Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright (C) 1999 Eric Youngdale
   3 * Copyright (C) 2014 Christoph Hellwig
   4 *
   5 *  SCSI queueing library.
   6 *      Initial versions: Eric Youngdale (eric@andante.org).
   7 *                        Based upon conversations with large numbers
   8 *                        of people at Linux Expo.
   9 */
  10
  11#include <linux/bio.h>
  12#include <linux/bitops.h>
  13#include <linux/blkdev.h>
  14#include <linux/completion.h>
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/pci.h>
  19#include <linux/delay.h>
  20#include <linux/hardirq.h>
  21#include <linux/scatterlist.h>
  22#include <linux/blk-mq.h>
 
  23#include <linux/ratelimit.h>
  24#include <asm/unaligned.h>
  25
  26#include <scsi/scsi.h>
  27#include <scsi/scsi_cmnd.h>
  28#include <scsi/scsi_dbg.h>
  29#include <scsi/scsi_device.h>
  30#include <scsi/scsi_driver.h>
  31#include <scsi/scsi_eh.h>
  32#include <scsi/scsi_host.h>
 
  33#include <scsi/scsi_dh.h>
  34
  35#include <trace/events/scsi.h>
  36
 
  37#include "scsi_priv.h"
  38#include "scsi_logging.h"
  39
  40
  41struct kmem_cache *scsi_sdb_cache;
  42
  43/*
  44 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
  45 * not change behaviour from the previous unplug mechanism, experimentation
  46 * may prove this needs changing.
  47 */
  48#define SCSI_QUEUE_DELAY	3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49
  50static void
  51scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
  52{
  53	struct Scsi_Host *host = cmd->device->host;
  54	struct scsi_device *device = cmd->device;
  55	struct scsi_target *starget = scsi_target(device);
  56
  57	/*
  58	 * Set the appropriate busy bit for the device/host.
  59	 *
  60	 * If the host/device isn't busy, assume that something actually
  61	 * completed, and that we should be able to queue a command now.
  62	 *
  63	 * Note that the prior mid-layer assumption that any host could
  64	 * always queue at least one command is now broken.  The mid-layer
  65	 * will implement a user specifiable stall (see
  66	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
  67	 * if a command is requeued with no other commands outstanding
  68	 * either for the device or for the host.
  69	 */
  70	switch (reason) {
  71	case SCSI_MLQUEUE_HOST_BUSY:
  72		atomic_set(&host->host_blocked, host->max_host_blocked);
  73		break;
  74	case SCSI_MLQUEUE_DEVICE_BUSY:
  75	case SCSI_MLQUEUE_EH_RETRY:
  76		atomic_set(&device->device_blocked,
  77			   device->max_device_blocked);
  78		break;
  79	case SCSI_MLQUEUE_TARGET_BUSY:
  80		atomic_set(&starget->target_blocked,
  81			   starget->max_target_blocked);
  82		break;
  83	}
  84}
  85
  86static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
  87{
  88	struct scsi_device *sdev = cmd->device;
  89
  90	blk_mq_requeue_request(cmd->request, true);
  91	put_device(&sdev->sdev_gendev);
 
 
 
 
 
 
 
 
 
 
  92}
  93
  94/**
  95 * __scsi_queue_insert - private queue insertion
  96 * @cmd: The SCSI command being requeued
  97 * @reason:  The reason for the requeue
  98 * @unbusy: Whether the queue should be unbusied
  99 *
 100 * This is a private queue insertion.  The public interface
 101 * scsi_queue_insert() always assumes the queue should be unbusied
 102 * because it's always called before the completion.  This function is
 103 * for a requeue after completion, which should only occur in this
 104 * file.
 105 */
 106static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
 107{
 108	struct scsi_device *device = cmd->device;
 109	struct request_queue *q = device->request_queue;
 110	unsigned long flags;
 111
 112	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 113		"Inserting command %p into mlqueue\n", cmd));
 114
 115	scsi_set_blocked(cmd, reason);
 116
 117	/*
 118	 * Decrement the counters, since these commands are no longer
 119	 * active on the host/device.
 120	 */
 121	if (unbusy)
 122		scsi_device_unbusy(device);
 123
 124	/*
 125	 * Requeue this command.  It will go before all other commands
 126	 * that are already in the queue. Schedule requeue work under
 127	 * lock such that the kblockd_schedule_work() call happens
 128	 * before blk_cleanup_queue() finishes.
 129	 */
 130	cmd->result = 0;
 131	if (q->mq_ops) {
 132		scsi_mq_requeue_cmd(cmd);
 133		return;
 134	}
 135	spin_lock_irqsave(q->queue_lock, flags);
 136	blk_requeue_request(q, cmd->request);
 137	kblockd_schedule_work(&device->requeue_work);
 138	spin_unlock_irqrestore(q->queue_lock, flags);
 139}
 140
 141/*
 142 * Function:    scsi_queue_insert()
 143 *
 144 * Purpose:     Insert a command in the midlevel queue.
 145 *
 146 * Arguments:   cmd    - command that we are adding to queue.
 147 *              reason - why we are inserting command to queue.
 148 *
 149 * Lock status: Assumed that lock is not held upon entry.
 150 *
 151 * Returns:     Nothing.
 
 
 152 *
 153 * Notes:       We do this for one of two cases.  Either the host is busy
 154 *              and it cannot accept any more commands for the time being,
 155 *              or the device returned QUEUE_FULL and can accept no more
 156 *              commands.
 157 * Notes:       This could be called either from an interrupt context or a
 158 *              normal process context.
 159 */
 160void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 161{
 162	__scsi_queue_insert(cmd, reason, 1);
 163}
 164
 165static int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166		 int data_direction, void *buffer, unsigned bufflen,
 167		 unsigned char *sense, int timeout, int retries, u64 flags,
 
 168		 req_flags_t rq_flags, int *resid)
 169{
 170	struct request *req;
 171	int write = (data_direction == DMA_TO_DEVICE);
 172	int ret = DRIVER_ERROR << 24;
 173
 174	req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
 
 
 
 175	if (IS_ERR(req))
 176		return ret;
 177	blk_rq_set_block_pc(req);
 178
 179	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 180					buffer, bufflen, __GFP_RECLAIM))
 181		goto out;
 182
 183	req->cmd_len = COMMAND_SIZE(cmd[0]);
 184	memcpy(req->cmd, cmd, req->cmd_len);
 185	req->sense = sense;
 186	req->sense_len = 0;
 187	req->retries = retries;
 
 188	req->timeout = timeout;
 189	req->cmd_flags |= flags;
 190	req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
 191
 192	/*
 193	 * head injection *required* here otherwise quiesce won't work
 194	 */
 195	blk_execute_rq(req->q, NULL, req, 1);
 196
 197	/*
 198	 * Some devices (USB mass-storage in particular) may transfer
 199	 * garbage data together with a residue indicating that the data
 200	 * is invalid.  Prevent the garbage from being misinterpreted
 201	 * and prevent security leaks by zeroing out the excess data.
 202	 */
 203	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
 204		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
 205
 206	if (resid)
 207		*resid = req->resid_len;
 208	ret = req->errors;
 
 
 
 
 
 209 out:
 210	blk_put_request(req);
 211
 212	return ret;
 213}
 
 214
 215/**
 216 * scsi_execute - insert request and wait for the result
 217 * @sdev:	scsi device
 218 * @cmd:	scsi command
 219 * @data_direction: data direction
 220 * @buffer:	data buffer
 221 * @bufflen:	len of buffer
 222 * @sense:	optional sense buffer
 223 * @timeout:	request timeout in seconds
 224 * @retries:	number of times to retry request
 225 * @flags:	or into request flags;
 226 * @resid:	optional residual length
 227 *
 228 * returns the req->errors value which is the scsi_cmnd result
 229 * field.
 230 */
 231int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 232		 int data_direction, void *buffer, unsigned bufflen,
 233		 unsigned char *sense, int timeout, int retries, u64 flags,
 234		 int *resid)
 235{
 236	return __scsi_execute(sdev, cmd, data_direction, buffer, bufflen, sense,
 237			timeout, retries, flags, 0, resid);
 238}
 239EXPORT_SYMBOL(scsi_execute);
 240
 241int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
 242		     int data_direction, void *buffer, unsigned bufflen,
 243		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
 244		     int *resid, u64 flags, req_flags_t rq_flags)
 245{
 246	char *sense = NULL;
 247	int result;
 248	
 249	if (sshdr) {
 250		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
 251		if (!sense)
 252			return DRIVER_ERROR << 24;
 253	}
 254	result = __scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
 255			      sense, timeout, retries, flags, rq_flags, resid);
 256	if (sshdr)
 257		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
 258
 259	kfree(sense);
 260	return result;
 261}
 262EXPORT_SYMBOL(scsi_execute_req_flags);
 263
 264/*
 265 * Function:    scsi_init_cmd_errh()
 266 *
 267 * Purpose:     Initialize cmd fields related to error handling.
 268 *
 269 * Arguments:   cmd	- command that is ready to be queued.
 270 *
 271 * Notes:       This function has the job of initializing a number of
 272 *              fields related to error handling.   Typically this will
 273 *              be called once for each command, as required.
 274 */
 275static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 276{
 277	cmd->serial_number = 0;
 278	scsi_set_resid(cmd, 0);
 279	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 280	if (cmd->cmd_len == 0)
 281		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 282}
 283
 284void scsi_device_unbusy(struct scsi_device *sdev)
 285{
 286	struct Scsi_Host *shost = sdev->host;
 287	struct scsi_target *starget = scsi_target(sdev);
 288	unsigned long flags;
 289
 290	atomic_dec(&shost->host_busy);
 
 291	if (starget->can_queue > 0)
 292		atomic_dec(&starget->target_busy);
 293
 294	if (unlikely(scsi_host_in_recovery(shost) &&
 295		     (shost->host_failed || shost->host_eh_scheduled))) {
 296		spin_lock_irqsave(shost->host_lock, flags);
 297		scsi_eh_wakeup(shost);
 298		spin_unlock_irqrestore(shost->host_lock, flags);
 299	}
 300
 301	atomic_dec(&sdev->device_busy);
 302}
 303
 304static void scsi_kick_queue(struct request_queue *q)
 305{
 306	if (q->mq_ops)
 307		blk_mq_start_hw_queues(q);
 308	else
 309		blk_run_queue(q);
 
 
 
 
 
 
 
 
 
 310}
 311
 312/*
 313 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 314 * and call blk_run_queue for all the scsi_devices on the target -
 315 * including current_sdev first.
 316 *
 317 * Called with *no* scsi locks held.
 318 */
 319static void scsi_single_lun_run(struct scsi_device *current_sdev)
 320{
 321	struct Scsi_Host *shost = current_sdev->host;
 322	struct scsi_device *sdev, *tmp;
 323	struct scsi_target *starget = scsi_target(current_sdev);
 324	unsigned long flags;
 325
 326	spin_lock_irqsave(shost->host_lock, flags);
 327	starget->starget_sdev_user = NULL;
 328	spin_unlock_irqrestore(shost->host_lock, flags);
 329
 330	/*
 331	 * Call blk_run_queue for all LUNs on the target, starting with
 332	 * current_sdev. We race with others (to set starget_sdev_user),
 333	 * but in most cases, we will be first. Ideally, each LU on the
 334	 * target would get some limited time or requests on the target.
 335	 */
 336	scsi_kick_queue(current_sdev->request_queue);
 337
 338	spin_lock_irqsave(shost->host_lock, flags);
 339	if (starget->starget_sdev_user)
 340		goto out;
 341	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 342			same_target_siblings) {
 343		if (sdev == current_sdev)
 344			continue;
 345		if (scsi_device_get(sdev))
 346			continue;
 347
 348		spin_unlock_irqrestore(shost->host_lock, flags);
 349		scsi_kick_queue(sdev->request_queue);
 350		spin_lock_irqsave(shost->host_lock, flags);
 351	
 352		scsi_device_put(sdev);
 353	}
 354 out:
 355	spin_unlock_irqrestore(shost->host_lock, flags);
 356}
 357
 358static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 359{
 360	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 361		return true;
 362	if (atomic_read(&sdev->device_blocked) > 0)
 363		return true;
 364	return false;
 365}
 366
 367static inline bool scsi_target_is_busy(struct scsi_target *starget)
 368{
 369	if (starget->can_queue > 0) {
 370		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 371			return true;
 372		if (atomic_read(&starget->target_blocked) > 0)
 373			return true;
 374	}
 375	return false;
 376}
 377
 378static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 379{
 380	if (shost->can_queue > 0 &&
 381	    atomic_read(&shost->host_busy) >= shost->can_queue)
 382		return true;
 383	if (atomic_read(&shost->host_blocked) > 0)
 384		return true;
 385	if (shost->host_self_blocked)
 386		return true;
 387	return false;
 388}
 389
 390static void scsi_starved_list_run(struct Scsi_Host *shost)
 391{
 392	LIST_HEAD(starved_list);
 393	struct scsi_device *sdev;
 394	unsigned long flags;
 395
 396	spin_lock_irqsave(shost->host_lock, flags);
 397	list_splice_init(&shost->starved_list, &starved_list);
 398
 399	while (!list_empty(&starved_list)) {
 400		struct request_queue *slq;
 401
 402		/*
 403		 * As long as shost is accepting commands and we have
 404		 * starved queues, call blk_run_queue. scsi_request_fn
 405		 * drops the queue_lock and can add us back to the
 406		 * starved_list.
 407		 *
 408		 * host_lock protects the starved_list and starved_entry.
 409		 * scsi_request_fn must get the host_lock before checking
 410		 * or modifying starved_list or starved_entry.
 411		 */
 412		if (scsi_host_is_busy(shost))
 413			break;
 414
 415		sdev = list_entry(starved_list.next,
 416				  struct scsi_device, starved_entry);
 417		list_del_init(&sdev->starved_entry);
 418		if (scsi_target_is_busy(scsi_target(sdev))) {
 419			list_move_tail(&sdev->starved_entry,
 420				       &shost->starved_list);
 421			continue;
 422		}
 423
 424		/*
 425		 * Once we drop the host lock, a racing scsi_remove_device()
 426		 * call may remove the sdev from the starved list and destroy
 427		 * it and the queue.  Mitigate by taking a reference to the
 428		 * queue and never touching the sdev again after we drop the
 429		 * host lock.  Note: if __scsi_remove_device() invokes
 430		 * blk_cleanup_queue() before the queue is run from this
 431		 * function then blk_run_queue() will return immediately since
 432		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 433		 */
 434		slq = sdev->request_queue;
 435		if (!blk_get_queue(slq))
 436			continue;
 437		spin_unlock_irqrestore(shost->host_lock, flags);
 438
 439		scsi_kick_queue(slq);
 440		blk_put_queue(slq);
 441
 442		spin_lock_irqsave(shost->host_lock, flags);
 443	}
 444	/* put any unprocessed entries back */
 445	list_splice(&starved_list, &shost->starved_list);
 446	spin_unlock_irqrestore(shost->host_lock, flags);
 447}
 448
 449/*
 450 * Function:   scsi_run_queue()
 451 *
 452 * Purpose:    Select a proper request queue to serve next
 453 *
 454 * Arguments:  q       - last request's queue
 455 *
 456 * Returns:     Nothing
 457 *
 458 * Notes:      The previous command was completely finished, start
 459 *             a new one if possible.
 460 */
 461static void scsi_run_queue(struct request_queue *q)
 462{
 463	struct scsi_device *sdev = q->queuedata;
 464
 465	if (scsi_target(sdev)->single_lun)
 466		scsi_single_lun_run(sdev);
 467	if (!list_empty(&sdev->host->starved_list))
 468		scsi_starved_list_run(sdev->host);
 469
 470	if (q->mq_ops)
 471		blk_mq_start_stopped_hw_queues(q, false);
 472	else
 473		blk_run_queue(q);
 474}
 475
 476void scsi_requeue_run_queue(struct work_struct *work)
 477{
 478	struct scsi_device *sdev;
 479	struct request_queue *q;
 480
 481	sdev = container_of(work, struct scsi_device, requeue_work);
 482	q = sdev->request_queue;
 483	scsi_run_queue(q);
 484}
 485
 486/*
 487 * Function:	scsi_requeue_command()
 488 *
 489 * Purpose:	Handle post-processing of completed commands.
 490 *
 491 * Arguments:	q	- queue to operate on
 492 *		cmd	- command that may need to be requeued.
 493 *
 494 * Returns:	Nothing
 495 *
 496 * Notes:	After command completion, there may be blocks left
 497 *		over which weren't finished by the previous command
 498 *		this can be for a number of reasons - the main one is
 499 *		I/O errors in the middle of the request, in which case
 500 *		we need to request the blocks that come after the bad
 501 *		sector.
 502 * Notes:	Upon return, cmd is a stale pointer.
 503 */
 504static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 505{
 506	struct scsi_device *sdev = cmd->device;
 507	struct request *req = cmd->request;
 508	unsigned long flags;
 509
 510	spin_lock_irqsave(q->queue_lock, flags);
 511	blk_unprep_request(req);
 512	req->special = NULL;
 513	scsi_put_command(cmd);
 514	blk_requeue_request(q, req);
 515	spin_unlock_irqrestore(q->queue_lock, flags);
 516
 517	scsi_run_queue(q);
 518
 519	put_device(&sdev->sdev_gendev);
 520}
 521
 522void scsi_run_host_queues(struct Scsi_Host *shost)
 523{
 524	struct scsi_device *sdev;
 525
 526	shost_for_each_device(sdev, shost)
 527		scsi_run_queue(sdev->request_queue);
 528}
 529
 530static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 531{
 532	if (cmd->request->cmd_type == REQ_TYPE_FS) {
 533		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 534
 535		if (drv->uninit_command)
 536			drv->uninit_command(cmd);
 537	}
 538}
 539
 540static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
 541{
 542	struct scsi_data_buffer *sdb;
 543
 544	if (cmd->sdb.table.nents)
 545		sg_free_table_chained(&cmd->sdb.table, true);
 546	if (cmd->request->next_rq) {
 547		sdb = cmd->request->next_rq->special;
 548		if (sdb)
 549			sg_free_table_chained(&sdb->table, true);
 550	}
 551	if (scsi_prot_sg_count(cmd))
 552		sg_free_table_chained(&cmd->prot_sdb->table, true);
 
