implementation is for a driver to read a device EEPROM to
  26 * determine which regulatory domain it should be operating under, then
  27 * looking up the allowable channels in a driver-local table and finally
  28 * registering those channels in the wiphy structure.
  29 *
  30 * Another set of compliance enforcement is for drivers to use their
  31 * own compliance limits which can be stored on the EEPROM. The host
  32 * driver or firmware may ensure these are used.
  33 *
  34 * In addition to all this we provide an extra layer of regulatory
  35 * conformance. For drivers which do not have any regulatory
  36 * information CRDA provides the complete regulatory solution.
  37 * For others it provides a community effort on further restrictions
  38 * to enhance compliance.
  39 *
  40 * Note: When number of rules --> infinity we will not be able to
  41 * index on alpha2 any more, instead we'll probably have to
  42 * rely on some SHA1 checksum of the regdomain for example.
  43 *
  44 */
  45
  46#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  47
  48#include <linux/kernel.h>
  49#include <linux/export.h>
  50#include <linux/slab.h>
  51#include <linux/list.h>
  52#include <linux/ctype.h>
  53#include <linux/nl80211.h>
  54#include <linux/platform_device.h>
 
  55#include <linux/moduleparam.h>
 
  56#include <net/cfg80211.h>
  57#include "core.h"
  58#include "reg.h"
  59#include "rdev-ops.h"
  60#include "regdb.h"
  61#include "nl80211.h"
  62
  63/*
  64 * Grace period we give before making sure all current interfaces reside on
  65 * channels allowed by the current regulatory domain.
  66 */
  67#define REG_ENFORCE_GRACE_MS 60000
  68
  69/**
  70 * enum reg_request_treatment - regulatory request treatment
  71 *
  72 * @REG_REQ_OK: continue processing the regulatory request
  73 * @REG_REQ_IGNORE: ignore the regulatory request
  74 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
  75 *	be intersected with the current one.
  76 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
  77 *	regulatory settings, and no further processing is required.
  78 */
  79enum reg_request_treatment {
  80	REG_REQ_OK,
  81	REG_REQ_IGNORE,
  82	REG_REQ_INTERSECT,
  83	REG_REQ_ALREADY_SET,
  84};
  85
  86static struct regulatory_request core_request_world = {
  87	.initiator = NL80211_REGDOM_SET_BY_CORE,
  88	.alpha2[0] = '0',
  89	.alpha2[1] = '0',
  90	.intersect = false,
  91	.processed = true,
  92	.country_ie_env = ENVIRON_ANY,
  93};
  94
  95/*
  96 * Receipt of information from last regulatory request,
  97 * protected by RTNL (and can be accessed with RCU protection)
  98 */
  99static struct regulatory_request __rcu *last_request =
 100	(void __force __rcu *)&core_request_world;
 101
 102/* To trigger userspace events */
 103static struct platform_device *reg_pdev;
 104
 105/*
 106 * Central wireless core regulatory domains, we only need two,
 107 * the current one and a world regulatory domain in case we have no
 108 * information to give us an alpha2.
 109 * (protected by RTNL, can be read under RCU)
 110 */
 111const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
 112
 113/*
 114 * Number of devices that registered to the core
 115 * that support cellular base station regulatory hints
 116 * (protected by RTNL)
 117 */
 118static int reg_num_devs_support_basehint;
 119
 120/*
 121 * State variable indicating if the platform on which the devices
 122 * are attached is operating in an indoor environment. The state variable
 123 * is relevant for all registered devices.
 124 */
 125static bool reg_is_indoor;
 126static spinlock_t reg_indoor_lock;
 127
 128/* Used to track the userspace process controlling the indoor setting */
 129static u32 reg_is_indoor_portid;
 130
 131static void restore_regulatory_settings(bool reset_user);
 
 
 132
 133static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
 134{
 135	return rtnl_dereference(cfg80211_regdomain);
 136}
 137
 
 
 
 
 
 138const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
 139{
 140	return rtnl_dereference(wiphy->regd);
 
 
 141}
 
 142
 143static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
 144{
 145	switch (dfs_region) {
 146	case NL80211_DFS_UNSET:
 147		return "unset";
 148	case NL80211_DFS_FCC:
 149		return "FCC";
 150	case NL80211_DFS_ETSI:
 151		return "ETSI";
 152	case NL80211_DFS_JP:
 153		return "JP";
 154	}
 155	return "Unknown";
 156}
 157
 158enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
 159{
 160	const struct ieee80211_regdomain *regd = NULL;
 161	const struct ieee80211_regdomain *wiphy_regd = NULL;
 
 162
 
 163	regd = get_cfg80211_regdom();
 
 
 164	if (!wiphy)
 165		goto out;
 166
 167	wiphy_regd = get_wiphy_regdom(wiphy);
 168	if (!wiphy_regd)
 169		goto out;
 170
 
 
 
 
 
 171	if (wiphy_regd->dfs_region == regd->dfs_region)
 172		goto out;
 173
 174	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
 175		 dev_name(&wiphy->dev),
 176		 reg_dfs_region_str(wiphy_regd->dfs_region),
 177		 reg_dfs_region_str(regd->dfs_region));
 178
 179out:
 180	return regd->dfs_region;
 
 
 181}
 182
 183static void rcu_free_regdom(const struct ieee80211_regdomain *r)
 184{
 185	if (!r)
 186		return;
 187	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
 188}
 189
 190static struct regulatory_request *get_last_request(void)
 191{
 192	return rcu_dereference_rtnl(last_request);
 193}
 194
 195/* Used to queue up regulatory hints */
 196static LIST_HEAD(reg_requests_list);
 197static spinlock_t reg_requests_lock;
 198
 199/* Used to queue up beacon hints for review */
 200static LIST_HEAD(reg_pending_beacons);
 201static spinlock_t reg_pending_beacons_lock;
 202
 203/* Used to keep track of processed beacon hints */
 204static LIST_HEAD(reg_beacon_list);
 205
 206struct reg_beacon {
 207	struct list_head list;
 208	struct ieee80211_channel chan;
 209};
 210
 211static void reg_check_chans_work(struct work_struct *work);
 212static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
 213
 214static void reg_todo(struct work_struct *work);
 215static DECLARE_WORK(reg_work, reg_todo);
 216
 217/* We keep a static world regulatory domain in case of the absence of CRDA */
 218static const struct ieee80211_regdomain world_regdom = {
 219	.n_reg_rules = 8,
 220	.alpha2 =  "00",
 221	.reg_rules = {
 222		/* IEEE 802.11b/g, channels 1..11 */
 223		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
 224		/* IEEE 802.11b/g, channels 12..13. */
 225		REG_RULE(2467-10, 2472+10, 20, 6, 20,
 226			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
 227		/* IEEE 802.11 channel 14 - Only JP enables
 228		 * this and for 802.11b only */
 229		REG_RULE(2484-10, 2484+10, 20, 6, 20,
 230			NL80211_RRF_NO_IR |
 231			NL80211_RRF_NO_OFDM),
 232		/* IEEE 802.11a, channel 36..48 */
 233		REG_RULE(5180-10, 5240+10, 80, 6, 20,
 234                        NL80211_RRF_NO_IR |
 235                        NL80211_RRF_AUTO_BW),
 236
 237		/* IEEE 802.11a, channel 52..64 - DFS required */
 238		REG_RULE(5260-10, 5320+10, 80, 6, 20,
 239			NL80211_RRF_NO_IR |
 240			NL80211_RRF_AUTO_BW |
 241			NL80211_RRF_DFS),
 242
 243		/* IEEE 802.11a, channel 100..144 - DFS required */
 244		REG_RULE(5500-10, 5720+10, 160, 6, 20,
 245			NL80211_RRF_NO_IR |
 246			NL80211_RRF_DFS),
 247
 248		/* IEEE 802.11a, channel 149..165 */
 249		REG_RULE(5745-10, 5825+10, 80, 6, 20,
 250			NL80211_RRF_NO_IR),
 251
 252		/* IEEE 802.11ad (60GHz), channels 1..3 */
 253		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
 254	}
 255};
 256
 257/* protected by RTNL */
 258static const struct ieee80211_regdomain *cfg80211_world_regdom =
 259	&world_regdom;
 260
 261static char *ieee80211_regdom = "00";
 262static char user_alpha2[2];
 
 263
 264module_param(ieee80211_regdom, charp, 0444);
 265MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
 266
 267static void reg_free_request(struct regulatory_request *request)
 268{
 269	if (request == &core_request_world)
 270		return;
 271
 272	if (request != get_last_request())
 273		kfree(request);
 274}
 275
 276static void reg_free_last_request(void)
 277{
 278	struct regulatory_request *lr = get_last_request();
 279
 280	if (lr != &core_request_world && lr)
 281		kfree_rcu(lr, rcu_head);
 282}
 283
 284static void reg_update_last_request(struct regulatory_request *request)
 285{
 286	struct regulatory_request *lr;
 287
 288	lr = get_last_request();
 289	if (lr == request)
 290		return;
 291
 292	reg_free_last_request();
 293	rcu_assign_pointer(last_request, request);
 294}
 295
 296static void reset_regdomains(bool full_reset,
 297			     const struct ieee80211_regdomain *new_regdom)
 298{
 299	const struct ieee80211_regdomain *r;
 300
 301	ASSERT_RTNL();
 302
 303	r = get_cfg80211_regdom();
 304
 305	/* avoid freeing static information or freeing something twice */
 306	if (r == cfg80211_world_regdom)
 307		r = NULL;
 308	if (cfg80211_world_regdom == &world_regdom)
 309		cfg80211_world_regdom = NULL;
 310	if (r == &world_regdom)
 311		r = NULL;
 312
 313	rcu_free_regdom(r);
 314	rcu_free_regdom(cfg80211_world_regdom);
 315
 316	cfg80211_world_regdom = &world_regdom;
 317	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
 318
 319	if (!full_reset)
 320		return;
 321
 322	reg_update_last_request(&core_request_world);
 323}
 324
 325/*
 326 * Dynamic world regulatory domain requested by the wireless
 327 * core upon initialization
 328 */
 329static void update_world_regdomain(const struct ieee80211_regdomain *rd)
 330{
 331	struct regulatory_request *lr;
 332
 333	lr = get_last_request();
 334
 335	WARN_ON(!lr);
 336
 337	reset_regdomains(false, rd);
 338
 339	cfg80211_world_regdom = rd;
 340}
 341
 342bool is_world_regdom(const char *alpha2)
 343{
 344	if (!alpha2)
 345		return false;
 346	return alpha2[0] == '0' && alpha2[1] == '0';
 347}
 348
 349static bool is_alpha2_set(const char *alpha2)
 350{
 351	if (!alpha2)
 352		return false;
 353	return alpha2[0] && alpha2[1];
 354}
 355
 356static bool is_unknown_alpha2(const char *alpha2)
 357{
 358	if (!alpha2)
 359		return false;
 360	/*
 361	 * Special case where regulatory domain was built by driver
 362	 * but a specific alpha2 cannot be determined
 363	 */
 364	return alpha2[0] == '9' && alpha2[1] == '9';
 365}
 366
 367static bool is_intersected_alpha2(const char *alpha2)
 368{
 369	if (!alpha2)
 370		return false;
 371	/*
 372	 * Special case where regulatory domain is the
 373	 * result of an intersection between two regulatory domain
 374	 * structures
 375	 */
 376	return alpha2[0] == '9' && alpha2[1] == '8';
 377}
 378
 379static bool is_an_alpha2(const char *alpha2)
 380{
 381	if (!alpha2)
 382		return false;
 383	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
 384}
 385
 386static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
 387{
 388	if (!alpha2_x || !alpha2_y)
 389		return false;
 390	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
 391}
 392
 393static bool regdom_changes(const char *alpha2)
 394{
 395	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
 396
 397	if (!r)
 398		return true;
 399	return !alpha2_equal(r->alpha2, alpha2);
 400}
 401
 402/*
 403 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 404 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 405 * has ever been issued.
 406 */
 407static bool is_user_regdom_saved(void)
 408{
 409	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
 410		return false;
 411
 412	/* This would indicate a mistake on the design */
 413	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
 414		 "Unexpected user alpha2: %c%c\n",
 415		 user_alpha2[0], user_alpha2[1]))
 416		return false;
 417
 418	return true;
 419}
 420
 421static const struct ieee80211_regdomain *
 422reg_copy_regd(const struct ieee80211_regdomain *src_regd)
 423{
 424	struct ieee80211_regdomain *regd;
 425	int size_of_regd;
 426	unsigned int i;
 427
 428	size_of_regd =
 429		sizeof(struct ieee80211_regdomain) +
 430		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
 431
 432	regd = kzalloc(size_of_regd, GFP_KERNEL);
 433	if (!regd)
 434		return ERR_PTR(-ENOMEM);
 435
 436	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
 437
 438	for (i = 0; i < src_regd->n_reg_rules; i++)
 439		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
 440		       sizeof(struct ieee80211_reg_rule));
 441
 442	return regd;
 443}
 444
 445#ifdef CONFIG_CFG80211_INTERNAL_REGDB
 
 
 
 
 
 
 
 
 446struct reg_regdb_apply_request {
 447	struct list_head list;
 448	const struct ieee80211_regdomain *regdom;
 449};
 450
 451static LIST_HEAD(reg_regdb_apply_list);
 452static DEFINE_MUTEX(reg_regdb_apply_mutex);
 453
 454static void reg_regdb_apply(struct work_struct *work)
 455{
 456	struct reg_regdb_apply_request *request;
 457
 458	rtnl_lock();
 459
 460	mutex_lock(&reg_regdb_apply_mutex);
 461	while (!list_empty(&reg_regdb_apply_list)) {
 462		request = list_first_entry(&reg_regdb_apply_list,
 463					   struct reg_regdb_apply_request,
 464					   list);
 465		list_del(&request->list);
 466
 467		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
 468		kfree(request);
 469	}
 470	mutex_unlock(&reg_regdb_apply_mutex);
 471
 472	rtnl_unlock();
 473}
 474
 475static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
 476
 477static int reg_query_builtin(const char *alpha2)
 478{
 479	const struct ieee80211_regdomain *regdom = NULL;
 480	struct reg_regdb_apply_request *request;
 481	unsigned int i;
 482
 483	for (i = 0; i < reg_regdb_size; i++) {
 484		if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
 485			regdom = reg_regdb[i];
 486			break;
 487		}
 488	}
 489
 490	if (!regdom)
 491		return -ENODATA;
 492
 493	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
 494	if (!request)
 495		return -ENOMEM;
 496
 497	request->regdom = reg_copy_regd(regdom);
 498	if (IS_ERR_OR_NULL(request->regdom)) {
 499		kfree(request);
 500		return -ENOMEM;
 501	}
 502
 
 
 503	mutex_lock(&reg_regdb_apply_mutex);
 504	list_add_tail(&request->list, &reg_regdb_apply_list);
 505	mutex_unlock(&reg_regdb_apply_mutex);
 506
 507	schedule_work(&reg_regdb_work);
 508
 509	return 0;
 510}
 511
 512/* Feel free to add any other sanity checks here */
 513static void reg_regdb_size_check(void)
 514{
 515	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
 516	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
 517}
 518#else
 519static inline void reg_regdb_size_check(void) {}
 520static inline int reg_query_builtin(const char *alpha2)
 521{
 522	return -ENODATA;
 523}
 524#endif /* CONFIG_CFG80211_INTERNAL_REGDB */
 525
 526#ifdef CONFIG_CFG80211_CRDA_SUPPORT
 527/* Max number of consecutive attempts to communicate with CRDA  */
 528#define REG_MAX_CRDA_TIMEOUTS 10
 529
 530static u32 reg_crda_timeouts;
 531
 532static void crda_timeout_work(struct work_struct *work);
 533static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
 534
 535static void crda_timeout_work(struct work_struct *work)
 536{
 537	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
 538	rtnl_lock();
 539	reg_crda_timeouts++;
 540	restore_regulatory_settings(true);
 541	rtnl_unlock();
 542}
 543
 544static void cancel_crda_timeout(void)
 545{
 546	cancel_delayed_work(&crda_timeout);
 547}
 548
 549static void cancel_crda_timeout_sync(void)
 550{
 551	cancel_delayed_work_sync(&crda_timeout);
 552}
 553
 554static void reset_crda_timeouts(void)
 555{
 556	reg_crda_timeouts = 0;
 557}
 558
 559/*
 560 * This lets us keep regulatory code which is updated on a regulatory
 561 * basis in userspace.
 562 */
 563static int call_crda(const char *alpha2)
 564{
 565	char country[12];
 566	char *env[] = { country, NULL };
 567	int ret;
 568
 569	snprintf(country, sizeof(country), "COUNTRY=%c%c",
 570		 alpha2[0], alpha2[1]);
 571
 572	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
 573		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
 574		return -EINVAL;
 575	}
 576
 577	if (!is_world_regdom((char *) alpha2))
 578		pr_debug("Calling CRDA for country: %c%c\n",
 579			 alpha2[0], alpha2[1]);
 580	else
 581		pr_debug("Calling CRDA to update world regulatory domain\n");
 582
 583	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
 584	if (ret)
 585		return ret;
 586
 587	queue_delayed_work(system_power_efficient_wq,
 588			   &crda_timeout, msecs_to_jiffies(3142));
 589	return 0;
 590}
 591#else
 592static inline void cancel_crda_timeout(void) {}
 593static inline void cancel_crda_timeout_sync(void) {}
 594static inline void reset_crda_timeouts(void) {}
 595static inline int call_crda(const char *alpha2)
 596{
 597	return -ENODATA;
 598}
 599#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
 600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601static bool reg_query_database(struct regulatory_request *request)
 602{
 603	/* query internal regulatory database (if it exists) */
 604	if (reg_query_builtin(request->alpha2) == 0)
 605		return true;
 606
 607	if (call_crda(request->alpha2) == 0)
 608		return true;
 609
 610	return false;
 611}
 612
 613bool reg_is_valid_request(const char *alpha2)
 614{
 615	struct regulatory_request *lr = get_last_request();
 616
 617	if (!lr || lr->processed)
 618		return false;
 619
 620	return alpha2_equal(lr->alpha2, alpha2);
 621}
 622
 623static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
 624{
 625	struct regulatory_request *lr = get_last_request();
 626
 627	/*
 628	 * Follow the driver's regulatory domain, if present, unless a country
 629	 * IE has been processed or a user wants to help complaince further
 630	 */
 631	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
 632	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
 633	    wiphy->regd)
 634		return get_wiphy_regdom(wiphy);
 635
 636	return get_cfg80211_regdom();
 637}
 638
 639static unsigned int
 640reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
 641				 const struct ieee80211_reg_rule *rule)
 642{
 643	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
 644	const struct ieee80211_freq_range *freq_range_tmp;
 645	const struct ieee80211_reg_rule *tmp;
 646	u32 start_freq, end_freq, idx, no;
 647
 648	for (idx = 0; idx < rd->n_reg_rules; idx++)
 649		if (rule == &rd->reg_rules[idx])
 650			break;
 651
 652	if (idx == rd->n_reg_rules)
 653		return 0;
 654
 655	/* get start_freq */
 656	no = idx;
 657
 658	while (no) {
 659		tmp = &rd->reg_rules[--no];
 660		freq_range_tmp = &tmp->freq_range;
 661
 662		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
 663			break;
 664
 665		freq_range = freq_range_tmp;
 666	}
 667
 668	start_freq = freq_range->start_freq_khz;
 669
 670	/* get end_freq */
 671	freq_range = &rule->freq_range;
 672	no = idx;
 673
 674	while (no < rd->n_reg_rules - 1) {
 675		tmp = &rd->reg_rules[++no];
 676		freq_range_tmp = &tmp->freq_range;
 677
 678		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
 679			break;
 680
 681		freq_range = freq_range_tmp;
 682	}
 683
 684	end_freq = freq_range->end_freq_khz;
 685
 686	return end_freq - start_freq;
 687}
 688
 689unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
 690				   const struct ieee80211_reg_rule *rule)
 691{
 692	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
 693
 
 
 694	if (rule->flags & NL80211_RRF_NO_160MHZ)
 695		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
 696	if (rule->flags & NL80211_RRF_NO_80MHZ)
 697		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
 698
 699	/*
 700	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
 701	 * are not allowed.
 702	 */
 703	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
 704	    rule->flags & NL80211_RRF_NO_HT40PLUS)
 705		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
 706
 707	return bw;
 708}
 709
 710/* Sanity check on a regulatory rule */
 711static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
 712{
 713	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
 714	u32 freq_diff;
 715
 716	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
 717		return false;
 718
 719	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
 720		return false;
 721
 722	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
 723
 724	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
 725	    freq_range->max_bandwidth_khz > freq_diff)
 726		return false;
 727
 728	return true;
 729}
 730
 731static bool is_valid_rd(const struct ieee80211_regdomain *rd)
 732{
 733	const struct ieee80211_reg_rule *reg_rule = NULL;
 734	unsigned int i;
 735
 736	if (!rd->n_reg_rules)
 737		return false;
 738
 739	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
 740		return false;
 741
 742	for (i = 0; i < rd->n_reg_rules; i++) {
 743		reg_rule = &rd->reg_rules[i];
 744		if (!is_valid_reg_rule(reg_rule))
 745			return false;
 746	}
 747
 748	return true;
 749}
 750
 751static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
 752			    u32 center_freq_khz, u32 bw_khz)
 753{
 754	u32 start_freq_khz, end_freq_khz;
 755
 756	start_freq_khz = center_freq_khz - (bw_khz/2);
 757	end_freq_khz = center_freq_khz + (bw_khz/2);
 758
 759	if (start_freq_khz >= freq_range->start_freq_khz &&
 760	    end_freq_khz <= freq_range->end_freq_khz)
 761		return true;
 762
 763	return false;
 764}
 765
 766/**
 767 * freq_in_rule_band - tells us if a frequency is in a frequency band
 768 * @freq_range: frequency rule we want to query
 769 * @freq_khz: frequency we are inquiring about
 770 *
 771 * This lets us know if a specific frequency rule is or is not relevant to
 772 * a specific frequency's band. Bands are device specific and artificial
 773 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
 774 * however it is safe for now to assume that a frequency rule should not be
 775 * part of a frequency's band if the start freq or end freq are off by more
 776 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
 777 * 60 GHz band.
 778 * This resolution can be lowered and should be considered as we add
 779 * regulatory rule support for other "bands".
 780 **/
 781static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
 782			      u32 freq_khz)
 783{
 784#define ONE_GHZ_IN_KHZ	1000000
 785	/*
 786	 * From 802.11ad: directional multi-gigabit (DMG):
 787	 * Pertaining to operation in a frequency band containing a channel
 788	 * with the Channel starting frequency above 45 GHz.
 789	 */
 790	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
 791			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
 792	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
 793		return true;
 794	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
 795		return true;
 796	return false;
 797#undef ONE_GHZ_IN_KHZ
 798}
 799
 800/*
 801 * Later on we can perhaps use the more restrictive DFS
 802 * region but we don't have information for that yet so
 803 * for now simply disallow conflicts.
 804 */
 805static enum nl80211_dfs_regions
 806reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
 807			 const enum nl80211_dfs_regions dfs_region2)
 808{
 809	if (dfs_region1 != dfs_region2)
 810		return NL80211_DFS_UNSET;
 811	return dfs_region1;
 812}
 813
 
 
 
 
 
 
 
 
 
 
 814/*
 815 * Helper for regdom_intersect(), this does the real
 816 * mathematical intersection fun
 817 */
 818static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
 819			       const struct ieee80211_regdomain *rd2,
 820			       const struct ieee80211_reg_rule *rule1,
 821			       const struct ieee80211_reg_rule *rule2,
 822			       struct ieee80211_reg_rule *intersected_rule)
 823{
 824	const struct ieee80211_freq_range *freq_range1, *freq_range2;
 825	struct ieee80211_freq_range *freq_range;
 826	const struct ieee80211_power_rule *power_rule1, *power_rule2;
 827	struct ieee80211_power_rule *power_rule;
 
 
 828	u32 freq_diff, max_bandwidth1, max_bandwidth2;
 829
 830	freq_range1 = &rule1->freq_range;
 831	freq_range2 = &rule2->freq_range;
 832	freq_range = &intersected_rule->freq_range;
 833
 834	power_rule1 = &rule1->power_rule;
 835	power_rule2 = &rule2->power_rule;
 836	power_rule = &intersected_rule->power_rule;
 837
 
 
 
 
 838	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
 839					 freq_range2->start_freq_khz);
 840	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
 841				       freq_range2->end_freq_khz);
 842
 843	max_bandwidth1 = freq_range1->max_bandwidth_khz;
 844	max_bandwidth2 = freq_range2->max_bandwidth_khz;
 845
 846	if (rule1->flags & NL80211_RRF_AUTO_BW)
 847		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
 848	if (rule2->flags & NL80211_RRF_AUTO_BW)
 849		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
 850
 851	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
 852
 853	intersected_rule->flags = rule1->flags | rule2->flags;
 854
 855	/*
 856	 * In case NL80211_RRF_AUTO_BW requested for both rules
 857	 * set AUTO_BW in intersected rule also. Next we will
 858	 * calculate BW correctly in handle_channel function.
 859	 * In other case remove AUTO_BW flag while we calculate
 860	 * maximum bandwidth correctly and auto calculation is
 861	 * not required.
 862	 */
 863	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
 864	    (rule2->flags & NL80211_RRF_AUTO_BW))
 865		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
 866	else
 867		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
 868
 869	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
 870	if (freq_range->max_bandwidth_khz > freq_diff)
 871		freq_range->max_bandwidth_khz = freq_diff;
 872
 873	power_rule->max_eirp = min(power_rule1->max_eirp,
 874		power_rule2->max_eirp);
 875	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
 876		power_rule2->max_antenna_gain);
 877
 878	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
 879					   rule2->dfs_cac_ms);
 880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 881	if (!is_valid_reg_rule(intersected_rule))
 882		return -EINVAL;
 883
 884	return 0;
 885}
 886
 887/* check whether old rule contains new rule */
 888static bool rule_contains(struct ieee80211_reg_rule *r1,
 889			  struct ieee80211_reg_rule *r2)
 890{
 891	/* for simplicity, currently consider only same flags */
 892	if (r1->flags != r2->flags)
 893		return false;
 894
 895	/* verify r1 is more restrictive */
 896	if ((r1->power_rule.max_antenna_gain >
 897	     r2->power_rule.max_antenna_gain) ||
 898	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
 899		return false;
 900
 901	/* make sure r2's range is contained within r1 */
 902	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
 903	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
 904		return false;
 905
 906	/* and finally verify that r1.max_bw >= r2.max_bw */
 907	if (r1->freq_range.max_bandwidth_khz <
 908	    r2->freq_range.max_bandwidth_khz)
 909		return false;
 910
 911	return true;
 912}
 913
 914/* add or extend current rules. do nothing if rule is already contained */
 915static void add_rule(struct ieee80211_reg_rule *rule,
 916		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
 917{
 918	struct ieee80211_reg_rule *tmp_rule;
 919	int i;
 920
 921	for (i = 0; i < *n_rules; i++) {
 922		tmp_rule = &reg_rules[i];
 923		/* rule is already contained - do nothing */
 924		if (rule_contains(tmp_rule, rule))
 925			return;
 926
 927		/* extend rule if possible */
 928		if (rule_contains(rule, tmp_rule)) {
 929			memcpy(tmp_rule, rule, sizeof(*rule));
 930			return;
 931		}
 932	}
 933
 934	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
 935	(*n_rules)++;
 936}
 937
 938/**
 939 * regdom_intersect - do the intersection between two regulatory domains
 940 * @rd1: first regulatory domain
 941 * @rd2: second regulatory domain
 942 *
 943 * Use this function to get the intersection between two regulatory domains.
 944 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 945 * as no one single alpha2 can represent this regulatory domain.
 946 *
 947 * Returns a pointer to the regulatory domain structure which will hold the
 948 * resulting intersection of rules between rd1 and rd2. We will
 949 * kzalloc() this structure for you.
 950 */
 951static struct ieee80211_regdomain *
 952regdom_intersect(const struct ieee80211_regdomain *rd1,
 953		 const struct ieee80211_regdomain *rd2)
 954{
 955	int r, size_of_regd;
 956	unsigned int x, y;
 957	unsigned int num_rules = 0;
 958	const struct ieee80211_reg_rule *rule1, *rule2;
 959	struct ieee80211_reg_rule intersected_rule;
 960	struct ieee80211_regdomain *rd;
 961
 962	if (!rd1 || !rd2)
 963		return NULL;
 964
 965	/*
 966	 * First we get a count of the rules we'll need, then we actually
 967	 * build them. This is to so we can malloc() and free() a
 968	 * regdomain once. The reason we use reg_rules_intersect() here
 969	 * is it will return -EINVAL if the rule computed makes no sense.
 970	 * All rules that do check out OK are valid.
 971	 */
 972
 973	for (x = 0; x < rd1->n_reg_rules; x++) {
 974		rule1 = &rd1->reg_rules[x];
 975		for (y = 0; y < rd2->n_reg_rules; y++) {
 976			rule2 = &rd2->reg_rules[y];
 977			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
 978						 &intersected_rule))
 979				num_rules++;
 980		}
 981	}
 982
 983	if (!num_rules)
 984		return NULL;
 985
 986	size_of_regd = sizeof(struct ieee80211_regdomain) +
 987		       num_rules * sizeof(struct ieee80211_reg_rule);
 988
 989	rd = kzalloc(size_of_regd, GFP_KERNEL);
 990	if (!rd)
 991		return NULL;
 992
 993	for (x = 0; x < rd1->n_reg_rules; x++) {
 994		rule1 = &rd1->reg_rules[x];
 995		for (y = 0; y < rd2->n_reg_rules; y++) {
 996			rule2 = &rd2->reg_rules[y];
 997			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
 998						&intersected_rule);
 999			/*
1000			 * No need to memset here the intersected rule here as
1001			 * we're not using the stack anymore
1002			 */
1003			if (r)
1004				continue;
1005
1006			add_rule(&intersected_rule, rd->reg_rules,
1007				 &rd->n_reg_rules);
1008		}
1009	}
1010
1011	rd->alpha2[0] = '9';
1012	rd->alpha2[1] = '8';
1013	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1014						  rd2->dfs_region);
1015
1016	return rd;
1017}
1018
1019/*
1020 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1021 * want to just have the channel structure use these
1022 */
1023static u32 map_regdom_flags(u32 rd_flags)
1024{
1025	u32 channel_flags = 0;
1026	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1027		channel_flags |= IEEE80211_CHAN_NO_IR;
1028	if (rd_flags & NL80211_RRF_DFS)
1029		channel_flags |= IEEE80211_CHAN_RADAR;
1030	if (rd_flags & NL80211_RRF_NO_OFDM)
1031		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1032	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1033		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1034	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1035		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1036	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1037		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1038	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1039		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1040	if (rd_flags & NL80211_RRF_NO_80MHZ)
1041		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1042	if (rd_flags & NL80211_RRF_NO_160MHZ)
1043		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
 
