Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2#ifndef _LINUX_XARRAY_H
   3#define _LINUX_XARRAY_H
   4/*
   5 * eXtensible Arrays
   6 * Copyright (c) 2017 Microsoft Corporation
   7 * Author: Matthew Wilcox <willy@infradead.org>
   8 *
   9 * See Documentation/core-api/xarray.rst for how to use the XArray.
  10 */
  11
  12#include <linux/bitmap.h>
  13#include <linux/bug.h>
  14#include <linux/compiler.h>
  15#include <linux/gfp.h>
  16#include <linux/kconfig.h>
  17#include <linux/kernel.h>
  18#include <linux/rcupdate.h>
  19#include <linux/sched/mm.h>
  20#include <linux/spinlock.h>
  21#include <linux/types.h>
  22
  23/*
  24 * The bottom two bits of the entry determine how the XArray interprets
  25 * the contents:
  26 *
  27 * 00: Pointer entry
  28 * 10: Internal entry
  29 * x1: Value entry or tagged pointer
  30 *
  31 * Attempting to store internal entries in the XArray is a bug.
  32 *
  33 * Most internal entries are pointers to the next node in the tree.
  34 * The following internal entries have a special meaning:
  35 *
  36 * 0-62: Sibling entries
  37 * 256: Retry entry
  38 * 257: Zero entry
  39 *
  40 * Errors are also represented as internal entries, but use the negative
  41 * space (-4094 to -2).  They're never stored in the slots array; only
  42 * returned by the normal API.
  43 */
  44
  45#define BITS_PER_XA_VALUE	(BITS_PER_LONG - 1)
  46
  47/**
  48 * xa_mk_value() - Create an XArray entry from an integer.
  49 * @v: Value to store in XArray.
  50 *
  51 * Context: Any context.
  52 * Return: An entry suitable for storing in the XArray.
  53 */
  54static inline void *xa_mk_value(unsigned long v)
  55{
  56	WARN_ON((long)v < 0);
  57	return (void *)((v << 1) | 1);
  58}
  59
  60/**
  61 * xa_to_value() - Get value stored in an XArray entry.
  62 * @entry: XArray entry.
  63 *
  64 * Context: Any context.
  65 * Return: The value stored in the XArray entry.
  66 */
  67static inline unsigned long xa_to_value(const void *entry)
  68{
  69	return (unsigned long)entry >> 1;
  70}
  71
  72/**
  73 * xa_is_value() - Determine if an entry is a value.
  74 * @entry: XArray entry.
  75 *
  76 * Context: Any context.
  77 * Return: True if the entry is a value, false if it is a pointer.
  78 */
  79static inline bool xa_is_value(const void *entry)
  80{
  81	return (unsigned long)entry & 1;
  82}
  83
  84/**
  85 * xa_tag_pointer() - Create an XArray entry for a tagged pointer.
  86 * @p: Plain pointer.
  87 * @tag: Tag value (0, 1 or 3).
  88 *
  89 * If the user of the XArray prefers, they can tag their pointers instead
  90 * of storing value entries.  Three tags are available (0, 1 and 3).
  91 * These are distinct from the xa_mark_t as they are not replicated up
  92 * through the array and cannot be searched for.
  93 *
  94 * Context: Any context.
  95 * Return: An XArray entry.
  96 */
  97static inline void *xa_tag_pointer(void *p, unsigned long tag)
  98{
  99	return (void *)((unsigned long)p | tag);
 100}
 101
 102/**
 103 * xa_untag_pointer() - Turn an XArray entry into a plain pointer.
 104 * @entry: XArray entry.
 105 *
 106 * If you have stored a tagged pointer in the XArray, call this function
 107 * to get the untagged version of the pointer.
 108 *
 109 * Context: Any context.
 110 * Return: A pointer.
 111 */
 112static inline void *xa_untag_pointer(void *entry)
 113{
 114	return (void *)((unsigned long)entry & ~3UL);
 115}
 116
 117/**
 118 * xa_pointer_tag() - Get the tag stored in an XArray entry.
 119 * @entry: XArray entry.
 120 *
 121 * If you have stored a tagged pointer in the XArray, call this function
 122 * to get the tag of that pointer.
 123 *
 124 * Context: Any context.
 125 * Return: A tag.
 126 */
 127static inline unsigned int xa_pointer_tag(void *entry)
 128{
 129	return (unsigned long)entry & 3UL;
 130}
 131
 132/*
 133 * xa_mk_internal() - Create an internal entry.
 134 * @v: Value to turn into an internal entry.
 135 *
 136 * Internal entries are used for a number of purposes.  Entries 0-255 are
 137 * used for sibling entries (only 0-62 are used by the current code).  256
 138 * is used for the retry entry.  257 is used for the reserved / zero entry.
 139 * Negative internal entries are used to represent errnos.  Node pointers
 140 * are also tagged as internal entries in some situations.
 141 *
 142 * Context: Any context.
 143 * Return: An XArray internal entry corresponding to this value.
 144 */
 145static inline void *xa_mk_internal(unsigned long v)
 146{
 147	return (void *)((v << 2) | 2);
 148}
 149
 150/*
 151 * xa_to_internal() - Extract the value from an internal entry.
 152 * @entry: XArray entry.
 153 *
 154 * Context: Any context.
 155 * Return: The value which was stored in the internal entry.
 156 */
 157static inline unsigned long xa_to_internal(const void *entry)
 158{
 159	return (unsigned long)entry >> 2;
 160}
 161
 162/*
 163 * xa_is_internal() - Is the entry an internal entry?
 164 * @entry: XArray entry.
 165 *
 166 * Context: Any context.
 167 * Return: %true if the entry is an internal entry.
 168 */
 169static inline bool xa_is_internal(const void *entry)
 170{
 171	return ((unsigned long)entry & 3) == 2;
 172}
 173
 174#define XA_ZERO_ENTRY		xa_mk_internal(257)
 175
 176/**
 177 * xa_is_zero() - Is the entry a zero entry?
 178 * @entry: Entry retrieved from the XArray
 179 *
 180 * The normal API will return NULL as the contents of a slot containing
 181 * a zero entry.  You can only see zero entries by using the advanced API.
 182 *
 183 * Return: %true if the entry is a zero entry.
 184 */
 185static inline bool xa_is_zero(const void *entry)
 186{
 187	return unlikely(entry == XA_ZERO_ENTRY);
 188}
 189
 190/**
 191 * xa_is_err() - Report whether an XArray operation returned an error
 192 * @entry: Result from calling an XArray function
 193 *
 194 * If an XArray operation cannot complete an operation, it will return
 195 * a special value indicating an error.  This function tells you
 196 * whether an error occurred; xa_err() tells you which error occurred.
 197 *
 198 * Context: Any context.
 199 * Return: %true if the entry indicates an error.
 200 */
 201static inline bool xa_is_err(const void *entry)
 202{
 203	return unlikely(xa_is_internal(entry) &&
 204			entry >= xa_mk_internal(-MAX_ERRNO));
 205}
 206
 207/**
 208 * xa_err() - Turn an XArray result into an errno.
 209 * @entry: Result from calling an XArray function.
 210 *
 211 * If an XArray operation cannot complete an operation, it will return
 212 * a special pointer value which encodes an errno.  This function extracts
 213 * the errno from the pointer value, or returns 0 if the pointer does not
 214 * represent an errno.
 215 *
 216 * Context: Any context.
 217 * Return: A negative errno or 0.
 218 */
 219static inline int xa_err(void *entry)
 220{
 221	/* xa_to_internal() would not do sign extension. */
 222	if (xa_is_err(entry))
 223		return (long)entry >> 2;
 224	return 0;
 225}
 226
 227/**
 228 * struct xa_limit - Represents a range of IDs.
 229 * @min: The lowest ID to allocate (inclusive).
 230 * @max: The maximum ID to allocate (inclusive).
 231 *
 232 * This structure is used either directly or via the XA_LIMIT() macro
 233 * to communicate the range of IDs that are valid for allocation.
 234 * Three common ranges are predefined for you:
 235 * * xa_limit_32b	- [0 - UINT_MAX]
 236 * * xa_limit_31b	- [0 - INT_MAX]
 237 * * xa_limit_16b	- [0 - USHRT_MAX]
 238 */
 239struct xa_limit {
 240	u32 max;
 241	u32 min;
 242};
 243
 244#define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max }
 245
 246#define xa_limit_32b	XA_LIMIT(0, UINT_MAX)
 247#define xa_limit_31b	XA_LIMIT(0, INT_MAX)
 248#define xa_limit_16b	XA_LIMIT(0, USHRT_MAX)
 249
 250typedef unsigned __bitwise xa_mark_t;
 251#define XA_MARK_0		((__force xa_mark_t)0U)
 252#define XA_MARK_1		((__force xa_mark_t)1U)
 253#define XA_MARK_2		((__force xa_mark_t)2U)
 254#define XA_PRESENT		((__force xa_mark_t)8U)
 255#define XA_MARK_MAX		XA_MARK_2
 256#define XA_FREE_MARK		XA_MARK_0
 257
 258enum xa_lock_type {
 259	XA_LOCK_IRQ = 1,
 260	XA_LOCK_BH = 2,
 261};
 262
 263/*
 264 * Values for xa_flags.  The radix tree stores its GFP flags in the xa_flags,
 265 * and we remain compatible with that.