 553}
 
 554
 555static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 556{
 557	struct scsi_device *sdev = cmd->device;
 558	struct Scsi_Host *shost = sdev->host;
 559	unsigned long flags;
 560
 561	scsi_mq_free_sgtables(cmd);
 562	scsi_uninit_cmd(cmd);
 563
 564	if (shost->use_cmd_list) {
 565		BUG_ON(list_empty(&cmd->list));
 566		spin_lock_irqsave(&sdev->list_lock, flags);
 567		list_del_init(&cmd->list);
 568		spin_unlock_irqrestore(&sdev->list_lock, flags);
 569	}
 570}
 571
 572/*
 573 * Function:    scsi_release_buffers()
 574 *
 575 * Purpose:     Free resources allocate for a scsi_command.
 576 *
 577 * Arguments:   cmd	- command that we are bailing.
 578 *
 579 * Lock status: Assumed that no lock is held upon entry.
 580 *
 581 * Returns:     Nothing
 582 *
 583 * Notes:       In the event that an upper level driver rejects a
 584 *		command, we must release resources allocated during
 585 *		the __init_io() function.  Primarily this would involve
 586 *		the scatter-gather table.
 587 */
 588static void scsi_release_buffers(struct scsi_cmnd *cmd)
 589{
 590	if (cmd->sdb.table.nents)
 591		sg_free_table_chained(&cmd->sdb.table, false);
 592
 593	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 594
 595	if (scsi_prot_sg_count(cmd))
 596		sg_free_table_chained(&cmd->prot_sdb->table, false);
 597}
 598
 599static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
 600{
 601	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
 
 
 
 
 
 
 
 
 
 602
 603	sg_free_table_chained(&bidi_sdb->table, false);
 604	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 605	cmd->request->next_rq->special = NULL;
 
 
 
 
 
 
 
 
 606}
 607
 608static bool scsi_end_request(struct request *req, int error,
 609		unsigned int bytes, unsigned int bidi_bytes)
 
 610{
 611	struct scsi_cmnd *cmd = req->special;
 612	struct scsi_device *sdev = cmd->device;
 613	struct request_queue *q = sdev->request_queue;
 614
 615	if (blk_update_request(req, error, bytes))
 616		return true;
 617
 618	/* Bidi request must be completed as a whole */
 619	if (unlikely(bidi_bytes) &&
 620	    blk_update_request(req->next_rq, error, bidi_bytes))
 621		return true;
 622
 623	if (blk_queue_add_random(q))
 624		add_disk_randomness(req->rq_disk);
 625
 626	if (req->mq_ctx) {
 627		/*
 628		 * In the MQ case the command gets freed by __blk_mq_end_request,
 629		 * so we have to do all cleanup that depends on it earlier.
 630		 *
 631		 * We also can't kick the queues from irq context, so we
 632		 * will have to defer it to a workqueue.
 633		 */
 634		scsi_mq_uninit_cmd(cmd);
 635
 636		__blk_mq_end_request(req, error);
 637
 638		if (scsi_target(sdev)->single_lun ||
 639		    !list_empty(&sdev->host->starved_list))
 640			kblockd_schedule_work(&sdev->requeue_work);
 641		else
 642			blk_mq_start_stopped_hw_queues(q, true);
 643	} else {
 644		unsigned long flags;
 645
 646		if (bidi_bytes)
 647			scsi_release_bidi_buffers(cmd);
 
 
 
 
 
 
 648
 649		spin_lock_irqsave(q->queue_lock, flags);
 650		blk_finish_request(req, error);
 651		spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 652
 653		scsi_release_buffers(cmd);
 654
 655		scsi_put_command(cmd);
 656		scsi_run_queue(q);
 657	}
 658
 659	put_device(&sdev->sdev_gendev);
 660	return false;
 661}
 662
 
 
 
 
 
 663/**
 664 * __scsi_error_from_host_byte - translate SCSI error code into errno
 665 * @cmd:	SCSI command (unused)
 666 * @result:	scsi error code
 667 *
 668 * Translate SCSI error code into standard UNIX errno.
 669 * Return values:
 670 * -ENOLINK	temporary transport failure
 671 * -EREMOTEIO	permanent target failure, do not retry
 672 * -EBADE	permanent nexus failure, retry on other path
 673 * -ENOSPC	No write space available
 674 * -ENODATA	Medium error
 675 * -EIO		unspecified I/O error
 676 */
 677static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
 678{
 679	int error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680
 681	switch(host_byte(result)) {
 
 
 
 
 682	case DID_TRANSPORT_FAILFAST:
 683		error = -ENOLINK;
 684		break;
 685	case DID_TARGET_FAILURE:
 686		set_host_byte(cmd, DID_OK);
 687		error = -EREMOTEIO;
 688		break;
 689	case DID_NEXUS_FAILURE:
 690		set_host_byte(cmd, DID_OK);
 691		error = -EBADE;
 692		break;
 693	case DID_ALLOC_FAILURE:
 694		set_host_byte(cmd, DID_OK);
 695		error = -ENOSPC;
 696		break;
 697	case DID_MEDIUM_ERROR:
 698		set_host_byte(cmd, DID_OK);
 699		error = -ENODATA;
 700		break;
 701	default:
 702		error = -EIO;
 703		break;
 704	}
 705
 706	return error;
 707}
 708
 709/*
 710 * Function:    scsi_io_completion()
 711 *
 712 * Purpose:     Completion processing for block device I/O requests.
 713 *
 714 * Arguments:   cmd   - command that is finished.
 715 *
 716 * Lock status: Assumed that no lock is held upon entry.
 717 *
 718 * Returns:     Nothing
 719 *
 720 * Notes:       We will finish off the specified number of sectors.  If we
 721 *		are done, the command block will be released and the queue
 722 *		function will be goosed.  If we are not done then we have to
 723 *		figure out what to do next:
 724 *
 725 *		a) We can call scsi_requeue_command().  The request
 726 *		   will be unprepared and put back on the queue.  Then
 727 *		   a new command will be created for it.  This should
 728 *		   be used if we made forward progress, or if we want
 729 *		   to switch from READ(10) to READ(6) for example.
 730 *
 731 *		b) We can call __scsi_queue_insert().  The request will
 732 *		   be put back on the queue and retried using the same
 733 *		   command as before, possibly after a delay.
 
 
 734 *
 735 *		c) We can call scsi_end_request() with -EIO to fail
 736 *		   the remainder of the request.
 737 */
 738void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 739{
 740	int result = cmd->result;
 741	struct request_queue *q = cmd->device->request_queue;
 742	struct request *req = cmd->request;
 743	int error = 0;
 744	struct scsi_sense_hdr sshdr;
 745	bool sense_valid = false;
 746	int sense_deferred = 0, level = 0;
 747	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 748	      ACTION_DELAYED_RETRY} action;
 749	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 750
 751	if (result) {
 752		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 753		if (sense_valid)
 754			sense_deferred = scsi_sense_is_deferred(&sshdr);
 755	}
 756
 757	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
 758		if (result) {
 759			if (sense_valid && req->sense) {
 760				/*
 761				 * SG_IO wants current and deferred errors
 762				 */
 763				int len = 8 + cmd->sense_buffer[7];
 764
 765				if (len > SCSI_SENSE_BUFFERSIZE)
 766					len = SCSI_SENSE_BUFFERSIZE;
 767				memcpy(req->sense, cmd->sense_buffer,  len);
 768				req->sense_len = len;
 769			}
 770			if (!sense_deferred)
 771				error = __scsi_error_from_host_byte(cmd, result);
 772		}
 773		/*
 774		 * __scsi_error_from_host_byte may have reset the host_byte
 775		 */
 776		req->errors = cmd->result;
 777
 778		req->resid_len = scsi_get_resid(cmd);
 779
 780		if (scsi_bidi_cmnd(cmd)) {
 781			/*
 782			 * Bidi commands Must be complete as a whole,
 783			 * both sides at once.
 784			 */
 785			req->next_rq->resid_len = scsi_in(cmd)->resid;
 786			if (scsi_end_request(req, 0, blk_rq_bytes(req),
 787					blk_rq_bytes(req->next_rq)))
 788				BUG();
 789			return;
 790		}
 791	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
 792		/*
 793		 * Certain non BLOCK_PC requests are commands that don't
 794		 * actually transfer anything (FLUSH), so cannot use
 795		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 796		 * This sets the error explicitly for the problem case.
 797		 */
 798		error = __scsi_error_from_host_byte(cmd, result);
 799	}
 800
 801	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
 802	BUG_ON(blk_bidi_rq(req));
 803
 804	/*
 805	 * Next deal with any sectors which we were able to correctly
 806	 * handle.
 807	 */
 808	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 809		"%u sectors total, %d bytes done.\n",
 810		blk_rq_sectors(req), good_bytes));
 811
 812	/*
 813	 * Recovered errors need reporting, but they're always treated
 814	 * as success, so fiddle the result code here.  For BLOCK_PC
 815	 * we already took a copy of the original into rq->errors which
 816	 * is what gets returned to the user
 817	 */
 818	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 819		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 820		 * print since caller wants ATA registers. Only occurs on
 821		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 822		 */
 823		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 824			;
 825		else if (!(req->rq_flags & RQF_QUIET))
 826			scsi_print_sense(cmd);
 827		result = 0;
 828		/* BLOCK_PC may have set error */
 829		error = 0;
 830	}
 831
 832	/*
 833	 * special case: failed zero length commands always need to
 834	 * drop down into the retry code. Otherwise, if we finished
 835	 * all bytes in the request we are done now.
 836	 */
 837	if (!(blk_rq_bytes(req) == 0 && error) &&
 838	    !scsi_end_request(req, error, good_bytes, 0))
 839		return;
 840
 841	/*
 842	 * Kill remainder if no retrys.
 843	 */
 844	if (error && scsi_noretry_cmd(cmd)) {
 845		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
 846			BUG();
 847		return;
 
 
 
 
 
 
 848	}
 
 
 849
 850	/*
 851	 * If there had been no error, but we have leftover bytes in the
 852	 * requeues just queue the command up again.
 853	 */
 854	if (result == 0)
 855		goto requeue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856
 857	error = __scsi_error_from_host_byte(cmd, result);
 858
 859	if (host_byte(result) == DID_RESET) {
 860		/* Third party bus reset or reset for error recovery
 861		 * reasons.  Just retry the command and see what
 862		 * happens.
 863		 */
 864		action = ACTION_RETRY;
 865	} else if (sense_valid && !sense_deferred) {
 866		switch (sshdr.sense_key) {
 867		case UNIT_ATTENTION:
 868			if (cmd->device->removable) {
 869				/* Detected disc change.  Set a bit
 870				 * and quietly refuse further access.
 871				 */
 872				cmd->device->changed = 1;
 873				action = ACTION_FAIL;
 874			} else {
 875				/* Must have been a power glitch, or a
 876				 * bus reset.  Could not have been a
 877				 * media change, so we just retry the
 878				 * command and see what happens.
 879				 */
 880				action = ACTION_RETRY;
 881			}
 882			break;
 883		case ILLEGAL_REQUEST:
 884			/* If we had an ILLEGAL REQUEST returned, then
 885			 * we may have performed an unsupported
 886			 * command.  The only thing this should be
 887			 * would be a ten byte read where only a six
 888			 * byte read was supported.  Also, on a system
 889			 * where READ CAPACITY failed, we may have
 890			 * read past the end of the disk.
 891			 */
 892			if ((cmd->device->use_10_for_rw &&
 893			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 894			    (cmd->cmnd[0] == READ_10 ||
 895			     cmd->cmnd[0] == WRITE_10)) {
 896				/* This will issue a new 6-byte command. */
 897				cmd->device->use_10_for_rw = 0;
 898				action = ACTION_REPREP;
 899			} else if (sshdr.asc == 0x10) /* DIX */ {
 900				action = ACTION_FAIL;
 901				error = -EILSEQ;
 902			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 903			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 904				action = ACTION_FAIL;
 905				error = -EREMOTEIO;
 906			} else
 907				action = ACTION_FAIL;
 908			break;
 909		case ABORTED_COMMAND:
 910			action = ACTION_FAIL;
 911			if (sshdr.asc == 0x10) /* DIF */
 912				error = -EILSEQ;
 913			break;
 914		case NOT_READY:
 915			/* If the device is in the process of becoming
 916			 * ready, or has a temporary blockage, retry.
 917			 */
 918			if (sshdr.asc == 0x04) {
 919				switch (sshdr.ascq) {
 920				case 0x01: /* becoming ready */
 921				case 0x04: /* format in progress */
 922				case 0x05: /* rebuild in progress */
 923				case 0x06: /* recalculation in progress */
 924				case 0x07: /* operation in progress */
 925				case 0x08: /* Long write in progress */
 926				case 0x09: /* self test in progress */
 
 927				case 0x14: /* space allocation in progress */
 
 
 
 
 928					action = ACTION_DELAYED_RETRY;
 929					break;
 
 
 
 930				default:
 931					action = ACTION_FAIL;
 932					break;
 933				}
 934			} else
 935				action = ACTION_FAIL;
 936			break;
 937		case VOLUME_OVERFLOW:
 938			/* See SSC3rXX or current. */
 939			action = ACTION_FAIL;
 940			break;
 
 
 
 
 
 
 
 
 
 941		default:
 942			action = ACTION_FAIL;
 943			break;
 944		}
 945	} else
 946		action = ACTION_FAIL;
 947
 948	if (action != ACTION_FAIL &&
 949	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
 950		action = ACTION_FAIL;
 951
 952	switch (action) {
 953	case ACTION_FAIL:
 954		/* Give up and fail the remainder of the request */
 955		if (!(req->rq_flags & RQF_QUIET)) {
 956			static DEFINE_RATELIMIT_STATE(_rs,
 957					DEFAULT_RATELIMIT_INTERVAL,
 958					DEFAULT_RATELIMIT_BURST);
 959
 960			if (unlikely(scsi_logging_level))
 961				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 962						       SCSI_LOG_MLCOMPLETE_BITS);
 
 963
 964			/*
 965			 * if logging is enabled the failure will be printed
 966			 * in scsi_log_completion(), so avoid duplicate messages
 967			 */
 968			if (!level && __ratelimit(&_rs)) {
 969				scsi_print_result(cmd, NULL, FAILED);
 970				if (driver_byte(result) & DRIVER_SENSE)
 971					scsi_print_sense(cmd);
 972				scsi_print_command(cmd);
 973			}
 974		}
 975		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
 976			return;
 977		/*FALLTHRU*/
 978	case ACTION_REPREP:
 979	requeue:
 980		/* Unprep the request and put it back at the head of the queue.
 981		 * A new command will be prepared and issued.
 982		 */
 983		if (q->mq_ops) {
 984			cmd->request->rq_flags &= ~RQF_DONTPREP;
 985			scsi_mq_uninit_cmd(cmd);
 986			scsi_mq_requeue_cmd(cmd);
 987		} else {
 988			scsi_release_buffers(cmd);
 989			scsi_requeue_command(q, cmd);
 990		}
 991		break;
 992	case ACTION_RETRY:
 993		/* Retry the same command immediately */
 994		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
 995		break;
 996	case ACTION_DELAYED_RETRY:
 997		/* Retry the same command after a delay */
 998		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
 999		break;
1000	}
1001}
1002
1003static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004{
1005	int count;
 
 
 
 
 
1006
1007	/*
1008	 * If sg table allocation fails, requeue request later.
 
1009	 */
1010	if (unlikely(sg_alloc_table_chained(&sdb->table,
1011			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1012		return BLKPREP_DEFER;
1013
1014	/* 
1015	 * Next, walk the list, and fill in the addresses and sizes of
1016	 * each segment.
1017	 */
1018	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1019	BUG_ON(count > sdb->table.nents);
1020	sdb->table.nents = count;
1021	sdb->length = blk_rq_payload_bytes(req);
1022	return BLKPREP_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023}
1024
1025/*
1026 * Function:    scsi_init_io()
1027 *
1028 * Purpose:     SCSI I/O initialize function.
 
