Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 * fs/kernfs/mount.c - kernfs mount implementation
  3 *
  4 * Copyright (c) 2001-3 Patrick Mochel
  5 * Copyright (c) 2007 SUSE Linux Products GmbH
  6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
  7 *
  8 * This file is released under the GPLv2.
  9 */
 10
 11#include <linux/fs.h>
 12#include <linux/mount.h>
 13#include <linux/init.h>
 14#include <linux/magic.h>
 15#include <linux/slab.h>
 16#include <linux/pagemap.h>
 17#include <linux/namei.h>
 18#include <linux/seq_file.h>
 
 19
 20#include "kernfs-internal.h"
 21
 22struct kmem_cache *kernfs_node_cache;
 23
 24static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
 25{
 26	struct kernfs_root *root = kernfs_info(sb)->root;
 27	struct kernfs_syscall_ops *scops = root->syscall_ops;
 28
 29	if (scops && scops->remount_fs)
 30		return scops->remount_fs(root, flags, data);
 31	return 0;
 32}
 33
 34static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
 35{
 36	struct kernfs_root *root = kernfs_root(dentry->d_fsdata);
 37	struct kernfs_syscall_ops *scops = root->syscall_ops;
 38
 39	if (scops && scops->show_options)
 40		return scops->show_options(sf, root);
 41	return 0;
 42}
 43
 44static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
 45{
 46	struct kernfs_node *node = dentry->d_fsdata;
 47	struct kernfs_root *root = kernfs_root(node);
 48	struct kernfs_syscall_ops *scops = root->syscall_ops;
 49
 50	if (scops && scops->show_path)
 51		return scops->show_path(sf, node, root);
 52
 53	seq_dentry(sf, dentry, " \t\n\\");
 54	return 0;
 55}
 56
 57const struct super_operations kernfs_sops = {
 58	.statfs		= simple_statfs,
 59	.drop_inode	= generic_delete_inode,
 60	.evict_inode	= kernfs_evict_inode,
 61
 62	.remount_fs	= kernfs_sop_remount_fs,
 63	.show_options	= kernfs_sop_show_options,
 64	.show_path	= kernfs_sop_show_path,
 65};
 66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67/**
 68 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
 69 * @sb: the super_block in question
 70 *
 71 * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
 72 * %NULL is returned.
 73 */
 74struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
 75{
 76	if (sb->s_op == &kernfs_sops)
 77		return kernfs_info(sb)->root;
 78	return NULL;
 79}
 80
 81/*
 82 * find the next ancestor in the path down to @child, where @parent was the
 83 * ancestor whose descendant we want to find.
 84 *
 85 * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
 86 * node.  If @parent is b, then we return the node for c.
 87 * Passing in d as @parent is not ok.
 88 */
 89static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
 90					      struct kernfs_node *parent)
 91{
 92	if (child == parent) {
 93		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
 94		return NULL;
 95	}
 96
 97	while (child->parent != parent) {
 98		if (!child->parent)
 99			return NULL;
100		child = child->parent;
101	}
102
103	return child;
104}
105
106/**
107 * kernfs_node_dentry - get a dentry for the given kernfs_node
108 * @kn: kernfs_node for which a dentry is needed
109 * @sb: the kernfs super_block
 
 
110 */
111struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
112				  struct super_block *sb)
113{
114	struct dentry *dentry;
115	struct kernfs_node *knparent = NULL;
116
117	BUG_ON(sb->s_op != &kernfs_sops);
118
119	dentry = dget(sb->s_root);
120
121	/* Check if this is the root kernfs_node */
122	if (!kn->parent)
123		return dentry;
124
125	knparent = find_next_ancestor(kn, NULL);
126	if (WARN_ON(!knparent))
 
127		return ERR_PTR(-EINVAL);
 
