Loading...
1/*
2 * linux/fs/pipe.c
3 *
4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/file.h>
9#include <linux/poll.h>
10#include <linux/slab.h>
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/fs.h>
14#include <linux/log2.h>
15#include <linux/mount.h>
16#include <linux/magic.h>
17#include <linux/pipe_fs_i.h>
18#include <linux/uio.h>
19#include <linux/highmem.h>
20#include <linux/pagemap.h>
21#include <linux/audit.h>
22#include <linux/syscalls.h>
23#include <linux/fcntl.h>
24#include <linux/memcontrol.h>
25
26#include <linux/uaccess.h>
27#include <asm/ioctls.h>
28
29#include "internal.h"
30
31/*
32 * The max size that a non-root user is allowed to grow the pipe. Can
33 * be set by root in /proc/sys/fs/pipe-max-size
34 */
35unsigned int pipe_max_size = 1048576;
36
37/*
38 * Minimum pipe size, as required by POSIX
39 */
40unsigned int pipe_min_size = PAGE_SIZE;
41
42/* Maximum allocatable pages per user. Hard limit is unset by default, soft
43 * matches default values.
44 */
45unsigned long pipe_user_pages_hard;
46unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
47
48/*
49 * We use a start+len construction, which provides full use of the
50 * allocated memory.
51 * -- Florian Coosmann (FGC)
52 *
53 * Reads with count = 0 should always return 0.
54 * -- Julian Bradfield 1999-06-07.
55 *
56 * FIFOs and Pipes now generate SIGIO for both readers and writers.
57 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
58 *
59 * pipe_read & write cleanup
60 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
61 */
62
63static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
64{
65 if (pipe->files)
66 mutex_lock_nested(&pipe->mutex, subclass);
67}
68
69void pipe_lock(struct pipe_inode_info *pipe)
70{
71 /*
72 * pipe_lock() nests non-pipe inode locks (for writing to a file)
73 */
74 pipe_lock_nested(pipe, I_MUTEX_PARENT);
75}
76EXPORT_SYMBOL(pipe_lock);
77
78void pipe_unlock(struct pipe_inode_info *pipe)
79{
80 if (pipe->files)
81 mutex_unlock(&pipe->mutex);
82}
83EXPORT_SYMBOL(pipe_unlock);
84
85static inline void __pipe_lock(struct pipe_inode_info *pipe)
86{
87 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
88}
89
90static inline void __pipe_unlock(struct pipe_inode_info *pipe)
91{
92 mutex_unlock(&pipe->mutex);
93}
94
95void pipe_double_lock(struct pipe_inode_info *pipe1,
96 struct pipe_inode_info *pipe2)
97{
98 BUG_ON(pipe1 == pipe2);
99
100 if (pipe1 < pipe2) {
101 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
102 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
103 } else {
104 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
105 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
106 }
107}
108
109/* Drop the inode semaphore and wait for a pipe event, atomically */
110void pipe_wait(struct pipe_inode_info *pipe)
111{
112 DEFINE_WAIT(wait);
113
114 /*
115 * Pipes are system-local resources, so sleeping on them
116 * is considered a noninteractive wait:
117 */
118 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
119 pipe_unlock(pipe);
120 schedule();
121 finish_wait(&pipe->wait, &wait);
122 pipe_lock(pipe);
123}
124
125static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126 struct pipe_buffer *buf)
127{
128 struct page *page = buf->page;
129
130 /*
131 * If nobody else uses this page, and we don't already have a
132 * temporary page, let's keep track of it as a one-deep
133 * allocation cache. (Otherwise just release our reference to it)
134 */
135 if (page_count(page) == 1 && !pipe->tmp_page)
136 pipe->tmp_page = page;
137 else
138 put_page(page);
139}
140
141static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
142 struct pipe_buffer *buf)
143{
144 struct page *page = buf->page;
145
146 if (page_count(page) == 1) {
147 if (memcg_kmem_enabled())
148 memcg_kmem_uncharge(page, 0);
149 __SetPageLocked(page);
150 return 0;
151 }
152 return 1;
153}
154
155/**
156 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
157 * @pipe: the pipe that the buffer belongs to
158 * @buf: the buffer to attempt to steal
159 *
160 * Description:
161 * This function attempts to steal the &struct page attached to
162 * @buf. If successful, this function returns 0 and returns with
163 * the page locked. The caller may then reuse the page for whatever
164 * he wishes; the typical use is insertion into a different file
165 * page cache.
166 */
167int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
168 struct pipe_buffer *buf)
169{
170 struct page *page = buf->page;
171
172 /*
173 * A reference of one is golden, that means that the owner of this
174 * page is the only one holding a reference to it. lock the page
175 * and return OK.
176 */
177 if (page_count(page) == 1) {
178 lock_page(page);
179 return 0;
180 }
181
182 return 1;
183}
184EXPORT_SYMBOL(generic_pipe_buf_steal);
185
186/**
187 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
188 * @pipe: the pipe that the buffer belongs to
189 * @buf: the buffer to get a reference to
190 *
191 * Description:
192 * This function grabs an extra reference to @buf. It's used in
193 * in the tee() system call, when we duplicate the buffers in one
194 * pipe into another.
195 */
196void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
197{
198 get_page(buf->page);
199}
200EXPORT_SYMBOL(generic_pipe_buf_get);
201
202/**
203 * generic_pipe_buf_confirm - verify contents of the pipe buffer
204 * @info: the pipe that the buffer belongs to
205 * @buf: the buffer to confirm
206 *
207 * Description:
208 * This function does nothing, because the generic pipe code uses
209 * pages that are always good when inserted into the pipe.
210 */
211int generic_pipe_buf_confirm(struct pipe_inode_info *info,
212 struct pipe_buffer *buf)
213{
214 return 0;
215}
216EXPORT_SYMBOL(generic_pipe_buf_confirm);
217
218/**
219 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
220 * @pipe: the pipe that the buffer belongs to
221 * @buf: the buffer to put a reference to
222 *
223 * Description:
224 * This function releases a reference to @buf.
225 */
226void generic_pipe_buf_release(struct pipe_inode_info *pipe,
227 struct pipe_buffer *buf)
228{
229 put_page(buf->page);
230}
231EXPORT_SYMBOL(generic_pipe_buf_release);
232
233static const struct pipe_buf_operations anon_pipe_buf_ops = {
234 .can_merge = 1,
235 .confirm = generic_pipe_buf_confirm,
236 .release = anon_pipe_buf_release,
237 .steal = anon_pipe_buf_steal,
238 .get = generic_pipe_buf_get,
239};
240
241static const struct pipe_buf_operations packet_pipe_buf_ops = {
242 .can_merge = 0,
243 .confirm = generic_pipe_buf_confirm,
244 .release = anon_pipe_buf_release,
245 .steal = anon_pipe_buf_steal,
246 .get = generic_pipe_buf_get,
247};
248
249static ssize_t
250pipe_read(struct kiocb *iocb, struct iov_iter *to)
251{
252 size_t total_len = iov_iter_count(to);
253 struct file *filp = iocb->ki_filp;
254 struct pipe_inode_info *pipe = filp->private_data;
255 int do_wakeup;
256 ssize_t ret;
257
258 /* Null read succeeds. */
259 if (unlikely(total_len == 0))
260 return 0;
261
262 do_wakeup = 0;
263 ret = 0;
264 __pipe_lock(pipe);
265 for (;;) {
266 int bufs = pipe->nrbufs;
267 if (bufs) {
268 int curbuf = pipe->curbuf;
269 struct pipe_buffer *buf = pipe->bufs + curbuf;
270 size_t chars = buf->len;
271 size_t written;
272 int error;
273
274 if (chars > total_len)
275 chars = total_len;
276
277 error = pipe_buf_confirm(pipe, buf);
278 if (error) {
279 if (!ret)
280 ret = error;
281 break;
282 }
283
284 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
285 if (unlikely(written < chars)) {
286 if (!ret)
287 ret = -EFAULT;
288 break;
289 }
290 ret += chars;
291 buf->offset += chars;
292 buf->len -= chars;
293
294 /* Was it a packet buffer? Clean up and exit */
295 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
296 total_len = chars;
297 buf->len = 0;
298 }
299
300 if (!buf->len) {
301 pipe_buf_release(pipe, buf);
302 curbuf = (curbuf + 1) & (pipe->buffers - 1);
303 pipe->curbuf = curbuf;
304 pipe->nrbufs = --bufs;
305 do_wakeup = 1;
306 }
307 total_len -= chars;
308 if (!total_len)
309 break; /* common path: read succeeded */
310 }
311 if (bufs) /* More to do? */
312 continue;
313 if (!pipe->writers)
314 break;
315 if (!pipe->waiting_writers) {
316 /* syscall merging: Usually we must not sleep
317 * if O_NONBLOCK is set, or if we got some data.
318 * But if a writer sleeps in kernel space, then
319 * we can wait for that data without violating POSIX.
