Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 * User-mode machine state access
  3 *
  4 * Copyright (C) 2007 Red Hat, Inc.  All rights reserved.
  5 *
  6 * This copyrighted material is made available to anyone wishing to use,
  7 * modify, copy, or redistribute it subject to the terms and conditions
  8 * of the GNU General Public License v.2.
  9 *
 10 * Red Hat Author: Roland McGrath.
 11 */
 12
 13#ifndef _LINUX_REGSET_H
 14#define _LINUX_REGSET_H	1
 15
 16#include <linux/compiler.h>
 17#include <linux/types.h>
 18#include <linux/bug.h>
 19#include <linux/uaccess.h>
 20struct task_struct;
 21struct user_regset;
 22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23
 24/**
 25 * user_regset_active_fn - type of @active function in &struct user_regset
 26 * @target:	thread being examined
 27 * @regset:	regset being examined
 28 *
 29 * Return -%ENODEV if not available on the hardware found.
 30 * Return %0 if no interesting state in this thread.
 31 * Return >%0 number of @size units of interesting state.
 32 * Any get call fetching state beyond that number will
 33 * see the default initialization state for this data,
 34 * so a caller that knows what the default state is need
 35 * not copy it all out.
 36 * This call is optional; the pointer is %NULL if there
 37 * is no inexpensive check to yield a value < @n.
 38 */
 39typedef int user_regset_active_fn(struct task_struct *target,
 40				  const struct user_regset *regset);
 41
 42/**
 43 * user_regset_get_fn - type of @get function in &struct user_regset
 44 * @target:	thread being examined
 45 * @regset:	regset being examined
 46 * @pos:	offset into the regset data to access, in bytes
 47 * @count:	amount of data to copy, in bytes
 48 * @kbuf:	if not %NULL, a kernel-space pointer to copy into
 49 * @ubuf:	if @kbuf is %NULL, a user-space pointer to copy into
 50 *
 51 * Fetch register values.  Return %0 on success; -%EIO or -%ENODEV
 52 * are usual failure returns.  The @pos and @count values are in
 53 * bytes, but must be properly aligned.  If @kbuf is non-null, that
 54 * buffer is used and @ubuf is ignored.  If @kbuf is %NULL, then
 55 * ubuf gives a userland pointer to access directly, and an -%EFAULT
 56 * return value is possible.
 57 */
 58typedef int user_regset_get_fn(struct task_struct *target,
 59			       const struct user_regset *regset,
 60			       unsigned int pos, unsigned int count,
 61			       void *kbuf, void __user *ubuf);
 62
 63/**
 64 * user_regset_set_fn - type of @set function in &struct user_regset
 65 * @target:	thread being examined
 66 * @regset:	regset being examined
 67 * @pos:	offset into the regset data to access, in bytes
 68 * @count:	amount of data to copy, in bytes
 69 * @kbuf:	if not %NULL, a kernel-space pointer to copy from
 70 * @ubuf:	if @kbuf is %NULL, a user-space pointer to copy from
 71 *
 72 * Store register values.  Return %0 on success; -%EIO or -%ENODEV
 73 * are usual failure returns.  The @pos and @count values are in
 74 * bytes, but must be properly aligned.  If @kbuf is non-null, that
 75 * buffer is used and @ubuf is ignored.  If @kbuf is %NULL, then
 76 * ubuf gives a userland pointer to access directly, and an -%EFAULT
 77 * return value is possible.
 78 */
 79typedef int user_regset_set_fn(struct task_struct *target,
 80			       const struct user_regset *regset,
 81			       unsigned int pos, unsigned int count,
 82			       const void *kbuf, const void __user *ubuf);
 83
 84/**
 85 * user_regset_writeback_fn - type of @writeback function in &struct user_regset
 86 * @target:	thread being examined
 87 * @regset:	regset being examined
 88 * @immediate:	zero if writeback at completion of next context switch is OK
 89 *
 90 * This call is optional; usually the pointer is %NULL.  When
 91 * provided, there is some user memory associated with this regset's
 92 * hardware, such as memory backing cached register data on register
 93 * window machines; the regset's data controls what user memory is
 94 * used (e.g. via the stack pointer value).
 95 *
 96 * Write register data back to user memory.  If the @immediate flag
 97 * is nonzero, it must be written to the user memory so uaccess or
 98 * access_process_vm() can see it when this call returns; if zero,
 99 * then it must be written back by the time the task completes a
100 * context switch (as synchronized with wait_task_inactive()).
101 * Return %0 on success or if there was nothing to do, -%EFAULT for
102 * a memory problem (bad stack pointer or whatever), or -%EIO for a
103 * hardware problem.
104 */
105typedef int user_regset_writeback_fn(struct task_struct *target,
106				     const struct user_regset *regset,
107				     int immediate);
108
109/**
110 * struct user_regset - accessible thread CPU state
111 * @n:			Number of slots (registers).
112 * @size:		Size in bytes of a slot (register).
113 * @align:		Required alignment, in bytes.
114 * @bias:		Bias from natural indexing.
115 * @core_note_type:	ELF note @n_type value used in core dumps.
116 * @get:		Function to fetch values.
117 * @set:		Function to store values.
118 * @active:		Function to report if regset is active, or %NULL.
119 * @writeback:		Function to write data back to user memory, or %NULL.
120 *
121 * This data structure describes a machine resource we call a register set.
122 * This is part of the state of an individual thread, not necessarily
123 * actual CPU registers per se.  A register set consists of a number of
124 * similar slots, given by @n.  Each slot is @size bytes, and aligned to
125 * @align bytes (which is at least @size).
126 *
127 * These functions must be called only on the current thread or on a
128 * thread that is in %TASK_STOPPED or %TASK_TRACED state, that we are
129 * guaranteed will not be woken up and return to user mode, and that we
130 * have called wait_task_inactive() on.  (The target thread always might
131 * wake up for SIGKILL while these functions are working, in which case
132 * that thread's user_regset state might be scrambled.)
 