 
 
 
1044	return channel_flags;
1045}
1046
1047static const struct ieee80211_reg_rule *
1048freq_reg_info_regd(u32 center_freq,
1049		   const struct ieee80211_regdomain *regd, u32 bw)
1050{
1051	int i;
1052	bool band_rule_found = false;
1053	bool bw_fits = false;
1054
1055	if (!regd)
1056		return ERR_PTR(-EINVAL);
1057
1058	for (i = 0; i < regd->n_reg_rules; i++) {
1059		const struct ieee80211_reg_rule *rr;
1060		const struct ieee80211_freq_range *fr = NULL;
1061
1062		rr = &regd->reg_rules[i];
1063		fr = &rr->freq_range;
1064
1065		/*
1066		 * We only need to know if one frequency rule was
1067		 * was in center_freq's band, that's enough, so lets
1068		 * not overwrite it once found
1069		 */
1070		if (!band_rule_found)
1071			band_rule_found = freq_in_rule_band(fr, center_freq);
1072
1073		bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1074
1075		if (band_rule_found && bw_fits)
1076			return rr;
1077	}
1078
1079	if (!band_rule_found)
1080		return ERR_PTR(-ERANGE);
1081
1082	return ERR_PTR(-EINVAL);
1083}
1084
1085static const struct ieee80211_reg_rule *
1086__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1087{
1088	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1089	const struct ieee80211_reg_rule *reg_rule = NULL;
 
 
1090	u32 bw;
1091
1092	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1093		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1094		if (!IS_ERR(reg_rule))
1095			return reg_rule;
1096	}
1097
1098	return reg_rule;
1099}
1100
1101const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1102					       u32 center_freq)
1103{
1104	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
 
 
1105}
1106EXPORT_SYMBOL(freq_reg_info);
1107
1108const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1109{
1110	switch (initiator) {
1111	case NL80211_REGDOM_SET_BY_CORE:
1112		return "core";
1113	case NL80211_REGDOM_SET_BY_USER:
1114		return "user";
1115	case NL80211_REGDOM_SET_BY_DRIVER:
1116		return "driver";
1117	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1118		return "country IE";
1119	default:
1120		WARN_ON(1);
1121		return "bug";
1122	}
1123}
1124EXPORT_SYMBOL(reg_initiator_name);
1125
1126static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1127					  const struct ieee80211_reg_rule *reg_rule,
1128					  const struct ieee80211_channel *chan)
1129{
1130	const struct ieee80211_freq_range *freq_range = NULL;
1131	u32 max_bandwidth_khz, bw_flags = 0;
 
1132
1133	freq_range = &reg_rule->freq_range;
1134
1135	max_bandwidth_khz = freq_range->max_bandwidth_khz;
 
1136	/* Check if auto calculation requested */
1137	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1138		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1139
1140	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1141	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1142			     MHZ_TO_KHZ(10)))
 
1143		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1144	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1145			     MHZ_TO_KHZ(20)))
 
1146		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1147
1148	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1149		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1150	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1151		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1152	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1153		bw_flags |= IEEE80211_CHAN_NO_HT40;
1154	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1155		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1156	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1157		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158	return bw_flags;
1159}
1160
1161/*
1162 * Note that right now we assume the desired channel bandwidth
1163 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1164 * per channel, the primary and the extension channel).
1165 */
1166static void handle_channel(struct wiphy *wiphy,
1167			   enum nl80211_reg_initiator initiator,
1168			   struct ieee80211_channel *chan)
1169{
1170	u32 flags, bw_flags = 0;
1171	const struct ieee80211_reg_rule *reg_rule = NULL;
1172	const struct ieee80211_power_rule *power_rule = NULL;
1173	struct wiphy *request_wiphy = NULL;
1174	struct regulatory_request *lr = get_last_request();
1175	const struct ieee80211_regdomain *regd;
1176
1177	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1178
1179	flags = chan->orig_flags;
1180
1181	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1182	if (IS_ERR(reg_rule)) {
1183		/*
1184		 * We will disable all channels that do not match our
1185		 * received regulatory rule unless the hint is coming
1186		 * from a Country IE and the Country IE had no information
1187		 * about a band. The IEEE 802.11 spec allows for an AP
1188		 * to send only a subset of the regulatory rules allowed,
1189		 * so an AP in the US that only supports 2.4 GHz may only send
1190		 * a country IE with information for the 2.4 GHz band
1191		 * while 5 GHz is still supported.
1192		 */
1193		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1194		    PTR_ERR(reg_rule) == -ERANGE)
1195			return;
1196
1197		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1198		    request_wiphy && request_wiphy == wiphy &&
1199		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1200			pr_debug("Disabling freq %d MHz for good\n",
1201				 chan->center_freq);
1202			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1203			chan->flags = chan->orig_flags;
1204		} else {
1205			pr_debug("Disabling freq %d MHz\n",
1206				 chan->center_freq);
1207			chan->flags |= IEEE80211_CHAN_DISABLED;
1208		}
1209		return;
1210	}
1211
1212	regd = reg_get_regdomain(wiphy);
1213
1214	power_rule = &reg_rule->power_rule;
1215	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1216
1217	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1218	    request_wiphy && request_wiphy == wiphy &&
1219	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1220		/*
1221		 * This guarantees the driver's requested regulatory domain
1222		 * will always be used as a base for further regulatory
1223		 * settings
1224		 */
1225		chan->flags = chan->orig_flags =
1226			map_regdom_flags(reg_rule->flags) | bw_flags;
1227		chan->max_antenna_gain = chan->orig_mag =
1228			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1229		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1230			(int) MBM_TO_DBM(power_rule->max_eirp);
1231
1232		if (chan->flags & IEEE80211_CHAN_RADAR) {
1233			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1234			if (reg_rule->dfs_cac_ms)
1235				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1236		}
1237
1238		return;
1239	}
1240
1241	chan->dfs_state = NL80211_DFS_USABLE;
1242	chan->dfs_state_entered = jiffies;
1243
1244	chan->beacon_found = false;
1245	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1246	chan->max_antenna_gain =
1247		min_t(int, chan->orig_mag,
1248		      MBI_TO_DBI(power_rule->max_antenna_gain));
1249	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1250
1251	if (chan->flags & IEEE80211_CHAN_RADAR) {
1252		if (reg_rule->dfs_cac_ms)
1253			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1254		else
1255			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1256	}
1257
1258	if (chan->orig_mpwr) {
1259		/*
1260		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1261		 * will always follow the passed country IE power settings.
1262		 */
1263		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1264		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1265			chan->max_power = chan->max_reg_power;
1266		else
1267			chan->max_power = min(chan->orig_mpwr,
1268					      chan->max_reg_power);
1269	} else
1270		chan->max_power = chan->max_reg_power;
1271}
1272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1273static void handle_band(struct wiphy *wiphy,
1274			enum nl80211_reg_initiator initiator,
1275			struct ieee80211_supported_band *sband)
1276{
1277	unsigned int i;
1278
1279	if (!sband)
1280		return;
1281
1282	for (i = 0; i < sband->n_channels; i++)
1283		handle_channel(wiphy, initiator, &sband->channels[i]);
1284}
1285
1286static bool reg_request_cell_base(struct regulatory_request *request)
1287{
1288	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1289		return false;
1290	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1291}
1292
1293bool reg_last_request_cell_base(void)
1294{
1295	return reg_request_cell_base(get_last_request());
1296}
1297
1298#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1299/* Core specific check */
1300static enum reg_request_treatment
1301reg_ignore_cell_hint(struct regulatory_request *pending_request)
1302{
1303	struct regulatory_request *lr = get_last_request();
1304
1305	if (!reg_num_devs_support_basehint)
1306		return REG_REQ_IGNORE;
1307
1308	if (reg_request_cell_base(lr) &&
1309	    !regdom_changes(pending_request->alpha2))
1310		return REG_REQ_ALREADY_SET;
1311
1312	return REG_REQ_OK;
1313}
1314
1315/* Device specific check */
1316static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1317{
1318	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1319}
1320#else
1321static enum reg_request_treatment
1322reg_ignore_cell_hint(struct regulatory_request *pending_request)
1323{
1324	return REG_REQ_IGNORE;
1325}
1326
1327static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1328{
1329	return true;
1330}
1331#endif
1332
1333static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1334{
1335	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1336	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1337		return true;
1338	return false;
1339}
1340
1341static bool ignore_reg_update(struct wiphy *wiphy,
1342			      enum nl80211_reg_initiator initiator)
1343{
1344	struct regulatory_request *lr = get_last_request();
1345
1346	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1347		return true;
1348
1349	if (!lr) {
1350		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1351			 reg_initiator_name(initiator));
1352		return true;
1353	}
1354
1355	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1356	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1357		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1358			 reg_initiator_name(initiator));
1359		return true;
1360	}
1361
1362	/*
1363	 * wiphy->regd will be set once the device has its own
1364	 * desired regulatory domain set
1365	 */
1366	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1367	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1368	    !is_world_regdom(lr->alpha2)) {
1369		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1370			 reg_initiator_name(initiator));
1371		return true;
1372	}
1373
1374	if (reg_request_cell_base(lr))
1375		return reg_dev_ignore_cell_hint(wiphy);
1376
1377	return false;
1378}
1379
1380static bool reg_is_world_roaming(struct wiphy *wiphy)
1381{
1382	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1383	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1384	struct regulatory_request *lr = get_last_request();
1385
1386	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1387		return true;
1388
1389	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1390	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1391		return true;
1392
1393	return false;
1394}
1395
1396static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1397			      struct reg_beacon *reg_beacon)
1398{
1399	struct ieee80211_supported_band *sband;
1400	struct ieee80211_channel *chan;
1401	bool channel_changed = false;
1402	struct ieee80211_channel chan_before;
1403
1404	sband = wiphy->bands[reg_beacon->chan.band];
1405	chan = &sband->channels[chan_idx];
1406
1407	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1408		return;
1409
1410	if (chan->beacon_found)
1411		return;
1412
1413	chan->beacon_found = true;
1414
1415	if (!reg_is_world_roaming(wiphy))
1416		return;
1417
1418	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1419		return;
1420
1421	chan_before.center_freq = chan->center_freq;
1422	chan_before.flags = chan->flags;
1423
1424	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1425		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1426		channel_changed = true;
1427	}
1428
1429	if (channel_changed)
1430		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1431}
1432
1433/*
1434 * Called when a scan on a wiphy finds a beacon on
1435 * new channel
1436 */
1437static void wiphy_update_new_beacon(struct wiphy *wiphy,
1438				    struct reg_beacon *reg_beacon)
1439{
1440	unsigned int i;
1441	struct ieee80211_supported_band *sband;
1442
1443	if (!wiphy->bands[reg_beacon->chan.band])
1444		return;
1445
1446	sband = wiphy->bands[reg_beacon->chan.band];
1447
1448	for (i = 0; i < sband->n_channels; i++)
1449		handle_reg_beacon(wiphy, i, reg_beacon);
1450}
1451
1452/*
1453 * Called upon reg changes or a new wiphy is added
1454 */
1455static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1456{
1457	unsigned int i;
1458	struct ieee80211_supported_band *sband;
1459	struct reg_beacon *reg_beacon;
1460
1461	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1462		if (!wiphy->bands[reg_beacon->chan.band])
1463			continue;
1464		sband = wiphy->bands[reg_beacon->chan.band];
1465		for (i = 0; i < sband->n_channels; i++)
1466			handle_reg_beacon(wiphy, i, reg_beacon);
1467	}
1468}
1469
1470/* Reap the advantages of previously found beacons */
1471static void reg_process_beacons(struct wiphy *wiphy)
1472{
1473	/*
1474	 * Means we are just firing up cfg80211, so no beacons would
1475	 * have been processed yet.
1476	 */
1477	if (!last_request)
1478		return;
1479	wiphy_update_beacon_reg(wiphy);
1480}
1481
1482static bool is_ht40_allowed(struct ieee80211_channel *chan)
1483{
1484	if (!chan)
1485		return false;
1486	if (chan->flags & IEEE80211_CHAN_DISABLED)
1487		return false;
1488	/* This would happen when regulatory rules disallow HT40 completely */
1489	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1490		return false;
1491	return true;
1492}
1493
1494static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1495					 struct ieee80211_channel *channel)
1496{
1497	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1498	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
 
1499	unsigned int i;
 
1500
1501	if (!is_ht40_allowed(channel)) {
1502		channel->flags |= IEEE80211_CHAN_NO_HT40;
1503		return;
1504	}
1505
1506	/*
1507	 * We need to ensure the extension channels exist to
1508	 * be able to use HT40- or HT40+, this finds them (or not)
1509	 */
1510	for (i = 0; i < sband->n_channels; i++) {
1511		struct ieee80211_channel *c = &sband->channels[i];
1512
1513		if (c->center_freq == (channel->center_freq - 20))
1514			channel_before = c;
1515		if (c->center_freq == (channel->center_freq + 20))
1516			channel_after = c;
1517	}
1518
 
 
 
 
 
 
 
 
 
 
 
1519	/*
1520	 * Please note that this assumes target bandwidth is 20 MHz,
1521	 * if that ever changes we also need to change the below logic
1522	 * to include that as well.
1523	 */
1524	if (!is_ht40_allowed(channel_before))
 
1525		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1526	else
1527		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1528
1529	if (!is_ht40_allowed(channel_after))
 
1530		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1531	else
1532		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1533}
1534
1535static void reg_process_ht_flags_band(struct wiphy *wiphy,
1536				      struct ieee80211_supported_band *sband)
1537{
1538	unsigned int i;
1539
1540	if (!sband)
1541		return;
1542
1543	for (i = 0; i < sband->n_channels; i++)
1544		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1545}
1546
1547static void reg_process_ht_flags(struct wiphy *wiphy)
1548{
1549	enum nl80211_band band;
1550
1551	if (!wiphy)
1552		return;
1553
1554	for (band = 0; band < NUM_NL80211_BANDS; band++)
1555		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1556}
1557
1558static void reg_call_notifier(struct wiphy *wiphy,
1559			      struct regulatory_request *request)
1560{
1561	if (wiphy->reg_notifier)
1562		wiphy->reg_notifier(wiphy, request);
1563}
1564
1565static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1566{
1567	struct cfg80211_chan_def chandef;
1568	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1569	enum nl80211_iftype iftype;
 
 
1570
1571	wdev_lock(wdev);
1572	iftype = wdev->iftype;
1573
1574	/* make sure the interface is active */
1575	if (!wdev->netdev || !netif_running(wdev->netdev))
1576		goto wdev_inactive_unlock;
1577
1578	switch (iftype) {
1579	case NL80211_IFTYPE_AP:
1580	case NL80211_IFTYPE_P2P_GO:
1581		if (!wdev->beacon_interval)
1582			goto wdev_inactive_unlock;
1583		chandef = wdev->chandef;
1584		break;
1585	case NL80211_IFTYPE_ADHOC:
1586		if (!wdev->ssid_len)
1587			goto wdev_inactive_unlock;
1588		chandef = wdev->chandef;
1589		break;
1590	case NL80211_IFTYPE_STATION:
1591	case NL80211_IFTYPE_P2P_CLIENT:
1592		if (!wdev->current_bss ||
1593		    !wdev->current_bss->pub.channel)
1594			goto wdev_inactive_unlock;
1595
1596		if (!rdev->ops->get_channel ||
1597		    rdev_get_channel(rdev, wdev, &chandef))
1598			cfg80211_chandef_create(&chandef,
1599						wdev->current_bss->pub.channel,
1600						NL80211_CHAN_NO_HT);
1601		break;
1602	case NL80211_IFTYPE_MONITOR:
1603	case NL80211_IFTYPE_AP_VLAN:
1604	case NL80211_IFTYPE_P2P_DEVICE:
1605		/* no enforcement required */
1606		break;
1607	default:
1608		/* others not implemented for now */
1609		WARN_ON(1);
1610		break;
1611	}
1612
1613	wdev_unlock(wdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1614
1615	switch (iftype) {
1616	case NL80211_IFTYPE_AP:
1617	case NL80211_IFTYPE_P2P_GO:
1618	case NL80211_IFTYPE_ADHOC:
1619		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1620	case NL80211_IFTYPE_STATION:
1621	case NL80211_IFTYPE_P2P_CLIENT:
1622		return cfg80211_chandef_usable(wiphy, &chandef,
1623					       IEEE80211_CHAN_DISABLED);
1624	default:
1625		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1626	}
1627
 
 
1628	return true;
1629
1630wdev_inactive_unlock:
1631	wdev_unlock(wdev);
1632	return true;
1633}
1634
1635static void reg_leave_invalid_chans(struct wiphy *wiphy)
1636{
1637	struct wireless_dev *wdev;
1638	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1639
1640	ASSERT_RTNL();
1641
1642	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1643		if (!reg_wdev_chan_valid(wiphy, wdev))
1644			cfg80211_leave(rdev, wdev);
1645}
1646
1647static void reg_check_chans_work(struct work_struct *work)
1648{
1649	struct cfg80211_registered_device *rdev;
1650
1651	pr_debug("Verifying active interfaces after reg change\n");
1652	rtnl_lock();
1653
1654	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1655		if (!(rdev->wiphy.regulatory_flags &
1656		      REGULATORY_IGNORE_STALE_KICKOFF))
1657			reg_leave_invalid_chans(&rdev->wiphy);
1658
1659	rtnl_unlock();
1660}
1661
1662static void reg_check_channels(void)
1663{
1664	/*
1665	 * Give usermode a chance to do something nicer (move to another
1666	 * channel, orderly disconnection), before forcing a disconnection.
1667	 */
1668	mod_delayed_work(system_power_efficient_wq,
1669			 &reg_check_chans,
1670			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1671}
1672
1673static void wiphy_update_regulatory(struct wiphy *wiphy,
1674				    enum nl80211_reg_initiator initiator)
1675{
1676	enum nl80211_band band;
1677	struct regulatory_request *lr = get_last_request();
1678
1679	if (ignore_reg_update(wiphy, initiator)) {
1680		/*
1681		 * Regulatory updates set by CORE are ignored for custom
1682		 * regulatory cards. Let us notify the changes to the driver,
1683		 * as some drivers used this to restore its orig_* reg domain.
1684		 */
1685		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1686		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
 
 
1687			reg_call_notifier(wiphy, lr);
1688		return;
1689	}
1690
1691	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1692
1693	for (band = 0; band < NUM_NL80211_BANDS; band++)
1694		handle_band(wiphy, initiator, wiphy->bands[band]);
1695
1696	reg_process_beacons(wiphy);
1697	reg_process_ht_flags(wiphy);
1698	reg_call_notifier(wiphy, lr);
1699}
1700
1701static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1702{
1703	struct cfg80211_registered_device *rdev;
1704	struct wiphy *wiphy;
1705
1706	ASSERT_RTNL();
1707
1708	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1709		wiphy = &rdev->wiphy;
1710		wiphy_update_regulatory(wiphy, initiator);
1711	}
1712
1713	reg_check_channels();
1714}
1715
1716static void handle_channel_custom(struct wiphy *wiphy,
1717				  struct ieee80211_channel *chan,
1718				  const struct ieee80211_regdomain *regd)
 
1719{
1720	u32 bw_flags = 0;
1721	const struct ieee80211_reg_rule *reg_rule = NULL;
1722	const struct ieee80211_power_rule *power_rule = NULL;
1723	u32 bw;
1724
1725	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1726		reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1727					      regd, bw);
1728		if (!IS_ERR(reg_rule))
1729			break;
1730	}
1731
1732	if (IS_ERR(reg_rule)) {
1733		pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1734			 chan->center_freq);
1735		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1736			chan->flags |= IEEE80211_CHAN_DISABLED;
1737		} else {
1738			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1739			chan->flags = chan->orig_flags;
1740		}
1741		return;
1742	}
1743
1744	power_rule = &reg_rule->power_rule;
1745	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1746
1747	chan->dfs_state_entered = jiffies;
1748	chan->dfs_state = NL80211_DFS_USABLE;
1749
1750	chan->beacon_found = false;
1751
1752	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1753		chan->flags = chan->orig_flags | bw_flags |
1754			      map_regdom_flags(reg_rule->flags);
1755	else
1756		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1757
1758	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1759	chan->max_reg_power = chan->max_power =
1760		(int) MBM_TO_DBM(power_rule->max_eirp);
1761
1762	if (chan->flags & IEEE80211_CHAN_RADAR) {
1763		if (reg_rule->dfs_cac_ms)
1764			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1765		else
1766			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1767	}
1768
1769	chan->max_power = chan->max_reg_power;
1770}
1771
1772static void handle_band_custom(struct wiphy *wiphy,
1773			       struct ieee80211_supported_band *sband,
1774			       const struct ieee80211_regdomain *regd)
1775{
1776	unsigned int i;
1777
1778	if (!sband)
1779		return;
1780
 
 
 
 
 
1781	for (i = 0; i < sband->n_channels; i++)
1782		handle_channel_custom(wiphy, &sband->channels[i], regd);
 
1783}
1784
1785/* Used by drivers prior to wiphy registration */
1786void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1787				   const struct ieee80211_regdomain *regd)
1788{
 
1789	enum nl80211_band band;
1790	unsigned int bands_set = 0;
1791
1792	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1793	     "wiphy should have REGULATORY_CUSTOM_REG\n");
1794	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1795
1796	for (band = 0; band < NUM_NL80211_BANDS; band++) {
1797		if (!wiphy->bands[band])
1798			continue;
1799		handle_band_custom(wiphy, wiphy->bands[band], regd);
1800		bands_set++;
1801	}
1802
1803	/*
1804	 * no point in calling this if it won't have any effect
1805	 * on your device's supported bands.
1806	 */
1807	WARN_ON(!bands_set);
 
 
 
 
 
 
 
 
 
 
 
 
 
1808}
1809EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1810
1811static void reg_set_request_processed(void)
1812{
1813	bool need_more_processing = false;
1814	struct regulatory_request *lr = get_last_request();
1815
1816	lr->processed = true;
1817
1818	spin_lock(&reg_requests_lock);
1819	if (!list_empty(&reg_requests_list))
1820		need_more_processing = true;
1821	spin_unlock(&reg_requests_lock);
1822
1823	cancel_crda_timeout();
1824
1825	if (need_more_processing)
1826		schedule_work(&reg_work);
1827}
1828
1829/**
1830 * reg_process_hint_core - process core regulatory requests
1831 * @pending_request: a pending core regulatory request
1832 *
1833 * The wireless subsystem can use this function to process
1834 * a regulatory request issued by the regulatory core.
1835 */
1836static enum reg_request_treatment
1837reg_process_hint_core(struct regulatory_request *core_request)
1838{
1839	if (reg_query_database(core_request)) {
1840		core_request->intersect = false;
1841		core_request->processed = false;
1842		reg_update_last_request(core_request);
1843		return REG_REQ_OK;
1844	}
1845
1846	return REG_REQ_IGNORE;
1847}
1848
1849static enum reg_request_treatment
1850__reg_process_hint_user(struct regulatory_request *user_request)
1851{
1852	struct regulatory_request *lr = get_last_request();
1853
1854	if (reg_request_cell_base(user_request))
1855		return reg_ignore_cell_hint(user_request);
1856
1857	if (reg_request_cell_base(lr))
1858		return REG_REQ_IGNORE;
1859
1860	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1861		return REG_REQ_INTERSECT;
1862	/*
1863	 * If the user knows better the user should set the regdom
1864	 * to their country before the IE is picked up
1865	 */
1866	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1867	    lr->intersect)
1868		return REG_REQ_IGNORE;
1869	/*
1870	 * Process user requests only after previous user/driver/core
1871	 * requests have been processed
1872	 */
1873	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1874	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1875	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1876	    regdom_changes(lr->alpha2))
1877		return REG_REQ_IGNORE;
1878
1879	if (!regdom_changes(user_request->alpha2))
1880		return REG_REQ_ALREADY_SET;
1881
1882	return REG_REQ_OK;
1883}
1884
1885/**
1886 * reg_process_hint_user - process user regulatory requests
1887 * @user_request: a pending user regulatory request
1888 *
1889 * The wireless subsystem can use this function to process
1890 * a regulatory request initiated by userspace.
1891 */
1892static enum reg_request_treatment
1893reg_process_hint_user(struct regulatory_request *user_request)
1894{
1895	enum reg_request_treatment treatment;
1896
1897	treatment = __reg_process_hint_user(user_request);
1898	if (treatment == REG_REQ_IGNORE ||
1899	    treatment == REG_REQ_ALREADY_SET)
1900		return REG_REQ_IGNORE;
1901
1902	user_request->intersect = treatment == REG_REQ_INTERSECT;
1903	user_request->processed = false;
1904
1905	if (reg_query_database(user_request)) {
1906		reg_update_last_request(user_request);
1907		user_alpha2[0] = user_request->alpha2[0];
1908		user_alpha2[1] = user_request->alpha2[1];
1909		return REG_REQ_OK;
1910	}
1911
1912	return REG_REQ_IGNORE;
1913}
1914
1915static enum reg_request_treatment
1916__reg_process_hint_driver(struct regulatory_request *driver_request)
1917{
1918	struct regulatory_request *lr = get_last_request();
1919
1920	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1921		if (regdom_changes(driver_request->alpha2))
1922			return REG_REQ_OK;
1923		return REG_REQ_ALREADY_SET;
1924	}
1925
1926	/*
1927	 * This would happen if you unplug and plug your card
1928	 * back in or if you add a new device for which the previously
1929	 * loaded card also agrees on the regulatory domain.
1930	 */
1931	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1932	    !regdom_changes(driver_request->alpha2))
1933		return REG_REQ_ALREADY_SET;
1934
1935	return REG_REQ_INTERSECT;
1936}
1937
1938/**
1939 * reg_process_hint_driver - process driver regulatory requests
 
