Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.10.11
 
  1/*
  2 * Xen time implementation.
  3 *
  4 * This is implemented in terms of a clocksource driver which uses
  5 * the hypervisor clock as a nanosecond timebase, and a clockevent
  6 * driver which uses the hypervisor's timer mechanism.
  7 *
  8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  9 */
 10#include <linux/kernel.h>
 11#include <linux/interrupt.h>
 12#include <linux/clocksource.h>
 13#include <linux/clockchips.h>
 14#include <linux/gfp.h>
 15#include <linux/slab.h>
 16#include <linux/pvclock_gtod.h>
 17#include <linux/timekeeper_internal.h>
 18
 19#include <asm/pvclock.h>
 20#include <asm/xen/hypervisor.h>
 21#include <asm/xen/hypercall.h>
 22
 23#include <xen/events.h>
 24#include <xen/features.h>
 25#include <xen/interface/xen.h>
 26#include <xen/interface/vcpu.h>
 27
 28#include "xen-ops.h"
 29
 30/* Xen may fire a timer up to this many ns early */
 31#define TIMER_SLOP	100000
 32
 
 
 33/* Get the TSC speed from Xen */
 34static unsigned long xen_tsc_khz(void)
 35{
 36	struct pvclock_vcpu_time_info *info =
 37		&HYPERVISOR_shared_info->vcpu_info[0].time;
 38
 
 39	return pvclock_tsc_khz(info);
 40}
 41
 42u64 xen_clocksource_read(void)
 43{
 44        struct pvclock_vcpu_time_info *src;
 45	u64 ret;
 46
 47	preempt_disable_notrace();
 48	src = &__this_cpu_read(xen_vcpu)->time;
 49	ret = pvclock_clocksource_read(src);
 50	preempt_enable_notrace();
 51	return ret;
 52}
 53
 54static u64 xen_clocksource_get_cycles(struct clocksource *cs)
 55{
 56	return xen_clocksource_read();
 57}
 58
 59static void xen_read_wallclock(struct timespec *ts)
 
 
 
 
 
 60{
 61	struct shared_info *s = HYPERVISOR_shared_info;
 62	struct pvclock_wall_clock *wall_clock = &(s->wc);
 63        struct pvclock_vcpu_time_info *vcpu_time;
 64
 65	vcpu_time = &get_cpu_var(xen_vcpu)->time;
 66	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
 67	put_cpu_var(xen_vcpu);
 68}
 69
 70static void xen_get_wallclock(struct timespec *now)
 71{
 72	xen_read_wallclock(now);
 73}
 74
 75static int xen_set_wallclock(const struct timespec *now)
 76{
 77	return -1;
 78}
 79
 80static int xen_pvclock_gtod_notify(struct notifier_block *nb,
 81				   unsigned long was_set, void *priv)
 82{
 83	/* Protected by the calling core code serialization */
 84	static struct timespec64 next_sync;
 85
 86	struct xen_platform_op op;
 87	struct timespec64 now;
 88	struct timekeeper *tk = priv;
 89	static bool settime64_supported = true;
 90	int ret;
 91
 92	now.tv_sec = tk->xtime_sec;
 93	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 94
 95	/*
 96	 * We only take the expensive HV call when the clock was set
 97	 * or when the 11 minutes RTC synchronization time elapsed.
 98	 */
 99	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
100		return NOTIFY_OK;
101
102again:
103	if (settime64_supported) {
104		op.cmd = XENPF_settime64;
105		op.u.settime64.mbz = 0;
106		op.u.settime64.secs = now.tv_sec;
107		op.u.settime64.nsecs = now.tv_nsec;
108		op.u.settime64.system_time = xen_clocksource_read();
109	} else {
110		op.cmd = XENPF_settime32;
111		op.u.settime32.secs = now.tv_sec;
112		op.u.settime32.nsecs = now.tv_nsec;
113		op.u.settime32.system_time = xen_clocksource_read();
114	}
115
116	ret = HYPERVISOR_platform_op(&op);
117
118	if (ret == -ENOSYS && settime64_supported) {
119		settime64_supported = false;
120		goto again;
121	}
122	if (ret < 0)
123		return NOTIFY_BAD;
124
125	/*
126	 * Move the next drift compensation time 11 minutes
127	 * ahead. That's emulating the sync_cmos_clock() update for
128	 * the hardware RTC.
129	 */
130	next_sync = now;
131	next_sync.tv_sec += 11 * 60;
132
133	return NOTIFY_OK;
134}
135
136static struct notifier_block xen_pvclock_gtod_notifier = {
137	.notifier_call = xen_pvclock_gtod_notify,
138};
139
 