128
129	do {
130		struct dentry *dtmp;
131		struct kernfs_node *kntmp;
132
133		if (kn == knparent)
134			return dentry;
135		kntmp = find_next_ancestor(kn, knparent);
136		if (WARN_ON(!kntmp))
 
137			return ERR_PTR(-EINVAL);
138		dtmp = lookup_one_len_unlocked(kntmp->name, dentry,
 
139					       strlen(kntmp->name));
140		dput(dentry);
141		if (IS_ERR(dtmp))
142			return dtmp;
143		knparent = kntmp;
144		dentry = dtmp;
145	} while (true);
146}
147
148static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
149{
150	struct kernfs_super_info *info = kernfs_info(sb);
 
151	struct inode *inode;
152	struct dentry *root;
153
154	info->sb = sb;
155	/* Userspace would break if executables or devices appear on sysfs */
156	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
157	sb->s_blocksize = PAGE_SIZE;
158	sb->s_blocksize_bits = PAGE_SHIFT;
159	sb->s_magic = magic;
160	sb->s_op = &kernfs_sops;
161	sb->s_xattr = kernfs_xattr_handlers;
 
 
162	sb->s_time_gran = 1;
163
 
 
 
164	/* get root inode, initialize and unlock it */
165	mutex_lock(&kernfs_mutex);
166	inode = kernfs_get_inode(sb, info->root->kn);
167	mutex_unlock(&kernfs_mutex);
168	if (!inode) {
169		pr_debug("kernfs: could not get root inode\n");
170		return -ENOMEM;
171	}
172
173	/* instantiate and link root dentry */
174	root = d_make_root(inode);
175	if (!root) {
176		pr_debug("%s: could not get root dentry!\n", __func__);
177		return -ENOMEM;
178	}
179	kernfs_get(info->root->kn);
180	root->d_fsdata = info->root->kn;
181	sb->s_root = root;
182	sb->s_d_op = &kernfs_dops;
183	return 0;
184}
185
186static int kernfs_test_super(struct super_block *sb, void *data)
187{
188	struct kernfs_super_info *sb_info = kernfs_info(sb);
189	struct kernfs_super_info *info = data;
190
191	return sb_info->root == info->root && sb_info->ns == info->ns;
192}
193
194static int kernfs_set_super(struct super_block *sb, void *data)
195{
196	int error;
197	error = set_anon_super(sb, data);
198	if (!error)
199		sb->s_fs_info = data;
200	return error;
201}
202
203/**
204 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
205 * @sb: super_block of interest
206 *
207 * Return the namespace tag associated with kernfs super_block @sb.
208 */
209const void *kernfs_super_ns(struct super_block *sb)
210{
211	struct kernfs_super_info *info = kernfs_info(sb);
212
213	return info->ns;
214}
215
216/**
217 * kernfs_mount_ns - kernfs mount helper
218 * @fs_type: file_system_type of the fs being mounted
219 * @flags: mount flags specified for the mount
220 * @root: kernfs_root of the hierarchy being mounted
221 * @magic: file system specific magic number
222 * @new_sb_created: tell the caller if we allocated a new superblock
223 * @ns: optional namespace tag of the mount
224 *
225 * This is to be called from each kernfs user's file_system_type->mount()
226 * implementation, which should pass through the specified @fs_type and
227 * @flags, and specify the hierarchy and namespace tag to mount via @root
228 * and @ns, respectively.
229 *
230 * The return value can be passed to the vfs layer verbatim.
231 */
232struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
233				struct kernfs_root *root, unsigned long magic,
234				bool *new_sb_created, const void *ns)
235{
 
236	struct super_block *sb;
237	struct kernfs_super_info *info;
238	int error;
239
240	info = kzalloc(sizeof(*info), GFP_KERNEL);
241	if (!info)
242		return ERR_PTR(-ENOMEM);
243
244	info->root = root;
245	info->ns = ns;
 
