Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Generation of main entry point for the guest, exception handling.
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 *
11 * Copyright (C) 2016 Imagination Technologies Ltd.
12 */
13
14#include <linux/kvm_host.h>
15#include <asm/msa.h>
16#include <asm/setup.h>
17#include <asm/uasm.h>
18
19/* Register names */
20#define ZERO 0
21#define AT 1
22#define V0 2
23#define V1 3
24#define A0 4
25#define A1 5
26
27#if _MIPS_SIM == _MIPS_SIM_ABI32
28#define T0 8
29#define T1 9
30#define T2 10
31#define T3 11
32#endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
33
34#if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
35#define T0 12
36#define T1 13
37#define T2 14
38#define T3 15
39#endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
40
41#define S0 16
42#define S1 17
43#define T9 25
44#define K0 26
45#define K1 27
46#define GP 28
47#define SP 29
48#define RA 31
49
50/* Some CP0 registers */
51#define C0_HWRENA 7, 0
52#define C0_BADVADDR 8, 0
53#define C0_ENTRYHI 10, 0
54#define C0_STATUS 12, 0
55#define C0_CAUSE 13, 0
56#define C0_EPC 14, 0
57#define C0_EBASE 15, 1
58#define C0_CONFIG5 16, 5
59#define C0_DDATA_LO 28, 3
60#define C0_ERROREPC 30, 0
61
62#define CALLFRAME_SIZ 32
63
64#ifdef CONFIG_64BIT
65#define ST0_KX_IF_64 ST0_KX
66#else
67#define ST0_KX_IF_64 0
68#endif
69
70static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
71static unsigned int scratch_tmp[2] = { C0_ERROREPC };
72
73enum label_id {
74 label_fpu_1 = 1,
75 label_msa_1,
76 label_return_to_host,
77 label_kernel_asid,
78 label_exit_common,
79};
80
81UASM_L_LA(_fpu_1)
82UASM_L_LA(_msa_1)
83UASM_L_LA(_return_to_host)
84UASM_L_LA(_kernel_asid)
85UASM_L_LA(_exit_common)
86
87static void *kvm_mips_build_enter_guest(void *addr);
88static void *kvm_mips_build_ret_from_exit(void *addr);
89static void *kvm_mips_build_ret_to_guest(void *addr);
90static void *kvm_mips_build_ret_to_host(void *addr);
91
92/**
93 * kvm_mips_entry_setup() - Perform global setup for entry code.
94 *
95 * Perform global setup for entry code, such as choosing a scratch register.
96 *
97 * Returns: 0 on success.
98 * -errno on failure.
99 */
100int kvm_mips_entry_setup(void)
101{
102 /*
103 * We prefer to use KScratchN registers if they are available over the
104 * defaults above, which may not work on all cores.
105 */
106 unsigned int kscratch_mask = cpu_data[0].kscratch_mask & 0xfc;
107
108 /* Pick a scratch register for storing VCPU */
109 if (kscratch_mask) {
110 scratch_vcpu[0] = 31;
111 scratch_vcpu[1] = ffs(kscratch_mask) - 1;
112 kscratch_mask &= ~BIT(scratch_vcpu[1]);
113 }
114
115 /* Pick a scratch register to use as a temp for saving state */
116 if (kscratch_mask) {
117 scratch_tmp[0] = 31;
118 scratch_tmp[1] = ffs(kscratch_mask) - 1;
119 kscratch_mask &= ~BIT(scratch_tmp[1]);
120 }
121
122 return 0;
123}
124
125static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
126 unsigned int frame)
127{
128 /* Save the VCPU scratch register value in cp0_epc of the stack frame */
129 UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
130 UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
131
132 /* Save the temp scratch register value in cp0_cause of stack frame */
133 if (scratch_tmp[0] == 31) {
134 UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
135 UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
136 }
137}
138
139static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
140 unsigned int frame)
141{
142 /*
143 * Restore host scratch register values saved by
144 * kvm_mips_build_save_scratch().
145 */
146 UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
147 UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
148
149 if (scratch_tmp[0] == 31) {
150 UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
151 UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
152 }
153}
154
155/**
156 * build_set_exc_base() - Assemble code to write exception base address.
157 * @p: Code buffer pointer.
158 * @reg: Source register (generated code may set WG bit in @reg).
159 *
160 * Assemble code to modify the exception base address in the EBase register,
161 * using the appropriately sized access and setting the WG bit if necessary.
162 */
163static inline void build_set_exc_base(u32 **p, unsigned int reg)
164{
165 if (cpu_has_ebase_wg) {
166 /* Set WG so that all the bits get written */
167 uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
168 UASM_i_MTC0(p, reg, C0_EBASE);
169 } else {
170 uasm_i_mtc0(p, reg, C0_EBASE);
171 }
172}
173
174/**
175 * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
176 * @addr: Address to start writing code.
177 *
178 * Assemble the start of the vcpu_run function to run a guest VCPU. The function
179 * conforms to the following prototype:
180 *
181 * int vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu);
182 *
183 * The exit from the guest and return to the caller is handled by the code
184 * generated by kvm_mips_build_ret_to_host().
185 *
186 * Returns: Next address after end of written function.
187 */
188void *kvm_mips_build_vcpu_run(void *addr)
189{
190 u32 *p = addr;
191 unsigned int i;
192
193 /*
194 * A0: run
195 * A1: vcpu
196 */
197
198 /* k0/k1 not being used in host kernel context */
199 UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
200 for (i = 16; i < 32; ++i) {
201 if (i == 24)
202 i = 28;
203 UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
204 }
205
206 /* Save host status */
207 uasm_i_mfc0(&p, V0, C0_STATUS);
208 UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
209
210 /* Save scratch registers, will be used to store pointer to vcpu etc */
211 kvm_mips_build_save_scratch(&p, V1, K1);
212
213 /* VCPU scratch register has pointer to vcpu */
214 UASM_i_MTC0(&p, A1, scratch_vcpu[0], scratch_vcpu[1]);
215
216 /* Offset into vcpu->arch */
217 UASM_i_ADDIU(&p, K1, A1, offsetof(struct kvm_vcpu, arch));
218
219 /*
220 * Save the host stack to VCPU, used for exception processing
221 * when we exit from the Guest
222 */
223 UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
224
225 /* Save the kernel gp as well */
226 UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
227
228 /*
229 * Setup status register for running the guest in UM, interrupts
230 * are disabled
231 */
232 UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
233 uasm_i_mtc0(&p, K0, C0_STATUS);
234 uasm_i_ehb(&p);
235
236 /* load up the new EBASE */
237 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
238 build_set_exc_base(&p, K0);
239
240 /*
241 * Now that the new EBASE has been loaded, unset BEV, set
242 * interrupt mask as it was but make sure that timer interrupts
243 * are enabled
244 */
245 uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
246 uasm_i_andi(&p, V0, V0, ST0_IM);
247 uasm_i_or(&p, K0, K0, V0);
248 uasm_i_mtc0(&p, K0, C0_STATUS);
249 uasm_i_ehb(&p);
250
251 p = kvm_mips_build_enter_guest(p);
252
253 return p;
254}
255
256/**
257 * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
258 * @addr: Address to start writing code.