 
 
 
 
 
140static struct clocksource xen_clocksource __read_mostly = {
141	.name = "xen",
142	.rating = 400,
143	.read = xen_clocksource_get_cycles,
144	.mask = ~0,
145	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
 
146};
147
148/*
149   Xen clockevent implementation
150
151   Xen has two clockevent implementations:
152
153   The old timer_op one works with all released versions of Xen prior
154   to version 3.0.4.  This version of the hypervisor provides a
155   single-shot timer with nanosecond resolution.  However, sharing the
156   same event channel is a 100Hz tick which is delivered while the
157   vcpu is running.  We don't care about or use this tick, but it will
158   cause the core time code to think the timer fired too soon, and
159   will end up resetting it each time.  It could be filtered, but
160   doing so has complications when the ktime clocksource is not yet
161   the xen clocksource (ie, at boot time).
162
163   The new vcpu_op-based timer interface allows the tick timer period
164   to be changed or turned off.  The tick timer is not useful as a
165   periodic timer because events are only delivered to running vcpus.
166   The one-shot timer can report when a timeout is in the past, so
167   set_next_event is capable of returning -ETIME when appropriate.
168   This interface is used when available.
169*/
170
171
172/*
173  Get a hypervisor absolute time.  In theory we could maintain an
174  offset between the kernel's time and the hypervisor's time, and
175  apply that to a kernel's absolute timeout.  Unfortunately the
176  hypervisor and kernel times can drift even if the kernel is using
177  the Xen clocksource, because ntp can warp the kernel's clocksource.
178*/
179static s64 get_abs_timeout(unsigned long delta)
180{
181	return xen_clocksource_read() + delta;
182}
183
184static int xen_timerop_shutdown(struct clock_event_device *evt)
185{
186	/* cancel timeout */
187	HYPERVISOR_set_timer_op(0);
188
189	return 0;
190}
191
192static int xen_timerop_set_next_event(unsigned long delta,
193				      struct clock_event_device *evt)
194{
195	WARN_ON(!clockevent_state_oneshot(evt));
196
197	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
198		BUG();
199
200	/* We may have missed the deadline, but there's no real way of
201	   knowing for sure.  If the event was in the past, then we'll
202	   get an immediate interrupt. */
203
204	return 0;
205}
206
207static const struct clock_event_device xen_timerop_clockevent = {
208	.name			= "xen",
209	.features		= CLOCK_EVT_FEAT_ONESHOT,
210
211	.max_delta_ns		= 0xffffffff,
 
212	.min_delta_ns		= TIMER_SLOP,
 
213
214	.mult			= 1,
215	.shift			= 0,
216	.rating			= 500,
217
218	.set_state_shutdown	= xen_timerop_shutdown,
219	.set_next_event		= xen_timerop_set_next_event,
220};
221
222static int xen_vcpuop_shutdown(struct clock_event_device *evt)
223{
224	int cpu = smp_processor_id();
225
226	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
227			       NULL) ||
228	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
229			       NULL))
230		BUG();
231
232	return 0;
233}
234
235static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
236{
237	int cpu = smp_processor_id();
238
239	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
240			       NULL))
241		BUG();
242
243	return 0;
244}
245
246static int xen_vcpuop_set_next_event(unsigned long delta,
247				     struct clock_event_device *evt)
248{
249	int cpu = smp_processor_id();
250	struct vcpu_set_singleshot_timer single;
251	int ret;
252
253	WARN_ON(!clockevent_state_oneshot(evt));
254
255	single.timeout_abs_ns = get_abs_timeout(delta);
256	/* Get an event anyway, even if the timeout is already expired */
257	single.flags = 0;
258
259	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
260				 &single);
261	BUG_ON(ret != 0);
262
263	return ret;
264}
265
266static const struct clock_event_device xen_vcpuop_clockevent = {
267	.name = "xen",
268	.features = CLOCK_EVT_FEAT_ONESHOT,
269
270	.max_delta_ns = 0xffffffff,
 