320 */
321 if (ret)
322 break;
323 if (filp->f_flags & O_NONBLOCK) {
324 ret = -EAGAIN;
325 break;
326 }
327 }
328 if (signal_pending(current)) {
329 if (!ret)
330 ret = -ERESTARTSYS;
331 break;
332 }
333 if (do_wakeup) {
334 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
335 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
336 }
337 pipe_wait(pipe);
338 }
339 __pipe_unlock(pipe);
340
341 /* Signal writers asynchronously that there is more room. */
342 if (do_wakeup) {
343 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
344 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
345 }
346 if (ret > 0)
347 file_accessed(filp);
348 return ret;
349}
350
351static inline int is_packetized(struct file *file)
352{
353 return (file->f_flags & O_DIRECT) != 0;
354}
355
356static ssize_t
357pipe_write(struct kiocb *iocb, struct iov_iter *from)
358{
359 struct file *filp = iocb->ki_filp;
360 struct pipe_inode_info *pipe = filp->private_data;
361 ssize_t ret = 0;
362 int do_wakeup = 0;
363 size_t total_len = iov_iter_count(from);
364 ssize_t chars;
365
366 /* Null write succeeds. */
367 if (unlikely(total_len == 0))
368 return 0;
369
370 __pipe_lock(pipe);
371
372 if (!pipe->readers) {
373 send_sig(SIGPIPE, current, 0);
374 ret = -EPIPE;
375 goto out;
376 }
377
378 /* We try to merge small writes */
379 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
380 if (pipe->nrbufs && chars != 0) {
381 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
382 (pipe->buffers - 1);
383 struct pipe_buffer *buf = pipe->bufs + lastbuf;
384 int offset = buf->offset + buf->len;
385
386 if (buf->ops->can_merge && offset + chars <= PAGE_SIZE) {
387 ret = pipe_buf_confirm(pipe, buf);
388 if (ret)
389 goto out;
390
391 ret = copy_page_from_iter(buf->page, offset, chars, from);
392 if (unlikely(ret < chars)) {
393 ret = -EFAULT;
394 goto out;
395 }
396 do_wakeup = 1;
397 buf->len += ret;
398 if (!iov_iter_count(from))
399 goto out;
400 }
401 }
402
403 for (;;) {
404 int bufs;
405
406 if (!pipe->readers) {
407 send_sig(SIGPIPE, current, 0);
408 if (!ret)
409 ret = -EPIPE;
410 break;
411 }
412 bufs = pipe->nrbufs;
413 if (bufs < pipe->buffers) {
414 int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
415 struct pipe_buffer *buf = pipe->bufs + newbuf;
416 struct page *page = pipe->tmp_page;
417 int copied;
418
419 if (!page) {
420 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
421 if (unlikely(!page)) {
422 ret = ret ? : -ENOMEM;
423 break;
424 }
425 pipe->tmp_page = page;
426 }
427 /* Always wake up, even if the copy fails. Otherwise
428 * we lock up (O_NONBLOCK-)readers that sleep due to
429 * syscall merging.
430 * FIXME! Is this really true?
431 */
432 do_wakeup = 1;
433 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
434 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
435 if (!ret)
436 ret = -EFAULT;
437 break;
438 }
439 ret += copied;
440
441 /* Insert it into the buffer array */
442 buf->page = page;
443 buf->ops = &anon_pipe_buf_ops;
444 buf->offset = 0;
445 buf->len = copied;
446 buf->flags = 0;
447 if (is_packetized(filp)) {
448 buf->ops = &packet_pipe_buf_ops;
449 buf->flags = PIPE_BUF_FLAG_PACKET;
450 }
451 pipe->nrbufs = ++bufs;
452 pipe->tmp_page = NULL;
453
454 if (!iov_iter_count(from))
455 break;
456 }
457 if (bufs < pipe->buffers)
458 continue;
459 if (filp->f_flags & O_NONBLOCK) {
460 if (!ret)
461 ret = -EAGAIN;
462 break;
463 }
464 if (signal_pending(current)) {
465 if (!ret)
466 ret = -ERESTARTSYS;
467 break;
468 }
469 if (do_wakeup) {
470 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
471 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
472 do_wakeup = 0;
473 }
474 pipe->waiting_writers++;
475 pipe_wait(pipe);
476 pipe->waiting_writers--;
477 }
478out:
479 __pipe_unlock(pipe);
480 if (do_wakeup) {
481 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
482 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
483 }
484 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
485 int err = file_update_time(filp);
486 if (err)
487 ret = err;
488 sb_end_write(file_inode(filp)->i_sb);
489 }
490 return ret;
491}
492
493static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
494{
495 struct pipe_inode_info *pipe = filp->private_data;
496 int count, buf, nrbufs;
497
498 switch (cmd) {
499 case FIONREAD:
500 __pipe_lock(pipe);
501 count = 0;
502 buf = pipe->curbuf;
503 nrbufs = pipe->nrbufs;
504 while (--nrbufs >= 0) {
505 count += pipe->bufs[buf].len;
506 buf = (buf+1) & (pipe->buffers - 1);
507 }
508 __pipe_unlock(pipe);
509
510 return put_user(count, (int __user *)arg);
511 default:
512 return -ENOIOCTLCMD;
513 }
514}
515
516/* No kernel lock held - fine */
517static unsigned int
518pipe_poll(struct file *filp, poll_table *wait)
519{
520 unsigned int mask;
521 struct pipe_inode_info *pipe = filp->private_data;
522 int nrbufs;
523
524 poll_wait(filp, &pipe->wait, wait);
525
526 /* Reading only -- no need for acquiring the semaphore. */
527 nrbufs = pipe->nrbufs;
528 mask = 0;
529 if (filp->f_mode & FMODE_READ) {
530 mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
531 if (!pipe->writers && filp->f_version != pipe->w_counter)
532 mask |= POLLHUP;
533 }
534
535 if (filp->f_mode & FMODE_WRITE) {
536 mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
537 /*
538 * Most Unices do not set POLLERR for FIFOs but on Linux they
539 * behave exactly like pipes for poll().
540 */
541 if (!pipe->readers)
542 mask |= POLLERR;
543 }
544
545 return mask;
546}
547
548static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
549{
550 int kill = 0;
551
552 spin_lock(&inode->i_lock);
553 if (!--pipe->files) {
554 inode->i_pipe = NULL;
555 kill = 1;
556 }
557 spin_unlock(&inode->i_lock);
558
559 if (kill)
560 free_pipe_info(pipe);
561}
562
563static int
564pipe_release(struct inode *inode, struct file *file)
565{
566 struct pipe_inode_info *pipe = file->private_data;
567
568 __pipe_lock(pipe);
569 if (file->f_mode & FMODE_READ)
570 pipe->readers--;
571 if (file->f_mode & FMODE_WRITE)
572 pipe->writers--;
573
574 if (pipe->readers || pipe->writers) {
575 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
576 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
577 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
578 }
579 __pipe_unlock(pipe);
580
581 put_pipe_info(inode, pipe);
582 return 0;
583}
584
585static int
586pipe_fasync(int fd, struct file *filp, int on)
587{
588 struct pipe_inode_info *pipe = filp->private_data;
589 int retval = 0;
590
591 __pipe_lock(pipe);
592 if (filp->f_mode & FMODE_READ)
593 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
594 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
595 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
596 if (retval < 0 && (filp->f_mode & FMODE_READ))
597 /* this can happen only if on == T */
598 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
599 }
600 __pipe_unlock(pipe);
601 return retval;
602}
603
604static unsigned long account_pipe_buffers(struct user_struct *user,
605 unsigned long old, unsigned long new)
606{
607 return atomic_long_add_return(new - old, &user->pipe_bufs);
608}
609
610static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
611{
612 return pipe_user_pages_soft && user_bufs >= pipe_user_pages_soft;
613}
614
615static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
616{
617 return pipe_user_pages_hard && user_bufs >= pipe_user_pages_hard;
618}
619
620struct pipe_inode_info *alloc_pipe_info(void)
621{
622 struct pipe_inode_info *pipe;
623 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
624 struct user_struct *user = get_current_user();
625 unsigned long user_bufs;
626
627 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
628 if (pipe == NULL)
629 goto out_free_uid;
630
631 if (pipe_bufs * PAGE_SIZE > pipe_max_size && !capable(CAP_SYS_RESOURCE))
632 pipe_bufs = pipe_max_size >> PAGE_SHIFT;
633
634 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
635
636 if (too_many_pipe_buffers_soft(user_bufs)) {
637 user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
638 pipe_bufs = 1;
639 }
640
641 if (too_many_pipe_buffers_hard(user_bufs))
642 goto out_revert_acct;
643
644 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
645 GFP_KERNEL_ACCOUNT);
646
647 if (pipe->bufs) {
648 init_waitqueue_head(&pipe->wait);
649 pipe->r_counter = pipe->w_counter = 1;
650 pipe->buffers = pipe_bufs;
651 pipe->user = user;
652 mutex_init(&pipe->mutex);
653 return pipe;
654 }
655
656out_revert_acct:
657 (void) account_pipe_buffers(user, pipe_bufs, 0);
658 kfree(pipe);
659out_free_uid:
660 free_uid(user);
661 return NULL;
662}
663
664void free_pipe_info(struct pipe_inode_info *pipe)
665{
666 int i;
667
668 (void) account_pipe_buffers(pipe->user, pipe->buffers, 0);
669 free_uid(pipe->user);
670 for (i = 0; i < pipe->buffers; i++) {
671 struct pipe_buffer *buf = pipe->bufs + i;
672 if (buf->ops)
673 pipe_buf_release(pipe, buf);
674 }
675 if (pipe->tmp_page)
676 __free_page(pipe->tmp_page);
677 kfree(pipe->bufs);
678 kfree(pipe);
679}
680
681static struct vfsmount *pipe_mnt __read_mostly;
682
683/*
684 * pipefs_dname() is called from d_path().