1940 * @driver_request: a pending driver regulatory request
1941 *
1942 * The wireless subsystem can use this function to process
1943 * a regulatory request issued by an 802.11 driver.
1944 *
1945 * Returns one of the different reg request treatment values.
1946 */
1947static enum reg_request_treatment
1948reg_process_hint_driver(struct wiphy *wiphy,
1949			struct regulatory_request *driver_request)
1950{
1951	const struct ieee80211_regdomain *regd, *tmp;
1952	enum reg_request_treatment treatment;
1953
1954	treatment = __reg_process_hint_driver(driver_request);
1955
1956	switch (treatment) {
1957	case REG_REQ_OK:
1958		break;
1959	case REG_REQ_IGNORE:
1960		return REG_REQ_IGNORE;
1961	case REG_REQ_INTERSECT:
1962	case REG_REQ_ALREADY_SET:
1963		regd = reg_copy_regd(get_cfg80211_regdom());
1964		if (IS_ERR(regd))
1965			return REG_REQ_IGNORE;
1966
1967		tmp = get_wiphy_regdom(wiphy);
 
 
1968		rcu_assign_pointer(wiphy->regd, regd);
 
1969		rcu_free_regdom(tmp);
1970	}
1971
1972
1973	driver_request->intersect = treatment == REG_REQ_INTERSECT;
1974	driver_request->processed = false;
1975
1976	/*
1977	 * Since CRDA will not be called in this case as we already
1978	 * have applied the requested regulatory domain before we just
1979	 * inform userspace we have processed the request
1980	 */
1981	if (treatment == REG_REQ_ALREADY_SET) {
1982		nl80211_send_reg_change_event(driver_request);
1983		reg_update_last_request(driver_request);
1984		reg_set_request_processed();
1985		return REG_REQ_ALREADY_SET;
1986	}
1987
1988	if (reg_query_database(driver_request)) {
1989		reg_update_last_request(driver_request);
1990		return REG_REQ_OK;
1991	}
1992
1993	return REG_REQ_IGNORE;
1994}
1995
1996static enum reg_request_treatment
1997__reg_process_hint_country_ie(struct wiphy *wiphy,
1998			      struct regulatory_request *country_ie_request)
1999{
2000	struct wiphy *last_wiphy = NULL;
2001	struct regulatory_request *lr = get_last_request();
2002
2003	if (reg_request_cell_base(lr)) {
2004		/* Trust a Cell base station over the AP's country IE */
2005		if (regdom_changes(country_ie_request->alpha2))
2006			return REG_REQ_IGNORE;
2007		return REG_REQ_ALREADY_SET;
2008	} else {
2009		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2010			return REG_REQ_IGNORE;
2011	}
2012
2013	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2014		return -EINVAL;
2015
2016	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2017		return REG_REQ_OK;
2018
2019	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2020
2021	if (last_wiphy != wiphy) {
2022		/*
2023		 * Two cards with two APs claiming different
2024		 * Country IE alpha2s. We could
2025		 * intersect them, but that seems unlikely
2026		 * to be correct. Reject second one for now.
2027		 */
2028		if (regdom_changes(country_ie_request->alpha2))
2029			return REG_REQ_IGNORE;
2030		return REG_REQ_ALREADY_SET;
2031	}
2032
2033	if (regdom_changes(country_ie_request->alpha2))
2034		return REG_REQ_OK;
2035	return REG_REQ_ALREADY_SET;
2036}
2037
2038/**
2039 * reg_process_hint_country_ie - process regulatory requests from country IEs
 
2040 * @country_ie_request: a regulatory request from a country IE
2041 *
2042 * The wireless subsystem can use this function to process
2043 * a regulatory request issued by a country Information Element.
2044 *
2045 * Returns one of the different reg request treatment values.
2046 */
2047static enum reg_request_treatment
2048reg_process_hint_country_ie(struct wiphy *wiphy,
2049			    struct regulatory_request *country_ie_request)
2050{
2051	enum reg_request_treatment treatment;
2052
2053	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2054
2055	switch (treatment) {
2056	case REG_REQ_OK:
2057		break;
2058	case REG_REQ_IGNORE:
2059		return REG_REQ_IGNORE;
2060	case REG_REQ_ALREADY_SET:
2061		reg_free_request(country_ie_request);
2062		return REG_REQ_ALREADY_SET;
2063	case REG_REQ_INTERSECT:
2064		/*
2065		 * This doesn't happen yet, not sure we
2066		 * ever want to support it for this case.
2067		 */
2068		WARN_ONCE(1, "Unexpected intersection for country IEs");
2069		return REG_REQ_IGNORE;
2070	}
2071
2072	country_ie_request->intersect = false;
2073	country_ie_request->processed = false;
2074
2075	if (reg_query_database(country_ie_request)) {
2076		reg_update_last_request(country_ie_request);
2077		return REG_REQ_OK;
2078	}
2079
2080	return REG_REQ_IGNORE;
2081}
2082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2083/* This processes *all* regulatory hints */
2084static void reg_process_hint(struct regulatory_request *reg_request)
2085{
2086	struct wiphy *wiphy = NULL;
2087	enum reg_request_treatment treatment;
 
2088
2089	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2090		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2091
2092	switch (reg_request->initiator) {
2093	case NL80211_REGDOM_SET_BY_CORE:
2094		treatment = reg_process_hint_core(reg_request);
2095		break;
2096	case NL80211_REGDOM_SET_BY_USER:
2097		treatment = reg_process_hint_user(reg_request);
2098		break;
2099	case NL80211_REGDOM_SET_BY_DRIVER:
2100		if (!wiphy)
2101			goto out_free;
2102		treatment = reg_process_hint_driver(wiphy, reg_request);
2103		break;
2104	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2105		if (!wiphy)
2106			goto out_free;
2107		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2108		break;
2109	default:
2110		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2111		goto out_free;
2112	}
2113
2114	if (treatment == REG_REQ_IGNORE)
2115		goto out_free;
2116
2117	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2118	     "unexpected treatment value %d\n", treatment);
2119
2120	/* This is required so that the orig_* parameters are saved.
2121	 * NOTE: treatment must be set for any case that reaches here!
2122	 */
2123	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2124	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2125		wiphy_update_regulatory(wiphy, reg_request->initiator);
 
2126		reg_check_channels();
2127	}
2128
2129	return;
2130
2131out_free:
2132	reg_free_request(reg_request);
2133}
2134
2135static bool reg_only_self_managed_wiphys(void)
2136{
2137	struct cfg80211_registered_device *rdev;
2138	struct wiphy *wiphy;
2139	bool self_managed_found = false;
2140
2141	ASSERT_RTNL();
2142
2143	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2144		wiphy = &rdev->wiphy;
2145		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2146			self_managed_found = true;
2147		else
2148			return false;
2149	}
2150
2151	/* make sure at least one self-managed wiphy exists */
2152	return self_managed_found;
2153}
2154
2155/*
2156 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2157 * Regulatory hints come on a first come first serve basis and we
2158 * must process each one atomically.
2159 */
2160static void reg_process_pending_hints(void)
2161{
2162	struct regulatory_request *reg_request, *lr;
2163
2164	lr = get_last_request();
2165
2166	/* When last_request->processed becomes true this will be rescheduled */
2167	if (lr && !lr->processed) {
2168		reg_process_hint(lr);
2169		return;
2170	}
2171
2172	spin_lock(&reg_requests_lock);
2173
2174	if (list_empty(&reg_requests_list)) {
2175		spin_unlock(&reg_requests_lock);
2176		return;
2177	}
2178
2179	reg_request = list_first_entry(&reg_requests_list,
2180				       struct regulatory_request,
2181				       list);
2182	list_del_init(&reg_request->list);
2183
2184	spin_unlock(&reg_requests_lock);
2185
2186	if (reg_only_self_managed_wiphys()) {
2187		reg_free_request(reg_request);
2188		return;
2189	}
2190
2191	reg_process_hint(reg_request);
2192
2193	lr = get_last_request();
2194
2195	spin_lock(&reg_requests_lock);
2196	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2197		schedule_work(&reg_work);
2198	spin_unlock(&reg_requests_lock);
2199}
2200
2201/* Processes beacon hints -- this has nothing to do with country IEs */
2202static void reg_process_pending_beacon_hints(void)
2203{
2204	struct cfg80211_registered_device *rdev;
2205	struct reg_beacon *pending_beacon, *tmp;
2206
2207	/* This goes through the _pending_ beacon list */
2208	spin_lock_bh(&reg_pending_beacons_lock);
2209
2210	list_for_each_entry_safe(pending_beacon, tmp,
2211				 &reg_pending_beacons, list) {
2212		list_del_init(&pending_beacon->list);
2213
2214		/* Applies the beacon hint to current wiphys */
2215		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2216			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2217
2218		/* Remembers the beacon hint for new wiphys or reg changes */
2219		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2220	}
2221
2222	spin_unlock_bh(&reg_pending_beacons_lock);
2223}
2224
2225static void reg_process_self_managed_hints(void)
2226{
2227	struct cfg80211_registered_device *rdev;
2228	struct wiphy *wiphy;
2229	const struct ieee80211_regdomain *tmp;
2230	const struct ieee80211_regdomain *regd;
2231	enum nl80211_band band;
2232	struct regulatory_request request = {};
2233
2234	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2235		wiphy = &rdev->wiphy;
2236
2237		spin_lock(&reg_requests_lock);
2238		regd = rdev->requested_regd;
2239		rdev->requested_regd = NULL;
2240		spin_unlock(&reg_requests_lock);
2241
2242		if (regd == NULL)
2243			continue;
2244
2245		tmp = get_wiphy_regdom(wiphy);
2246		rcu_assign_pointer(wiphy->regd, regd);
2247		rcu_free_regdom(tmp);
 
 
 
 
 
2248
2249		for (band = 0; band < NUM_NL80211_BANDS; band++)
2250			handle_band_custom(wiphy, wiphy->bands[band], regd);
 
 
 
 
 
2251
2252		reg_process_ht_flags(wiphy);
 
 
2253
2254		request.wiphy_idx = get_wiphy_idx(wiphy);
2255		request.alpha2[0] = regd->alpha2[0];
2256		request.alpha2[1] = regd->alpha2[1];
2257		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2258
2259		nl80211_send_wiphy_reg_change_event(&request);
 
 
 
2260	}
2261
2262	reg_check_channels();
2263}
2264
2265static void reg_todo(struct work_struct *work)
2266{
2267	rtnl_lock();
2268	reg_process_pending_hints();
2269	reg_process_pending_beacon_hints();
2270	reg_process_self_managed_hints();
2271	rtnl_unlock();
2272}
2273
2274static void queue_regulatory_request(struct regulatory_request *request)
2275{
2276	request->alpha2[0] = toupper(request->alpha2[0]);
2277	request->alpha2[1] = toupper(request->alpha2[1]);
2278
2279	spin_lock(&reg_requests_lock);
2280	list_add_tail(&request->list, &reg_requests_list);
2281	spin_unlock(&reg_requests_lock);
2282
2283	schedule_work(&reg_work);
2284}
2285
2286/*
2287 * Core regulatory hint -- happens during cfg80211_init()
2288 * and when we restore regulatory settings.
2289 */
2290static int regulatory_hint_core(const char *alpha2)
2291{
2292	struct regulatory_request *request;
2293
2294	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2295	if (!request)
2296		return -ENOMEM;
2297
2298	request->alpha2[0] = alpha2[0];
2299	request->alpha2[1] = alpha2[1];
2300	request->initiator = NL80211_REGDOM_SET_BY_CORE;
 
2301
2302	queue_regulatory_request(request);
2303
2304	return 0;
2305}
2306
2307/* User hints */
2308int regulatory_hint_user(const char *alpha2,
2309			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2310{
2311	struct regulatory_request *request;
2312
2313	if (WARN_ON(!alpha2))
2314		return -EINVAL;
2315
 
 
 
2316	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2317	if (!request)
2318		return -ENOMEM;
2319
2320	request->wiphy_idx = WIPHY_IDX_INVALID;
2321	request->alpha2[0] = alpha2[0];
2322	request->alpha2[1] = alpha2[1];
2323	request->initiator = NL80211_REGDOM_SET_BY_USER;
2324	request->user_reg_hint_type = user_reg_hint_type;
2325
2326	/* Allow calling CRDA again */
2327	reset_crda_timeouts();
2328
2329	queue_regulatory_request(request);
2330
2331	return 0;
2332}
2333
2334int regulatory_hint_indoor(bool is_indoor, u32 portid)
2335{
2336	spin_lock(&reg_indoor_lock);
2337
2338	/* It is possible that more than one user space process is trying to
2339	 * configure the indoor setting. To handle such cases, clear the indoor
2340	 * setting in case that some process does not think that the device
2341	 * is operating in an indoor environment. In addition, if a user space
2342	 * process indicates that it is controlling the indoor setting, save its
2343	 * portid, i.e., make it the owner.
2344	 */
2345	reg_is_indoor = is_indoor;
2346	if (reg_is_indoor) {
2347		if (!reg_is_indoor_portid)
2348			reg_is_indoor_portid = portid;
2349	} else {
2350		reg_is_indoor_portid = 0;
2351	}
2352
2353	spin_unlock(&reg_indoor_lock);
2354
2355	if (!is_indoor)
2356		reg_check_channels();
2357
2358	return 0;
2359}
2360
2361void regulatory_netlink_notify(u32 portid)
2362{
2363	spin_lock(&reg_indoor_lock);
2364
2365	if (reg_is_indoor_portid != portid) {
2366		spin_unlock(&reg_indoor_lock);
2367		return;
2368	}
2369
2370	reg_is_indoor = false;
2371	reg_is_indoor_portid = 0;
2372
2373	spin_unlock(&reg_indoor_lock);
2374
2375	reg_check_channels();
2376}
2377
2378/* Driver hints */
2379int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2380{
2381	struct regulatory_request *request;
2382
2383	if (WARN_ON(!alpha2 || !wiphy))
2384		return -EINVAL;
2385
2386	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2387
2388	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2389	if (!request)
2390		return -ENOMEM;
2391
2392	request->wiphy_idx = get_wiphy_idx(wiphy);
2393
2394	request->alpha2[0] = alpha2[0];
2395	request->alpha2[1] = alpha2[1];
2396	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2397
2398	/* Allow calling CRDA again */
2399	reset_crda_timeouts();
2400
2401	queue_regulatory_request(request);
2402
2403	return 0;
2404}
2405EXPORT_SYMBOL(regulatory_hint);
2406
2407void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2408				const u8 *country_ie, u8 country_ie_len)
2409{
2410	char alpha2[2];
2411	enum environment_cap env = ENVIRON_ANY;
2412	struct regulatory_request *request = NULL, *lr;
2413
2414	/* IE len must be evenly divisible by 2 */
2415	if (country_ie_len & 0x01)
2416		return;
2417
2418	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2419		return;
2420
2421	request = kzalloc(sizeof(*request), GFP_KERNEL);
2422	if (!request)
2423		return;
2424
2425	alpha2[0] = country_ie[0];
2426	alpha2[1] = country_ie[1];
2427
2428	if (country_ie[2] == 'I')
2429		env = ENVIRON_INDOOR;
2430	else if (country_ie[2] == 'O')
2431		env = ENVIRON_OUTDOOR;
2432
2433	rcu_read_lock();
2434	lr = get_last_request();
2435
2436	if (unlikely(!lr))
2437		goto out;
2438
2439	/*
2440	 * We will run this only upon a successful connection on cfg80211.
2441	 * We leave conflict resolution to the workqueue, where can hold
2442	 * the RTNL.
2443	 */
2444	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2445	    lr->wiphy_idx != WIPHY_IDX_INVALID)
2446		goto out;
2447
2448	request->wiphy_idx = get_wiphy_idx(wiphy);
2449	request->alpha2[0] = alpha2[0];
2450	request->alpha2[1] = alpha2[1];
2451	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2452	request->country_ie_env = env;
2453
2454	/* Allow calling CRDA again */
2455	reset_crda_timeouts();
2456
2457	queue_regulatory_request(request);
2458	request = NULL;
2459out:
2460	kfree(request);
2461	rcu_read_unlock();
2462}
2463
2464static void restore_alpha2(char *alpha2, bool reset_user)
2465{
2466	/* indicates there is no alpha2 to consider for restoration */
2467	alpha2[0] = '9';
2468	alpha2[1] = '7';
2469
2470	/* The user setting has precedence over the module parameter */
2471	if (is_user_regdom_saved()) {
2472		/* Unless we're asked to ignore it and reset it */
2473		if (reset_user) {
2474			pr_debug("Restoring regulatory settings including user preference\n");
2475			user_alpha2[0] = '9';
2476			user_alpha2[1] = '7';
2477
2478			/*
2479			 * If we're ignoring user settings, we still need to
2480			 * check the module parameter to ensure we put things
2481			 * back as they were for a full restore.
2482			 */
2483			if (!is_world_regdom(ieee80211_regdom)) {
2484				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2485					 ieee80211_regdom[0], ieee80211_regdom[1]);
2486				alpha2[0] = ieee80211_regdom[0];
2487				alpha2[1] = ieee80211_regdom[1];
2488			}
2489		} else {
2490			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2491				 user_alpha2[0], user_alpha2[1]);
2492			alpha2[0] = user_alpha2[0];
2493			alpha2[1] = user_alpha2[1];
2494		}
2495	} else if (!is_world_regdom(ieee80211_regdom)) {
2496		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2497			 ieee80211_regdom[0], ieee80211_regdom[1]);
2498		alpha2[0] = ieee80211_regdom[0];
2499		alpha2[1] = ieee80211_regdom[1];
2500	} else
2501		pr_debug("Restoring regulatory settings\n");
2502}
2503
2504static void restore_custom_reg_settings(struct wiphy *wiphy)
2505{
2506	struct ieee80211_supported_band *sband;
2507	enum nl80211_band band;
2508	struct ieee80211_channel *chan;
2509	int i;
2510
2511	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2512		sband = wiphy->bands[band];
2513		if (!sband)
2514			continue;
2515		for (i = 0; i < sband->n_channels; i++) {
2516			chan = &sband->channels[i];
2517			chan->flags = chan->orig_flags;
2518			chan->max_antenna_gain = chan->orig_mag;
2519			chan->max_power = chan->orig_mpwr;
2520			chan->beacon_found = false;
2521		}
2522	}
2523}
2524
2525/*
2526 * Restoring regulatory settings involves ingoring any
2527 * possibly stale country IE information and user regulatory
2528 * settings if so desired, this includes any beacon hints
2529 * learned as we could have traveled outside to another country
2530 * after disconnection. To restore regulatory settings we do
2531 * exactly what we did at bootup:
2532 *
2533 *   - send a core regulatory hint
2534 *   - send a user regulatory hint if applicable
2535 *
2536 * Device drivers that send a regulatory hint for a specific country
2537 * keep their own regulatory domain on wiphy->regd so that does does
2538 * not need to be remembered.
2539 */
2540static void restore_regulatory_settings(bool reset_user)
2541{
2542	char alpha2[2];
2543	char world_alpha2[2];
2544	struct reg_beacon *reg_beacon, *btmp;
2545	LIST_HEAD(tmp_reg_req_list);
2546	struct cfg80211_registered_device *rdev;
2547
2548	ASSERT_RTNL();
2549
2550	/*
2551	 * Clear the indoor setting in case that it is not controlled by user
2552	 * space, as otherwise there is no guarantee that the device is still
2553	 * operating in an indoor environment.
2554	 */
2555	spin_lock(&reg_indoor_lock);
2556	if (reg_is_indoor && !reg_is_indoor_portid) {
2557		reg_is_indoor = false;
2558		reg_check_channels();
2559	}
2560	spin_unlock(&reg_indoor_lock);
2561
2562	reset_regdomains(true, &world_regdom);
2563	restore_alpha2(alpha2, reset_user);
2564
2565	/*
2566	 * If there's any pending requests we simply
2567	 * stash them to a temporary pending queue and
2568	 * add then after we've restored regulatory
2569	 * settings.
2570	 */
2571	spin_lock(&reg_requests_lock);
2572	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2573	spin_unlock(&reg_requests_lock);
2574
2575	/* Clear beacon hints */
2576	spin_lock_bh(&reg_pending_beacons_lock);
2577	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2578		list_del(&reg_beacon->list);
2579		kfree(reg_beacon);
2580	}
2581	spin_unlock_bh(&reg_pending_beacons_lock);
2582
2583	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2584		list_del(&reg_beacon->list);
2585		kfree(reg_beacon);
2586	}
2587
2588	/* First restore to the basic regulatory settings */
2589	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2590	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2591
2592	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2593		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2594			continue;
2595		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2596			restore_custom_reg_settings(&rdev->wiphy);
2597	}
2598
2599	regulatory_hint_core(world_alpha2);
 
 
 
 
 
 
2600
2601	/*
2602	 * This restores the ieee80211_regdom module parameter
2603	 * preference or the last user requested regulatory
2604	 * settings, user regulatory settings takes precedence.
2605	 */
2606	if (is_an_alpha2(alpha2))
2607		regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2608
2609	spin_lock(&reg_requests_lock);
2610	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2611	spin_unlock(&reg_requests_lock);
2612
2613	pr_debug("Kicking the queue\n");
2614
2615	schedule_work(&reg_work);
2616}
2617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2618void regulatory_hint_disconnect(void)
2619{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2620	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
2621	restore_regulatory_settings(false);
2622}
2623
2624static bool freq_is_chan_12_13_14(u16 freq)
2625{
2626	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
2627	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
2628	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
2629		return true;
2630	return false;
2631}
2632
2633static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2634{
2635	struct reg_beacon *pending_beacon;
2636
2637	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2638		if (beacon_chan->center_freq ==
2639		    pending_beacon->chan.center_freq)
2640			return true;
2641	return false;
2642}
2643
2644int regulatory_hint_found_beacon(struct wiphy *wiphy,
2645				 struct ieee80211_channel *beacon_chan,
2646				 gfp_t gfp)
2647{
2648	struct reg_beacon *reg_beacon;
2649	bool processing;
2650
2651	if (beacon_chan->beacon_found ||
2652	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2653	    (beacon_chan->band == NL80211_BAND_2GHZ &&
2654	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2655		return 0;
2656
2657	spin_lock_bh(&reg_pending_beacons_lock);
2658	processing = pending_reg_beacon(beacon_chan);
2659	spin_unlock_bh(&reg_pending_beacons_lock);
2660
2661	if (processing)
2662		return 0;
2663
2664	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2665	if (!reg_beacon)
2666		return -ENOMEM;
2667
2668	pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2669		 beacon_chan->center_freq,
2670		 ieee80211_frequency_to_channel(beacon_chan->center_freq),
 
2671		 wiphy_name(wiphy));
2672
2673	memcpy(&reg_beacon->chan, beacon_chan,
2674	       sizeof(struct ieee80211_channel));
2675
2676	/*
2677	 * Since we can be called from BH or and non-BH context
2678	 * we must use spin_lock_bh()
2679	 */
2680	spin_lock_bh(&reg_pending_beacons_lock);
2681	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2682	spin_unlock_bh(&reg_pending_beacons_lock);
2683
2684	schedule_work(&reg_work);
2685
2686	return 0;
2687}
2688
2689static void print_rd_rules(const struct ieee80211_regdomain *rd)
2690{
2691	unsigned int i;
2692	const struct ieee80211_reg_rule *reg_rule = NULL;
2693	const struct ieee80211_freq_range *freq_range = NULL;
2694	const struct ieee80211_power_rule *power_rule = NULL;
2695	char bw[32], cac_time[32];
2696
2697	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2698
2699	for (i = 0; i < rd->n_reg_rules; i++) {
2700		reg_rule = &rd->reg_rules[i];
2701		freq_range = &reg_rule->freq_range;
2702		power_rule = &reg_rule->power_rule;
2703
2704		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2705			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2706				 freq_range->max_bandwidth_khz,
2707				 reg_get_max_bandwidth(rd, reg_rule));
2708		else
2709			snprintf(bw, sizeof(bw), "%d KHz",
2710				 freq_range->max_bandwidth_khz);
2711
2712		if (reg_rule->flags & NL80211_RRF_DFS)
2713			scnprintf(cac_time, sizeof(cac_time), "%u s",
2714				  reg_rule->dfs_cac_ms/1000);
2715		else
2716			scnprintf(cac_time, sizeof(cac_time), "N/A");
2717
2718
2719		/*
2720		 * There may not be documentation for max antenna gain
2721		 * in certain regions
2722		 */
2723		if (power_rule->max_antenna_gain)
2724			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2725				freq_range->start_freq_khz,
2726				freq_range->end_freq_khz,
2727				bw,
2728				power_rule->max_antenna_gain,
2729				power_rule->max_eirp,
2730				cac_time);
2731		else
2732			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2733				freq_range->start_freq_khz,
2734				freq_range->end_freq_khz,
2735				bw,
2736				power_rule->max_eirp,
2737				cac_time);
2738	}
2739}
2740
2741bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2742{
2743	switch (dfs_region) {
2744	case NL80211_DFS_UNSET:
2745	case NL80211_DFS_FCC:
2746	case NL80211_DFS_ETSI:
2747	case NL80211_DFS_JP:
2748		return true;
2749	default:
2750		pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
2751		return false;
2752	}
2753}
2754
2755static void print_regdomain(const struct ieee80211_regdomain *rd)
2756{
2757	struct regulatory_request *lr = get_last_request();
2758
2759	if (is_intersected_alpha2(rd->alpha2)) {
2760		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2761			struct cfg80211_registered_device *rdev;
2762			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2763			if (rdev) {
2764				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2765					rdev->country_ie_alpha2[0],
2766					rdev->country_ie_alpha2[1]);
2767			} else
2768				pr_debug("Current regulatory domain intersected:\n");
2769		} else
2770			pr_debug("Current regulatory domain intersected:\n");
2771	} else if (is_world_regdom(rd->alpha2)) {
2772		pr_debug("World regulatory domain updated:\n");
2773	} else {
2774		if (is_unknown_alpha2(rd->alpha2))
2775			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2776		else {
2777			if (reg_request_cell_base(lr))
2778				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2779					rd->alpha2[0], rd->alpha2[1]);
2780			else
2781				pr_debug("Regulatory domain changed to country: %c%c\n",
2782					rd->alpha2[0], rd->alpha2[1]);
2783		}
2784	}
2785
2786	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2787	print_rd_rules(rd);
2788}
2789
2790static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2791{
2792	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2793	print_rd_rules(rd);
2794}
2795
2796static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2797{
2798	if (!is_world_regdom(rd->alpha2))
2799		return -EINVAL;
2800	update_world_regdomain(rd);
2801	return 0;
2802}
2803
2804static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2805			   struct regulatory_request *user_request)
2806{
2807	const struct ieee80211_regdomain *intersected_rd = NULL;
2808
2809	if (!regdom_changes(rd->alpha2))
2810		return -EALREADY;
2811
2812	if (!is_valid_rd(rd)) {
2813		pr_err("Invalid regulatory domain detected: %c%c\n",
2814		       rd->alpha2[0], rd->alpha2[1]);
2815		print_regdomain_info(rd);
2816		return -EINVAL;
2817	}
2818
2819	if (!user_request->intersect) {
2820		reset_regdomains(false, rd);
2821		return 0;
2822	}
2823
2824	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2825	if (!intersected_rd)
2826		return -EINVAL;
2827
2828	kfree(rd);
2829	rd = NULL;
2830	reset_regdomains(false, intersected_rd);
2831
2832	return 0;
2833}
2834
2835static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2836			     struct regulatory_request *driver_request)
2837{
2838	const struct ieee80211_regdomain *regd;
2839	const struct ieee80211_regdomain *intersected_rd = NULL;
2840	const struct ieee80211_regdomain *tmp;
2841	struct wiphy *request_wiphy;
2842
2843	if (is_world_regdom(rd->alpha2))
2844		return -EINVAL;
2845
2846	if (!regdom_changes(rd->alpha2))
2847		return -EALREADY;
2848
2849	if (!is_valid_rd(rd)) {
2850		pr_err("Invalid regulatory domain detected: %c%c\n",
2851		       rd->alpha2[0], rd->alpha2[1]);
2852		print_regdomain_info(rd);
2853		return -EINVAL;
2854	}
2855
2856	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2857	if (!request_wiphy)
2858		return -ENODEV;
2859
2860	if (!driver_request->intersect) {
2861		if (request_wiphy->regd)
 