 
 
 
 
 
 
 
133 *
134 * The @pos argument must be aligned according to @align; the @count
135 * argument must be a multiple of @size.  These functions are not
136 * responsible for checking for invalid arguments.
137 *
138 * When there is a natural value to use as an index, @bias gives the
139 * difference between the natural index and the slot index for the
140 * register set.  For example, x86 GDT segment descriptors form a regset;
141 * the segment selector produces a natural index, but only a subset of
142 * that index space is available as a regset (the TLS slots); subtracting
143 * @bias from a segment selector index value computes the regset slot.
144 *
145 * If nonzero, @core_note_type gives the n_type field (NT_* value)
146 * of the core file note in which this regset's data appears.
147 * NT_PRSTATUS is a special case in that the regset data starts at
148 * offsetof(struct elf_prstatus, pr_reg) into the note data; that is
149 * part of the per-machine ELF formats userland knows about.  In
150 * other cases, the core file note contains exactly the whole regset
151 * (@n * @size) and nothing else.  The core file note is normally
152 * omitted when there is an @active function and it returns zero.
153 */
154struct user_regset {
155	user_regset_get_fn		*get;
156	user_regset_set_fn		*set;
157	user_regset_active_fn		*active;
158	user_regset_writeback_fn	*writeback;
159	unsigned int			n;
160	unsigned int 			size;
161	unsigned int 			align;
162	unsigned int 			bias;
163	unsigned int 			core_note_type;
164};
165
166/**
167 * struct user_regset_view - available regsets
168 * @name:	Identifier, e.g. UTS_MACHINE string.
169 * @regsets:	Array of @n regsets available in this view.
170 * @n:		Number of elements in @regsets.
171 * @e_machine:	ELF header @e_machine %EM_* value written in core dumps.
172 * @e_flags:	ELF header @e_flags value written in core dumps.
173 * @ei_osabi:	ELF header @e_ident[%EI_OSABI] value written in core dumps.
174 *
175 * A regset view is a collection of regsets (&struct user_regset,
176 * above).  This describes all the state of a thread that can be seen
177 * from a given architecture/ABI environment.  More than one view might
178 * refer to the same &struct user_regset, or more than one regset
179 * might refer to the same machine-specific state in the thread.  For
180 * example, a 32-bit thread's state could be examined from the 32-bit
181 * view or from the 64-bit view.  Either method reaches the same thread
182 * register state, doing appropriate widening or truncation.
183 */
184struct user_regset_view {
185	const char *name;
186	const struct user_regset *regsets;
187	unsigned int n;
188	u32 e_flags;
189	u16 e_machine;
190	u8 ei_osabi;
191};
192
193/*
194 * This is documented here rather than at the definition sites because its
195 * implementation is machine-dependent but its interface is universal.
196 */
197/**
198 * task_user_regset_view - Return the process's native regset view.
199 * @tsk: a thread of the process in question
200 *
201 * Return the &struct user_regset_view that is native for the given process.
202 * For example, what it would access when it called ptrace().
203 * Throughout the life of the process, this only changes at exec.
204 */
205const struct user_regset_view *task_user_regset_view(struct task_struct *tsk);
206
207
208/*
209 * These are helpers for writing regset get/set functions in arch code.
210 * Because @start_pos and @end_pos are always compile-time constants,
211 * these are inlined into very little code though they look large.
212 *
213 * Use one or more calls sequentially for each chunk of regset data stored
214 * contiguously in memory.  Call with constants for @start_pos and @end_pos,
215 * giving the range of byte positions in the regset that data corresponds
216 * to; @end_pos can be -1 if this chunk is at the end of the regset layout.
217 * Each call updates the arguments to point past its chunk.
218 */
219
220static inline int user_regset_copyout(unsigned int *pos, unsigned int *count,
221				      void **kbuf,
222				      void __user **ubuf, const void *data,
223				      const int start_pos, const int end_pos)
224{
225	if (*count == 0)
226		return 0;
227	BUG_ON(*pos < start_pos);
228	if (end_pos < 0 || *pos < end_pos) {
229		unsigned int copy = (end_pos < 0 ? *count