 
 
 
 
 
 
1029 *
1030 * Arguments:   cmd   - Command descriptor we wish to initialize
 
1031 *
1032 * Returns:     0 on success
1033 *		BLKPREP_DEFER if the failure is retryable
1034 *		BLKPREP_KILL if the failure is fatal
 
1035 */
1036int scsi_init_io(struct scsi_cmnd *cmd)
1037{
1038	struct scsi_device *sdev = cmd->device;
1039	struct request *rq = cmd->request;
1040	bool is_mq = (rq->mq_ctx != NULL);
1041	int error;
 
 
 
1042
1043	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1044		return -EINVAL;
1045
1046	error = scsi_init_sgtable(rq, &cmd->sdb);
1047	if (error)
1048		goto err_exit;
1049
1050	if (blk_bidi_rq(rq)) {
1051		if (!rq->q->mq_ops) {
1052			struct scsi_data_buffer *bidi_sdb =
1053				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1054			if (!bidi_sdb) {
1055				error = BLKPREP_DEFER;
1056				goto err_exit;
1057			}
1058
1059			rq->next_rq->special = bidi_sdb;
1060		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061
1062		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1063		if (error)
1064			goto err_exit;
1065	}
1066
 
 
 
 
1067	if (blk_integrity_rq(rq)) {
1068		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1069		int ivecs, count;
1070
1071		if (prot_sdb == NULL) {
1072			/*
1073			 * This can happen if someone (e.g. multipath)
1074			 * queues a command to a device on an adapter
1075			 * that does not support DIX.
1076			 */
1077			WARN_ON_ONCE(1);
1078			error = BLKPREP_KILL;
1079			goto err_exit;
1080		}
1081
1082		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1083
1084		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1085				prot_sdb->table.sgl)) {
1086			error = BLKPREP_DEFER;
1087			goto err_exit;
 
1088		}
1089
1090		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1091						prot_sdb->table.sgl);
1092		BUG_ON(unlikely(count > ivecs));
1093		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1094
1095		cmd->prot_sdb = prot_sdb;
1096		cmd->prot_sdb->table.nents = count;
1097	}
1098
1099	return BLKPREP_OK;
1100err_exit:
1101	if (is_mq) {
1102		scsi_mq_free_sgtables(cmd);
1103	} else {
1104		scsi_release_buffers(cmd);
1105		cmd->request->special = NULL;
1106		scsi_put_command(cmd);
1107		put_device(&sdev->sdev_gendev);
1108	}
1109	return error;
1110}
1111EXPORT_SYMBOL(scsi_init_io);
1112
1113static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1114		struct request *req)
 
 
 
 
 
 
 
1115{
1116	struct scsi_cmnd *cmd;
1117
1118	if (!req->special) {
1119		/* Bail if we can't get a reference to the device */
1120		if (!get_device(&sdev->sdev_gendev))
1121			return NULL;
1122
1123		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1124		if (unlikely(!cmd)) {
1125			put_device(&sdev->sdev_gendev);
1126			return NULL;
1127		}
1128		req->special = cmd;
1129	} else {
1130		cmd = req->special;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1131	}
 
1132
1133	/* pull a tag out of the request if we have one */
1134	cmd->tag = req->tag;
1135	cmd->request = req;
 
1136
1137	cmd->cmnd = req->cmd;
1138	cmd->prot_op = SCSI_PROT_NORMAL;
 
 
1139
1140	return cmd;
 
 
1141}
1142
1143static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
 
1144{
1145	struct scsi_cmnd *cmd = req->special;
1146
1147	/*
1148	 * BLOCK_PC requests may transfer data, in which case they must
1149	 * a bio attached to them.  Or they might contain a SCSI command
1150	 * that does not transfer data, in which case they may optionally
1151	 * submit a request without an attached bio.
1152	 */
1153	if (req->bio) {
1154		int ret = scsi_init_io(cmd);
1155		if (unlikely(ret))
1156			return ret;
1157	} else {
1158		BUG_ON(blk_rq_bytes(req));
1159
1160		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1161	}
1162
1163	cmd->cmd_len = req->cmd_len;
1164	cmd->transfersize = blk_rq_bytes(req);
1165	cmd->allowed = req->retries;
1166	return BLKPREP_OK;
1167}
1168
1169/*
1170 * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1171 * that still need to be translated to SCSI CDBs from the ULD.
1172 */
1173static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1174{
1175	struct scsi_cmnd *cmd = req->special;
1176
1177	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1178		int ret = sdev->handler->prep_fn(sdev, req);
1179		if (ret != BLKPREP_OK)
1180			return ret;
1181	}
1182
1183	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1184	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1185}
1186
1187static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1188{
1189	struct scsi_cmnd *cmd = req->special;
1190
1191	if (!blk_rq_bytes(req))
1192		cmd->sc_data_direction = DMA_NONE;
1193	else if (rq_data_dir(req) == WRITE)
1194		cmd->sc_data_direction = DMA_TO_DEVICE;
1195	else
1196		cmd->sc_data_direction = DMA_FROM_DEVICE;
1197
1198	switch (req->cmd_type) {
1199	case REQ_TYPE_FS:
1200		return scsi_setup_fs_cmnd(sdev, req);
1201	case REQ_TYPE_BLOCK_PC:
1202		return scsi_setup_blk_pc_cmnd(sdev, req);
1203	default:
1204		return BLKPREP_KILL;
1205	}
1206}
1207
1208static int
1209scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1210{
1211	int ret = BLKPREP_OK;
1212
1213	/*
1214	 * If the device is not in running state we will reject some
1215	 * or all commands.
1216	 */
1217	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1218		switch (sdev->sdev_state) {
1219		case SDEV_OFFLINE:
1220		case SDEV_TRANSPORT_OFFLINE:
1221			/*
1222			 * If the device is offline we refuse to process any
1223			 * commands.  The device must be brought online
1224			 * before trying any recovery commands.
1225			 */
1226			sdev_printk(KERN_ERR, sdev,
1227				    "rejecting I/O to offline device\n");
1228			ret = BLKPREP_KILL;
1229			break;
1230		case SDEV_DEL:
1231			/*
1232			 * If the device is fully deleted, we refuse to
1233			 * process any commands as well.
1234			 */
1235			sdev_printk(KERN_ERR, sdev,
1236				    "rejecting I/O to dead device\n");
1237			ret = BLKPREP_KILL;
1238			break;
1239		case SDEV_BLOCK:
1240		case SDEV_CREATED_BLOCK:
1241			ret = BLKPREP_DEFER;
1242			break;
1243		case SDEV_QUIESCE:
1244			/*
1245			 * If the devices is blocked we defer normal commands.
1246			 */
1247			if (!(req->rq_flags & RQF_PREEMPT))
1248				ret = BLKPREP_DEFER;
1249			break;
1250		default:
1251			/*
1252			 * For any other not fully online state we only allow
1253			 * special commands.  In particular any user initiated
1254			 * command is not allowed.
1255			 */
1256			if (!(req->rq_flags & RQF_PREEMPT))
1257				ret = BLKPREP_KILL;
1258			break;
1259		}
1260	}
1261	return ret;
1262}
1263
1264static int
1265scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1266{
1267	struct scsi_device *sdev = q->queuedata;
1268
1269	switch (ret) {
1270	case BLKPREP_KILL:
1271	case BLKPREP_INVALID:
1272		req->errors = DID_NO_CONNECT << 16;
1273		/* release the command and kill it */
1274		if (req->special) {
1275			struct scsi_cmnd *cmd = req->special;
1276			scsi_release_buffers(cmd);
1277			scsi_put_command(cmd);
1278			put_device(&sdev->sdev_gendev);
1279			req->special = NULL;
1280		}
1281		break;
1282	case BLKPREP_DEFER:
1283		/*
1284		 * If we defer, the blk_peek_request() returns NULL, but the
1285		 * queue must be restarted, so we schedule a callback to happen
1286		 * shortly.
1287		 */
1288		if (atomic_read(&sdev->device_busy) == 0)
1289			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1290		break;
 
 
 
 
 
 
 
 
 
 
 
1291	default:
1292		req->rq_flags |= RQF_DONTPREP;
1293	}
1294
1295	return ret;
1296}
1297
1298static int scsi_prep_fn(struct request_queue *q, struct request *req)
1299{
1300	struct scsi_device *sdev = q->queuedata;
1301	struct scsi_cmnd *cmd;
1302	int ret;
1303
1304	ret = scsi_prep_state_check(sdev, req);
1305	if (ret != BLKPREP_OK)
1306		goto out;
1307
1308	cmd = scsi_get_cmd_from_req(sdev, req);
1309	if (unlikely(!cmd)) {
1310		ret = BLKPREP_DEFER;
1311		goto out;
1312	}
1313
1314	ret = scsi_setup_cmnd(sdev, req);
1315out:
1316	return scsi_prep_return(q, req, ret);
1317}
1318
1319static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1320{
1321	scsi_uninit_cmd(req->special);
1322}
1323
1324/*
1325 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1326 * return 0.
1327 *
1328 * Called with the queue_lock held.
1329 */
1330static inline int scsi_dev_queue_ready(struct request_queue *q,
1331				  struct scsi_device *sdev)
1332{
1333	unsigned int busy;
1334
1335	busy = atomic_inc_return(&sdev->device_busy) - 1;
1336	if (atomic_read(&sdev->device_blocked)) {
1337		if (busy)
 
 
 
1338			goto out_dec;
1339
1340		/*
1341		 * unblock after device_blocked iterates to zero
1342		 */
1343		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1344			/*
1345			 * For the MQ case we take care of this in the caller.
1346			 */
1347			if (!q->mq_ops)
1348				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1349			goto out_dec;
1350		}
1351		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1352				   "unblocking device at zero depth\n"));
1353	}
1354
1355	if (busy >= sdev->queue_depth)
1356		goto out_dec;
1357
1358	return 1;
1359out_dec:
1360	atomic_dec(&sdev->device_busy);
1361	return 0;
 
 
1362}
1363
1364/*
1365 * scsi_target_queue_ready: checks if there we can send commands to target
1366 * @sdev: scsi device on starget to check.
1367 */
1368static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1369					   struct scsi_device *sdev)
1370{
1371	struct scsi_target *starget = scsi_target(sdev);
1372	unsigned int busy;
1373
1374	if (starget->single_lun) {
1375		spin_lock_irq(shost->host_lock);
1376		if (starget->starget_sdev_user &&
1377		    starget->starget_sdev_user != sdev) {
1378			spin_unlock_irq(shost->host_lock);
1379			return 0;
1380		}
1381		starget->starget_sdev_user = sdev;
1382		spin_unlock_irq(shost->host_lock);
1383	}
1384
1385	if (starget->can_queue <= 0)
1386		return 1;
1387
1388	busy = atomic_inc_return(&starget->target_busy) - 1;
1389	if (atomic_read(&starget->target_blocked) > 0) {
1390		if (busy)
1391			goto starved;
1392
1393		/*
1394		 * unblock after target_blocked iterates to zero
1395		 */
1396		if (atomic_dec_return(&starget->target_blocked) > 0)
1397			goto out_dec;
1398
1399		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1400				 "unblocking target at zero depth\n"));
1401	}
1402
1403	if (busy >= starget->can_queue)
1404		goto starved;
1405
1406	return 1;
1407
1408starved:
1409	spin_lock_irq(shost->host_lock);
1410	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1411	spin_unlock_irq(shost->host_lock);
1412out_dec:
1413	if (starget->can_queue > 0)
1414		atomic_dec(&starget->target_busy);
1415	return 0;
1416}
1417
1418/*
1419 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1420 * return 0. We must end up running the queue again whenever 0 is
1421 * returned, else IO can hang.
1422 */
1423static inline int scsi_host_queue_ready(struct request_queue *q,
1424				   struct Scsi_Host *shost,
1425				   struct scsi_device *sdev)
 
1426{
1427	unsigned int busy;
1428
1429	if (scsi_host_in_recovery(shost))
1430		return 0;
1431
1432	busy = atomic_inc_return(&shost->host_busy) - 1;
1433	if (atomic_read(&shost->host_blocked) > 0) {
1434		if (busy)
1435			goto starved;
1436
1437		/*
1438		 * unblock after host_blocked iterates to zero
1439		 */
1440		if (atomic_dec_return(&shost->host_blocked) > 0)
1441			goto out_dec;
1442
1443		SCSI_LOG_MLQUEUE(3,
1444			shost_printk(KERN_INFO, shost,
1445				     "unblocking host at zero depth\n"));
1446	}
1447
1448	if (shost->can_queue > 0 && busy >= shost->can_queue)
1449		goto starved;
1450	if (shost->host_self_blocked)
1451		goto starved;
1452
1453	/* We're OK to process the command, so we can't be starved */
1454	if (!list_empty(&sdev->starved_entry)) {
1455		spin_lock_irq(shost->host_lock);
1456		if (!list_empty(&sdev->starved_entry))
1457			list_del_init(&sdev->starved_entry);
1458		spin_unlock_irq(shost->host_lock);
1459	}
1460
 
 
1461	return 1;
1462
1463starved:
1464	spin_lock_irq(shost->host_lock);
1465	if (list_empty(&sdev->starved_entry))
1466		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1467	spin_unlock_irq(shost->host_lock);
1468out_dec:
1469	atomic_dec(&shost->host_busy);
1470	return 0;
1471}
1472
1473/*
1474 * Busy state exporting function for request stacking drivers.
1475 *
1476 * For efficiency, no lock is taken to check the busy state of
1477 * shost/starget/sdev, since the returned value is not guaranteed and
1478 * may be changed after request stacking drivers call the function,
1479 * regardless of taking lock or not.
1480 *
1481 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1482 * needs to return 'not busy'. Otherwise, request stacking drivers
1483 * may hold requests forever.
1484 */
1485static int scsi_lld_busy(struct request_queue *q)
1486{
1487	struct scsi_device *sdev = q->queuedata;
1488	struct Scsi_Host *shost;
1489
1490	if (blk_queue_dying(q))
1491		return 0;
1492
1493	shost = sdev->host;
1494
1495	/*
1496	 * Ignore host/starget busy state.
1497	 * Since block layer does not have a concept of fairness across
1498	 * multiple queues, congestion of host/starget needs to be handled
1499	 * in SCSI layer.
1500	 */
1501	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1502		return 1;
1503
1504	return 0;
1505}
1506
1507/*
1508 * Kill a request for a dead device
 
1509 */
1510static void scsi_kill_request(struct request *req, struct request_queue *q)
1511{
1512	struct scsi_cmnd *cmd = req->special;
1513	struct scsi_device *sdev;
1514	struct scsi_target *starget;
1515	struct Scsi_Host *shost;
1516
1517	blk_start_request(req);
1518
1519	scmd_printk(KERN_INFO, cmd, "killing request\n");
1520
1521	sdev = cmd->device;
1522	starget = scsi_target(sdev);
1523	shost = sdev->host;
1524	scsi_init_cmd_errh(cmd);
1525	cmd->result = DID_NO_CONNECT << 16;
1526	atomic_inc(&cmd->device->iorequest_cnt);
1527
1528	/*
1529	 * SCSI request completion path will do scsi_device_unbusy(),
1530	 * bump busy counts.  To bump the counters, we need to dance
1531	 * with the locks as normal issue path does.
1532	 */
1533	atomic_inc(&sdev->device_busy);
1534	atomic_inc(&shost->host_busy);
1535	if (starget->can_queue > 0)
1536		atomic_inc(&starget->target_busy);
1537
1538	blk_complete_request(req);
1539}
1540
1541static void scsi_softirq_done(struct request *rq)
1542{
1543	struct scsi_cmnd *cmd = rq->special;
1544	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1545	int disposition;
1546
1547	INIT_LIST_HEAD(&cmd->eh_entry);
1548
1549	atomic_inc(&cmd->device->iodone_cnt);
1550	if (cmd->result)
1551		atomic_inc(&cmd->device->ioerr_cnt);
1552
1553	disposition = scsi_decide_disposition(cmd);
1554	if (disposition != SUCCESS &&
1555	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1556		sdev_printk(KERN_ERR, cmd->device,
1557			    "timing out command, waited %lus\n",
1558			    wait_for/HZ);
1559		disposition = SUCCESS;
1560	}
1561
1562	scsi_log_completion(cmd, disposition);
1563
1564	switch (disposition) {
1565		case SUCCESS:
1566			scsi_finish_command(cmd);
1567			break;
1568		case NEEDS_RETRY:
1569			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1570			break;
1571		case ADD_TO_MLQUEUE:
1572			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1573			break;
1574		default:
1575			if (!scsi_eh_scmd_add(cmd, 0))
1576				scsi_finish_command(cmd);
1577	}
1578}
1579
1580/**
1581 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1582 * @cmd: command block we are dispatching.
1583 *
1584 * Return: nonzero return request was rejected and device's queue needs to be
1585 * plugged.
1586 */
1587static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1588{
1589	struct Scsi_Host *host = cmd->device->host;
1590	int rtn = 0;
1591
1592	atomic_inc(&cmd->device->iorequest_cnt);
1593
1594	/* check if the device is still usable */
1595	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1596		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1597		 * returns an immediate error upwards, and signals
1598		 * that the device is no longer present */
1599		cmd->result = DID_NO_CONNECT << 16;
1600		goto done;
1601	}
1602
1603	/* Check to see if the scsi lld made this device blocked. */
1604	if (unlikely(scsi_device_blocked(cmd->device))) {
1605		/*
1606		 * in blocked state, the command is just put back on
1607		 * the device queue.  The suspend state has already
1608		 * blocked the queue so future requests should not
1609		 * occur until the device transitions out of the
1610		 * suspend state.
1611		 */
1612		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1613			"queuecommand : device blocked\n"));
1614		return SCSI_MLQUEUE_DEVICE_BUSY;
1615	}
1616
1617	/* Store the LUN value in cmnd, if needed. */
1618	if (cmd->device->lun_in_cdb)
1619		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1620			       (cmd->device->lun << 5 & 0xe0);
1621
1622	scsi_log_send(cmd);
1623
1624	/*
1625	 * Before we queue this command, check if the command
1626	 * length exceeds what the host adapter can handle.
1627	 */
1628	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1629		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1630			       "queuecommand : command too long. "
1631			       "cdb_size=%d host->max_cmd_len=%d\n",
1632			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1633		cmd->result = (DID_ABORT << 16);
1634		goto done;
1635	}
1636
1637	if (unlikely(host->shost_state == SHOST_DEL)) {
1638		cmd->result = (DID_NO_CONNECT << 16);
1639		goto done;
1640
1641	}
1642
1643	trace_scsi_dispatch_cmd_start(cmd);
1644	rtn = host->hostt->queuecommand(host, cmd);
1645	if (rtn) {
1646		trace_scsi_dispatch_cmd_error(cmd, rtn);
1647		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1648		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1649			rtn = SCSI_MLQUEUE_HOST_BUSY;
1650
1651		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1652			"queuecommand : request rejected\n"));
1653	}
1654
1655	return rtn;
1656 done:
1657	cmd->scsi_done(cmd);
1658	return 0;
1659}
1660
1661/**
1662 * scsi_done - Invoke completion on finished SCSI command.
1663 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1664 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1665 *
1666 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1667 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1668 * calls blk_complete_request() for further processing.
1669 *
1670 * This function is interrupt context safe.
1671 */
1672static void scsi_done(struct scsi_cmnd *cmd)
1673{
1674	trace_scsi_dispatch_cmd_done(cmd);
1675	blk_complete_request(cmd->request);
1676}
1677
1678/*
1679 * Function:    scsi_request_fn()
1680 *
1681 * Purpose:     Main strategy routine for SCSI.
1682 *
1683 * Arguments:   q       - Pointer to actual queue.
1684 *
1685 * Returns:     Nothing
1686 *
1687 * Lock status: IO request lock assumed to be held when called.
1688 */
1689static void scsi_request_fn(struct request_queue *q)
1690	__releases(q->queue_lock)
1691	__acquires(q->queue_lock)
1692{
1693	struct scsi_device *sdev = q->queuedata;
1694	struct Scsi_Host *shost;
1695	struct scsi_cmnd *cmd;
1696	struct request *req;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1697
1698	/*
1699	 * To start with, we keep looping until the queue is empty, or until
1700	 * the host is no longer able to accept any more requests.
1701	 */
1702	shost = sdev->host;
1703	for (;;) {
1704		int rtn;
1705		/*
1706		 * get next queueable request.  We do this early to make sure
1707		 * that the request is fully prepared even if we cannot
1708		 * accept it.
1709		 */
1710		req = blk_peek_request(q);
1711		if (!req)
1712			break;
1713
1714		if (unlikely(!scsi_device_online(sdev))) {
1715			sdev_printk(KERN_ERR, sdev,
1716				    "rejecting I/O to offline device\n");
1717			scsi_kill_request(req, q);
1718			continue;
1719		}
1720
1721		if (!scsi_dev_queue_ready(q, sdev))
1722			break;
1723
1724		/*
1725		 * Remove the request from the request list.
1726		 */
1727		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1728			blk_start_request(req);
1729
1730		spin_unlock_irq(q->queue_lock);
1731		cmd = req->special;
1732		if (unlikely(cmd == NULL)) {
1733			printk(KERN_CRIT "impossible request in %s.\n"
1734					 "please mail a stack trace to "
1735					 "linux-scsi@vger.kernel.org\n",
1736					 __func__);
1737			blk_dump_rq_flags(req, "foo");
1738			BUG();
1739		}
1740
1741		/*
1742		 * We hit this when the driver is using a host wide
1743		 * tag map. For device level tag maps the queue_depth check
1744		 * in the device ready fn would prevent us from trying
1745		 * to allocate a tag. Since the map is a shared host resource
1746		 * we add the dev to the starved list so it eventually gets
1747		 * a run when a tag is freed.
1748		 */
1749		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1750			spin_lock_irq(shost->host_lock);
1751			if (list_empty(&sdev->starved_entry))
1752				list_add_tail(&sdev->starved_entry,
1753					      &shost->starved_list);
1754			spin_unlock_irq(shost->host_lock);
1755			goto not_ready;
1756		}
1757
1758		if (!scsi_target_queue_ready(shost, sdev))
1759			goto not_ready;
1760
1761		if (!scsi_host_queue_ready(q, shost, sdev))
1762			goto host_not_ready;
1763	
1764		if (sdev->simple_tags)
1765			cmd->flags |= SCMD_TAGGED;
1766		else
1767			cmd->flags &= ~SCMD_TAGGED;
1768
1769		/*
1770		 * Finally, initialize any error handling parameters, and set up
1771		 * the timers for timeouts.
1772		 */
1773		scsi_init_cmd_errh(cmd);
1774
1775		/*
1776		 * Dispatch the command to the low-level driver.
1777		 */
1778		cmd->scsi_done = scsi_done;
1779		rtn = scsi_dispatch_cmd(cmd);
1780		if (rtn) {
1781			scsi_queue_insert(cmd, rtn);
1782			spin_lock_irq(q->queue_lock);
1783			goto out_delay;
1784		}
1785		spin_lock_irq(q->queue_lock);
1786	}
1787
1788	return;
 