246
247	sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags,
248			 &init_user_ns, info);
249	if (IS_ERR(sb) || sb->s_fs_info != info)
250		kfree(info);
251	if (IS_ERR(sb))
252		return ERR_CAST(sb);
253
254	if (new_sb_created)
255		*new_sb_created = !sb->s_root;
256
257	if (!sb->s_root) {
258		struct kernfs_super_info *info = kernfs_info(sb);
 
 
 
259
260		error = kernfs_fill_super(sb, magic);
261		if (error) {
262			deactivate_locked_super(sb);
263			return ERR_PTR(error);
264		}
265		sb->s_flags |= MS_ACTIVE;
266
267		mutex_lock(&kernfs_mutex);
268		list_add(&info->node, &root->supers);
269		mutex_unlock(&kernfs_mutex);
270	}
271
272	return dget(sb->s_root);
 
 
 
 
 
 
 
 
273}
274
275/**
276 * kernfs_kill_sb - kill_sb for kernfs
277 * @sb: super_block being killed
278 *
279 * This can be used directly for file_system_type->kill_sb().  If a kernfs
280 * user needs extra cleanup, it can implement its own kill_sb() and call
281 * this function at the end.
282 */
283void kernfs_kill_sb(struct super_block *sb)
284{
285	struct kernfs_super_info *info = kernfs_info(sb);
286	struct kernfs_node *root_kn = sb->s_root->d_fsdata;
287
288	mutex_lock(&kernfs_mutex);
289	list_del(&info->node);
290	mutex_unlock(&kernfs_mutex);
291
292	/*
293	 * Remove the superblock from fs_supers/s_instances
294	 * so we can't find it, before freeing kernfs_super_info.
295	 */
296	kill_anon_super(sb);
297	kfree(info);
298	kernfs_put(root_kn);
299}
300
301/**
302 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
303 * @kernfs_root: the kernfs_root in question
304 * @ns: the namespace tag
305 *
306 * Pin the superblock so the superblock won't be destroyed in subsequent
307 * operations.  This can be used to block ->kill_sb() which may be useful
308 * for kernfs users which dynamically manage superblocks.
309 *
310 * Returns NULL if there's no superblock associated to this kernfs_root, or
311 * -EINVAL if the superblock is being freed.
312 */
313struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
314{
315	struct kernfs_super_info *info;
316	struct super_block *sb = NULL;
317
318	mutex_lock(&kernfs_mutex);
319	list_for_each_entry(info, &root->supers, node) {
320		if (info->ns == ns) {
321			sb = info->sb;
322			if (!atomic_inc_not_zero(&info->sb->s_active))
323				sb = ERR_PTR(-EINVAL);
324			break;
325		}
326	}
327	mutex_unlock(&kernfs_mutex);
328	return sb;
329}
330
331void __init kernfs_init(void)
332{
333	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
334					      sizeof(struct kernfs_node),
335					      0, SLAB_PANIC, NULL);
 
 
 
 
 
 
 
336}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * fs/kernfs/mount.c - kernfs mount implementation
  4 *
  5 * Copyright (c) 2001-3 Patrick Mochel
  6 * Copyright (c) 2007 SUSE Linux Products GmbH
  7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
 
 
  8 */
  9
 10#include <linux/fs.h>
 11#include <linux/mount.h>
 12#include <linux/init.h>
 13#include <linux/magic.h>
 14#include <linux/slab.h>
 15#include <linux/pagemap.h>
 16#include <linux/namei.h>
 17#include <linux/seq_file.h>
 18#include <linux/exportfs.h>
 19
 20#include "kernfs-internal.h"
 21
 22struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache;
 23struct kernfs_global_locks *kernfs_locks;
 
 
 
 
 
 
 
 
 