230				     : min(*count, end_pos - *pos));
231		data += *pos - start_pos;
232		if (*kbuf) {
233			memcpy(*kbuf, data, copy);
234			*kbuf += copy;
235		} else if (__copy_to_user(*ubuf, data, copy))
236			return -EFAULT;
237		else
238			*ubuf += copy;
239		*pos += copy;
240		*count -= copy;
241	}
242	return 0;
243}
244
245static inline int user_regset_copyin(unsigned int *pos, unsigned int *count,
246				     const void **kbuf,
247				     const void __user **ubuf, void *data,
248				     const int start_pos, const int end_pos)
249{
250	if (*count == 0)
251		return 0;
252	BUG_ON(*pos < start_pos);
253	if (end_pos < 0 || *pos < end_pos) {
254		unsigned int copy = (end_pos < 0 ? *count
255				     : min(*count, end_pos - *pos));
256		data += *pos - start_pos;
257		if (*kbuf) {
258			memcpy(data, *kbuf, copy);
259			*kbuf += copy;
260		} else if (__copy_from_user(data, *ubuf, copy))
261			return -EFAULT;
262		else
263			*ubuf += copy;
264		*pos += copy;
265		*count -= copy;
266	}
267	return 0;
268}
269
270/*
271 * These two parallel the two above, but for portions of a regset layout
272 * that always read as all-zero or for which writes are ignored.
273 */
274static inline int user_regset_copyout_zero(unsigned int *pos,
275					   unsigned int *count,
276					   void **kbuf, void __user **ubuf,
277					   const int start_pos,
278					   const int end_pos)
279{
280	if (*count == 0)
281		return 0;
282	BUG_ON(*pos < start_pos);
283	if (end_pos < 0 || *pos < end_pos) {
284		unsigned int copy = (end_pos < 0 ? *count
285				     : min(*count, end_pos - *pos));
286		if (*kbuf) {
287			memset(*kbuf, 0, copy);
288			*kbuf += copy;
289		} else if (__clear_user(*ubuf, copy))
290			return -EFAULT;
291		else
292			*ubuf += copy;
293		*pos += copy;
294		*count -= copy;
295	}
296	return 0;
297}
298
299static inline int user_regset_copyin_ignore(unsigned int *pos,
300					    unsigned int *count,
301					    const void **kbuf,
302					    const void __user **ubuf,
303					    const int start_pos,
304					    const int end_pos)
305{
306	if (*count == 0)
307		return 0;
308	BUG_ON(*pos < start_pos);
309	if (end_pos < 0 || *pos < end_pos) {
310		unsigned int copy = (end_pos < 0 ? *count
311				     : min(*count, end_pos - *pos));
312		if (*kbuf)
313			*kbuf += copy;
314		else
315			*ubuf += copy;
316		*pos += copy;
317		*count -= copy;
318	}
319	return 0;
320}
321
322/**
323 * copy_regset_to_user - fetch a thread's user_regset data into user memory
324 * @target:	thread to be examined
325 * @view:	&struct user_regset_view describing user thread machine state
326 * @setno:	index in @view->regsets
327 * @offset:	offset into the regset data, in bytes
328 * @size:	amount of data to copy, in bytes
329 * @data:	user-mode pointer to copy into
330 */
331static inline int copy_regset_to_user(struct task_struct *target,
332				      const struct user_regset_view *view,
333				      unsigned int setno,
334				      unsigned int offset, unsigned int size,
335				      void __user *data)
336{
337	const struct user_regset *regset = &view->regsets[setno];
338
339	if (!regset->get)
340		return -EOPNOTSUPP;
341
342	if (!access_ok(VERIFY_WRITE, data, size))
343		return -EFAULT;
344
345	return regset->get(target, regset, offset, size, NULL, data);
346}
347
348/**
349 * copy_regset_from_user - store into thread's user_regset data from user memory
350 * @target:	thread to be examined
351 * @view:	&struct user_regset_view describing user thread machine state
352 * @setno:	index in @view->regsets
353 * @offset:	offset into the regset data, in bytes
354 * @size:	amount of data to copy, in bytes
355 * @data:	user-mode pointer to copy from
356 */
357static inline int copy_regset_from_user(struct task_struct *target,
358					const struct user_regset_view *view,
359					unsigned int setno,
360					unsigned int offset, unsigned int size,
361					const void __user *data)
362{
363	const struct user_regset *regset = &view->regsets[setno];
364
365	if (!regset->set)
366		return -EOPNOTSUPP;
367
368	if (!access_ok(VERIFY_READ, data, size))
369		return -EFAULT;
370
371	return regset->set(target, regset, offset, size, NULL, data);
372}
373
374
375#endif	/* <linux/regset.h> */
v6.2
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 * User-mode machine state access
  4 *
  5 * Copyright (C) 2007 Red Hat, Inc.  All rights reserved.
  6 *
 