259 *
260 * Assemble the code to resume guest execution. This code is common between the
261 * initial entry into the guest from the host, and returning from the exit
262 * handler back to the guest.
263 *
264 * Returns: Next address after end of written function.
265 */
266static void *kvm_mips_build_enter_guest(void *addr)
267{
268 u32 *p = addr;
269 unsigned int i;
270 struct uasm_label labels[2];
271 struct uasm_reloc relocs[2];
272 struct uasm_label *l = labels;
273 struct uasm_reloc *r = relocs;
274
275 memset(labels, 0, sizeof(labels));
276 memset(relocs, 0, sizeof(relocs));
277
278 /* Set Guest EPC */
279 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
280 UASM_i_MTC0(&p, T0, C0_EPC);
281
282 /* Set the ASID for the Guest Kernel */
283 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, cop0), K1);
284 UASM_i_LW(&p, T0, offsetof(struct mips_coproc, reg[MIPS_CP0_STATUS][0]),
285 T0);
286 uasm_i_andi(&p, T0, T0, KSU_USER | ST0_ERL | ST0_EXL);
287 uasm_i_xori(&p, T0, T0, KSU_USER);
288 uasm_il_bnez(&p, &r, T0, label_kernel_asid);
289 UASM_i_ADDIU(&p, T1, K1,
290 offsetof(struct kvm_vcpu_arch, guest_kernel_asid));
291 /* else user */
292 UASM_i_ADDIU(&p, T1, K1,
293 offsetof(struct kvm_vcpu_arch, guest_user_asid));
294 uasm_l_kernel_asid(&l, p);
295
296 /* t1: contains the base of the ASID array, need to get the cpu id */
297 /* smp_processor_id */
298 uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
299 /* x4 */
300 uasm_i_sll(&p, T2, T2, 2);
301 UASM_i_ADDU(&p, T3, T1, T2);
302 uasm_i_lw(&p, K0, 0, T3);
303#ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
304 /* x sizeof(struct cpuinfo_mips)/4 */
305 uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/4);
306 uasm_i_mul(&p, T2, T2, T3);
307
308 UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
309 UASM_i_ADDU(&p, AT, AT, T2);
310 UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
311 uasm_i_and(&p, K0, K0, T2);
312#else
313 uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
314#endif
315 uasm_i_mtc0(&p, K0, C0_ENTRYHI);
316 uasm_i_ehb(&p);
317
318 /* Disable RDHWR access */
319 uasm_i_mtc0(&p, ZERO, C0_HWRENA);
320
321 /* load the guest context from VCPU and return */
322 for (i = 1; i < 32; ++i) {
323 /* Guest k0/k1 loaded later */
324 if (i == K0 || i == K1)
325 continue;
326 UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
327 }
328
329#ifndef CONFIG_CPU_MIPSR6
330 /* Restore hi/lo */
331 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
332 uasm_i_mthi(&p, K0);
333
334 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
335 uasm_i_mtlo(&p, K0);
336#endif
337
338 /* Restore the guest's k0/k1 registers */
339 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
340 UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
341
342 /* Jump to guest */
343 uasm_i_eret(&p);
344
345 uasm_resolve_relocs(relocs, labels);
346
347 return p;
348}
349
350/**
351 * kvm_mips_build_exception() - Assemble first level guest exception handler.
352 * @addr: Address to start writing code.
353 * @handler: Address of common handler (within range of @addr).
354 *
355 * Assemble exception vector code for guest execution. The generated vector will
356 * branch to the common exception handler generated by kvm_mips_build_exit().
357 *
358 * Returns: Next address after end of written function.
359 */
360void *kvm_mips_build_exception(void *addr, void *handler)
361{
362 u32 *p = addr;
363 struct uasm_label labels[2];
364 struct uasm_reloc relocs[2];
365 struct uasm_label *l = labels;
366 struct uasm_reloc *r = relocs;
367
368 memset(labels, 0, sizeof(labels));
369 memset(relocs, 0, sizeof(relocs));
370
371 /* Save guest k1 into scratch register */
372 UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
373
374 /* Get the VCPU pointer from the VCPU scratch register */
375 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
376 UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
377
378 /* Save guest k0 into VCPU structure */
379 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
380
381 /* Branch to the common handler */
382 uasm_il_b(&p, &r, label_exit_common);
383 uasm_i_nop(&p);
384
385 uasm_l_exit_common(&l, handler);
386 uasm_resolve_relocs(relocs, labels);
387
388 return p;
389}
390
391/**
392 * kvm_mips_build_exit() - Assemble common guest exit handler.
393 * @addr: Address to start writing code.
394 *
395 * Assemble the generic guest exit handling code. This is called by the
396 * exception vectors (generated by kvm_mips_build_exception()), and calls
397 * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
398 * depending on the return value.
399 *
400 * Returns: Next address after end of written function.
401 */
402void *kvm_mips_build_exit(void *addr)
403{
404 u32 *p = addr;
405 unsigned int i;
406 struct uasm_label labels[3];
407 struct uasm_reloc relocs[3];
408 struct uasm_label *l = labels;
409 struct uasm_reloc *r = relocs;
410
411 memset(labels, 0, sizeof(labels));
412 memset(relocs, 0, sizeof(relocs));
413
414 /*
415 * Generic Guest exception handler. We end up here when the guest
416 * does something that causes a trap to kernel mode.