271	.min_delta_ns = TIMER_SLOP,
 
272
273	.mult = 1,
274	.shift = 0,
275	.rating = 500,
276
277	.set_state_shutdown = xen_vcpuop_shutdown,
278	.set_state_oneshot = xen_vcpuop_set_oneshot,
279	.set_next_event = xen_vcpuop_set_next_event,
280};
281
282static const struct clock_event_device *xen_clockevent =
283	&xen_timerop_clockevent;
284
285struct xen_clock_event_device {
286	struct clock_event_device evt;
287	char name[16];
288};
289static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
290
291static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
292{
293	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
294	irqreturn_t ret;
295
296	ret = IRQ_NONE;
297	if (evt->event_handler) {
298		evt->event_handler(evt);
299		ret = IRQ_HANDLED;
300	}
301
302	return ret;
303}
304
305void xen_teardown_timer(int cpu)
306{
307	struct clock_event_device *evt;
308	BUG_ON(cpu == 0);
309	evt = &per_cpu(xen_clock_events, cpu).evt;
310
311	if (evt->irq >= 0) {
312		unbind_from_irqhandler(evt->irq, NULL);
313		evt->irq = -1;
314	}
315}
316
317void xen_setup_timer(int cpu)
318{
319	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
320	struct clock_event_device *evt = &xevt->evt;
321	int irq;
322
323	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
324	if (evt->irq >= 0)
325		xen_teardown_timer(cpu);
326
327	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
328
329	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
330
331	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
332				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
333				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
334				      xevt->name, NULL);
335	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
336
337	memcpy(evt, xen_clockevent, sizeof(*evt));
338
339	evt->cpumask = cpumask_of(cpu);
340	evt->irq = irq;
341}
342
343
344void xen_setup_cpu_clockevents(void)
345{
346	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
347}
348
349void xen_timer_resume(void)
350{
351	int cpu;
352
353	pvclock_resume();
354
355	if (xen_clockevent != &xen_vcpuop_clockevent)
356		return;
357
358	for_each_online_cpu(cpu) {
359		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
360				       xen_vcpu_nr(cpu), NULL))
361			BUG();
362	}
363}
364
365static const struct pv_time_ops xen_time_ops __initconst = {
366	.sched_clock = xen_clocksource_read,
367	.steal_clock = xen_steal_clock,
368};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369
370static void __init xen_time_init(void)
371{
 
372	int cpu = smp_processor_id();
373	struct timespec tp;
374
375	/* As Dom0 is never moved, no penalty on using TSC there */
376	if (xen_initial_domain())
377		xen_clocksource.rating = 275;
378
379	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
380
381	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
382			       NULL) == 0) {
383		/* Successfully turned off 100Hz tick, so we have the
384		   vcpuop-based timer interface */
385		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
386		xen_clockevent = &xen_vcpuop_clockevent;
387	}
388
389	/* Set initial system time with full resolution */
390	xen_read_wallclock(&tp);
391	do_settimeofday(&tp);
392
393	setup_force_cpu_cap(X86_FEATURE_TSC);
394
 
 
 
 
 
 
 
 
 
 
395	xen_setup_runstate_info(cpu);
396	xen_setup_timer(cpu);
397	xen_setup_cpu_clockevents();
398
399	xen_time_setup_guest();
400
401	if (xen_initial_domain())
402		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
403}
404
 