 
 
2862			return -EALREADY;
 
2863
2864		regd = reg_copy_regd(rd);
2865		if (IS_ERR(regd))
 
2866			return PTR_ERR(regd);
 
2867
2868		rcu_assign_pointer(request_wiphy->regd, regd);
 
2869		reset_regdomains(false, rd);
2870		return 0;
2871	}
2872
2873	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2874	if (!intersected_rd)
2875		return -EINVAL;
2876
2877	/*
2878	 * We can trash what CRDA provided now.
2879	 * However if a driver requested this specific regulatory
2880	 * domain we keep it for its private use
2881	 */
2882	tmp = get_wiphy_regdom(request_wiphy);
2883	rcu_assign_pointer(request_wiphy->regd, rd);
2884	rcu_free_regdom(tmp);
2885
2886	rd = NULL;
2887
2888	reset_regdomains(false, intersected_rd);
2889
2890	return 0;
2891}
2892
2893static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2894				 struct regulatory_request *country_ie_request)
2895{
2896	struct wiphy *request_wiphy;
2897
2898	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2899	    !is_unknown_alpha2(rd->alpha2))
2900		return -EINVAL;
2901
2902	/*
2903	 * Lets only bother proceeding on the same alpha2 if the current
2904	 * rd is non static (it means CRDA was present and was used last)
2905	 * and the pending request came in from a country IE
2906	 */
2907
2908	if (!is_valid_rd(rd)) {
2909		pr_err("Invalid regulatory domain detected: %c%c\n",
2910		       rd->alpha2[0], rd->alpha2[1]);
2911		print_regdomain_info(rd);
2912		return -EINVAL;
2913	}
2914
2915	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2916	if (!request_wiphy)
2917		return -ENODEV;
2918
2919	if (country_ie_request->intersect)
2920		return -EINVAL;
2921
2922	reset_regdomains(false, rd);
2923	return 0;
2924}
2925
2926/*
2927 * Use this call to set the current regulatory domain. Conflicts with
2928 * multiple drivers can be ironed out later. Caller must've already
2929 * kmalloc'd the rd structure.
2930 */
2931int set_regdom(const struct ieee80211_regdomain *rd,
2932	       enum ieee80211_regd_source regd_src)
2933{
2934	struct regulatory_request *lr;
2935	bool user_reset = false;
2936	int r;
2937
 
 
 
2938	if (!reg_is_valid_request(rd->alpha2)) {
2939		kfree(rd);
2940		return -EINVAL;
2941	}
2942
2943	if (regd_src == REGD_SOURCE_CRDA)
2944		reset_crda_timeouts();
2945
2946	lr = get_last_request();
2947
2948	/* Note that this doesn't update the wiphys, this is done below */
2949	switch (lr->initiator) {
2950	case NL80211_REGDOM_SET_BY_CORE:
2951		r = reg_set_rd_core(rd);
2952		break;
2953	case NL80211_REGDOM_SET_BY_USER:
 
2954		r = reg_set_rd_user(rd, lr);
2955		user_reset = true;
2956		break;
2957	case NL80211_REGDOM_SET_BY_DRIVER:
2958		r = reg_set_rd_driver(rd, lr);
2959		break;
2960	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2961		r = reg_set_rd_country_ie(rd, lr);
2962		break;
2963	default:
2964		WARN(1, "invalid initiator %d\n", lr->initiator);
2965		kfree(rd);
2966		return -EINVAL;
2967	}
2968
2969	if (r) {
2970		switch (r) {
2971		case -EALREADY:
2972			reg_set_request_processed();
2973			break;
2974		default:
2975			/* Back to world regulatory in case of errors */
2976			restore_regulatory_settings(user_reset);
2977		}
2978
2979		kfree(rd);
2980		return r;
2981	}
2982
2983	/* This would make this whole thing pointless */
2984	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2985		return -EINVAL;
2986
2987	/* update all wiphys now with the new established regulatory domain */
2988	update_all_wiphy_regulatory(lr->initiator);
2989
2990	print_regdomain(get_cfg80211_regdom());
2991
2992	nl80211_send_reg_change_event(lr);
2993
2994	reg_set_request_processed();
2995
2996	return 0;
2997}
2998
2999static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3000				       struct ieee80211_regdomain *rd)
3001{
3002	const struct ieee80211_regdomain *regd;
3003	const struct ieee80211_regdomain *prev_regd;
3004	struct cfg80211_registered_device *rdev;
3005
3006	if (WARN_ON(!wiphy || !rd))
3007		return -EINVAL;
3008
3009	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3010		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3011		return -EPERM;
3012
3013	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
 
 
3014		print_regdomain_info(rd);
3015		return -EINVAL;
3016	}
3017
3018	regd = reg_copy_regd(rd);
3019	if (IS_ERR(regd))
3020		return PTR_ERR(regd);
3021
3022	rdev = wiphy_to_rdev(wiphy);
3023
3024	spin_lock(&reg_requests_lock);
3025	prev_regd = rdev->requested_regd;
3026	rdev->requested_regd = regd;
3027	spin_unlock(&reg_requests_lock);
3028
3029	kfree(prev_regd);
3030	return 0;
3031}
3032
3033int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3034			      struct ieee80211_regdomain *rd)
3035{
3036	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3037
3038	if (ret)
3039		return ret;
3040
3041	schedule_work(&reg_work);
3042	return 0;
3043}
3044EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3045
3046int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3047					struct ieee80211_regdomain *rd)
3048{
3049	int ret;
3050
3051	ASSERT_RTNL();
3052
3053	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3054	if (ret)
3055		return ret;
3056
3057	/* process the request immediately */
3058	reg_process_self_managed_hints();
 
3059	return 0;
3060}
3061EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3062
3063void wiphy_regulatory_register(struct wiphy *wiphy)
3064{
3065	struct regulatory_request *lr;
3066
3067	/* self-managed devices ignore external hints */
3068	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3069		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3070					   REGULATORY_COUNTRY_IE_IGNORE;
3071
 
 
 
 
 
 
 
 
 
3072	if (!reg_dev_ignore_cell_hint(wiphy))
3073		reg_num_devs_support_basehint++;
3074
3075	lr = get_last_request();
3076	wiphy_update_regulatory(wiphy, lr->initiator);
 
 
3077}
3078
3079void wiphy_regulatory_deregister(struct wiphy *wiphy)
3080{
3081	struct wiphy *request_wiphy = NULL;
3082	struct regulatory_request *lr;
3083
3084	lr = get_last_request();
3085
3086	if (!reg_dev_ignore_cell_hint(wiphy))
3087		reg_num_devs_support_basehint--;
3088
3089	rcu_free_regdom(get_wiphy_regdom(wiphy));
3090	RCU_INIT_POINTER(wiphy->regd, NULL);
3091
3092	if (lr)
3093		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3094
3095	if (!request_wiphy || request_wiphy != wiphy)
3096		return;
3097
3098	lr->wiphy_idx = WIPHY_IDX_INVALID;
3099	lr->country_ie_env = ENVIRON_ANY;
3100}
3101
3102/*
3103 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3104 * UNII band definitions
 
3105 */
3106int cfg80211_get_unii(int freq)
3107{
3108	/* UNII-1 */
3109	if (freq >= 5150 && freq <= 5250)
3110		return 0;
3111
3112	/* UNII-2A */
3113	if (freq > 5250 && freq <= 5350)
3114		return 1;
3115
3116	/* UNII-2B */
3117	if (freq > 5350 && freq <= 5470)
3118		return 2;
3119
3120	/* UNII-2C */
3121	if (freq > 5470 && freq <= 5725)
3122		return 3;
3123
3124	/* UNII-3 */
3125	if (freq > 5725 && freq <= 5825)
3126		return 4;
3127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3128	return -EINVAL;
3129}
3130
3131bool regulatory_indoor_allowed(void)
3132{
3133	return reg_is_indoor;
3134}
3135
3136int __init regulatory_init(void)
3137{
3138	int err = 0;
 
 
3139
3140	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3141	if (IS_ERR(reg_pdev))
3142		return PTR_ERR(reg_pdev);
3143
3144	spin_lock_init(&reg_requests_lock);
3145	spin_lock_init(&reg_pending_beacons_lock);
3146	spin_lock_init(&reg_indoor_lock);
 
 
3147
3148	reg_regdb_size_check();
3149
3150	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
 
3151
3152	user_alpha2[0] = '9';
3153	user_alpha2[1] = '7';
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3154
3155	/* We always try to get an update for the static regdomain */
3156	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3157	if (err) {
3158		if (err == -ENOMEM) {
3159			platform_device_unregister(reg_pdev);
3160			return err;
3161		}
3162		/*
3163		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3164		 * memory which is handled and propagated appropriately above
3165		 * but it can also fail during a netlink_broadcast() or during
3166		 * early boot for call_usermodehelper(). For now treat these
3167		 * errors as non-fatal.
3168		 */
3169		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3170	}
3171
3172	/*
3173	 * Finally, if the user set the module parameter treat it
3174	 * as a user hint.
3175	 */
3176	if (!is_world_regdom(ieee80211_regdom))
3177		regulatory_hint_user(ieee80211_regdom,
3178				     NL80211_USER_REG_HINT_USER);
3179
3180	return 0;
3181}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3182
3183void regulatory_exit(void)
3184{
3185	struct regulatory_request *reg_request, *tmp;
3186	struct reg_beacon *reg_beacon, *btmp;
3187
3188	cancel_work_sync(&reg_work);
3189	cancel_crda_timeout_sync();
3190	cancel_delayed_work_sync(&reg_check_chans);
3191
3192	/* Lock to suppress warnings */
3193	rtnl_lock();
3194	reset_regdomains(true, NULL);
3195	rtnl_unlock();
3196
3197	dev_set_uevent_suppress(&reg_pdev->dev, true);
3198
3199	platform_device_unregister(reg_pdev);
3200
3201	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3202		list_del(&reg_beacon->list);
3203		kfree(reg_beacon);
3204	}
3205
3206	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3207		list_del(&reg_beacon->list);
3208		kfree(reg_beacon);
3209	}
3210
3211	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3212		list_del(&reg_request->list);
3213		kfree(reg_request);
3214	}
 
 
 
 
 
 
 
3215}
v6.2
   1/*
   2 * Copyright 2002-2005, Instant802 Networks, Inc.
   3 * Copyright 2005-2006, Devicescape Software, Inc.
   4 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright      2017  Intel Deutschland GmbH
   8 * Copyright (C) 2018 - 2022 Intel Corporation
   9 *
  10 * Permission to use, copy, modify, and/or distribute this software for any
  11 * purpose with or without fee is hereby granted, provided that the above
  12 * copyright notice and this permission notice appear in all copies.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  21 */
  22
  23
  24/**
  25 * DOC: Wireless regulatory infrastructure
  26 *
  27 * The usual implementation is for a driver to read a device EEPROM to
  28 * determine which regulatory domain it should be operating under, then
  29 * looking up the allowable channels in a driver-local table and finally
  30 * registering those channels in the wiphy structure.
  31 *
  32 * Another set of compliance enforcement is for drivers to use their
  33 * own compliance limits which can be stored on the EEPROM. The host
  34 * driver or firmware may ensure these are used.
  35 *
  36 * In addition to all this we provide an extra layer of regulatory
  37 * conformance. For drivers which do not have any regulatory
  38 * information CRDA provides the complete regulatory solution.
  39 * For others it provides a community effort on further restrictions
  40 * to enhance compliance.
  41 *
  42 * Note: When number of rules --> infinity we will not be able to
  43 * index on alpha2 any more, instead we'll probably have to
  44 * rely on some SHA1 checksum of the regdomain for example.
  45 *
  46 */
  47
  48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  49
  50#include <linux/kernel.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/list.h>
  54#include <linux/ctype.h>
  55#include <linux/nl80211.h>
  56#include <linux/platform_device.h>
  57#include <linux/verification.h>
  58#include <linux/moduleparam.h>
  59#include <linux/firmware.h>
  60#include <net/cfg80211.h>
  61#include "core.h"
  62#include "reg.h"
  63#include "rdev-ops.h"
 
  64#include "nl80211.h"
  65
  66/*
  67 * Grace period we give before making sure all current interfaces reside on
  68 * channels allowed by the current regulatory domain.
  69 */
  70#define REG_ENFORCE_GRACE_MS 60000
  71
  72/**
  73 * enum reg_request_treatment - regulatory request treatment
  74 *
  75 * @REG_REQ_OK: continue processing the regulatory request
  76 * @REG_REQ_IGNORE: ignore the regulatory request
  77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
  78 *	be intersected with the current one.
  79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
  80 *	regulatory settings, and no further processing is required.
  81 */
  82enum reg_request_treatment {
  83	REG_REQ_OK,
  84	REG_REQ_IGNORE,
  85	REG_REQ_INTERSECT,
  86	REG_REQ_ALREADY_SET,
  87};
  88
  89static struct regulatory_request core_request_world = {
  90	.initiator = NL80211_REGDOM_SET_BY_CORE,
  91	.alpha2[0] = '0',
  92	.alpha2[1] = '0',
  93	.intersect = false,
  94	.processed = true,
  95	.country_ie_env = ENVIRON_ANY,
  96};
  97
  98/*
  99 * Receipt of information from last regulatory request,
 100 * protected by RTNL (and can be accessed with RCU protection)
 101 */
 102static struct regulatory_request __rcu *last_request =
 103	(void __force __rcu *)&core_request_world;
 104
 105/* To trigger userspace events and load firmware */
 106static struct platform_device *reg_pdev;
 107
 108/*
 109 * Central wireless core regulatory domains, we only need two,
 110 * the current one and a world regulatory domain in case we have no
 111 * information to give us an alpha2.
 112 * (protected by RTNL, can be read under RCU)
 113 */
 114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
 115
 116/*
 117 * Number of devices that registered to the core
 118 * that support cellular base station regulatory hints
 119 * (protected by RTNL)
 120 */
 121static int reg_num_devs_support_basehint;
 122
 123/*
 124 * State variable indicating if the platform on which the devices
 125 * are attached is operating in an indoor environment. The state variable
 126 * is relevant for all registered devices.
 127 */
 128static bool reg_is_indoor;
 129static DEFINE_SPINLOCK(reg_indoor_lock);
 130
 131/* Used to track the userspace process controlling the indoor setting */
 132static u32 reg_is_indoor_portid;
 133
 134static void restore_regulatory_settings(bool reset_user, bool cached);
 135static void print_regdomain(const struct ieee80211_regdomain *rd);
 136static void reg_process_hint(struct regulatory_request *reg_request);
 137
 138static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
 139{
 140	return rcu_dereference_rtnl(cfg80211_regdomain);
 141}
 142
 143/*
 144 * Returns the regulatory domain associated with the wiphy.
 145 *
 146 * Requires any of RTNL, wiphy mutex or RCU protection.
 147 */
 148const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
 149{
 150	return rcu_dereference_check(wiphy->regd,
 151				     lockdep_is_held(&wiphy->mtx) ||
 152				     lockdep_rtnl_is_held());
 153}
 154EXPORT_SYMBOL(get_wiphy_regdom);
 155
 156static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
 157{
 158	switch (dfs_region) {
 159	case NL80211_DFS_UNSET:
 160		return "unset";
 161	case NL80211_DFS_FCC:
 162		return "FCC";
 163	case NL80211_DFS_ETSI:
 164		return "ETSI";
 165	case NL80211_DFS_JP:
 166		return "JP";
 167	}
 168	return "Unknown";
 169}
 170
 171enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
 172{
 173	const struct ieee80211_regdomain *regd = NULL;
 174	const struct ieee80211_regdomain *wiphy_regd = NULL;
 175	enum nl80211_dfs_regions dfs_region;
 176
 177	rcu_read_lock();
 178	regd = get_cfg80211_regdom();
 179	dfs_region = regd->dfs_region;
 180
 181	if (!wiphy)
 182		goto out;
 183
 184	wiphy_regd = get_wiphy_regdom(wiphy);
 185	if (!wiphy_regd)
 186		goto out;
 187
 188	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
 189		dfs_region = wiphy_regd->dfs_region;
 190		goto out;
 191	}
 192
 193	if (wiphy_regd->dfs_region == regd->dfs_region)
 194		goto out;
 195
 196	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
 197		 dev_name(&wiphy->dev),
 198		 reg_dfs_region_str(wiphy_regd->dfs_region),
 199		 reg_dfs_region_str(regd->dfs_region));
 200
 201out:
 202	rcu_read_unlock();
 203
 204	return dfs_region;
 205}
 206
 207static void rcu_free_regdom(const struct ieee80211_regdomain *r)
 208{
 209	if (!r)
 210		return;
 211	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
 212}
 213
 214static struct regulatory_request *get_last_request(void)
 215{
 216	return rcu_dereference_rtnl(last_request);
 217}
 218
 219/* Used to queue up regulatory hints */
 220static LIST_HEAD(reg_requests_list);
 221static DEFINE_SPINLOCK(reg_requests_lock);
 222
 223/* Used to queue up beacon hints for review */
 224static LIST_HEAD(reg_pending_beacons);
 225static DEFINE_SPINLOCK(reg_pending_beacons_lock);
 226
 227/* Used to keep track of processed beacon hints */
 228static LIST_HEAD(reg_beacon_list);
 229
 230struct reg_beacon {
 231	struct list_head list;
 232	struct ieee80211_channel chan;
 233};
 234
 235static void reg_check_chans_work(struct work_struct *work);
 236static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
 237
 238static void reg_todo(struct work_struct *work);
 239static DECLARE_WORK(reg_work, reg_todo);
 240
 241/* We keep a static world regulatory domain in case of the absence of CRDA */
 242static const struct ieee80211_regdomain world_regdom = {
 243	.n_reg_rules = 8,
 244	.alpha2 =  "00",
 245	.reg_rules = {
 246		/* IEEE 802.11b/g, channels 1..11 */
 247		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
 248		/* IEEE 802.11b/g, channels 12..13. */
 249		REG_RULE(2467-10, 2472+10, 20, 6, 20,
 250			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
 251		/* IEEE 802.11 channel 14 - Only JP enables
 252		 * this and for 802.11b only */
 253		REG_RULE(2484-10, 2484+10, 20, 6, 20,
 254			NL80211_RRF_NO_IR |
 255			NL80211_RRF_NO_OFDM),
 256		/* IEEE 802.11a, channel 36..48 */
 257		REG_RULE(5180-10, 5240+10, 80, 6, 20,
 258                        NL80211_RRF_NO_IR |
 259                        NL80211_RRF_AUTO_BW),
 260
 261		/* IEEE 802.11a, channel 52..64 - DFS required */
 262		REG_RULE(5260-10, 5320+10, 80, 6, 20,
 263			NL80211_RRF_NO_IR |
 264			NL80211_RRF_AUTO_BW |
 265			NL80211_RRF_DFS),
 266
 267		/* IEEE 802.11a, channel 100..144 - DFS required */
 268		REG_RULE(5500-10, 5720+10, 160, 6, 20,
 269			NL80211_RRF_NO_IR |
 270			NL80211_RRF_DFS),
 271
 272		/* IEEE 802.11a, channel 149..165 */
 273		REG_RULE(5745-10, 5825+10, 80, 6, 20,
 274			NL80211_RRF_NO_IR),
 275
 276		/* IEEE 802.11ad (60GHz), channels 1..3 */
 277		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
 278	}
 279};
 280
 281/* protected by RTNL */
 282static const struct ieee80211_regdomain *cfg80211_world_regdom =
 283	&world_regdom;
 284
 285static char *ieee80211_regdom = "00";
 286static char user_alpha2[2];
 287static const struct ieee80211_regdomain *cfg80211_user_regdom;
 288
 289module_param(ieee80211_regdom, charp, 0444);
 290MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
 291
 292static void reg_free_request(struct regulatory_request *request)
 293{
 294	if (request == &core_request_world)
 295		return;
 296
 297	if (request != get_last_request())
 298		kfree(request);
 299}
 300
 301static void reg_free_last_request(void)
 302{
 303	struct regulatory_request *lr = get_last_request();
 304
 305	if (lr != &core_request_world && lr)
 306		kfree_rcu(lr, rcu_head);
 307}
 308
 309static void reg_update_last_request(struct regulatory_request *request)
 310{
 311	struct regulatory_request *lr;
 312
 313	lr = get_last_request();
 314	if (lr == request)
 315		return;
 316
 317	reg_free_last_request();
 318	rcu_assign_pointer(last_request, request);
 319}
 320
 321static void reset_regdomains(bool full_reset,
 322			     const struct ieee80211_regdomain *new_regdom)
 323{
 324	const struct ieee80211_regdomain *r;
 325
 326	ASSERT_RTNL();
 327
 328	r = get_cfg80211_regdom();
 329
 330	/* avoid freeing static information or freeing something twice */
 331	if (r == cfg80211_world_regdom)
 332		r = NULL;
 333	if (cfg80211_world_regdom == &world_regdom)
 334		cfg80211_world_regdom = NULL;
 335	if (r == &world_regdom)
 336		r = NULL;
 337
 338	rcu_free_regdom(r);
 339	rcu_free_regdom(cfg80211_world_regdom);
 340
 341	cfg80211_world_regdom = &world_regdom;
 342	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
 343
 344	if (!full_reset)
 345		return;
 346
 347	reg_update_last_request(&core_request_world);
 348}
 349
 350/*
 351 * Dynamic world regulatory domain requested by the wireless
 352 * core upon initialization
 353 */
 354static void update_world_regdomain(const struct ieee80211_regdomain *rd)
 355{
 356	struct regulatory_request *lr;
 357
 358	lr = get_last_request();
 359
 360	WARN_ON(!lr);
 361
 362	reset_regdomains(false, rd);
 363
 364	cfg80211_world_regdom = rd;
 365}
 366
 367bool is_world_regdom(const char *alpha2)
 368{
 369	if (!alpha2)
 370		return false;
 371	return alpha2[0] == '0' && alpha2[1] == '0';
 372}
 373
 374static bool is_alpha2_set(const char *alpha2)
 375{
 376	if (!alpha2)
 377		return false;
 378	return alpha2[0] && alpha2[1];
 379}
 380
 381static bool is_unknown_alpha2(const char *alpha2)
 382{
 383	if (!alpha2)
 384		return false;
 385	/*
 386	 * Special case where regulatory domain was built by driver
 387	 * but a specific alpha2 cannot be determined
 388	 */
 389	return alpha2[0] == '9' && alpha2[1] == '9';
 390}
 391
 392static bool is_intersected_alpha2(const char *alpha2)
 393{
 394	if (!alpha2)
 395		return false;
 396	/*
 397	 * Special case where regulatory domain is the
 398	 * result of an intersection between two regulatory domain
 399	 * structures
 400	 */
 401	return alpha2[0] == '9' && alpha2[1] == '8';
 402}
 403
 404static bool is_an_alpha2(const char *alpha2)
 405{
 406	if (!alpha2)
 407		return false;
 408	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
 409}
 410
 411static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
 412{
 413	if (!alpha2_x || !alpha2_y)
 414		return false;
 415	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
 416}
 417
 418static bool regdom_changes(const char *alpha2)
 419{
 420	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
 421
 422	if (!r)
 423		return true;
 424	return !alpha2_equal(r->alpha2, alpha2);
 425}
 426
 427/*
 428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 430 * has ever been issued.
 431 */
 432static bool is_user_regdom_saved(void)
 433{
 434	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
 435		return false;
 436
 437	/* This would indicate a mistake on the design */
 438	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
 439		 "Unexpected user alpha2: %c%c\n",
 440		 user_alpha2[0], user_alpha2[1]))
 441		return false;
 442
 443	return true;
 444}
 445
 446static const struct ieee80211_regdomain *
 447reg_copy_regd(const struct ieee80211_regdomain *src_regd)
 448{
 449	struct ieee80211_regdomain *regd;
 
 450	unsigned int i;
 451
 452	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
 453		       GFP_KERNEL);
 
 
 
 454	if (!regd)
 455		return ERR_PTR(-ENOMEM);
 456
 457	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
 458
 459	for (i = 0; i < src_regd->n_reg_rules; i++)
 460		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
 461		       sizeof(struct ieee80211_reg_rule));
 462
 463	return regd;
 464}
 465
 466static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
 467{
 468	ASSERT_RTNL();
 469
 470	if (!IS_ERR(cfg80211_user_regdom))
 471		kfree(cfg80211_user_regdom);
 472	cfg80211_user_regdom = reg_copy_regd(rd);
 473}
 474
 475struct reg_regdb_apply_request {
 476	struct list_head list;
 477	const struct ieee80211_regdomain *regdom;
 478};
 479
 480static LIST_HEAD(reg_regdb_apply_list);
 481static DEFINE_MUTEX(reg_regdb_apply_mutex);
 482
 483static void reg_regdb_apply(struct work_struct *work)
 484{
 485	struct reg_regdb_apply_request *request;
 486
 487	rtnl_lock();
 488
 489	mutex_lock(&reg_regdb_apply_mutex);
 490	while (!list_empty(&reg_regdb_apply_list)) {
 491		request = list_first_entry(&reg_regdb_apply_list,
 492					   struct reg_regdb_apply_request,
 493					   list);
 494		list_del(&request->list);
 495
 496		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
 497		kfree(request);
 498	}
 499	mutex_unlock(&reg_regdb_apply_mutex);
 500
 501	rtnl_unlock();
 502}
 503
 504static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
 505
 506static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
 507{
 
 508	struct reg_regdb_apply_request *request;
 
 
 
 
 
 
 
 
 
 
 
 509
 510	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
 511	if (!request) {
 512		kfree(regdom);
 
 
 
 
 513		return -ENOMEM;
 514	}
 515
 516	request->regdom = regdom;
 517
 518	mutex_lock(&reg_regdb_apply_mutex);
 519	list_add_tail(&request->list, &reg_regdb_apply_list);
 520	mutex_unlock(&reg_regdb_apply_mutex);
 521
 522	schedule_work(&reg_regdb_work);
 