 266 */
 267#define XA_FLAGS_LOCK_IRQ	((__force gfp_t)XA_LOCK_IRQ)
 268#define XA_FLAGS_LOCK_BH	((__force gfp_t)XA_LOCK_BH)
 269#define XA_FLAGS_TRACK_FREE	((__force gfp_t)4U)
 270#define XA_FLAGS_ZERO_BUSY	((__force gfp_t)8U)
 271#define XA_FLAGS_ALLOC_WRAPPED	((__force gfp_t)16U)
 272#define XA_FLAGS_ACCOUNT	((__force gfp_t)32U)
 273#define XA_FLAGS_MARK(mark)	((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \
 274						(__force unsigned)(mark)))
 275
 276/* ALLOC is for a normal 0-based alloc.  ALLOC1 is for an 1-based alloc */
 277#define XA_FLAGS_ALLOC	(XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK))
 278#define XA_FLAGS_ALLOC1	(XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY)
 279
 280/**
 281 * struct xarray - The anchor of the XArray.
 282 * @xa_lock: Lock that protects the contents of the XArray.
 283 *
 284 * To use the xarray, define it statically or embed it in your data structure.
 285 * It is a very small data structure, so it does not usually make sense to
 286 * allocate it separately and keep a pointer to it in your data structure.
 287 *
 288 * You may use the xa_lock to protect your own data structures as well.
 289 */
 290/*
 291 * If all of the entries in the array are NULL, @xa_head is a NULL pointer.
 292 * If the only non-NULL entry in the array is at index 0, @xa_head is that
 293 * entry.  If any other entry in the array is non-NULL, @xa_head points
 294 * to an @xa_node.
 295 */
 296struct xarray {
 297	spinlock_t	xa_lock;
 298/* private: The rest of the data structure is not to be used directly. */
 299	gfp_t		xa_flags;
 300	void __rcu *	xa_head;
 301};
 302
 303#define XARRAY_INIT(name, flags) {				\
 304	.xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock),		\
 305	.xa_flags = flags,					\
 306	.xa_head = NULL,					\
 307}
 308
 309/**
 310 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags.
 311 * @name: A string that names your XArray.
 312 * @flags: XA_FLAG values.
 313 *
 314 * This is intended for file scope definitions of XArrays.  It declares
 315 * and initialises an empty XArray with the chosen name and flags.  It is
 316 * equivalent to calling xa_init_flags() on the array, but it does the
 317 * initialisation at compiletime instead of runtime.
 318 */
 319#define DEFINE_XARRAY_FLAGS(name, flags)				\
 320	struct xarray name = XARRAY_INIT(name, flags)
 321
 322/**
 323 * DEFINE_XARRAY() - Define an XArray.
 324 * @name: A string that names your XArray.
 325 *
 326 * This is intended for file scope definitions of XArrays.  It declares
 327 * and initialises an empty XArray with the chosen name.  It is equivalent
 328 * to calling xa_init() on the array, but it does the initialisation at
 329 * compiletime instead of runtime.
 330 */
 331#define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0)
 332
 333/**
 334 * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0.
 335 * @name: A string that names your XArray.
 336 *
 337 * This is intended for file scope definitions of allocating XArrays.
 338 * See also DEFINE_XARRAY().
 339 */
 340#define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC)
 341
 342/**
 343 * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1.
 344 * @name: A string that names your XArray.
 345 *
 346 * This is intended for file scope definitions of allocating XArrays.
 347 * See also DEFINE_XARRAY().
 348 */
 349#define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1)
 350
 351void *xa_load(struct xarray *, unsigned long index);
 352void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
 353void *xa_erase(struct xarray *, unsigned long index);
 354void *xa_store_range(struct xarray *, unsigned long first, unsigned long last,
 355			void *entry, gfp_t);
 356bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t);
 357void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
 358void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
 359void *xa_find(struct xarray *xa, unsigned long *index,
 360		unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
 361void *xa_find_after(struct xarray *xa, unsigned long *index,
 362		unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
 363unsigned int xa_extract(struct xarray *, void **dst, unsigned long start,
 364		unsigned long max, unsigned int n, xa_mark_t);
 365void xa_destroy(struct xarray *);
 366
 367/**
 368 * xa_init_flags() - Initialise an empty XArray with flags.
 369 * @xa: XArray.
 370 * @flags: XA_FLAG values.
 371 *
 372 * If you need to initialise an XArray with special flags (eg you need
 373 * to take the lock from interrupt context), use this function instead
 374 * of xa_init().
 375 *
 376 * Context: Any context.
 377 */
 378static inline void xa_init_flags(struct xarray *xa, gfp_t flags)
 379{
 380	spin_lock_init(&xa->xa_lock);
 381	xa->xa_flags = flags;
 382	xa->xa_head = NULL;
 383}
 384
 385/**
 386 * xa_init() - Initialise an empty XArray.
 387 * @xa: XArray.
 388 *
 389 * An empty XArray is full of NULL entries.
 390 *
 391 * Context: Any context.
 392 */
 393static inline void xa_init(struct xarray *xa)
 394{
 395	xa_init_flags(xa, 0);
 396}
 397
 398/**
 399 * xa_empty() - Determine if an array has any present entries.
 400 * @xa: XArray.
 401 *
 402 * Context: Any context.
 403 * Return: %true if the array contains only NULL pointers.
 404 */
 405static inline bool xa_empty(const struct xarray *xa)
 406{
 407	return xa->xa_head == NULL;
 408}
 409
 410/**
 411 * xa_marked() - Inquire whether any entry in this array has a mark set
 412 * @xa: Array
 413 * @mark: Mark value
 414 *
 415 * Context: Any context.
 416 * Return: %true if any entry has this mark set.
 417 */
 418static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark)
 419{
 420	return xa->xa_flags & XA_FLAGS_MARK(mark);
 421}
 422
 423/**
 424 * xa_for_each_range() - Iterate over a portion of an XArray.
 425 * @xa: XArray.
 426 * @index: Index of @entry.
 427 * @entry: Entry retrieved from array.
 428 * @start: First index to retrieve from array.
 429 * @last: Last index to retrieve from array.
 430 *
 431 * During the iteration, @entry will have the value of the entry stored
 432 * in @xa at @index.  You may modify @index during the iteration if you
 433 * want to skip or reprocess indices.  It is safe to modify the array
 434 * during the iteration.  At the end of the iteration, @entry will be set
 435 * to NULL and @index will have a value less than or equal to max.
 436 *
 437 * xa_for_each_range() is O(n.log(n)) while xas_for_each() is O(n).  You have
 438 * to handle your own locking with xas_for_each(), and if you have to unlock
 439 * after each iteration, it will also end up being O(n.log(n)).
 440 * xa_for_each_range() will spin if it hits a retry entry; if you intend to
 441 * see retry entries, you should use the xas_for_each() iterator instead.
 442 * The xas_for_each() iterator will expand into more inline code than
 443 * xa_for_each_range().
 444 *
 445 * Context: Any context.  Takes and releases the RCU lock.
 446 */
 447#define xa_for_each_range(xa, index, entry, start, last)		\
 448	for (index = start,						\
 449	     entry = xa_find(xa, &index, last, XA_PRESENT);		\
 450	     entry;							\
 451	     entry = xa_find_after(xa, &index, last, XA_PRESENT))
 452
 453/**
 454 * xa_for_each_start() - Iterate over a portion of an XArray.
 455 * @xa: XArray.
 456 * @index: Index of @entry.
 457 * @entry: Entry retrieved from array.
 458 * @start: First index to retrieve from array.
 459 *
 460 * During the iteration, @entry will have the value of the entry stored
 461 * in @xa at @index.  You may modify @index during the iteration if you
 462 * want to skip or reprocess indices.  It is safe to modify the array
 463 * during the iteration.  At the end of the iteration, @entry will be set
 464 * to NULL and @index will have a value less than or equal to max.
 465 *
 466 * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n).  You have
 467 * to handle your own locking with xas_for_each(), and if you have to unlock
 468 * after each iteration, it will also end up being O(n.log(n)).