 
 
 
  7 * Red Hat Author: Roland McGrath.
  8 */
  9
 10#ifndef _LINUX_REGSET_H
 11#define _LINUX_REGSET_H	1
 12
 13#include <linux/compiler.h>
 14#include <linux/types.h>
 15#include <linux/bug.h>
 16#include <linux/uaccess.h>
 17struct task_struct;
 18struct user_regset;
 19
 20struct membuf {
 21	void *p;
 22	size_t left;
 23};
 24
 25static inline int membuf_zero(struct membuf *s, size_t size)
 26{
 27	if (s->left) {
 28		if (size > s->left)
 29			size = s->left;
 30		memset(s->p, 0, size);
 31		s->p += size;
 32		s->left -= size;
 33	}
 34	return s->left;
 35}
 36
 37static inline int membuf_write(struct membuf *s, const void *v, size_t size)
 38{
 39	if (s->left) {
 40		if (size > s->left)
 41			size = s->left;
 42		memcpy(s->p, v, size);
 43		s->p += size;
 44		s->left -= size;
 45	}
 46	return s->left;
 47}
 48
 49static inline struct membuf membuf_at(const struct membuf *s, size_t offs)
 50{
 51	struct membuf n = *s;
 52
 53	if (offs > n.left)
 54		offs = n.left;
 55	n.p += offs;
 56	n.left -= offs;
 57
 58	return n;
 59}
 60
 61/* current s->p must be aligned for v; v must be a scalar */
 62#define membuf_store(s, v)				\
 63({							\
 64	struct membuf *__s = (s);			\
 65        if (__s->left) {				\
 66		typeof(v) __v = (v);			\
 67		size_t __size = sizeof(__v);		\
 68		if (unlikely(__size > __s->left)) {	\
 69			__size = __s->left;		\
 70			memcpy(__s->p, &__v, __size);	\
 71		} else {				\
 72			*(typeof(__v + 0) *)__s->p = __v;	\
 73		}					\
 74		__s->p += __size;			\
 75		__s->left -= __size;			\
 76	}						\
 77	__s->left;})
 78
 79/**
 80 * user_regset_active_fn - type of @active function in &struct user_regset
 81 * @target:	thread being examined
 82 * @regset:	regset being examined
 83 *
 84 * Return -%ENODEV if not available on the hardware found.
 85 * Return %0 if no interesting state in this thread.
 86 * Return >%0 number of @size units of interesting state.
 87 * Any get call fetching state beyond that number will
 88 * see the default initialization state for this data,
 89 * so a caller that knows what the default state is need
 90 * not copy it all out.
 91 * This call is optional; the pointer is %NULL if there
 92 * is no inexpensive check to yield a value < @n.
 93 */
 94typedef int user_regset_active_fn(struct task_struct *target,
 95				  const struct user_regset *regset);
 96
 97typedef int user_regset_get2_fn(struct task_struct *target,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 98			       const struct user_regset *regset,
 99			       struct membuf to);
 
