Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 * Copyright (c) 2007-2014 Nicira, Inc.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of version 2 of the GNU General Public
  6 * License as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful, but
  9 * WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public License
 14 * along with this program; if not, write to the Free Software
 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 16 * 02110-1301, USA
 17 */
 18
 19#include <linux/uaccess.h>
 20#include <linux/netdevice.h>
 21#include <linux/etherdevice.h>
 22#include <linux/if_ether.h>
 23#include <linux/if_vlan.h>
 24#include <net/llc_pdu.h>
 25#include <linux/kernel.h>
 26#include <linux/jhash.h>
 27#include <linux/jiffies.h>
 28#include <linux/llc.h>
 29#include <linux/module.h>
 30#include <linux/in.h>
 31#include <linux/rcupdate.h>
 32#include <linux/cpumask.h>
 33#include <linux/if_arp.h>
 34#include <linux/ip.h>
 35#include <linux/ipv6.h>
 36#include <linux/mpls.h>
 37#include <linux/sctp.h>
 38#include <linux/smp.h>
 39#include <linux/tcp.h>
 40#include <linux/udp.h>
 41#include <linux/icmp.h>
 42#include <linux/icmpv6.h>
 43#include <linux/rculist.h>
 44#include <net/ip.h>
 45#include <net/ip_tunnels.h>
 46#include <net/ipv6.h>
 47#include <net/mpls.h>
 48#include <net/ndisc.h>
 
 
 
 49
 50#include "conntrack.h"
 51#include "datapath.h"
 52#include "flow.h"
 53#include "flow_netlink.h"
 54#include "vport.h"
 55
 56u64 ovs_flow_used_time(unsigned long flow_jiffies)
 57{
 58	struct timespec cur_ts;
 59	u64 cur_ms, idle_ms;
 60
 61	ktime_get_ts(&cur_ts);
 62	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
 63	cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
 64		 cur_ts.tv_nsec / NSEC_PER_MSEC;
 65
 66	return cur_ms - idle_ms;
 67}
 68
 69#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
 70
 71void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
 72			   const struct sk_buff *skb)
 73{
 74	struct flow_stats *stats;
 75	int node = numa_node_id();
 76	int cpu = smp_processor_id();
 77	int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
 78
 79	stats = rcu_dereference(flow->stats[cpu]);
 80
 81	/* Check if already have CPU-specific stats. */
 82	if (likely(stats)) {
 83		spin_lock(&stats->lock);
 84		/* Mark if we write on the pre-allocated stats. */
 85		if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
 86			flow->stats_last_writer = cpu;
 87	} else {
 88		stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
 89		spin_lock(&stats->lock);
 90
 91		/* If the current CPU is the only writer on the
 92		 * pre-allocated stats keep using them.
 93		 */
 94		if (unlikely(flow->stats_last_writer != cpu)) {
 95			/* A previous locker may have already allocated the
 96			 * stats, so we need to check again.  If CPU-specific
 97			 * stats were already allocated, we update the pre-
 98			 * allocated stats as we have already locked them.
 99			 */
100			if (likely(flow->stats_last_writer != -1) &&
101			    likely(!rcu_access_pointer(flow->stats[cpu]))) {
102				/* Try to allocate CPU-specific stats. */
103				struct flow_stats *new_stats;
104
105				new_stats =
106					kmem_cache_alloc_node(flow_stats_cache,
107							      GFP_NOWAIT |
108							      __GFP_THISNODE |
109							      __GFP_NOWARN |
110							      __GFP_NOMEMALLOC,
111							      node);
112				if (likely(new_stats)) {
113					new_stats->used = jiffies;
114					new_stats->packet_count = 1;
115					new_stats->byte_count = len;
116					new_stats->tcp_flags = tcp_flags;
117					spin_lock_init(&new_stats->lock);
118
119					rcu_assign_pointer(flow->stats[cpu],
120							   new_stats);
 
121					goto unlock;
122				}
123			}
124			flow->stats_last_writer = cpu;
125		}
126	}
127
128	stats->used = jiffies;
129	stats->packet_count++;
130	stats->byte_count += len;
131	stats->tcp_flags |= tcp_flags;
132unlock:
133	spin_unlock(&stats->lock);
134}
135
136/* Must be called with rcu_read_lock or ovs_mutex. */
137void ovs_flow_stats_get(const struct sw_flow *flow,
138			struct ovs_flow_stats *ovs_stats,
139			unsigned long *used, __be16 *tcp_flags)
140{
141	int cpu;
142
143	*used = 0;
144	*tcp_flags = 0;
145	memset(ovs_stats, 0, sizeof(*ovs_stats));
146
147	/* We open code this to make sure cpu 0 is always considered */
148	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, cpu_possible_mask)) {
149		struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
150
151		if (stats) {
152			/* Local CPU may write on non-local stats, so we must
153			 * block bottom-halves here.
154			 */
155			spin_lock_bh(&stats->lock);
156			if (!*used || time_after(stats->used, *used))
157				*used = stats->used;
158			*tcp_flags |= stats->tcp_flags;
159			ovs_stats->n_packets += stats->packet_count;
160			ovs_stats->n_bytes += stats->byte_count;
161			spin_unlock_bh(&stats->lock);
162		}
163	}
164}
165
166/* Called with ovs_mutex. */
167void ovs_flow_stats_clear(struct sw_flow *flow)
168{
169	int cpu;
170
171	/* We open code this to make sure cpu 0 is always considered */
172	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, cpu_possible_mask)) {
173		struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
174
175		if (stats) {
176			spin_lock_bh(&stats->lock);
177			stats->used = 0;
178			stats->packet_count = 0;
179			stats->byte_count = 0;
180			stats->tcp_flags = 0;
181			spin_unlock_bh(&stats->lock);
182		}
183	}
184}
185
186static int check_header(struct sk_buff *skb, int len)
187{
188	if (unlikely(skb->len < len))
189		return -EINVAL;
190	if (unlikely(!pskb_may_pull(skb, len)))
191		return -ENOMEM;
192	return 0;
193}
194
195static bool arphdr_ok(struct sk_buff *skb)
196{
197	return pskb_may_pull(skb, skb_network_offset(skb) +
198				  sizeof(struct arp_eth_header));
199}
200
201static int check_iphdr(struct sk_buff *skb)
202{
203	unsigned int nh_ofs = skb_network_offset(skb);
204	unsigned int ip_len;
205	int err;
206
207	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
208	if (unlikely(err))
209		return err;
210
211	ip_len = ip_hdrlen(skb);
212	if (unlikely(ip_len < sizeof(struct iphdr) ||
213		     skb->len < nh_ofs + ip_len))
214		return -EINVAL;
215
216	skb_set_transport_header(skb, nh_ofs + ip_len);
217	return 0;
218}
219
220static bool tcphdr_ok(struct sk_buff *skb)
221{
222	int th_ofs = skb_transport_offset(skb);
223	int tcp_len;
224
225	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
226		return false;
227
228	tcp_len = tcp_hdrlen(skb);
229	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
230		     skb->len < th_ofs + tcp_len))
231		return false;
232
233	return true;
234}
235
236static bool udphdr_ok(struct sk_buff *skb)
237{
238	return pskb_may_pull(skb, skb_transport_offset(skb) +
239				  sizeof(struct udphdr));
240}
241
242static bool sctphdr_ok(struct sk_buff *skb)
243{
244	return pskb_may_pull(skb, skb_transport_offset(skb) +
245				  sizeof(struct sctphdr));
246}
247
248static bool icmphdr_ok(struct sk_buff *skb)
249{
250	return pskb_may_pull(skb, skb_transport_offset(skb) +
251				  sizeof(struct icmphdr));
252}
253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
255{
 
 
256	unsigned int nh_ofs = skb_network_offset(skb);
257	unsigned int nh_len;
258	int payload_ofs;
259	struct ipv6hdr *nh;
260	uint8_t nexthdr;
261	__be16 frag_off;
262	int err;
263
264	err = check_header(skb, nh_ofs + sizeof(*nh));
265	if (unlikely(err))
266		return err;
267
268	nh = ipv6_hdr(skb);
269	nexthdr = nh->nexthdr;
270	payload_ofs = (u8 *)(nh + 1) - skb->data;
271
272	key->ip.proto = NEXTHDR_NONE;
273	key->ip.tos = ipv6_get_dsfield(nh);
274	key->ip.ttl = nh->hop_limit;
275	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
276	key->ipv6.addr.src = nh->saddr;
277	key->ipv6.addr.dst = nh->daddr;
278
279	payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
280
281	if (frag_off) {
282		if (frag_off & htons(~0x7))
283			key->ip.frag = OVS_FRAG_TYPE_LATER;
284		else
285			key->ip.frag = OVS_FRAG_TYPE_FIRST;
 