 24
 25static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
 26{
 27	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
 28	struct kernfs_syscall_ops *scops = root->syscall_ops;
 29
 30	if (scops && scops->show_options)
 31		return scops->show_options(sf, root);
 32	return 0;
 33}
 34
 35static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
 36{
 37	struct kernfs_node *node = kernfs_dentry_node(dentry);
 38	struct kernfs_root *root = kernfs_root(node);
 39	struct kernfs_syscall_ops *scops = root->syscall_ops;
 40
 41	if (scops && scops->show_path)
 42		return scops->show_path(sf, node, root);
 43
 44	seq_dentry(sf, dentry, " \t\n\\");
 45	return 0;
 46}
 47
 48const struct super_operations kernfs_sops = {
 49	.statfs		= simple_statfs,
 50	.drop_inode	= generic_delete_inode,
 51	.evict_inode	= kernfs_evict_inode,
 52
 
 53	.show_options	= kernfs_sop_show_options,
 54	.show_path	= kernfs_sop_show_path,
 55};
 56
 57static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
 58			    struct inode *parent)
 59{
 60	struct kernfs_node *kn = inode->i_private;
 61
 62	if (*max_len < 2) {
 63		*max_len = 2;
 64		return FILEID_INVALID;
 65	}
 66
 67	*max_len = 2;
 68	*(u64 *)fh = kn->id;
 69	return FILEID_KERNFS;
 70}
 71
 72static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
 73					    struct fid *fid, int fh_len,
 74					    int fh_type, bool get_parent)
 75{
 76	struct kernfs_super_info *info = kernfs_info(sb);
 77	struct kernfs_node *kn;
 78	struct inode *inode;
 79	u64 id;
 80
 81	if (fh_len < 2)
 82		return NULL;
 83
 84	switch (fh_type) {
 85	case FILEID_KERNFS:
 86		id = *(u64 *)fid;
 87		break;
 88	case FILEID_INO32_GEN:
 89	case FILEID_INO32_GEN_PARENT:
 90		/*
 91		 * blk_log_action() exposes "LOW32,HIGH32" pair without
 92		 * type and userland can call us with generic fid
 93		 * constructed from them.  Combine it back to ID.  See
 94		 * blk_log_action().
 95		 */
 96		id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
 97		break;
 98	default:
 99		return NULL;
100	}
101
102	kn = kernfs_find_and_get_node_by_id(info->root, id);
103	if (!kn)
104		return ERR_PTR(-ESTALE);
105
106	if (get_parent) {
107		struct kernfs_node *parent;
108
109		parent = kernfs_get_parent(kn);
110		kernfs_put(kn);
111		kn = parent;
112		if (!kn)
113			return ERR_PTR(-ESTALE);
114	}
115
116	inode = kernfs_get_inode(sb, kn);
117	kernfs_put(kn);
118	if (!inode)
119		return ERR_PTR(-ESTALE);
120
121	return d_obtain_alias(inode);
122}
123
124static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
125					  struct fid *fid, int fh_len,
126					  int fh_type)
127{
128	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
129}
130
131static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
132					  struct fid *fid, int fh_len,
133					  int fh_type)
134{
135	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
136}
137
138static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
139{
140	struct kernfs_node *kn = kernfs_dentry_node(child);
141
142	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
143}
144
145static const struct export_operations kernfs_export_ops = {
146	.encode_fh	= kernfs_encode_fh,
147	.fh_to_dentry	= kernfs_fh_to_dentry,
148	.fh_to_parent	= kernfs_fh_to_parent,
149	.get_parent	= kernfs_get_parent_dentry,
150};
151
152/**
153 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
154 * @sb: the super_block in question
155 *
156 * Return: the kernfs_root associated with @sb.  If @sb is not a kernfs one,
157 * %NULL is returned.
158 */
159struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
160{
161	if (sb->s_op == &kernfs_sops)
162		return kernfs_info(sb)->root;
163	return NULL;
164}
165
166/*
167 * find the next ancestor in the path down to @child, where @parent was the
168 * ancestor whose descendant we want to find.
169 *
170 * Say the path is /a/b/c/d.  @child is d, @parent is %NULL.  We return the root