100
101/**
102 * user_regset_set_fn - type of @set function in &struct user_regset
103 * @target:	thread being examined
104 * @regset:	regset being examined
105 * @pos:	offset into the regset data to access, in bytes
106 * @count:	amount of data to copy, in bytes
107 * @kbuf:	if not %NULL, a kernel-space pointer to copy from
108 * @ubuf:	if @kbuf is %NULL, a user-space pointer to copy from
109 *
110 * Store register values.  Return %0 on success; -%EIO or -%ENODEV
111 * are usual failure returns.  The @pos and @count values are in
112 * bytes, but must be properly aligned.  If @kbuf is non-null, that
113 * buffer is used and @ubuf is ignored.  If @kbuf is %NULL, then
114 * ubuf gives a userland pointer to access directly, and an -%EFAULT
115 * return value is possible.
116 */
117typedef int user_regset_set_fn(struct task_struct *target,
118			       const struct user_regset *regset,
119			       unsigned int pos, unsigned int count,
120			       const void *kbuf, const void __user *ubuf);
121
122/**
123 * user_regset_writeback_fn - type of @writeback function in &struct user_regset
124 * @target:	thread being examined
125 * @regset:	regset being examined
126 * @immediate:	zero if writeback at completion of next context switch is OK
127 *
128 * This call is optional; usually the pointer is %NULL.  When
129 * provided, there is some user memory associated with this regset's
130 * hardware, such as memory backing cached register data on register
131 * window machines; the regset's data controls what user memory is
132 * used (e.g. via the stack pointer value).
133 *
134 * Write register data back to user memory.  If the @immediate flag
135 * is nonzero, it must be written to the user memory so uaccess or
136 * access_process_vm() can see it when this call returns; if zero,
137 * then it must be written back by the time the task completes a
138 * context switch (as synchronized with wait_task_inactive()).
139 * Return %0 on success or if there was nothing to do, -%EFAULT for
140 * a memory problem (bad stack pointer or whatever), or -%EIO for a
141 * hardware problem.
142 */
143typedef int user_regset_writeback_fn(struct task_struct *target,
144				     const struct user_regset *regset,
145				     int immediate);
146
147/**
148 * struct user_regset - accessible thread CPU state
149 * @n:			Number of slots (registers).
150 * @size:		Size in bytes of a slot (register).
151 * @align:		Required alignment, in bytes.
152 * @bias:		Bias from natural indexing.
153 * @core_note_type:	ELF note @n_type value used in core dumps.
154 * @get:		Function to fetch values.
155 * @set:		Function to store values.
156 * @active:		Function to report if regset is active, or %NULL.
157 * @writeback:		Function to write data back to user memory, or %NULL.
158 *
159 * This data structure describes a machine resource we call a register set.
160 * This is part of the state of an individual thread, not necessarily
161 * actual CPU registers per se.  A register set consists of a number of
162 * similar slots, given by @n.  Each slot is @size bytes, and aligned to
163 * @align bytes (which is at least @size).  For dynamically-sized
164 * regsets, @n must contain the maximum possible number of slots for the
165 * regset.
166 *
167 * For backward compatibility, the @get and @set methods must pad to, or
168 * accept, @n * @size bytes, even if the current regset size is smaller.
169 * The precise semantics of these operations depend on the regset being
170 * accessed.
171 *
172 * The functions to which &struct user_regset members point must be
173 * called only on the current thread or on a thread that is in
174 * %TASK_STOPPED or %TASK_TRACED state, that we are guaranteed will not
175 * be woken up and return to user mode, and that we have called
176 * wait_task_inactive() on.  (The target thread always might wake up for
177 * SIGKILL while these functions are working, in which case that
178 * thread's user_regset state might be scrambled.)
179 *
180 * The @pos argument must be aligned according to @align; the @count
181 * argument must be a multiple of @size.  These functions are not