 
286	} else {
287		key->ip.frag = OVS_FRAG_TYPE_NONE;
288	}
289
290	/* Delayed handling of error in ipv6_skip_exthdr() as it
291	 * always sets frag_off to a valid value which may be
292	 * used to set key->ip.frag above.
293	 */
294	if (unlikely(payload_ofs < 0))
295		return -EPROTO;
296
297	nh_len = payload_ofs - nh_ofs;
298	skb_set_transport_header(skb, nh_ofs + nh_len);
299	key->ip.proto = nexthdr;
300	return nh_len;
301}
302
303static bool icmp6hdr_ok(struct sk_buff *skb)
304{
305	return pskb_may_pull(skb, skb_transport_offset(skb) +
306				  sizeof(struct icmp6hdr));
307}
308
309/**
310 * Parse vlan tag from vlan header.
311 * Returns ERROR on memory error.
312 * Returns 0 if it encounters a non-vlan or incomplete packet.
313 * Returns 1 after successfully parsing vlan tag.
 
 
 
 
314 */
315static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
316			  bool untag_vlan)
317{
318	struct vlan_head *vh = (struct vlan_head *)skb->data;
319
320	if (likely(!eth_type_vlan(vh->tpid)))
321		return 0;
322
323	if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
324		return 0;
325
326	if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
327				 sizeof(__be16))))
328		return -ENOMEM;
329
330	vh = (struct vlan_head *)skb->data;
331	key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT);
332	key_vh->tpid = vh->tpid;
333
334	if (unlikely(untag_vlan)) {
335		int offset = skb->data - skb_mac_header(skb);
336		u16 tci;
337		int err;
338
339		__skb_push(skb, offset);
340		err = __skb_vlan_pop(skb, &tci);
341		__skb_pull(skb, offset);
342		if (err)
343			return err;
344		__vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
345	} else {
346		__skb_pull(skb, sizeof(struct vlan_head));
347	}
348	return 1;
349}
350
351static void clear_vlan(struct sw_flow_key *key)
352{
353	key->eth.vlan.tci = 0;
354	key->eth.vlan.tpid = 0;
355	key->eth.cvlan.tci = 0;
356	key->eth.cvlan.tpid = 0;
357}
358
359static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
360{
361	int res;
362
363	if (skb_vlan_tag_present(skb)) {
364		key->eth.vlan.tci = htons(skb->vlan_tci);
365		key->eth.vlan.tpid = skb->vlan_proto;
366	} else {
367		/* Parse outer vlan tag in the non-accelerated case. */
368		res = parse_vlan_tag(skb, &key->eth.vlan, true);
369		if (res <= 0)
370			return res;
371	}
372
373	/* Parse inner vlan tag. */
374	res = parse_vlan_tag(skb, &key->eth.cvlan, false);
375	if (res <= 0)
376		return res;
377
378	return 0;
379}
380
381static __be16 parse_ethertype(struct sk_buff *skb)
382{
383	struct llc_snap_hdr {
384		u8  dsap;  /* Always 0xAA */
385		u8  ssap;  /* Always 0xAA */
386		u8  ctrl;
387		u8  oui[3];
388		__be16 ethertype;
389	};
390	struct llc_snap_hdr *llc;
391	__be16 proto;
392
393	proto = *(__be16 *) skb->data;
394	__skb_pull(skb, sizeof(__be16));
395
396	if (eth_proto_is_802_3(proto))
397		return proto;
398
399	if (skb->len < sizeof(struct llc_snap_hdr))
400		return htons(ETH_P_802_2);
401
402	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
403		return htons(0);
404
405	llc = (struct llc_snap_hdr *) skb->data;
406	if (llc->dsap != LLC_SAP_SNAP ||
407	    llc->ssap != LLC_SAP_SNAP ||
408	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
409		return htons(ETH_P_802_2);
410
411	__skb_pull(skb, sizeof(struct llc_snap_hdr));
412
413	if (eth_proto_is_802_3(llc->ethertype))
414		return llc->ethertype;
415
416	return htons(ETH_P_802_2);
417}
418
419static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
420			int nh_len)
421{
422	struct icmp6hdr *icmp = icmp6_hdr(skb);
423
424	/* The ICMPv6 type and code fields use the 16-bit transport port
425	 * fields, so we need to store them in 16-bit network byte order.
426	 */
427	key->tp.src = htons(icmp->icmp6_type);
428	key->tp.dst = htons(icmp->icmp6_code);
429	memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
430
431	if (icmp->icmp6_code == 0 &&
432	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
433	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
434		int icmp_len = skb->len - skb_transport_offset(skb);
435		struct nd_msg *nd;
436		int offset;
437
438		/* In order to process neighbor discovery options, we need the
439		 * entire packet.
440		 */
441		if (unlikely(icmp_len < sizeof(*nd)))
442			return 0;
443
444		if (unlikely(skb_linearize(skb)))
445			return -ENOMEM;
446
447		nd = (struct nd_msg *)skb_transport_header(skb);
448		key->ipv6.nd.target = nd->target;
449
450		icmp_len -= sizeof(*nd);
451		offset = 0;
452		while (icmp_len >= 8) {
453			struct nd_opt_hdr *nd_opt =
454				 (struct nd_opt_hdr *)(nd->opt + offset);
455			int opt_len = nd_opt->nd_opt_len * 8;
456
457			if (unlikely(!opt_len || opt_len > icmp_len))
458				return 0;
459
460			/* Store the link layer address if the appropriate
461			 * option is provided.  It is considered an error if
462			 * the same link layer option is specified twice.
463			 */
464			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
465			    && opt_len == 8) {
466				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
467					goto invalid;
468				ether_addr_copy(key->ipv6.nd.sll,
469						&nd->opt[offset+sizeof(*nd_opt)]);
470			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
471				   && opt_len == 8) {
472				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
473					goto invalid;
474				ether_addr_copy(key->ipv6.nd.tll,
475						&nd->opt[offset+sizeof(*nd_opt)]);
476			}
477
478			icmp_len -= opt_len;
479			offset += opt_len;
480		}
481	}
482
483	return 0;
484
485invalid:
486	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
487	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
488	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
489
490	return 0;
491}
492
493/**
494 * key_extract - extracts a flow key from an Ethernet frame.
495 * @skb: sk_buff that contains the frame, with skb->data pointing to the
496 * Ethernet header
497 * @key: output flow key
498 *
499 * The caller must ensure that skb->len >= ETH_HLEN.
500 *
501 * Returns 0 if successful, otherwise a negative errno value.
502 *
503 * Initializes @skb header fields as follows:
504 *
505 *    - skb->mac_header: the L2 header.
506 *
507 *    - skb->network_header: just past the L2 header, or just past the
508 *      VLAN header, to the first byte of the L2 payload.
509 *
510 *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
511 *      on output, then just past the IP header, if one is present and
512 *      of a correct length, otherwise the same as skb->network_header.
513 *      For other key->eth.type values it is left untouched.
514 *
515 *    - skb->protocol: the type of the data starting at skb->network_header.
516 *      Equals to key->eth.type.
517 */
518static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
519{
520	int error;
521	struct ethhdr *eth;
522
523	/* Flags are always used as part of stats */
524	key->tp.flags = 0;
525
526	skb_reset_mac_header(skb);
 