 469 * xa_for_each_start() will spin if it hits a retry entry; if you intend to
 470 * see retry entries, you should use the xas_for_each() iterator instead.
 471 * The xas_for_each() iterator will expand into more inline code than
 472 * xa_for_each_start().
 473 *
 474 * Context: Any context.  Takes and releases the RCU lock.
 475 */
 476#define xa_for_each_start(xa, index, entry, start) \
 477	xa_for_each_range(xa, index, entry, start, ULONG_MAX)
 478
 479/**
 480 * xa_for_each() - Iterate over present entries in an XArray.
 481 * @xa: XArray.
 482 * @index: Index of @entry.
 483 * @entry: Entry retrieved from array.
 484 *
 485 * During the iteration, @entry will have the value of the entry stored
 486 * in @xa at @index.  You may modify @index during the iteration if you want
 487 * to skip or reprocess indices.  It is safe to modify the array during the
 488 * iteration.  At the end of the iteration, @entry will be set to NULL and
 489 * @index will have a value less than or equal to max.
 490 *
 491 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n).  You have
 492 * to handle your own locking with xas_for_each(), and if you have to unlock
 493 * after each iteration, it will also end up being O(n.log(n)).  xa_for_each()
 494 * will spin if it hits a retry entry; if you intend to see retry entries,
 495 * you should use the xas_for_each() iterator instead.  The xas_for_each()
 496 * iterator will expand into more inline code than xa_for_each().
 497 *
 498 * Context: Any context.  Takes and releases the RCU lock.
 499 */
 500#define xa_for_each(xa, index, entry) \
 501	xa_for_each_start(xa, index, entry, 0)
 502
 503/**
 504 * xa_for_each_marked() - Iterate over marked entries in an XArray.
 505 * @xa: XArray.
 506 * @index: Index of @entry.
 507 * @entry: Entry retrieved from array.
 508 * @filter: Selection criterion.
 509 *
 510 * During the iteration, @entry will have the value of the entry stored
 511 * in @xa at @index.  The iteration will skip all entries in the array
 512 * which do not match @filter.  You may modify @index during the iteration
 513 * if you want to skip or reprocess indices.  It is safe to modify the array
 514 * during the iteration.  At the end of the iteration, @entry will be set to
 515 * NULL and @index will have a value less than or equal to max.
 516 *
 517 * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n).
 518 * You have to handle your own locking with xas_for_each(), and if you have
 519 * to unlock after each iteration, it will also end up being O(n.log(n)).
 520 * xa_for_each_marked() will spin if it hits a retry entry; if you intend to
 521 * see retry entries, you should use the xas_for_each_marked() iterator
 522 * instead.  The xas_for_each_marked() iterator will expand into more inline
 523 * code than xa_for_each_marked().
 524 *
 525 * Context: Any context.  Takes and releases the RCU lock.
 526 */
 527#define xa_for_each_marked(xa, index, entry, filter) \
 528	for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \
 529	     entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter))
 530
 531#define xa_trylock(xa)		spin_trylock(&(xa)->xa_lock)
 532#define xa_lock(xa)		spin_lock(&(xa)->xa_lock)
 533#define xa_unlock(xa)		spin_unlock(&(xa)->xa_lock)
 534#define xa_lock_bh(xa)		spin_lock_bh(&(xa)->xa_lock)
 535#define xa_unlock_bh(xa)	spin_unlock_bh(&(xa)->xa_lock)
 536#define xa_lock_irq(xa)		spin_lock_irq(&(xa)->xa_lock)
 537#define xa_unlock_irq(xa)	spin_unlock_irq(&(xa)->xa_lock)
 538#define xa_lock_irqsave(xa, flags) \
 539				spin_lock_irqsave(&(xa)->xa_lock, flags)
 540#define xa_unlock_irqrestore(xa, flags) \
 541				spin_unlock_irqrestore(&(xa)->xa_lock, flags)
 542#define xa_lock_nested(xa, subclass) \
 543				spin_lock_nested(&(xa)->xa_lock, subclass)
 544#define xa_lock_bh_nested(xa, subclass) \
 545				spin_lock_bh_nested(&(xa)->xa_lock, subclass)
 546#define xa_lock_irq_nested(xa, subclass) \
 547				spin_lock_irq_nested(&(xa)->xa_lock, subclass)
 548#define xa_lock_irqsave_nested(xa, flags, subclass) \
 549		spin_lock_irqsave_nested(&(xa)->xa_lock, flags, subclass)
 550
 551/*
 552 * Versions of the normal API which require the caller to hold the
 553 * xa_lock.  If the GFP flags allow it, they will drop the lock to
 554 * allocate memory, then reacquire it afterwards.  These functions
 555 * may also re-enable interrupts if the XArray flags indicate the
 556 * locking should be interrupt safe.
 557 */
 558void *__xa_erase(struct xarray *, unsigned long index);
 559void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
 560void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old,
 561		void *entry, gfp_t);
 562int __must_check __xa_insert(struct xarray *, unsigned long index,
 563		void *entry, gfp_t);
 564int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry,
 565		struct xa_limit, gfp_t);
 566int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry,
 567		struct xa_limit, u32 *next, gfp_t);
 568void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
 569void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
 570
 571/**
 572 * xa_store_bh() - Store this entry in the XArray.
 573 * @xa: XArray.
 574 * @index: Index into array.
 575 * @entry: New entry.
 576 * @gfp: Memory allocation flags.
 577 *
 578 * This function is like calling xa_store() except it disables softirqs
 579 * while holding the array lock.
 580 *
 581 * Context: Any context.  Takes and releases the xa_lock while
 582 * disabling softirqs.
 583 * Return: The old entry at this index or xa_err() if an error happened.
 584 */
 585static inline void *xa_store_bh(struct xarray *xa, unsigned long index,
 586		void *entry, gfp_t gfp)
 587{
 588	void *curr;
 589
 590	might_alloc(gfp);
 591	xa_lock_bh(xa);
 592	curr = __xa_store(xa, index, entry, gfp);
 593	xa_unlock_bh(xa);
 594
 595	return curr;
 596}
 597
 598/**
 599 * xa_store_irq() - Store this entry in the XArray.
 600 * @xa: XArray.
 601 * @index: Index into array.
 602 * @entry: New entry.
 603 * @gfp: Memory allocation flags.
 604 *
 605 * This function is like calling xa_store() except it disables interrupts
 606 * while holding the array lock.
 607 *
 608 * Context: Process context.  Takes and releases the xa_lock while
 609 * disabling interrupts.
 610 * Return: The old entry at this index or xa_err() if an error happened.
 611 */
 612static inline void *xa_store_irq(struct xarray *xa, unsigned long index,
 613		void *entry, gfp_t gfp)
 614{
 615	void *curr;
 616
 617	might_alloc(gfp);
 618	xa_lock_irq(xa);
 619	curr = __xa_store(xa, index, entry, gfp);
 620	xa_unlock_irq(xa);
 621
 622	return curr;
 623}
 624
 625/**
 626 * xa_erase_bh() - Erase this entry from the XArray.
 627 * @xa: XArray.
 628 * @index: Index of entry.
 629 *
 630 * After this function returns, loading from @index will return %NULL.
 631 * If the index is part of a multi-index entry, all indices will be erased
 632 * and none of the entries will be part of a multi-index entry.
 633 *
 634 * Context: Any context.  Takes and releases the xa_lock while
 635 * disabling softirqs.
 636 * Return: The entry which used to be at this index.
 637 */
 638static inline void *xa_erase_bh(struct xarray *xa, unsigned long index)
 639{
 640	void *entry;
 641
 642	xa_lock_bh(xa);
 643	entry = __xa_erase(xa, index);
 644	xa_unlock_bh(xa);
 645
 646	return entry;
 647}
 648
 649/**
 650 * xa_erase_irq() - Erase this entry from the XArray.
 651 * @xa: XArray.
 652 * @index: Index of entry.
 653 *
 654 * After this function returns, loading from @index will return %NULL.
 655 * If the index is part of a multi-index entry, all indices will be erased
 656 * and none of the entries will be part of a multi-index entry.
 657 *
 658 * Context: Process context.  Takes and releases the xa_lock while
 659 * disabling interrupts.
 660 * Return: The entry which used to be at this index.
 661 */
 662static inline void *xa_erase_irq(struct xarray *xa, unsigned long index)
 663{
 664	void *entry;
 665
 666	xa_lock_irq(xa);
 667	entry = __xa_erase(xa, index);
 668	xa_unlock_irq(xa);
 669
 670	return entry;
 671}
 672
 673/**
 674 * xa_cmpxchg() - Conditionally replace an entry in the XArray.