171 * node.  If @parent is b, then we return the node for c.
172 * Passing in d as @parent is not ok.
173 */
174static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
175					      struct kernfs_node *parent)
176{
177	if (child == parent) {
178		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
179		return NULL;
180	}
181
182	while (child->parent != parent) {
183		if (!child->parent)
184			return NULL;
185		child = child->parent;
186	}
187
188	return child;
189}
190
191/**
192 * kernfs_node_dentry - get a dentry for the given kernfs_node
193 * @kn: kernfs_node for which a dentry is needed
194 * @sb: the kernfs super_block
195 *
196 * Return: the dentry pointer
197 */
198struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
199				  struct super_block *sb)
200{
201	struct dentry *dentry;
202	struct kernfs_node *knparent = NULL;
203
204	BUG_ON(sb->s_op != &kernfs_sops);
205
206	dentry = dget(sb->s_root);
207
208	/* Check if this is the root kernfs_node */
209	if (!kn->parent)
210		return dentry;
211
212	knparent = find_next_ancestor(kn, NULL);
213	if (WARN_ON(!knparent)) {
214		dput(dentry);
215		return ERR_PTR(-EINVAL);
216	}
217
218	do {
219		struct dentry *dtmp;
220		struct kernfs_node *kntmp;
221
222		if (kn == knparent)
223			return dentry;
224		kntmp = find_next_ancestor(kn, knparent);
225		if (WARN_ON(!kntmp)) {
226			dput(dentry);
227			return ERR_PTR(-EINVAL);
228		}
229		dtmp = lookup_positive_unlocked(kntmp->name, dentry,
230					       strlen(kntmp->name));
231		dput(dentry);
232		if (IS_ERR(dtmp))
233			return dtmp;
234		knparent = kntmp;
235		dentry = dtmp;
236	} while (true);
237}
238
239static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
240{
241	struct kernfs_super_info *info = kernfs_info(sb);
242	struct kernfs_root *kf_root = kfc->root;
243	struct inode *inode;
244	struct dentry *root;
245
246	info->sb = sb;
247	/* Userspace would break if executables or devices appear on sysfs */
248	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
249	sb->s_blocksize = PAGE_SIZE;
250	sb->s_blocksize_bits = PAGE_SHIFT;
251	sb->s_magic = kfc->magic;
252	sb->s_op = &kernfs_sops;
253	sb->s_xattr = kernfs_xattr_handlers;
254	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
255		sb->s_export_op = &kernfs_export_ops;
256	sb->s_time_gran = 1;
257
258	/* sysfs dentries and inodes don't require IO to create */
259	sb->s_shrink.seeks = 0;
260
261	/* get root inode, initialize and unlock it */
262	down_read(&kf_root->kernfs_rwsem);
263	inode = kernfs_get_inode(sb, info->root->kn);
264	up_read(&kf_root->kernfs_rwsem);
265	if (!inode) {
266		pr_debug("kernfs: could not get root inode\n");
267		return -ENOMEM;
268	}
269
270	/* instantiate and link root dentry */
271	root = d_make_root(inode);
272	if (!root) {
273		pr_debug("%s: could not get root dentry!\n", __func__);
274		return -ENOMEM;
275	}
 
 
276	sb->s_root = root;
277	sb->s_d_op = &kernfs_dops;
278	return 0;
279}
280
281static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
282{
283	struct kernfs_super_info *sb_info = kernfs_info(sb);
284	struct kernfs_super_info *info = fc->s_fs_info;
285
286	return sb_info->root == info->root && sb_info->ns == info->ns;
287}
288
289static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
290{
291	struct kernfs_fs_context *kfc = fc->fs_private;
292
293	kfc->ns_tag = NULL;
294	return set_anon_super_fc(sb, fc);
 
295}
296
297/**
298 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
299 * @sb: super_block of interest
300 *
301 * Return: the namespace tag associated with kernfs super_block @sb.
302 */
303const void *kernfs_super_ns(struct super_block *sb)
304{
305	struct kernfs_super_info *info = kernfs_info(sb);
306
307	return info->ns;
308}
309
310/**
311 * kernfs_get_tree - kernfs filesystem access/retrieval helper
312 * @fc: The filesystem context.
 