 
 
 
1789
1790 host_not_ready:
1791	if (scsi_target(sdev)->can_queue > 0)
1792		atomic_dec(&scsi_target(sdev)->target_busy);
1793 not_ready:
1794	/*
1795	 * lock q, handle tag, requeue req, and decrement device_busy. We
1796	 * must return with queue_lock held.
1797	 *
1798	 * Decrementing device_busy without checking it is OK, as all such
1799	 * cases (host limits or settings) should run the queue at some
1800	 * later time.
1801	 */
1802	spin_lock_irq(q->queue_lock);
1803	blk_requeue_request(q, req);
1804	atomic_dec(&sdev->device_busy);
1805out_delay:
1806	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1807		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1808}
1809
1810static inline int prep_to_mq(int ret)
1811{
1812	switch (ret) {
1813	case BLKPREP_OK:
1814		return BLK_MQ_RQ_QUEUE_OK;
1815	case BLKPREP_DEFER:
1816		return BLK_MQ_RQ_QUEUE_BUSY;
1817	default:
1818		return BLK_MQ_RQ_QUEUE_ERROR;
1819	}
1820}
 
1821
1822static int scsi_mq_prep_fn(struct request *req)
1823{
1824	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1825	struct scsi_device *sdev = req->q->queuedata;
1826	struct Scsi_Host *shost = sdev->host;
1827	unsigned char *sense_buf = cmd->sense_buffer;
1828	struct scatterlist *sg;
1829
1830	memset(cmd, 0, sizeof(struct scsi_cmnd));
1831
1832	req->special = cmd;
1833
1834	cmd->request = req;
1835	cmd->device = sdev;
1836	cmd->sense_buffer = sense_buf;
1837
1838	cmd->tag = req->tag;
1839
1840	cmd->cmnd = req->cmd;
1841	cmd->prot_op = SCSI_PROT_NORMAL;
 
1842
1843	INIT_LIST_HEAD(&cmd->list);
1844	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1845	cmd->jiffies_at_alloc = jiffies;
1846
1847	if (shost->use_cmd_list) {
1848		spin_lock_irq(&sdev->list_lock);
1849		list_add_tail(&cmd->list, &sdev->cmd_list);
1850		spin_unlock_irq(&sdev->list_lock);
1851	}
 
1852
1853	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1854	cmd->sdb.table.sgl = sg;
 
 
1855
1856	if (scsi_host_get_prot(shost)) {
1857		cmd->prot_sdb = (void *)sg +
1858			min_t(unsigned int,
1859			      shost->sg_tablesize, SG_CHUNK_SIZE) *
1860			sizeof(struct scatterlist);
1861		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1862
1863		cmd->prot_sdb->table.sgl =
1864			(struct scatterlist *)(cmd->prot_sdb + 1);
1865	}
1866
1867	if (blk_bidi_rq(req)) {
1868		struct request *next_rq = req->next_rq;
1869		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1870
1871		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1872		bidi_sdb->table.sgl =
1873			(struct scatterlist *)(bidi_sdb + 1);
1874
1875		next_rq->special = bidi_sdb;
1876	}
 
 
 
 
 
 
 
 
 
 
 
1877
1878	blk_mq_start_request(req);
 
 
1879
1880	return scsi_setup_cmnd(sdev, req);
1881}
1882
1883static void scsi_mq_done(struct scsi_cmnd *cmd)
1884{
1885	trace_scsi_dispatch_cmd_done(cmd);
1886	blk_mq_complete_request(cmd->request, cmd->request->errors);
 
1887}
1888
1889static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1890			 const struct blk_mq_queue_data *bd)
1891{
1892	struct request *req = bd->rq;
1893	struct request_queue *q = req->q;
1894	struct scsi_device *sdev = q->queuedata;
1895	struct Scsi_Host *shost = sdev->host;
1896	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1897	int ret;
1898	int reason;
1899
1900	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1901	if (ret != BLK_MQ_RQ_QUEUE_OK)
1902		goto out;
1903
1904	ret = BLK_MQ_RQ_QUEUE_BUSY;
1905	if (!get_device(&sdev->sdev_gendev))
1906		goto out;
1907
1908	if (!scsi_dev_queue_ready(q, sdev))
1909		goto out_put_device;
 
 
 
 
 
 
 
 
 
1910	if (!scsi_target_queue_ready(shost, sdev))
1911		goto out_dec_device_busy;
1912	if (!scsi_host_queue_ready(q, shost, sdev))
 
 
 
 
 
1913		goto out_dec_target_busy;
1914
1915
1916	if (!(req->rq_flags & RQF_DONTPREP)) {
1917		ret = prep_to_mq(scsi_mq_prep_fn(req));
1918		if (ret != BLK_MQ_RQ_QUEUE_OK)
1919			goto out_dec_host_busy;
1920		req->rq_flags |= RQF_DONTPREP;
1921	} else {
1922		blk_mq_start_request(req);
1923	}
1924
 
1925	if (sdev->simple_tags)
1926		cmd->flags |= SCMD_TAGGED;
1927	else
1928		cmd->flags &= ~SCMD_TAGGED;
1929
1930	scsi_init_cmd_errh(cmd);
1931	cmd->scsi_done = scsi_mq_done;
 
1932
 
1933	reason = scsi_dispatch_cmd(cmd);
1934	if (reason) {
1935		scsi_set_blocked(cmd, reason);
1936		ret = BLK_MQ_RQ_QUEUE_BUSY;
1937		goto out_dec_host_busy;
1938	}
1939
1940	return BLK_MQ_RQ_QUEUE_OK;
 
1941
1942out_dec_host_busy:
1943	atomic_dec(&shost->host_busy);
1944out_dec_target_busy:
1945	if (scsi_target(sdev)->can_queue > 0)
1946		atomic_dec(&scsi_target(sdev)->target_busy);
1947out_dec_device_busy:
1948	atomic_dec(&sdev->device_busy);
1949out_put_device:
1950	put_device(&sdev->sdev_gendev);
1951out:
1952	switch (ret) {
1953	case BLK_MQ_RQ_QUEUE_BUSY:
1954		if (atomic_read(&sdev->device_busy) == 0 &&
1955		    !scsi_device_blocked(sdev))
1956			blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
 
 
1957		break;
1958	case BLK_MQ_RQ_QUEUE_ERROR:
 
 
 
 
 
 
 
 
 
1959		/*
1960		 * Make sure to release all allocated ressources when
1961		 * we hit an error, as we will never see this command
1962		 * again.
1963		 */
1964		if (req->rq_flags & RQF_DONTPREP)
1965			scsi_mq_uninit_cmd(cmd);
1966		break;
1967	default:
1968		break;
1969	}
1970	return ret;
1971}
1972
1973static enum blk_eh_timer_return scsi_timeout(struct request *req,
1974		bool reserved)
1975{
1976	if (reserved)
1977		return BLK_EH_RESET_TIMER;
1978	return scsi_times_out(req);
1979}
1980
1981static int scsi_init_request(void *data, struct request *rq,
1982		unsigned int hctx_idx, unsigned int request_idx,
1983		unsigned int numa_node)
1984{
 
1985	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
 
 
1986
1987	cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1988			numa_node);
1989	if (!cmd->sense_buffer)
1990		return -ENOMEM;
1991	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1992}
1993
1994static void scsi_exit_request(void *data, struct request *rq,
1995		unsigned int hctx_idx, unsigned int request_idx)
1996{
 
1997	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1998
1999	kfree(cmd->sense_buffer);
 
 
2000}
2001
2002static int scsi_map_queues(struct blk_mq_tag_set *set)
 
2003{
2004	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2005
2006	if (shost->hostt->map_queues)
2007		return shost->hostt->map_queues(shost);
2008	return blk_mq_map_queues(set);
 
2009}
2010
2011static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
 
2012{
2013	struct device *host_dev;
2014	u64 bounce_limit = 0xffffffff;
2015
2016	if (shost->unchecked_isa_dma)
2017		return BLK_BOUNCE_ISA;
2018	/*
2019	 * Platforms with virtual-DMA translation
2020	 * hardware have no practical limit.
2021	 */
2022	if (!PCI_DMA_BUS_IS_PHYS)
2023		return BLK_BOUNCE_ANY;
2024
2025	host_dev = scsi_get_device(shost);
2026	if (host_dev && host_dev->dma_mask)
2027		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2028
2029	return bounce_limit;
 
 
2030}
2031
2032static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2033{
2034	struct device *dev = shost->dma_dev;
2035
2036	/*
2037	 * this limit is imposed by hardware restrictions
2038	 */
2039	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2040					SG_MAX_SEGMENTS));
2041
2042	if (scsi_host_prot_dma(shost)) {
2043		shost->sg_prot_tablesize =
2044			min_not_zero(shost->sg_prot_tablesize,
2045				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2046		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2047		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2048	}
2049
2050	blk_queue_max_hw_sectors(q, shost->max_sectors);
2051	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2052	blk_queue_segment_boundary(q, shost->dma_boundary);
2053	dma_set_seg_boundary(dev, shost->dma_boundary);
2054
2055	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2056
2057	if (!shost->use_clustering)
2058		q->limits.cluster = 0;
2059
2060	/*
2061	 * set a reasonable default alignment on word boundaries: the
2062	 * host and device may alter it using
2063	 * blk_queue_update_dma_alignment() later.
 
 
2064	 */
2065	blk_queue_dma_alignment(q, 0x03);
2066}
 
2067
2068struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2069					 request_fn_proc *request_fn)
2070{
2071	struct request_queue *q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2072
2073	q = blk_init_queue(request_fn, NULL);
2074	if (!q)
2075		return NULL;
2076	__scsi_init_queue(shost, q);
2077	return q;
2078}
2079EXPORT_SYMBOL(__scsi_alloc_queue);
2080
2081struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2082{
2083	struct request_queue *q;
2084
2085	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2086	if (!q)
2087		return NULL;
2088
2089	blk_queue_prep_rq(q, scsi_prep_fn);
2090	blk_queue_unprep_rq(q, scsi_unprep_fn);
2091	blk_queue_softirq_done(q, scsi_softirq_done);
2092	blk_queue_rq_timed_out(q, scsi_times_out);
2093	blk_queue_lld_busy(q, scsi_lld_busy);
2094	return q;
2095}
2096
2097static struct blk_mq_ops scsi_mq_ops = {
 
 
2098	.queue_rq	= scsi_queue_rq,
2099	.complete	= scsi_softirq_done,
 
2100	.timeout	= scsi_timeout,
2101	.init_request	= scsi_init_request,
2102	.exit_request	= scsi_exit_request,
 
 
 
 
 
2103	.map_queues	= scsi_map_queues,
 
 
 
 
2104};
2105
2106struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2107{
2108	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2109	if (IS_ERR(sdev->request_queue))
2110		return NULL;
2111
2112	sdev->request_queue->queuedata = sdev;
2113	__scsi_init_queue(sdev->host, sdev->request_queue);
2114	return sdev->request_queue;
2115}
2116
2117int scsi_mq_setup_tags(struct Scsi_Host *shost)
2118{
2119	unsigned int cmd_size, sgl_size, tbl_size;
 
2120
2121	tbl_size = shost->sg_tablesize;
2122	if (tbl_size > SG_CHUNK_SIZE)
2123		tbl_size = SG_CHUNK_SIZE;
2124	sgl_size = tbl_size * sizeof(struct scatterlist);
2125	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2126	if (scsi_host_get_prot(shost))
2127		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
 
2128
2129	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2130	shost->tag_set.ops = &scsi_mq_ops;
2131	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2132	shost->tag_set.queue_depth = shost->can_queue;
2133	shost->tag_set.cmd_size = cmd_size;
2134	shost->tag_set.numa_node = NUMA_NO_NODE;
2135	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2136	shost->tag_set.flags |=
 
 
 
 
2137		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2138	shost->tag_set.driver_data = shost;
 
 
2139
2140	return blk_mq_alloc_tag_set(&shost->tag_set);
2141}
2142
2143void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2144{
 
 
 
2145	blk_mq_free_tag_set(&shost->tag_set);
 
2146}
2147
2148/**
2149 * scsi_device_from_queue - return sdev associated with a request_queue
2150 * @q: The request queue to return the sdev from
2151 *
2152 * Return the sdev associated with a request queue or NULL if the
2153 * request_queue does not reference a SCSI device.
2154 */
2155struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2156{
2157	struct scsi_device *sdev = NULL;
2158
2159	if (q->mq_ops) {
2160		if (q->mq_ops == &scsi_mq_ops)
2161			sdev = q->queuedata;
2162	} else if (q->request_fn == scsi_request_fn)
2163		sdev = q->queuedata;
2164	if (!sdev || !get_device(&sdev->sdev_gendev))
2165		sdev = NULL;
2166
2167	return sdev;
2168}
 
 
 
 
 
 
2169EXPORT_SYMBOL_GPL(scsi_device_from_queue);
 
2170
2171/*
2172 * Function:    scsi_block_requests()
2173 *
2174 * Purpose:     Utility function used by low-level drivers to prevent further
2175 *		commands from being queued to the device.
2176 *
2177 * Arguments:   shost       - Host in question
2178 *
2179 * Returns:     Nothing
2180 *
2181 * Lock status: No locks are assumed held.
2182 *
2183 * Notes:       There is no timer nor any other means by which the requests
2184 *		get unblocked other than the low-level driver calling
2185 *		scsi_unblock_requests().
2186 */
2187void scsi_block_requests(struct Scsi_Host *shost)
2188{
2189	shost->host_self_blocked = 1;
2190}
2191EXPORT_SYMBOL(scsi_block_requests);
2192
2193/*
2194 * Function:    scsi_unblock_requests()
2195 *
2196 * Purpose:     Utility function used by low-level drivers to allow further
2197 *		commands from being queued to the device.
2198 *
2199 * Arguments:   shost       - Host in question
2200 *
2201 * Returns:     Nothing
2202 *
2203 * Lock status: No locks are assumed held.
2204 *
2205 * Notes:       There is no timer nor any other means by which the requests
2206 *		get unblocked other than the low-level driver calling
2207 *		scsi_unblock_requests().
2208 *
2209 *		This is done as an API function so that changes to the
2210 *		internals of the scsi mid-layer won't require wholesale
2211 *		changes to drivers that use this feature.
2212 */
2213void scsi_unblock_requests(struct Scsi_Host *shost)
2214{
2215	shost->host_self_blocked = 0;
2216	scsi_run_host_queues(shost);
2217}
2218EXPORT_SYMBOL(scsi_unblock_requests);
2219
2220int __init scsi_init_queue(void)
2221{
2222	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2223					   sizeof(struct scsi_data_buffer),
2224					   0, 0, NULL);
2225	if (!scsi_sdb_cache) {
2226		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2227		return -ENOMEM;
2228	}
2229
2230	return 0;
2231}
2232
2233void scsi_exit_queue(void)
2234{
2235	kmem_cache_destroy(scsi_sdb_cache);
2236}
2237
2238/**
2239 *	scsi_mode_select - issue a mode select
2240 *	@sdev:	SCSI device to be queried
2241 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2242 *	@sp:	Save page bit (0 == don't save, 1 == save)
2243 *	@modepage: mode page being requested
2244 *	@buffer: request buffer (may not be smaller than eight bytes)
2245 *	@len:	length of request buffer.
2246 *	@timeout: command timeout
2247 *	@retries: number of retries before failing
2248 *	@data: returns a structure abstracting the mode header data
2249 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2250 *		must be SCSI_SENSE_BUFFERSIZE big.
2251 *
2252 *	Returns zero if successful; negative error number or scsi
2253 *	status on error
2254 *
2255 */
2256int
2257scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2258		 unsigned char *buffer, int len, int timeout, int retries,
2259		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2260{
2261	unsigned char cmd[10];
2262	unsigned char *real_buffer;
2263	int ret;
2264
2265	memset(cmd, 0, sizeof(cmd));
2266	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2267
2268	if (sdev->use_10_for_ms) {
2269		if (len > 65535)
 