 523	return 0;
 524}
 525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526#ifdef CONFIG_CFG80211_CRDA_SUPPORT
 527/* Max number of consecutive attempts to communicate with CRDA  */
 528#define REG_MAX_CRDA_TIMEOUTS 10
 529
 530static u32 reg_crda_timeouts;
 531
 532static void crda_timeout_work(struct work_struct *work);
 533static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
 534
 535static void crda_timeout_work(struct work_struct *work)
 536{
 537	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
 538	rtnl_lock();
 539	reg_crda_timeouts++;
 540	restore_regulatory_settings(true, false);
 541	rtnl_unlock();
 542}
 543
 544static void cancel_crda_timeout(void)
 545{
 546	cancel_delayed_work(&crda_timeout);
 547}
 548
 549static void cancel_crda_timeout_sync(void)
 550{
 551	cancel_delayed_work_sync(&crda_timeout);
 552}
 553
 554static void reset_crda_timeouts(void)
 555{
 556	reg_crda_timeouts = 0;
 557}
 558
 559/*
 560 * This lets us keep regulatory code which is updated on a regulatory
 561 * basis in userspace.
 562 */
 563static int call_crda(const char *alpha2)
 564{
 565	char country[12];
 566	char *env[] = { country, NULL };
 567	int ret;
 568
 569	snprintf(country, sizeof(country), "COUNTRY=%c%c",
 570		 alpha2[0], alpha2[1]);
 571
 572	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
 573		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
 574		return -EINVAL;
 575	}
 576
 577	if (!is_world_regdom((char *) alpha2))
 578		pr_debug("Calling CRDA for country: %c%c\n",
 579			 alpha2[0], alpha2[1]);
 580	else
 581		pr_debug("Calling CRDA to update world regulatory domain\n");
 582
 583	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
 584	if (ret)
 585		return ret;
 586
 587	queue_delayed_work(system_power_efficient_wq,
 588			   &crda_timeout, msecs_to_jiffies(3142));
 589	return 0;
 590}
 591#else
 592static inline void cancel_crda_timeout(void) {}
 593static inline void cancel_crda_timeout_sync(void) {}
 594static inline void reset_crda_timeouts(void) {}
 595static inline int call_crda(const char *alpha2)
 596{
 597	return -ENODATA;
 598}
 599#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
 600
 601/* code to directly load a firmware database through request_firmware */
 602static const struct fwdb_header *regdb;
 603
 604struct fwdb_country {
 605	u8 alpha2[2];
 606	__be16 coll_ptr;
 607	/* this struct cannot be extended */
 608} __packed __aligned(4);
 609
 610struct fwdb_collection {
 611	u8 len;
 612	u8 n_rules;
 613	u8 dfs_region;
 614	/* no optional data yet */
 615	/* aligned to 2, then followed by __be16 array of rule pointers */
 616} __packed __aligned(4);
 617
 618enum fwdb_flags {
 619	FWDB_FLAG_NO_OFDM	= BIT(0),
 620	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
 621	FWDB_FLAG_DFS		= BIT(2),
 622	FWDB_FLAG_NO_IR		= BIT(3),
 623	FWDB_FLAG_AUTO_BW	= BIT(4),
 624};
 625
 626struct fwdb_wmm_ac {
 627	u8 ecw;
 628	u8 aifsn;
 629	__be16 cot;
 630} __packed;
 631
 632struct fwdb_wmm_rule {
 633	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
 634	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
 635} __packed;
 636
 637struct fwdb_rule {
 638	u8 len;
 639	u8 flags;
 640	__be16 max_eirp;
 641	__be32 start, end, max_bw;
 642	/* start of optional data */
 643	__be16 cac_timeout;
 644	__be16 wmm_ptr;
 645} __packed __aligned(4);
 646
 647#define FWDB_MAGIC 0x52474442
 648#define FWDB_VERSION 20
 649
 650struct fwdb_header {
 651	__be32 magic;
 652	__be32 version;
 653	struct fwdb_country country[];
 654} __packed __aligned(4);
 655
 656static int ecw2cw(int ecw)
 657{
 658	return (1 << ecw) - 1;
 659}
 660
 661static bool valid_wmm(struct fwdb_wmm_rule *rule)
 662{
 663	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
 664	int i;
 665
 666	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
 667		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
 668		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
 669		u8 aifsn = ac[i].aifsn;
 670
 671		if (cw_min >= cw_max)
 672			return false;
 673
 674		if (aifsn < 1)
 675			return false;
 676	}
 677
 678	return true;
 679}
 680
 681static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
 682{
 683	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
 684
 685	if ((u8 *)rule + sizeof(rule->len) > data + size)
 686		return false;
 687
 688	/* mandatory fields */
 689	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
 690		return false;
 691	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
 692		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 693		struct fwdb_wmm_rule *wmm;
 694
 695		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
 696			return false;
 697
 698		wmm = (void *)(data + wmm_ptr);
 699
 700		if (!valid_wmm(wmm))
 701			return false;
 702	}
 703	return true;
 704}
 705
 706static bool valid_country(const u8 *data, unsigned int size,
 707			  const struct fwdb_country *country)
 708{
 709	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 710	struct fwdb_collection *coll = (void *)(data + ptr);
 711	__be16 *rules_ptr;
 712	unsigned int i;
 713
 714	/* make sure we can read len/n_rules */
 715	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
 716		return false;
 717
 718	/* make sure base struct and all rules fit */
 719	if ((u8 *)coll + ALIGN(coll->len, 2) +
 720	    (coll->n_rules * 2) > data + size)
 721		return false;
 722
 723	/* mandatory fields must exist */
 724	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
 725		return false;
 726
 727	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 728
 729	for (i = 0; i < coll->n_rules; i++) {
 730		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
 731
 732		if (!valid_rule(data, size, rule_ptr))
 733			return false;
 734	}
 735
 736	return true;
 737}
 738
 739#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
 740static struct key *builtin_regdb_keys;
 741
 742static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
 743{
 744	const u8 *end = p + buflen;
 745	size_t plen;
 746	key_ref_t key;
 747
 748	while (p < end) {
 749		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
 750		 * than 256 bytes in size.
 751		 */
 752		if (end - p < 4)
 753			goto dodgy_cert;
 754		if (p[0] != 0x30 &&
 755		    p[1] != 0x82)
 756			goto dodgy_cert;
 757		plen = (p[2] << 8) | p[3];
 758		plen += 4;
 759		if (plen > end - p)
 760			goto dodgy_cert;
 761
 762		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
 763					   "asymmetric", NULL, p, plen,
 764					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
 765					    KEY_USR_VIEW | KEY_USR_READ),
 766					   KEY_ALLOC_NOT_IN_QUOTA |
 767					   KEY_ALLOC_BUILT_IN |
 768					   KEY_ALLOC_BYPASS_RESTRICTION);
 769		if (IS_ERR(key)) {
 770			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
 771			       PTR_ERR(key));
 772		} else {
 773			pr_notice("Loaded X.509 cert '%s'\n",
 774				  key_ref_to_ptr(key)->description);
 775			key_ref_put(key);
 776		}
 777		p += plen;
 778	}
 779
 780	return;
 781
 782dodgy_cert:
 783	pr_err("Problem parsing in-kernel X.509 certificate list\n");
 784}
 785
 786static int __init load_builtin_regdb_keys(void)
 787{
 788	builtin_regdb_keys =
 789		keyring_alloc(".builtin_regdb_keys",
 790			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
 791			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
 792			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
 793			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
 794	if (IS_ERR(builtin_regdb_keys))
 795		return PTR_ERR(builtin_regdb_keys);
 796
 797	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
 798
 799#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
 800	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
 801#endif
 802#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
 803	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
 804		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
 805#endif
 806
 807	return 0;
 808}
 809
 810MODULE_FIRMWARE("regulatory.db.p7s");
 811
 812static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 813{
 814	const struct firmware *sig;
 815	bool result;
 816
 817	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
 818		return false;
 819
 820	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
 821					builtin_regdb_keys,
 822					VERIFYING_UNSPECIFIED_SIGNATURE,
 823					NULL, NULL) == 0;
 824
 825	release_firmware(sig);
 826
 827	return result;
 828}
 829
 830static void free_regdb_keyring(void)
 831{
 832	key_put(builtin_regdb_keys);
 833}
 834#else
 835static int load_builtin_regdb_keys(void)
 836{
 837	return 0;
 838}
 839
 840static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 841{
 842	return true;
 843}
 844
 845static void free_regdb_keyring(void)
 846{
 847}
 848#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
 849
 850static bool valid_regdb(const u8 *data, unsigned int size)
 851{
 852	const struct fwdb_header *hdr = (void *)data;
 853	const struct fwdb_country *country;
 854
 855	if (size < sizeof(*hdr))
 856		return false;
 857
 858	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
 859		return false;
 860
 861	if (hdr->version != cpu_to_be32(FWDB_VERSION))
 862		return false;
 863
 864	if (!regdb_has_valid_signature(data, size))
 865		return false;
 866
 867	country = &hdr->country[0];
 868	while ((u8 *)(country + 1) <= data + size) {
 869		if (!country->coll_ptr)
 870			break;
 871		if (!valid_country(data, size, country))
 872			return false;
 873		country++;
 874	}
 875
 876	return true;
 877}
 878
 879static void set_wmm_rule(const struct fwdb_header *db,
 880			 const struct fwdb_country *country,
 881			 const struct fwdb_rule *rule,
 882			 struct ieee80211_reg_rule *rrule)
 883{
 884	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
 885	struct fwdb_wmm_rule *wmm;
 886	unsigned int i, wmm_ptr;
 887
 888	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 889	wmm = (void *)((u8 *)db + wmm_ptr);
 890
 891	if (!valid_wmm(wmm)) {
 892		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
 893		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
 894		       country->alpha2[0], country->alpha2[1]);
 895		return;
 896	}
 897
 898	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
 899		wmm_rule->client[i].cw_min =
 900			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
 901		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
 902		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
 903		wmm_rule->client[i].cot =
 904			1000 * be16_to_cpu(wmm->client[i].cot);
 905		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
 906		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
 907		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
 908		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
 909	}
 910
 911	rrule->has_wmm = true;
 912}
 913
 914static int __regdb_query_wmm(const struct fwdb_header *db,
 915			     const struct fwdb_country *country, int freq,
 916			     struct ieee80211_reg_rule *rrule)
 917{
 918	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 919	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 920	int i;
 921
 922	for (i = 0; i < coll->n_rules; i++) {
 923		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 924		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 925		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 926
 927		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
 928			continue;
 929
 930		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
 931		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
 932			set_wmm_rule(db, country, rule, rrule);
 933			return 0;
 934		}
 935	}
 936
 937	return -ENODATA;
 938}
 939
 940int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
 941{
 942	const struct fwdb_header *hdr = regdb;
 943	const struct fwdb_country *country;
 944
 945	if (!regdb)
 946		return -ENODATA;
 947
 948	if (IS_ERR(regdb))
 949		return PTR_ERR(regdb);
 950
 951	country = &hdr->country[0];
 952	while (country->coll_ptr) {
 953		if (alpha2_equal(alpha2, country->alpha2))
 954			return __regdb_query_wmm(regdb, country, freq, rule);
 955
 956		country++;
 957	}
 958
 959	return -ENODATA;
 960}
 961EXPORT_SYMBOL(reg_query_regdb_wmm);
 962
 963static int regdb_query_country(const struct fwdb_header *db,
 964			       const struct fwdb_country *country)
 965{
 966	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 967	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 968	struct ieee80211_regdomain *regdom;
 969	unsigned int i;
 970
 971	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
 972			 GFP_KERNEL);
 973	if (!regdom)
 974		return -ENOMEM;
 975
 976	regdom->n_reg_rules = coll->n_rules;
 977	regdom->alpha2[0] = country->alpha2[0];
 978	regdom->alpha2[1] = country->alpha2[1];
 979	regdom->dfs_region = coll->dfs_region;
 980
 981	for (i = 0; i < regdom->n_reg_rules; i++) {
 982		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 983		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 984		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 985		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
 986
 987		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
 988		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
 989		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
 990
 991		rrule->power_rule.max_antenna_gain = 0;
 992		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
 993
 994		rrule->flags = 0;
 995		if (rule->flags & FWDB_FLAG_NO_OFDM)
 996			rrule->flags |= NL80211_RRF_NO_OFDM;
 997		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
 998			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
 999		if (rule->flags & FWDB_FLAG_DFS)
1000			rrule->flags |= NL80211_RRF_DFS;
1001		if (rule->flags & FWDB_FLAG_NO_IR)
1002			rrule->flags |= NL80211_RRF_NO_IR;
1003		if (rule->flags & FWDB_FLAG_AUTO_BW)
1004			rrule->flags |= NL80211_RRF_AUTO_BW;
1005
1006		rrule->dfs_cac_ms = 0;
1007
1008		/* handle optional data */
1009		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1010			rrule->dfs_cac_ms =
1011				1000 * be16_to_cpu(rule->cac_timeout);
1012		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1013			set_wmm_rule(db, country, rule, rrule);
1014	}
1015
1016	return reg_schedule_apply(regdom);
1017}
1018
1019static int query_regdb(const char *alpha2)
1020{
1021	const struct fwdb_header *hdr = regdb;
1022	const struct fwdb_country *country;
1023
1024	ASSERT_RTNL();
1025
1026	if (IS_ERR(regdb))
1027		return PTR_ERR(regdb);
1028
1029	country = &hdr->country[0];
1030	while (country->coll_ptr) {
1031		if (alpha2_equal(alpha2, country->alpha2))
1032			return regdb_query_country(regdb, country);
1033		country++;
1034	}
1035
1036	return -ENODATA;
1037}
1038
1039static void regdb_fw_cb(const struct firmware *fw, void *context)
1040{
1041	int set_error = 0;
1042	bool restore = true;
1043	void *db;
1044
1045	if (!fw) {
1046		pr_info("failed to load regulatory.db\n");
1047		set_error = -ENODATA;
1048	} else if (!valid_regdb(fw->data, fw->size)) {
1049		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1050		set_error = -EINVAL;
1051	}
1052
1053	rtnl_lock();
1054	if (regdb && !IS_ERR(regdb)) {
1055		/* negative case - a bug
1056		 * positive case - can happen due to race in case of multiple cb's in
1057		 * queue, due to usage of asynchronous callback
1058		 *
1059		 * Either case, just restore and free new db.
1060		 */
1061	} else if (set_error) {
1062		regdb = ERR_PTR(set_error);
1063	} else if (fw) {
1064		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1065		if (db) {
1066			regdb = db;
1067			restore = context && query_regdb(context);
1068		} else {
1069			restore = true;
1070		}
1071	}
1072
1073	if (restore)
1074		restore_regulatory_settings(true, false);
1075
1076	rtnl_unlock();
1077
1078	kfree(context);
1079
1080	release_firmware(fw);
1081}
1082
1083MODULE_FIRMWARE("regulatory.db");
1084
1085static int query_regdb_file(const char *alpha2)
1086{
1087	int err;
1088
1089	ASSERT_RTNL();
1090
1091	if (regdb)
1092		return query_regdb(alpha2);
1093
1094	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1095	if (!alpha2)
1096		return -ENOMEM;
1097
1098	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1099				      &reg_pdev->dev, GFP_KERNEL,
1100				      (void *)alpha2, regdb_fw_cb);
1101	if (err)
1102		kfree(alpha2);
1103
1104	return err;
1105}
1106
1107int reg_reload_regdb(void)
1108{
1109	const struct firmware *fw;
1110	void *db;
1111	int err;
1112	const struct ieee80211_regdomain *current_regdomain;
1113	struct regulatory_request *request;
1114
1115	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1116	if (err)
1117		return err;
1118
1119	if (!valid_regdb(fw->data, fw->size)) {
1120		err = -ENODATA;
1121		goto out;
1122	}
1123
1124	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1125	if (!db) {
1126		err = -ENOMEM;
1127		goto out;
1128	}
1129
1130	rtnl_lock();
1131	if (!IS_ERR_OR_NULL(regdb))
1132		kfree(regdb);
1133	regdb = db;
1134
1135	/* reset regulatory domain */
1136	current_regdomain = get_cfg80211_regdom();
1137
1138	request = kzalloc(sizeof(*request), GFP_KERNEL);
1139	if (!request) {
1140		err = -ENOMEM;
1141		goto out_unlock;
1142	}
1143
1144	request->wiphy_idx = WIPHY_IDX_INVALID;
1145	request->alpha2[0] = current_regdomain->alpha2[0];
1146	request->alpha2[1] = current_regdomain->alpha2[1];
1147	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1148	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1149
1150	reg_process_hint(request);
1151
1152out_unlock:
1153	rtnl_unlock();
1154 out:
1155	release_firmware(fw);
1156	return err;
1157}
1158
1159static bool reg_query_database(struct regulatory_request *request)
1160{
1161	if (query_regdb_file(request->alpha2) == 0)
 
1162		return true;
1163
1164	if (call_crda(request->alpha2) == 0)
1165		return true;
1166
1167	return false;
1168}
1169
1170bool reg_is_valid_request(const char *alpha2)
1171{
1172	struct regulatory_request *lr = get_last_request();
1173
1174	if (!lr || lr->processed)
1175		return false;
1176
1177	return alpha2_equal(lr->alpha2, alpha2);
1178}
1179
1180static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1181{
1182	struct regulatory_request *lr = get_last_request();
1183
1184	/*
1185	 * Follow the driver's regulatory domain, if present, unless a country
1186	 * IE has been processed or a user wants to help complaince further
1187	 */
1188	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1189	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1190	    wiphy->regd)
1191		return get_wiphy_regdom(wiphy);
1192
1193	return get_cfg80211_regdom();
1194}
1195
1196static unsigned int
1197reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1198				 const struct ieee80211_reg_rule *rule)
1199{
1200	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1201	const struct ieee80211_freq_range *freq_range_tmp;
1202	const struct ieee80211_reg_rule *tmp;
1203	u32 start_freq, end_freq, idx, no;
1204
1205	for (idx = 0; idx < rd->n_reg_rules; idx++)
1206		if (rule == &rd->reg_rules[idx])
1207			break;
1208
1209	if (idx == rd->n_reg_rules)
1210		return 0;
1211
1212	/* get start_freq */
1213	no = idx;
1214
1215	while (no) {
1216		tmp = &rd->reg_rules[--no];
1217		freq_range_tmp = &tmp->freq_range;
1218
1219		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1220			break;
1221
1222		freq_range = freq_range_tmp;
1223	}
1224
1225	start_freq = freq_range->start_freq_khz;
1226
1227	/* get end_freq */
1228	freq_range = &rule->freq_range;
1229	no = idx;
1230
1231	while (no < rd->n_reg_rules - 1) {
1232		tmp = &rd->reg_rules[++no];
1233		freq_range_tmp = &tmp->freq_range;
1234
1235		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1236			break;
1237
1238		freq_range = freq_range_tmp;
1239	}
1240
1241	end_freq = freq_range->end_freq_khz;
1242
1243	return end_freq - start_freq;
1244}
1245
1246unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1247				   const struct ieee80211_reg_rule *rule)
1248{
1249	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1250
1251	if (rule->flags & NL80211_RRF_NO_320MHZ)
1252		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1253	if (rule->flags & NL80211_RRF_NO_160MHZ)
1254		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1255	if (rule->flags & NL80211_RRF_NO_80MHZ)
1256		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1257
1258	/*
1259	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1260	 * are not allowed.
1261	 */
1262	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1263	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1264		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1265
1266	return bw;
1267}
1268
1269/* Sanity check on a regulatory rule */
1270static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1271{
1272	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1273	u32 freq_diff;
1274
1275	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1276		return false;
1277
1278	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1279		return false;
1280
1281	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1282
1283	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1284	    freq_range->max_bandwidth_khz > freq_diff)
1285		return false;
1286
1287	return true;
1288}
1289
1290static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1291{
1292	const struct ieee80211_reg_rule *reg_rule = NULL;
1293	unsigned int i;
1294
1295	if (!rd->n_reg_rules)
1296		return false;
1297
1298	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1299		return false;
1300
1301	for (i = 0; i < rd->n_reg_rules; i++) {
1302		reg_rule = &rd->reg_rules[i];
1303		if (!is_valid_reg_rule(reg_rule))
1304			return false;
1305	}
1306
1307	return true;
1308}
1309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310/**
1311 * freq_in_rule_band - tells us if a frequency is in a frequency band
1312 * @freq_range: frequency rule we want to query
1313 * @freq_khz: frequency we are inquiring about
1314 *
1315 * This lets us know if a specific frequency rule is or is not relevant to
1316 * a specific frequency's band. Bands are device specific and artificial
1317 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1318 * however it is safe for now to assume that a frequency rule should not be
1319 * part of a frequency's band if the start freq or end freq are off by more
1320 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1321 * 60 GHz band.
1322 * This resolution can be lowered and should be considered as we add
1323 * regulatory rule support for other "bands".
1324 **/
1325static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1326			      u32 freq_khz)
1327{
1328#define ONE_GHZ_IN_KHZ	1000000
1329	/*
1330	 * From 802.11ad: directional multi-gigabit (DMG):
1331	 * Pertaining to operation in a frequency band containing a channel
1332	 * with the Channel starting frequency above 45 GHz.
1333	 */
1334	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1335			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1336	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1337		return true;
1338	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1339		return true;
1340	return false;
1341#undef ONE_GHZ_IN_KHZ
1342}
1343
1344/*
1345 * Later on we can perhaps use the more restrictive DFS
1346 * region but we don't have information for that yet so
1347 * for now simply disallow conflicts.
1348 */
1349static enum nl80211_dfs_regions
1350reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1351			 const enum nl80211_dfs_regions dfs_region2)
1352{
1353	if (dfs_region1 != dfs_region2)
1354		return NL80211_DFS_UNSET;
1355	return dfs_region1;
1356}
1357
1358static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1359				    const struct ieee80211_wmm_ac *wmm_ac2,
1360				    struct ieee80211_wmm_ac *intersect)
1361{
1362	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1363	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1364	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1365	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1366}
1367
1368/*
1369 * Helper for regdom_intersect(), this does the real
1370 * mathematical intersection fun
1371 */
1372static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1373			       const struct ieee80211_regdomain *rd2,
1374			       const struct ieee80211_reg_rule *rule1,
1375			       const struct ieee80211_reg_rule *rule2,
1376			       struct ieee80211_reg_rule *intersected_rule)
1377{
1378	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1379	struct ieee80211_freq_range *freq_range;
1380	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1381	struct ieee80211_power_rule *power_rule;
1382	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1383	struct ieee80211_wmm_rule *wmm_rule;
1384	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1385
1386	freq_range1 = &rule1->freq_range;
1387	freq_range2 = &rule2->freq_range;
1388	freq_range = &intersected_rule->freq_range;
1389
1390	power_rule1 = &rule1->power_rule;
1391	power_rule2 = &rule2->power_rule;
1392	power_rule = &intersected_rule->power_rule;
1393
1394	wmm_rule1 = &rule1->wmm_rule;
1395	wmm_rule2 = &rule2->wmm_rule;
1396	wmm_rule = &intersected_rule->wmm_rule;
1397
1398	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1399					 freq_range2->start_freq_khz);
1400	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1401				       freq_range2->end_freq_khz);
1402
1403	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1404	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1405
1406	if (rule1->flags & NL80211_RRF_AUTO_BW)
1407		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1408	if (rule2->flags & NL80211_RRF_AUTO_BW)
1409		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1410
1411	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1412
1413	intersected_rule->flags = rule1->flags | rule2->flags;
1414
1415	/*
1416	 * In case NL80211_RRF_AUTO_BW requested for both rules
1417	 * set AUTO_BW in intersected rule also. Next we will
1418	 * calculate BW correctly in handle_channel function.
1419	 * In other case remove AUTO_BW flag while we calculate
1420	 * maximum bandwidth correctly and auto calculation is
1421	 * not required.
1422	 */
1423	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1424	    (rule2->flags & NL80211_RRF_AUTO_BW))
1425		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1426	else
1427		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1428
1429	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1430	if (freq_range->max_bandwidth_khz > freq_diff)
1431		freq_range->max_bandwidth_khz = freq_diff;
1432
1433	power_rule->max_eirp = min(power_rule1->max_eirp,
1434		power_rule2->max_eirp);
1435	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1436		power_rule2->max_antenna_gain);
1437
1438	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1439					   rule2->dfs_cac_ms);
1440
1441	if (rule1->has_wmm && rule2->has_wmm) {
1442		u8 ac;
1443
1444		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1445			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1446						&wmm_rule2->client[ac],
1447						&wmm_rule->client[ac]);
1448			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1449						&wmm_rule2->ap[ac],
1450						&wmm_rule->ap[ac]);
1451		}
1452
1453		intersected_rule->has_wmm = true;
1454	} else if (rule1->has_wmm) {
1455		*wmm_rule = *wmm_rule1;
1456		intersected_rule->has_wmm = true;
1457	} else if (rule2->has_wmm) {
1458		*wmm_rule = *wmm_rule2;
1459		intersected_rule->has_wmm = true;
1460	} else {
1461		intersected_rule->has_wmm = false;
1462	}
1463
1464	if (!is_valid_reg_rule(intersected_rule))
1465		return -EINVAL;
1466
1467	return 0;
1468}
1469
1470/* check whether old rule contains new rule */
1471static bool rule_contains(struct ieee80211_reg_rule *r1,
1472			  struct ieee80211_reg_rule *r2)
1473{
1474	/* for simplicity, currently consider only same flags */
1475	if (r1->flags != r2->flags)
1476		return false;
1477
1478	/* verify r1 is more restrictive */
1479	if ((r1->power_rule.max_antenna_gain >
1480	     r2->power_rule.max_antenna_gain) ||
1481	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1482		return false;
1483
1484	/* make sure r2's range is contained within r1 */
1485	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1486	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1487		return false;
1488
1489	/* and finally verify that r1.max_bw >= r2.max_bw */
1490	if (r1->freq_range.max_bandwidth_khz <
1491	    r2->freq_range.max_bandwidth_khz)
1492		return false;
1493
1494	return true;
1495}
1496
1497/* add or extend current rules. do nothing if rule is already contained */
1498static void add_rule(struct ieee80211_reg_rule *rule,
1499		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1500{
1501	struct ieee80211_reg_rule *tmp_rule;
1502	int i;
1503
1504	for (i = 0; i < *n_rules; i++) {
1505		tmp_rule = &reg_rules[i];
1506		/* rule is already contained - do nothing */
1507		if (rule_contains(tmp_rule, rule))
1508			return;
1509
1510		/* extend rule if possible */
1511		if (rule_contains(rule, tmp_rule)) {
1512			memcpy(tmp_rule, rule, sizeof(*rule));
1513			return;
1514		}
1515	}
1516
1517	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1518	(*n_rules)++;
1519}
1520
1521/**
1522 * regdom_intersect - do the intersection between two regulatory domains
1523 * @rd1: first regulatory domain
1524 * @rd2: second regulatory domain
1525 *
1526 * Use this function to get the intersection between two regulatory domains.
1527 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1528 * as no one single alpha2 can represent this regulatory domain.
1529 *
1530 * Returns a pointer to the regulatory domain structure which will hold the
1531 * resulting intersection of rules between rd1 and rd2. We will
1532 * kzalloc() this structure for you.
1533 */
1534static struct ieee80211_regdomain *
1535regdom_intersect(const struct ieee80211_regdomain *rd1,
1536		 const struct ieee80211_regdomain *rd2)
1537{
1538	int r;
1539	unsigned int x, y;
1540	unsigned int num_rules = 0;
1541	const struct ieee80211_reg_rule *rule1, *rule2;
1542	struct ieee80211_reg_rule intersected_rule;
1543	struct ieee80211_regdomain *rd;
1544
1545	if (!rd1 || !rd2)
1546		return NULL;
1547
1548	/*
1549	 * First we get a count of the rules we'll need, then we actually
1550	 * build them. This is to so we can malloc() and free() a
1551	 * regdomain once. The reason we use reg_rules_intersect() here
1552	 * is it will return -EINVAL if the rule computed makes no sense.
1553	 * All rules that do check out OK are valid.
1554	 */
1555
1556	for (x = 0; x < rd1->n_reg_rules; x++) {
1557		rule1 = &rd1->reg_rules[x];
1558		for (y = 0; y < rd2->n_reg_rules; y++) {
1559			rule2 = &rd2->reg_rules[y];
1560			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1561						 &intersected_rule))
1562				num_rules++;
1563		}
1564	}
1565
1566	if (!num_rules)
1567		return NULL;
1568
1569	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
 
 
 