 
527
528	/* Link layer. */
529	clear_vlan(key);
530	if (key->mac_proto == MAC_PROTO_NONE) {
531		if (unlikely(eth_type_vlan(skb->protocol)))
532			return -EINVAL;
533
534		skb_reset_network_header(skb);
535	} else {
536		eth = eth_hdr(skb);
537		ether_addr_copy(key->eth.src, eth->h_source);
538		ether_addr_copy(key->eth.dst, eth->h_dest);
539
540		__skb_pull(skb, 2 * ETH_ALEN);
541		/* We are going to push all headers that we pull, so no need to
542		* update skb->csum here.
543		*/
544
545		if (unlikely(parse_vlan(skb, key)))
546			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
547
548		skb->protocol = parse_ethertype(skb);
549		if (unlikely(skb->protocol == htons(0)))
550			return -ENOMEM;
551
552		skb_reset_network_header(skb);
553		__skb_push(skb, skb->data - skb_mac_header(skb));
554	}
555	skb_reset_mac_len(skb);
556	key->eth.type = skb->protocol;
 
 
 
 
 
 
557
558	/* Network layer. */
559	if (key->eth.type == htons(ETH_P_IP)) {
560		struct iphdr *nh;
561		__be16 offset;
562
563		error = check_iphdr(skb);
564		if (unlikely(error)) {
565			memset(&key->ip, 0, sizeof(key->ip));
566			memset(&key->ipv4, 0, sizeof(key->ipv4));
567			if (error == -EINVAL) {
568				skb->transport_header = skb->network_header;
569				error = 0;
570			}
571			return error;
572		}
573
574		nh = ip_hdr(skb);
575		key->ipv4.addr.src = nh->saddr;
576		key->ipv4.addr.dst = nh->daddr;
577
578		key->ip.proto = nh->protocol;
579		key->ip.tos = nh->tos;
580		key->ip.ttl = nh->ttl;
581
582		offset = nh->frag_off & htons(IP_OFFSET);
583		if (offset) {
584			key->ip.frag = OVS_FRAG_TYPE_LATER;
 
585			return 0;
586		}
587		if (nh->frag_off & htons(IP_MF) ||
588			skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
589			key->ip.frag = OVS_FRAG_TYPE_FIRST;
590		else
591			key->ip.frag = OVS_FRAG_TYPE_NONE;
592
593		/* Transport layer. */
594		if (key->ip.proto == IPPROTO_TCP) {
595			if (tcphdr_ok(skb)) {
596				struct tcphdr *tcp = tcp_hdr(skb);
597				key->tp.src = tcp->source;
598				key->tp.dst = tcp->dest;
599				key->tp.flags = TCP_FLAGS_BE16(tcp);
600			} else {
601				memset(&key->tp, 0, sizeof(key->tp));
602			}
603
604		} else if (key->ip.proto == IPPROTO_UDP) {
605			if (udphdr_ok(skb)) {
606				struct udphdr *udp = udp_hdr(skb);
607				key->tp.src = udp->source;
608				key->tp.dst = udp->dest;
609			} else {
610				memset(&key->tp, 0, sizeof(key->tp));
611			}
612		} else if (key->ip.proto == IPPROTO_SCTP) {
613			if (sctphdr_ok(skb)) {
614				struct sctphdr *sctp = sctp_hdr(skb);
615				key->tp.src = sctp->source;
616				key->tp.dst = sctp->dest;
617			} else {
618				memset(&key->tp, 0, sizeof(key->tp));
619			}
620		} else if (key->ip.proto == IPPROTO_ICMP) {
621			if (icmphdr_ok(skb)) {
622				struct icmphdr *icmp = icmp_hdr(skb);
623				/* The ICMP type and code fields use the 16-bit
624				 * transport port fields, so we need to store
625				 * them in 16-bit network byte order. */
626				key->tp.src = htons(icmp->type);
627				key->tp.dst = htons(icmp->code);
628			} else {
629				memset(&key->tp, 0, sizeof(key->tp));
630			}
631		}
632
633	} else if (key->eth.type == htons(ETH_P_ARP) ||
634		   key->eth.type == htons(ETH_P_RARP)) {
635		struct arp_eth_header *arp;
636		bool arp_available = arphdr_ok(skb);
637
638		arp = (struct arp_eth_header *)skb_network_header(skb);
639
640		if (arp_available &&
641		    arp->ar_hrd == htons(ARPHRD_ETHER) &&
642		    arp->ar_pro == htons(ETH_P_IP) &&
643		    arp->ar_hln == ETH_ALEN &&
644		    arp->ar_pln == 4) {
645
646			/* We only match on the lower 8 bits of the opcode. */
647			if (ntohs(arp->ar_op) <= 0xff)
648				key->ip.proto = ntohs(arp->ar_op);
649			else
650				key->ip.proto = 0;
651
652			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
653			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
654			ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
655			ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
656		} else {
657			memset(&key->ip, 0, sizeof(key->ip));
658			memset(&key->ipv4, 0, sizeof(key->ipv4));
659		}
660	} else if (eth_p_mpls(key->eth.type)) {
661		size_t stack_len = MPLS_HLEN;
662
 
663		skb_set_inner_network_header(skb, skb->mac_len);
664		while (1) {
665			__be32 lse;
666
667			error = check_header(skb, skb->mac_len + stack_len);
 
668			if (unlikely(error))
669				return 0;
670
671			memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
672
673			if (stack_len == MPLS_HLEN)
674				memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
 
675
676			skb_set_inner_network_header(skb, skb->mac_len + stack_len);
 
677			if (lse & htonl(MPLS_LS_S_MASK))
678				break;
679
680			stack_len += MPLS_HLEN;
681		}
 
 
 
 
682	} else if (key->eth.type == htons(ETH_P_IPV6)) {
683		int nh_len;             /* IPv6 Header + Extensions */
684
685		nh_len = parse_ipv6hdr(skb, key);
686		if (unlikely(nh_len < 0)) {
687			switch (nh_len) {
688			case -EINVAL:
689				memset(&key->ip, 0, sizeof(key->ip));
690				memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
691				/* fall-through */
692			case -EPROTO:
693				skb->transport_header = skb->network_header;
694				error = 0;
695				break;
696			default:
697				error = nh_len;
698			}
699			return error;
700		}
701
702		if (key->ip.frag == OVS_FRAG_TYPE_LATER)
 
703			return 0;
 
704		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
705			key->ip.frag = OVS_FRAG_TYPE_FIRST;
706
707		/* Transport layer. */
708		if (key->ip.proto == NEXTHDR_TCP) {
709			if (tcphdr_ok(skb)) {
710				struct tcphdr *tcp = tcp_hdr(skb);
711				key->tp.src = tcp->source;
712				key->tp.dst = tcp->dest;
713				key->tp.flags = TCP_FLAGS_BE16(tcp);
714			} else {
715				memset(&key->tp, 0, sizeof(key->tp));
716			}
717		} else if (key->ip.proto == NEXTHDR_UDP) {
718			if (udphdr_ok(skb)) {
719				struct udphdr *udp = udp_hdr(skb);
720				key->tp.src = udp->source;
721				key->tp.dst = udp->dest;
722			} else {
723				memset(&key->tp, 0, sizeof(key->tp));
724			}
725		} else if (key->ip.proto == NEXTHDR_SCTP) {
726			if (sctphdr_ok(skb)) {
727				struct sctphdr *sctp = sctp_hdr(skb);
728				key->tp.src = sctp->source;
729				key->tp.dst = sctp->dest;
730			} else {
731				memset(&key->tp, 0, sizeof(key->tp));
732			}
733		} else if (key->ip.proto == NEXTHDR_ICMP) {
734			if (icmp6hdr_ok(skb)) {
735				error = parse_icmpv6(skb, key, nh_len);
736				if (error)
737					return error;
738			} else {
739				memset(&key->tp, 0, sizeof(key->tp));
740			}
741		}
 
 
 
 
742	}
743	return 0;
744}
745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
746int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
747{
748	return key_extract(skb, key);
 
 
 
 
 
 
749}
750
751static int key_extract_mac_proto(struct sk_buff *skb)
752{
753	switch (skb->dev->type) {
754	case ARPHRD_ETHER:
755		return MAC_PROTO_ETHERNET;
756	case ARPHRD_NONE:
757		if (skb->protocol == htons(ETH_P_TEB))
758			return MAC_PROTO_ETHERNET;
759		return MAC_PROTO_NONE;
760	}
761	WARN_ON_ONCE(1);
762	return -EINVAL;
763}
764
765int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
766			 struct sk_buff *skb, struct sw_flow_key *key)
767{
768	int res;
 
 
 
 
 
