Loading...
1#ifndef _ASM_X86_MICROCODE_H
2#define _ASM_X86_MICROCODE_H
3
4#include <asm/cpu.h>
5#include <linux/earlycpio.h>
6#include <linux/initrd.h>
7
8#define native_rdmsr(msr, val1, val2) \
9do { \
10 u64 __val = native_read_msr((msr)); \
11 (void)((val1) = (u32)__val); \
12 (void)((val2) = (u32)(__val >> 32)); \
13} while (0)
14
15#define native_wrmsr(msr, low, high) \
16 native_write_msr(msr, low, high)
17
18#define native_wrmsrl(msr, val) \
19 native_write_msr((msr), \
20 (u32)((u64)(val)), \
21 (u32)((u64)(val) >> 32))
22
23struct ucode_patch {
24 struct list_head plist;
25 void *data; /* Intel uses only this one */
26 u32 patch_id;
27 u16 equiv_cpu;
28};
29
30extern struct list_head microcode_cache;
31
32struct cpu_signature {
33 unsigned int sig;
34 unsigned int pf;
35 unsigned int rev;
36};
37
38struct device;
39
40enum ucode_state { UCODE_ERROR, UCODE_OK, UCODE_NFOUND };
41
42struct microcode_ops {
43 enum ucode_state (*request_microcode_user) (int cpu,
44 const void __user *buf, size_t size);
45
46 enum ucode_state (*request_microcode_fw) (int cpu, struct device *,
47 bool refresh_fw);
48
49 void (*microcode_fini_cpu) (int cpu);
50
51 /*
52 * The generic 'microcode_core' part guarantees that
53 * the callbacks below run on a target cpu when they
54 * are being called.
55 * See also the "Synchronization" section in microcode_core.c.
56 */
57 int (*apply_microcode) (int cpu);
58 int (*collect_cpu_info) (int cpu, struct cpu_signature *csig);
59};
60
61struct ucode_cpu_info {
62 struct cpu_signature cpu_sig;
63 int valid;
64 void *mc;
65};
66extern struct ucode_cpu_info ucode_cpu_info[];
67struct cpio_data find_microcode_in_initrd(const char *path, bool use_pa);
68
69#ifdef CONFIG_MICROCODE_INTEL
70extern struct microcode_ops * __init init_intel_microcode(void);
71#else
72static inline struct microcode_ops * __init init_intel_microcode(void)
73{
74 return NULL;
75}
76#endif /* CONFIG_MICROCODE_INTEL */
77
78#ifdef CONFIG_MICROCODE_AMD
79extern struct microcode_ops * __init init_amd_microcode(void);
80extern void __exit exit_amd_microcode(void);
81#else
82static inline struct microcode_ops * __init init_amd_microcode(void)
83{
84 return NULL;
85}
86static inline void __exit exit_amd_microcode(void) {}
87#endif
88
89#define MAX_UCODE_COUNT 128
90
91#define QCHAR(a, b, c, d) ((a) + ((b) << 8) + ((c) << 16) + ((d) << 24))
92#define CPUID_INTEL1 QCHAR('G', 'e', 'n', 'u')
93#define CPUID_INTEL2 QCHAR('i', 'n', 'e', 'I')
94#define CPUID_INTEL3 QCHAR('n', 't', 'e', 'l')
95#define CPUID_AMD1 QCHAR('A', 'u', 't', 'h')
96#define CPUID_AMD2 QCHAR('e', 'n', 't', 'i')
97#define CPUID_AMD3 QCHAR('c', 'A', 'M', 'D')
98
99#define CPUID_IS(a, b, c, ebx, ecx, edx) \
100 (!((ebx ^ (a))|(edx ^ (b))|(ecx ^ (c))))
101
102/*
103 * In early loading microcode phase on BSP, boot_cpu_data is not set up yet.
104 * x86_cpuid_vendor() gets vendor id for BSP.
105 *
106 * In 32 bit AP case, accessing boot_cpu_data needs linear address. To simplify
107 * coding, we still use x86_cpuid_vendor() to get vendor id for AP.
108 *
109 * x86_cpuid_vendor() gets vendor information directly from CPUID.