182 * responsible for checking for invalid arguments.
183 *
184 * When there is a natural value to use as an index, @bias gives the
185 * difference between the natural index and the slot index for the
186 * register set.  For example, x86 GDT segment descriptors form a regset;
187 * the segment selector produces a natural index, but only a subset of
188 * that index space is available as a regset (the TLS slots); subtracting
189 * @bias from a segment selector index value computes the regset slot.
190 *
191 * If nonzero, @core_note_type gives the n_type field (NT_* value)
192 * of the core file note in which this regset's data appears.
193 * NT_PRSTATUS is a special case in that the regset data starts at
194 * offsetof(struct elf_prstatus, pr_reg) into the note data; that is
195 * part of the per-machine ELF formats userland knows about.  In
196 * other cases, the core file note contains exactly the whole regset
197 * (@n * @size) and nothing else.  The core file note is normally
198 * omitted when there is an @active function and it returns zero.
199 */
200struct user_regset {
201	user_regset_get2_fn		*regset_get;
202	user_regset_set_fn		*set;
203	user_regset_active_fn		*active;
204	user_regset_writeback_fn	*writeback;
205	unsigned int			n;
206	unsigned int 			size;
207	unsigned int 			align;
208	unsigned int 			bias;
209	unsigned int 			core_note_type;
210};
211
212/**
213 * struct user_regset_view - available regsets
214 * @name:	Identifier, e.g. UTS_MACHINE string.
215 * @regsets:	Array of @n regsets available in this view.
216 * @n:		Number of elements in @regsets.
217 * @e_machine:	ELF header @e_machine %EM_* value written in core dumps.
218 * @e_flags:	ELF header @e_flags value written in core dumps.
219 * @ei_osabi:	ELF header @e_ident[%EI_OSABI] value written in core dumps.
220 *
221 * A regset view is a collection of regsets (&struct user_regset,
222 * above).  This describes all the state of a thread that can be seen
223 * from a given architecture/ABI environment.  More than one view might
224 * refer to the same &struct user_regset, or more than one regset
225 * might refer to the same machine-specific state in the thread.  For
226 * example, a 32-bit thread's state could be examined from the 32-bit
227 * view or from the 64-bit view.  Either method reaches the same thread
228 * register state, doing appropriate widening or truncation.
229 */
230struct user_regset_view {
231	const char *name;
232	const struct user_regset *regsets;
233	unsigned int n;
234	u32 e_flags;
235	u16 e_machine;
236	u8 ei_osabi;
237};
238
239/*
240 * This is documented here rather than at the definition sites because its
241 * implementation is machine-dependent but its interface is universal.
242 */
243/**
244 * task_user_regset_view - Return the process's native regset view.
245 * @tsk: a thread of the process in question
246 *
247 * Return the &struct user_regset_view that is native for the given process.
248 * For example, what it would access when it called ptrace().
249 * Throughout the life of the process, this only changes at exec.
250 */
251const struct user_regset_view *task_user_regset_view(struct task_struct *tsk);
252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253static inline int user_regset_copyin(unsigned int *pos, unsigned int *count,
254				     const void **kbuf,
255				     const void __user **ubuf, void *data,
256				     const int start_pos, const int end_pos)
257{
258	if (*count == 0)
259		return 0;
260	BUG_ON(*pos < start_pos);
261	if (end_pos < 0 || *pos < end_pos) {
262		unsigned int copy = (end_pos < 0 ? *count
263				     : min(*count, end_pos - *pos));
264		data += *pos - start_pos;
265		if (*kbuf) {
266			memcpy(data, *kbuf, copy);
267			*kbuf += copy;
268		} else if (__copy_from_user(data, *ubuf, copy))
269			return -EFAULT;
270		else
271			*ubuf += copy;
272		*pos += copy;
273		*count -= copy;
274	}
275	return 0;
276}
277
278static inline void user_regset_copyin_ignore(unsigned int *pos,
279					     unsigned int *count,
280					     const void **kbuf,
281					     const void __user **ubuf,
282					     const int start_pos,
283					     const int end_pos)
 