685 */
686static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
687{
688 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
689 d_inode(dentry)->i_ino);
690}
691
692static const struct dentry_operations pipefs_dentry_operations = {
693 .d_dname = pipefs_dname,
694};
695
696static struct inode * get_pipe_inode(void)
697{
698 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
699 struct pipe_inode_info *pipe;
700
701 if (!inode)
702 goto fail_inode;
703
704 inode->i_ino = get_next_ino();
705
706 pipe = alloc_pipe_info();
707 if (!pipe)
708 goto fail_iput;
709
710 inode->i_pipe = pipe;
711 pipe->files = 2;
712 pipe->readers = pipe->writers = 1;
713 inode->i_fop = &pipefifo_fops;
714
715 /*
716 * Mark the inode dirty from the very beginning,
717 * that way it will never be moved to the dirty
718 * list because "mark_inode_dirty()" will think
719 * that it already _is_ on the dirty list.
720 */
721 inode->i_state = I_DIRTY;
722 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
723 inode->i_uid = current_fsuid();
724 inode->i_gid = current_fsgid();
725 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
726
727 return inode;
728
729fail_iput:
730 iput(inode);
731
732fail_inode:
733 return NULL;
734}
735
736int create_pipe_files(struct file **res, int flags)
737{
738 int err;
739 struct inode *inode = get_pipe_inode();
740 struct file *f;
741 struct path path;
742 static struct qstr name = { .name = "" };
743
744 if (!inode)
745 return -ENFILE;
746
747 err = -ENOMEM;
748 path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
749 if (!path.dentry)
750 goto err_inode;
751 path.mnt = mntget(pipe_mnt);
752
753 d_instantiate(path.dentry, inode);
754
755 f = alloc_file(&path, FMODE_WRITE, &pipefifo_fops);
756 if (IS_ERR(f)) {
757 err = PTR_ERR(f);
758 goto err_dentry;
759 }
760
761 f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
762 f->private_data = inode->i_pipe;
763
764 res[0] = alloc_file(&path, FMODE_READ, &pipefifo_fops);
765 if (IS_ERR(res[0])) {
766 err = PTR_ERR(res[0]);
767 goto err_file;
768 }
769
770 path_get(&path);
771 res[0]->private_data = inode->i_pipe;
772 res[0]->f_flags = O_RDONLY | (flags & O_NONBLOCK);
773 res[1] = f;
774 return 0;
775
776err_file:
777 put_filp(f);
778err_dentry:
779 free_pipe_info(inode->i_pipe);
780 path_put(&path);
781 return err;
782
783err_inode:
784 free_pipe_info(inode->i_pipe);
785 iput(inode);
786 return err;
787}
788
789static int __do_pipe_flags(int *fd, struct file **files, int flags)
790{
791 int error;
792 int fdw, fdr;
793
794 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
795 return -EINVAL;
796
797 error = create_pipe_files(files, flags);
798 if (error)
799 return error;
800
801 error = get_unused_fd_flags(flags);
802 if (error < 0)
803 goto err_read_pipe;
804 fdr = error;
805
806 error = get_unused_fd_flags(flags);
807 if (error < 0)
808 goto err_fdr;
809 fdw = error;
810
811 audit_fd_pair(fdr, fdw);
812 fd[0] = fdr;
813 fd[1] = fdw;
814 return 0;
815
816 err_fdr:
817 put_unused_fd(fdr);
818 err_read_pipe:
819 fput(files[0]);
820 fput(files[1]);
821 return error;
822}
823
824int do_pipe_flags(int *fd, int flags)
825{
826 struct file *files[2];
827 int error = __do_pipe_flags(fd, files, flags);
828 if (!error) {
829 fd_install(fd[0], files[0]);
830 fd_install(fd[1], files[1]);
831 }
832 return error;
833}
834
835/*
836 * sys_pipe() is the normal C calling standard for creating
837 * a pipe. It's not the way Unix traditionally does this, though.
838 */
839SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
840{
841 struct file *files[2];
842 int fd[2];
843 int error;
844
845 error = __do_pipe_flags(fd, files, flags);
846 if (!error) {
847 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
848 fput(files[0]);
849 fput(files[1]);
850 put_unused_fd(fd[0]);
851 put_unused_fd(fd[1]);
852 error = -EFAULT;
853 } else {
854 fd_install(fd[0], files[0]);
855 fd_install(fd[1], files[1]);
856 }
857 }
858 return error;
859}
860
861SYSCALL_DEFINE1(pipe, int __user *, fildes)
862{
863 return sys_pipe2(fildes, 0);
864}
865
866static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
867{
868 int cur = *cnt;
869
870 while (cur == *cnt) {
871 pipe_wait(pipe);
872 if (signal_pending(current))
873 break;
874 }
875 return cur == *cnt ? -ERESTARTSYS : 0;
876}
877
878static void wake_up_partner(struct pipe_inode_info *pipe)
879{
880 wake_up_interruptible(&pipe->wait);
881}
882
883static int fifo_open(struct inode *inode, struct file *filp)
884{
885 struct pipe_inode_info *pipe;
886 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
887 int ret;
888
889 filp->f_version = 0;
890
891 spin_lock(&inode->i_lock);
892 if (inode->i_pipe) {
893 pipe = inode->i_pipe;
894 pipe->files++;
895 spin_unlock(&inode->i_lock);
896 } else {
897 spin_unlock(&inode->i_lock);
898 pipe = alloc_pipe_info();
899 if (!pipe)
900 return -ENOMEM;
901 pipe->files = 1;
902 spin_lock(&inode->i_lock);
903 if (unlikely(inode->i_pipe)) {
904 inode->i_pipe->files++;
905 spin_unlock(&inode->i_lock);
906 free_pipe_info(pipe);
907 pipe = inode->i_pipe;
908 } else {
909 inode->i_pipe = pipe;
910 spin_unlock(&inode->i_lock);
911 }
912 }
913 filp->private_data = pipe;
914 /* OK, we have a pipe and it's pinned down */
915
916 __pipe_lock(pipe);
917
918 /* We can only do regular read/write on fifos */
919 filp->f_mode &= (FMODE_READ | FMODE_WRITE);
920
921 switch (filp->f_mode) {
922 case FMODE_READ:
923 /*
924 * O_RDONLY
925 * POSIX.1 says that O_NONBLOCK means return with the FIFO
926 * opened, even when there is no process writing the FIFO.
927 */
928 pipe->r_counter++;
929 if (pipe->readers++ == 0)
930 wake_up_partner(pipe);
931
932 if (!is_pipe && !pipe->writers) {
933 if ((filp->f_flags & O_NONBLOCK)) {
934 /* suppress POLLHUP until we have
935 * seen a writer */
936 filp->f_version = pipe->w_counter;
937 } else {
938 if (wait_for_partner(pipe, &pipe->w_counter))
939 goto err_rd;
940 }
941 }
942 break;
943
944 case FMODE_WRITE:
945 /*
946 * O_WRONLY
947 * POSIX.1 says that O_NONBLOCK means return -1 with
948 * errno=ENXIO when there is no process reading the FIFO.
949 */
950 ret = -ENXIO;
951 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
952 goto err;
953
954 pipe->w_counter++;
955 if (!pipe->writers++)
956 wake_up_partner(pipe);
957
958 if (!is_pipe && !pipe->readers) {
959 if (wait_for_partner(pipe, &pipe->r_counter))
960 goto err_wr;
961 }
962 break;
963
964 case FMODE_READ | FMODE_WRITE:
965 /*
966 * O_RDWR
967 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
968 * This implementation will NEVER block on a O_RDWR open, since
969 * the process can at least talk to itself.
970 */
971
972 pipe->readers++;
973 pipe->writers++;
974 pipe->r_counter++;
975 pipe->w_counter++;
976 if (pipe->readers == 1 || pipe->writers == 1)
977 wake_up_partner(pipe);
978 break;
979
980 default:
981 ret = -EINVAL;
982 goto err;
983 }
984
985 /* Ok! */
986 __pipe_unlock(pipe);
987 return 0;
988
989err_rd:
990 if (!--pipe->readers)
991 wake_up_interruptible(&pipe->wait);
992 ret = -ERESTARTSYS;
993 goto err;
994
995err_wr:
996 if (!--pipe->writers)
997 wake_up_interruptible(&pipe->wait);
998 ret = -ERESTARTSYS;
999 goto err;
1000
1001err:
1002 __pipe_unlock(pipe);
1003
1004 put_pipe_info(inode, pipe);
1005 return ret;
1006}
1007
1008const struct file_operations pipefifo_fops = {
1009 .open = fifo_open,
1010 .llseek = no_llseek,
1011 .read_iter = pipe_read,
1012 .write_iter = pipe_write,
1013 .poll = pipe_poll,
1014 .unlocked_ioctl = pipe_ioctl,
1015 .release = pipe_release,
1016 .fasync = pipe_fasync,
1017};
1018
1019/*
1020 * Currently we rely on the pipe array holding a power-of-2 number
1021 * of pages.
1022 */
1023static inline unsigned int round_pipe_size(unsigned int size)
1024{
1025 unsigned long nr_pages;
1026
1027 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1028 return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1029}
1030
1031/*
1032 * Allocate a new array of pipe buffers and copy the info over. Returns the
1033 * pipe size if successful, or return -ERROR on error.
1034 */
1035static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1036{
1037 struct pipe_buffer *bufs;
1038 unsigned int size, nr_pages;
1039 unsigned long user_bufs;
1040 long ret = 0;
1041
1042 size = round_pipe_size(arg);
1043 nr_pages = size >> PAGE_SHIFT;
1044
1045 if (!nr_pages)
1046 return -EINVAL;
1047
1048 /*
1049 * If trying to increase the pipe capacity, check that an
1050 * unprivileged user is not trying to exceed various limits
1051 * (soft limit check here, hard limit check just below).