 
 
 
 
 
 
2270			return -EINVAL;
2271		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2272		if (!real_buffer)
2273			return -ENOMEM;
2274		memcpy(real_buffer + 8, buffer, len);
2275		len += 8;
2276		real_buffer[0] = 0;
2277		real_buffer[1] = 0;
2278		real_buffer[2] = data->medium_type;
2279		real_buffer[3] = data->device_specific;
2280		real_buffer[4] = data->longlba ? 0x01 : 0;
2281		real_buffer[5] = 0;
2282		real_buffer[6] = data->block_descriptor_length >> 8;
2283		real_buffer[7] = data->block_descriptor_length;
2284
2285		cmd[0] = MODE_SELECT_10;
2286		cmd[7] = len >> 8;
2287		cmd[8] = len;
2288	} else {
2289		if (len > 255 || data->block_descriptor_length > 255 ||
2290		    data->longlba)
2291			return -EINVAL;
2292
2293		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2294		if (!real_buffer)
2295			return -ENOMEM;
2296		memcpy(real_buffer + 4, buffer, len);
2297		len += 4;
2298		real_buffer[0] = 0;
2299		real_buffer[1] = data->medium_type;
2300		real_buffer[2] = data->device_specific;
2301		real_buffer[3] = data->block_descriptor_length;
2302		
2303
2304		cmd[0] = MODE_SELECT;
2305		cmd[4] = len;
2306	}
2307
2308	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2309			       sshdr, timeout, retries, NULL);
2310	kfree(real_buffer);
2311	return ret;
2312}
2313EXPORT_SYMBOL_GPL(scsi_mode_select);
2314
2315/**
2316 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2317 *	@sdev:	SCSI device to be queried
2318 *	@dbd:	set if mode sense will allow block descriptors to be returned
2319 *	@modepage: mode page being requested
2320 *	@buffer: request buffer (may not be smaller than eight bytes)
2321 *	@len:	length of request buffer.
2322 *	@timeout: command timeout
2323 *	@retries: number of retries before failing
2324 *	@data: returns a structure abstracting the mode header data
2325 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2326 *		must be SCSI_SENSE_BUFFERSIZE big.
2327 *
2328 *	Returns zero if unsuccessful, or the header offset (either 4
2329 *	or 8 depending on whether a six or ten byte command was
2330 *	issued) if successful.
2331 */
2332int
2333scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2334		  unsigned char *buffer, int len, int timeout, int retries,
2335		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2336{
2337	unsigned char cmd[12];
2338	int use_10_for_ms;
2339	int header_length;
2340	int result, retry_count = retries;
2341	struct scsi_sense_hdr my_sshdr;
2342
2343	memset(data, 0, sizeof(*data));
2344	memset(&cmd[0], 0, 12);
 
 
2345	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2346	cmd[2] = modepage;
2347
2348	/* caller might not be interested in sense, but we need it */
2349	if (!sshdr)
2350		sshdr = &my_sshdr;
2351
2352 retry:
2353	use_10_for_ms = sdev->use_10_for_ms;
2354
2355	if (use_10_for_ms) {
2356		if (len < 8)
2357			len = 8;
2358
2359		cmd[0] = MODE_SENSE_10;
2360		cmd[8] = len;
2361		header_length = 8;
2362	} else {
2363		if (len < 4)
2364			len = 4;
2365
2366		cmd[0] = MODE_SENSE;
2367		cmd[4] = len;
2368		header_length = 4;
2369	}
2370
2371	memset(buffer, 0, len);
2372
2373	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2374				  sshdr, timeout, retries, NULL);
 
 
2375
2376	/* This code looks awful: what it's doing is making sure an
2377	 * ILLEGAL REQUEST sense return identifies the actual command
2378	 * byte as the problem.  MODE_SENSE commands can return
2379	 * ILLEGAL REQUEST if the code page isn't supported */
2380
2381	if (use_10_for_ms && !scsi_status_is_good(result) &&
2382	    (driver_byte(result) & DRIVER_SENSE)) {
2383		if (scsi_sense_valid(sshdr)) {
2384			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2385			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2386				/* 
2387				 * Invalid command operation code
 
 
 
 
2388				 */
2389				sdev->use_10_for_ms = 0;
 
 
 
 
 
 
 
 
 
 
2390				goto retry;
2391			}
2392		}
 
2393	}
2394
2395	if(scsi_status_is_good(result)) {
2396		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2397			     (modepage == 6 || modepage == 8))) {
2398			/* Initio breakage? */
2399			header_length = 0;
2400			data->length = 13;
2401			data->medium_type = 0;
2402			data->device_specific = 0;
2403			data->longlba = 0;
2404			data->block_descriptor_length = 0;
2405		} else if(use_10_for_ms) {
2406			data->length = buffer[0]*256 + buffer[1] + 2;
2407			data->medium_type = buffer[2];
2408			data->device_specific = buffer[3];
2409			data->longlba = buffer[4] & 0x01;
2410			data->block_descriptor_length = buffer[6]*256
2411				+ buffer[7];
2412		} else {
2413			data->length = buffer[0] + 1;
2414			data->medium_type = buffer[1];
2415			data->device_specific = buffer[2];
2416			data->block_descriptor_length = buffer[3];
2417		}
2418		data->header_length = header_length;
2419	} else if ((status_byte(result) == CHECK_CONDITION) &&
2420		   scsi_sense_valid(sshdr) &&
2421		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2422		retry_count--;
2423		goto retry;
2424	}
 
2425
2426	return result;
2427}
2428EXPORT_SYMBOL(scsi_mode_sense);
2429
2430/**
2431 *	scsi_test_unit_ready - test if unit is ready
2432 *	@sdev:	scsi device to change the state of.
2433 *	@timeout: command timeout
2434 *	@retries: number of retries before failing
2435 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2436 *		returning sense. Make sure that this is cleared before passing
2437 *		in.
2438 *
2439 *	Returns zero if unsuccessful or an error if TUR failed.  For
2440 *	removable media, UNIT_ATTENTION sets ->changed flag.
2441 **/
2442int
2443scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2444		     struct scsi_sense_hdr *sshdr_external)
2445{
2446	char cmd[] = {
2447		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2448	};
2449	struct scsi_sense_hdr *sshdr;
2450	int result;
2451
2452	if (!sshdr_external)
2453		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2454	else
2455		sshdr = sshdr_external;
2456
2457	/* try to eat the UNIT_ATTENTION if there are enough retries */
2458	do {
2459		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2460					  timeout, retries, NULL);
2461		if (sdev->removable && scsi_sense_valid(sshdr) &&
2462		    sshdr->sense_key == UNIT_ATTENTION)
2463			sdev->changed = 1;
2464	} while (scsi_sense_valid(sshdr) &&
2465		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2466
2467	if (!sshdr_external)
2468		kfree(sshdr);
2469	return result;
2470}
2471EXPORT_SYMBOL(scsi_test_unit_ready);
2472
2473/**
2474 *	scsi_device_set_state - Take the given device through the device state model.
2475 *	@sdev:	scsi device to change the state of.
2476 *	@state:	state to change to.
2477 *
2478 *	Returns zero if unsuccessful or an error if the requested 
2479 *	transition is illegal.
2480 */
2481int
2482scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2483{
2484	enum scsi_device_state oldstate = sdev->sdev_state;
2485
2486	if (state == oldstate)
2487		return 0;
2488
2489	switch (state) {
2490	case SDEV_CREATED:
2491		switch (oldstate) {
2492		case SDEV_CREATED_BLOCK:
2493			break;
2494		default:
2495			goto illegal;
2496		}
2497		break;
2498			
2499	case SDEV_RUNNING:
2500		switch (oldstate) {
2501		case SDEV_CREATED:
2502		case SDEV_OFFLINE:
2503		case SDEV_TRANSPORT_OFFLINE:
2504		case SDEV_QUIESCE:
2505		case SDEV_BLOCK:
2506			break;
2507		default:
2508			goto illegal;
2509		}
2510		break;
2511
2512	case SDEV_QUIESCE:
2513		switch (oldstate) {
2514		case SDEV_RUNNING:
2515		case SDEV_OFFLINE:
2516		case SDEV_TRANSPORT_OFFLINE:
2517			break;
2518		default:
2519			goto illegal;
2520		}
2521		break;
2522
2523	case SDEV_OFFLINE:
2524	case SDEV_TRANSPORT_OFFLINE:
2525		switch (oldstate) {
2526		case SDEV_CREATED:
2527		case SDEV_RUNNING:
2528		case SDEV_QUIESCE:
2529		case SDEV_BLOCK:
2530			break;
2531		default:
2532			goto illegal;
2533		}
2534		break;
2535
2536	case SDEV_BLOCK:
2537		switch (oldstate) {
2538		case SDEV_RUNNING:
2539		case SDEV_CREATED_BLOCK:
 
 
2540			break;
2541		default:
2542			goto illegal;
2543		}
2544		break;
2545
2546	case SDEV_CREATED_BLOCK:
2547		switch (oldstate) {
2548		case SDEV_CREATED:
2549			break;
2550		default:
2551			goto illegal;
2552		}
2553		break;
2554
2555	case SDEV_CANCEL:
2556		switch (oldstate) {
2557		case SDEV_CREATED:
2558		case SDEV_RUNNING:
2559		case SDEV_QUIESCE:
2560		case SDEV_OFFLINE:
2561		case SDEV_TRANSPORT_OFFLINE:
2562		case SDEV_BLOCK:
2563			break;
2564		default:
2565			goto illegal;
2566		}
2567		break;
2568
2569	case SDEV_DEL:
2570		switch (oldstate) {
2571		case SDEV_CREATED:
2572		case SDEV_RUNNING:
2573		case SDEV_OFFLINE:
2574		case SDEV_TRANSPORT_OFFLINE:
2575		case SDEV_CANCEL:
 
2576		case SDEV_CREATED_BLOCK:
2577			break;
2578		default:
2579			goto illegal;
2580		}
2581		break;
2582
2583	}
 
2584	sdev->sdev_state = state;
2585	return 0;
2586
2587 illegal:
2588	SCSI_LOG_ERROR_RECOVERY(1,
2589				sdev_printk(KERN_ERR, sdev,
2590					    "Illegal state transition %s->%s",
2591					    scsi_device_state_name(oldstate),
2592					    scsi_device_state_name(state))
2593				);
2594	return -EINVAL;
2595}
2596EXPORT_SYMBOL(scsi_device_set_state);
2597
2598/**
2599 * 	sdev_evt_emit - emit a single SCSI device uevent
2600 *	@sdev: associated SCSI device
2601 *	@evt: event to emit
2602 *
2603 *	Send a single uevent (scsi_event) to the associated scsi_device.
2604 */
2605static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2606{
2607	int idx = 0;
2608	char *envp[3];
2609
2610	switch (evt->evt_type) {
2611	case SDEV_EVT_MEDIA_CHANGE:
2612		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2613		break;
2614	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2615		scsi_rescan_device(&sdev->sdev_gendev);
2616		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2617		break;
2618	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2619		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2620		break;
2621	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2622	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2623		break;
2624	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2625		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2626		break;
2627	case SDEV_EVT_LUN_CHANGE_REPORTED:
2628		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2629		break;
2630	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2631		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2632		break;
 
 
 
2633	default:
2634		/* do nothing */
2635		break;
2636	}
2637
2638	envp[idx++] = NULL;
2639
2640	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2641}
2642
2643/**
2644 * 	sdev_evt_thread - send a uevent for each scsi event
2645 *	@work: work struct for scsi_device
2646 *
2647 *	Dispatch queued events to their associated scsi_device kobjects
2648 *	as uevents.
2649 */
2650void scsi_evt_thread(struct work_struct *work)
2651{
2652	struct scsi_device *sdev;
2653	enum scsi_device_event evt_type;
2654	LIST_HEAD(event_list);
2655
2656	sdev = container_of(work, struct scsi_device, event_work);
2657
2658	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2659		if (test_and_clear_bit(evt_type, sdev->pending_events))
2660			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2661
2662	while (1) {
2663		struct scsi_event *evt;
2664		struct list_head *this, *tmp;
2665		unsigned long flags;
2666
2667		spin_lock_irqsave(&sdev->list_lock, flags);
2668		list_splice_init(&sdev->event_list, &event_list);
2669		spin_unlock_irqrestore(&sdev->list_lock, flags);
2670
2671		if (list_empty(&event_list))
2672			break;
2673
2674		list_for_each_safe(this, tmp, &event_list) {
2675			evt = list_entry(this, struct scsi_event, node);
2676			list_del(&evt->node);
2677			scsi_evt_emit(sdev, evt);
2678			kfree(evt);
2679		}
2680	}
2681}
2682
2683/**
2684 * 	sdev_evt_send - send asserted event to uevent thread
2685 *	@sdev: scsi_device event occurred on
2686 *	@evt: event to send
2687 *
2688 *	Assert scsi device event asynchronously.
2689 */
2690void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2691{
2692	unsigned long flags;
2693
2694#if 0
2695	/* FIXME: currently this check eliminates all media change events
2696	 * for polled devices.  Need to update to discriminate between AN
2697	 * and polled events */
2698	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2699		kfree(evt);
2700		return;
2701	}
2702#endif
2703
2704	spin_lock_irqsave(&sdev->list_lock, flags);
2705	list_add_tail(&evt->node, &sdev->event_list);
2706	schedule_work(&sdev->event_work);
2707	spin_unlock_irqrestore(&sdev->list_lock, flags);
2708}
2709EXPORT_SYMBOL_GPL(sdev_evt_send);
2710
2711/**
2712 * 	sdev_evt_alloc - allocate a new scsi event
2713 *	@evt_type: type of event to allocate
2714 *	@gfpflags: GFP flags for allocation
2715 *
2716 *	Allocates and returns a new scsi_event.
2717 */
2718struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2719				  gfp_t gfpflags)
2720{
2721	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2722	if (!evt)
2723		return NULL;
2724
2725	evt->evt_type = evt_type;
2726	INIT_LIST_HEAD(&evt->node);
2727
2728	/* evt_type-specific initialization, if any */
2729	switch (evt_type) {
2730	case SDEV_EVT_MEDIA_CHANGE:
2731	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2732	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2733	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2734	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2735	case SDEV_EVT_LUN_CHANGE_REPORTED:
2736	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
 
2737	default:
2738		/* do nothing */
2739		break;
2740	}
2741
2742	return evt;
2743}
2744EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2745
2746/**
2747 * 	sdev_evt_send_simple - send asserted event to uevent thread
2748 *	@sdev: scsi_device event occurred on
2749 *	@evt_type: type of event to send
2750 *	@gfpflags: GFP flags for allocation
2751 *
2752 *	Assert scsi device event asynchronously, given an event type.
2753 */
2754void sdev_evt_send_simple(struct scsi_device *sdev,
2755			  enum scsi_device_event evt_type, gfp_t gfpflags)
2756{
2757	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2758	if (!evt) {
2759		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2760			    evt_type);
2761		return;
2762	}
2763
2764	sdev_evt_send(sdev, evt);
2765}
2766EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2767
2768/**
2769 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2770 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2771 */
2772static int scsi_request_fn_active(struct scsi_device *sdev)
2773{
2774	struct request_queue *q = sdev->request_queue;
2775	int request_fn_active;
2776
2777	WARN_ON_ONCE(sdev->host->use_blk_mq);
2778
2779	spin_lock_irq(q->queue_lock);
2780	request_fn_active = q->request_fn_active;
2781	spin_unlock_irq(q->queue_lock);
2782
2783	return request_fn_active;
2784}
2785
2786/**
2787 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2788 * @sdev: SCSI device pointer.
2789 *
2790 * Wait until the ongoing shost->hostt->queuecommand() calls that are
2791 * invoked from scsi_request_fn() have finished.
2792 */
2793static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2794{
2795	WARN_ON_ONCE(sdev->host->use_blk_mq);
2796
2797	while (scsi_request_fn_active(sdev))
2798		msleep(20);
2799}
2800
2801/**
2802 *	scsi_device_quiesce - Block user issued commands.
2803 *	@sdev:	scsi device to quiesce.
2804 *
2805 *	This works by trying to transition to the SDEV_QUIESCE state
2806 *	(which must be a legal transition).  When the device is in this
2807 *	state, only special requests will be accepted, all others will
2808 *	be deferred.  Since special requests may also be requeued requests,
2809 *	a successful return doesn't guarantee the device will be 
2810 *	totally quiescent.
2811 *
2812 *	Must be called with user context, may sleep.
2813 *
2814 *	Returns zero if unsuccessful or an error if not.
2815 */
2816int
2817scsi_device_quiesce(struct scsi_device *sdev)
2818{
2819	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2820	if (err)
2821		return err;
2822
2823	scsi_run_queue(sdev->request_queue);
2824	while (atomic_read(&sdev->device_busy)) {
2825		msleep_interruptible(200);
2826		scsi_run_queue(sdev->request_queue);
2827	}
2828	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2829}
2830EXPORT_SYMBOL(scsi_device_quiesce);
2831
2832/**
2833 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2834 *	@sdev:	scsi device to resume.
2835 *
2836 *	Moves the device from quiesced back to running and restarts the
2837 *	queues.
2838 *
2839 *	Must be called with user context, may sleep.
2840 */
2841void scsi_device_resume(struct scsi_device *sdev)
2842{
2843	/* check if the device state was mutated prior to resume, and if
2844	 * so assume the state is being managed elsewhere (for example
2845	 * device deleted during suspend)
2846	 */
2847	if (sdev->sdev_state != SDEV_QUIESCE ||
2848	    scsi_device_set_state(sdev, SDEV_RUNNING))
2849		return;
2850	scsi_run_queue(sdev->request_queue);
 