1570	if (!rd)
1571		return NULL;
1572
1573	for (x = 0; x < rd1->n_reg_rules; x++) {
1574		rule1 = &rd1->reg_rules[x];
1575		for (y = 0; y < rd2->n_reg_rules; y++) {
1576			rule2 = &rd2->reg_rules[y];
1577			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1578						&intersected_rule);
1579			/*
1580			 * No need to memset here the intersected rule here as
1581			 * we're not using the stack anymore
1582			 */
1583			if (r)
1584				continue;
1585
1586			add_rule(&intersected_rule, rd->reg_rules,
1587				 &rd->n_reg_rules);
1588		}
1589	}
1590
1591	rd->alpha2[0] = '9';
1592	rd->alpha2[1] = '8';
1593	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1594						  rd2->dfs_region);
1595
1596	return rd;
1597}
1598
1599/*
1600 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1601 * want to just have the channel structure use these
1602 */
1603static u32 map_regdom_flags(u32 rd_flags)
1604{
1605	u32 channel_flags = 0;
1606	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1607		channel_flags |= IEEE80211_CHAN_NO_IR;
1608	if (rd_flags & NL80211_RRF_DFS)
1609		channel_flags |= IEEE80211_CHAN_RADAR;
1610	if (rd_flags & NL80211_RRF_NO_OFDM)
1611		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1612	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1613		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1614	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1615		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1616	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1617		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1618	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1619		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1620	if (rd_flags & NL80211_RRF_NO_80MHZ)
1621		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1622	if (rd_flags & NL80211_RRF_NO_160MHZ)
1623		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1624	if (rd_flags & NL80211_RRF_NO_HE)
1625		channel_flags |= IEEE80211_CHAN_NO_HE;
1626	if (rd_flags & NL80211_RRF_NO_320MHZ)
1627		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1628	return channel_flags;
1629}
1630
1631static const struct ieee80211_reg_rule *
1632freq_reg_info_regd(u32 center_freq,
1633		   const struct ieee80211_regdomain *regd, u32 bw)
1634{
1635	int i;
1636	bool band_rule_found = false;
1637	bool bw_fits = false;
1638
1639	if (!regd)
1640		return ERR_PTR(-EINVAL);
1641
1642	for (i = 0; i < regd->n_reg_rules; i++) {
1643		const struct ieee80211_reg_rule *rr;
1644		const struct ieee80211_freq_range *fr = NULL;
1645
1646		rr = &regd->reg_rules[i];
1647		fr = &rr->freq_range;
1648
1649		/*
1650		 * We only need to know if one frequency rule was
1651		 * in center_freq's band, that's enough, so let's
1652		 * not overwrite it once found
1653		 */
1654		if (!band_rule_found)
1655			band_rule_found = freq_in_rule_band(fr, center_freq);
1656
1657		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1658
1659		if (band_rule_found && bw_fits)
1660			return rr;
1661	}
1662
1663	if (!band_rule_found)
1664		return ERR_PTR(-ERANGE);
1665
1666	return ERR_PTR(-EINVAL);
1667}
1668
1669static const struct ieee80211_reg_rule *
1670__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1671{
1672	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1673	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1674	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1675	int i = ARRAY_SIZE(bws) - 1;
1676	u32 bw;
1677
1678	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1679		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1680		if (!IS_ERR(reg_rule))
1681			return reg_rule;
1682	}
1683
1684	return reg_rule;
1685}
1686
1687const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1688					       u32 center_freq)
1689{
1690	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1691
1692	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1693}
1694EXPORT_SYMBOL(freq_reg_info);
1695
1696const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1697{
1698	switch (initiator) {
1699	case NL80211_REGDOM_SET_BY_CORE:
1700		return "core";
1701	case NL80211_REGDOM_SET_BY_USER:
1702		return "user";
1703	case NL80211_REGDOM_SET_BY_DRIVER:
1704		return "driver";
1705	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1706		return "country element";
1707	default:
1708		WARN_ON(1);
1709		return "bug";
1710	}
1711}
1712EXPORT_SYMBOL(reg_initiator_name);
1713
1714static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1715					  const struct ieee80211_reg_rule *reg_rule,
1716					  const struct ieee80211_channel *chan)
1717{
1718	const struct ieee80211_freq_range *freq_range = NULL;
1719	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1720	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1721
1722	freq_range = &reg_rule->freq_range;
1723
1724	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1725	center_freq_khz = ieee80211_channel_to_khz(chan);
1726	/* Check if auto calculation requested */
1727	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1728		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1729
1730	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1731	if (!cfg80211_does_bw_fit_range(freq_range,
1732					center_freq_khz,
1733					MHZ_TO_KHZ(10)))
1734		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1735	if (!cfg80211_does_bw_fit_range(freq_range,
1736					center_freq_khz,
1737					MHZ_TO_KHZ(20)))
1738		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1739
1740	if (is_s1g) {
1741		/* S1G is strict about non overlapping channels. We can
1742		 * calculate which bandwidth is allowed per channel by finding
1743		 * the largest bandwidth which cleanly divides the freq_range.
1744		 */
1745		int edge_offset;
1746		int ch_bw = max_bandwidth_khz;
1747
1748		while (ch_bw) {
1749			edge_offset = (center_freq_khz - ch_bw / 2) -
1750				      freq_range->start_freq_khz;
1751			if (edge_offset % ch_bw == 0) {
1752				switch (KHZ_TO_MHZ(ch_bw)) {
1753				case 1:
1754					bw_flags |= IEEE80211_CHAN_1MHZ;
1755					break;
1756				case 2:
1757					bw_flags |= IEEE80211_CHAN_2MHZ;
1758					break;
1759				case 4:
1760					bw_flags |= IEEE80211_CHAN_4MHZ;
1761					break;
1762				case 8:
1763					bw_flags |= IEEE80211_CHAN_8MHZ;
1764					break;
1765				case 16:
1766					bw_flags |= IEEE80211_CHAN_16MHZ;
1767					break;
1768				default:
1769					/* If we got here, no bandwidths fit on
1770					 * this frequency, ie. band edge.
1771					 */
1772					bw_flags |= IEEE80211_CHAN_DISABLED;
1773					break;
1774				}
1775				break;
1776			}
1777			ch_bw /= 2;
1778		}
1779	} else {
1780		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1781			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1782		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1783			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1784		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1785			bw_flags |= IEEE80211_CHAN_NO_HT40;
1786		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1787			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1788		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1789			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1790		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1791			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1792	}
1793	return bw_flags;
1794}
1795
1796static void handle_channel_single_rule(struct wiphy *wiphy,
1797				       enum nl80211_reg_initiator initiator,
1798				       struct ieee80211_channel *chan,
1799				       u32 flags,
1800				       struct regulatory_request *lr,
1801				       struct wiphy *request_wiphy,
1802				       const struct ieee80211_reg_rule *reg_rule)
 
1803{
1804	u32 bw_flags = 0;
 
1805	const struct ieee80211_power_rule *power_rule = NULL;
 
 
1806	const struct ieee80211_regdomain *regd;
1807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808	regd = reg_get_regdomain(wiphy);
1809
1810	power_rule = &reg_rule->power_rule;
1811	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1812
1813	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1814	    request_wiphy && request_wiphy == wiphy &&
1815	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1816		/*
1817		 * This guarantees the driver's requested regulatory domain
1818		 * will always be used as a base for further regulatory
1819		 * settings
1820		 */
1821		chan->flags = chan->orig_flags =
1822			map_regdom_flags(reg_rule->flags) | bw_flags;
1823		chan->max_antenna_gain = chan->orig_mag =
1824			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1825		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1826			(int) MBM_TO_DBM(power_rule->max_eirp);
1827
1828		if (chan->flags & IEEE80211_CHAN_RADAR) {
1829			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1830			if (reg_rule->dfs_cac_ms)
1831				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1832		}
1833
1834		return;
1835	}
1836
1837	chan->dfs_state = NL80211_DFS_USABLE;
1838	chan->dfs_state_entered = jiffies;
1839
1840	chan->beacon_found = false;
1841	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1842	chan->max_antenna_gain =
1843		min_t(int, chan->orig_mag,
1844		      MBI_TO_DBI(power_rule->max_antenna_gain));
1845	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1846
1847	if (chan->flags & IEEE80211_CHAN_RADAR) {
1848		if (reg_rule->dfs_cac_ms)
1849			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1850		else
1851			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1852	}
1853
1854	if (chan->orig_mpwr) {
1855		/*
1856		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1857		 * will always follow the passed country IE power settings.
1858		 */
1859		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1860		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1861			chan->max_power = chan->max_reg_power;
1862		else
1863			chan->max_power = min(chan->orig_mpwr,
1864					      chan->max_reg_power);
1865	} else
1866		chan->max_power = chan->max_reg_power;
1867}
1868
1869static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1870					  enum nl80211_reg_initiator initiator,
1871					  struct ieee80211_channel *chan,
1872					  u32 flags,
1873					  struct regulatory_request *lr,
1874					  struct wiphy *request_wiphy,
1875					  const struct ieee80211_reg_rule *rrule1,
1876					  const struct ieee80211_reg_rule *rrule2,
1877					  struct ieee80211_freq_range *comb_range)
1878{
1879	u32 bw_flags1 = 0;
1880	u32 bw_flags2 = 0;
1881	const struct ieee80211_power_rule *power_rule1 = NULL;
1882	const struct ieee80211_power_rule *power_rule2 = NULL;
1883	const struct ieee80211_regdomain *regd;
1884
1885	regd = reg_get_regdomain(wiphy);
1886
1887	power_rule1 = &rrule1->power_rule;
1888	power_rule2 = &rrule2->power_rule;
1889	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1890	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1891
1892	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1893	    request_wiphy && request_wiphy == wiphy &&
1894	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1895		/* This guarantees the driver's requested regulatory domain
1896		 * will always be used as a base for further regulatory
1897		 * settings
1898		 */
1899		chan->flags =
1900			map_regdom_flags(rrule1->flags) |
1901			map_regdom_flags(rrule2->flags) |
1902			bw_flags1 |
1903			bw_flags2;
1904		chan->orig_flags = chan->flags;
1905		chan->max_antenna_gain =
1906			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1907			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1908		chan->orig_mag = chan->max_antenna_gain;
1909		chan->max_reg_power =
1910			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1911			      MBM_TO_DBM(power_rule2->max_eirp));
1912		chan->max_power = chan->max_reg_power;
1913		chan->orig_mpwr = chan->max_reg_power;
1914
1915		if (chan->flags & IEEE80211_CHAN_RADAR) {
1916			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1917			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1918				chan->dfs_cac_ms = max_t(unsigned int,
1919							 rrule1->dfs_cac_ms,
1920							 rrule2->dfs_cac_ms);
1921		}
1922
1923		return;
1924	}
1925
1926	chan->dfs_state = NL80211_DFS_USABLE;
1927	chan->dfs_state_entered = jiffies;
1928
1929	chan->beacon_found = false;
1930	chan->flags = flags | bw_flags1 | bw_flags2 |
1931		      map_regdom_flags(rrule1->flags) |
1932		      map_regdom_flags(rrule2->flags);
1933
1934	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1935	 * (otherwise no adj. rule case), recheck therefore
1936	 */
1937	if (cfg80211_does_bw_fit_range(comb_range,
1938				       ieee80211_channel_to_khz(chan),
1939				       MHZ_TO_KHZ(10)))
1940		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1941	if (cfg80211_does_bw_fit_range(comb_range,
1942				       ieee80211_channel_to_khz(chan),
1943				       MHZ_TO_KHZ(20)))
1944		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1945
1946	chan->max_antenna_gain =
1947		min_t(int, chan->orig_mag,
1948		      min_t(int,
1949			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1950			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1951	chan->max_reg_power = min_t(int,
1952				    MBM_TO_DBM(power_rule1->max_eirp),
1953				    MBM_TO_DBM(power_rule2->max_eirp));
1954
1955	if (chan->flags & IEEE80211_CHAN_RADAR) {
1956		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1957			chan->dfs_cac_ms = max_t(unsigned int,
1958						 rrule1->dfs_cac_ms,
1959						 rrule2->dfs_cac_ms);
1960		else
1961			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1962	}
1963
1964	if (chan->orig_mpwr) {
1965		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1966		 * will always follow the passed country IE power settings.
1967		 */
1968		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1969		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1970			chan->max_power = chan->max_reg_power;
1971		else
1972			chan->max_power = min(chan->orig_mpwr,
1973					      chan->max_reg_power);
1974	} else {
1975		chan->max_power = chan->max_reg_power;
1976	}
1977}
1978
1979/* Note that right now we assume the desired channel bandwidth
1980 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1981 * per channel, the primary and the extension channel).
1982 */
1983static void handle_channel(struct wiphy *wiphy,
1984			   enum nl80211_reg_initiator initiator,
1985			   struct ieee80211_channel *chan)
1986{
1987	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1988	struct regulatory_request *lr = get_last_request();
1989	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1990	const struct ieee80211_reg_rule *rrule = NULL;
1991	const struct ieee80211_reg_rule *rrule1 = NULL;
1992	const struct ieee80211_reg_rule *rrule2 = NULL;
1993
1994	u32 flags = chan->orig_flags;
1995
1996	rrule = freq_reg_info(wiphy, orig_chan_freq);
1997	if (IS_ERR(rrule)) {
1998		/* check for adjacent match, therefore get rules for
1999		 * chan - 20 MHz and chan + 20 MHz and test
2000		 * if reg rules are adjacent
2001		 */
2002		rrule1 = freq_reg_info(wiphy,
2003				       orig_chan_freq - MHZ_TO_KHZ(20));
2004		rrule2 = freq_reg_info(wiphy,
2005				       orig_chan_freq + MHZ_TO_KHZ(20));
2006		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
2007			struct ieee80211_freq_range comb_range;
2008
2009			if (rrule1->freq_range.end_freq_khz !=
2010			    rrule2->freq_range.start_freq_khz)
2011				goto disable_chan;
2012
2013			comb_range.start_freq_khz =
2014				rrule1->freq_range.start_freq_khz;
2015			comb_range.end_freq_khz =
2016				rrule2->freq_range.end_freq_khz;
2017			comb_range.max_bandwidth_khz =
2018				min_t(u32,
2019				      rrule1->freq_range.max_bandwidth_khz,
2020				      rrule2->freq_range.max_bandwidth_khz);
2021
2022			if (!cfg80211_does_bw_fit_range(&comb_range,
2023							orig_chan_freq,
2024							MHZ_TO_KHZ(20)))
2025				goto disable_chan;
2026
2027			handle_channel_adjacent_rules(wiphy, initiator, chan,
2028						      flags, lr, request_wiphy,
2029						      rrule1, rrule2,
2030						      &comb_range);
2031			return;
2032		}
2033
2034disable_chan:
2035		/* We will disable all channels that do not match our
2036		 * received regulatory rule unless the hint is coming
2037		 * from a Country IE and the Country IE had no information
2038		 * about a band. The IEEE 802.11 spec allows for an AP
2039		 * to send only a subset of the regulatory rules allowed,
2040		 * so an AP in the US that only supports 2.4 GHz may only send
2041		 * a country IE with information for the 2.4 GHz band
2042		 * while 5 GHz is still supported.
2043		 */
2044		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2045		    PTR_ERR(rrule) == -ERANGE)
2046			return;
2047
2048		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2049		    request_wiphy && request_wiphy == wiphy &&
2050		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2051			pr_debug("Disabling freq %d.%03d MHz for good\n",
2052				 chan->center_freq, chan->freq_offset);
2053			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2054			chan->flags = chan->orig_flags;
2055		} else {
2056			pr_debug("Disabling freq %d.%03d MHz\n",
2057				 chan->center_freq, chan->freq_offset);
2058			chan->flags |= IEEE80211_CHAN_DISABLED;
2059		}
2060		return;
2061	}
2062
2063	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2064				   request_wiphy, rrule);
2065}
2066
2067static void handle_band(struct wiphy *wiphy,
2068			enum nl80211_reg_initiator initiator,
2069			struct ieee80211_supported_band *sband)
2070{
2071	unsigned int i;
2072
2073	if (!sband)
2074		return;
2075
2076	for (i = 0; i < sband->n_channels; i++)
2077		handle_channel(wiphy, initiator, &sband->channels[i]);
2078}
2079
2080static bool reg_request_cell_base(struct regulatory_request *request)
2081{
2082	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2083		return false;
2084	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2085}
2086
2087bool reg_last_request_cell_base(void)
2088{
2089	return reg_request_cell_base(get_last_request());
2090}
2091
2092#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2093/* Core specific check */
2094static enum reg_request_treatment
2095reg_ignore_cell_hint(struct regulatory_request *pending_request)
2096{
2097	struct regulatory_request *lr = get_last_request();
2098
2099	if (!reg_num_devs_support_basehint)
2100		return REG_REQ_IGNORE;
2101
2102	if (reg_request_cell_base(lr) &&
2103	    !regdom_changes(pending_request->alpha2))
2104		return REG_REQ_ALREADY_SET;
2105
2106	return REG_REQ_OK;
2107}
2108
2109/* Device specific check */
2110static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2111{
2112	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2113}
2114#else
2115static enum reg_request_treatment
2116reg_ignore_cell_hint(struct regulatory_request *pending_request)
2117{
2118	return REG_REQ_IGNORE;
2119}
2120
2121static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2122{
2123	return true;
2124}
2125#endif
2126
2127static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2128{
2129	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2130	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2131		return true;
2132	return false;
2133}
2134
2135static bool ignore_reg_update(struct wiphy *wiphy,
2136			      enum nl80211_reg_initiator initiator)
2137{
2138	struct regulatory_request *lr = get_last_request();
2139
2140	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2141		return true;
2142
2143	if (!lr) {
2144		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2145			 reg_initiator_name(initiator));
2146		return true;
2147	}
2148
2149	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2150	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2151		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2152			 reg_initiator_name(initiator));
2153		return true;
2154	}
2155
2156	/*
2157	 * wiphy->regd will be set once the device has its own
2158	 * desired regulatory domain set
2159	 */
2160	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2161	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2162	    !is_world_regdom(lr->alpha2)) {
2163		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2164			 reg_initiator_name(initiator));
2165		return true;
2166	}
2167
2168	if (reg_request_cell_base(lr))
2169		return reg_dev_ignore_cell_hint(wiphy);
2170
2171	return false;
2172}
2173
2174static bool reg_is_world_roaming(struct wiphy *wiphy)
2175{
2176	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2177	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2178	struct regulatory_request *lr = get_last_request();
2179
2180	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2181		return true;
2182
2183	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2184	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2185		return true;
2186
2187	return false;
2188}
2189
2190static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2191			      struct reg_beacon *reg_beacon)
2192{
2193	struct ieee80211_supported_band *sband;
2194	struct ieee80211_channel *chan;
2195	bool channel_changed = false;
2196	struct ieee80211_channel chan_before;
2197
2198	sband = wiphy->bands[reg_beacon->chan.band];
2199	chan = &sband->channels[chan_idx];
2200
2201	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2202		return;
2203
2204	if (chan->beacon_found)
2205		return;
2206
2207	chan->beacon_found = true;
2208
2209	if (!reg_is_world_roaming(wiphy))
2210		return;
2211
2212	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2213		return;
2214
2215	chan_before = *chan;
 