1052 * Decreasing the pipe capacity is always permitted, even
1053 * if the user is currently over a limit.
1054 */
1055 if (nr_pages > pipe->buffers &&
1056 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1057 return -EPERM;
1058
1059 user_bufs = account_pipe_buffers(pipe->user, pipe->buffers, nr_pages);
1060
1061 if (nr_pages > pipe->buffers &&
1062 (too_many_pipe_buffers_hard(user_bufs) ||
1063 too_many_pipe_buffers_soft(user_bufs)) &&
1064 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
1065 ret = -EPERM;
1066 goto out_revert_acct;
1067 }
1068
1069 /*
1070 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1071 * expect a lot of shrink+grow operations, just free and allocate
1072 * again like we would do for growing. If the pipe currently
1073 * contains more buffers than arg, then return busy.
1074 */
1075 if (nr_pages < pipe->nrbufs) {
1076 ret = -EBUSY;
1077 goto out_revert_acct;
1078 }
1079
1080 bufs = kcalloc(nr_pages, sizeof(*bufs),
1081 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1082 if (unlikely(!bufs)) {
1083 ret = -ENOMEM;
1084 goto out_revert_acct;
1085 }
1086
1087 /*
1088 * The pipe array wraps around, so just start the new one at zero
1089 * and adjust the indexes.
1090 */
1091 if (pipe->nrbufs) {
1092 unsigned int tail;
1093 unsigned int head;
1094
1095 tail = pipe->curbuf + pipe->nrbufs;
1096 if (tail < pipe->buffers)
1097 tail = 0;
1098 else
1099 tail &= (pipe->buffers - 1);
1100
1101 head = pipe->nrbufs - tail;
1102 if (head)
1103 memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1104 if (tail)
1105 memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1106 }
1107
1108 pipe->curbuf = 0;
1109 kfree(pipe->bufs);
1110 pipe->bufs = bufs;
1111 pipe->buffers = nr_pages;
1112 return nr_pages * PAGE_SIZE;
1113
1114out_revert_acct:
1115 (void) account_pipe_buffers(pipe->user, nr_pages, pipe->buffers);
1116 return ret;
1117}
1118
1119/*
1120 * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1121 * will return an error.
1122 */
1123int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1124 size_t *lenp, loff_t *ppos)
1125{
1126 int ret;
1127
1128 ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1129 if (ret < 0 || !write)
1130 return ret;
1131
1132 pipe_max_size = round_pipe_size(pipe_max_size);
1133 return ret;
1134}
1135
1136/*
1137 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1138 * location, so checking ->i_pipe is not enough to verify that this is a
1139 * pipe.
1140 */
1141struct pipe_inode_info *get_pipe_info(struct file *file)
1142{
1143 return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1144}
1145
1146long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1147{
1148 struct pipe_inode_info *pipe;
1149 long ret;
1150
1151 pipe = get_pipe_info(file);
1152 if (!pipe)
1153 return -EBADF;
1154
1155 __pipe_lock(pipe);
1156
1157 switch (cmd) {
1158 case F_SETPIPE_SZ:
1159 ret = pipe_set_size(pipe, arg);
1160 break;
1161 case F_GETPIPE_SZ:
1162 ret = pipe->buffers * PAGE_SIZE;
1163 break;
1164 default:
1165 ret = -EINVAL;
1166 break;
1167 }
1168
1169 __pipe_unlock(pipe);
1170 return ret;
1171}
1172
1173static const struct super_operations pipefs_ops = {
1174 .destroy_inode = free_inode_nonrcu,
1175 .statfs = simple_statfs,
1176};
1177
1178/*
1179 * pipefs should _never_ be mounted by userland - too much of security hassle,
1180 * no real gain from having the whole whorehouse mounted. So we don't need
1181 * any operations on the root directory. However, we need a non-trivial
1182 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1183 */
1184static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1185 int flags, const char *dev_name, void *data)
1186{
1187 return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1188 &pipefs_dentry_operations, PIPEFS_MAGIC);
1189}
1190
1191static struct file_system_type pipe_fs_type = {
1192 .name = "pipefs",
1193 .mount = pipefs_mount,
1194 .kill_sb = kill_anon_super,
1195};
1196
1197static int __init init_pipe_fs(void)
1198{
1199 int err = register_filesystem(&pipe_fs_type);
1200
1201 if (!err) {
1202 pipe_mnt = kern_mount(&pipe_fs_type);
1203 if (IS_ERR(pipe_mnt)) {
1204 err = PTR_ERR(pipe_mnt);
1205 unregister_filesystem(&pipe_fs_type);
1206 }
1207 }
1208 return err;
1209}
1210
1211fs_initcall(init_pipe_fs);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/pipe.c
4 *
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 */
7
8#include <linux/mm.h>
9#include <linux/file.h>
10#include <linux/poll.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/fs.h>
15#include <linux/log2.h>
16#include <linux/mount.h>
17#include <linux/pseudo_fs.h>
18#include <linux/magic.h>
19#include <linux/pipe_fs_i.h>
20#include <linux/uio.h>
21#include <linux/highmem.h>
22#include <linux/pagemap.h>
23#include <linux/audit.h>
24#include <linux/syscalls.h>
25#include <linux/fcntl.h>
26#include <linux/memcontrol.h>
27#include <linux/watch_queue.h>
28#include <linux/sysctl.h>
29
30#include <linux/uaccess.h>
31#include <asm/ioctls.h>
32
33#include "internal.h"
34
35/*
36 * New pipe buffers will be restricted to this size while the user is exceeding
37 * their pipe buffer quota. The general pipe use case needs at least two
38 * buffers: one for data yet to be read, and one for new data. If this is less
39 * than two, then a write to a non-empty pipe may block even if the pipe is not
40 * full. This can occur with GNU make jobserver or similar uses of pipes as
41 * semaphores: multiple processes may be waiting to write tokens back to the
42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43 *
44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46 * emptied.
47 */
48#define PIPE_MIN_DEF_BUFFERS 2
49
50/*
51 * The max size that a non-root user is allowed to grow the pipe. Can
52 * be set by root in /proc/sys/fs/pipe-max-size
53 */
54static unsigned int pipe_max_size = 1048576;
55
56/* Maximum allocatable pages per user. Hard limit is unset by default, soft
57 * matches default values.
58 */
59static unsigned long pipe_user_pages_hard;
60static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61
62/*
63 * We use head and tail indices that aren't masked off, except at the point of
64 * dereference, but rather they're allowed to wrap naturally. This means there
65 * isn't a dead spot in the buffer, but the ring has to be a power of two and
66 * <= 2^31.
67 * -- David Howells 2019-09-23.
68 *
69 * Reads with count = 0 should always return 0.
70 * -- Julian Bradfield 1999-06-07.
71 *
72 * FIFOs and Pipes now generate SIGIO for both readers and writers.
73 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74 *
75 * pipe_read & write cleanup
76 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77 */
78
79static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
80{
81 if (pipe->files)
82 mutex_lock_nested(&pipe->mutex, subclass);
83}
84
85void pipe_lock(struct pipe_inode_info *pipe)
86{
87 /*
88 * pipe_lock() nests non-pipe inode locks (for writing to a file)
89 */
90 pipe_lock_nested(pipe, I_MUTEX_PARENT);
91}
92EXPORT_SYMBOL(pipe_lock);
93
94void pipe_unlock(struct pipe_inode_info *pipe)
95{
96 if (pipe->files)
97 mutex_unlock(&pipe->mutex);
98}
99EXPORT_SYMBOL(pipe_unlock);
100
101static inline void __pipe_lock(struct pipe_inode_info *pipe)
102{
103 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
104}
105
106static inline void __pipe_unlock(struct pipe_inode_info *pipe)
107{
108 mutex_unlock(&pipe->mutex);
109}
110
111void pipe_double_lock(struct pipe_inode_info *pipe1,
112 struct pipe_inode_info *pipe2)
113{
114 BUG_ON(pipe1 == pipe2);
115
116 if (pipe1 < pipe2) {
117 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
119 } else {
120 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
122 }
123}
124
125static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126 struct pipe_buffer *buf)
127{
128 struct page *page = buf->page;
129
130 /*
131 * If nobody else uses this page, and we don't already have a
132 * temporary page, let's keep track of it as a one-deep
133 * allocation cache. (Otherwise just release our reference to it)
134 */
135 if (page_count(page) == 1 && !pipe->tmp_page)
136 pipe->tmp_page = page;
137 else
138 put_page(page);
139}
140
141static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142 struct pipe_buffer *buf)
143{
144 struct page *page = buf->page;
145
146 if (page_count(page) != 1)
147 return false;
148 memcg_kmem_uncharge_page(page, 0);
149 __SetPageLocked(page);
150 return true;
151}
152
153/**
154 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155 * @pipe: the pipe that the buffer belongs to
156 * @buf: the buffer to attempt to steal
157 *
158 * Description:
159 * This function attempts to steal the &struct page attached to
160 * @buf. If successful, this function returns 0 and returns with
161 * the page locked. The caller may then reuse the page for whatever
162 * he wishes; the typical use is insertion into a different file
163 * page cache.
164 */
165bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166 struct pipe_buffer *buf)
167{
168 struct page *page = buf->page;
169
170 /*
171 * A reference of one is golden, that means that the owner of this
172 * page is the only one holding a reference to it. lock the page
173 * and return OK.
174 */
175 if (page_count(page) == 1) {
176 lock_page(page);
177 return true;
178 }
179 return false;
180}
181EXPORT_SYMBOL(generic_pipe_buf_try_steal);
182
183/**
184 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185 * @pipe: the pipe that the buffer belongs to
186 * @buf: the buffer to get a reference to
187 *
188 * Description:
189 * This function grabs an extra reference to @buf. It's used in
190 * the tee() system call, when we duplicate the buffers in one
191 * pipe into another.