 
 
 
2851}
2852EXPORT_SYMBOL(scsi_device_resume);
2853
2854static void
2855device_quiesce_fn(struct scsi_device *sdev, void *data)
2856{
2857	scsi_device_quiesce(sdev);
2858}
2859
2860void
2861scsi_target_quiesce(struct scsi_target *starget)
2862{
2863	starget_for_each_device(starget, NULL, device_quiesce_fn);
2864}
2865EXPORT_SYMBOL(scsi_target_quiesce);
2866
2867static void
2868device_resume_fn(struct scsi_device *sdev, void *data)
2869{
2870	scsi_device_resume(sdev);
2871}
2872
2873void
2874scsi_target_resume(struct scsi_target *starget)
2875{
2876	starget_for_each_device(starget, NULL, device_resume_fn);
2877}
2878EXPORT_SYMBOL(scsi_target_resume);
2879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2880/**
2881 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2882 * @sdev:	device to block
2883 * @wait:	Whether or not to wait until ongoing .queuecommand() /
2884 *		.queue_rq() calls have finished.
2885 *
2886 * Block request made by scsi lld's to temporarily stop all
2887 * scsi commands on the specified device. May sleep.
2888 *
2889 * Returns zero if successful or error if not
2890 *
2891 * Notes:       
2892 *	This routine transitions the device to the SDEV_BLOCK state
2893 *	(which must be a legal transition).  When the device is in this
2894 *	state, all commands are deferred until the scsi lld reenables
2895 *	the device with scsi_device_unblock or device_block_tmo fires.
2896 *
2897 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
2898 * scsi_internal_device_block() has blocked a SCSI device and also
2899 * remove the rport mutex lock and unlock calls from srp_queuecommand().
2900 */
2901int
2902scsi_internal_device_block(struct scsi_device *sdev, bool wait)
2903{
2904	struct request_queue *q = sdev->request_queue;
2905	unsigned long flags;
2906	int err = 0;
2907
2908	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2909	if (err) {
2910		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2911
2912		if (err)
2913			return err;
2914	}
2915
2916	/* 
2917	 * The device has transitioned to SDEV_BLOCK.  Stop the
2918	 * block layer from calling the midlayer with this device's
2919	 * request queue. 
2920	 */
2921	if (q->mq_ops) {
2922		if (wait)
2923			blk_mq_quiesce_queue(q);
2924		else
2925			blk_mq_stop_hw_queues(q);
2926	} else {
2927		spin_lock_irqsave(q->queue_lock, flags);
2928		blk_stop_queue(q);
2929		spin_unlock_irqrestore(q->queue_lock, flags);
2930		if (wait)
2931			scsi_wait_for_queuecommand(sdev);
2932	}
2933
2934	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2935}
2936EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2937 
2938/**
2939 * scsi_internal_device_unblock - resume a device after a block request
2940 * @sdev:	device to resume
2941 * @new_state:	state to set devices to after unblocking
 
 
 
2942 *
2943 * Called by scsi lld's or the midlayer to restart the device queue
2944 * for the previously suspended scsi device.  Called from interrupt or
2945 * normal process context.
2946 *
2947 * Returns zero if successful or error if not.
2948 *
2949 * Notes:       
2950 *	This routine transitions the device to the SDEV_RUNNING state
2951 *	or to one of the offline states (which must be a legal transition)
2952 *	allowing the midlayer to goose the queue for this device.
2953 */
2954int
2955scsi_internal_device_unblock(struct scsi_device *sdev,
2956			     enum scsi_device_state new_state)
2957{
2958	struct request_queue *q = sdev->request_queue; 
2959	unsigned long flags;
 
 
 
 
 
2960
2961	/*
2962	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2963	 * offlined states and goose the device queue if successful.
2964	 */
2965	if ((sdev->sdev_state == SDEV_BLOCK) ||
2966	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
 
2967		sdev->sdev_state = new_state;
2968	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
 
2969		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2970		    new_state == SDEV_OFFLINE)
2971			sdev->sdev_state = new_state;
2972		else
2973			sdev->sdev_state = SDEV_CREATED;
2974	} else if (sdev->sdev_state != SDEV_CANCEL &&
2975		 sdev->sdev_state != SDEV_OFFLINE)
 
 
 
2976		return -EINVAL;
2977
2978	if (q->mq_ops) {
2979		blk_mq_start_stopped_hw_queues(q, false);
2980	} else {
2981		spin_lock_irqsave(q->queue_lock, flags);
2982		blk_start_queue(q);
2983		spin_unlock_irqrestore(q->queue_lock, flags);
2984	}
 
2985
2986	return 0;
2987}
2988EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2989
2990static void
2991device_block(struct scsi_device *sdev, void *data)
2992{
2993	scsi_internal_device_block(sdev, true);
 
 
 
 
 
2994}
2995
2996static int
2997target_block(struct device *dev, void *data)
2998{
2999	if (scsi_is_target_device(dev))
3000		starget_for_each_device(to_scsi_target(dev), NULL,
3001					device_block);
3002	return 0;
3003}
3004
3005void
3006scsi_target_block(struct device *dev)
3007{
3008	if (scsi_is_target_device(dev))
3009		starget_for_each_device(to_scsi_target(dev), NULL,
3010					device_block);
3011	else
3012		device_for_each_child(dev, NULL, target_block);
3013}
3014EXPORT_SYMBOL_GPL(scsi_target_block);
3015
3016static void
3017device_unblock(struct scsi_device *sdev, void *data)
3018{
3019	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3020}
3021
3022static int
3023target_unblock(struct device *dev, void *data)
3024{
3025	if (scsi_is_target_device(dev))
3026		starget_for_each_device(to_scsi_target(dev), data,
3027					device_unblock);
3028	return 0;
3029}
3030
3031void
3032scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3033{
3034	if (scsi_is_target_device(dev))
3035		starget_for_each_device(to_scsi_target(dev), &new_state,
3036					device_unblock);
3037	else
3038		device_for_each_child(dev, &new_state, target_unblock);
3039}
3040EXPORT_SYMBOL_GPL(scsi_target_unblock);
3041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3042/**
3043 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3044 * @sgl:	scatter-gather list
3045 * @sg_count:	number of segments in sg
3046 * @offset:	offset in bytes into sg, on return offset into the mapped area
3047 * @len:	bytes to map, on return number of bytes mapped
3048 *
3049 * Returns virtual address of the start of the mapped page
3050 */
3051void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3052			  size_t *offset, size_t *len)
3053{
3054	int i;
3055	size_t sg_len = 0, len_complete = 0;
3056	struct scatterlist *sg;
3057	struct page *page;
3058
3059	WARN_ON(!irqs_disabled());
3060
3061	for_each_sg(sgl, sg, sg_count, i) {
3062		len_complete = sg_len; /* Complete sg-entries */
3063		sg_len += sg->length;
3064		if (sg_len > *offset)
3065			break;
3066	}
3067
3068	if (unlikely(i == sg_count)) {
3069		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3070			"elements %d\n",
3071		       __func__, sg_len, *offset, sg_count);
3072		WARN_ON(1);
3073		return NULL;
3074	}
3075
3076	/* Offset starting from the beginning of first page in this sg-entry */
3077	*offset = *offset - len_complete + sg->offset;
3078
3079	/* Assumption: contiguous pages can be accessed as "page + i" */
3080	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3081	*offset &= ~PAGE_MASK;
3082
3083	/* Bytes in this sg-entry from *offset to the end of the page */
3084	sg_len = PAGE_SIZE - *offset;
3085	if (*len > sg_len)
3086		*len = sg_len;
3087
3088	return kmap_atomic(page);
3089}
3090EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3091
3092/**
3093 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3094 * @virt:	virtual address to be unmapped
3095 */
3096void scsi_kunmap_atomic_sg(void *virt)
3097{
3098	kunmap_atomic(virt);
3099}
3100EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3101
3102void sdev_disable_disk_events(struct scsi_device *sdev)
3103{
3104	atomic_inc(&sdev->disk_events_disable_depth);
3105}
3106EXPORT_SYMBOL(sdev_disable_disk_events);
3107
3108void sdev_enable_disk_events(struct scsi_device *sdev)
3109{
3110	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3111		return;
3112	atomic_dec(&sdev->disk_events_disable_depth);
3113}
3114EXPORT_SYMBOL(sdev_enable_disk_events);
3115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3116/**
3117 * scsi_vpd_lun_id - return a unique device identification
3118 * @sdev: SCSI device
3119 * @id:   buffer for the identification
3120 * @id_len:  length of the buffer
3121 *
3122 * Copies a unique device identification into @id based
3123 * on the information in the VPD page 0x83 of the device.
3124 * The string will be formatted as a SCSI name string.
3125 *
3126 * Returns the length of the identification or error on failure.
3127 * If the identifier is longer than the supplied buffer the actual
3128 * identifier length is returned and the buffer is not zero-padded.
3129 */
3130int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3131{
3132	u8 cur_id_type = 0xff;
3133	u8 cur_id_size = 0;
3134	unsigned char *d, *cur_id_str;
3135	unsigned char __rcu *vpd_pg83;
3136	int id_size = -EINVAL;
3137
3138	rcu_read_lock();
3139	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3140	if (!vpd_pg83) {
3141		rcu_read_unlock();
3142		return -ENXIO;
3143	}
3144
3145	/*
3146	 * Look for the correct descriptor.
3147	 * Order of preference for lun descriptor:
3148	 * - SCSI name string
3149	 * - NAA IEEE Registered Extended
3150	 * - EUI-64 based 16-byte
3151	 * - EUI-64 based 12-byte
3152	 * - NAA IEEE Registered
3153	 * - NAA IEEE Extended
3154	 * - T10 Vendor ID
3155	 * as longer descriptors reduce the likelyhood
3156	 * of identification clashes.
3157	 */
3158
3159	/* The id string must be at least 20 bytes + terminating NULL byte */
3160	if (id_len < 21) {
3161		rcu_read_unlock();
3162		return -EINVAL;
3163	}
3164
3165	memset(id, 0, id_len);
3166	d = vpd_pg83 + 4;
3167	while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3168		/* Skip designators not referring to the LUN */
3169		if ((d[1] & 0x30) != 0x00)
3170			goto next_desig;
 
 
3171
3172		switch (d[1] & 0xf) {
3173		case 0x1:
3174			/* T10 Vendor ID */
3175			if (cur_id_size > d[3])
3176				break;
3177			/* Prefer anything */
3178			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3179				break;
3180			cur_id_size = d[3];
3181			if (cur_id_size + 4 > id_len)
3182				cur_id_size = id_len - 4;
3183			cur_id_str = d + 4;
3184			cur_id_type = d[1] & 0xf;
3185			id_size = snprintf(id, id_len, "t10.%*pE",
3186					   cur_id_size, cur_id_str);
3187			break;
3188		case 0x2:
3189			/* EUI-64 */
3190			if (cur_id_size > d[3])
3191				break;
3192			/* Prefer NAA IEEE Registered Extended */
3193			if (cur_id_type == 0x3 &&
3194			    cur_id_size == d[3])
3195				break;
3196			cur_id_size = d[3];
3197			cur_id_str = d + 4;
3198			cur_id_type = d[1] & 0xf;
3199			switch (cur_id_size) {
3200			case 8:
3201				id_size = snprintf(id, id_len,
3202						   "eui.%8phN",
3203						   cur_id_str);
3204				break;
3205			case 12:
3206				id_size = snprintf(id, id_len,
3207						   "eui.%12phN",
3208						   cur_id_str);
3209				break;
3210			case 16:
3211				id_size = snprintf(id, id_len,
3212						   "eui.%16phN",
3213						   cur_id_str);
3214				break;
3215			default:
3216				cur_id_size = 0;
3217				break;
3218			}
3219			break;
3220		case 0x3:
3221			/* NAA */
3222			if (cur_id_size > d[3])
3223				break;
3224			cur_id_size = d[3];
3225			cur_id_str = d + 4;
3226			cur_id_type = d[1] & 0xf;
3227			switch (cur_id_size) {
3228			case 8:
3229				id_size = snprintf(id, id_len,
3230						   "naa.%8phN",
3231						   cur_id_str);
3232				break;
3233			case 16:
3234				id_size = snprintf(id, id_len,
3235						   "naa.%16phN",
3236						   cur_id_str);
3237				break;
3238			default:
3239				cur_id_size = 0;
3240				break;
3241			}
3242			break;
3243		case 0x8:
3244			/* SCSI name string */
3245			if (cur_id_size + 4 > d[3])
3246				break;
3247			/* Prefer others for truncated descriptor */
3248			if (cur_id_size && d[3] > id_len)
3249				break;
 
 
 
 
3250			cur_id_size = id_size = d[3];
3251			cur_id_str = d + 4;
3252			cur_id_type = d[1] & 0xf;
3253			if (cur_id_size >= id_len)
3254				cur_id_size = id_len - 1;
3255			memcpy(id, cur_id_str, cur_id_size);
3256			/* Decrease priority for truncated descriptor */
3257			if (cur_id_size != id_size)
3258				cur_id_size = 6;
3259			break;
3260		default:
3261			break;
3262		}
3263next_desig:
3264		d += d[3] + 4;
3265	}
3266	rcu_read_unlock();
3267
3268	return id_size;
3269}
3270EXPORT_SYMBOL(scsi_vpd_lun_id);
3271
3272/*
3273 * scsi_vpd_tpg_id - return a target port group identifier
3274 * @sdev: SCSI device
3275 *
3276 * Returns the Target Port Group identifier from the information
3277 * froom VPD page 0x83 of the device.
3278 *
3279 * Returns the identifier or error on failure.
3280 */
3281int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3282{
3283	unsigned char *d;
3284	unsigned char __rcu *vpd_pg83;
3285	int group_id = -EAGAIN, rel_port = -1;
3286
3287	rcu_read_lock();
3288	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3289	if (!vpd_pg83) {
3290		rcu_read_unlock();
3291		return -ENXIO;
3292	}
3293
3294	d = sdev->vpd_pg83 + 4;
3295	while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3296		switch (d[1] & 0xf) {
3297		case 0x4:
3298			/* Relative target port */
3299			rel_port = get_unaligned_be16(&d[6]);
3300			break;
3301		case 0x5:
3302			/* Target port group */
3303			group_id = get_unaligned_be16(&d[6]);
3304			break;
3305		default:
3306			break;
3307		}
3308		d += d[3] + 4;
3309	}
3310	rcu_read_unlock();
3311
3312	if (group_id >= 0 && rel_id && rel_port != -1)
3313		*rel_id = rel_port;
3314
3315	return group_id;
3316}
3317EXPORT_SYMBOL(scsi_vpd_tpg_id);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
  24#include <linux/blk-integrity.h>
  25#include <linux/ratelimit.h>
  26#include <asm/unaligned.h>
  27
  28#include <scsi/scsi.h>
  29#include <scsi/scsi_cmnd.h>
  30#include <scsi/scsi_dbg.h>
  31#include <scsi/scsi_device.h>
  32#include <scsi/scsi_driver.h>
  33#include <scsi/scsi_eh.h>
  34#include <scsi/scsi_host.h>
  35#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  36#include <scsi/scsi_dh.h>
  37
  38#include <trace/events/scsi.h>
  39
  40#include "scsi_debugfs.h"
  41#include "scsi_priv.h"
  42#include "scsi_logging.h"
  43
 
 
 
  44/*
  45 * Size of integrity metadata is usually small, 1 inline sg should
  46 * cover normal cases.
 
  47 */
  48#ifdef CONFIG_ARCH_NO_SG_CHAIN
  49#define  SCSI_INLINE_PROT_SG_CNT  0
  50#define  SCSI_INLINE_SG_CNT  0
  51#else
  52#define  SCSI_INLINE_PROT_SG_CNT  1
  53#define  SCSI_INLINE_SG_CNT  2
  54#endif
  55
  56static struct kmem_cache *scsi_sense_cache;
  57static DEFINE_MUTEX(scsi_sense_cache_mutex);
  58
  59static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  60
  61int scsi_init_sense_cache(struct Scsi_Host *shost)
  62{
  63	int ret = 0;
  64
  65	mutex_lock(&scsi_sense_cache_mutex);
  66	if (!scsi_sense_cache) {
  67		scsi_sense_cache =
  68			kmem_cache_create_usercopy("scsi_sense_cache",
  69				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
  70				0, SCSI_SENSE_BUFFERSIZE, NULL);
  71		if (!scsi_sense_cache)
  72			ret = -ENOMEM;
  73	}
  74	mutex_unlock(&scsi_sense_cache_mutex);
  75	return ret;
  76}
  77
  78static void
  79scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
  80{
  81	struct Scsi_Host *host = cmd->device->host;
  82	struct scsi_device *device = cmd->device;
  83	struct scsi_target *starget = scsi_target(device);
  84
  85	/*
  86	 * Set the appropriate busy bit for the device/host.
  87	 *
  88	 * If the host/device isn't busy, assume that something actually
  89	 * completed, and that we should be able to queue a command now.
  90	 *
  91	 * Note that the prior mid-layer assumption that any host could
  92	 * always queue at least one command is now broken.  The mid-layer
  93	 * will implement a user specifiable stall (see
  94	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
  95	 * if a command is requeued with no other commands outstanding
  96	 * either for the device or for the host.
  97	 */
  98	switch (reason) {
  99	case SCSI_MLQUEUE_HOST_BUSY:
 100		atomic_set(&host->host_blocked, host->max_host_blocked);
 101		break;
 102	case SCSI_MLQUEUE_DEVICE_BUSY:
 103	case SCSI_MLQUEUE_EH_RETRY:
 104		atomic_set(&device->device_blocked,
 105			   device->max_device_blocked);
 106		break;
 107	case SCSI_MLQUEUE_TARGET_BUSY:
 108		atomic_set(&starget->target_blocked,
 109			   starget->max_target_blocked);
 110		break;
 111	}
 112}
 113
 114static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
 115{
 116	struct request *rq = scsi_cmd_to_rq(cmd);
 117
 118	if (rq->rq_flags & RQF_DONTPREP) {
 119		rq->rq_flags &= ~RQF_DONTPREP;
 120		scsi_mq_uninit_cmd(cmd);
 121	} else {
 122		WARN_ON_ONCE(true);
 123	}
 124
 125	if (msecs) {
 126		blk_mq_requeue_request(rq, false);
 127		blk_mq_delay_kick_requeue_list(rq->q, msecs);
 128	} else
 129		blk_mq_requeue_request(rq, true);
 130}
 131
 132/**
 133 * __scsi_queue_insert - private queue insertion
 134 * @cmd: The SCSI command being requeued
 135 * @reason:  The reason for the requeue
 136 * @unbusy: Whether the queue should be unbusied
 137 *
 138 * This is a private queue insertion.  The public interface
 139 * scsi_queue_insert() always assumes the queue should be unbusied
 140 * because it's always called before the completion.  This function is
 141 * for a requeue after completion, which should only occur in this
 142 * file.
 143 */
 144static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 145{
 146	struct scsi_device *device = cmd->device;
 
 
 147
 148	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 149		"Inserting command %p into mlqueue\n", cmd));
 150
 151	scsi_set_blocked(cmd, reason);
 152
 153	/*
 154	 * Decrement the counters, since these commands are no longer
 155	 * active on the host/device.
 156	 */
 157	if (unbusy)
 158		scsi_device_unbusy(device, cmd);
 159
 160	/*
 161	 * Requeue this command.  It will go before all other commands
 162	 * that are already in the queue. Schedule requeue work under
 163	 * lock such that the kblockd_schedule_work() call happens
 164	 * before blk_mq_destroy_queue() finishes.
 165	 */
 166	cmd->result = 0;
 167
 168	blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
 
 
 
 
 
 
 169}
 170
 171/**
 172 * scsi_queue_insert - Reinsert a command in the queue.
 173 * @cmd:    command that we are adding to queue.
 174 * @reason: why we are inserting command to queue.
 