417 *
418 * Both k0/k1 registers will have already been saved (k0 into the vcpu
419 * structure, and k1 into the scratch_tmp register).
420 *
421 * The k1 register will already contain the kvm_vcpu_arch pointer.
422 */
423
424 /* Start saving Guest context to VCPU */
425 for (i = 0; i < 32; ++i) {
426 /* Guest k0/k1 saved later */
427 if (i == K0 || i == K1)
428 continue;
429 UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
430 }
431
432#ifndef CONFIG_CPU_MIPSR6
433 /* We need to save hi/lo and restore them on the way out */
434 uasm_i_mfhi(&p, T0);
435 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
436
437 uasm_i_mflo(&p, T0);
438 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
439#endif
440
441 /* Finally save guest k1 to VCPU */
442 uasm_i_ehb(&p);
443 UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
444 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
445
446 /* Now that context has been saved, we can use other registers */
447
448 /* Restore vcpu */
449 UASM_i_MFC0(&p, A1, scratch_vcpu[0], scratch_vcpu[1]);
450 uasm_i_move(&p, S1, A1);
451
452 /* Restore run (vcpu->run) */
453 UASM_i_LW(&p, A0, offsetof(struct kvm_vcpu, run), A1);
454 /* Save pointer to run in s0, will be saved by the compiler */
455 uasm_i_move(&p, S0, A0);
456
457 /*
458 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
459 * the exception
460 */
461 UASM_i_MFC0(&p, K0, C0_EPC);
462 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
463
464 UASM_i_MFC0(&p, K0, C0_BADVADDR);
465 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
466 K1);
467
468 uasm_i_mfc0(&p, K0, C0_CAUSE);
469 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
470
471 /* Now restore the host state just enough to run the handlers */
472
473 /* Switch EBASE to the one used by Linux */
474 /* load up the host EBASE */
475 uasm_i_mfc0(&p, V0, C0_STATUS);
476
477 uasm_i_lui(&p, AT, ST0_BEV >> 16);
478 uasm_i_or(&p, K0, V0, AT);
479
480 uasm_i_mtc0(&p, K0, C0_STATUS);
481 uasm_i_ehb(&p);
482
483 UASM_i_LA_mostly(&p, K0, (long)&ebase);
484 UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
485 build_set_exc_base(&p, K0);
486
487 if (raw_cpu_has_fpu) {
488 /*
489 * If FPU is enabled, save FCR31 and clear it so that later
490 * ctc1's don't trigger FPE for pending exceptions.
491 */
492 uasm_i_lui(&p, AT, ST0_CU1 >> 16);
493 uasm_i_and(&p, V1, V0, AT);
494 uasm_il_beqz(&p, &r, V1, label_fpu_1);
495 uasm_i_nop(&p);
496 uasm_i_cfc1(&p, T0, 31);
497 uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
498 K1);
499 uasm_i_ctc1(&p, ZERO, 31);
500 uasm_l_fpu_1(&l, p);
501 }
502
503 if (cpu_has_msa) {
504 /*
505 * If MSA is enabled, save MSACSR and clear it so that later
506 * instructions don't trigger MSAFPE for pending exceptions.
507 */
508 uasm_i_mfc0(&p, T0, C0_CONFIG5);
509 uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
510 uasm_il_beqz(&p, &r, T0, label_msa_1);
511 uasm_i_nop(&p);
512 uasm_i_cfcmsa(&p, T0, MSA_CSR);
513 uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
514 K1);
515 uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
516 uasm_l_msa_1(&l, p);
517 }
518
519 /* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
520 uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
521 uasm_i_and(&p, V0, V0, AT);
522 uasm_i_lui(&p, AT, ST0_CU0 >> 16);
523 uasm_i_or(&p, V0, V0, AT);
524#ifdef CONFIG_64BIT
525 uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
526#endif
527 uasm_i_mtc0(&p, V0, C0_STATUS);
528 uasm_i_ehb(&p);
529
530 /* Load up host GP */
531 UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
532
533 /* Need a stack before we can jump to "C" */
534 UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
535
536 /* Saved host state */
537 UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
538
539 /*
540 * XXXKYMA do we need to load the host ASID, maybe not because the
541 * kernel entries are marked GLOBAL, need to verify
542 */
543
544 /* Restore host scratch registers, as we'll have clobbered them */
545 kvm_mips_build_restore_scratch(&p, K0, SP);
546
547 /* Restore RDHWR access */
548 UASM_i_LA_mostly(&p, K0, (long)&hwrena);
549 uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
550 uasm_i_mtc0(&p, K0, C0_HWRENA);
551
552 /* Jump to handler */
553 /*
554 * XXXKYMA: not sure if this is safe, how large is the stack??
555 * Now jump to the kvm_mips_handle_exit() to see if we can deal
556 * with this in the kernel
557 */
558 UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
559 uasm_i_jalr(&p, RA, T9);
560 UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
561
562 uasm_resolve_relocs(relocs, labels);
563
564 p = kvm_mips_build_ret_from_exit(p);
565
566 return p;
567}
568
569/**
570 * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
571 * @addr: Address to start writing code.
572 *
573 * Assemble the code to handle the return from kvm_mips_handle_exit(), either
574 * resuming the guest or returning to the host depending on the return value.
575 *
576 * Returns: Next address after end of written function.