192 */
193bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
194{
195 return try_get_page(buf->page);
196}
197EXPORT_SYMBOL(generic_pipe_buf_get);
198
199/**
200 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201 * @pipe: the pipe that the buffer belongs to
202 * @buf: the buffer to put a reference to
203 *
204 * Description:
205 * This function releases a reference to @buf.
206 */
207void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208 struct pipe_buffer *buf)
209{
210 put_page(buf->page);
211}
212EXPORT_SYMBOL(generic_pipe_buf_release);
213
214static const struct pipe_buf_operations anon_pipe_buf_ops = {
215 .release = anon_pipe_buf_release,
216 .try_steal = anon_pipe_buf_try_steal,
217 .get = generic_pipe_buf_get,
218};
219
220/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
221static inline bool pipe_readable(const struct pipe_inode_info *pipe)
222{
223 unsigned int head = READ_ONCE(pipe->head);
224 unsigned int tail = READ_ONCE(pipe->tail);
225 unsigned int writers = READ_ONCE(pipe->writers);
226
227 return !pipe_empty(head, tail) || !writers;
228}
229
230static ssize_t
231pipe_read(struct kiocb *iocb, struct iov_iter *to)
232{
233 size_t total_len = iov_iter_count(to);
234 struct file *filp = iocb->ki_filp;
235 struct pipe_inode_info *pipe = filp->private_data;
236 bool was_full, wake_next_reader = false;
237 ssize_t ret;
238
239 /* Null read succeeds. */
240 if (unlikely(total_len == 0))
241 return 0;
242
243 ret = 0;
244 __pipe_lock(pipe);
245
246 /*
247 * We only wake up writers if the pipe was full when we started
248 * reading in order to avoid unnecessary wakeups.
249 *
250 * But when we do wake up writers, we do so using a sync wakeup
251 * (WF_SYNC), because we want them to get going and generate more
252 * data for us.
253 */
254 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
255 for (;;) {
256 /* Read ->head with a barrier vs post_one_notification() */
257 unsigned int head = smp_load_acquire(&pipe->head);
258 unsigned int tail = pipe->tail;
259 unsigned int mask = pipe->ring_size - 1;
260
261#ifdef CONFIG_WATCH_QUEUE
262 if (pipe->note_loss) {
263 struct watch_notification n;
264
265 if (total_len < 8) {
266 if (ret == 0)
267 ret = -ENOBUFS;
268 break;
269 }
270
271 n.type = WATCH_TYPE_META;
272 n.subtype = WATCH_META_LOSS_NOTIFICATION;
273 n.info = watch_sizeof(n);
274 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
275 if (ret == 0)
276 ret = -EFAULT;
277 break;
278 }
279 ret += sizeof(n);
280 total_len -= sizeof(n);
281 pipe->note_loss = false;
282 }
283#endif
284
285 if (!pipe_empty(head, tail)) {
286 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
287 size_t chars = buf->len;
288 size_t written;
289 int error;
290
291 if (chars > total_len) {
292 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
293 if (ret == 0)
294 ret = -ENOBUFS;
295 break;
296 }
297 chars = total_len;
298 }
299
300 error = pipe_buf_confirm(pipe, buf);
301 if (error) {
302 if (!ret)
303 ret = error;
304 break;
305 }
306
307 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
308 if (unlikely(written < chars)) {
309 if (!ret)
310 ret = -EFAULT;
311 break;
312 }
313 ret += chars;
314 buf->offset += chars;
315 buf->len -= chars;
316
317 /* Was it a packet buffer? Clean up and exit */
318 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
319 total_len = chars;
320 buf->len = 0;
321 }
322
323 if (!buf->len) {
324 pipe_buf_release(pipe, buf);
325 spin_lock_irq(&pipe->rd_wait.lock);
326#ifdef CONFIG_WATCH_QUEUE
327 if (buf->flags & PIPE_BUF_FLAG_LOSS)
328 pipe->note_loss = true;
329#endif
330 tail++;
331 pipe->tail = tail;
332 spin_unlock_irq(&pipe->rd_wait.lock);
333 }
334 total_len -= chars;
335 if (!total_len)
336 break; /* common path: read succeeded */
337 if (!pipe_empty(head, tail)) /* More to do? */
338 continue;
339 }
340
341 if (!pipe->writers)
342 break;
343 if (ret)
344 break;
345 if (filp->f_flags & O_NONBLOCK) {
346 ret = -EAGAIN;
347 break;
348 }
349 __pipe_unlock(pipe);
350
351 /*
352 * We only get here if we didn't actually read anything.
353 *
354 * However, we could have seen (and removed) a zero-sized
355 * pipe buffer, and might have made space in the buffers
356 * that way.
357 *
358 * You can't make zero-sized pipe buffers by doing an empty
359 * write (not even in packet mode), but they can happen if
360 * the writer gets an EFAULT when trying to fill a buffer
361 * that already got allocated and inserted in the buffer
362 * array.
363 *
364 * So we still need to wake up any pending writers in the
365 * _very_ unlikely case that the pipe was full, but we got
366 * no data.
367 */
368 if (unlikely(was_full))
369 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
370 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
371
372 /*
373 * But because we didn't read anything, at this point we can
374 * just return directly with -ERESTARTSYS if we're interrupted,
375 * since we've done any required wakeups and there's no need
376 * to mark anything accessed. And we've dropped the lock.
377 */
378 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
379 return -ERESTARTSYS;
380
381 __pipe_lock(pipe);
382 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
383 wake_next_reader = true;
384 }
385 if (pipe_empty(pipe->head, pipe->tail))
386 wake_next_reader = false;
387 __pipe_unlock(pipe);
388
389 if (was_full)
390 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
391 if (wake_next_reader)
392 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
393 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
394 if (ret > 0)
395 file_accessed(filp);
396 return ret;
397}
398
399static inline int is_packetized(struct file *file)
400{
401 return (file->f_flags & O_DIRECT) != 0;
402}
403
404/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
405static inline bool pipe_writable(const struct pipe_inode_info *pipe)
406{
407 unsigned int head = READ_ONCE(pipe->head);
408 unsigned int tail = READ_ONCE(pipe->tail);
409 unsigned int max_usage = READ_ONCE(pipe->max_usage);
410
411 return !pipe_full(head, tail, max_usage) ||
412 !READ_ONCE(pipe->readers);
413}
414
415static ssize_t
416pipe_write(struct kiocb *iocb, struct iov_iter *from)
417{
418 struct file *filp = iocb->ki_filp;
419 struct pipe_inode_info *pipe = filp->private_data;
420 unsigned int head;
421 ssize_t ret = 0;
422 size_t total_len = iov_iter_count(from);
423 ssize_t chars;
424 bool was_empty = false;
425 bool wake_next_writer = false;
426
427 /* Null write succeeds. */
428 if (unlikely(total_len == 0))
429 return 0;
430
431 __pipe_lock(pipe);
432
433 if (!pipe->readers) {
434 send_sig(SIGPIPE, current, 0);
435 ret = -EPIPE;
436 goto out;
437 }
438
439#ifdef CONFIG_WATCH_QUEUE
440 if (pipe->watch_queue) {
441 ret = -EXDEV;
442 goto out;
443 }
444#endif
445
446 /*
447 * If it wasn't empty we try to merge new data into
448 * the last buffer.
449 *
450 * That naturally merges small writes, but it also
451 * page-aligns the rest of the writes for large writes
452 * spanning multiple pages.
453 */
454 head = pipe->head;
455 was_empty = pipe_empty(head, pipe->tail);
456 chars = total_len & (PAGE_SIZE-1);
457 if (chars && !was_empty) {
458 unsigned int mask = pipe->ring_size - 1;
459 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
460 int offset = buf->offset + buf->len;
461
462 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
463 offset + chars <= PAGE_SIZE) {
464 ret = pipe_buf_confirm(pipe, buf);
465 if (ret)
466 goto out;
467
468 ret = copy_page_from_iter(buf->page, offset, chars, from);
469 if (unlikely(ret < chars)) {
470 ret = -EFAULT;
471 goto out;
472 }
473
474 buf->len += ret;
475 if (!iov_iter_count(from))
476 goto out;
477 }
478 }
479
480 for (;;) {
481 if (!pipe->readers) {
482 send_sig(SIGPIPE, current, 0);
483 if (!ret)
484 ret = -EPIPE;
485 break;
486 }
487
488 head = pipe->head;
489 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
490 unsigned int mask = pipe->ring_size - 1;
491 struct pipe_buffer *buf = &pipe->bufs[head & mask];
492 struct page *page = pipe->tmp_page;
493 int copied;
494
495 if (!page) {
496 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
497 if (unlikely(!page)) {
498 ret = ret ? : -ENOMEM;
499 break;
500 }
501 pipe->tmp_page = page;
502 }
503
504 /* Allocate a slot in the ring in advance and attach an
505 * empty buffer. If we fault or otherwise fail to use
506 * it, either the reader will consume it or it'll still
507 * be there for the next write.