769
770	/* Extract metadata from packet. */
771	if (tun_info) {
772		key->tun_proto = ip_tunnel_info_af(tun_info);
773		memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
774
775		if (tun_info->options_len) {
776			BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
777						   8)) - 1
778					> sizeof(key->tun_opts));
779
780			ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
781						tun_info);
782			key->tun_opts_len = tun_info->options_len;
783		} else {
784			key->tun_opts_len = 0;
785		}
786	} else  {
787		key->tun_proto = 0;
788		key->tun_opts_len = 0;
789		memset(&key->tun_key, 0, sizeof(key->tun_key));
790	}
791
792	key->phy.priority = skb->priority;
793	key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
794	key->phy.skb_mark = skb->mark;
795	ovs_ct_fill_key(skb, key);
796	key->ovs_flow_hash = 0;
797	res = key_extract_mac_proto(skb);
798	if (res < 0)
799		return res;
800	key->mac_proto = res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
801	key->recirc_id = 0;
 
802
803	return key_extract(skb, key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
804}
805
806int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
807				   struct sk_buff *skb,
808				   struct sw_flow_key *key, bool log)
809{
 
 
810	int err;
811
 
 
 
 
812	/* Extract metadata from netlink attributes. */
813	err = ovs_nla_get_flow_metadata(net, attr, key, log);
814	if (err)
815		return err;
816
817	/* key_extract assumes that skb->protocol is set-up for
818	 * layer 3 packets which is the case for other callers,
819	 * in particular packets received from the network stack.
820	 * Here the correct value can be set from the metadata
821	 * extracted above.
822	 * For L2 packet key eth type would be zero. skb protocol
823	 * would be set to correct value later during key-extact.
824	 */
825
826	skb->protocol = key->eth.type;
827	return key_extract(skb, key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
828}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2014 Nicira, Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/uaccess.h>
   7#include <linux/netdevice.h>
   8#include <linux/etherdevice.h>
   9#include <linux/if_ether.h>
  10#include <linux/if_vlan.h>
  11#include <net/llc_pdu.h>
  12#include <linux/kernel.h>
  13#include <linux/jhash.h>
  14#include <linux/jiffies.h>
  15#include <linux/llc.h>
  16#include <linux/module.h>
  17#include <linux/in.h>
  18#include <linux/rcupdate.h>
  19#include <linux/cpumask.h>
  20#include <linux/if_arp.h>
  21#include <linux/ip.h>
  22#include <linux/ipv6.h>
  23#include <linux/mpls.h>
  24#include <linux/sctp.h>
  25#include <linux/smp.h>
  26#include <linux/tcp.h>
  27#include <linux/udp.h>
  28#include <linux/icmp.h>
  29#include <linux/icmpv6.h>
  30#include <linux/rculist.h>
  31#include <net/ip.h>
  32#include <net/ip_tunnels.h>
  33#include <net/ipv6.h>
  34#include <net/mpls.h>
  35#include <net/ndisc.h>
  36#include <net/nsh.h>
  37#include <net/pkt_cls.h>
  38#include <net/netfilter/nf_conntrack_zones.h>
  39
  40#include "conntrack.h"
  41#include "datapath.h"
  42#include "flow.h"
  43#include "flow_netlink.h"
  44#include "vport.h"
  45
  46u64 ovs_flow_used_time(unsigned long flow_jiffies)
  47{
  48	struct timespec64 cur_ts;
  49	u64 cur_ms, idle_ms;
  50
  51	ktime_get_ts64(&cur_ts);
  52	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
  53	cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
  54		 cur_ts.tv_nsec / NSEC_PER_MSEC;
  55
  56	return cur_ms - idle_ms;
  57}
  58
  59#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
  60
  61void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
  62			   const struct sk_buff *skb)
  63{
  64	struct sw_flow_stats *stats;
  65	unsigned int cpu = smp_processor_id();
 