577 */
578static void *kvm_mips_build_ret_from_exit(void *addr)
579{
580 u32 *p = addr;
581 struct uasm_label labels[2];
582 struct uasm_reloc relocs[2];
583 struct uasm_label *l = labels;
584 struct uasm_reloc *r = relocs;
585
586 memset(labels, 0, sizeof(labels));
587 memset(relocs, 0, sizeof(relocs));
588
589 /* Return from handler Make sure interrupts are disabled */
590 uasm_i_di(&p, ZERO);
591 uasm_i_ehb(&p);
592
593 /*
594 * XXXKYMA: k0/k1 could have been blown away if we processed
595 * an exception while we were handling the exception from the
596 * guest, reload k1
597 */
598
599 uasm_i_move(&p, K1, S1);
600 UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
601
602 /*
603 * Check return value, should tell us if we are returning to the
604 * host (handle I/O etc)or resuming the guest
605 */
606 uasm_i_andi(&p, T0, V0, RESUME_HOST);
607 uasm_il_bnez(&p, &r, T0, label_return_to_host);
608 uasm_i_nop(&p);
609
610 p = kvm_mips_build_ret_to_guest(p);
611
612 uasm_l_return_to_host(&l, p);
613 p = kvm_mips_build_ret_to_host(p);
614
615 uasm_resolve_relocs(relocs, labels);
616
617 return p;
618}
619
620/**
621 * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
622 * @addr: Address to start writing code.
623 *
624 * Assemble the code to handle return from the guest exit handler
625 * (kvm_mips_handle_exit()) back to the guest.
626 *
627 * Returns: Next address after end of written function.
628 */
629static void *kvm_mips_build_ret_to_guest(void *addr)
630{
631 u32 *p = addr;
632
633 /* Put the saved pointer to vcpu (s1) back into the scratch register */
634 UASM_i_MTC0(&p, S1, scratch_vcpu[0], scratch_vcpu[1]);
635
636 /* Load up the Guest EBASE to minimize the window where BEV is set */
637 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
638
639 /* Switch EBASE back to the one used by KVM */
640 uasm_i_mfc0(&p, V1, C0_STATUS);
641 uasm_i_lui(&p, AT, ST0_BEV >> 16);
642 uasm_i_or(&p, K0, V1, AT);
643 uasm_i_mtc0(&p, K0, C0_STATUS);
644 uasm_i_ehb(&p);
645 build_set_exc_base(&p, T0);
646
647 /* Setup status register for running guest in UM */
648 uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
649 UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
650 uasm_i_and(&p, V1, V1, AT);
651 uasm_i_mtc0(&p, V1, C0_STATUS);
652 uasm_i_ehb(&p);
653
654 p = kvm_mips_build_enter_guest(p);
655
656 return p;
657}
658
659/**
660 * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
661 * @addr: Address to start writing code.
662 *
663 * Assemble the code to handle return from the guest exit handler
664 * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
665 * function generated by kvm_mips_build_vcpu_run().
666 *
667 * Returns: Next address after end of written function.
668 */
669static void *kvm_mips_build_ret_to_host(void *addr)
670{
671 u32 *p = addr;
672 unsigned int i;
673
674 /* EBASE is already pointing to Linux */
675 UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
676 UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
677
678 /*
679 * r2/v0 is the return code, shift it down by 2 (arithmetic)
680 * to recover the err code
681 */
682 uasm_i_sra(&p, K0, V0, 2);
683 uasm_i_move(&p, V0, K0);
684
685 /* Load context saved on the host stack */
686 for (i = 16; i < 31; ++i) {
687 if (i == 24)
688 i = 28;
689 UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
690 }
691
692 /* Restore RDHWR access */
693 UASM_i_LA_mostly(&p, K0, (long)&hwrena);
694 uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
695 uasm_i_mtc0(&p, K0, C0_HWRENA);
696
697 /* Restore RA, which is the address we will return to */
698 UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
699 uasm_i_jr(&p, RA);
700 uasm_i_nop(&p);
701
702 return p;
703}
704
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Generation of main entry point for the guest, exception handling.
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 *
11 * Copyright (C) 2016 Imagination Technologies Ltd.
12 */
13
14#include <linux/kvm_host.h>
15#include <linux/log2.h>
16#include <asm/mmu_context.h>
17#include <asm/msa.h>
18#include <asm/setup.h>
19#include <asm/tlbex.h>
20#include <asm/uasm.h>
21
22/* Register names */
23#define ZERO 0
24#define AT 1
25#define V0 2
26#define V1 3
27#define A0 4
28#define A1 5
29
30#if _MIPS_SIM == _MIPS_SIM_ABI32
31#define T0 8
32#define T1 9
33#define T2 10
34#define T3 11
35#endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
36
37#if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
38#define T0 12
39#define T1 13
40#define T2 14
41#define T3 15
42#endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
43
44#define S0 16
45#define S1 17
46#define T9 25
47#define K0 26
48#define K1 27
49#define GP 28
50#define SP 29
51#define RA 31
52
53/* Some CP0 registers */
54#define C0_PWBASE 5, 5
55#define C0_HWRENA 7, 0
56#define C0_BADVADDR 8, 0
57#define C0_BADINSTR 8, 1
58#define C0_BADINSTRP 8, 2
59#define C0_PGD 9, 7
60#define C0_ENTRYHI 10, 0
61#define C0_GUESTCTL1 10, 4
62#define C0_STATUS 12, 0
63#define C0_GUESTCTL0 12, 6
64#define C0_CAUSE 13, 0
65#define C0_EPC 14, 0
66#define C0_EBASE 15, 1
67#define C0_CONFIG5 16, 5
68#define C0_DDATA_LO 28, 3
69#define C0_ERROREPC 30, 0
70
71#define CALLFRAME_SIZ 32
72
73#ifdef CONFIG_64BIT
74#define ST0_KX_IF_64 ST0_KX
75#else
76#define ST0_KX_IF_64 0
77#endif
78
79static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
80static unsigned int scratch_tmp[2] = { C0_ERROREPC };
81
82enum label_id {
83 label_fpu_1 = 1,
84 label_msa_1,
85 label_return_to_host,
86 label_kernel_asid,
87 label_exit_common,
88};
89
90UASM_L_LA(_fpu_1)
91UASM_L_LA(_msa_1)
92UASM_L_LA(_return_to_host)
93UASM_L_LA(_kernel_asid)
94UASM_L_LA(_exit_common)
95
96static void *kvm_mips_build_enter_guest(void *addr);
97static void *kvm_mips_build_ret_from_exit(void *addr);
98static void *kvm_mips_build_ret_to_guest(void *addr);
99static void *kvm_mips_build_ret_to_host(void *addr);
100
101/*
102 * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
103 * we assume symmetry.
104 */
105static int c0_kscratch(void)
106{
107 return 31;
108}
109
110/**
111 * kvm_mips_entry_setup() - Perform global setup for entry code.