508 */
509 spin_lock_irq(&pipe->rd_wait.lock);
510
511 head = pipe->head;
512 if (pipe_full(head, pipe->tail, pipe->max_usage)) {
513 spin_unlock_irq(&pipe->rd_wait.lock);
514 continue;
515 }
516
517 pipe->head = head + 1;
518 spin_unlock_irq(&pipe->rd_wait.lock);
519
520 /* Insert it into the buffer array */
521 buf = &pipe->bufs[head & mask];
522 buf->page = page;
523 buf->ops = &anon_pipe_buf_ops;
524 buf->offset = 0;
525 buf->len = 0;
526 if (is_packetized(filp))
527 buf->flags = PIPE_BUF_FLAG_PACKET;
528 else
529 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
530 pipe->tmp_page = NULL;
531
532 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
533 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
534 if (!ret)
535 ret = -EFAULT;
536 break;
537 }
538 ret += copied;
539 buf->offset = 0;
540 buf->len = copied;
541
542 if (!iov_iter_count(from))
543 break;
544 }
545
546 if (!pipe_full(head, pipe->tail, pipe->max_usage))
547 continue;
548
549 /* Wait for buffer space to become available. */
550 if (filp->f_flags & O_NONBLOCK) {
551 if (!ret)
552 ret = -EAGAIN;
553 break;
554 }
555 if (signal_pending(current)) {
556 if (!ret)
557 ret = -ERESTARTSYS;
558 break;
559 }
560
561 /*
562 * We're going to release the pipe lock and wait for more
563 * space. We wake up any readers if necessary, and then
564 * after waiting we need to re-check whether the pipe
565 * become empty while we dropped the lock.
566 */
567 __pipe_unlock(pipe);
568 if (was_empty)
569 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
570 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
571 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
572 __pipe_lock(pipe);
573 was_empty = pipe_empty(pipe->head, pipe->tail);
574 wake_next_writer = true;
575 }
576out:
577 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
578 wake_next_writer = false;
579 __pipe_unlock(pipe);
580
581 /*
582 * If we do do a wakeup event, we do a 'sync' wakeup, because we
583 * want the reader to start processing things asap, rather than
584 * leave the data pending.
585 *
586 * This is particularly important for small writes, because of
587 * how (for example) the GNU make jobserver uses small writes to
588 * wake up pending jobs
589 *
590 * Epoll nonsensically wants a wakeup whether the pipe
591 * was already empty or not.
592 */
593 if (was_empty || pipe->poll_usage)
594 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
595 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
596 if (wake_next_writer)
597 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
598 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
599 int err = file_update_time(filp);
600 if (err)
601 ret = err;
602 sb_end_write(file_inode(filp)->i_sb);
603 }
604 return ret;
605}
606
607static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
608{
609 struct pipe_inode_info *pipe = filp->private_data;
610 unsigned int count, head, tail, mask;
611
612 switch (cmd) {
613 case FIONREAD:
614 __pipe_lock(pipe);
615 count = 0;
616 head = pipe->head;
617 tail = pipe->tail;
618 mask = pipe->ring_size - 1;
619
620 while (tail != head) {
621 count += pipe->bufs[tail & mask].len;
622 tail++;
623 }
624 __pipe_unlock(pipe);
625
626 return put_user(count, (int __user *)arg);
627
628#ifdef CONFIG_WATCH_QUEUE
629 case IOC_WATCH_QUEUE_SET_SIZE: {
630 int ret;
631 __pipe_lock(pipe);
632 ret = watch_queue_set_size(pipe, arg);
633 __pipe_unlock(pipe);
634 return ret;
635 }
636
637 case IOC_WATCH_QUEUE_SET_FILTER:
638 return watch_queue_set_filter(
639 pipe, (struct watch_notification_filter __user *)arg);
640#endif
641
642 default:
643 return -ENOIOCTLCMD;
644 }
645}
646
647/* No kernel lock held - fine */
648static __poll_t
649pipe_poll(struct file *filp, poll_table *wait)
650{
651 __poll_t mask;
652 struct pipe_inode_info *pipe = filp->private_data;
653 unsigned int head, tail;
654
655 /* Epoll has some historical nasty semantics, this enables them */
656 WRITE_ONCE(pipe->poll_usage, true);
657
658 /*
659 * Reading pipe state only -- no need for acquiring the semaphore.
660 *
661 * But because this is racy, the code has to add the
662 * entry to the poll table _first_ ..
663 */
664 if (filp->f_mode & FMODE_READ)
665 poll_wait(filp, &pipe->rd_wait, wait);
666 if (filp->f_mode & FMODE_WRITE)
667 poll_wait(filp, &pipe->wr_wait, wait);
668
669 /*
670 * .. and only then can you do the racy tests. That way,
671 * if something changes and you got it wrong, the poll
672 * table entry will wake you up and fix it.
673 */
674 head = READ_ONCE(pipe->head);
675 tail = READ_ONCE(pipe->tail);
676
677 mask = 0;
678 if (filp->f_mode & FMODE_READ) {
679 if (!pipe_empty(head, tail))
680 mask |= EPOLLIN | EPOLLRDNORM;
681 if (!pipe->writers && filp->f_version != pipe->w_counter)
682 mask |= EPOLLHUP;
683 }
684
685 if (filp->f_mode & FMODE_WRITE) {
686 if (!pipe_full(head, tail, pipe->max_usage))
687 mask |= EPOLLOUT | EPOLLWRNORM;
688 /*
689 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
690 * behave exactly like pipes for poll().
691 */
692 if (!pipe->readers)
693 mask |= EPOLLERR;
694 }
695
696 return mask;
697}
698
699static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
700{
701 int kill = 0;
702
703 spin_lock(&inode->i_lock);
704 if (!--pipe->files) {
705 inode->i_pipe = NULL;
706 kill = 1;
707 }
708 spin_unlock(&inode->i_lock);
709
710 if (kill)
711 free_pipe_info(pipe);
712}
713
714static int
715pipe_release(struct inode *inode, struct file *file)
716{
717 struct pipe_inode_info *pipe = file->private_data;
718
719 __pipe_lock(pipe);
720 if (file->f_mode & FMODE_READ)
721 pipe->readers--;
722 if (file->f_mode & FMODE_WRITE)
723 pipe->writers--;
724
725 /* Was that the last reader or writer, but not the other side? */
726 if (!pipe->readers != !pipe->writers) {
727 wake_up_interruptible_all(&pipe->rd_wait);
728 wake_up_interruptible_all(&pipe->wr_wait);
729 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
730 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
731 }
732 __pipe_unlock(pipe);
733
734 put_pipe_info(inode, pipe);
735 return 0;
736}
737
738static int
739pipe_fasync(int fd, struct file *filp, int on)
740{
741 struct pipe_inode_info *pipe = filp->private_data;
742 int retval = 0;
743
744 __pipe_lock(pipe);
745 if (filp->f_mode & FMODE_READ)
746 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
747 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
748 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
749 if (retval < 0 && (filp->f_mode & FMODE_READ))
750 /* this can happen only if on == T */
751 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
752 }
753 __pipe_unlock(pipe);
754 return retval;
755}
756
757unsigned long account_pipe_buffers(struct user_struct *user,
758 unsigned long old, unsigned long new)
759{
760 return atomic_long_add_return(new - old, &user->pipe_bufs);
761}
762
763bool too_many_pipe_buffers_soft(unsigned long user_bufs)
764{
765 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
766
767 return soft_limit && user_bufs > soft_limit;
768}
769
770bool too_many_pipe_buffers_hard(unsigned long user_bufs)
771{
772 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
773
774 return hard_limit && user_bufs > hard_limit;
775}
776
777bool pipe_is_unprivileged_user(void)
778{
779 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
780}
781
782struct pipe_inode_info *alloc_pipe_info(void)
783{
784 struct pipe_inode_info *pipe;
785 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
786 struct user_struct *user = get_current_user();
787 unsigned long user_bufs;
788 unsigned int max_size = READ_ONCE(pipe_max_size);
789
790 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
791 if (pipe == NULL)
792 goto out_free_uid;
793
794 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
795 pipe_bufs = max_size >> PAGE_SHIFT;
796
797 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
798
799 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
800 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
801 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
802 }
803
804 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
805 goto out_revert_acct;
806
807 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
808 GFP_KERNEL_ACCOUNT);
809
810 if (pipe->bufs) {
811 init_waitqueue_head(&pipe->rd_wait);
812 init_waitqueue_head(&pipe->wr_wait);
813 pipe->r_counter = pipe->w_counter = 1;
814 pipe->max_usage = pipe_bufs;
815 pipe->ring_size = pipe_bufs;
816 pipe->nr_accounted = pipe_bufs;
817 pipe->user = user;
818 mutex_init(&pipe->mutex);
819 return pipe;
820 }
821
822out_revert_acct:
823 (void) account_pipe_buffers(user, pipe_bufs, 0);
824 kfree(pipe);
825out_free_uid:
826 free_uid(user);
827 return NULL;
828}
829
830void free_pipe_info(struct pipe_inode_info *pipe)
831{
832 unsigned int i;
833
834#ifdef CONFIG_WATCH_QUEUE
835 if (pipe->watch_queue)
836 watch_queue_clear(pipe->watch_queue);
837#endif
838
839 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
840 free_uid(pipe->user);
841 for (i = 0; i < pipe->ring_size; i++) {
842 struct pipe_buffer *buf = pipe->bufs + i;
843 if (buf->ops)
844 pipe_buf_release(pipe, buf);
845 }
846#ifdef CONFIG_WATCH_QUEUE
847 if (pipe->watch_queue)
848 put_watch_queue(pipe->watch_queue);
849#endif
850 if (pipe->tmp_page)
851 __free_page(pipe->tmp_page);
852 kfree(pipe->bufs);
853 kfree(pipe);
854}
855
856static struct vfsmount *pipe_mnt __read_mostly;
857
858/*
859 * pipefs_dname() is called from d_path().