 
 
 
 
 
 
 
 
 
405void __init xen_init_time_ops(void)
406{
407	pv_time_ops = xen_time_ops;
408
409	x86_init.timers.timer_init = xen_time_init;
410	x86_init.timers.setup_percpu_clockev = x86_init_noop;
411	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
412
413	x86_platform.calibrate_tsc = xen_tsc_khz;
414	x86_platform.get_wallclock = xen_get_wallclock;
415	/* Dom0 uses the native method to set the hardware RTC. */
416	if (!xen_initial_domain())
417		x86_platform.set_wallclock = xen_set_wallclock;
418}
419
420#ifdef CONFIG_XEN_PVHVM
421static void xen_hvm_setup_cpu_clockevents(void)
422{
423	int cpu = smp_processor_id();
424	xen_setup_runstate_info(cpu);
425	/*
426	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
427	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
428	 * early bootup and also during CPU hotplug events).
429	 */
430	xen_setup_cpu_clockevents();
431}
432
433void __init xen_hvm_init_time_ops(void)
434{
 
 
 
 
 
 
 
 
 
 
 
 
 
435	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
436		printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
437				"disable pv timer\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
438		return;
439	}
440
441	pv_time_ops = xen_time_ops;
 
442	x86_init.timers.setup_percpu_clockev = xen_time_init;
443	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
444
445	x86_platform.calibrate_tsc = xen_tsc_khz;
446	x86_platform.get_wallclock = xen_get_wallclock;
447	x86_platform.set_wallclock = xen_set_wallclock;
 