 675 * @xa: XArray.
 676 * @index: Index into array.
 677 * @old: Old value to test against.
 678 * @entry: New value to place in array.
 679 * @gfp: Memory allocation flags.
 680 *
 681 * If the entry at @index is the same as @old, replace it with @entry.
 682 * If the return value is equal to @old, then the exchange was successful.
 683 *
 684 * Context: Any context.  Takes and releases the xa_lock.  May sleep
 685 * if the @gfp flags permit.
 686 * Return: The old value at this index or xa_err() if an error happened.
 687 */
 688static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index,
 689			void *old, void *entry, gfp_t gfp)
 690{
 691	void *curr;
 692
 693	might_alloc(gfp);
 694	xa_lock(xa);
 695	curr = __xa_cmpxchg(xa, index, old, entry, gfp);
 696	xa_unlock(xa);
 697
 698	return curr;
 699}
 700
 701/**
 702 * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray.
 703 * @xa: XArray.
 704 * @index: Index into array.
 705 * @old: Old value to test against.
 706 * @entry: New value to place in array.
 707 * @gfp: Memory allocation flags.
 708 *
 709 * This function is like calling xa_cmpxchg() except it disables softirqs
 710 * while holding the array lock.
 711 *
 712 * Context: Any context.  Takes and releases the xa_lock while
 713 * disabling softirqs.  May sleep if the @gfp flags permit.
 714 * Return: The old value at this index or xa_err() if an error happened.
 715 */
 716static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index,
 717			void *old, void *entry, gfp_t gfp)
 718{
 719	void *curr;
 720
 721	might_alloc(gfp);
 722	xa_lock_bh(xa);
 723	curr = __xa_cmpxchg(xa, index, old, entry, gfp);
 724	xa_unlock_bh(xa);
 725
 726	return curr;
 727}
 728
 729/**
 730 * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray.
 731 * @xa: XArray.
 732 * @index: Index into array.
 733 * @old: Old value to test against.
 734 * @entry: New value to place in array.
 735 * @gfp: Memory allocation flags.
 736 *
 737 * This function is like calling xa_cmpxchg() except it disables interrupts
 738 * while holding the array lock.
 739 *
 740 * Context: Process context.  Takes and releases the xa_lock while
 741 * disabling interrupts.  May sleep if the @gfp flags permit.
 742 * Return: The old value at this index or xa_err() if an error happened.
 743 */
 744static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index,
 745			void *old, void *entry, gfp_t gfp)
 746{
 747	void *curr;
 748
 749	might_alloc(gfp);
 750	xa_lock_irq(xa);
 751	curr = __xa_cmpxchg(xa, index, old, entry, gfp);
 752	xa_unlock_irq(xa);
 753
 754	return curr;
 755}
 756
 757/**
 758 * xa_insert() - Store this entry in the XArray unless another entry is
 759 *			already present.
 760 * @xa: XArray.
 761 * @index: Index into array.
 762 * @entry: New entry.
 763 * @gfp: Memory allocation flags.
 764 *
 765 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
 766 * if no entry is present.  Inserting will fail if a reserved entry is
 767 * present, even though loading from this index will return NULL.
 768 *
 769 * Context: Any context.  Takes and releases the xa_lock.  May sleep if
 770 * the @gfp flags permit.
 771 * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
 772 * -ENOMEM if memory could not be allocated.
 773 */
 774static inline int __must_check xa_insert(struct xarray *xa,
 775		unsigned long index, void *entry, gfp_t gfp)
 776{
 777	int err;
 778
 779	might_alloc(gfp);
 780	xa_lock(xa);
 781	err = __xa_insert(xa, index, entry, gfp);
 782	xa_unlock(xa);
 783
 784	return err;
 785}
 786
 787/**
 788 * xa_insert_bh() - Store this entry in the XArray unless another entry is
 789 *			already present.
 790 * @xa: XArray.
 791 * @index: Index into array.
 792 * @entry: New entry.
 793 * @gfp: Memory allocation flags.
 794 *
 795 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
 796 * if no entry is present.  Inserting will fail if a reserved entry is
 797 * present, even though loading from this index will return NULL.
 798 *
 799 * Context: Any context.  Takes and releases the xa_lock while
 800 * disabling softirqs.  May sleep if the @gfp flags permit.
 801 * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
 802 * -ENOMEM if memory could not be allocated.
 803 */
 804static inline int __must_check xa_insert_bh(struct xarray *xa,
 805		unsigned long index, void *entry, gfp_t gfp)
 806{
 807	int err;
 808
 809	might_alloc(gfp);
 810	xa_lock_bh(xa);
 811	err = __xa_insert(xa, index, entry, gfp);
 812	xa_unlock_bh(xa);
 813
 814	return err;
 815}
 816
 817/**
 818 * xa_insert_irq() - Store this entry in the XArray unless another entry is
 819 *			already present.
 820 * @xa: XArray.
 821 * @index: Index into array.
 822 * @entry: New entry.
 823 * @gfp: Memory allocation flags.
 824 *
 825 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
 826 * if no entry is present.  Inserting will fail if a reserved entry is
 827 * present, even though loading from this index will return NULL.
 828 *
 829 * Context: Process context.  Takes and releases the xa_lock while
 830 * disabling interrupts.  May sleep if the @gfp flags permit.
 831 * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
 832 * -ENOMEM if memory could not be allocated.
 833 */
 834static inline int __must_check xa_insert_irq(struct xarray *xa,
 835		unsigned long index, void *entry, gfp_t gfp)
 836{
 837	int err;
 838
 839	might_alloc(gfp);
 840	xa_lock_irq(xa);
 841	err = __xa_insert(xa, index, entry, gfp);
 842	xa_unlock_irq(xa);
 843
 844	return err;
 845}
 846
 847/**
 848 * xa_alloc() - Find somewhere to store this entry in the XArray.
 849 * @xa: XArray.
 850 * @id: Pointer to ID.
 851 * @entry: New entry.
 852 * @limit: Range of ID to allocate.
 853 * @gfp: Memory allocation flags.
 854 *
 855 * Finds an empty entry in @xa between @limit.min and @limit.max,
 856 * stores the index into the @id pointer, then stores the entry at
 857 * that index.  A concurrent lookup will not see an uninitialised @id.
 858 *
 859 * Context: Any context.  Takes and releases the xa_lock.  May sleep if
 860 * the @gfp flags permit.
 861 * Return: 0 on success, -ENOMEM if memory could not be allocated or
 862 * -EBUSY if there are no free entries in @limit.
 863 */
 864static inline __must_check int xa_alloc(struct xarray *xa, u32 *id,
 865		void *entry, struct xa_limit limit, gfp_t gfp)
 866{
 867	int err;
 868
 869	might_alloc(gfp);
 870	xa_lock(xa);
 871	err = __xa_alloc(xa, id, entry, limit, gfp);
 872	xa_unlock(xa);
 873
 874	return err;
 875}
 876
 877/**
 878 * xa_alloc_bh() - Find somewhere to store this entry in the XArray.
 879 * @xa: XArray.
 880 * @id: Pointer to ID.
 881 * @entry: New entry.
 882 * @limit: Range of ID to allocate.
 883 * @gfp: Memory allocation flags.
 884 *
 885 * Finds an empty entry in @xa between @limit.min and @limit.max,
 886 * stores the index into the @id pointer, then stores the entry at
 887 * that index.  A concurrent lookup will not see an uninitialised @id.
 888 *
 889 * Context: Any context.  Takes and releases the xa_lock while
 890 * disabling softirqs.  May sleep if the @gfp flags permit.
 891 * Return: 0 on success, -ENOMEM if memory could not be allocated or
 892 * -EBUSY if there are no free entries in @limit.
 893 */
 894static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id,
 895		void *entry, struct xa_limit limit, gfp_t gfp)
 896{
 897	int err;
 898
 899	might_alloc(gfp);
 900	xa_lock_bh(xa);
 901	err = __xa_alloc(xa, id, entry, limit, gfp);
 902	xa_unlock_bh(xa);
 903
 904	return err;
 905}
 906
 907/**
 908 * xa_alloc_irq() - Find somewhere to store this entry in the XArray.
 909 * @xa: XArray.
 910 * @id: Pointer to ID.
 911 * @entry: New entry.
 912 * @limit: Range of ID to allocate.
 913 * @gfp: Memory allocation flags.
 914 *
 915 * Finds an empty entry in @xa between @limit.min and @limit.max,
 916 * stores the index into the @id pointer, then stores the entry at
 917 * that index.  A concurrent lookup will not see an uninitialised @id.
 918 *
 919 * Context: Process context.  Takes and releases the xa_lock while
 920 * disabling interrupts.  May sleep if the @gfp flags permit.