860 */
861static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
862{
863 return dynamic_dname(buffer, buflen, "pipe:[%lu]",
864 d_inode(dentry)->i_ino);
865}
866
867static const struct dentry_operations pipefs_dentry_operations = {
868 .d_dname = pipefs_dname,
869};
870
871static struct inode * get_pipe_inode(void)
872{
873 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
874 struct pipe_inode_info *pipe;
875
876 if (!inode)
877 goto fail_inode;
878
879 inode->i_ino = get_next_ino();
880
881 pipe = alloc_pipe_info();
882 if (!pipe)
883 goto fail_iput;
884
885 inode->i_pipe = pipe;
886 pipe->files = 2;
887 pipe->readers = pipe->writers = 1;
888 inode->i_fop = &pipefifo_fops;
889
890 /*
891 * Mark the inode dirty from the very beginning,
892 * that way it will never be moved to the dirty
893 * list because "mark_inode_dirty()" will think
894 * that it already _is_ on the dirty list.
895 */
896 inode->i_state = I_DIRTY;
897 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
898 inode->i_uid = current_fsuid();
899 inode->i_gid = current_fsgid();
900 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
901
902 return inode;
903
904fail_iput:
905 iput(inode);
906
907fail_inode:
908 return NULL;
909}
910
911int create_pipe_files(struct file **res, int flags)
912{
913 struct inode *inode = get_pipe_inode();
914 struct file *f;
915 int error;
916
917 if (!inode)
918 return -ENFILE;
919
920 if (flags & O_NOTIFICATION_PIPE) {
921 error = watch_queue_init(inode->i_pipe);
922 if (error) {
923 free_pipe_info(inode->i_pipe);
924 iput(inode);
925 return error;
926 }
927 }
928
929 f = alloc_file_pseudo(inode, pipe_mnt, "",
930 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
931 &pipefifo_fops);
932 if (IS_ERR(f)) {
933 free_pipe_info(inode->i_pipe);
934 iput(inode);
935 return PTR_ERR(f);
936 }
937
938 f->private_data = inode->i_pipe;
939
940 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
941 &pipefifo_fops);
942 if (IS_ERR(res[0])) {
943 put_pipe_info(inode, inode->i_pipe);
944 fput(f);
945 return PTR_ERR(res[0]);
946 }
947 res[0]->private_data = inode->i_pipe;
948 res[1] = f;
949 stream_open(inode, res[0]);
950 stream_open(inode, res[1]);
951 return 0;
952}
953
954static int __do_pipe_flags(int *fd, struct file **files, int flags)
955{
956 int error;
957 int fdw, fdr;
958
959 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
960 return -EINVAL;
961
962 error = create_pipe_files(files, flags);
963 if (error)
964 return error;
965
966 error = get_unused_fd_flags(flags);
967 if (error < 0)
968 goto err_read_pipe;
969 fdr = error;
970
971 error = get_unused_fd_flags(flags);
972 if (error < 0)
973 goto err_fdr;
974 fdw = error;
975
976 audit_fd_pair(fdr, fdw);
977 fd[0] = fdr;
978 fd[1] = fdw;
979 return 0;
980
981 err_fdr:
982 put_unused_fd(fdr);
983 err_read_pipe:
984 fput(files[0]);
985 fput(files[1]);
986 return error;
987}
988
989int do_pipe_flags(int *fd, int flags)
990{
991 struct file *files[2];
992 int error = __do_pipe_flags(fd, files, flags);
993 if (!error) {
994 fd_install(fd[0], files[0]);
995 fd_install(fd[1], files[1]);
996 }
997 return error;
998}
999
1000/*
1001 * sys_pipe() is the normal C calling standard for creating
1002 * a pipe. It's not the way Unix traditionally does this, though.
1003 */
1004static int do_pipe2(int __user *fildes, int flags)
1005{
1006 struct file *files[2];
1007 int fd[2];
1008 int error;
1009
1010 error = __do_pipe_flags(fd, files, flags);
1011 if (!error) {
1012 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1013 fput(files[0]);
1014 fput(files[1]);
1015 put_unused_fd(fd[0]);
1016 put_unused_fd(fd[1]);
1017 error = -EFAULT;
1018 } else {
1019 fd_install(fd[0], files[0]);
1020 fd_install(fd[1], files[1]);
1021 }
1022 }
1023 return error;
1024}
1025
1026SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1027{
1028 return do_pipe2(fildes, flags);
1029}
1030
1031SYSCALL_DEFINE1(pipe, int __user *, fildes)
1032{
1033 return do_pipe2(fildes, 0);
1034}
1035
1036/*
1037 * This is the stupid "wait for pipe to be readable or writable"
1038 * model.
1039 *
1040 * See pipe_read/write() for the proper kind of exclusive wait,
1041 * but that requires that we wake up any other readers/writers
1042 * if we then do not end up reading everything (ie the whole
1043 * "wake_next_reader/writer" logic in pipe_read/write()).
1044 */
1045void pipe_wait_readable(struct pipe_inode_info *pipe)
1046{
1047 pipe_unlock(pipe);
1048 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1049 pipe_lock(pipe);
1050}
1051
1052void pipe_wait_writable(struct pipe_inode_info *pipe)
1053{
1054 pipe_unlock(pipe);
1055 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1056 pipe_lock(pipe);
1057}
1058
1059/*
1060 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1061 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1062 * race with the count check and waitqueue prep.
1063 *
1064 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1065 * then check the condition you're waiting for, and only then sleep. But
1066 * because of the pipe lock, we can check the condition before being on
1067 * the wait queue.
1068 *
1069 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1070 */
1071static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1072{
1073 DEFINE_WAIT(rdwait);
1074 int cur = *cnt;
1075
1076 while (cur == *cnt) {
1077 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1078 pipe_unlock(pipe);
1079 schedule();
1080 finish_wait(&pipe->rd_wait, &rdwait);
1081 pipe_lock(pipe);
1082 if (signal_pending(current))
1083 break;
1084 }
1085 return cur == *cnt ? -ERESTARTSYS : 0;
1086}
1087
1088static void wake_up_partner(struct pipe_inode_info *pipe)
1089{
1090 wake_up_interruptible_all(&pipe->rd_wait);
1091}
1092
1093static int fifo_open(struct inode *inode, struct file *filp)
1094{
1095 struct pipe_inode_info *pipe;
1096 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1097 int ret;
1098
1099 filp->f_version = 0;
1100
1101 spin_lock(&inode->i_lock);
1102 if (inode->i_pipe) {
1103 pipe = inode->i_pipe;
1104 pipe->files++;
1105 spin_unlock(&inode->i_lock);
1106 } else {
1107 spin_unlock(&inode->i_lock);
1108 pipe = alloc_pipe_info();
1109 if (!pipe)
1110 return -ENOMEM;
1111 pipe->files = 1;
1112 spin_lock(&inode->i_lock);
1113 if (unlikely(inode->i_pipe)) {
1114 inode->i_pipe->files++;
1115 spin_unlock(&inode->i_lock);
1116 free_pipe_info(pipe);
1117 pipe = inode->i_pipe;
1118 } else {
1119 inode->i_pipe = pipe;
1120 spin_unlock(&inode->i_lock);
1121 }
1122 }
1123 filp->private_data = pipe;
1124 /* OK, we have a pipe and it's pinned down */
1125
1126 __pipe_lock(pipe);
1127
1128 /* We can only do regular read/write on fifos */
1129 stream_open(inode, filp);
1130
1131 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1132 case FMODE_READ:
1133 /*
1134 * O_RDONLY
1135 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1136 * opened, even when there is no process writing the FIFO.
1137 */
1138 pipe->r_counter++;
1139 if (pipe->readers++ == 0)
1140 wake_up_partner(pipe);
1141
1142 if (!is_pipe && !pipe->writers) {
1143 if ((filp->f_flags & O_NONBLOCK)) {
1144 /* suppress EPOLLHUP until we have
1145 * seen a writer */
1146 filp->f_version = pipe->w_counter;
1147 } else {
1148 if (wait_for_partner(pipe, &pipe->w_counter))
1149 goto err_rd;
1150 }
1151 }
1152 break;
1153
1154 case FMODE_WRITE:
1155 /*
1156 * O_WRONLY
1157 * POSIX.1 says that O_NONBLOCK means return -1 with
1158 * errno=ENXIO when there is no process reading the FIFO.
1159 */
1160 ret = -ENXIO;
1161 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1162 goto err;
1163
1164 pipe->w_counter++;
1165 if (!pipe->writers++)
1166 wake_up_partner(pipe);
1167
1168 if (!is_pipe && !pipe->readers) {
1169 if (wait_for_partner(pipe, &pipe->r_counter))
1170 goto err_wr;
1171 }
1172 break;
1173
1174 case FMODE_READ | FMODE_WRITE:
1175 /*
1176 * O_RDWR
1177 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1178 * This implementation will NEVER block on a O_RDWR open, since
1179 * the process can at least talk to itself.