 
 
 
 
 175 *
 176 * We do this for one of two cases. Either the host is busy and it cannot accept
 177 * any more commands for the time being, or the device returned QUEUE_FULL and
 178 * can accept no more commands.
 179 *
 180 * Context: This could be called either from an interrupt context or a normal
 181 * process context.
 
 
 
 
 182 */
 183void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 184{
 185	__scsi_queue_insert(cmd, reason, true);
 186}
 187
 188
 189/**
 190 * __scsi_execute - insert request and wait for the result
 191 * @sdev:	scsi device
 192 * @cmd:	scsi command
 193 * @data_direction: data direction
 194 * @buffer:	data buffer
 195 * @bufflen:	len of buffer
 196 * @sense:	optional sense buffer
 197 * @sshdr:	optional decoded sense header
 198 * @timeout:	request timeout in HZ
 199 * @retries:	number of times to retry request
 200 * @flags:	flags for ->cmd_flags
 201 * @rq_flags:	flags for ->rq_flags
 202 * @resid:	optional residual length
 203 *
 204 * Returns the scsi_cmnd result field if a command was executed, or a negative
 205 * Linux error code if we didn't get that far.
 206 */
 207int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 208		 int data_direction, void *buffer, unsigned bufflen,
 209		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
 210		 int timeout, int retries, blk_opf_t flags,
 211		 req_flags_t rq_flags, int *resid)
 212{
 213	struct request *req;
 214	struct scsi_cmnd *scmd;
 215	int ret;
 216
 217	req = scsi_alloc_request(sdev->request_queue,
 218			data_direction == DMA_TO_DEVICE ?
 219			REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
 220			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
 221	if (IS_ERR(req))
 222		return PTR_ERR(req);
 
 223
 224	if (bufflen) {
 225		ret = blk_rq_map_kern(sdev->request_queue, req,
 226				      buffer, bufflen, GFP_NOIO);
 227		if (ret)
 228			goto out;
 229	}
 230	scmd = blk_mq_rq_to_pdu(req);
 231	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
 232	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
 233	scmd->allowed = retries;
 234	req->timeout = timeout;
 235	req->cmd_flags |= flags;
 236	req->rq_flags |= rq_flags | RQF_QUIET;
 237
 238	/*
 239	 * head injection *required* here otherwise quiesce won't work
 240	 */
 241	blk_execute_rq(req, true);
 242
 243	/*
 244	 * Some devices (USB mass-storage in particular) may transfer
 245	 * garbage data together with a residue indicating that the data
 246	 * is invalid.  Prevent the garbage from being misinterpreted
 247	 * and prevent security leaks by zeroing out the excess data.
 248	 */
 249	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
 250		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
 251
 252	if (resid)
 253		*resid = scmd->resid_len;
 254	if (sense && scmd->sense_len)
 255		memcpy(sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
 256	if (sshdr)
 257		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
 258				     sshdr);
 259	ret = scmd->result;
 260 out:
 261	blk_mq_free_request(req);
 262
 263	return ret;
 264}
 265EXPORT_SYMBOL(__scsi_execute);
 266
 267/*
 268 * Wake up the error handler if necessary. Avoid as follows that the error
 269 * handler is not woken up if host in-flight requests number ==
 270 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 271 * with an RCU read lock in this function to ensure that this function in
 272 * its entirety either finishes before scsi_eh_scmd_add() increases the
 273 * host_failed counter or that it notices the shost state change made by
 274 * scsi_eh_scmd_add().
 
 
 
 
 
 
 
 275 */
 276static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
 
 
 
 277{
 278	unsigned long flags;
 
 
 
 279
 280	rcu_read_lock();
 281	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
 282	if (unlikely(scsi_host_in_recovery(shost))) {
 283		spin_lock_irqsave(shost->host_lock, flags);
 284		if (shost->host_failed || shost->host_eh_scheduled)
 285			scsi_eh_wakeup(shost);
 286		spin_unlock_irqrestore(shost->host_lock, flags);
 
 
 
 
 
 287	}
 288	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289}
 290
 291void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
 292{
 293	struct Scsi_Host *shost = sdev->host;
 294	struct scsi_target *starget = scsi_target(sdev);
 
 295
 296	scsi_dec_host_busy(shost, cmd);
 297
 298	if (starget->can_queue > 0)
 299		atomic_dec(&starget->target_busy);
 300
 301	sbitmap_put(&sdev->budget_map, cmd->budget_token);
 302	cmd->budget_token = -1;
 
 
 
 
 
 
 303}
 304
 305static void scsi_kick_queue(struct request_queue *q)
 306{
 307	blk_mq_run_hw_queues(q, false);
 308}
 309
 310/*
 311 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
 312 * interrupts disabled.
 313 */
 314static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
 315{
 316	struct scsi_device *current_sdev = data;
 317
 318	if (sdev != current_sdev)
 319		blk_mq_run_hw_queues(sdev->request_queue, true);
 320}
 321
 322/*
 323 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 324 * and call blk_run_queue for all the scsi_devices on the target -
 325 * including current_sdev first.
 326 *
 327 * Called with *no* scsi locks held.
 328 */
 329static void scsi_single_lun_run(struct scsi_device *current_sdev)
 330{
 331	struct Scsi_Host *shost = current_sdev->host;
 
 332	struct scsi_target *starget = scsi_target(current_sdev);
 333	unsigned long flags;
 334
 335	spin_lock_irqsave(shost->host_lock, flags);
 336	starget->starget_sdev_user = NULL;
 337	spin_unlock_irqrestore(shost->host_lock, flags);
 338
 339	/*
 340	 * Call blk_run_queue for all LUNs on the target, starting with
 341	 * current_sdev. We race with others (to set starget_sdev_user),
 342	 * but in most cases, we will be first. Ideally, each LU on the
 343	 * target would get some limited time or requests on the target.
 344	 */
 345	scsi_kick_queue(current_sdev->request_queue);
 346
 347	spin_lock_irqsave(shost->host_lock, flags);
 348	if (!starget->starget_sdev_user)
 349		__starget_for_each_device(starget, current_sdev,
 350					  scsi_kick_sdev_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 351	spin_unlock_irqrestore(shost->host_lock, flags);
 352}
 353
 354static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 355{
 356	if (scsi_device_busy(sdev) >= sdev->queue_depth)
 357		return true;
 358	if (atomic_read(&sdev->device_blocked) > 0)
 359		return true;
 360	return false;
 361}
 362
 363static inline bool scsi_target_is_busy(struct scsi_target *starget)
 364{
 365	if (starget->can_queue > 0) {
 366		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 367			return true;
 368		if (atomic_read(&starget->target_blocked) > 0)
 369			return true;
 370	}
 371	return false;
 372}
 373
 374static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 375{
 
 
 
 376	if (atomic_read(&shost->host_blocked) > 0)
 377		return true;
 378	if (shost->host_self_blocked)
 379		return true;
 380	return false;
 381}
 382
 383static void scsi_starved_list_run(struct Scsi_Host *shost)
 384{
 385	LIST_HEAD(starved_list);
 386	struct scsi_device *sdev;
 387	unsigned long flags;
 388
 389	spin_lock_irqsave(shost->host_lock, flags);
 390	list_splice_init(&shost->starved_list, &starved_list);
 391
 392	while (!list_empty(&starved_list)) {
 393		struct request_queue *slq;
 394
 395		/*
 396		 * As long as shost is accepting commands and we have
 397		 * starved queues, call blk_run_queue. scsi_request_fn
 398		 * drops the queue_lock and can add us back to the
 399		 * starved_list.
 400		 *
 401		 * host_lock protects the starved_list and starved_entry.
 402		 * scsi_request_fn must get the host_lock before checking
 403		 * or modifying starved_list or starved_entry.
 404		 */
 405		if (scsi_host_is_busy(shost))
 406			break;
 407
 408		sdev = list_entry(starved_list.next,
 409				  struct scsi_device, starved_entry);
 410		list_del_init(&sdev->starved_entry);
 411		if (scsi_target_is_busy(scsi_target(sdev))) {
 412			list_move_tail(&sdev->starved_entry,
 413				       &shost->starved_list);
 414			continue;
 415		}
 416
 417		/*
 418		 * Once we drop the host lock, a racing scsi_remove_device()
 419		 * call may remove the sdev from the starved list and destroy
 420		 * it and the queue.  Mitigate by taking a reference to the
 421		 * queue and never touching the sdev again after we drop the
 422		 * host lock.  Note: if __scsi_remove_device() invokes
 423		 * blk_mq_destroy_queue() before the queue is run from this
 424		 * function then blk_run_queue() will return immediately since
 425		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
 426		 */
 427		slq = sdev->request_queue;
 428		if (!blk_get_queue(slq))
 429			continue;
 430		spin_unlock_irqrestore(shost->host_lock, flags);
 431
 432		scsi_kick_queue(slq);
 433		blk_put_queue(slq);
 434
 435		spin_lock_irqsave(shost->host_lock, flags);
 436	}
 437	/* put any unprocessed entries back */
 438	list_splice(&starved_list, &shost->starved_list);
 439	spin_unlock_irqrestore(shost->host_lock, flags);
 440}
 441
 442/**
 443 * scsi_run_queue - Select a proper request queue to serve next.
 444 * @q:  last request's queue
 
 
 
 
 
 445 *
 446 * The previous command was completely finished, start a new one if possible.
 
 447 */
 448static void scsi_run_queue(struct request_queue *q)
 449{
 450	struct scsi_device *sdev = q->queuedata;
 451
 452	if (scsi_target(sdev)->single_lun)
 453		scsi_single_lun_run(sdev);
 454	if (!list_empty(&sdev->host->starved_list))
 455		scsi_starved_list_run(sdev->host);
 456
 457	blk_mq_run_hw_queues(q, false);
 
 
 
 458}
 459
 460void scsi_requeue_run_queue(struct work_struct *work)
 461{
 462	struct scsi_device *sdev;
 463	struct request_queue *q;
 464
 465	sdev = container_of(work, struct scsi_device, requeue_work);
 466	q = sdev->request_queue;
 467	scsi_run_queue(q);
 468}
 469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470void scsi_run_host_queues(struct Scsi_Host *shost)
 471{
 472	struct scsi_device *sdev;
 473
 474	shost_for_each_device(sdev, shost)
 475		scsi_run_queue(sdev->request_queue);
 476}
 477
 478static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 479{
 480	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
 481		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 482
 483		if (drv->uninit_command)
 484			drv->uninit_command(cmd);
 485	}
 486}
 487
 488void scsi_free_sgtables(struct scsi_cmnd *cmd)
 489{
 
 
 490	if (cmd->sdb.table.nents)
 491		sg_free_table_chained(&cmd->sdb.table,
 492				SCSI_INLINE_SG_CNT);
 
 
 
 
 493	if (scsi_prot_sg_count(cmd))
 494		sg_free_table_chained(&cmd->prot_sdb->table,
 495				SCSI_INLINE_PROT_SG_CNT);
 496}
 497EXPORT_SYMBOL_GPL(scsi_free_sgtables);
 498
 499static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 500{
 501	scsi_free_sgtables(cmd);
 
 
 
 
 502	scsi_uninit_cmd(cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 503}
 504
 505static void scsi_run_queue_async(struct scsi_device *sdev)
 506{
 507	if (scsi_target(sdev)->single_lun ||
 508	    !list_empty(&sdev->host->starved_list)) {
 509		kblockd_schedule_work(&sdev->requeue_work);
 510	} else {
 511		/*
 512		 * smp_mb() present in sbitmap_queue_clear() or implied in
 513		 * .end_io is for ordering writing .device_busy in
 514		 * scsi_device_unbusy() and reading sdev->restarts.
 515		 */
 516		int old = atomic_read(&sdev->restarts);
 517
 518		/*
 519		 * ->restarts has to be kept as non-zero if new budget
 520		 *  contention occurs.
 521		 *
 522		 *  No need to run queue when either another re-run
 523		 *  queue wins in updating ->restarts or a new budget
 524		 *  contention occurs.
 525		 */
 526		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
 527			blk_mq_run_hw_queues(sdev->request_queue, true);
 528	}
 529}
 530
 531/* Returns false when no more bytes to process, true if there are more */
 532static bool scsi_end_request(struct request *req, blk_status_t error,
 533		unsigned int bytes)
 534{
 535	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 536	struct scsi_device *sdev = cmd->device;
 537	struct request_queue *q = sdev->request_queue;
 538
 539	if (blk_update_request(req, error, bytes))
 540		return true;
 541
 542	// XXX:
 
 
 
 
 543	if (blk_queue_add_random(q))
 544		add_disk_randomness(req->q->disk);
 545
 546	if (!blk_rq_is_passthrough(req)) {
 547		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 548		cmd->flags &= ~SCMD_INITIALIZED;
 549	}
 
 
 
 
 
 
 
 550
 551	/*
 552	 * Calling rcu_barrier() is not necessary here because the
 553	 * SCSI error handler guarantees that the function called by
 554	 * call_rcu() has been called before scsi_end_request() is
 555	 * called.
 556	 */
 557	destroy_rcu_head(&cmd->rcu);
 558
 559	/*
 560	 * In the MQ case the command gets freed by __blk_mq_end_request,
 561	 * so we have to do all cleanup that depends on it earlier.
 562	 *
 563	 * We also can't kick the queues from irq context, so we
 564	 * will have to defer it to a workqueue.
 565	 */
 566	scsi_mq_uninit_cmd(cmd);
 567
 568	/*
 569	 * queue is still alive, so grab the ref for preventing it
 570	 * from being cleaned up during running queue.
 571	 */
 572	percpu_ref_get(&q->q_usage_counter);
 573
 574	__blk_mq_end_request(req, error);
 575
 576	scsi_run_queue_async(sdev);
 
 
 577
 578	percpu_ref_put(&q->q_usage_counter);
 579	return false;
 580}
 581
 582static inline u8 get_scsi_ml_byte(int result)
 583{
 584	return (result >> 8) & 0xff;
 585}
 586
 587/**
 588 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 
 589 * @result:	scsi error code
 590 *
 591 * Translate a SCSI result code into a blk_status_t value.
 
 
 
 
 
 
 
 592 */
 593static blk_status_t scsi_result_to_blk_status(int result)
 594{
 595	/*
 596	 * Check the scsi-ml byte first in case we converted a host or status
 597	 * byte.
 598	 */
 599	switch (get_scsi_ml_byte(result)) {
 600	case SCSIML_STAT_OK:
 601		break;
 602	case SCSIML_STAT_RESV_CONFLICT:
 603		return BLK_STS_NEXUS;
 604	case SCSIML_STAT_NOSPC:
 605		return BLK_STS_NOSPC;
 606	case SCSIML_STAT_MED_ERROR:
 607		return BLK_STS_MEDIUM;
 608	case SCSIML_STAT_TGT_FAILURE:
 609		return BLK_STS_TARGET;
 610	}
 611
 612	switch (host_byte(result)) {
 613	case DID_OK:
 614		if (scsi_status_is_good(result))
 615			return BLK_STS_OK;
 616		return BLK_STS_IOERR;
 617	case DID_TRANSPORT_FAILFAST:
 618	case DID_TRANSPORT_MARGINAL:
 619		return BLK_STS_TRANSPORT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620	default:
 621		return BLK_STS_IOERR;
 
 622	}
 
 
 623}
 624
 625/**
 626 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
 627 * @rq: request to examine
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 628 *
 629 * Description:
 630 *     A request could be merge of IOs which require different failure
 631 *     handling.  This function determines the number of bytes which
 632 *     can be failed from the beginning of the request without
 633 *     crossing into area which need to be retried further.
 634 *
 635 * Return:
 636 *     The number of bytes to fail.
 637 */
 638static unsigned int scsi_rq_err_bytes(const struct request *rq)
 639{
 640	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
 641	unsigned int bytes = 0;
 642	struct bio *bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643
 644	if (!(rq->rq_flags & RQF_MIXED_MERGE))
 645		return blk_rq_bytes(rq);
 646
 647	/*
 648	 * Currently the only 'mixing' which can happen is between
 649	 * different fastfail types.  We can safely fail portions
 650	 * which have all the failfast bits that the first one has -
 651	 * the ones which are at least as eager to fail as the first
 652	 * one.
 