112 *
113 * Perform global setup for entry code, such as choosing a scratch register.
114 *
115 * Returns: 0 on success.
116 * -errno on failure.
117 */
118int kvm_mips_entry_setup(void)
119{
120 /*
121 * We prefer to use KScratchN registers if they are available over the
122 * defaults above, which may not work on all cores.
123 */
124 unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
125
126 if (pgd_reg != -1)
127 kscratch_mask &= ~BIT(pgd_reg);
128
129 /* Pick a scratch register for storing VCPU */
130 if (kscratch_mask) {
131 scratch_vcpu[0] = c0_kscratch();
132 scratch_vcpu[1] = ffs(kscratch_mask) - 1;
133 kscratch_mask &= ~BIT(scratch_vcpu[1]);
134 }
135
136 /* Pick a scratch register to use as a temp for saving state */
137 if (kscratch_mask) {
138 scratch_tmp[0] = c0_kscratch();
139 scratch_tmp[1] = ffs(kscratch_mask) - 1;
140 kscratch_mask &= ~BIT(scratch_tmp[1]);
141 }
142
143 return 0;
144}
145
146static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
147 unsigned int frame)
148{
149 /* Save the VCPU scratch register value in cp0_epc of the stack frame */
150 UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
151 UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
152
153 /* Save the temp scratch register value in cp0_cause of stack frame */
154 if (scratch_tmp[0] == c0_kscratch()) {
155 UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
156 UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
157 }
158}
159
160static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
161 unsigned int frame)
162{
163 /*
164 * Restore host scratch register values saved by
165 * kvm_mips_build_save_scratch().
166 */
167 UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
168 UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
169
170 if (scratch_tmp[0] == c0_kscratch()) {
171 UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
172 UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
173 }
174}
175
176/**
177 * build_set_exc_base() - Assemble code to write exception base address.
178 * @p: Code buffer pointer.
179 * @reg: Source register (generated code may set WG bit in @reg).
180 *
181 * Assemble code to modify the exception base address in the EBase register,
182 * using the appropriately sized access and setting the WG bit if necessary.
183 */
184static inline void build_set_exc_base(u32 **p, unsigned int reg)
185{
186 if (cpu_has_ebase_wg) {
187 /* Set WG so that all the bits get written */
188 uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
189 UASM_i_MTC0(p, reg, C0_EBASE);
190 } else {
191 uasm_i_mtc0(p, reg, C0_EBASE);
192 }
193}
194
195/**
196 * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
197 * @addr: Address to start writing code.
198 *
199 * Assemble the start of the vcpu_run function to run a guest VCPU. The function
200 * conforms to the following prototype:
201 *
202 * int vcpu_run(struct kvm_vcpu *vcpu);
203 *
204 * The exit from the guest and return to the caller is handled by the code
205 * generated by kvm_mips_build_ret_to_host().
206 *
207 * Returns: Next address after end of written function.
208 */
209void *kvm_mips_build_vcpu_run(void *addr)
210{
211 u32 *p = addr;
212 unsigned int i;
213
214 /*
215 * A0: vcpu
216 */
217
218 /* k0/k1 not being used in host kernel context */
219 UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
220 for (i = 16; i < 32; ++i) {
221 if (i == 24)
222 i = 28;
223 UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
224 }
225
226 /* Save host status */
227 uasm_i_mfc0(&p, V0, C0_STATUS);
228 UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
229
230 /* Save scratch registers, will be used to store pointer to vcpu etc */
231 kvm_mips_build_save_scratch(&p, V1, K1);
232
233 /* VCPU scratch register has pointer to vcpu */
234 UASM_i_MTC0(&p, A0, scratch_vcpu[0], scratch_vcpu[1]);
235
236 /* Offset into vcpu->arch */
237 UASM_i_ADDIU(&p, K1, A0, offsetof(struct kvm_vcpu, arch));
238
239 /*
240 * Save the host stack to VCPU, used for exception processing
241 * when we exit from the Guest
242 */
243 UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
244
245 /* Save the kernel gp as well */
246 UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
247
248 /*
249 * Setup status register for running the guest in UM, interrupts
250 * are disabled
251 */
252 UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
253 uasm_i_mtc0(&p, K0, C0_STATUS);
254 uasm_i_ehb(&p);
255
256 /* load up the new EBASE */
257 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
258 build_set_exc_base(&p, K0);
259
260 /*
261 * Now that the new EBASE has been loaded, unset BEV, set
262 * interrupt mask as it was but make sure that timer interrupts
263 * are enabled
264 */
265 uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
266 uasm_i_andi(&p, V0, V0, ST0_IM);
267 uasm_i_or(&p, K0, K0, V0);
268 uasm_i_mtc0(&p, K0, C0_STATUS);
269 uasm_i_ehb(&p);
270
271 p = kvm_mips_build_enter_guest(p);
272
273 return p;
274}
275
276/**
277 * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
278 * @addr: Address to start writing code.
279 *
280 * Assemble the code to resume guest execution. This code is common between the
281 * initial entry into the guest from the host, and returning from the exit
282 * handler back to the guest.
283 *
284 * Returns: Next address after end of written function.
285 */
286static void *kvm_mips_build_enter_guest(void *addr)
287{
288 u32 *p = addr;
289 unsigned int i;
290 struct uasm_label labels[2];
291 struct uasm_reloc relocs[2];
292 struct uasm_label __maybe_unused *l = labels;
293 struct uasm_reloc __maybe_unused *r = relocs;
294
295 memset(labels, 0, sizeof(labels));
296 memset(relocs, 0, sizeof(relocs));
297
298 /* Set Guest EPC */
299 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
300 UASM_i_MTC0(&p, T0, C0_EPC);
301
302 /* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
303 if (cpu_has_ldpte)
304 UASM_i_MFC0(&p, K0, C0_PWBASE);
305 else
306 UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg);
307 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1);
308
309 /*
310 * Set up KVM GPA pgd.
311 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
312 * - call tlbmiss_handler_setup_pgd(mm->pgd)
313 * - write mm->pgd into CP0_PWBase
314 *
315 * We keep S0 pointing at struct kvm so we can load the ASID below.