 
448}
449#endif
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Xen time implementation.
  4 *
  5 * This is implemented in terms of a clocksource driver which uses
  6 * the hypervisor clock as a nanosecond timebase, and a clockevent
  7 * driver which uses the hypervisor's timer mechanism.
  8 *
  9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 10 */
 11#include <linux/kernel.h>
 12#include <linux/interrupt.h>
 13#include <linux/clocksource.h>
 14#include <linux/clockchips.h>
 15#include <linux/gfp.h>
 16#include <linux/slab.h>
 17#include <linux/pvclock_gtod.h>
 18#include <linux/timekeeper_internal.h>
 19
 20#include <asm/pvclock.h>
 21#include <asm/xen/hypervisor.h>
 22#include <asm/xen/hypercall.h>
 23
 24#include <xen/events.h>
 25#include <xen/features.h>
 26#include <xen/interface/xen.h>
 27#include <xen/interface/vcpu.h>
 28
 29#include "xen-ops.h"
 30
 31/* Minimum amount of time until next clock event fires */
 32#define TIMER_SLOP	100000
 33
 34static u64 xen_sched_clock_offset __read_mostly;
 35
 36/* Get the TSC speed from Xen */
 37static unsigned long xen_tsc_khz(void)
 38{
 39	struct pvclock_vcpu_time_info *info =
 40		&HYPERVISOR_shared_info->vcpu_info[0].time;
 41
 42	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 43	return pvclock_tsc_khz(info);
 44}
 45
 46static u64 xen_clocksource_read(void)
 47{
 48        struct pvclock_vcpu_time_info *src;
 49	u64 ret;
 50
 51	preempt_disable_notrace();
 52	src = &__this_cpu_read(xen_vcpu)->time;
 53	ret = pvclock_clocksource_read(src);
 54	preempt_enable_notrace();
 55	return ret;
 56}
 57
 58static u64 xen_clocksource_get_cycles(struct clocksource *cs)
 59{
 60	return xen_clocksource_read();
 61}
 62
 63static u64 xen_sched_clock(void)
 64{
 65	return xen_clocksource_read() - xen_sched_clock_offset;
 66}
 67
 68static void xen_read_wallclock(struct timespec64 *ts)
 69{
 70	struct shared_info *s = HYPERVISOR_shared_info;
 71	struct pvclock_wall_clock *wall_clock = &(s->wc);
 72        struct pvclock_vcpu_time_info *vcpu_time;
 73
 74	vcpu_time = &get_cpu_var(xen_vcpu)->time;
 75	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
 76	put_cpu_var(xen_vcpu);
 77}
 78
 79static void xen_get_wallclock(struct timespec64 *now)
 80{
 81	xen_read_wallclock(now);
 82}
 83
 84static int xen_set_wallclock(const struct timespec64 *now)
 85{
 86	return -ENODEV;
 87}
 88
 89static int xen_pvclock_gtod_notify(struct notifier_block *nb,
 90				   unsigned long was_set, void *priv)
 91{
 92	/* Protected by the calling core code serialization */
 93	static struct timespec64 next_sync;
 94
 95	struct xen_platform_op op;
 96	struct timespec64 now;
 97	struct timekeeper *tk = priv;
 98	static bool settime64_supported = true;
 99	int ret;
100
101	now.tv_sec = tk->xtime_sec;
102	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
103
104	/*
105	 * We only take the expensive HV call when the clock was set
106	 * or when the 11 minutes RTC synchronization time elapsed.
107	 */
108	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
109		return NOTIFY_OK;
110
111again:
112	if (settime64_supported) {
113		op.cmd = XENPF_settime64;
114		op.u.settime64.mbz = 0;
115		op.u.settime64.secs = now.tv_sec;
116		op.u.settime64.nsecs = now.tv_nsec;
117		op.u.settime64.system_time = xen_clocksource_read();
118	} else {
119		op.cmd = XENPF_settime32;
120		op.u.settime32.secs = now.tv_sec;
121		op.u.settime32.nsecs = now.tv_nsec;
122		op.u.settime32.system_time = xen_clocksource_read();
123	}
124
125	ret = HYPERVISOR_platform_op(&op);
126
127	if (ret == -ENOSYS && settime64_supported) {
128		settime64_supported = false;
129		goto again;
130	}
131	if (ret < 0)
132		return NOTIFY_BAD;
133
134	/*
135	 * Move the next drift compensation time 11 minutes
136	 * ahead. That's emulating the sync_cmos_clock() update for
137	 * the hardware RTC.
138	 */
139	next_sync = now;
140	next_sync.tv_sec += 11 * 60;
141
142	return NOTIFY_OK;
143}
144
145static struct notifier_block xen_pvclock_gtod_notifier = {
146	.notifier_call = xen_pvclock_gtod_notify,
147};
148
149static int xen_cs_enable(struct clocksource *cs)
150{
151	vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
152	return 0;
153}
154
155static struct clocksource xen_clocksource __read_mostly = {
156	.name	= "xen",
157	.rating	= 400,
158	.read	= xen_clocksource_get_cycles,
159	.mask	= CLOCKSOURCE_MASK(64),
160	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
161	.enable = xen_cs_enable,
162};
163
164/*
165   Xen clockevent implementation
166
167   Xen has two clockevent implementations:
168
169   The old timer_op one works with all released versions of Xen prior