  66	int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
  67
  68	stats = rcu_dereference(flow->stats[cpu]);
  69
  70	/* Check if already have CPU-specific stats. */
  71	if (likely(stats)) {
  72		spin_lock(&stats->lock);
  73		/* Mark if we write on the pre-allocated stats. */
  74		if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
  75			flow->stats_last_writer = cpu;
  76	} else {
  77		stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
  78		spin_lock(&stats->lock);
  79
  80		/* If the current CPU is the only writer on the
  81		 * pre-allocated stats keep using them.
  82		 */
  83		if (unlikely(flow->stats_last_writer != cpu)) {
  84			/* A previous locker may have already allocated the
  85			 * stats, so we need to check again.  If CPU-specific
  86			 * stats were already allocated, we update the pre-
  87			 * allocated stats as we have already locked them.
  88			 */
  89			if (likely(flow->stats_last_writer != -1) &&
  90			    likely(!rcu_access_pointer(flow->stats[cpu]))) {
  91				/* Try to allocate CPU-specific stats. */
  92				struct sw_flow_stats *new_stats;
  93
  94				new_stats =
  95					kmem_cache_alloc_node(flow_stats_cache,
  96							      GFP_NOWAIT |
  97							      __GFP_THISNODE |
  98							      __GFP_NOWARN |
  99							      __GFP_NOMEMALLOC,
 100							      numa_node_id());
 101				if (likely(new_stats)) {
 102					new_stats->used = jiffies;
 103					new_stats->packet_count = 1;
 104					new_stats->byte_count = len;
 105					new_stats->tcp_flags = tcp_flags;
 106					spin_lock_init(&new_stats->lock);
 107
 108					rcu_assign_pointer(flow->stats[cpu],
 109							   new_stats);
 110					cpumask_set_cpu(cpu, &flow->cpu_used_mask);
 111					goto unlock;
 112				}
 113			}
 114			flow->stats_last_writer = cpu;
 115		}
 116	}
 117
 118	stats->used = jiffies;
 119	stats->packet_count++;
 120	stats->byte_count += len;
 121	stats->tcp_flags |= tcp_flags;
 122unlock:
 123	spin_unlock(&stats->lock);
 124}
 125
 126/* Must be called with rcu_read_lock or ovs_mutex. */
 127void ovs_flow_stats_get(const struct sw_flow *flow,
 128			struct ovs_flow_stats *ovs_stats,
 129			unsigned long *used, __be16 *tcp_flags)
 130{
 131	int cpu;
 132
 133	*used = 0;
 134	*tcp_flags = 0;
 135	memset(ovs_stats, 0, sizeof(*ovs_stats));
 136
 137	/* We open code this to make sure cpu 0 is always considered */
 138	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
 139		struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
 140
 141		if (stats) {
 142			/* Local CPU may write on non-local stats, so we must
 143			 * block bottom-halves here.
 144			 */
 145			spin_lock_bh(&stats->lock);
 146			if (!*used || time_after(stats->used, *used))
 147				*used = stats->used;
 148			*tcp_flags |= stats->tcp_flags;
 149			ovs_stats->n_packets += stats->packet_count;
 150			ovs_stats->n_bytes += stats->byte_count;
 151			spin_unlock_bh(&stats->lock);
 152		}
 153	}
 154}
 155
 156/* Called with ovs_mutex. */
 157void ovs_flow_stats_clear(struct sw_flow *flow)
 158{
 159	int cpu;
 160
 161	/* We open code this to make sure cpu 0 is always considered */
 162	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
 163		struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
 164
 165		if (stats) {
 166			spin_lock_bh(&stats->lock);
 167			stats->used = 0;
 168			stats->packet_count = 0;
 169			stats->byte_count = 0;
 170			stats->tcp_flags = 0;
 171			spin_unlock_bh(&stats->lock);
 172		}
 173	}
 174}
 175
 176static int check_header(struct sk_buff *skb, int len)
 177{
 178	if (unlikely(skb->len < len))
 179		return -EINVAL;
 180	if (unlikely(!pskb_may_pull(skb, len)))
 181		return -ENOMEM;
 182	return 0;
 183}
 184
 185static bool arphdr_ok(struct sk_buff *skb)
 186{
 187	return pskb_may_pull(skb, skb_network_offset(skb) +
 188				  sizeof(struct arp_eth_header));
 189}
 190
 191static int check_iphdr(struct sk_buff *skb)
 192{
 193	unsigned int nh_ofs = skb_network_offset(skb);
 194	unsigned int ip_len;
 195	int err;
 196
 197	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
 198	if (unlikely(err))
 199		return err;
 200
 201	ip_len = ip_hdrlen(skb);
 202	if (unlikely(ip_len < sizeof(struct iphdr) ||
 203		     skb->len < nh_ofs + ip_len))
 204		return -EINVAL;
 205
 206	skb_set_transport_header(skb, nh_ofs + ip_len);
 207	return 0;
 208}
 209
 210static bool tcphdr_ok(struct sk_buff *skb)
 211{
 212	int th_ofs = skb_transport_offset(skb);
 213	int tcp_len;
 214
 215	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
 216		return false;
 217
 218	tcp_len = tcp_hdrlen(skb);
 219	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
 220		     skb->len < th_ofs + tcp_len))
 221		return false;
 222
 223	return true;
 224}
 225
 226static bool udphdr_ok(struct sk_buff *skb)
 227{
 228	return pskb_may_pull(skb, skb_transport_offset(skb) +
 229				  sizeof(struct udphdr));
 230}
 231
 232static bool sctphdr_ok(struct sk_buff *skb)
 233{
 234	return pskb_may_pull(skb, skb_transport_offset(skb) +
 235				  sizeof(struct sctphdr));
 236}
 237
 238static bool icmphdr_ok(struct sk_buff *skb)
 239{
 240	return pskb_may_pull(skb, skb_transport_offset(skb) +
 241				  sizeof(struct icmphdr));
 242}
 243
 244/**
 245 * get_ipv6_ext_hdrs() - Parses packet and sets IPv6 extension header flags.
 246 *
 247 * @skb: buffer where extension header data starts in packet
 248 * @nh: ipv6 header
 249 * @ext_hdrs: flags are stored here
 250 *
 251 * OFPIEH12_UNREP is set if more than one of a given IPv6 extension header
 252 * is unexpectedly encountered. (Two destination options headers may be
 253 * expected and would not cause this bit to be set.)
 254 *
 255 * OFPIEH12_UNSEQ is set if IPv6 extension headers were not in the order
 256 * preferred (but not required) by RFC 2460:
 257 *
 258 * When more than one extension header is used in the same packet, it is
 259 * recommended that those headers appear in the following order:
 260 *      IPv6 header
 261 *      Hop-by-Hop Options header
 262 *      Destination Options header
 263 *      Routing header
 264 *      Fragment header
 265 *      Authentication header
 266 *      Encapsulating Security Payload header
 267 *      Destination Options header
 268 *      upper-layer header
 269 */
 270static void get_ipv6_ext_hdrs(struct sk_buff *skb, struct ipv6hdr *nh,
 271			      u16 *ext_hdrs)
 272{
 273	u8 next_type = nh->nexthdr;
 274	unsigned int start = skb_network_offset(skb) + sizeof(struct ipv6hdr);
 275	int dest_options_header_count = 0;
 276
 277	*ext_hdrs = 0;
 278
 279	while (ipv6_ext_hdr(next_type)) {
 280		struct ipv6_opt_hdr _hdr, *hp;
 281
 282		switch (next_type) {
 283		case IPPROTO_NONE:
 284			*ext_hdrs |= OFPIEH12_NONEXT;
 285			/* stop parsing */
 286			return;
 287
 288		case IPPROTO_ESP:
 289			if (*ext_hdrs & OFPIEH12_ESP)
 290				*ext_hdrs |= OFPIEH12_UNREP;
 291			if ((*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST |
 292					   OFPIEH12_ROUTER | IPPROTO_FRAGMENT |
 293					   OFPIEH12_AUTH | OFPIEH12_UNREP)) ||
 294			    dest_options_header_count >= 2) {
 295				*ext_hdrs |= OFPIEH12_UNSEQ;
 296			}
 297			*ext_hdrs |= OFPIEH12_ESP;
 298			break;
 299
 300		case IPPROTO_AH:
 301			if (*ext_hdrs & OFPIEH12_AUTH)
 302				*ext_hdrs |= OFPIEH12_UNREP;
 303			if ((*ext_hdrs &
 304			     ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_ROUTER |
 305			       IPPROTO_FRAGMENT | OFPIEH12_UNREP)) ||
 306			    dest_options_header_count >= 2) {
 307				*ext_hdrs |= OFPIEH12_UNSEQ;
 308			}
 309			*ext_hdrs |= OFPIEH12_AUTH;
 310			break;
 311
 312		case IPPROTO_DSTOPTS:
 313			if (dest_options_header_count == 0) {
 314				if (*ext_hdrs &
 315				    ~(OFPIEH12_HOP | OFPIEH12_UNREP))
 316					*ext_hdrs |= OFPIEH12_UNSEQ;
 317				*ext_hdrs |= OFPIEH12_DEST;
 318			} else if (dest_options_header_count == 1) {
 319				if (*ext_hdrs &
 320				    ~(OFPIEH12_HOP | OFPIEH12_DEST |
 321				      OFPIEH12_ROUTER | OFPIEH12_FRAG |
 322				      OFPIEH12_AUTH | OFPIEH12_ESP |
 323				      OFPIEH12_UNREP)) {
 324					*ext_hdrs |= OFPIEH12_UNSEQ;
 325				}
 326			} else {
 327				*ext_hdrs |= OFPIEH12_UNREP;
 328			}
 329			dest_options_header_count++;
 330			break;
 331
 332		case IPPROTO_FRAGMENT:
 333			if (*ext_hdrs & OFPIEH12_FRAG)
 334				*ext_hdrs |= OFPIEH12_UNREP;
 335			if ((*ext_hdrs & ~(OFPIEH12_HOP |
 336					   OFPIEH12_DEST |
 337					   OFPIEH12_ROUTER |
 338					   OFPIEH12_UNREP)) ||
 339			    dest_options_header_count >= 2) {
 340				*ext_hdrs |= OFPIEH12_UNSEQ;
 341			}
 342			*ext_hdrs |= OFPIEH12_FRAG;
 343			break;
 344
 345		case IPPROTO_ROUTING:
 346			if (*ext_hdrs & OFPIEH12_ROUTER)
 347				*ext_hdrs |= OFPIEH12_UNREP;
 348			if ((*ext_hdrs & ~(OFPIEH12_HOP |
 349					   OFPIEH12_DEST |
 350					   OFPIEH12_UNREP)) ||
 351			    dest_options_header_count >= 2) {
 352				*ext_hdrs |= OFPIEH12_UNSEQ;
 353			}
 354			*ext_hdrs |= OFPIEH12_ROUTER;
 355			break;
 356
 357		case IPPROTO_HOPOPTS:
 358			if (*ext_hdrs & OFPIEH12_HOP)
 359				*ext_hdrs |= OFPIEH12_UNREP;
 360			/* OFPIEH12_HOP is set to 1 if a hop-by-hop IPv6
 361			 * extension header is present as the first
 362			 * extension header in the packet.
 363			 */
 364			if (*ext_hdrs == 0)
 365				*ext_hdrs |= OFPIEH12_HOP;
 366			else
 367				*ext_hdrs |= OFPIEH12_UNSEQ;
 368			break;
 369
 370		default:
 371			return;
 372		}
 373
 374		hp = skb_header_pointer(skb, start, sizeof(_hdr), &_hdr);
 375		if (!hp)
 376			break;
 377		next_type = hp->nexthdr;
 378		start += ipv6_optlen(hp);
 379	}
 380}
 381
 382static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
 383{
 384	unsigned short frag_off;
 385	unsigned int payload_ofs = 0;
 386	unsigned int nh_ofs = skb_network_offset(skb);
 387	unsigned int nh_len;
 
 388	struct ipv6hdr *nh;
 389	int err, nexthdr, flags = 0;
 
 
 390
 391	err = check_header(skb, nh_ofs + sizeof(*nh));
 392	if (unlikely(err))
 393		return err;
 394
 395	nh = ipv6_hdr(skb);
 396
 397	get_ipv6_ext_hdrs(skb, nh, &key->ipv6.exthdrs);
 398
 399	key->ip.proto = NEXTHDR_NONE;
 400	key->ip.tos = ipv6_get_dsfield(nh);
 401	key->ip.ttl = nh->hop_limit;
 402	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 403	key->ipv6.addr.src = nh->saddr;
 404	key->ipv6.addr.dst = nh->daddr;
 405
 406	nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
 407	if (flags & IP6_FH_F_FRAG) {
 408		if (frag_off) {
 