1180 */
1181
1182 pipe->readers++;
1183 pipe->writers++;
1184 pipe->r_counter++;
1185 pipe->w_counter++;
1186 if (pipe->readers == 1 || pipe->writers == 1)
1187 wake_up_partner(pipe);
1188 break;
1189
1190 default:
1191 ret = -EINVAL;
1192 goto err;
1193 }
1194
1195 /* Ok! */
1196 __pipe_unlock(pipe);
1197 return 0;
1198
1199err_rd:
1200 if (!--pipe->readers)
1201 wake_up_interruptible(&pipe->wr_wait);
1202 ret = -ERESTARTSYS;
1203 goto err;
1204
1205err_wr:
1206 if (!--pipe->writers)
1207 wake_up_interruptible_all(&pipe->rd_wait);
1208 ret = -ERESTARTSYS;
1209 goto err;
1210
1211err:
1212 __pipe_unlock(pipe);
1213
1214 put_pipe_info(inode, pipe);
1215 return ret;
1216}
1217
1218const struct file_operations pipefifo_fops = {
1219 .open = fifo_open,
1220 .llseek = no_llseek,
1221 .read_iter = pipe_read,
1222 .write_iter = pipe_write,
1223 .poll = pipe_poll,
1224 .unlocked_ioctl = pipe_ioctl,
1225 .release = pipe_release,
1226 .fasync = pipe_fasync,
1227 .splice_write = iter_file_splice_write,
1228};
1229
1230/*
1231 * Currently we rely on the pipe array holding a power-of-2 number
1232 * of pages. Returns 0 on error.
1233 */
1234unsigned int round_pipe_size(unsigned long size)
1235{
1236 if (size > (1U << 31))
1237 return 0;
1238
1239 /* Minimum pipe size, as required by POSIX */
1240 if (size < PAGE_SIZE)
1241 return PAGE_SIZE;
1242
1243 return roundup_pow_of_two(size);
1244}
1245
1246/*
1247 * Resize the pipe ring to a number of slots.
1248 *
1249 * Note the pipe can be reduced in capacity, but only if the current
1250 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1251 * returned instead.
1252 */
1253int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1254{
1255 struct pipe_buffer *bufs;
1256 unsigned int head, tail, mask, n;
1257
1258 bufs = kcalloc(nr_slots, sizeof(*bufs),
1259 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1260 if (unlikely(!bufs))
1261 return -ENOMEM;
1262
1263 spin_lock_irq(&pipe->rd_wait.lock);
1264 mask = pipe->ring_size - 1;
1265 head = pipe->head;
1266 tail = pipe->tail;
1267
1268 n = pipe_occupancy(head, tail);
1269 if (nr_slots < n) {
1270 spin_unlock_irq(&pipe->rd_wait.lock);
1271 kfree(bufs);
1272 return -EBUSY;
1273 }
1274
1275 /*
1276 * The pipe array wraps around, so just start the new one at zero
1277 * and adjust the indices.
1278 */
1279 if (n > 0) {
1280 unsigned int h = head & mask;
1281 unsigned int t = tail & mask;
1282 if (h > t) {
1283 memcpy(bufs, pipe->bufs + t,
1284 n * sizeof(struct pipe_buffer));
1285 } else {
1286 unsigned int tsize = pipe->ring_size - t;
1287 if (h > 0)
1288 memcpy(bufs + tsize, pipe->bufs,
1289 h * sizeof(struct pipe_buffer));
1290 memcpy(bufs, pipe->bufs + t,
1291 tsize * sizeof(struct pipe_buffer));
1292 }
1293 }
1294
1295 head = n;
1296 tail = 0;
1297
1298 kfree(pipe->bufs);
1299 pipe->bufs = bufs;
1300 pipe->ring_size = nr_slots;
1301 if (pipe->max_usage > nr_slots)
1302 pipe->max_usage = nr_slots;
1303 pipe->tail = tail;
1304 pipe->head = head;
1305
1306 spin_unlock_irq(&pipe->rd_wait.lock);
1307
1308 /* This might have made more room for writers */
1309 wake_up_interruptible(&pipe->wr_wait);
1310 return 0;
1311}
1312
1313/*
1314 * Allocate a new array of pipe buffers and copy the info over. Returns the
1315 * pipe size if successful, or return -ERROR on error.
1316 */
1317static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1318{
1319 unsigned long user_bufs;
1320 unsigned int nr_slots, size;
1321 long ret = 0;
1322
1323#ifdef CONFIG_WATCH_QUEUE
1324 if (pipe->watch_queue)
1325 return -EBUSY;
1326#endif
1327
1328 size = round_pipe_size(arg);
1329 nr_slots = size >> PAGE_SHIFT;
1330
1331 if (!nr_slots)
1332 return -EINVAL;
1333
1334 /*
1335 * If trying to increase the pipe capacity, check that an
1336 * unprivileged user is not trying to exceed various limits
1337 * (soft limit check here, hard limit check just below).
1338 * Decreasing the pipe capacity is always permitted, even
1339 * if the user is currently over a limit.
1340 */
1341 if (nr_slots > pipe->max_usage &&
1342 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1343 return -EPERM;
1344
1345 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1346
1347 if (nr_slots > pipe->max_usage &&
1348 (too_many_pipe_buffers_hard(user_bufs) ||
1349 too_many_pipe_buffers_soft(user_bufs)) &&
1350 pipe_is_unprivileged_user()) {
1351 ret = -EPERM;
1352 goto out_revert_acct;
1353 }
1354
1355 ret = pipe_resize_ring(pipe, nr_slots);
1356 if (ret < 0)
1357 goto out_revert_acct;
1358
1359 pipe->max_usage = nr_slots;
1360 pipe->nr_accounted = nr_slots;
1361 return pipe->max_usage * PAGE_SIZE;
1362
1363out_revert_acct:
1364 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1365 return ret;
1366}
1367
1368/*
1369 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1370 * not enough to verify that this is a pipe.
1371 */
1372struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1373{
1374 struct pipe_inode_info *pipe = file->private_data;
1375
1376 if (file->f_op != &pipefifo_fops || !pipe)
1377 return NULL;
1378#ifdef CONFIG_WATCH_QUEUE
1379 if (for_splice && pipe->watch_queue)
1380 return NULL;
1381#endif
1382 return pipe;
1383}
1384
1385long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1386{
1387 struct pipe_inode_info *pipe;
1388 long ret;
1389
1390 pipe = get_pipe_info(file, false);
1391 if (!pipe)
1392 return -EBADF;
1393
1394 __pipe_lock(pipe);
1395
1396 switch (cmd) {
1397 case F_SETPIPE_SZ:
1398 ret = pipe_set_size(pipe, arg);
1399 break;
1400 case F_GETPIPE_SZ:
1401 ret = pipe->max_usage * PAGE_SIZE;
1402 break;
1403 default:
1404 ret = -EINVAL;
1405 break;
1406 }
1407
1408 __pipe_unlock(pipe);
1409 return ret;
1410}
1411
1412static const struct super_operations pipefs_ops = {
1413 .destroy_inode = free_inode_nonrcu,
1414 .statfs = simple_statfs,
1415};
1416
1417/*
1418 * pipefs should _never_ be mounted by userland - too much of security hassle,
1419 * no real gain from having the whole whorehouse mounted. So we don't need
1420 * any operations on the root directory. However, we need a non-trivial
1421 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1422 */
1423
1424static int pipefs_init_fs_context(struct fs_context *fc)
1425{
1426 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1427 if (!ctx)
1428 return -ENOMEM;
1429 ctx->ops = &pipefs_ops;
1430 ctx->dops = &pipefs_dentry_operations;
1431 return 0;
1432}
1433
1434static struct file_system_type pipe_fs_type = {
1435 .name = "pipefs",
1436 .init_fs_context = pipefs_init_fs_context,
1437 .kill_sb = kill_anon_super,
1438};
1439
1440#ifdef CONFIG_SYSCTL
1441static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1442 unsigned int *valp,
1443 int write, void *data)
1444{
1445 if (write) {
1446 unsigned int val;
1447
1448 val = round_pipe_size(*lvalp);
1449 if (val == 0)
1450 return -EINVAL;
1451
1452 *valp = val;
1453 } else {
1454 unsigned int val = *valp;
1455 *lvalp = (unsigned long) val;
1456 }
1457
1458 return 0;
1459}
1460
1461static int proc_dopipe_max_size(struct ctl_table *table, int write,
1462 void *buffer, size_t *lenp, loff_t *ppos)
1463{
1464 return do_proc_douintvec(table, write, buffer, lenp, ppos,
1465 do_proc_dopipe_max_size_conv, NULL);
1466}
1467
1468static struct ctl_table fs_pipe_sysctls[] = {
1469 {
1470 .procname = "pipe-max-size",
1471 .data = &pipe_max_size,
1472 .maxlen = sizeof(pipe_max_size),
1473 .mode = 0644,
1474 .proc_handler = proc_dopipe_max_size,
1475 },
1476 {
1477 .procname = "pipe-user-pages-hard",
1478 .data = &pipe_user_pages_hard,
1479 .maxlen = sizeof(pipe_user_pages_hard),
1480 .mode = 0644,
1481 .proc_handler = proc_doulongvec_minmax,
1482 },
1483 {
1484 .procname = "pipe-user-pages-soft",
1485 .data = &pipe_user_pages_soft,
1486 .maxlen = sizeof(pipe_user_pages_soft),
1487 .mode = 0644,
1488 .proc_handler = proc_doulongvec_minmax,
1489 },
1490 { }
1491};
1492#endif
1493
1494static int __init init_pipe_fs(void)
1495{
1496 int err = register_filesystem(&pipe_fs_type);
1497
1498 if (!err) {
1499 pipe_mnt = kern_mount(&pipe_fs_type);
1500 if (IS_ERR(pipe_mnt)) {
1501 err = PTR_ERR(pipe_mnt);
1502 unregister_filesystem(&pipe_fs_type);
1503 }
1504 }
1505#ifdef CONFIG_SYSCTL
1506 register_sysctl_init("fs", fs_pipe_sysctls);
1507#endif
1508 return err;
1509}
1510
1511fs_initcall(init_pipe_fs);