110 */
111static inline int x86_cpuid_vendor(void)
112{
113 u32 eax = 0x00000000;
114 u32 ebx, ecx = 0, edx;
115
116 native_cpuid(&eax, &ebx, &ecx, &edx);
117
118 if (CPUID_IS(CPUID_INTEL1, CPUID_INTEL2, CPUID_INTEL3, ebx, ecx, edx))
119 return X86_VENDOR_INTEL;
120
121 if (CPUID_IS(CPUID_AMD1, CPUID_AMD2, CPUID_AMD3, ebx, ecx, edx))
122 return X86_VENDOR_AMD;
123
124 return X86_VENDOR_UNKNOWN;
125}
126
127static inline unsigned int x86_cpuid_family(void)
128{
129 u32 eax = 0x00000001;
130 u32 ebx, ecx = 0, edx;
131
132 native_cpuid(&eax, &ebx, &ecx, &edx);
133
134 return x86_family(eax);
135}
136
137#ifdef CONFIG_MICROCODE
138int __init microcode_init(void);
139extern void __init load_ucode_bsp(void);
140extern void load_ucode_ap(void);
141void reload_early_microcode(void);
142extern bool get_builtin_firmware(struct cpio_data *cd, const char *name);
143extern bool initrd_gone;
144#else
145static inline int __init microcode_init(void) { return 0; };
146static inline void __init load_ucode_bsp(void) { }
147static inline void load_ucode_ap(void) { }
148static inline void reload_early_microcode(void) { }
149static inline bool
150get_builtin_firmware(struct cpio_data *cd, const char *name) { return false; }
151#endif
152
153#endif /* _ASM_X86_MICROCODE_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_MICROCODE_H
3#define _ASM_X86_MICROCODE_H
4
5#include <asm/cpu.h>
6#include <linux/earlycpio.h>
7#include <linux/initrd.h>
8
9struct ucode_patch {
10 struct list_head plist;
11 void *data; /* Intel uses only this one */
12 unsigned int size;
13 u32 patch_id;
14 u16 equiv_cpu;
15};
16
17extern struct list_head microcode_cache;
18
19struct cpu_signature {
20 unsigned int sig;
21 unsigned int pf;
22 unsigned int rev;
23};
24
25struct device;
26
27enum ucode_state {
28 UCODE_OK = 0,
29 UCODE_NEW,
30 UCODE_UPDATED,
31 UCODE_NFOUND,
32 UCODE_ERROR,
33};
34
35struct microcode_ops {
36 enum ucode_state (*request_microcode_fw) (int cpu, struct device *);
37
38 void (*microcode_fini_cpu) (int cpu);
39
40 /*
41 * The generic 'microcode_core' part guarantees that
42 * the callbacks below run on a target cpu when they
43 * are being called.
44 * See also the "Synchronization" section in microcode_core.c.
45 */
46 enum ucode_state (*apply_microcode) (int cpu);
47 int (*collect_cpu_info) (int cpu, struct cpu_signature *csig);
48};
49
50struct ucode_cpu_info {
51 struct cpu_signature cpu_sig;
52 void *mc;
53};
54extern struct ucode_cpu_info ucode_cpu_info[];
55struct cpio_data find_microcode_in_initrd(const char *path, bool use_pa);
56
57#ifdef CONFIG_MICROCODE_INTEL
58extern struct microcode_ops * __init init_intel_microcode(void);
59#else
60static inline struct microcode_ops * __init init_intel_microcode(void)
61{
62 return NULL;
63}
64#endif /* CONFIG_MICROCODE_INTEL */
65
66#ifdef CONFIG_MICROCODE_AMD
67extern struct microcode_ops * __init init_amd_microcode(void);
68extern void __exit exit_amd_microcode(void);
69#else
70static inline struct microcode_ops * __init init_amd_microcode(void)
71{
72 return NULL;
73}
74static inline void __exit exit_amd_microcode(void) {}
75#endif
76
77#define MAX_UCODE_COUNT 128
78
79#define QCHAR(a, b, c, d) ((a) + ((b) << 8) + ((c) << 16) + ((d) << 24))
80#define CPUID_INTEL1 QCHAR('G', 'e', 'n', 'u')
81#define CPUID_INTEL2 QCHAR('i', 'n', 'e', 'I')
82#define CPUID_INTEL3 QCHAR('n', 't', 'e', 'l')
83#define CPUID_AMD1 QCHAR('A', 'u', 't', 'h')
84#define CPUID_AMD2 QCHAR('e', 'n', 't', 'i')
85#define CPUID_AMD3 QCHAR('c', 'A', 'M', 'D')
86
87#define CPUID_IS(a, b, c, ebx, ecx, edx) \
88 (!((ebx ^ (a))|(edx ^ (b))|(ecx ^ (c))))
89
90/*
91 * In early loading microcode phase on BSP, boot_cpu_data is not set up yet.
92 * x86_cpuid_vendor() gets vendor id for BSP.
93 *
94 * In 32 bit AP case, accessing boot_cpu_data needs linear address. To simplify
95 * coding, we still use x86_cpuid_vendor() to get vendor id for AP.
96 *
97 * x86_cpuid_vendor() gets vendor information directly from CPUID.
98 */
99static inline int x86_cpuid_vendor(void)
100{
101 u32 eax = 0x00000000;
102 u32 ebx, ecx = 0, edx;
103
104 native_cpuid(&eax, &ebx, &ecx, &edx);
105
106 if (CPUID_IS(CPUID_INTEL1, CPUID_INTEL2, CPUID_INTEL3, ebx, ecx, edx))
107 return X86_VENDOR_INTEL;
108
109 if (CPUID_IS(CPUID_AMD1, CPUID_AMD2, CPUID_AMD3, ebx, ecx, edx))
110 return X86_VENDOR_AMD;
111
112 return X86_VENDOR_UNKNOWN;
113}
114
115static inline unsigned int x86_cpuid_family(void)
116{
117 u32 eax = 0x00000001;
118 u32 ebx, ecx = 0, edx;
119
120 native_cpuid(&eax, &ebx, &ecx, &edx);
121
122 return x86_family(eax);
123}
124
125#ifdef CONFIG_MICROCODE
126extern void __init load_ucode_bsp(void);
127extern void load_ucode_ap(void);
128void reload_early_microcode(void);
129extern bool initrd_gone;
130void microcode_bsp_resume(void);
131#else
132static inline void __init load_ucode_bsp(void) { }
133static inline void load_ucode_ap(void) { }
134static inline void reload_early_microcode(void) { }
135static inline void microcode_bsp_resume(void) { }
136#endif
137
138#endif /* _ASM_X86_MICROCODE_H */