 409			key->ip.frag = OVS_FRAG_TYPE_LATER;
 410			key->ip.proto = NEXTHDR_FRAGMENT;
 411			return 0;
 412		}
 413		key->ip.frag = OVS_FRAG_TYPE_FIRST;
 414	} else {
 415		key->ip.frag = OVS_FRAG_TYPE_NONE;
 416	}
 417
 418	/* Delayed handling of error in ipv6_find_hdr() as it
 419	 * always sets flags and frag_off to a valid value which may be
 420	 * used to set key->ip.frag above.
 421	 */
 422	if (unlikely(nexthdr < 0))
 423		return -EPROTO;
 424
 425	nh_len = payload_ofs - nh_ofs;
 426	skb_set_transport_header(skb, nh_ofs + nh_len);
 427	key->ip.proto = nexthdr;
 428	return nh_len;
 429}
 430
 431static bool icmp6hdr_ok(struct sk_buff *skb)
 432{
 433	return pskb_may_pull(skb, skb_transport_offset(skb) +
 434				  sizeof(struct icmp6hdr));
 435}
 436
 437/**
 438 * parse_vlan_tag - Parse vlan tag from vlan header.
 439 * @skb: skb containing frame to parse
 440 * @key_vh: pointer to parsed vlan tag
 441 * @untag_vlan: should the vlan header be removed from the frame
 442 *
 443 * Return: ERROR on memory error.
 444 * %0 if it encounters a non-vlan or incomplete packet.
 445 * %1 after successfully parsing vlan tag.
 446 */
 447static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
 448			  bool untag_vlan)
 449{
 450	struct vlan_head *vh = (struct vlan_head *)skb->data;
 451
 452	if (likely(!eth_type_vlan(vh->tpid)))
 453		return 0;
 454
 455	if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
 456		return 0;
 457
 458	if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
 459				 sizeof(__be16))))
 460		return -ENOMEM;
 461
 462	vh = (struct vlan_head *)skb->data;
 463	key_vh->tci = vh->tci | htons(VLAN_CFI_MASK);
 464	key_vh->tpid = vh->tpid;
 465
 466	if (unlikely(untag_vlan)) {
 467		int offset = skb->data - skb_mac_header(skb);
 468		u16 tci;
 469		int err;
 470
 471		__skb_push(skb, offset);
 472		err = __skb_vlan_pop(skb, &tci);
 473		__skb_pull(skb, offset);
 474		if (err)
 475			return err;
 476		__vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
 477	} else {
 478		__skb_pull(skb, sizeof(struct vlan_head));
 479	}
 480	return 1;
 481}
 482
 483static void clear_vlan(struct sw_flow_key *key)
 484{
 485	key->eth.vlan.tci = 0;
 486	key->eth.vlan.tpid = 0;
 487	key->eth.cvlan.tci = 0;
 488	key->eth.cvlan.tpid = 0;
 489}
 490
 491static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 492{
 493	int res;
 494
 495	if (skb_vlan_tag_present(skb)) {
 496		key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK);
 497		key->eth.vlan.tpid = skb->vlan_proto;
 498	} else {
 499		/* Parse outer vlan tag in the non-accelerated case. */
 500		res = parse_vlan_tag(skb, &key->eth.vlan, true);
 501		if (res <= 0)
 502			return res;
 503	}
 504
 505	/* Parse inner vlan tag. */
 506	res = parse_vlan_tag(skb, &key->eth.cvlan, false);
 507	if (res <= 0)
 508		return res;
 509
 510	return 0;
 511}
 512
 513static __be16 parse_ethertype(struct sk_buff *skb)
 514{
 515	struct llc_snap_hdr {
 516		u8  dsap;  /* Always 0xAA */
 517		u8  ssap;  /* Always 0xAA */
 518		u8  ctrl;
 519		u8  oui[3];
 520		__be16 ethertype;
 521	};
 522	struct llc_snap_hdr *llc;
 523	__be16 proto;
 524
 525	proto = *(__be16 *) skb->data;
 526	__skb_pull(skb, sizeof(__be16));
 527
 528	if (eth_proto_is_802_3(proto))
 529		return proto;
 530
 531	if (skb->len < sizeof(struct llc_snap_hdr))
 532		return htons(ETH_P_802_2);
 533
 534	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
 535		return htons(0);
 536
 537	llc = (struct llc_snap_hdr *) skb->data;
 538	if (llc->dsap != LLC_SAP_SNAP ||
 539	    llc->ssap != LLC_SAP_SNAP ||
 540	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
 541		return htons(ETH_P_802_2);
 542
 543	__skb_pull(skb, sizeof(struct llc_snap_hdr));
 544
 545	if (eth_proto_is_802_3(llc->ethertype))
 546		return llc->ethertype;
 547
 548	return htons(ETH_P_802_2);
 549}
 550
 551static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
 552			int nh_len)
 553{
 554	struct icmp6hdr *icmp = icmp6_hdr(skb);
 555
 556	/* The ICMPv6 type and code fields use the 16-bit transport port
 557	 * fields, so we need to store them in 16-bit network byte order.
 558	 */
 559	key->tp.src = htons(icmp->icmp6_type);
 560	key->tp.dst = htons(icmp->icmp6_code);
 561	memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
 562
 563	if (icmp->icmp6_code == 0 &&
 564	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
 565	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 566		int icmp_len = skb->len - skb_transport_offset(skb);
 567		struct nd_msg *nd;
 568		int offset;
 569
 570		/* In order to process neighbor discovery options, we need the
 571		 * entire packet.
 572		 */
 573		if (unlikely(icmp_len < sizeof(*nd)))
 574			return 0;
 575
 576		if (unlikely(skb_linearize(skb)))
 577			return -ENOMEM;
 578
 579		nd = (struct nd_msg *)skb_transport_header(skb);
 580		key->ipv6.nd.target = nd->target;
 581
 582		icmp_len -= sizeof(*nd);
 583		offset = 0;
 584		while (icmp_len >= 8) {
 585			struct nd_opt_hdr *nd_opt =
 586				 (struct nd_opt_hdr *)(nd->opt + offset);
 587			int opt_len = nd_opt->nd_opt_len * 8;
 588
 589			if (unlikely(!opt_len || opt_len > icmp_len))
 590				return 0;
 591
 592			/* Store the link layer address if the appropriate
 593			 * option is provided.  It is considered an error if
 594			 * the same link layer option is specified twice.
 595			 */
 596			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
 597			    && opt_len == 8) {
 598				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
 599					goto invalid;
 600				ether_addr_copy(key->ipv6.nd.sll,
 601						&nd->opt[offset+sizeof(*nd_opt)]);
 602			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
 603				   && opt_len == 8) {
 604				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
 605					goto invalid;
 606				ether_addr_copy(key->ipv6.nd.tll,
 607						&nd->opt[offset+sizeof(*nd_opt)]);
 608			}
 609
 610			icmp_len -= opt_len;
 611			offset += opt_len;
 612		}
 613	}
 614
 615	return 0;
 616
 617invalid:
 618	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
 619	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
 620	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
 621
 622	return 0;
 623}
 624
 625static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 626{
 627	struct nshhdr *nh;
 628	unsigned int nh_ofs = skb_network_offset(skb);
 629	u8 version, length;
 630	int err;
 
 631
 632	err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
 633	if (unlikely(err))
 634		return err;
 635
 636	nh = nsh_hdr(skb);
 637	version = nsh_get_ver(nh);
 638	length = nsh_hdr_len(nh);
 
 
 639
 640	if (version != 0)
 641		return -EINVAL;
 
 
 
 642
 643	err = check_header(skb, nh_ofs + length);
 644	if (unlikely(err))
 645		return err;
 
 646
 647	nh = nsh_hdr(skb);
 648	key->nsh.base.flags = nsh_get_flags(nh);
 649	key->nsh.base.ttl = nsh_get_ttl(nh);
 650	key->nsh.base.mdtype = nh->mdtype;
 651	key->nsh.base.np = nh->np;
 652	key->nsh.base.path_hdr = nh->path_hdr;
 653	switch (key->nsh.base.mdtype) {
 654	case NSH_M_TYPE1:
 655		if (length != NSH_M_TYPE1_LEN)
 656			return -EINVAL;
 657		memcpy(key->nsh.context, nh->md1.context,
 658		       sizeof(nh->md1));
 659		break;
 660	case NSH_M_TYPE2:
 661		memset(key->nsh.context, 0,
 662		       sizeof(nh->md1));
 663		break;
 664	default:
 665		return -EINVAL;
 666	}
 667
 668	return 0;
 669}
 