 921 * Return: 0 on success, -ENOMEM if memory could not be allocated or
 922 * -EBUSY if there are no free entries in @limit.
 923 */
 924static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id,
 925		void *entry, struct xa_limit limit, gfp_t gfp)
 926{
 927	int err;
 928
 929	might_alloc(gfp);
 930	xa_lock_irq(xa);
 931	err = __xa_alloc(xa, id, entry, limit, gfp);
 932	xa_unlock_irq(xa);
 933
 934	return err;
 935}
 936
 937/**
 938 * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
 939 * @xa: XArray.
 940 * @id: Pointer to ID.
 941 * @entry: New entry.
 942 * @limit: Range of allocated ID.
 943 * @next: Pointer to next ID to allocate.
 944 * @gfp: Memory allocation flags.
 945 *
 946 * Finds an empty entry in @xa between @limit.min and @limit.max,
 947 * stores the index into the @id pointer, then stores the entry at
 948 * that index.  A concurrent lookup will not see an uninitialised @id.
 949 * The search for an empty entry will start at @next and will wrap
 950 * around if necessary.
 951 *
 952 * Context: Any context.  Takes and releases the xa_lock.  May sleep if
 953 * the @gfp flags permit.
 954 * Return: 0 if the allocation succeeded without wrapping.  1 if the
 955 * allocation succeeded after wrapping, -ENOMEM if memory could not be
 956 * allocated or -EBUSY if there are no free entries in @limit.
 957 */
 958static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
 959		struct xa_limit limit, u32 *next, gfp_t gfp)
 960{
 961	int err;
 962
 963	might_alloc(gfp);
 964	xa_lock(xa);
 965	err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
 966	xa_unlock(xa);
 967
 968	return err;
 969}
 970
 971/**
 972 * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray.
 973 * @xa: XArray.
 974 * @id: Pointer to ID.
 975 * @entry: New entry.
 976 * @limit: Range of allocated ID.
 977 * @next: Pointer to next ID to allocate.
 978 * @gfp: Memory allocation flags.
 979 *
 980 * Finds an empty entry in @xa between @limit.min and @limit.max,
 981 * stores the index into the @id pointer, then stores the entry at
 982 * that index.  A concurrent lookup will not see an uninitialised @id.
 983 * The search for an empty entry will start at @next and will wrap
 984 * around if necessary.
 985 *
 986 * Context: Any context.  Takes and releases the xa_lock while
 987 * disabling softirqs.  May sleep if the @gfp flags permit.
 988 * Return: 0 if the allocation succeeded without wrapping.  1 if the
 989 * allocation succeeded after wrapping, -ENOMEM if memory could not be
 990 * allocated or -EBUSY if there are no free entries in @limit.
 991 */
 992static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry,
 993		struct xa_limit limit, u32 *next, gfp_t gfp)
 994{
 995	int err;
 996
 997	might_alloc(gfp);
 998	xa_lock_bh(xa);
 999	err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
1000	xa_unlock_bh(xa);
1001
1002	return err;
1003}
1004
1005/**
1006 * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray.
1007 * @xa: XArray.
1008 * @id: Pointer to ID.
1009 * @entry: New entry.
1010 * @limit: Range of allocated ID.
1011 * @next: Pointer to next ID to allocate.
1012 * @gfp: Memory allocation flags.
1013 *
1014 * Finds an empty entry in @xa between @limit.min and @limit.max,
1015 * stores the index into the @id pointer, then stores the entry at
1016 * that index.  A concurrent lookup will not see an uninitialised @id.
1017 * The search for an empty entry will start at @next and will wrap
1018 * around if necessary.
1019 *
1020 * Context: Process context.  Takes and releases the xa_lock while
1021 * disabling interrupts.  May sleep if the @gfp flags permit.
1022 * Return: 0 if the allocation succeeded without wrapping.  1 if the
1023 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1024 * allocated or -EBUSY if there are no free entries in @limit.
1025 */
1026static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry,
1027		struct xa_limit limit, u32 *next, gfp_t gfp)
1028{
1029	int err;
1030
1031	might_alloc(gfp);
1032	xa_lock_irq(xa);
1033	err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
1034	xa_unlock_irq(xa);
1035
1036	return err;
1037}
1038
1039/**
1040 * xa_reserve() - Reserve this index in the XArray.
1041 * @xa: XArray.
1042 * @index: Index into array.
1043 * @gfp: Memory allocation flags.
1044 *
1045 * Ensures there is somewhere to store an entry at @index in the array.
1046 * If there is already something stored at @index, this function does
1047 * nothing.  If there was nothing there, the entry is marked as reserved.
1048 * Loading from a reserved entry returns a %NULL pointer.
1049 *
1050 * If you do not use the entry that you have reserved, call xa_release()
1051 * or xa_erase() to free any unnecessary memory.
1052 *
1053 * Context: Any context.  Takes and releases the xa_lock.
1054 * May sleep if the @gfp flags permit.
1055 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1056 */
1057static inline __must_check
1058int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp)
1059{
1060	return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1061}
1062
1063/**
1064 * xa_reserve_bh() - Reserve this index in the XArray.
1065 * @xa: XArray.
1066 * @index: Index into array.
1067 * @gfp: Memory allocation flags.
1068 *
1069 * A softirq-disabling version of xa_reserve().
1070 *
1071 * Context: Any context.  Takes and releases the xa_lock while
1072 * disabling softirqs.
1073 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1074 */
1075static inline __must_check
1076int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp)
1077{
1078	return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1079}
1080
1081/**
1082 * xa_reserve_irq() - Reserve this index in the XArray.
1083 * @xa: XArray.
1084 * @index: Index into array.
1085 * @gfp: Memory allocation flags.
1086 *
1087 * An interrupt-disabling version of xa_reserve().
1088 *
1089 * Context: Process context.  Takes and releases the xa_lock while
1090 * disabling interrupts.
1091 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1092 */
1093static inline __must_check
1094int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp)
1095{
1096	return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1097}
1098
1099/**
1100 * xa_release() - Release a reserved entry.
1101 * @xa: XArray.
1102 * @index: Index of entry.
1103 *
1104 * After calling xa_reserve(), you can call this function to release the
1105 * reservation.  If the entry at @index has been stored to, this function
1106 * will do nothing.
1107 */
1108static inline void xa_release(struct xarray *xa, unsigned long index)
1109{
1110	xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0);
1111}
1112
1113/* Everything below here is the Advanced API.  Proceed with caution. */
1114
1115/*
1116 * The xarray is constructed out of a set of 'chunks' of pointers.  Choosing
1117 * the best chunk size requires some tradeoffs.  A power of two recommends
1118 * itself so that we can walk the tree based purely on shifts and masks.
1119 * Generally, the larger the better; as the number of slots per level of the
1120 * tree increases, the less tall the tree needs to be.  But that needs to be
1121 * balanced against the memory consumption of each node.  On a 64-bit system,
1122 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page.  If we
1123 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page.
1124 */
1125#ifndef XA_CHUNK_SHIFT
1126#define XA_CHUNK_SHIFT		(CONFIG_BASE_SMALL ? 4 : 6)
1127#endif
1128#define XA_CHUNK_SIZE		(1UL << XA_CHUNK_SHIFT)
1129#define XA_CHUNK_MASK		(XA_CHUNK_SIZE - 1)
1130#define XA_MAX_MARKS		3
1131#define XA_MARK_LONGS		DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG)
1132
1133/*
1134 * @count is the count of every non-NULL element in the ->slots array
1135 * whether that is a value entry, a retry entry, a user pointer,
1136 * a sibling entry or a pointer to the next level of the tree.
1137 * @nr_values is the count of every element in ->slots which is
1138 * either a value entry or a sibling of a value entry.