2216
2217	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2218		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2219		channel_changed = true;
2220	}
2221
2222	if (channel_changed)
2223		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2224}
2225
2226/*
2227 * Called when a scan on a wiphy finds a beacon on
2228 * new channel
2229 */
2230static void wiphy_update_new_beacon(struct wiphy *wiphy,
2231				    struct reg_beacon *reg_beacon)
2232{
2233	unsigned int i;
2234	struct ieee80211_supported_band *sband;
2235
2236	if (!wiphy->bands[reg_beacon->chan.band])
2237		return;
2238
2239	sband = wiphy->bands[reg_beacon->chan.band];
2240
2241	for (i = 0; i < sband->n_channels; i++)
2242		handle_reg_beacon(wiphy, i, reg_beacon);
2243}
2244
2245/*
2246 * Called upon reg changes or a new wiphy is added
2247 */
2248static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2249{
2250	unsigned int i;
2251	struct ieee80211_supported_band *sband;
2252	struct reg_beacon *reg_beacon;
2253
2254	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2255		if (!wiphy->bands[reg_beacon->chan.band])
2256			continue;
2257		sband = wiphy->bands[reg_beacon->chan.band];
2258		for (i = 0; i < sband->n_channels; i++)
2259			handle_reg_beacon(wiphy, i, reg_beacon);
2260	}
2261}
2262
2263/* Reap the advantages of previously found beacons */
2264static void reg_process_beacons(struct wiphy *wiphy)
2265{
2266	/*
2267	 * Means we are just firing up cfg80211, so no beacons would
2268	 * have been processed yet.
2269	 */
2270	if (!last_request)
2271		return;
2272	wiphy_update_beacon_reg(wiphy);
2273}
2274
2275static bool is_ht40_allowed(struct ieee80211_channel *chan)
2276{
2277	if (!chan)
2278		return false;
2279	if (chan->flags & IEEE80211_CHAN_DISABLED)
2280		return false;
2281	/* This would happen when regulatory rules disallow HT40 completely */
2282	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2283		return false;
2284	return true;
2285}
2286
2287static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2288					 struct ieee80211_channel *channel)
2289{
2290	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2291	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2292	const struct ieee80211_regdomain *regd;
2293	unsigned int i;
2294	u32 flags;
2295
2296	if (!is_ht40_allowed(channel)) {
2297		channel->flags |= IEEE80211_CHAN_NO_HT40;
2298		return;
2299	}
2300
2301	/*
2302	 * We need to ensure the extension channels exist to
2303	 * be able to use HT40- or HT40+, this finds them (or not)
2304	 */
2305	for (i = 0; i < sband->n_channels; i++) {
2306		struct ieee80211_channel *c = &sband->channels[i];
2307
2308		if (c->center_freq == (channel->center_freq - 20))
2309			channel_before = c;
2310		if (c->center_freq == (channel->center_freq + 20))
2311			channel_after = c;
2312	}
2313
2314	flags = 0;
2315	regd = get_wiphy_regdom(wiphy);
2316	if (regd) {
2317		const struct ieee80211_reg_rule *reg_rule =
2318			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2319					   regd, MHZ_TO_KHZ(20));
2320
2321		if (!IS_ERR(reg_rule))
2322			flags = reg_rule->flags;
2323	}
2324
2325	/*
2326	 * Please note that this assumes target bandwidth is 20 MHz,
2327	 * if that ever changes we also need to change the below logic
2328	 * to include that as well.
2329	 */
2330	if (!is_ht40_allowed(channel_before) ||
2331	    flags & NL80211_RRF_NO_HT40MINUS)
2332		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2333	else
2334		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2335
2336	if (!is_ht40_allowed(channel_after) ||
2337	    flags & NL80211_RRF_NO_HT40PLUS)
2338		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2339	else
2340		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2341}
2342
2343static void reg_process_ht_flags_band(struct wiphy *wiphy,
2344				      struct ieee80211_supported_band *sband)
2345{
2346	unsigned int i;
2347
2348	if (!sband)
2349		return;
2350
2351	for (i = 0; i < sband->n_channels; i++)
2352		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2353}
2354
2355static void reg_process_ht_flags(struct wiphy *wiphy)
2356{
2357	enum nl80211_band band;
2358
2359	if (!wiphy)
2360		return;
2361
2362	for (band = 0; band < NUM_NL80211_BANDS; band++)
2363		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2364}
2365
2366static void reg_call_notifier(struct wiphy *wiphy,
2367			      struct regulatory_request *request)
2368{
2369	if (wiphy->reg_notifier)
2370		wiphy->reg_notifier(wiphy, request);
2371}
2372
2373static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2374{
2375	struct cfg80211_chan_def chandef = {};
2376	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2377	enum nl80211_iftype iftype;
2378	bool ret;
2379	int link;
2380
2381	wdev_lock(wdev);
2382	iftype = wdev->iftype;
2383
2384	/* make sure the interface is active */
2385	if (!wdev->netdev || !netif_running(wdev->netdev))
2386		goto wdev_inactive_unlock;
2387
2388	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2389		struct ieee80211_channel *chan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2390
2391		if (!wdev->valid_links && link > 0)
2392			break;
2393		if (!(wdev->valid_links & BIT(link)))
2394			continue;
2395		switch (iftype) {
2396		case NL80211_IFTYPE_AP:
2397		case NL80211_IFTYPE_P2P_GO:
2398			if (!wdev->links[link].ap.beacon_interval)
2399				continue;
2400			chandef = wdev->links[link].ap.chandef;
2401			break;
2402		case NL80211_IFTYPE_MESH_POINT:
2403			if (!wdev->u.mesh.beacon_interval)
2404				continue;
2405			chandef = wdev->u.mesh.chandef;
2406			break;
2407		case NL80211_IFTYPE_ADHOC:
2408			if (!wdev->u.ibss.ssid_len)
2409				continue;
2410			chandef = wdev->u.ibss.chandef;
2411			break;
2412		case NL80211_IFTYPE_STATION:
2413		case NL80211_IFTYPE_P2P_CLIENT:
2414			/* Maybe we could consider disabling that link only? */
2415			if (!wdev->links[link].client.current_bss)
2416				continue;
2417
2418			chan = wdev->links[link].client.current_bss->pub.channel;
2419			if (!chan)
2420				continue;
2421
2422			if (!rdev->ops->get_channel ||
2423			    rdev_get_channel(rdev, wdev, link, &chandef))
2424				cfg80211_chandef_create(&chandef, chan,
2425							NL80211_CHAN_NO_HT);
2426			break;
2427		case NL80211_IFTYPE_MONITOR:
2428		case NL80211_IFTYPE_AP_VLAN:
2429		case NL80211_IFTYPE_P2P_DEVICE:
2430			/* no enforcement required */
2431			break;
2432		default:
2433			/* others not implemented for now */
2434			WARN_ON(1);
2435			break;
2436		}
2437
2438		wdev_unlock(wdev);
2439
2440		switch (iftype) {
2441		case NL80211_IFTYPE_AP:
2442		case NL80211_IFTYPE_P2P_GO:
2443		case NL80211_IFTYPE_ADHOC:
2444		case NL80211_IFTYPE_MESH_POINT:
2445			wiphy_lock(wiphy);
2446			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2447							    iftype);
2448			wiphy_unlock(wiphy);
2449
2450			if (!ret)
2451				return ret;
2452			break;
2453		case NL80211_IFTYPE_STATION:
2454		case NL80211_IFTYPE_P2P_CLIENT:
2455			ret = cfg80211_chandef_usable(wiphy, &chandef,
2456						      IEEE80211_CHAN_DISABLED);
2457			if (!ret)
2458				return ret;
2459			break;
2460		default:
2461			break;
2462		}
2463
2464		wdev_lock(wdev);
2465	}
2466
2467	wdev_unlock(wdev);
2468
2469	return true;
2470
2471wdev_inactive_unlock:
2472	wdev_unlock(wdev);
2473	return true;
2474}
2475
2476static void reg_leave_invalid_chans(struct wiphy *wiphy)
2477{
2478	struct wireless_dev *wdev;
2479	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2480
2481	ASSERT_RTNL();
2482
2483	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2484		if (!reg_wdev_chan_valid(wiphy, wdev))
2485			cfg80211_leave(rdev, wdev);
2486}
2487
2488static void reg_check_chans_work(struct work_struct *work)
2489{
2490	struct cfg80211_registered_device *rdev;
2491
2492	pr_debug("Verifying active interfaces after reg change\n");
2493	rtnl_lock();
2494
2495	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2496		if (!(rdev->wiphy.regulatory_flags &
2497		      REGULATORY_IGNORE_STALE_KICKOFF))
2498			reg_leave_invalid_chans(&rdev->wiphy);
2499
2500	rtnl_unlock();
2501}
2502
2503static void reg_check_channels(void)
2504{
2505	/*
2506	 * Give usermode a chance to do something nicer (move to another
2507	 * channel, orderly disconnection), before forcing a disconnection.
2508	 */
2509	mod_delayed_work(system_power_efficient_wq,
2510			 &reg_check_chans,
2511			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2512}
2513
2514static void wiphy_update_regulatory(struct wiphy *wiphy,
2515				    enum nl80211_reg_initiator initiator)
2516{
2517	enum nl80211_band band;
2518	struct regulatory_request *lr = get_last_request();
2519
2520	if (ignore_reg_update(wiphy, initiator)) {
2521		/*
2522		 * Regulatory updates set by CORE are ignored for custom
2523		 * regulatory cards. Let us notify the changes to the driver,
2524		 * as some drivers used this to restore its orig_* reg domain.
2525		 */
2526		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2527		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2528		    !(wiphy->regulatory_flags &
2529		      REGULATORY_WIPHY_SELF_MANAGED))
2530			reg_call_notifier(wiphy, lr);
2531		return;
2532	}
2533
2534	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2535
2536	for (band = 0; band < NUM_NL80211_BANDS; band++)
2537		handle_band(wiphy, initiator, wiphy->bands[band]);
2538
2539	reg_process_beacons(wiphy);
2540	reg_process_ht_flags(wiphy);
2541	reg_call_notifier(wiphy, lr);
2542}
2543
2544static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2545{
2546	struct cfg80211_registered_device *rdev;
2547	struct wiphy *wiphy;
2548
2549	ASSERT_RTNL();
2550
2551	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2552		wiphy = &rdev->wiphy;
2553		wiphy_update_regulatory(wiphy, initiator);
2554	}
2555
2556	reg_check_channels();
2557}
2558
2559static void handle_channel_custom(struct wiphy *wiphy,
2560				  struct ieee80211_channel *chan,
2561				  const struct ieee80211_regdomain *regd,
2562				  u32 min_bw)
2563{
2564	u32 bw_flags = 0;
2565	const struct ieee80211_reg_rule *reg_rule = NULL;
2566	const struct ieee80211_power_rule *power_rule = NULL;
2567	u32 bw, center_freq_khz;
2568
2569	center_freq_khz = ieee80211_channel_to_khz(chan);
2570	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2571		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2572		if (!IS_ERR(reg_rule))
2573			break;
2574	}
2575
2576	if (IS_ERR_OR_NULL(reg_rule)) {
2577		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2578			 chan->center_freq, chan->freq_offset);
2579		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2580			chan->flags |= IEEE80211_CHAN_DISABLED;
2581		} else {
2582			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2583			chan->flags = chan->orig_flags;
2584		}
2585		return;
2586	}
2587
2588	power_rule = &reg_rule->power_rule;
2589	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2590
2591	chan->dfs_state_entered = jiffies;
2592	chan->dfs_state = NL80211_DFS_USABLE;
2593
2594	chan->beacon_found = false;
2595
2596	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2597		chan->flags = chan->orig_flags | bw_flags |
2598			      map_regdom_flags(reg_rule->flags);
2599	else
2600		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2601
2602	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2603	chan->max_reg_power = chan->max_power =
2604		(int) MBM_TO_DBM(power_rule->max_eirp);
2605
2606	if (chan->flags & IEEE80211_CHAN_RADAR) {
2607		if (reg_rule->dfs_cac_ms)
2608			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2609		else
2610			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2611	}
2612
2613	chan->max_power = chan->max_reg_power;
2614}
2615
2616static void handle_band_custom(struct wiphy *wiphy,
2617			       struct ieee80211_supported_band *sband,
2618			       const struct ieee80211_regdomain *regd)
2619{
2620	unsigned int i;
2621
2622	if (!sband)
2623		return;
2624
2625	/*
2626	 * We currently assume that you always want at least 20 MHz,
2627	 * otherwise channel 12 might get enabled if this rule is
2628	 * compatible to US, which permits 2402 - 2472 MHz.
2629	 */
2630	for (i = 0; i < sband->n_channels; i++)
2631		handle_channel_custom(wiphy, &sband->channels[i], regd,
2632				      MHZ_TO_KHZ(20));
2633}
2634
2635/* Used by drivers prior to wiphy registration */
2636void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2637				   const struct ieee80211_regdomain *regd)
2638{
2639	const struct ieee80211_regdomain *new_regd, *tmp;
2640	enum nl80211_band band;
2641	unsigned int bands_set = 0;
2642
2643	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2644	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2645	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2646
2647	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2648		if (!wiphy->bands[band])
2649			continue;
2650		handle_band_custom(wiphy, wiphy->bands[band], regd);
2651		bands_set++;
2652	}
2653
2654	/*
2655	 * no point in calling this if it won't have any effect
2656	 * on your device's supported bands.
2657	 */
2658	WARN_ON(!bands_set);
2659	new_regd = reg_copy_regd(regd);
2660	if (IS_ERR(new_regd))
2661		return;
2662
2663	rtnl_lock();
2664	wiphy_lock(wiphy);
2665
2666	tmp = get_wiphy_regdom(wiphy);
2667	rcu_assign_pointer(wiphy->regd, new_regd);
2668	rcu_free_regdom(tmp);
2669
2670	wiphy_unlock(wiphy);
2671	rtnl_unlock();
2672}
2673EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2674
2675static void reg_set_request_processed(void)
2676{
2677	bool need_more_processing = false;
2678	struct regulatory_request *lr = get_last_request();
2679
2680	lr->processed = true;
2681
2682	spin_lock(&reg_requests_lock);
2683	if (!list_empty(&reg_requests_list))
2684		need_more_processing = true;
2685	spin_unlock(&reg_requests_lock);
2686
2687	cancel_crda_timeout();
2688
2689	if (need_more_processing)
2690		schedule_work(&reg_work);
2691}
2692
2693/**
2694 * reg_process_hint_core - process core regulatory requests
2695 * @core_request: a pending core regulatory request
2696 *
2697 * The wireless subsystem can use this function to process
2698 * a regulatory request issued by the regulatory core.
2699 */
2700static enum reg_request_treatment
2701reg_process_hint_core(struct regulatory_request *core_request)
2702{
2703	if (reg_query_database(core_request)) {
2704		core_request->intersect = false;
2705		core_request->processed = false;
2706		reg_update_last_request(core_request);
2707		return REG_REQ_OK;
2708	}
2709
2710	return REG_REQ_IGNORE;
2711}
2712
2713static enum reg_request_treatment
2714__reg_process_hint_user(struct regulatory_request *user_request)
2715{
2716	struct regulatory_request *lr = get_last_request();
2717
2718	if (reg_request_cell_base(user_request))
2719		return reg_ignore_cell_hint(user_request);
2720
2721	if (reg_request_cell_base(lr))
2722		return REG_REQ_IGNORE;
2723
2724	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2725		return REG_REQ_INTERSECT;
2726	/*
2727	 * If the user knows better the user should set the regdom
2728	 * to their country before the IE is picked up
2729	 */
2730	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2731	    lr->intersect)
2732		return REG_REQ_IGNORE;
2733	/*
2734	 * Process user requests only after previous user/driver/core
2735	 * requests have been processed
2736	 */
2737	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2738	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2739	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2740	    regdom_changes(lr->alpha2))
2741		return REG_REQ_IGNORE;
2742
2743	if (!regdom_changes(user_request->alpha2))
2744		return REG_REQ_ALREADY_SET;
2745
2746	return REG_REQ_OK;
2747}
2748
2749/**
2750 * reg_process_hint_user - process user regulatory requests
2751 * @user_request: a pending user regulatory request
2752 *
2753 * The wireless subsystem can use this function to process
2754 * a regulatory request initiated by userspace.
2755 */
2756static enum reg_request_treatment
2757reg_process_hint_user(struct regulatory_request *user_request)
2758{
2759	enum reg_request_treatment treatment;
2760
2761	treatment = __reg_process_hint_user(user_request);
2762	if (treatment == REG_REQ_IGNORE ||
2763	    treatment == REG_REQ_ALREADY_SET)
2764		return REG_REQ_IGNORE;
2765
2766	user_request->intersect = treatment == REG_REQ_INTERSECT;
2767	user_request->processed = false;
2768
2769	if (reg_query_database(user_request)) {
2770		reg_update_last_request(user_request);
2771		user_alpha2[0] = user_request->alpha2[0];
2772		user_alpha2[1] = user_request->alpha2[1];
2773		return REG_REQ_OK;
2774	}
2775
2776	return REG_REQ_IGNORE;
2777}
2778
2779static enum reg_request_treatment
2780__reg_process_hint_driver(struct regulatory_request *driver_request)
2781{
2782	struct regulatory_request *lr = get_last_request();
2783
2784	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2785		if (regdom_changes(driver_request->alpha2))
2786			return REG_REQ_OK;
2787		return REG_REQ_ALREADY_SET;
2788	}
2789
2790	/*
2791	 * This would happen if you unplug and plug your card
2792	 * back in or if you add a new device for which the previously
2793	 * loaded card also agrees on the regulatory domain.
2794	 */
2795	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2796	    !regdom_changes(driver_request->alpha2))
2797		return REG_REQ_ALREADY_SET;
2798
2799	return REG_REQ_INTERSECT;
2800}
2801
2802/**
2803 * reg_process_hint_driver - process driver regulatory requests
2804 * @wiphy: the wireless device for the regulatory request
2805 * @driver_request: a pending driver regulatory request
2806 *
2807 * The wireless subsystem can use this function to process
2808 * a regulatory request issued by an 802.11 driver.
2809 *
2810 * Returns one of the different reg request treatment values.
2811 */
2812static enum reg_request_treatment
2813reg_process_hint_driver(struct wiphy *wiphy,
2814			struct regulatory_request *driver_request)
2815{
2816	const struct ieee80211_regdomain *regd, *tmp;
2817	enum reg_request_treatment treatment;
2818
2819	treatment = __reg_process_hint_driver(driver_request);
2820
2821	switch (treatment) {
2822	case REG_REQ_OK:
2823		break;
2824	case REG_REQ_IGNORE:
2825		return REG_REQ_IGNORE;
2826	case REG_REQ_INTERSECT:
2827	case REG_REQ_ALREADY_SET:
2828		regd = reg_copy_regd(get_cfg80211_regdom());
2829		if (IS_ERR(regd))
2830			return REG_REQ_IGNORE;
2831
2832		tmp = get_wiphy_regdom(wiphy);
2833		ASSERT_RTNL();
2834		wiphy_lock(wiphy);
2835		rcu_assign_pointer(wiphy->regd, regd);
2836		wiphy_unlock(wiphy);
2837		rcu_free_regdom(tmp);
2838	}
2839
2840
2841	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2842	driver_request->processed = false;
2843
2844	/*
2845	 * Since CRDA will not be called in this case as we already
2846	 * have applied the requested regulatory domain before we just
2847	 * inform userspace we have processed the request
2848	 */
2849	if (treatment == REG_REQ_ALREADY_SET) {
2850		nl80211_send_reg_change_event(driver_request);
2851		reg_update_last_request(driver_request);
2852		reg_set_request_processed();
2853		return REG_REQ_ALREADY_SET;
2854	}
2855
2856	if (reg_query_database(driver_request)) {
2857		reg_update_last_request(driver_request);
2858		return REG_REQ_OK;
2859	}
2860
2861	return REG_REQ_IGNORE;
2862}
2863
2864static enum reg_request_treatment
2865__reg_process_hint_country_ie(struct wiphy *wiphy,
2866			      struct regulatory_request *country_ie_request)
2867{
2868	struct wiphy *last_wiphy = NULL;
2869	struct regulatory_request *lr = get_last_request();
2870
2871	if (reg_request_cell_base(lr)) {
2872		/* Trust a Cell base station over the AP's country IE */
2873		if (regdom_changes(country_ie_request->alpha2))
2874			return REG_REQ_IGNORE;
2875		return REG_REQ_ALREADY_SET;
2876	} else {
2877		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2878			return REG_REQ_IGNORE;
2879	}
2880
2881	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2882		return -EINVAL;
2883
2884	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2885		return REG_REQ_OK;
2886
2887	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2888
2889	if (last_wiphy != wiphy) {
2890		/*
2891		 * Two cards with two APs claiming different
2892		 * Country IE alpha2s. We could
2893		 * intersect them, but that seems unlikely
2894		 * to be correct. Reject second one for now.
2895		 */
2896		if (regdom_changes(country_ie_request->alpha2))
2897			return REG_REQ_IGNORE;
2898		return REG_REQ_ALREADY_SET;
2899	}
2900
2901	if (regdom_changes(country_ie_request->alpha2))
2902		return REG_REQ_OK;
2903	return REG_REQ_ALREADY_SET;
2904}
2905
2906/**
2907 * reg_process_hint_country_ie - process regulatory requests from country IEs
2908 * @wiphy: the wireless device for the regulatory request
2909 * @country_ie_request: a regulatory request from a country IE
2910 *
2911 * The wireless subsystem can use this function to process
2912 * a regulatory request issued by a country Information Element.
2913 *
2914 * Returns one of the different reg request treatment values.
2915 */
2916static enum reg_request_treatment
2917reg_process_hint_country_ie(struct wiphy *wiphy,
2918			    struct regulatory_request *country_ie_request)
2919{
2920	enum reg_request_treatment treatment;
2921
2922	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2923
2924	switch (treatment) {
2925	case REG_REQ_OK:
2926		break;
2927	case REG_REQ_IGNORE:
2928		return REG_REQ_IGNORE;
2929	case REG_REQ_ALREADY_SET:
2930		reg_free_request(country_ie_request);
2931		return REG_REQ_ALREADY_SET;
2932	case REG_REQ_INTERSECT:
2933		/*
2934		 * This doesn't happen yet, not sure we
2935		 * ever want to support it for this case.
2936		 */
2937		WARN_ONCE(1, "Unexpected intersection for country elements");
2938		return REG_REQ_IGNORE;
2939	}
2940
2941	country_ie_request->intersect = false;
2942	country_ie_request->processed = false;
2943
2944	if (reg_query_database(country_ie_request)) {
2945		reg_update_last_request(country_ie_request);
2946		return REG_REQ_OK;
2947	}
2948
2949	return REG_REQ_IGNORE;
2950}
2951
2952bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2953{
2954	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2955	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2956	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2957	bool dfs_domain_same;
2958
2959	rcu_read_lock();
2960
2961	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2962	wiphy1_regd = rcu_dereference(wiphy1->regd);
2963	if (!wiphy1_regd)
2964		wiphy1_regd = cfg80211_regd;
2965
2966	wiphy2_regd = rcu_dereference(wiphy2->regd);
2967	if (!wiphy2_regd)
2968		wiphy2_regd = cfg80211_regd;
2969
2970	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2971
2972	rcu_read_unlock();
2973
2974	return dfs_domain_same;
2975}
2976
2977static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2978				    struct ieee80211_channel *src_chan)
2979{
2980	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2981	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2982		return;
2983
2984	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2985	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2986		return;
2987
2988	if (src_chan->center_freq == dst_chan->center_freq &&
2989	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2990		dst_chan->dfs_state = src_chan->dfs_state;
2991		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2992	}
2993}
2994
2995static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2996				       struct wiphy *src_wiphy)
2997{
2998	struct ieee80211_supported_band *src_sband, *dst_sband;
2999	struct ieee80211_channel *src_chan, *dst_chan;
3000	int i, j, band;
3001
3002	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
3003		return;
3004
3005	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3006		dst_sband = dst_wiphy->bands[band];
3007		src_sband = src_wiphy->bands[band];
3008		if (!dst_sband || !src_sband)
3009			continue;
3010
3011		for (i = 0; i < dst_sband->n_channels; i++) {
3012			dst_chan = &dst_sband->channels[i];
3013			for (j = 0; j < src_sband->n_channels; j++) {
3014				src_chan = &src_sband->channels[j];
3015				reg_copy_dfs_chan_state(dst_chan, src_chan);
3016			}
3017		}
3018	}
3019}
3020
3021static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3022{
3023	struct cfg80211_registered_device *rdev;
3024
3025	ASSERT_RTNL();
3026
3027	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3028		if (wiphy == &rdev->wiphy)
3029			continue;
3030		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3031	}
3032}
3033
3034/* This processes *all* regulatory hints */
3035static void reg_process_hint(struct regulatory_request *reg_request)
3036{
3037	struct wiphy *wiphy = NULL;
3038	enum reg_request_treatment treatment;
3039	enum nl80211_reg_initiator initiator = reg_request->initiator;
3040
3041	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3042		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3043
3044	switch (initiator) {
3045	case NL80211_REGDOM_SET_BY_CORE:
3046		treatment = reg_process_hint_core(reg_request);
3047		break;
3048	case NL80211_REGDOM_SET_BY_USER:
3049		treatment = reg_process_hint_user(reg_request);
3050		break;
3051	case NL80211_REGDOM_SET_BY_DRIVER:
3052		if (!wiphy)
3053			goto out_free;
3054		treatment = reg_process_hint_driver(wiphy, reg_request);
3055		break;
3056	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3057		if (!wiphy)
3058			goto out_free;
3059		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3060		break;
3061	default:
3062		WARN(1, "invalid initiator %d\n", initiator);
3063		goto out_free;
3064	}
3065
3066	if (treatment == REG_REQ_IGNORE)
3067		goto out_free;
3068
3069	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3070	     "unexpected treatment value %d\n", treatment);
3071
3072	/* This is required so that the orig_* parameters are saved.
3073	 * NOTE: treatment must be set for any case that reaches here!
3074	 */
3075	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3076	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3077		wiphy_update_regulatory(wiphy, initiator);
3078		wiphy_all_share_dfs_chan_state(wiphy);
3079		reg_check_channels();
3080	}
3081
3082	return;
3083
3084out_free:
3085	reg_free_request(reg_request);
3086}
3087
3088static void notify_self_managed_wiphys(struct regulatory_request *request)
3089{
3090	struct cfg80211_registered_device *rdev;
3091	struct wiphy *wiphy;
 
 
 
3092
3093	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3094		wiphy = &rdev->wiphy;
3095		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3096		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3097			reg_call_notifier(wiphy, request);
 
3098	}
 
 
 
3099}
3100
3101/*
3102 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3103 * Regulatory hints come on a first come first serve basis and we
3104 * must process each one atomically.
3105 */
3106static void reg_process_pending_hints(void)
3107{
3108	struct regulatory_request *reg_request, *lr;
3109
3110	lr = get_last_request();
3111
3112	/* When last_request->processed becomes true this will be rescheduled */
3113	if (lr && !lr->processed) {
3114		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3115		return;
3116	}
3117
3118	spin_lock(&reg_requests_lock);
3119
3120	if (list_empty(&reg_requests_list)) {
3121		spin_unlock(&reg_requests_lock);
3122		return;
3123	}
3124
3125	reg_request = list_first_entry(&reg_requests_list,
3126				       struct regulatory_request,
3127				       list);
3128	list_del_init(&reg_request->list);
3129
3130	spin_unlock(&reg_requests_lock);
3131
3132	notify_self_managed_wiphys(reg_request);
 
 
 
3133
3134	reg_process_hint(reg_request);
3135
3136	lr = get_last_request();
3137
3138	spin_lock(&reg_requests_lock);
3139	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3140		schedule_work(&reg_work);
3141	spin_unlock(&reg_requests_lock);
3142}
3143
3144/* Processes beacon hints -- this has nothing to do with country IEs */
3145static void reg_process_pending_beacon_hints(void)
3146{
3147	struct cfg80211_registered_device *rdev;
3148	struct reg_beacon *pending_beacon, *tmp;
3149
3150	/* This goes through the _pending_ beacon list */
3151	spin_lock_bh(&reg_pending_beacons_lock);
3152
3153	list_for_each_entry_safe(pending_beacon, tmp,
3154				 &reg_pending_beacons, list) {
3155		list_del_init(&pending_beacon->list);
3156
3157		/* Applies the beacon hint to current wiphys */
3158		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3159			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3160
3161		/* Remembers the beacon hint for new wiphys or reg changes */
3162		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3163	}
3164
3165	spin_unlock_bh(&reg_pending_beacons_lock);
3166}
3167
3168static void reg_process_self_managed_hint(struct wiphy *wiphy)
3169{
3170	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
 
3171	const struct ieee80211_regdomain *tmp;
3172	const struct ieee80211_regdomain *regd;
3173	enum nl80211_band band;
3174	struct regulatory_request request = {};
3175
3176	ASSERT_RTNL();
3177	lockdep_assert_wiphy(wiphy);
3178
3179	spin_lock(&reg_requests_lock);
3180	regd = rdev->requested_regd;
3181	rdev->requested_regd = NULL;
3182	spin_unlock(&reg_requests_lock);
3183
3184	if (!regd)
3185		return;
3186
3187	tmp = get_wiphy_regdom(wiphy);
3188	rcu_assign_pointer(wiphy->regd, regd);
3189	rcu_free_regdom(tmp);
3190
3191	for (band = 0; band < NUM_NL80211_BANDS; band++)
3192		handle_band_custom(wiphy, wiphy->bands[band], regd);
3193
3194	reg_process_ht_flags(wiphy);
3195
3196	request.wiphy_idx = get_wiphy_idx(wiphy);
3197	request.alpha2[0] = regd->alpha2[0];
3198	request.alpha2[1] = regd->alpha2[1];
3199	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3200
3201	nl80211_send_wiphy_reg_change_event(&request);
3202}
3203
3204static void reg_process_self_managed_hints(void)
3205{
3206	struct cfg80211_registered_device *rdev;
3207
3208	ASSERT_RTNL();
 
 
 