 670
 671/**
 672 * key_extract_l3l4 - extracts L3/L4 header information.
 673 * @skb: sk_buff that contains the frame, with skb->data pointing to the
 674 *       L3 header
 675 * @key: output flow key
 676 *
 677 * Return: %0 if successful, otherwise a negative errno value.
 678 */
 679static int key_extract_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
 680{
 681	int error;
 682
 683	/* Network layer. */
 684	if (key->eth.type == htons(ETH_P_IP)) {
 685		struct iphdr *nh;
 686		__be16 offset;
 687
 688		error = check_iphdr(skb);
 689		if (unlikely(error)) {
 690			memset(&key->ip, 0, sizeof(key->ip));
 691			memset(&key->ipv4, 0, sizeof(key->ipv4));
 692			if (error == -EINVAL) {
 693				skb->transport_header = skb->network_header;
 694				error = 0;
 695			}
 696			return error;
 697		}
 698
 699		nh = ip_hdr(skb);
 700		key->ipv4.addr.src = nh->saddr;
 701		key->ipv4.addr.dst = nh->daddr;
 702
 703		key->ip.proto = nh->protocol;
 704		key->ip.tos = nh->tos;
 705		key->ip.ttl = nh->ttl;
 706
 707		offset = nh->frag_off & htons(IP_OFFSET);
 708		if (offset) {
 709			key->ip.frag = OVS_FRAG_TYPE_LATER;
 710			memset(&key->tp, 0, sizeof(key->tp));
 711			return 0;
 712		}
 713		if (nh->frag_off & htons(IP_MF) ||
 714			skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
 715			key->ip.frag = OVS_FRAG_TYPE_FIRST;
 716		else
 717			key->ip.frag = OVS_FRAG_TYPE_NONE;
 718
 719		/* Transport layer. */
 720		if (key->ip.proto == IPPROTO_TCP) {
 721			if (tcphdr_ok(skb)) {
 722				struct tcphdr *tcp = tcp_hdr(skb);
 723				key->tp.src = tcp->source;
 724				key->tp.dst = tcp->dest;
 725				key->tp.flags = TCP_FLAGS_BE16(tcp);
 726			} else {
 727				memset(&key->tp, 0, sizeof(key->tp));
 728			}
 729
 730		} else if (key->ip.proto == IPPROTO_UDP) {
 731			if (udphdr_ok(skb)) {
 732				struct udphdr *udp = udp_hdr(skb);
 733				key->tp.src = udp->source;
 734				key->tp.dst = udp->dest;
 735			} else {
 736				memset(&key->tp, 0, sizeof(key->tp));
 737			}
 738		} else if (key->ip.proto == IPPROTO_SCTP) {
 739			if (sctphdr_ok(skb)) {
 740				struct sctphdr *sctp = sctp_hdr(skb);
 741				key->tp.src = sctp->source;
 742				key->tp.dst = sctp->dest;
 743			} else {
 744				memset(&key->tp, 0, sizeof(key->tp));
 745			}
 746		} else if (key->ip.proto == IPPROTO_ICMP) {
 747			if (icmphdr_ok(skb)) {
 748				struct icmphdr *icmp = icmp_hdr(skb);
 749				/* The ICMP type and code fields use the 16-bit
 750				 * transport port fields, so we need to store
 751				 * them in 16-bit network byte order. */
 752				key->tp.src = htons(icmp->type);
 753				key->tp.dst = htons(icmp->code);
 754			} else {
 755				memset(&key->tp, 0, sizeof(key->tp));
 756			}
 757		}
 758
 759	} else if (key->eth.type == htons(ETH_P_ARP) ||
 760		   key->eth.type == htons(ETH_P_RARP)) {
 761		struct arp_eth_header *arp;
 762		bool arp_available = arphdr_ok(skb);
 763
 764		arp = (struct arp_eth_header *)skb_network_header(skb);
 765
 766		if (arp_available &&
 767		    arp->ar_hrd == htons(ARPHRD_ETHER) &&
 768		    arp->ar_pro == htons(ETH_P_IP) &&
 769		    arp->ar_hln == ETH_ALEN &&
 770		    arp->ar_pln == 4) {
 771
 772			/* We only match on the lower 8 bits of the opcode. */
 773			if (ntohs(arp->ar_op) <= 0xff)
 774				key->ip.proto = ntohs(arp->ar_op);
 775			else
 776				key->ip.proto = 0;
 777
 778			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
 779			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
 780			ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
 781			ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
 782		} else {
 783			memset(&key->ip, 0, sizeof(key->ip));
 784			memset(&key->ipv4, 0, sizeof(key->ipv4));
 785		}
 786	} else if (eth_p_mpls(key->eth.type)) {
 787		u8 label_count = 1;
 788
 789		memset(&key->mpls, 0, sizeof(key->mpls));
 790		skb_set_inner_network_header(skb, skb->mac_len);
 791		while (1) {
 792			__be32 lse;
 793
 794			error = check_header(skb, skb->mac_len +
 795					     label_count * MPLS_HLEN);
 796			if (unlikely(error))
 797				return 0;
 798
 799			memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
 800
 801			if (label_count <= MPLS_LABEL_DEPTH)
 802				memcpy(&key->mpls.lse[label_count - 1], &lse,
 803				       MPLS_HLEN);
 804
 805			skb_set_inner_network_header(skb, skb->mac_len +
 806						     label_count * MPLS_HLEN);
 807			if (lse & htonl(MPLS_LS_S_MASK))
 808				break;
 809
 810			label_count++;
 811		}
 812		if (label_count > MPLS_LABEL_DEPTH)
 813			label_count = MPLS_LABEL_DEPTH;
 814
 815		key->mpls.num_labels_mask = GENMASK(label_count - 1, 0);
 816	} else if (key->eth.type == htons(ETH_P_IPV6)) {
 817		int nh_len;             /* IPv6 Header + Extensions */
 818
 819		nh_len = parse_ipv6hdr(skb, key);
 820		if (unlikely(nh_len < 0)) {
 821			switch (nh_len) {
 822			case -EINVAL:
 823				memset(&key->ip, 0, sizeof(key->ip));
 824				memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
 825				fallthrough;
 826			case -EPROTO:
 827				skb->transport_header = skb->network_header;
 828				error = 0;
 829				break;
 830			default:
 831				error = nh_len;
 832			}
 833			return error;
 834		}
 835
 836		if (key->ip.frag == OVS_FRAG_TYPE_LATER) {
 837			memset(&key->tp, 0, sizeof(key->tp));
 838			return 0;
 839		}
 840		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
 841			key->ip.frag = OVS_FRAG_TYPE_FIRST;
 842
 843		/* Transport layer. */
 844		if (key->ip.proto == NEXTHDR_TCP) {
 845			if (tcphdr_ok(skb)) {
 846				struct tcphdr *tcp = tcp_hdr(skb);
 847				key->tp.src = tcp->source;
 848				key->tp.dst = tcp->dest;
 849				key->tp.flags = TCP_FLAGS_BE16(tcp);
 850			} else {
 851				memset(&key->tp, 0, sizeof(key->tp));
 852			}
 853		} else if (key->ip.proto == NEXTHDR_UDP) {
 854			if (udphdr_ok(skb)) {
 855				struct udphdr *udp = udp_hdr(skb);
 856				key->tp.src = udp->source;
 857				key->tp.dst = udp->dest;
 858			} else {
 859				memset(&key->tp, 0, sizeof(key->tp));
 860			}
 861		} else if (key->ip.proto == NEXTHDR_SCTP) {
 862			if (sctphdr_ok(skb)) {
 863				struct sctphdr *sctp = sctp_hdr(skb);
 864				key->tp.src = sctp->source;
 865				key->tp.dst = sctp->dest;
 866			} else {
 867				memset(&key->tp, 0, sizeof(key->tp));
 868			}
 869		} else if (key->ip.proto == NEXTHDR_ICMP) {
 870			if (icmp6hdr_ok(skb)) {
 871				error = parse_icmpv6(skb, key, nh_len);
 872				if (error)
 873					return error;
 874			} else {
 875				memset(&key->tp, 0, sizeof(key->tp));
 876			}
 877		}
 878	} else if (key->eth.type == htons(ETH_P_NSH)) {
 879		error = parse_nsh(skb, key);
 880		if (error)
 881			return error;
 882	}
 883	return 0;
 884}
 885
 886/**
 887 * key_extract - extracts a flow key from an Ethernet frame.
 888 * @skb: sk_buff that contains the frame, with skb->data pointing to the
 889 * Ethernet header
 890 * @key: output flow key
 891 *
 892 * The caller must ensure that skb->len >= ETH_HLEN.
 893 *
 894 * Initializes @skb header fields as follows:
 895 *
 896 *    - skb->mac_header: the L2 header.
 897 *
 898 *    - skb->network_header: just past the L2 header, or just past the
 899 *      VLAN header, to the first byte of the L2 payload.
 900 *
 901 *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
 902 *      on output, then just past the IP header, if one is present and
 903 *      of a correct length, otherwise the same as skb->network_header.
 904 *      For other key->eth.type values it is left untouched.
 905 *
 906 *    - skb->protocol: the type of the data starting at skb->network_header.
 907 *      Equals to key->eth.type.
 908 *
 909 * Return: %0 if successful, otherwise a negative errno value.
 910 */
 911static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
 912{
 913	struct ethhdr *eth;
 914
 915	/* Flags are always used as part of stats */
 916	key->tp.flags = 0;
 917
 918	skb_reset_mac_header(skb);
 919
 920	/* Link layer. */
 921	clear_vlan(key);
 922	if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
 923		if (unlikely(eth_type_vlan(skb->protocol)))
 924			return -EINVAL;
 925
 926		skb_reset_network_header(skb);
 927		key->eth.type = skb->protocol;
 928	} else {
 929		eth = eth_hdr(skb);
 930		ether_addr_copy(key->eth.src, eth->h_source);
 931		ether_addr_copy(key->eth.dst, eth->h_dest);
 932
 933		__skb_pull(skb, 2 * ETH_ALEN);
 934		/* We are going to push all headers that we pull, so no need to
 935		 * update skb->csum here.
 936		 */
 937
 938		if (unlikely(parse_vlan(skb, key)))
 939			return -ENOMEM;
 940
 941		key->eth.type = parse_ethertype(skb);
 942		if (unlikely(key->eth.type == htons(0)))
 943			return -ENOMEM;
 944
 945		/* Multiple tagged packets need to retain TPID to satisfy
 946		 * skb_vlan_pop(), which will later shift the ethertype into
 947		 * skb->protocol.
 948		 */
 949		if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK))
 950			skb->protocol = key->eth.cvlan.tpid;
 951		else
 952			skb->protocol = key->eth.type;
 953
 954		skb_reset_network_header(skb);
 955		__skb_push(skb, skb->data - skb_mac_header(skb));
 956	}
 957
 958	skb_reset_mac_len(skb);
 959
 960	/* Fill out L3/L4 key info, if any */
 961	return key_extract_l3l4(skb, key);
 962}
 963
 964/* In the case of conntrack fragment handling it expects L3 headers,
 965 * add a helper.
 966 */
 967int ovs_flow_key_update_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
 968{
 969	return key_extract_l3l4(skb, key);
 970}
 971
 972int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
 973{
 974	int res;
 975
 976	res = key_extract(skb, key);
 977	if (!res)
 978		key->mac_proto &= ~SW_FLOW_KEY_INVALID;
 979
 980	return res;
 981}
 982
 983static int key_extract_mac_proto(struct sk_buff *skb)
 984{
 985	switch (skb->dev->type) {
 986	case ARPHRD_ETHER:
 987		return MAC_PROTO_ETHERNET;
 988	case ARPHRD_NONE:
 989		if (skb->protocol == htons(ETH_P_TEB))
 990			return MAC_PROTO_ETHERNET;
 991		return MAC_PROTO_NONE;
 992	}
 993	WARN_ON_ONCE(1);
 994	return -EINVAL;
 995}
 996
 997int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
 998			 struct sk_buff *skb, struct sw_flow_key *key)
 999{
1000#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
1001	struct tc_skb_ext *tc_ext;
1002#endif
1003	bool post_ct = false, post_ct_snat = false, post_ct_dnat = false;
1004	int res, err;
1005	u16 zone = 0;
1006
1007	/* Extract metadata from packet. */
1008	if (tun_info) {
1009		key->tun_proto = ip_tunnel_info_af(tun_info);
1010		memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
1011
1012		if (tun_info->options_len) {
1013			BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
1014						   8)) - 1
1015					> sizeof(key->tun_opts));
1016
1017			ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
1018						tun_info);
1019			key->tun_opts_len = tun_info->options_len;
1020		} else {
1021			key->tun_opts_len = 0;
1022		}
1023	} else  {
1024		key->tun_proto = 0;
1025		key->tun_opts_len = 0;
1026		memset(&key->tun_key, 0, sizeof(key->tun_key));
1027	}
1028
1029	key->phy.priority = skb->priority;
1030	key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
1031	key->phy.skb_mark = skb->mark;
 