1139 */
1140struct xa_node {
1141	unsigned char	shift;		/* Bits remaining in each slot */
1142	unsigned char	offset;		/* Slot offset in parent */
1143	unsigned char	count;		/* Total entry count */
1144	unsigned char	nr_values;	/* Value entry count */
1145	struct xa_node __rcu *parent;	/* NULL at top of tree */
1146	struct xarray	*array;		/* The array we belong to */
1147	union {
1148		struct list_head private_list;	/* For tree user */
1149		struct rcu_head	rcu_head;	/* Used when freeing node */
1150	};
1151	void __rcu	*slots[XA_CHUNK_SIZE];
1152	union {
1153		unsigned long	tags[XA_MAX_MARKS][XA_MARK_LONGS];
1154		unsigned long	marks[XA_MAX_MARKS][XA_MARK_LONGS];
1155	};
1156};
1157
1158void xa_dump(const struct xarray *);
1159void xa_dump_node(const struct xa_node *);
1160
1161#ifdef XA_DEBUG
1162#define XA_BUG_ON(xa, x) do {					\
1163		if (x) {					\
1164			xa_dump(xa);				\
1165			BUG();					\
1166		}						\
1167	} while (0)
1168#define XA_NODE_BUG_ON(node, x) do {				\
1169		if (x) {					\
1170			if (node) xa_dump_node(node);		\
1171			BUG();					\
1172		}						\
1173	} while (0)
1174#else
1175#define XA_BUG_ON(xa, x)	do { } while (0)
1176#define XA_NODE_BUG_ON(node, x)	do { } while (0)
1177#endif
1178
1179/* Private */
1180static inline void *xa_head(const struct xarray *xa)
1181{
1182	return rcu_dereference_check(xa->xa_head,
1183						lockdep_is_held(&xa->xa_lock));
1184}
1185
1186/* Private */
1187static inline void *xa_head_locked(const struct xarray *xa)
1188{
1189	return rcu_dereference_protected(xa->xa_head,
1190						lockdep_is_held(&xa->xa_lock));
1191}
1192
1193/* Private */
1194static inline void *xa_entry(const struct xarray *xa,
1195				const struct xa_node *node, unsigned int offset)
1196{
1197	XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1198	return rcu_dereference_check(node->slots[offset],
1199						lockdep_is_held(&xa->xa_lock));
1200}
1201
1202/* Private */
1203static inline void *xa_entry_locked(const struct xarray *xa,
1204				const struct xa_node *node, unsigned int offset)
1205{
1206	XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1207	return rcu_dereference_protected(node->slots[offset],
1208						lockdep_is_held(&xa->xa_lock));
1209}
1210
1211/* Private */
1212static inline struct xa_node *xa_parent(const struct xarray *xa,
1213					const struct xa_node *node)
1214{
1215	return rcu_dereference_check(node->parent,
1216						lockdep_is_held(&xa->xa_lock));
1217}
1218
1219/* Private */
1220static inline struct xa_node *xa_parent_locked(const struct xarray *xa,
1221					const struct xa_node *node)
1222{
1223	return rcu_dereference_protected(node->parent,
1224						lockdep_is_held(&xa->xa_lock));
1225}
1226
1227/* Private */
1228static inline void *xa_mk_node(const struct xa_node *node)
1229{
1230	return (void *)((unsigned long)node | 2);
1231}
1232
1233/* Private */
1234static inline struct xa_node *xa_to_node(const void *entry)
1235{
1236	return (struct xa_node *)((unsigned long)entry - 2);
1237}
1238
1239/* Private */
1240static inline bool xa_is_node(const void *entry)
1241{
1242	return xa_is_internal(entry) && (unsigned long)entry > 4096;
1243}
1244
1245/* Private */
1246static inline void *xa_mk_sibling(unsigned int offset)
1247{
1248	return xa_mk_internal(offset);
1249}
1250
1251/* Private */
1252static inline unsigned long xa_to_sibling(const void *entry)
1253{
1254	return xa_to_internal(entry);
1255}
1256
1257/**
1258 * xa_is_sibling() - Is the entry a sibling entry?
1259 * @entry: Entry retrieved from the XArray
1260 *
1261 * Return: %true if the entry is a sibling entry.
1262 */
1263static inline bool xa_is_sibling(const void *entry)
1264{
1265	return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) &&
1266		(entry < xa_mk_sibling(XA_CHUNK_SIZE - 1));
1267}
1268
1269#define XA_RETRY_ENTRY		xa_mk_internal(256)
1270
1271/**
1272 * xa_is_retry() - Is the entry a retry entry?
1273 * @entry: Entry retrieved from the XArray
1274 *
1275 * Return: %true if the entry is a retry entry.
1276 */
1277static inline bool xa_is_retry(const void *entry)
1278{
1279	return unlikely(entry == XA_RETRY_ENTRY);
1280}
1281
1282/**
1283 * xa_is_advanced() - Is the entry only permitted for the advanced API?
1284 * @entry: Entry to be stored in the XArray.
1285 *
1286 * Return: %true if the entry cannot be stored by the normal API.
1287 */
1288static inline bool xa_is_advanced(const void *entry)
1289{
1290	return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY);
1291}
1292
1293/**
1294 * typedef xa_update_node_t - A callback function from the XArray.
1295 * @node: The node which is being processed
1296 *
1297 * This function is called every time the XArray updates the count of
1298 * present and value entries in a node.  It allows advanced users to
1299 * maintain the private_list in the node.
1300 *
1301 * Context: The xa_lock is held and interrupts may be disabled.
1302 *	    Implementations should not drop the xa_lock, nor re-enable
1303 *	    interrupts.
1304 */
1305typedef void (*xa_update_node_t)(struct xa_node *node);
1306
1307void xa_delete_node(struct xa_node *, xa_update_node_t);
1308
1309/*
1310 * The xa_state is opaque to its users.  It contains various different pieces
1311 * of state involved in the current operation on the XArray.  It should be
1312 * declared on the stack and passed between the various internal routines.
1313 * The various elements in it should not be accessed directly, but only
1314 * through the provided accessor functions.  The below documentation is for
1315 * the benefit of those working on the code, not for users of the XArray.
1316 *
1317 * @xa_node usually points to the xa_node containing the slot we're operating
1318 * on (and @xa_offset is the offset in the slots array).  If there is a
1319 * single entry in the array at index 0, there are no allocated xa_nodes to
1320 * point to, and so we store %NULL in @xa_node.  @xa_node is set to
1321 * the value %XAS_RESTART if the xa_state is not walked to the correct
1322 * position in the tree of nodes for this operation.  If an error occurs
1323 * during an operation, it is set to an %XAS_ERROR value.  If we run off the
1324 * end of the allocated nodes, it is set to %XAS_BOUNDS.
1325 */
1326struct xa_state {
1327	struct xarray *xa;
1328	unsigned long xa_index;
1329	unsigned char xa_shift;
1330	unsigned char xa_sibs;
1331	unsigned char xa_offset;
1332	unsigned char xa_pad;		/* Helps gcc generate better code */
1333	struct xa_node *xa_node;
1334	struct xa_node *xa_alloc;
1335	xa_update_node_t xa_update;
1336	struct list_lru *xa_lru;
1337};
1338
1339/*
1340 * We encode errnos in the xas->xa_node.  If an error has happened, we need to
1341 * drop the lock to fix it, and once we've done so the xa_state is invalid.
1342 */
1343#define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL))
1344#define XAS_BOUNDS	((struct xa_node *)1UL)
1345#define XAS_RESTART	((struct xa_node *)3UL)
1346
1347#define __XA_STATE(array, index, shift, sibs)  {	\
1348	.xa = array,					\
1349	.xa_index = index,				\
1350	.xa_shift = shift,				\
1351	.xa_sibs = sibs,				\
1352	.xa_offset = 0,					\
1353	.xa_pad = 0,					\
1354	.xa_node = XAS_RESTART,				\
1355	.xa_alloc = NULL,				\
1356	.xa_update = NULL,				\
1357	.xa_lru = NULL,					\
1358}
1359
1360/**
1361 * XA_STATE() - Declare an XArray operation state.
1362 * @name: Name of this operation state (usually xas).
1363 * @array: Array to operate on.
1364 * @index: Initial index of interest.
1365 *
1366 * Declare and initialise an xa_state on the stack.
1367 */
1368#define XA_STATE(name, array, index)				\
1369	struct xa_state name = __XA_STATE(array, index, 0, 0)
1370
1371/**
1372 * XA_STATE_ORDER() - Declare an XArray operation state.
1373 * @name: Name of this operation state (usually xas).
1374 * @array: Array to operate on.
1375 * @index: Initial index of interest.
1376 * @order: Order of entry.
1377 *
1378 * Declare and initialise an xa_state on the stack.  This variant of
1379 * XA_STATE() allows you to specify the 'order' of the element you
1380 * want to operate on.`
1381 */
1382#define XA_STATE_ORDER(name, array, index, order)		\
1383	struct xa_state name = __XA_STATE(array,		\
1384			(index >> order) << order,		\
1385			order - (order % XA_CHUNK_SHIFT),	\
1386			(1U << (order % XA_CHUNK_SHIFT)) - 1)
1387
1388#define xas_marked(xas, mark)	xa_marked((xas)->xa, (mark))
1389#define xas_trylock(xas)	xa_trylock((xas)->xa)
1390#define xas_lock(xas)		xa_lock((xas)->xa)
1391#define xas_unlock(xas)		xa_unlock((xas)->xa)
1392#define xas_lock_bh(xas)	xa_lock_bh((xas)->xa)
1393#define xas_unlock_bh(xas)	xa_unlock_bh((xas)->xa)
1394#define xas_lock_irq(xas)	xa_lock_irq((xas)->xa)
1395#define xas_unlock_irq(xas)	xa_unlock_irq((xas)->xa)
1396#define xas_lock_irqsave(xas, flags) \
1397				xa_lock_irqsave((xas)->xa, flags)
1398#define xas_unlock_irqrestore(xas, flags) \
1399				xa_unlock_irqrestore((xas)->xa, flags)
1400
1401/**
1402 * xas_error() - Return an errno stored in the xa_state.