 
 
 
 
313 *
314 * This is to be called from each kernfs user's fs_context->ops->get_tree()
315 * implementation, which should set the specified ->@fs_type and ->@flags, and
316 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
317 * respectively.
318 *
319 * Return: %0 on success, -errno on failure.
320 */
321int kernfs_get_tree(struct fs_context *fc)
 
 
322{
323	struct kernfs_fs_context *kfc = fc->fs_private;
324	struct super_block *sb;
325	struct kernfs_super_info *info;
326	int error;
327
328	info = kzalloc(sizeof(*info), GFP_KERNEL);
329	if (!info)
330		return -ENOMEM;
331
332	info->root = kfc->root;
333	info->ns = kfc->ns_tag;
334	INIT_LIST_HEAD(&info->node);
335
336	fc->s_fs_info = info;
337	sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
 
 
338	if (IS_ERR(sb))
339		return PTR_ERR(sb);
 
 
 
340
341	if (!sb->s_root) {
342		struct kernfs_super_info *info = kernfs_info(sb);
343		struct kernfs_root *root = kfc->root;
344
345		kfc->new_sb_created = true;
346
347		error = kernfs_fill_super(sb, kfc);
348		if (error) {
349			deactivate_locked_super(sb);
350			return error;
351		}
352		sb->s_flags |= SB_ACTIVE;
353
354		down_write(&root->kernfs_rwsem);
355		list_add(&info->node, &info->root->supers);
356		up_write(&root->kernfs_rwsem);
357	}
358
359	fc->root = dget(sb->s_root);
360	return 0;
361}
362
363void kernfs_free_fs_context(struct fs_context *fc)
364{
365	/* Note that we don't deal with kfc->ns_tag here. */
366	kfree(fc->s_fs_info);
367	fc->s_fs_info = NULL;
368}
369
370/**
371 * kernfs_kill_sb - kill_sb for kernfs
372 * @sb: super_block being killed
373 *
374 * This can be used directly for file_system_type->kill_sb().  If a kernfs
375 * user needs extra cleanup, it can implement its own kill_sb() and call
376 * this function at the end.
377 */
378void kernfs_kill_sb(struct super_block *sb)
379{
380	struct kernfs_super_info *info = kernfs_info(sb);
381	struct kernfs_root *root = info->root;
382
383	down_write(&root->kernfs_rwsem);
384	list_del(&info->node);
385	up_write(&root->kernfs_rwsem);
386
387	/*
388	 * Remove the superblock from fs_supers/s_instances
389	 * so we can't find it, before freeing kernfs_super_info.
390	 */
391	kill_anon_super(sb);
392	kfree(info);
 
393}
394
395static void __init kernfs_mutex_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
396{
397	int count;
 
398
399	for (count = 0; count < NR_KERNFS_LOCKS; count++)
400		mutex_init(&kernfs_locks->open_file_mutex[count]);
401}
402
403static void __init kernfs_lock_init(void)
404{
405	kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL);
406	WARN_ON(!kernfs_locks);
407
408	kernfs_mutex_init();
 
409}
410
411void __init kernfs_init(void)
412{
413	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
414					      sizeof(struct kernfs_node),
415					      0, SLAB_PANIC, NULL);
416
417	/* Creates slab cache for kernfs inode attributes */
418	kernfs_iattrs_cache  = kmem_cache_create("kernfs_iattrs_cache",
419					      sizeof(struct kernfs_iattrs),
420					      0, SLAB_PANIC, NULL);
421
422	kernfs_lock_init();
423}