1032	key->ovs_flow_hash = 0;
1033	res = key_extract_mac_proto(skb);
1034	if (res < 0)
1035		return res;
1036	key->mac_proto = res;
1037
1038#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
1039	if (tc_skb_ext_tc_enabled()) {
1040		tc_ext = skb_ext_find(skb, TC_SKB_EXT);
1041		key->recirc_id = tc_ext ? tc_ext->chain : 0;
1042		OVS_CB(skb)->mru = tc_ext ? tc_ext->mru : 0;
1043		post_ct = tc_ext ? tc_ext->post_ct : false;
1044		post_ct_snat = post_ct ? tc_ext->post_ct_snat : false;
1045		post_ct_dnat = post_ct ? tc_ext->post_ct_dnat : false;
1046		zone = post_ct ? tc_ext->zone : 0;
1047	} else {
1048		key->recirc_id = 0;
1049	}
1050#else
1051	key->recirc_id = 0;
1052#endif
1053
1054	err = key_extract(skb, key);
1055	if (!err) {
1056		ovs_ct_fill_key(skb, key, post_ct);   /* Must be after key_extract(). */
1057		if (post_ct) {
1058			if (!skb_get_nfct(skb)) {
1059				key->ct_zone = zone;
1060			} else {
1061				if (!post_ct_dnat)
1062					key->ct_state &= ~OVS_CS_F_DST_NAT;
1063				if (!post_ct_snat)
1064					key->ct_state &= ~OVS_CS_F_SRC_NAT;
1065			}
1066		}
1067	}
1068	return err;
1069}
1070
1071int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
1072				   struct sk_buff *skb,
1073				   struct sw_flow_key *key, bool log)
1074{
1075	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1076	u64 attrs = 0;
1077	int err;
1078
1079	err = parse_flow_nlattrs(attr, a, &attrs, log);
1080	if (err)
1081		return -EINVAL;
1082
1083	/* Extract metadata from netlink attributes. */
1084	err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
1085	if (err)
1086		return err;
1087
1088	/* key_extract assumes that skb->protocol is set-up for
1089	 * layer 3 packets which is the case for other callers,
1090	 * in particular packets received from the network stack.
1091	 * Here the correct value can be set from the metadata
1092	 * extracted above.
1093	 * For L2 packet key eth type would be zero. skb protocol
1094	 * would be set to correct value later during key-extact.
1095	 */
1096
1097	skb->protocol = key->eth.type;
1098	err = key_extract(skb, key);
1099	if (err)
1100		return err;
1101
1102	/* Check that we have conntrack original direction tuple metadata only
1103	 * for packets for which it makes sense.  Otherwise the key may be
1104	 * corrupted due to overlapping key fields.
1105	 */
1106	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
1107	    key->eth.type != htons(ETH_P_IP))
1108		return -EINVAL;
1109	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
1110	    (key->eth.type != htons(ETH_P_IPV6) ||
1111	     sw_flow_key_is_nd(key)))
1112		return -EINVAL;
1113
1114	return 0;
1115}