1403 * @xas: XArray operation state.
1404 *
1405 * Return: 0 if no error has been noted.  A negative errno if one has.
1406 */
1407static inline int xas_error(const struct xa_state *xas)
1408{
1409	return xa_err(xas->xa_node);
1410}
1411
1412/**
1413 * xas_set_err() - Note an error in the xa_state.
1414 * @xas: XArray operation state.
1415 * @err: Negative error number.
1416 *
1417 * Only call this function with a negative @err; zero or positive errors
1418 * will probably not behave the way you think they should.  If you want
1419 * to clear the error from an xa_state, use xas_reset().
1420 */
1421static inline void xas_set_err(struct xa_state *xas, long err)
1422{
1423	xas->xa_node = XA_ERROR(err);
1424}
1425
1426/**
1427 * xas_invalid() - Is the xas in a retry or error state?
1428 * @xas: XArray operation state.
1429 *
1430 * Return: %true if the xas cannot be used for operations.
1431 */
1432static inline bool xas_invalid(const struct xa_state *xas)
1433{
1434	return (unsigned long)xas->xa_node & 3;
1435}
1436
1437/**
1438 * xas_valid() - Is the xas a valid cursor into the array?
1439 * @xas: XArray operation state.
1440 *
1441 * Return: %true if the xas can be used for operations.
1442 */
1443static inline bool xas_valid(const struct xa_state *xas)
1444{
1445	return !xas_invalid(xas);
1446}
1447
1448/**
1449 * xas_is_node() - Does the xas point to a node?
1450 * @xas: XArray operation state.
1451 *
1452 * Return: %true if the xas currently references a node.
1453 */
1454static inline bool xas_is_node(const struct xa_state *xas)
1455{
1456	return xas_valid(xas) && xas->xa_node;
1457}
1458
1459/* True if the pointer is something other than a node */
1460static inline bool xas_not_node(struct xa_node *node)
1461{
1462	return ((unsigned long)node & 3) || !node;
1463}
1464
1465/* True if the node represents RESTART or an error */
1466static inline bool xas_frozen(struct xa_node *node)
1467{
1468	return (unsigned long)node & 2;
1469}
1470
1471/* True if the node represents head-of-tree, RESTART or BOUNDS */
1472static inline bool xas_top(struct xa_node *node)
1473{
1474	return node <= XAS_RESTART;
1475}
1476
1477/**
1478 * xas_reset() - Reset an XArray operation state.
1479 * @xas: XArray operation state.
1480 *
1481 * Resets the error or walk state of the @xas so future walks of the
1482 * array will start from the root.  Use this if you have dropped the
1483 * xarray lock and want to reuse the xa_state.
1484 *
1485 * Context: Any context.
1486 */
1487static inline void xas_reset(struct xa_state *xas)
1488{
1489	xas->xa_node = XAS_RESTART;
1490}
1491
1492/**
1493 * xas_retry() - Retry the operation if appropriate.
1494 * @xas: XArray operation state.
1495 * @entry: Entry from xarray.
1496 *
1497 * The advanced functions may sometimes return an internal entry, such as
1498 * a retry entry or a zero entry.  This function sets up the @xas to restart
1499 * the walk from the head of the array if needed.
1500 *
1501 * Context: Any context.
1502 * Return: true if the operation needs to be retried.
1503 */
1504static inline bool xas_retry(struct xa_state *xas, const void *entry)
1505{
1506	if (xa_is_zero(entry))
1507		return true;
1508	if (!xa_is_retry(entry))
1509		return false;
1510	xas_reset(xas);
1511	return true;
1512}
1513
1514void *xas_load(struct xa_state *);
1515void *xas_store(struct xa_state *, void *entry);
1516void *xas_find(struct xa_state *, unsigned long max);
1517void *xas_find_conflict(struct xa_state *);
1518
1519bool xas_get_mark(const struct xa_state *, xa_mark_t);
1520void xas_set_mark(const struct xa_state *, xa_mark_t);
1521void xas_clear_mark(const struct xa_state *, xa_mark_t);
1522void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t);
1523void xas_init_marks(const struct xa_state *);
1524
1525bool xas_nomem(struct xa_state *, gfp_t);
1526void xas_destroy(struct xa_state *);
1527void xas_pause(struct xa_state *);
1528
1529void xas_create_range(struct xa_state *);
1530
1531#ifdef CONFIG_XARRAY_MULTI
1532int xa_get_order(struct xarray *, unsigned long index);
1533void xas_split(struct xa_state *, void *entry, unsigned int order);
1534void xas_split_alloc(struct xa_state *, void *entry, unsigned int order, gfp_t);
1535#else
1536static inline int xa_get_order(struct xarray *xa, unsigned long index)
1537{
1538	return 0;
1539}
1540
1541static inline void xas_split(struct xa_state *xas, void *entry,
1542		unsigned int order)
1543{
1544	xas_store(xas, entry);
1545}
1546
1547static inline void xas_split_alloc(struct xa_state *xas, void *entry,
1548		unsigned int order, gfp_t gfp)
1549{
1550}
1551#endif
1552
1553/**
1554 * xas_reload() - Refetch an entry from the xarray.
1555 * @xas: XArray operation state.
1556 *
1557 * Use this function to check that a previously loaded entry still has
1558 * the same value.  This is useful for the lockless pagecache lookup where
1559 * we walk the array with only the RCU lock to protect us, lock the page,
1560 * then check that the page hasn't moved since we looked it up.
1561 *
1562 * The caller guarantees that @xas is still valid.  If it may be in an
1563 * error or restart state, call xas_load() instead.
1564 *
1565 * Return: The entry at this location in the xarray.
1566 */
1567static inline void *xas_reload(struct xa_state *xas)
1568{
1569	struct xa_node *node = xas->xa_node;
1570	void *entry;
1571	char offset;
1572
1573	if (!node)
1574		return xa_head(xas->xa);
1575	if (IS_ENABLED(CONFIG_XARRAY_MULTI)) {
1576		offset = (xas->xa_index >> node->shift) & XA_CHUNK_MASK;
1577		entry = xa_entry(xas->xa, node, offset);
1578		if (!xa_is_sibling(entry))
1579			return entry;
1580		offset = xa_to_sibling(entry);
1581	} else {
1582		offset = xas->xa_offset;
1583	}
1584	return xa_entry(xas->xa, node, offset);
1585}
1586
1587/**
1588 * xas_set() - Set up XArray operation state for a different index.
1589 * @xas: XArray operation state.
1590 * @index: New index into the XArray.
1591 *
1592 * Move the operation state to refer to a different index.  This will
1593 * have the effect of starting a walk from the top; see xas_next()
1594 * to move to an adjacent index.
1595 */
1596static inline void xas_set(struct xa_state *xas, unsigned long index)
1597{
1598	xas->xa_index = index;
1599	xas->xa_node = XAS_RESTART;
1600}
1601
1602/**
1603 * xas_advance() - Skip over sibling entries.
1604 * @xas: XArray operation state.
1605 * @index: Index of last sibling entry.
1606 *
1607 * Move the operation state to refer to the last sibling entry.
1608 * This is useful for loops that normally want to see sibling
1609 * entries but sometimes want to skip them.  Use xas_set() if you
1610 * want to move to an index which is not part of this entry.
1611 */
1612static inline void xas_advance(struct xa_state *xas, unsigned long index)
1613{
1614	unsigned char shift = xas_is_node(xas) ? xas->xa_node->shift : 0;
1615
1616	xas->xa_index = index;
1617	xas->xa_offset = (index >> shift) & XA_CHUNK_MASK;
1618}
1619
1620/**
1621 * xas_set_order() - Set up XArray operation state for a multislot entry.
1622 * @xas: XArray operation state.
1623 * @index: Target of the operation.
1624 * @order: Entry occupies 2^@order indices.
1625 */
1626static inline void xas_set_order(struct xa_state *xas, unsigned long index,
1627					unsigned int order)
1628{
1629#ifdef CONFIG_XARRAY_MULTI
1630	xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0;
1631	xas->xa_shift = order - (order % XA_CHUNK_SHIFT);
1632	xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1633	xas->xa_node = XAS_RESTART;
1634#else
1635	BUG_ON(order > 0);
1636	xas_set(xas, index);
1637#endif
1638}
1639
1640/**
1641 * xas_set_update() - Set up XArray operation state for a callback.