3209
3210	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3211		wiphy_lock(&rdev->wiphy);
3212		reg_process_self_managed_hint(&rdev->wiphy);
3213		wiphy_unlock(&rdev->wiphy);
3214	}
3215
3216	reg_check_channels();
3217}
3218
3219static void reg_todo(struct work_struct *work)
3220{
3221	rtnl_lock();
3222	reg_process_pending_hints();
3223	reg_process_pending_beacon_hints();
3224	reg_process_self_managed_hints();
3225	rtnl_unlock();
3226}
3227
3228static void queue_regulatory_request(struct regulatory_request *request)
3229{
3230	request->alpha2[0] = toupper(request->alpha2[0]);
3231	request->alpha2[1] = toupper(request->alpha2[1]);
3232
3233	spin_lock(&reg_requests_lock);
3234	list_add_tail(&request->list, &reg_requests_list);
3235	spin_unlock(&reg_requests_lock);
3236
3237	schedule_work(&reg_work);
3238}
3239
3240/*
3241 * Core regulatory hint -- happens during cfg80211_init()
3242 * and when we restore regulatory settings.
3243 */
3244static int regulatory_hint_core(const char *alpha2)
3245{
3246	struct regulatory_request *request;
3247
3248	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3249	if (!request)
3250		return -ENOMEM;
3251
3252	request->alpha2[0] = alpha2[0];
3253	request->alpha2[1] = alpha2[1];
3254	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3255	request->wiphy_idx = WIPHY_IDX_INVALID;
3256
3257	queue_regulatory_request(request);
3258
3259	return 0;
3260}
3261
3262/* User hints */
3263int regulatory_hint_user(const char *alpha2,
3264			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3265{
3266	struct regulatory_request *request;
3267
3268	if (WARN_ON(!alpha2))
3269		return -EINVAL;
3270
3271	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3272		return -EINVAL;
3273
3274	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3275	if (!request)
3276		return -ENOMEM;
3277
3278	request->wiphy_idx = WIPHY_IDX_INVALID;
3279	request->alpha2[0] = alpha2[0];
3280	request->alpha2[1] = alpha2[1];
3281	request->initiator = NL80211_REGDOM_SET_BY_USER;
3282	request->user_reg_hint_type = user_reg_hint_type;
3283
3284	/* Allow calling CRDA again */
3285	reset_crda_timeouts();
3286
3287	queue_regulatory_request(request);
3288
3289	return 0;
3290}
3291
3292int regulatory_hint_indoor(bool is_indoor, u32 portid)
3293{
3294	spin_lock(&reg_indoor_lock);
3295
3296	/* It is possible that more than one user space process is trying to
3297	 * configure the indoor setting. To handle such cases, clear the indoor
3298	 * setting in case that some process does not think that the device
3299	 * is operating in an indoor environment. In addition, if a user space
3300	 * process indicates that it is controlling the indoor setting, save its
3301	 * portid, i.e., make it the owner.
3302	 */
3303	reg_is_indoor = is_indoor;
3304	if (reg_is_indoor) {
3305		if (!reg_is_indoor_portid)
3306			reg_is_indoor_portid = portid;
3307	} else {
3308		reg_is_indoor_portid = 0;
3309	}
3310
3311	spin_unlock(&reg_indoor_lock);
3312
3313	if (!is_indoor)
3314		reg_check_channels();
3315
3316	return 0;
3317}
3318
3319void regulatory_netlink_notify(u32 portid)
3320{
3321	spin_lock(&reg_indoor_lock);
3322
3323	if (reg_is_indoor_portid != portid) {
3324		spin_unlock(&reg_indoor_lock);
3325		return;
3326	}
3327
3328	reg_is_indoor = false;
3329	reg_is_indoor_portid = 0;
3330
3331	spin_unlock(&reg_indoor_lock);
3332
3333	reg_check_channels();
3334}
3335
3336/* Driver hints */
3337int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3338{
3339	struct regulatory_request *request;
3340
3341	if (WARN_ON(!alpha2 || !wiphy))
3342		return -EINVAL;
3343
3344	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3345
3346	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3347	if (!request)
3348		return -ENOMEM;
3349
3350	request->wiphy_idx = get_wiphy_idx(wiphy);
3351
3352	request->alpha2[0] = alpha2[0];
3353	request->alpha2[1] = alpha2[1];
3354	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3355
3356	/* Allow calling CRDA again */
3357	reset_crda_timeouts();
3358
3359	queue_regulatory_request(request);
3360
3361	return 0;
3362}
3363EXPORT_SYMBOL(regulatory_hint);
3364
3365void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3366				const u8 *country_ie, u8 country_ie_len)
3367{
3368	char alpha2[2];
3369	enum environment_cap env = ENVIRON_ANY;
3370	struct regulatory_request *request = NULL, *lr;
3371
3372	/* IE len must be evenly divisible by 2 */
3373	if (country_ie_len & 0x01)
3374		return;
3375
3376	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3377		return;
3378
3379	request = kzalloc(sizeof(*request), GFP_KERNEL);
3380	if (!request)
3381		return;
3382
3383	alpha2[0] = country_ie[0];
3384	alpha2[1] = country_ie[1];
3385
3386	if (country_ie[2] == 'I')
3387		env = ENVIRON_INDOOR;
3388	else if (country_ie[2] == 'O')
3389		env = ENVIRON_OUTDOOR;
3390
3391	rcu_read_lock();
3392	lr = get_last_request();
3393
3394	if (unlikely(!lr))
3395		goto out;
3396
3397	/*
3398	 * We will run this only upon a successful connection on cfg80211.
3399	 * We leave conflict resolution to the workqueue, where can hold
3400	 * the RTNL.
3401	 */
3402	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3403	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3404		goto out;
3405
3406	request->wiphy_idx = get_wiphy_idx(wiphy);
3407	request->alpha2[0] = alpha2[0];
3408	request->alpha2[1] = alpha2[1];
3409	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3410	request->country_ie_env = env;
3411
3412	/* Allow calling CRDA again */
3413	reset_crda_timeouts();
3414
3415	queue_regulatory_request(request);
3416	request = NULL;
3417out:
3418	kfree(request);
3419	rcu_read_unlock();
3420}
3421
3422static void restore_alpha2(char *alpha2, bool reset_user)
3423{
3424	/* indicates there is no alpha2 to consider for restoration */
3425	alpha2[0] = '9';
3426	alpha2[1] = '7';
3427
3428	/* The user setting has precedence over the module parameter */
3429	if (is_user_regdom_saved()) {
3430		/* Unless we're asked to ignore it and reset it */
3431		if (reset_user) {
3432			pr_debug("Restoring regulatory settings including user preference\n");
3433			user_alpha2[0] = '9';
3434			user_alpha2[1] = '7';
3435
3436			/*
3437			 * If we're ignoring user settings, we still need to
3438			 * check the module parameter to ensure we put things
3439			 * back as they were for a full restore.
3440			 */
3441			if (!is_world_regdom(ieee80211_regdom)) {
3442				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3443					 ieee80211_regdom[0], ieee80211_regdom[1]);
3444				alpha2[0] = ieee80211_regdom[0];
3445				alpha2[1] = ieee80211_regdom[1];
3446			}
3447		} else {
3448			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3449				 user_alpha2[0], user_alpha2[1]);
3450			alpha2[0] = user_alpha2[0];
3451			alpha2[1] = user_alpha2[1];
3452		}
3453	} else if (!is_world_regdom(ieee80211_regdom)) {
3454		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3455			 ieee80211_regdom[0], ieee80211_regdom[1]);
3456		alpha2[0] = ieee80211_regdom[0];
3457		alpha2[1] = ieee80211_regdom[1];
3458	} else
3459		pr_debug("Restoring regulatory settings\n");
3460}
3461
3462static void restore_custom_reg_settings(struct wiphy *wiphy)
3463{
3464	struct ieee80211_supported_band *sband;
3465	enum nl80211_band band;
3466	struct ieee80211_channel *chan;
3467	int i;
3468
3469	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3470		sband = wiphy->bands[band];
3471		if (!sband)
3472			continue;
3473		for (i = 0; i < sband->n_channels; i++) {
3474			chan = &sband->channels[i];
3475			chan->flags = chan->orig_flags;
3476			chan->max_antenna_gain = chan->orig_mag;
3477			chan->max_power = chan->orig_mpwr;
3478			chan->beacon_found = false;
3479		}
3480	}
3481}
3482
3483/*
3484 * Restoring regulatory settings involves ignoring any
3485 * possibly stale country IE information and user regulatory
3486 * settings if so desired, this includes any beacon hints
3487 * learned as we could have traveled outside to another country
3488 * after disconnection. To restore regulatory settings we do
3489 * exactly what we did at bootup:
3490 *
3491 *   - send a core regulatory hint
3492 *   - send a user regulatory hint if applicable
3493 *
3494 * Device drivers that send a regulatory hint for a specific country
3495 * keep their own regulatory domain on wiphy->regd so that does
3496 * not need to be remembered.
3497 */
3498static void restore_regulatory_settings(bool reset_user, bool cached)
3499{
3500	char alpha2[2];
3501	char world_alpha2[2];
3502	struct reg_beacon *reg_beacon, *btmp;
3503	LIST_HEAD(tmp_reg_req_list);
3504	struct cfg80211_registered_device *rdev;
3505
3506	ASSERT_RTNL();
3507
3508	/*
3509	 * Clear the indoor setting in case that it is not controlled by user
3510	 * space, as otherwise there is no guarantee that the device is still
3511	 * operating in an indoor environment.
3512	 */
3513	spin_lock(&reg_indoor_lock);
3514	if (reg_is_indoor && !reg_is_indoor_portid) {
3515		reg_is_indoor = false;
3516		reg_check_channels();
3517	}
3518	spin_unlock(&reg_indoor_lock);
3519
3520	reset_regdomains(true, &world_regdom);
3521	restore_alpha2(alpha2, reset_user);
3522
3523	/*
3524	 * If there's any pending requests we simply
3525	 * stash them to a temporary pending queue and
3526	 * add then after we've restored regulatory
3527	 * settings.
3528	 */
3529	spin_lock(&reg_requests_lock);
3530	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3531	spin_unlock(&reg_requests_lock);
3532
3533	/* Clear beacon hints */
3534	spin_lock_bh(&reg_pending_beacons_lock);
3535	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3536		list_del(&reg_beacon->list);
3537		kfree(reg_beacon);
3538	}
3539	spin_unlock_bh(&reg_pending_beacons_lock);
3540
3541	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3542		list_del(&reg_beacon->list);
3543		kfree(reg_beacon);
3544	}
3545
3546	/* First restore to the basic regulatory settings */
3547	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3548	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3549
3550	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3551		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3552			continue;
3553		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3554			restore_custom_reg_settings(&rdev->wiphy);
3555	}
3556
3557	if (cached && (!is_an_alpha2(alpha2) ||
3558		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3559		reset_regdomains(false, cfg80211_world_regdom);
3560		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3561		print_regdomain(get_cfg80211_regdom());
3562		nl80211_send_reg_change_event(&core_request_world);
3563		reg_set_request_processed();
3564
3565		if (is_an_alpha2(alpha2) &&
3566		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3567			struct regulatory_request *ureq;
3568
3569			spin_lock(&reg_requests_lock);
3570			ureq = list_last_entry(&reg_requests_list,
3571					       struct regulatory_request,
3572					       list);
3573			list_del(&ureq->list);
3574			spin_unlock(&reg_requests_lock);
3575
3576			notify_self_managed_wiphys(ureq);
3577			reg_update_last_request(ureq);
3578			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3579				   REGD_SOURCE_CACHED);
3580		}
3581	} else {
3582		regulatory_hint_core(world_alpha2);
3583
3584		/*
3585		 * This restores the ieee80211_regdom module parameter
3586		 * preference or the last user requested regulatory
3587		 * settings, user regulatory settings takes precedence.
3588		 */
3589		if (is_an_alpha2(alpha2))
3590			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3591	}
3592
3593	spin_lock(&reg_requests_lock);
3594	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3595	spin_unlock(&reg_requests_lock);
3596
3597	pr_debug("Kicking the queue\n");
3598
3599	schedule_work(&reg_work);
3600}
3601
3602static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3603{
3604	struct cfg80211_registered_device *rdev;
3605	struct wireless_dev *wdev;
3606
3607	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3608		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3609			wdev_lock(wdev);
3610			if (!(wdev->wiphy->regulatory_flags & flag)) {
3611				wdev_unlock(wdev);
3612				return false;
3613			}
3614			wdev_unlock(wdev);
3615		}
3616	}
3617
3618	return true;
3619}
3620
3621void regulatory_hint_disconnect(void)
3622{
3623	/* Restore of regulatory settings is not required when wiphy(s)
3624	 * ignore IE from connected access point but clearance of beacon hints
3625	 * is required when wiphy(s) supports beacon hints.
3626	 */
3627	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3628		struct reg_beacon *reg_beacon, *btmp;
3629
3630		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3631			return;
3632
3633		spin_lock_bh(&reg_pending_beacons_lock);
3634		list_for_each_entry_safe(reg_beacon, btmp,
3635					 &reg_pending_beacons, list) {
3636			list_del(&reg_beacon->list);
3637			kfree(reg_beacon);
3638		}
3639		spin_unlock_bh(&reg_pending_beacons_lock);
3640
3641		list_for_each_entry_safe(reg_beacon, btmp,
3642					 &reg_beacon_list, list) {
3643			list_del(&reg_beacon->list);
3644			kfree(reg_beacon);
3645		}
3646
3647		return;
3648	}
3649
3650	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3651	restore_regulatory_settings(false, true);
3652}
3653
3654static bool freq_is_chan_12_13_14(u32 freq)
3655{
3656	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3657	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3658	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3659		return true;
3660	return false;
3661}
3662
3663static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3664{
3665	struct reg_beacon *pending_beacon;
3666
3667	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3668		if (ieee80211_channel_equal(beacon_chan,
3669					    &pending_beacon->chan))
3670			return true;
3671	return false;
3672}
3673
3674int regulatory_hint_found_beacon(struct wiphy *wiphy,
3675				 struct ieee80211_channel *beacon_chan,
3676				 gfp_t gfp)
3677{
3678	struct reg_beacon *reg_beacon;
3679	bool processing;
3680
3681	if (beacon_chan->beacon_found ||
3682	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3683	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3684	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3685		return 0;
3686
3687	spin_lock_bh(&reg_pending_beacons_lock);
3688	processing = pending_reg_beacon(beacon_chan);
3689	spin_unlock_bh(&reg_pending_beacons_lock);
3690
3691	if (processing)
3692		return 0;
3693
3694	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3695	if (!reg_beacon)
3696		return -ENOMEM;
3697
3698	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3699		 beacon_chan->center_freq, beacon_chan->freq_offset,
3700		 ieee80211_freq_khz_to_channel(
3701			 ieee80211_channel_to_khz(beacon_chan)),
3702		 wiphy_name(wiphy));
3703
3704	memcpy(&reg_beacon->chan, beacon_chan,
3705	       sizeof(struct ieee80211_channel));
3706
3707	/*
3708	 * Since we can be called from BH or and non-BH context
3709	 * we must use spin_lock_bh()
3710	 */
3711	spin_lock_bh(&reg_pending_beacons_lock);
3712	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3713	spin_unlock_bh(&reg_pending_beacons_lock);
3714
3715	schedule_work(&reg_work);
3716
3717	return 0;
3718}
3719
3720static void print_rd_rules(const struct ieee80211_regdomain *rd)
3721{
3722	unsigned int i;
3723	const struct ieee80211_reg_rule *reg_rule = NULL;
3724	const struct ieee80211_freq_range *freq_range = NULL;
3725	const struct ieee80211_power_rule *power_rule = NULL;
3726	char bw[32], cac_time[32];
3727
3728	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3729
3730	for (i = 0; i < rd->n_reg_rules; i++) {
3731		reg_rule = &rd->reg_rules[i];
3732		freq_range = &reg_rule->freq_range;
3733		power_rule = &reg_rule->power_rule;
3734
3735		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3736			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3737				 freq_range->max_bandwidth_khz,
3738				 reg_get_max_bandwidth(rd, reg_rule));
3739		else
3740			snprintf(bw, sizeof(bw), "%d KHz",
3741				 freq_range->max_bandwidth_khz);
3742
3743		if (reg_rule->flags & NL80211_RRF_DFS)
3744			scnprintf(cac_time, sizeof(cac_time), "%u s",
3745				  reg_rule->dfs_cac_ms/1000);
3746		else
3747			scnprintf(cac_time, sizeof(cac_time), "N/A");
3748
3749
3750		/*
3751		 * There may not be documentation for max antenna gain
3752		 * in certain regions
3753		 */
3754		if (power_rule->max_antenna_gain)
3755			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3756				freq_range->start_freq_khz,
3757				freq_range->end_freq_khz,
3758				bw,
3759				power_rule->max_antenna_gain,
3760				power_rule->max_eirp,
3761				cac_time);
3762		else
3763			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3764				freq_range->start_freq_khz,
3765				freq_range->end_freq_khz,
3766				bw,
3767				power_rule->max_eirp,
3768				cac_time);
3769	}
3770}
3771
3772bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3773{
3774	switch (dfs_region) {
3775	case NL80211_DFS_UNSET:
3776	case NL80211_DFS_FCC:
3777	case NL80211_DFS_ETSI:
3778	case NL80211_DFS_JP:
3779		return true;
3780	default:
3781		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3782		return false;
3783	}
3784}
3785
3786static void print_regdomain(const struct ieee80211_regdomain *rd)
3787{
3788	struct regulatory_request *lr = get_last_request();
3789
3790	if (is_intersected_alpha2(rd->alpha2)) {
3791		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3792			struct cfg80211_registered_device *rdev;
3793			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3794			if (rdev) {
3795				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3796					rdev->country_ie_alpha2[0],
3797					rdev->country_ie_alpha2[1]);
3798			} else
3799				pr_debug("Current regulatory domain intersected:\n");
3800		} else
3801			pr_debug("Current regulatory domain intersected:\n");
3802	} else if (is_world_regdom(rd->alpha2)) {
3803		pr_debug("World regulatory domain updated:\n");
3804	} else {
3805		if (is_unknown_alpha2(rd->alpha2))
3806			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3807		else {
3808			if (reg_request_cell_base(lr))
3809				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3810					rd->alpha2[0], rd->alpha2[1]);
3811			else
3812				pr_debug("Regulatory domain changed to country: %c%c\n",
3813					rd->alpha2[0], rd->alpha2[1]);
3814		}
3815	}
3816
3817	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3818	print_rd_rules(rd);
3819}
3820
3821static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3822{
3823	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3824	print_rd_rules(rd);
3825}
3826
3827static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3828{
3829	if (!is_world_regdom(rd->alpha2))
3830		return -EINVAL;
3831	update_world_regdomain(rd);
3832	return 0;
3833}
3834
3835static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3836			   struct regulatory_request *user_request)
3837{
3838	const struct ieee80211_regdomain *intersected_rd = NULL;
3839
3840	if (!regdom_changes(rd->alpha2))
3841		return -EALREADY;
3842
3843	if (!is_valid_rd(rd)) {
3844		pr_err("Invalid regulatory domain detected: %c%c\n",
3845		       rd->alpha2[0], rd->alpha2[1]);
3846		print_regdomain_info(rd);
3847		return -EINVAL;
3848	}
3849
3850	if (!user_request->intersect) {
3851		reset_regdomains(false, rd);
3852		return 0;
3853	}
3854
3855	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3856	if (!intersected_rd)
3857		return -EINVAL;
3858
3859	kfree(rd);
3860	rd = NULL;
3861	reset_regdomains(false, intersected_rd);
3862
3863	return 0;
3864}
3865
3866static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3867			     struct regulatory_request *driver_request)
3868{
3869	const struct ieee80211_regdomain *regd;
3870	const struct ieee80211_regdomain *intersected_rd = NULL;
3871	const struct ieee80211_regdomain *tmp;
3872	struct wiphy *request_wiphy;
3873
3874	if (is_world_regdom(rd->alpha2))
3875		return -EINVAL;
3876
3877	if (!regdom_changes(rd->alpha2))
3878		return -EALREADY;
3879
3880	if (!is_valid_rd(rd)) {
3881		pr_err("Invalid regulatory domain detected: %c%c\n",
3882		       rd->alpha2[0], rd->alpha2[1]);
3883		print_regdomain_info(rd);
3884		return -EINVAL;
3885	}
3886
3887	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3888	if (!request_wiphy)
3889		return -ENODEV;
3890
3891	if (!driver_request->intersect) {
3892		ASSERT_RTNL();
3893		wiphy_lock(request_wiphy);
3894		if (request_wiphy->regd) {
3895			wiphy_unlock(request_wiphy);
3896			return -EALREADY;
3897		}
3898
3899		regd = reg_copy_regd(rd);
3900		if (IS_ERR(regd)) {
3901			wiphy_unlock(request_wiphy);
3902			return PTR_ERR(regd);
3903		}
3904
3905		rcu_assign_pointer(request_wiphy->regd, regd);
3906		wiphy_unlock(request_wiphy);
3907		reset_regdomains(false, rd);
3908		return 0;
3909	}
3910
3911	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3912	if (!intersected_rd)
3913		return -EINVAL;
3914
3915	/*
3916	 * We can trash what CRDA provided now.
3917	 * However if a driver requested this specific regulatory
3918	 * domain we keep it for its private use
3919	 */
3920	tmp = get_wiphy_regdom(request_wiphy);
3921	rcu_assign_pointer(request_wiphy->regd, rd);
3922	rcu_free_regdom(tmp);
3923
3924	rd = NULL;
3925
3926	reset_regdomains(false, intersected_rd);
3927
3928	return 0;
3929}
3930
3931static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3932				 struct regulatory_request *country_ie_request)
3933{
3934	struct wiphy *request_wiphy;
3935
3936	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3937	    !is_unknown_alpha2(rd->alpha2))
3938		return -EINVAL;
3939
3940	/*
3941	 * Lets only bother proceeding on the same alpha2 if the current
3942	 * rd is non static (it means CRDA was present and was used last)
3943	 * and the pending request came in from a country IE
3944	 */
3945
3946	if (!is_valid_rd(rd)) {
3947		pr_err("Invalid regulatory domain detected: %c%c\n",
3948		       rd->alpha2[0], rd->alpha2[1]);
3949		print_regdomain_info(rd);
3950		return -EINVAL;
3951	}
3952
3953	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3954	if (!request_wiphy)
3955		return -ENODEV;
3956
3957	if (country_ie_request->intersect)
3958		return -EINVAL;
3959
3960	reset_regdomains(false, rd);
3961	return 0;
3962}
3963
3964/*
3965 * Use this call to set the current regulatory domain. Conflicts with
3966 * multiple drivers can be ironed out later. Caller must've already
3967 * kmalloc'd the rd structure.
3968 */
3969int set_regdom(const struct ieee80211_regdomain *rd,
3970	       enum ieee80211_regd_source regd_src)
3971{
3972	struct regulatory_request *lr;
3973	bool user_reset = false;
3974	int r;
3975
3976	if (IS_ERR_OR_NULL(rd))
3977		return -ENODATA;
3978
3979	if (!reg_is_valid_request(rd->alpha2)) {
3980		kfree(rd);
3981		return -EINVAL;
3982	}
3983
3984	if (regd_src == REGD_SOURCE_CRDA)
3985		reset_crda_timeouts();
3986
3987	lr = get_last_request();
3988
3989	/* Note that this doesn't update the wiphys, this is done below */
3990	switch (lr->initiator) {
3991	case NL80211_REGDOM_SET_BY_CORE:
3992		r = reg_set_rd_core(rd);
3993		break;
3994	case NL80211_REGDOM_SET_BY_USER:
3995		cfg80211_save_user_regdom(rd);
3996		r = reg_set_rd_user(rd, lr);
3997		user_reset = true;
3998		break;
3999	case NL80211_REGDOM_SET_BY_DRIVER:
4000		r = reg_set_rd_driver(rd, lr);
4001		break;
4002	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
4003		r = reg_set_rd_country_ie(rd, lr);
4004		break;
4005	default:
4006		WARN(1, "invalid initiator %d\n", lr->initiator);
4007		kfree(rd);
4008		return -EINVAL;
4009	}
4010
4011	if (r) {
4012		switch (r) {
4013		case -EALREADY:
4014			reg_set_request_processed();
4015			break;
4016		default:
4017			/* Back to world regulatory in case of errors */
4018			restore_regulatory_settings(user_reset, false);
4019		}
4020
4021		kfree(rd);
4022		return r;
4023	}
4024
4025	/* This would make this whole thing pointless */
4026	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4027		return -EINVAL;
4028
4029	/* update all wiphys now with the new established regulatory domain */
4030	update_all_wiphy_regulatory(lr->initiator);
4031
4032	print_regdomain(get_cfg80211_regdom());
4033
4034	nl80211_send_reg_change_event(lr);
4035
4036	reg_set_request_processed();
4037
4038	return 0;
4039}
4040
4041static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4042				       struct ieee80211_regdomain *rd)
4043{
4044	const struct ieee80211_regdomain *regd;
4045	const struct ieee80211_regdomain *prev_regd;
4046	struct cfg80211_registered_device *rdev;
4047
4048	if (WARN_ON(!wiphy || !rd))
4049		return -EINVAL;
4050
4051	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4052		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4053		return -EPERM;
4054
4055	if (WARN(!is_valid_rd(rd),
4056		 "Invalid regulatory domain detected: %c%c\n",
4057		 rd->alpha2[0], rd->alpha2[1])) {
4058		print_regdomain_info(rd);
4059		return -EINVAL;
4060	}
4061
4062	regd = reg_copy_regd(rd);
4063	if (IS_ERR(regd))
4064		return PTR_ERR(regd);
4065
4066	rdev = wiphy_to_rdev(wiphy);
4067
4068	spin_lock(&reg_requests_lock);
4069	prev_regd = rdev->requested_regd;
4070	rdev->requested_regd = regd;
4071	spin_unlock(&reg_requests_lock);
4072
4073	kfree(prev_regd);
4074	return 0;
4075}
4076
4077int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4078			      struct ieee80211_regdomain *rd)
4079{
4080	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4081
4082	if (ret)
4083		return ret;
4084
4085	schedule_work(&reg_work);
4086	return 0;
4087}
4088EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4089
4090int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4091				   struct ieee80211_regdomain *rd)
4092{
4093	int ret;
4094
4095	ASSERT_RTNL();
4096
4097	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4098	if (ret)
4099		return ret;
4100
4101	/* process the request immediately */
4102	reg_process_self_managed_hint(wiphy);
4103	reg_check_channels();
4104	return 0;
4105}
4106EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4107
4108void wiphy_regulatory_register(struct wiphy *wiphy)
4109{
4110	struct regulatory_request *lr = get_last_request();
4111
4112	/* self-managed devices ignore beacon hints and country IE */
4113	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4114		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4115					   REGULATORY_COUNTRY_IE_IGNORE;
4116
4117		/*
4118		 * The last request may have been received before this
4119		 * registration call. Call the driver notifier if
4120		 * initiator is USER.
4121		 */
4122		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4123			reg_call_notifier(wiphy, lr);
4124	}
4125
4126	if (!reg_dev_ignore_cell_hint(wiphy))
4127		reg_num_devs_support_basehint++;
4128
 
4129	wiphy_update_regulatory(wiphy, lr->initiator);
4130	wiphy_all_share_dfs_chan_state(wiphy);
4131	reg_process_self_managed_hints();
4132}
4133
4134void wiphy_regulatory_deregister(struct wiphy *wiphy)
4135{
4136	struct wiphy *request_wiphy = NULL;
4137	struct regulatory_request *lr;
4138
4139	lr = get_last_request();
4140
4141	if (!reg_dev_ignore_cell_hint(wiphy))
4142		reg_num_devs_support_basehint--;
4143
4144	rcu_free_regdom(get_wiphy_regdom(wiphy));
4145	RCU_INIT_POINTER(wiphy->regd, NULL);
4146
4147	if (lr)
4148		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4149
4150	if (!request_wiphy || request_wiphy != wiphy)
4151		return;
4152
4153	lr->wiphy_idx = WIPHY_IDX_INVALID;
4154	lr->country_ie_env = ENVIRON_ANY;
4155}
4156
4157/*
4158 * See FCC notices for UNII band definitions
4159 *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4160 *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4161 */
4162int cfg80211_get_unii(int freq)
4163{
4164	/* UNII-1 */
4165	if (freq >= 5150 && freq <= 5250)
4166		return 0;
4167
4168	/* UNII-2A */
4169	if (freq > 5250 && freq <= 5350)
4170		return 1;
4171
4172	/* UNII-2B */
4173	if (freq > 5350 && freq <= 5470)
4174		return 2;
4175
4176	/* UNII-2C */
4177	if (freq > 5470 && freq <= 5725)
4178		return 3;
4179
4180	/* UNII-3 */
4181	if (freq > 5725 && freq <= 5825)
4182		return 4;
4183
4184	/* UNII-5 */
4185	if (freq > 5925 && freq <= 6425)
4186		return 5;
4187
4188	/* UNII-6 */
4189	if (freq > 6425 && freq <= 6525)
4190		return 6;
4191
4192	/* UNII-7 */
4193	if (freq > 6525 && freq <= 6875)
4194		return 7;
4195
4196	/* UNII-8 */
4197	if (freq > 6875 && freq <= 7125)
4198		return 8;
4199
4200	return -EINVAL;
4201}
4202
4203bool regulatory_indoor_allowed(void)
4204{
4205	return reg_is_indoor;
4206}
4207
4208bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4209{
4210	const struct ieee80211_regdomain *regd = NULL;
4211	const struct ieee80211_regdomain *wiphy_regd = NULL;
4212	bool pre_cac_allowed = false;
4213
4214	rcu_read_lock();
 
 
4215
4216	regd = rcu_dereference(cfg80211_regdomain);
4217	wiphy_regd = rcu_dereference(wiphy->regd);
4218	if (!wiphy_regd) {
4219		if (regd->dfs_region == NL80211_DFS_ETSI)
4220			pre_cac_allowed = true;
4221
4222		rcu_read_unlock();
4223
4224		return pre_cac_allowed;
4225	}
4226
4227	if (regd->dfs_region == wiphy_regd->dfs_region &&
4228	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4229		pre_cac_allowed = true;
4230
4231	rcu_read_unlock();
4232
4233	return pre_cac_allowed;
4234}
4235EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4236
4237static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4238{
4239	struct wireless_dev *wdev;
4240	/* If we finished CAC or received radar, we should end any
4241	 * CAC running on the same channels.
4242	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4243	 * either all channels are available - those the CAC_FINISHED
4244	 * event has effected another wdev state, or there is a channel
4245	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4246	 * event has effected another wdev state.
4247	 * In both cases we should end the CAC on the wdev.
4248	 */
4249	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4250		struct cfg80211_chan_def *chandef;
4251
4252		if (!wdev->cac_started)
4253			continue;
4254
4255		/* FIXME: radar detection is tied to link 0 for now */
4256		chandef = wdev_chandef(wdev, 0);
4257		if (!chandef)
4258			continue;
4259
4260		if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4261			rdev_end_cac(rdev, wdev->netdev);
4262	}
4263}
4264
4265void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4266				    struct cfg80211_chan_def *chandef,
4267				    enum nl80211_dfs_state dfs_state,
4268				    enum nl80211_radar_event event)
4269{
4270	struct cfg80211_registered_device *rdev;
4271
4272	ASSERT_RTNL();
4273
4274	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4275		return;
4276
4277	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4278		if (wiphy == &rdev->wiphy)
4279			continue;
4280
4281		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4282			continue;
4283
4284		if (!ieee80211_get_channel(&rdev->wiphy,
4285					   chandef->chan->center_freq))
4286			continue;
4287
4288		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4289
4290		if (event == NL80211_RADAR_DETECTED ||
4291		    event == NL80211_RADAR_CAC_FINISHED) {
4292			cfg80211_sched_dfs_chan_update(rdev);
4293			cfg80211_check_and_end_cac(rdev);
4294		}
4295
4296		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4297	}
4298}
4299
4300static int __init regulatory_init_db(void)
4301{
4302	int err;
4303
4304	/*
4305	 * It's possible that - due to other bugs/issues - cfg80211
4306	 * never called regulatory_init() below, or that it failed;
4307	 * in that case, don't try to do any further work here as
4308	 * it's doomed to lead to crashes.
4309	 */
4310	if (IS_ERR_OR_NULL(reg_pdev))
4311		return -EINVAL;
4312
4313	err = load_builtin_regdb_keys();
4314	if (err) {
4315		platform_device_unregister(reg_pdev);
4316		return err;
4317	}
4318
4319	/* We always try to get an update for the static regdomain */
4320	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4321	if (err) {
4322		if (err == -ENOMEM) {
4323			platform_device_unregister(reg_pdev);
4324			return err;
4325		}
4326		/*
4327		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4328		 * memory which is handled and propagated appropriately above
4329		 * but it can also fail during a netlink_broadcast() or during
4330		 * early boot for call_usermodehelper(). For now treat these
4331		 * errors as non-fatal.
4332		 */
4333		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4334	}
4335
4336	/*
4337	 * Finally, if the user set the module parameter treat it
4338	 * as a user hint.
4339	 */
4340	if (!is_world_regdom(ieee80211_regdom))
4341		regulatory_hint_user(ieee80211_regdom,
4342				     NL80211_USER_REG_HINT_USER);
4343
4344	return 0;
4345}
4346#ifndef MODULE
4347late_initcall(regulatory_init_db);
4348#endif
4349
4350int __init regulatory_init(void)
4351{
4352	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4353	if (IS_ERR(reg_pdev))
4354		return PTR_ERR(reg_pdev);
4355
4356	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4357
4358	user_alpha2[0] = '9';
4359	user_alpha2[1] = '7';
4360
4361#ifdef MODULE
4362	return regulatory_init_db();
4363#else
4364	return 0;
4365#endif
4366}
4367
4368void regulatory_exit(void)
4369{
4370	struct regulatory_request *reg_request, *tmp;
4371	struct reg_beacon *reg_beacon, *btmp;
4372
4373	cancel_work_sync(&reg_work);
4374	cancel_crda_timeout_sync();
4375	cancel_delayed_work_sync(&reg_check_chans);
4376
4377	/* Lock to suppress warnings */
4378	rtnl_lock();
4379	reset_regdomains(true, NULL);
4380	rtnl_unlock();
4381
4382	dev_set_uevent_suppress(&reg_pdev->dev, true);
4383
4384	platform_device_unregister(reg_pdev);
4385
4386	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4387		list_del(&reg_beacon->list);
4388		kfree(reg_beacon);
4389	}
4390
4391	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4392		list_del(&reg_beacon->list);
4393		kfree(reg_beacon);
4394	}
4395
4396	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4397		list_del(&reg_request->list);
4398		kfree(reg_request);
4399	}
4400
4401	if (!IS_ERR_OR_NULL(regdb))
4402		kfree(regdb);
4403	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4404		kfree(cfg80211_user_regdom);
4405
4406	free_regdb_keyring();
4407}