 
 
284{
285	if (*count == 0)
286		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287	BUG_ON(*pos < start_pos);
288	if (end_pos < 0 || *pos < end_pos) {
289		unsigned int copy = (end_pos < 0 ? *count
290				     : min(*count, end_pos - *pos));
291		if (*kbuf)
292			*kbuf += copy;
293		else
294			*ubuf += copy;
295		*pos += copy;
296		*count -= copy;
297	}
 
298}
299
300extern int regset_get(struct task_struct *target,
301		      const struct user_regset *regset,
302		      unsigned int size, void *data);
303
304extern int regset_get_alloc(struct task_struct *target,
305			    const struct user_regset *regset,
306			    unsigned int size,
307			    void **data);
308
309extern int copy_regset_to_user(struct task_struct *target,
310			       const struct user_regset_view *view,
311			       unsigned int setno, unsigned int offset,
312			       unsigned int size, void __user *data);
 
 
 
 
 
 
 
 
 
 
 
 
313
314/**
315 * copy_regset_from_user - store into thread's user_regset data from user memory
316 * @target:	thread to be examined
317 * @view:	&struct user_regset_view describing user thread machine state
318 * @setno:	index in @view->regsets
319 * @offset:	offset into the regset data, in bytes
320 * @size:	amount of data to copy, in bytes
321 * @data:	user-mode pointer to copy from
322 */
323static inline int copy_regset_from_user(struct task_struct *target,
324					const struct user_regset_view *view,
325					unsigned int setno,
326					unsigned int offset, unsigned int size,
327					const void __user *data)
328{
329	const struct user_regset *regset = &view->regsets[setno];
330
331	if (!regset->set)
332		return -EOPNOTSUPP;
333
334	if (!access_ok(data, size))
335		return -EFAULT;
336
337	return regset->set(target, regset, offset, size, NULL, data);
338}
 
339
340#endif	/* <linux/regset.h> */