170   to version 3.0.4.  This version of the hypervisor provides a
171   single-shot timer with nanosecond resolution.  However, sharing the
172   same event channel is a 100Hz tick which is delivered while the
173   vcpu is running.  We don't care about or use this tick, but it will
174   cause the core time code to think the timer fired too soon, and
175   will end up resetting it each time.  It could be filtered, but
176   doing so has complications when the ktime clocksource is not yet
177   the xen clocksource (ie, at boot time).
178
179   The new vcpu_op-based timer interface allows the tick timer period
180   to be changed or turned off.  The tick timer is not useful as a
181   periodic timer because events are only delivered to running vcpus.
182   The one-shot timer can report when a timeout is in the past, so
183   set_next_event is capable of returning -ETIME when appropriate.
184   This interface is used when available.
185*/
186
187
188/*
189  Get a hypervisor absolute time.  In theory we could maintain an
190  offset between the kernel's time and the hypervisor's time, and
191  apply that to a kernel's absolute timeout.  Unfortunately the
192  hypervisor and kernel times can drift even if the kernel is using
193  the Xen clocksource, because ntp can warp the kernel's clocksource.
194*/
195static s64 get_abs_timeout(unsigned long delta)
196{
197	return xen_clocksource_read() + delta;
198}
199
200static int xen_timerop_shutdown(struct clock_event_device *evt)
201{
202	/* cancel timeout */
203	HYPERVISOR_set_timer_op(0);
204
205	return 0;
206}
207
208static int xen_timerop_set_next_event(unsigned long delta,
209				      struct clock_event_device *evt)
210{
211	WARN_ON(!clockevent_state_oneshot(evt));
212
213	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
214		BUG();
215
216	/* We may have missed the deadline, but there's no real way of
217	   knowing for sure.  If the event was in the past, then we'll
218	   get an immediate interrupt. */
219
220	return 0;
221}
222
223static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
224	.name			= "xen",
225	.features		= CLOCK_EVT_FEAT_ONESHOT,
226
227	.max_delta_ns		= 0xffffffff,
228	.max_delta_ticks	= 0xffffffff,
229	.min_delta_ns		= TIMER_SLOP,
230	.min_delta_ticks	= TIMER_SLOP,
231
232	.mult			= 1,
233	.shift			= 0,
234	.rating			= 500,
235
236	.set_state_shutdown	= xen_timerop_shutdown,
237	.set_next_event		= xen_timerop_set_next_event,
238};
239
240static int xen_vcpuop_shutdown(struct clock_event_device *evt)
241{
242	int cpu = smp_processor_id();
243
244	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
245			       NULL) ||
246	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
247			       NULL))
248		BUG();
249
250	return 0;
251}
252
253static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
254{
255	int cpu = smp_processor_id();
256
257	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
258			       NULL))
259		BUG();
260
261	return 0;
262}
263
264static int xen_vcpuop_set_next_event(unsigned long delta,
265				     struct clock_event_device *evt)
266{
267	int cpu = smp_processor_id();
268	struct vcpu_set_singleshot_timer single;
269	int ret;
270
271	WARN_ON(!clockevent_state_oneshot(evt));
272
273	single.timeout_abs_ns = get_abs_timeout(delta);
274	/* Get an event anyway, even if the timeout is already expired */
275	single.flags = 0;
276
277	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
278				 &single);
279	BUG_ON(ret != 0);
280
281	return ret;
282}
283
284static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
285	.name = "xen",
286	.features = CLOCK_EVT_FEAT_ONESHOT,
287
288	.max_delta_ns = 0xffffffff,
289	.max_delta_ticks = 0xffffffff,
290	.min_delta_ns = TIMER_SLOP,
291	.min_delta_ticks = TIMER_SLOP,
292
293	.mult = 1,
294	.shift = 0,
295	.rating = 500,
296
297	.set_state_shutdown = xen_vcpuop_shutdown,
298	.set_state_oneshot = xen_vcpuop_set_oneshot,
299	.set_next_event = xen_vcpuop_set_next_event,
300};
301
302static const struct clock_event_device *xen_clockevent =
303	&xen_timerop_clockevent;
304
305struct xen_clock_event_device {
306	struct clock_event_device evt;
307	char name[16];
308};
309static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
310
311static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
312{
313	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
314	irqreturn_t ret;
315
316	ret = IRQ_NONE;
317	if (evt->event_handler) {
318		evt->event_handler(evt);
319		ret = IRQ_HANDLED;
320	}
321
322	return ret;
323}
324
325void xen_teardown_timer(int cpu)
326{
327	struct clock_event_device *evt;
 