316 */
317 UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) -
318 (int)offsetof(struct kvm_vcpu, arch), K1);
319 UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0);
320 UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
321 uasm_i_jalr(&p, RA, T9);
322 /* delay slot */
323 if (cpu_has_htw)
324 UASM_i_MTC0(&p, A0, C0_PWBASE);
325 else
326 uasm_i_nop(&p);
327
328 /* Set GM bit to setup eret to VZ guest context */
329 uasm_i_addiu(&p, V1, ZERO, 1);
330 uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
331 uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1);
332 uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
333
334 if (cpu_has_guestid) {
335 /*
336 * Set root mode GuestID, so that root TLB refill handler can
337 * use the correct GuestID in the root TLB.
338 */
339
340 /* Get current GuestID */
341 uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
342 /* Set GuestCtl1.RID = GuestCtl1.ID */
343 uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT,
344 MIPS_GCTL1_ID_WIDTH);
345 uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT,
346 MIPS_GCTL1_RID_WIDTH);
347 uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
348
349 /* GuestID handles dealiasing so we don't need to touch ASID */
350 goto skip_asid_restore;
351 }
352
353 /* Root ASID Dealias (RAD) */
354
355 /* Save host ASID */
356 UASM_i_MFC0(&p, K0, C0_ENTRYHI);
357 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
358 K1);
359
360 /* Set the root ASID for the Guest */
361 UASM_i_ADDIU(&p, T1, S0,
362 offsetof(struct kvm, arch.gpa_mm.context.asid));
363
364 /* t1: contains the base of the ASID array, need to get the cpu id */
365 /* smp_processor_id */
366 uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
367 /* index the ASID array */
368 uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
369 UASM_i_ADDU(&p, T3, T1, T2);
370 UASM_i_LW(&p, K0, 0, T3);
371#ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
372 /*
373 * reuse ASID array offset
374 * cpuinfo_mips is a multiple of sizeof(long)
375 */
376 uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
377 uasm_i_mul(&p, T2, T2, T3);
378
379 UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
380 UASM_i_ADDU(&p, AT, AT, T2);
381 UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
382 uasm_i_and(&p, K0, K0, T2);
383#else
384 uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
385#endif
386
387 /* Set up KVM VZ root ASID (!guestid) */
388 uasm_i_mtc0(&p, K0, C0_ENTRYHI);
389skip_asid_restore:
390 uasm_i_ehb(&p);
391
392 /* Disable RDHWR access */
393 uasm_i_mtc0(&p, ZERO, C0_HWRENA);
394
395 /* load the guest context from VCPU and return */
396 for (i = 1; i < 32; ++i) {
397 /* Guest k0/k1 loaded later */
398 if (i == K0 || i == K1)
399 continue;
400 UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
401 }
402
403#ifndef CONFIG_CPU_MIPSR6
404 /* Restore hi/lo */
405 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
406 uasm_i_mthi(&p, K0);
407
408 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
409 uasm_i_mtlo(&p, K0);
410#endif
411
412 /* Restore the guest's k0/k1 registers */
413 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
414 UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
415
416 /* Jump to guest */
417 uasm_i_eret(&p);
418
419 uasm_resolve_relocs(relocs, labels);
420
421 return p;
422}
423
424/**
425 * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
426 * @addr: Address to start writing code.
427 * @handler: Address of common handler (within range of @addr).
428 *
429 * Assemble TLB refill exception fast path handler for guest execution.
430 *
431 * Returns: Next address after end of written function.
432 */
433void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
434{
435 u32 *p = addr;
436 struct uasm_label labels[2];
437 struct uasm_reloc relocs[2];
438#ifndef CONFIG_CPU_LOONGSON64
439 struct uasm_label *l = labels;
440 struct uasm_reloc *r = relocs;
441#endif
442
443 memset(labels, 0, sizeof(labels));
444 memset(relocs, 0, sizeof(relocs));
445
446 /* Save guest k1 into scratch register */
447 UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
448
449 /* Get the VCPU pointer from the VCPU scratch register */
450 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
451
452 /* Save guest k0 into VCPU structure */
453 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
454
455 /*
456 * Some of the common tlbex code uses current_cpu_type(). For KVM we
457 * assume symmetry and just disable preemption to silence the warning.
458 */
459 preempt_disable();
460
461#ifdef CONFIG_CPU_LOONGSON64
462 UASM_i_MFC0(&p, K1, C0_PGD);
463 uasm_i_lddir(&p, K0, K1, 3); /* global page dir */
464#ifndef __PAGETABLE_PMD_FOLDED
465 uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */
466#endif
467 uasm_i_ldpte(&p, K1, 0); /* even */
468 uasm_i_ldpte(&p, K1, 1); /* odd */
469 uasm_i_tlbwr(&p);
470#else
471 /*
472 * Now for the actual refill bit. A lot of this can be common with the
473 * Linux TLB refill handler, however we don't need to handle so many
474 * cases. We only need to handle user mode refills, and user mode runs
475 * with 32-bit addressing.
476 *
477 * Therefore the branch to label_vmalloc generated by build_get_pmde64()
478 * that isn't resolved should never actually get taken and is harmless
479 * to leave in place for now.
480 */
481
482#ifdef CONFIG_64BIT
483 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
484#else
485 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
486#endif
487
488 /* we don't support huge pages yet */
489
490 build_get_ptep(&p, K0, K1);
491 build_update_entries(&p, K0, K1);
492 build_tlb_write_entry(&p, &l, &r, tlb_random);
493#endif
494
495 preempt_enable();
496
497 /* Get the VCPU pointer from the VCPU scratch register again */
498 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
499
500 /* Restore the guest's k0/k1 registers */
501 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
502 uasm_i_ehb(&p);
503 UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
504
505 /* Jump to guest */
506 uasm_i_eret(&p);
507
508 return p;
509}
510
511/**
512 * kvm_mips_build_exception() - Assemble first level guest exception handler.
513 * @addr: Address to start writing code.
514 * @handler: Address of common handler (within range of @addr).
515 *
516 * Assemble exception vector code for guest execution. The generated vector will
517 * branch to the common exception handler generated by kvm_mips_build_exit().
518 *
519 * Returns: Next address after end of written function.