1642 * @xas: XArray operation state.
1643 * @update: Function to call when updating a node.
1644 *
1645 * The XArray can notify a caller after it has updated an xa_node.
1646 * This is advanced functionality and is only needed by the page cache.
1647 */
1648static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update)
1649{
1650	xas->xa_update = update;
1651}
1652
1653static inline void xas_set_lru(struct xa_state *xas, struct list_lru *lru)
1654{
1655	xas->xa_lru = lru;
1656}
1657
1658/**
1659 * xas_next_entry() - Advance iterator to next present entry.
1660 * @xas: XArray operation state.
1661 * @max: Highest index to return.
1662 *
1663 * xas_next_entry() is an inline function to optimise xarray traversal for
1664 * speed.  It is equivalent to calling xas_find(), and will call xas_find()
1665 * for all the hard cases.
1666 *
1667 * Return: The next present entry after the one currently referred to by @xas.
1668 */
1669static inline void *xas_next_entry(struct xa_state *xas, unsigned long max)
1670{
1671	struct xa_node *node = xas->xa_node;
1672	void *entry;
1673
1674	if (unlikely(xas_not_node(node) || node->shift ||
1675			xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)))
1676		return xas_find(xas, max);
1677
1678	do {
1679		if (unlikely(xas->xa_index >= max))
1680			return xas_find(xas, max);
1681		if (unlikely(xas->xa_offset == XA_CHUNK_MASK))
1682			return xas_find(xas, max);
1683		entry = xa_entry(xas->xa, node, xas->xa_offset + 1);
1684		if (unlikely(xa_is_internal(entry)))
1685			return xas_find(xas, max);
1686		xas->xa_offset++;
1687		xas->xa_index++;
1688	} while (!entry);
1689
1690	return entry;
1691}
1692
1693/* Private */
1694static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance,
1695		xa_mark_t mark)
1696{
1697	unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark];
1698	unsigned int offset = xas->xa_offset;
1699
1700	if (advance)
1701		offset++;
1702	if (XA_CHUNK_SIZE == BITS_PER_LONG) {
1703		if (offset < XA_CHUNK_SIZE) {
1704			unsigned long data = *addr & (~0UL << offset);
1705			if (data)
1706				return __ffs(data);
1707		}
1708		return XA_CHUNK_SIZE;
1709	}
1710
1711	return find_next_bit(addr, XA_CHUNK_SIZE, offset);
1712}
1713
1714/**
1715 * xas_next_marked() - Advance iterator to next marked entry.
1716 * @xas: XArray operation state.
1717 * @max: Highest index to return.
1718 * @mark: Mark to search for.
1719 *
1720 * xas_next_marked() is an inline function to optimise xarray traversal for
1721 * speed.  It is equivalent to calling xas_find_marked(), and will call
1722 * xas_find_marked() for all the hard cases.
1723 *
1724 * Return: The next marked entry after the one currently referred to by @xas.
1725 */
1726static inline void *xas_next_marked(struct xa_state *xas, unsigned long max,
1727								xa_mark_t mark)
1728{
1729	struct xa_node *node = xas->xa_node;
1730	void *entry;
1731	unsigned int offset;
1732
1733	if (unlikely(xas_not_node(node) || node->shift))
1734		return xas_find_marked(xas, max, mark);
1735	offset = xas_find_chunk(xas, true, mark);
1736	xas->xa_offset = offset;
1737	xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset;
1738	if (xas->xa_index > max)
1739		return NULL;
1740	if (offset == XA_CHUNK_SIZE)
1741		return xas_find_marked(xas, max, mark);
1742	entry = xa_entry(xas->xa, node, offset);
1743	if (!entry)
1744		return xas_find_marked(xas, max, mark);
1745	return entry;
1746}
1747
1748/*
1749 * If iterating while holding a lock, drop the lock and reschedule
1750 * every %XA_CHECK_SCHED loops.
1751 */
1752enum {
1753	XA_CHECK_SCHED = 4096,
1754};
1755
1756/**
1757 * xas_for_each() - Iterate over a range of an XArray.
1758 * @xas: XArray operation state.
1759 * @entry: Entry retrieved from the array.
1760 * @max: Maximum index to retrieve from array.
1761 *
1762 * The loop body will be executed for each entry present in the xarray
1763 * between the current xas position and @max.  @entry will be set to
1764 * the entry retrieved from the xarray.  It is safe to delete entries
1765 * from the array in the loop body.  You should hold either the RCU lock
1766 * or the xa_lock while iterating.  If you need to drop the lock, call
1767 * xas_pause() first.
1768 */
1769#define xas_for_each(xas, entry, max) \
1770	for (entry = xas_find(xas, max); entry; \
1771	     entry = xas_next_entry(xas, max))
1772
1773/**
1774 * xas_for_each_marked() - Iterate over a range of an XArray.
1775 * @xas: XArray operation state.
1776 * @entry: Entry retrieved from the array.
1777 * @max: Maximum index to retrieve from array.
1778 * @mark: Mark to search for.
1779 *
1780 * The loop body will be executed for each marked entry in the xarray
1781 * between the current xas position and @max.  @entry will be set to
1782 * the entry retrieved from the xarray.  It is safe to delete entries
1783 * from the array in the loop body.  You should hold either the RCU lock
1784 * or the xa_lock while iterating.  If you need to drop the lock, call
1785 * xas_pause() first.
1786 */
1787#define xas_for_each_marked(xas, entry, max, mark) \
1788	for (entry = xas_find_marked(xas, max, mark); entry; \
1789	     entry = xas_next_marked(xas, max, mark))
1790
1791/**
1792 * xas_for_each_conflict() - Iterate over a range of an XArray.
1793 * @xas: XArray operation state.
1794 * @entry: Entry retrieved from the array.
1795 *
1796 * The loop body will be executed for each entry in the XArray that
1797 * lies within the range specified by @xas.  If the loop terminates
1798 * normally, @entry will be %NULL.  The user may break out of the loop,
1799 * which will leave @entry set to the conflicting entry.  The caller
1800 * may also call xa_set_err() to exit the loop while setting an error
1801 * to record the reason.
1802 */
1803#define xas_for_each_conflict(xas, entry) \
1804	while ((entry = xas_find_conflict(xas)))
1805
1806void *__xas_next(struct xa_state *);
1807void *__xas_prev(struct xa_state *);
1808
1809/**
1810 * xas_prev() - Move iterator to previous index.
1811 * @xas: XArray operation state.
1812 *
1813 * If the @xas was in an error state, it will remain in an error state
1814 * and this function will return %NULL.  If the @xas has never been walked,
1815 * it will have the effect of calling xas_load().  Otherwise one will be
1816 * subtracted from the index and the state will be walked to the correct
1817 * location in the array for the next operation.
1818 *
1819 * If the iterator was referencing index 0, this function wraps
1820 * around to %ULONG_MAX.
1821 *
1822 * Return: The entry at the new index.  This may be %NULL or an internal
1823 * entry.
1824 */
1825static inline void *xas_prev(struct xa_state *xas)
1826{
1827	struct xa_node *node = xas->xa_node;
1828
1829	if (unlikely(xas_not_node(node) || node->shift ||
1830				xas->xa_offset == 0))
1831		return __xas_prev(xas);
1832
1833	xas->xa_index--;
1834	xas->xa_offset--;
1835	return xa_entry(xas->xa, node, xas->xa_offset);
1836}
1837
1838/**
1839 * xas_next() - Move state to next index.
1840 * @xas: XArray operation state.
1841 *
1842 * If the @xas was in an error state, it will remain in an error state
1843 * and this function will return %NULL.  If the @xas has never been walked,
1844 * it will have the effect of calling xas_load().  Otherwise one will be
1845 * added to the index and the state will be walked to the correct
1846 * location in the array for the next operation.
1847 *
1848 * If the iterator was referencing index %ULONG_MAX, this function wraps
1849 * around to 0.
1850 *
1851 * Return: The entry at the new index.  This may be %NULL or an internal
1852 * entry.
1853 */
1854static inline void *xas_next(struct xa_state *xas)
1855{
1856	struct xa_node *node = xas->xa_node;
1857
1858	if (unlikely(xas_not_node(node) || node->shift ||
1859				xas->xa_offset == XA_CHUNK_MASK))
1860		return __xas_next(xas);
1861
1862	xas->xa_index++;
1863	xas->xa_offset++;
1864	return xa_entry(xas->xa, node, xas->xa_offset);
1865}
1866
1867#endif /* _LINUX_XARRAY_H */