328	evt = &per_cpu(xen_clock_events, cpu).evt;
329
330	if (evt->irq >= 0) {
331		unbind_from_irqhandler(evt->irq, NULL);
332		evt->irq = -1;
333	}
334}
335
336void xen_setup_timer(int cpu)
337{
338	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
339	struct clock_event_device *evt = &xevt->evt;
340	int irq;
341
342	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
343	if (evt->irq >= 0)
344		xen_teardown_timer(cpu);
345
346	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
347
348	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
349
350	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
351				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
352				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
353				      xevt->name, NULL);
354	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
355
356	memcpy(evt, xen_clockevent, sizeof(*evt));
357
358	evt->cpumask = cpumask_of(cpu);
359	evt->irq = irq;
360}
361
362
363void xen_setup_cpu_clockevents(void)
364{
365	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
366}
367
368void xen_timer_resume(void)
369{
370	int cpu;
371
 
 
372	if (xen_clockevent != &xen_vcpuop_clockevent)
373		return;
374
375	for_each_online_cpu(cpu) {
376		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
377				       xen_vcpu_nr(cpu), NULL))
378			BUG();
379	}
380}
381
382static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
383static u64 xen_clock_value_saved;
384
385void xen_save_time_memory_area(void)
386{
387	struct vcpu_register_time_memory_area t;
388	int ret;
389
390	xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
391
392	if (!xen_clock)
393		return;
394
395	t.addr.v = NULL;
396
397	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
398	if (ret != 0)
399		pr_notice("Cannot save secondary vcpu_time_info (err %d)",
400			  ret);
401	else
402		clear_page(xen_clock);
403}
404
405void xen_restore_time_memory_area(void)
406{
407	struct vcpu_register_time_memory_area t;
408	int ret;
409
410	if (!xen_clock)
411		goto out;
412
413	t.addr.v = &xen_clock->pvti;
414
415	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
416
417	/*
418	 * We don't disable VDSO_CLOCKMODE_PVCLOCK entirely if it fails to
419	 * register the secondary time info with Xen or if we migrated to a
420	 * host without the necessary flags. On both of these cases what
421	 * happens is either process seeing a zeroed out pvti or seeing no
422	 * PVCLOCK_TSC_STABLE_BIT bit set. Userspace checks the latter and
423	 * if 0, it discards the data in pvti and fallbacks to a system
424	 * call for a reliable timestamp.
425	 */
426	if (ret != 0)
427		pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
428			  ret);
429
430out:
431	/* Need pvclock_resume() before using xen_clocksource_read(). */
432	pvclock_resume();
433	xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
434}
435
436static void xen_setup_vsyscall_time_info(void)
437{
438	struct vcpu_register_time_memory_area t;
439	struct pvclock_vsyscall_time_info *ti;
440	int ret;
441
442	ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
443	if (!ti)
444		return;
445
446	t.addr.v = &ti->pvti;
447
448	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
449	if (ret) {
450		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (err %d)\n", ret);
451		free_page((unsigned long)ti);
452		return;
453	}
454
455	/*
456	 * If primary time info had this bit set, secondary should too since
457	 * it's the same data on both just different memory regions. But we
458	 * still check it in case hypervisor is buggy.
459	 */
460	if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
461		t.addr.v = NULL;
462		ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
463					 0, &t);
464		if (!ret)
465			free_page((unsigned long)ti);
466
467		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (tsc unstable)\n");
468		return;
469	}
470
471	xen_clock = ti;
472	pvclock_set_pvti_cpu0_va(xen_clock);
473
474	xen_clocksource.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
475}
476
477static void __init xen_time_init(void)
478{
479	struct pvclock_vcpu_time_info *pvti;
480	int cpu = smp_processor_id();
481	struct timespec64 tp;
482
483	/* As Dom0 is never moved, no penalty on using TSC there */
484	if (xen_initial_domain())
485		xen_clocksource.rating = 275;
486
487	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
488
489	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
490			       NULL) == 0) {
491		/* Successfully turned off 100Hz tick, so we have the
492		   vcpuop-based timer interface */
493		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
494		xen_clockevent = &xen_vcpuop_clockevent;
495	}
496
497	/* Set initial system time with full resolution */
498	xen_read_wallclock(&tp);
499	do_settimeofday64(&tp);
500
501	setup_force_cpu_cap(X86_FEATURE_TSC);
502
503	/*
504	 * We check ahead on the primary time info if this
505	 * bit is supported hence speeding up Xen clocksource.
506	 */
507	pvti = &__this_cpu_read(xen_vcpu)->time;
508	if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
509		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
510		xen_setup_vsyscall_time_info();
511	}
512
513	xen_setup_runstate_info(cpu);
514	xen_setup_timer(cpu);
515	xen_setup_cpu_clockevents();
516
517	xen_time_setup_guest();
518
519	if (xen_initial_domain())
520		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
521}
522
523static void __init xen_init_time_common(void)
524{
525	xen_sched_clock_offset = xen_clocksource_read();
526	static_call_update(pv_steal_clock, xen_steal_clock);
527	paravirt_set_sched_clock(xen_sched_clock);
528
529	x86_platform.calibrate_tsc = xen_tsc_khz;
530	x86_platform.get_wallclock = xen_get_wallclock;
531}
532
533void __init xen_init_time_ops(void)
534{
535	xen_init_time_common();
536
537	x86_init.timers.timer_init = xen_time_init;
538	x86_init.timers.setup_percpu_clockev = x86_init_noop;
539	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
540
 