520 */
521void *kvm_mips_build_exception(void *addr, void *handler)
522{
523 u32 *p = addr;
524 struct uasm_label labels[2];
525 struct uasm_reloc relocs[2];
526 struct uasm_label *l = labels;
527 struct uasm_reloc *r = relocs;
528
529 memset(labels, 0, sizeof(labels));
530 memset(relocs, 0, sizeof(relocs));
531
532 /* Save guest k1 into scratch register */
533 UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
534
535 /* Get the VCPU pointer from the VCPU scratch register */
536 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
537 UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
538
539 /* Save guest k0 into VCPU structure */
540 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
541
542 /* Branch to the common handler */
543 uasm_il_b(&p, &r, label_exit_common);
544 uasm_i_nop(&p);
545
546 uasm_l_exit_common(&l, handler);
547 uasm_resolve_relocs(relocs, labels);
548
549 return p;
550}
551
552/**
553 * kvm_mips_build_exit() - Assemble common guest exit handler.
554 * @addr: Address to start writing code.
555 *
556 * Assemble the generic guest exit handling code. This is called by the
557 * exception vectors (generated by kvm_mips_build_exception()), and calls
558 * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
559 * depending on the return value.
560 *
561 * Returns: Next address after end of written function.
562 */
563void *kvm_mips_build_exit(void *addr)
564{
565 u32 *p = addr;
566 unsigned int i;
567 struct uasm_label labels[3];
568 struct uasm_reloc relocs[3];
569 struct uasm_label *l = labels;
570 struct uasm_reloc *r = relocs;
571
572 memset(labels, 0, sizeof(labels));
573 memset(relocs, 0, sizeof(relocs));
574
575 /*
576 * Generic Guest exception handler. We end up here when the guest
577 * does something that causes a trap to kernel mode.
578 *
579 * Both k0/k1 registers will have already been saved (k0 into the vcpu
580 * structure, and k1 into the scratch_tmp register).
581 *
582 * The k1 register will already contain the kvm_vcpu_arch pointer.
583 */
584
585 /* Start saving Guest context to VCPU */
586 for (i = 0; i < 32; ++i) {
587 /* Guest k0/k1 saved later */
588 if (i == K0 || i == K1)
589 continue;
590 UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
591 }
592
593#ifndef CONFIG_CPU_MIPSR6
594 /* We need to save hi/lo and restore them on the way out */
595 uasm_i_mfhi(&p, T0);
596 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
597
598 uasm_i_mflo(&p, T0);
599 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
600#endif
601
602 /* Finally save guest k1 to VCPU */
603 uasm_i_ehb(&p);
604 UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
605 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
606
607 /* Now that context has been saved, we can use other registers */
608
609 /* Restore vcpu */
610 UASM_i_MFC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
611
612 /*
613 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
614 * the exception
615 */
616 UASM_i_MFC0(&p, K0, C0_EPC);
617 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
618
619 UASM_i_MFC0(&p, K0, C0_BADVADDR);
620 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
621 K1);
622
623 uasm_i_mfc0(&p, K0, C0_CAUSE);
624 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
625
626 if (cpu_has_badinstr) {
627 uasm_i_mfc0(&p, K0, C0_BADINSTR);
628 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
629 host_cp0_badinstr), K1);
630 }
631
632 if (cpu_has_badinstrp) {
633 uasm_i_mfc0(&p, K0, C0_BADINSTRP);
634 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
635 host_cp0_badinstrp), K1);
636 }
637
638 /* Now restore the host state just enough to run the handlers */
639
640 /* Switch EBASE to the one used by Linux */
641 /* load up the host EBASE */
642 uasm_i_mfc0(&p, V0, C0_STATUS);
643
644 uasm_i_lui(&p, AT, ST0_BEV >> 16);
645 uasm_i_or(&p, K0, V0, AT);
646
647 uasm_i_mtc0(&p, K0, C0_STATUS);
648 uasm_i_ehb(&p);
649
650 UASM_i_LA_mostly(&p, K0, (long)&ebase);
651 UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
652 build_set_exc_base(&p, K0);
653
654 if (raw_cpu_has_fpu) {
655 /*
656 * If FPU is enabled, save FCR31 and clear it so that later
657 * ctc1's don't trigger FPE for pending exceptions.
658 */
659 uasm_i_lui(&p, AT, ST0_CU1 >> 16);
660 uasm_i_and(&p, V1, V0, AT);
661 uasm_il_beqz(&p, &r, V1, label_fpu_1);
662 uasm_i_nop(&p);
663 uasm_i_cfc1(&p, T0, 31);
664 uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
665 K1);
666 uasm_i_ctc1(&p, ZERO, 31);
667 uasm_l_fpu_1(&l, p);
668 }
669
670 if (cpu_has_msa) {
671 /*
672 * If MSA is enabled, save MSACSR and clear it so that later
673 * instructions don't trigger MSAFPE for pending exceptions.
674 */
675 uasm_i_mfc0(&p, T0, C0_CONFIG5);
676 uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
677 uasm_il_beqz(&p, &r, T0, label_msa_1);
678 uasm_i_nop(&p);
679 uasm_i_cfcmsa(&p, T0, MSA_CSR);
680 uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
681 K1);
682 uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
683 uasm_l_msa_1(&l, p);
684 }
685
686 /* Restore host ASID */
687 if (!cpu_has_guestid) {
688 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
689 K1);
690 UASM_i_MTC0(&p, K0, C0_ENTRYHI);
691 }
692
693 /*
694 * Set up normal Linux process pgd.
695 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
696 * - call tlbmiss_handler_setup_pgd(mm->pgd)
697 * - write mm->pgd into CP0_PWBase
698 */
699 UASM_i_LW(&p, A0,
700 offsetof(struct kvm_vcpu_arch, host_pgd), K1);
701 UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
702 uasm_i_jalr(&p, RA, T9);
703 /* delay slot */
704 if (cpu_has_htw)
705 UASM_i_MTC0(&p, A0, C0_PWBASE);
706 else
707 uasm_i_nop(&p);
708
709 /* Clear GM bit so we don't enter guest mode when EXL is cleared */
710 uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
711 uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1);
712 uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
713
714 /* Save GuestCtl0 so we can access GExcCode after CPU migration */
715 uasm_i_sw(&p, K0,
716 offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1);
717
718 if (cpu_has_guestid) {
719 /*
720 * Clear root mode GuestID, so that root TLB operations use the
721 * root GuestID in the root TLB.
722 */
723 uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
724 /* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
725 uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT,
726 MIPS_GCTL1_RID_WIDTH);
727 uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
728 }
729
730 /* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
731 uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
732 uasm_i_and(&p, V0, V0, AT);
733 uasm_i_lui(&p, AT, ST0_CU0 >> 16);
734 uasm_i_or(&p, V0, V0, AT);
735#ifdef CONFIG_64BIT
736 uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
737#endif
738 uasm_i_mtc0(&p, V0, C0_STATUS);
739 uasm_i_ehb(&p);
740
741 /* Load up host GP */
742 UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
743
744 /* Need a stack before we can jump to "C" */
745 UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
746
747 /* Saved host state */
748 UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
749
750 /*
751 * XXXKYMA do we need to load the host ASID, maybe not because the
752 * kernel entries are marked GLOBAL, need to verify
753 */
754
755 /* Restore host scratch registers, as we'll have clobbered them */
756 kvm_mips_build_restore_scratch(&p, K0, SP);
757
758 /* Restore RDHWR access */
759 UASM_i_LA_mostly(&p, K0, (long)&hwrena);
760 uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
761 uasm_i_mtc0(&p, K0, C0_HWRENA);
762
763 /* Jump to handler */
764 /*
765 * XXXKYMA: not sure if this is safe, how large is the stack??
766 * Now jump to the kvm_mips_handle_exit() to see if we can deal
767 * with this in the kernel
768 */
769 uasm_i_move(&p, A0, S0);
770 UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
771 uasm_i_jalr(&p, RA, T9);
772 UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
773
774 uasm_resolve_relocs(relocs, labels);
775
776 p = kvm_mips_build_ret_from_exit(p);
777
778 return p;
779}
780
781/**
782 * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
783 * @addr: Address to start writing code.
784 *
785 * Assemble the code to handle the return from kvm_mips_handle_exit(), either
786 * resuming the guest or returning to the host depending on the return value.
787 *
788 * Returns: Next address after end of written function.
789 */
790static void *kvm_mips_build_ret_from_exit(void *addr)
791{
792 u32 *p = addr;
793 struct uasm_label labels[2];
794 struct uasm_reloc relocs[2];
795 struct uasm_label *l = labels;
796 struct uasm_reloc *r = relocs;
797
798 memset(labels, 0, sizeof(labels));
799 memset(relocs, 0, sizeof(relocs));
800
801 /* Return from handler Make sure interrupts are disabled */
802 uasm_i_di(&p, ZERO);
803 uasm_i_ehb(&p);
804
805 /*
806 * XXXKYMA: k0/k1 could have been blown away if we processed
807 * an exception while we were handling the exception from the
808 * guest, reload k1
809 */
810
811 uasm_i_move(&p, K1, S0);
812 UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
813
814 /*
815 * Check return value, should tell us if we are returning to the
816 * host (handle I/O etc)or resuming the guest
817 */
818 uasm_i_andi(&p, T0, V0, RESUME_HOST);
819 uasm_il_bnez(&p, &r, T0, label_return_to_host);
820 uasm_i_nop(&p);
821
822 p = kvm_mips_build_ret_to_guest(p);
823
824 uasm_l_return_to_host(&l, p);
825 p = kvm_mips_build_ret_to_host(p);
826
827 uasm_resolve_relocs(relocs, labels);
828
829 return p;
830}
831
832/**
833 * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
834 * @addr: Address to start writing code.
835 *
836 * Assemble the code to handle return from the guest exit handler
837 * (kvm_mips_handle_exit()) back to the guest.
838 *
839 * Returns: Next address after end of written function.
840 */
841static void *kvm_mips_build_ret_to_guest(void *addr)
842{
843 u32 *p = addr;
844
845 /* Put the saved pointer to vcpu (s0) back into the scratch register */
846 UASM_i_MTC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
847
848 /* Load up the Guest EBASE to minimize the window where BEV is set */
849 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
850
851 /* Switch EBASE back to the one used by KVM */
852 uasm_i_mfc0(&p, V1, C0_STATUS);
853 uasm_i_lui(&p, AT, ST0_BEV >> 16);
854 uasm_i_or(&p, K0, V1, AT);
855 uasm_i_mtc0(&p, K0, C0_STATUS);
856 uasm_i_ehb(&p);
857 build_set_exc_base(&p, T0);
858
859 /* Setup status register for running guest in UM */
860 uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
861 UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
862 uasm_i_and(&p, V1, V1, AT);
863 uasm_i_mtc0(&p, V1, C0_STATUS);
864 uasm_i_ehb(&p);
865
866 p = kvm_mips_build_enter_guest(p);
867
868 return p;
869}
870
871/**
872 * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
873 * @addr: Address to start writing code.
874 *
875 * Assemble the code to handle return from the guest exit handler
876 * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
877 * function generated by kvm_mips_build_vcpu_run().
878 *
879 * Returns: Next address after end of written function.
880 */
881static void *kvm_mips_build_ret_to_host(void *addr)
882{
883 u32 *p = addr;
884 unsigned int i;
885
886 /* EBASE is already pointing to Linux */
887 UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
888 UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
889
890 /*
891 * r2/v0 is the return code, shift it down by 2 (arithmetic)
892 * to recover the err code
893 */
894 uasm_i_sra(&p, K0, V0, 2);
895 uasm_i_move(&p, V0, K0);
896
897 /* Load context saved on the host stack */
898 for (i = 16; i < 31; ++i) {
899 if (i == 24)
900 i = 28;
901 UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
902 }
903
904 /* Restore RDHWR access */
905 UASM_i_LA_mostly(&p, K0, (long)&hwrena);
906 uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
907 uasm_i_mtc0(&p, K0, C0_HWRENA);
908
909 /* Restore RA, which is the address we will return to */
910 UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
911 uasm_i_jr(&p, RA);
912 uasm_i_nop(&p);
913
914 return p;
915}
916