 
541	/* Dom0 uses the native method to set the hardware RTC. */
542	if (!xen_initial_domain())
543		x86_platform.set_wallclock = xen_set_wallclock;
544}
545
546#ifdef CONFIG_XEN_PVHVM
547static void xen_hvm_setup_cpu_clockevents(void)
548{
549	int cpu = smp_processor_id();
550	xen_setup_runstate_info(cpu);
551	/*
552	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
553	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
554	 * early bootup and also during CPU hotplug events).
555	 */
556	xen_setup_cpu_clockevents();
557}
558
559void __init xen_hvm_init_time_ops(void)
560{
561	static bool hvm_time_initialized;
562
563	if (hvm_time_initialized)
564		return;
565
566	/*
567	 * vector callback is needed otherwise we cannot receive interrupts
568	 * on cpu > 0 and at this point we don't know how many cpus are
569	 * available.
570	 */
571	if (!xen_have_vector_callback)
572		return;
573
574	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
575		pr_info_once("Xen doesn't support pvclock on HVM, disable pv timer");
576		return;
577	}
578
579	/*
580	 * Only MAX_VIRT_CPUS 'vcpu_info' are embedded inside 'shared_info'.
581	 * The __this_cpu_read(xen_vcpu) is still NULL when Xen HVM guest
582	 * boots on vcpu >= MAX_VIRT_CPUS (e.g., kexec), To access
583	 * __this_cpu_read(xen_vcpu) via xen_clocksource_read() will panic.
584	 *
585	 * The xen_hvm_init_time_ops() should be called again later after
586	 * __this_cpu_read(xen_vcpu) is available.
587	 */
588	if (!__this_cpu_read(xen_vcpu)) {
589		pr_info("Delay xen_init_time_common() as kernel is running on vcpu=%d\n",
590			xen_vcpu_nr(0));
591		return;
592	}
593
594	xen_init_time_common();
595
596	x86_init.timers.setup_percpu_clockev = xen_time_init;
597	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
598
 
 
599	x86_platform.set_wallclock = xen_set_wallclock;
600
601	hvm_time_initialized = true;
602}
603#endif
604
605/* Kernel parameter to specify Xen timer slop */
606static int __init parse_xen_timer_slop(char *ptr)
607{
608	unsigned long slop = memparse(ptr, NULL);
609
610	xen_timerop_clockevent.min_delta_ns = slop;
611	xen_timerop_clockevent.min_delta_ticks = slop;
612	xen_vcpuop_clockevent.min_delta_ns = slop;
613	xen_vcpuop_clockevent.min_delta_ticks = slop;
614
615	return 0;
616}
617early_param("xen_timer_slop", parse_xen_timer_slop);