 
 
 
 
 
 
 653	 */
 654	for (bio = rq->bio; bio; bio = bio->bi_next) {
 655		if ((bio->bi_opf & ff) != ff)
 656			break;
 657		bytes += bio->bi_iter.bi_size;
 
 
 
 
 
 
 
 
 658	}
 659
 660	/* this could lead to infinite loop */
 661	BUG_ON(blk_rq_bytes(rq) && !bytes);
 662	return bytes;
 663}
 
 
 
 
 664
 665static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
 666{
 667	struct request *req = scsi_cmd_to_rq(cmd);
 668	unsigned long wait_for;
 669
 670	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
 671		return false;
 672
 673	wait_for = (cmd->allowed + 1) * req->timeout;
 674	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
 675		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
 676			    wait_for/HZ);
 677		return true;
 678	}
 679	return false;
 680}
 681
 682/*
 683 * When ALUA transition state is returned, reprep the cmd to
 684 * use the ALUA handler's transition timeout. Delay the reprep
 685 * 1 sec to avoid aggressive retries of the target in that
 686 * state.
 687 */
 688#define ALUA_TRANSITION_REPREP_DELAY	1000
 689
 690/* Helper for scsi_io_completion() when special action required. */
 691static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 692{
 693	struct request *req = scsi_cmd_to_rq(cmd);
 694	int level = 0;
 695	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
 696	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
 697	struct scsi_sense_hdr sshdr;
 698	bool sense_valid;
 699	bool sense_current = true;      /* false implies "deferred sense" */
 700	blk_status_t blk_stat;
 701
 702	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 703	if (sense_valid)
 704		sense_current = !scsi_sense_is_deferred(&sshdr);
 705
 706	blk_stat = scsi_result_to_blk_status(result);
 707
 708	if (host_byte(result) == DID_RESET) {
 709		/* Third party bus reset or reset for error recovery
 710		 * reasons.  Just retry the command and see what
 711		 * happens.
 712		 */
 713		action = ACTION_RETRY;
 714	} else if (sense_valid && sense_current) {
 715		switch (sshdr.sense_key) {
 716		case UNIT_ATTENTION:
 717			if (cmd->device->removable) {
 718				/* Detected disc change.  Set a bit
 719				 * and quietly refuse further access.
 720				 */
 721				cmd->device->changed = 1;
 722				action = ACTION_FAIL;
 723			} else {
 724				/* Must have been a power glitch, or a
 725				 * bus reset.  Could not have been a
 726				 * media change, so we just retry the
 727				 * command and see what happens.
 728				 */
 729				action = ACTION_RETRY;
 730			}
 731			break;
 732		case ILLEGAL_REQUEST:
 733			/* If we had an ILLEGAL REQUEST returned, then
 734			 * we may have performed an unsupported
 735			 * command.  The only thing this should be
 736			 * would be a ten byte read where only a six
 737			 * byte read was supported.  Also, on a system
 738			 * where READ CAPACITY failed, we may have
 739			 * read past the end of the disk.
 740			 */
 741			if ((cmd->device->use_10_for_rw &&
 742			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 743			    (cmd->cmnd[0] == READ_10 ||
 744			     cmd->cmnd[0] == WRITE_10)) {
 745				/* This will issue a new 6-byte command. */
 746				cmd->device->use_10_for_rw = 0;
 747				action = ACTION_REPREP;
 748			} else if (sshdr.asc == 0x10) /* DIX */ {
 749				action = ACTION_FAIL;
 750				blk_stat = BLK_STS_PROTECTION;
 751			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 752			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 753				action = ACTION_FAIL;
 754				blk_stat = BLK_STS_TARGET;
 755			} else
 756				action = ACTION_FAIL;
 757			break;
 758		case ABORTED_COMMAND:
 759			action = ACTION_FAIL;
 760			if (sshdr.asc == 0x10) /* DIF */
 761				blk_stat = BLK_STS_PROTECTION;
 762			break;
 763		case NOT_READY:
 764			/* If the device is in the process of becoming
 765			 * ready, or has a temporary blockage, retry.
 766			 */
 767			if (sshdr.asc == 0x04) {
 768				switch (sshdr.ascq) {
 769				case 0x01: /* becoming ready */
 770				case 0x04: /* format in progress */
 771				case 0x05: /* rebuild in progress */
 772				case 0x06: /* recalculation in progress */
 773				case 0x07: /* operation in progress */
 774				case 0x08: /* Long write in progress */
 775				case 0x09: /* self test in progress */
 776				case 0x11: /* notify (enable spinup) required */
 777				case 0x14: /* space allocation in progress */
 778				case 0x1a: /* start stop unit in progress */
 779				case 0x1b: /* sanitize in progress */
 780				case 0x1d: /* configuration in progress */
 781				case 0x24: /* depopulation in progress */
 782					action = ACTION_DELAYED_RETRY;
 783					break;
 784				case 0x0a: /* ALUA state transition */
 785					action = ACTION_DELAYED_REPREP;
 786					break;
 787				default:
 788					action = ACTION_FAIL;
 789					break;
 790				}
 791			} else
 792				action = ACTION_FAIL;
 793			break;
 794		case VOLUME_OVERFLOW:
 795			/* See SSC3rXX or current. */
 796			action = ACTION_FAIL;
 797			break;
 798		case DATA_PROTECT:
 799			action = ACTION_FAIL;
 800			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
 801			    (sshdr.asc == 0x55 &&
 802			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
 803				/* Insufficient zone resources */
 804				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
 805			}
 806			break;
 807		default:
 808			action = ACTION_FAIL;
 809			break;
 810		}
 811	} else
 812		action = ACTION_FAIL;
 813
 814	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
 
 815		action = ACTION_FAIL;
 816
 817	switch (action) {
 818	case ACTION_FAIL:
 819		/* Give up and fail the remainder of the request */
 820		if (!(req->rq_flags & RQF_QUIET)) {
 821			static DEFINE_RATELIMIT_STATE(_rs,
 822					DEFAULT_RATELIMIT_INTERVAL,
 823					DEFAULT_RATELIMIT_BURST);
 824
 825			if (unlikely(scsi_logging_level))
 826				level =
 827				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 828						    SCSI_LOG_MLCOMPLETE_BITS);
 829
 830			/*
 831			 * if logging is enabled the failure will be printed
 832			 * in scsi_log_completion(), so avoid duplicate messages
 833			 */
 834			if (!level && __ratelimit(&_rs)) {
 835				scsi_print_result(cmd, NULL, FAILED);
 836				if (sense_valid)
 837					scsi_print_sense(cmd);
 838				scsi_print_command(cmd);
 839			}
 840		}
 841		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
 842			return;
 843		fallthrough;
 844	case ACTION_REPREP:
 845		scsi_mq_requeue_cmd(cmd, 0);
 846		break;
 847	case ACTION_DELAYED_REPREP:
 848		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
 
 
 
 
 
 
 
 
 849		break;
 850	case ACTION_RETRY:
 851		/* Retry the same command immediately */
 852		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 853		break;
 854	case ACTION_DELAYED_RETRY:
 855		/* Retry the same command after a delay */
 856		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 857		break;
 858	}
 859}
 860
 861/*
 862 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 863 * new result that may suppress further error checking. Also modifies
 864 * *blk_statp in some cases.
 865 */
 866static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 867					blk_status_t *blk_statp)
 868{
 869	bool sense_valid;
 870	bool sense_current = true;	/* false implies "deferred sense" */
 871	struct request *req = scsi_cmd_to_rq(cmd);
 872	struct scsi_sense_hdr sshdr;
 873
 874	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 875	if (sense_valid)
 876		sense_current = !scsi_sense_is_deferred(&sshdr);
 877
 878	if (blk_rq_is_passthrough(req)) {
 879		if (sense_valid) {
 880			/*
 881			 * SG_IO wants current and deferred errors
 882			 */
 883			cmd->sense_len = min(8 + cmd->sense_buffer[7],
 884					     SCSI_SENSE_BUFFERSIZE);
 885		}
 886		if (sense_current)
 887			*blk_statp = scsi_result_to_blk_status(result);
 888	} else if (blk_rq_bytes(req) == 0 && sense_current) {
 889		/*
 890		 * Flush commands do not transfers any data, and thus cannot use
 891		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 892		 * This sets *blk_statp explicitly for the problem case.
 893		 */
 894		*blk_statp = scsi_result_to_blk_status(result);
 895	}
 896	/*
 897	 * Recovered errors need reporting, but they're always treated as
 898	 * success, so fiddle the result code here.  For passthrough requests
 899	 * we already took a copy of the original into sreq->result which
 900	 * is what gets returned to the user
 901	 */
 902	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 903		bool do_print = true;
 904		/*
 905		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
 906		 * skip print since caller wants ATA registers. Only occurs
 907		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
 908		 */
 909		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 910			do_print = false;
 911		else if (req->rq_flags & RQF_QUIET)
 912			do_print = false;
 913		if (do_print)
 914			scsi_print_sense(cmd);
 915		result = 0;
 916		/* for passthrough, *blk_statp may be set */
 917		*blk_statp = BLK_STS_OK;
 918	}
 919	/*
 920	 * Another corner case: the SCSI status byte is non-zero but 'good'.
 921	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 922	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 923	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
 924	 * intermediate statuses (both obsolete in SAM-4) as good.
 925	 */
 926	if ((result & 0xff) && scsi_status_is_good(result)) {
 927		result = 0;
 928		*blk_statp = BLK_STS_OK;
 929	}
 930	return result;
 931}
 932
 933/**
 934 * scsi_io_completion - Completion processing for SCSI commands.
 935 * @cmd:	command that is finished.
 936 * @good_bytes:	number of processed bytes.
 937 *
 938 * We will finish off the specified number of sectors. If we are done, the
 939 * command block will be released and the queue function will be goosed. If we
 940 * are not done then we have to figure out what to do next:
 941 *
 942 *   a) We can call scsi_mq_requeue_cmd().  The request will be
 943 *	unprepared and put back on the queue.  Then a new command will
 944 *	be created for it.  This should be used if we made forward
 945 *	progress, or if we want to switch from READ(10) to READ(6) for
 946 *	example.
 947 *
 948 *   b) We can call scsi_io_completion_action().  The request will be
 949 *	put back on the queue and retried using the same command as
 950 *	before, possibly after a delay.
 951 *
 952 *   c) We can call scsi_end_request() with blk_stat other than
 953 *	BLK_STS_OK, to fail the remainder of the request.
 954 */
 955void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 956{
 957	int result = cmd->result;
 958	struct request *req = scsi_cmd_to_rq(cmd);
 959	blk_status_t blk_stat = BLK_STS_OK;
 960
 961	if (unlikely(result))	/* a nz result may or may not be an error */
 962		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
 963
 964	/*
 965	 * Next deal with any sectors which we were able to correctly
 966	 * handle.
 967	 */
 968	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 969		"%u sectors total, %d bytes done.\n",
 970		blk_rq_sectors(req), good_bytes));
 971
 972	/*
 973	 * Failed, zero length commands always need to drop down
 974	 * to retry code. Fast path should return in this block.
 975	 */
 976	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
 977		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
 978			return; /* no bytes remaining */
 979	}
 980
 981	/* Kill remainder if no retries. */
 982	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
 983		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
 984			WARN_ONCE(true,
 985			    "Bytes remaining after failed, no-retry command");
 986		return;
 987	}
 988
 989	/*
 990	 * If there had been no error, but we have leftover bytes in the
 991	 * request just queue the command up again.
 992	 */
 993	if (likely(result == 0))
 994		scsi_mq_requeue_cmd(cmd, 0);
 995	else
 996		scsi_io_completion_action(cmd, result);
 997}
 998
 999static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1000		struct request *rq)
1001{
1002	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1003	       !op_is_write(req_op(rq)) &&
1004	       sdev->host->hostt->dma_need_drain(rq);
1005}
1006
1007/**
1008 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1009 * @cmd: SCSI command data structure to initialize.
1010 *
1011 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1012 * for @cmd.
1013 *
1014 * Returns:
1015 * * BLK_STS_OK       - on success
1016 * * BLK_STS_RESOURCE - if the failure is retryable
1017 * * BLK_STS_IOERR    - if the failure is fatal
1018 */
1019blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1020{
1021	struct scsi_device *sdev = cmd->device;
1022	struct request *rq = scsi_cmd_to_rq(cmd);
1023	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1024	struct scatterlist *last_sg = NULL;
1025	blk_status_t ret;
1026	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1027	int count;
1028
1029	if (WARN_ON_ONCE(!nr_segs))
1030		return BLK_STS_IOERR;
1031
1032	/*
1033	 * Make sure there is space for the drain.  The driver must adjust
1034	 * max_hw_segments to be prepared for this.
1035	 */
1036	if (need_drain)
1037		nr_segs++;
 
 
 
 
 
 
1038
1039	/*
1040	 * If sg table allocation fails, requeue request later.
1041	 */
1042	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1043			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1044		return BLK_STS_RESOURCE;
1045
1046	/*
1047	 * Next, walk the list, and fill in the addresses and sizes of
1048	 * each segment.
1049	 */
1050	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1051
1052	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1053		unsigned int pad_len =
1054			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1055
1056		last_sg->length += pad_len;
1057		cmd->extra_len += pad_len;
1058	}
1059
1060	if (need_drain) {
1061		sg_unmark_end(last_sg);
1062		last_sg = sg_next(last_sg);
1063		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1064		sg_mark_end(last_sg);
1065
1066		cmd->extra_len += sdev->dma_drain_len;
1067		count++;
 
1068	}
1069
1070	BUG_ON(count > cmd->sdb.table.nents);
1071	cmd->sdb.table.nents = count;
1072	cmd->sdb.length = blk_rq_payload_bytes(rq);
1073
1074	if (blk_integrity_rq(rq)) {
1075		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1076		int ivecs;
1077
1078		if (WARN_ON_ONCE(!prot_sdb)) {
1079			/*
1080			 * This can happen if someone (e.g. multipath)
1081			 * queues a command to a device on an adapter
1082			 * that does not support DIX.
1083			 */
1084			ret = BLK_STS_IOERR;
1085			goto out_free_sgtables;
 
1086		}
1087
1088		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1089
1090		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1091				prot_sdb->table.sgl,
1092				SCSI_INLINE_PROT_SG_CNT)) {
1093			ret = BLK_STS_RESOURCE;
1094			goto out_free_sgtables;
1095		}
1096
1097		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1098						prot_sdb->table.sgl);
1099		BUG_ON(count > ivecs);
1100		BUG_ON(count > queue_max_integrity_segments(rq->q));
1101
1102		cmd->prot_sdb = prot_sdb;
1103		cmd->prot_sdb->table.nents = count;
1104	}
1105
1106	return BLK_STS_OK;
1107out_free_sgtables:
1108	scsi_free_sgtables(cmd);
1109	return ret;
 
 
 
 
 
 
 
1110}
1111EXPORT_SYMBOL(scsi_alloc_sgtables);
1112
1113/**
1114 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1115 * @rq: Request associated with the SCSI command to be initialized.
1116 *
1117 * This function initializes the members of struct scsi_cmnd that must be
1118 * initialized before request processing starts and that won't be
1119 * reinitialized if a SCSI command is requeued.
1120 */
1121static void scsi_initialize_rq(struct request *rq)
1122{
1123	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1124
1125	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1126	cmd->cmd_len = MAX_COMMAND_SIZE;
1127	cmd->sense_len = 0;
1128	init_rcu_head(&cmd->rcu);
1129	cmd->jiffies_at_alloc = jiffies;
1130	cmd->retries = 0;
1131}
1132
1133struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1134				   blk_mq_req_flags_t flags)
1135{
1136	struct request *rq;
1137
1138	rq = blk_mq_alloc_request(q, opf, flags);
1139	if (!IS_ERR(rq))
1140		scsi_initialize_rq(rq);
1141	return rq;
1142}
1143EXPORT_SYMBOL_GPL(scsi_alloc_request);
1144
1145/*
1146 * Only called when the request isn't completed by SCSI, and not freed by
1147 * SCSI
1148 */
1149static void scsi_cleanup_rq(struct request *rq)
1150{
1151	if (rq->rq_flags & RQF_DONTPREP) {
1152		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1153		rq->rq_flags &= ~RQF_DONTPREP;
1154	}
1155}
1156
1157/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1158void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1159{
1160	struct request *rq = scsi_cmd_to_rq(cmd);
1161
1162	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1163		cmd->flags |= SCMD_INITIALIZED;
1164		scsi_initialize_rq(rq);
1165	}
1166
1167	cmd->device = dev;
1168	INIT_LIST_HEAD(&cmd->eh_entry);
1169	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1170}
1171
1172static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1173		struct request *req)
1174{
1175	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1176
1177	/*
1178	 * Passthrough requests may transfer data, in which case they must
1179	 * a bio attached to them.  Or they might contain a SCSI command
1180	 * that does not transfer data, in which case they may optionally
1181	 * submit a request without an attached bio.
1182	 */
1183	if (req->bio) {
1184		blk_status_t ret = scsi_alloc_sgtables(cmd);
1185		if (unlikely(ret != BLK_STS_OK))
1186			return ret;
1187	} else {
1188		BUG_ON(blk_rq_bytes(req));
1189
1190		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1191	}
1192
 
1193	cmd->transfersize = blk_rq_bytes(req);
1194	return BLK_STS_OK;
 
1195}
1196
1197static blk_status_t
1198scsi_device_state_check(struct scsi_device *sdev, struct request *req)
 
 
 
1199{
1200	switch (sdev->sdev_state) {
1201	case SDEV_CREATED:
1202		return BLK_STS_OK;
1203	case SDEV_OFFLINE:
1204	case SDEV_TRANSPORT_OFFLINE:
1205		/*
1206		 * If the device is offline we refuse to process any
1207		 * commands.  The device must be brought online
1208		 * before trying any recovery commands.
1209		 */
1210		if (!sdev->offline_already) {
1211			sdev->offline_already = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212			sdev_printk(KERN_ERR, sdev,
1213				    "rejecting I/O to offline device\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1214		}
1215		return BLK_STS_IOERR;
1216	case SDEV_DEL:
1217		/*
1218		 * If the device is fully deleted, we refuse to
1219		 * process any commands as well.
 
1220		 */
1221		sdev_printk(KERN_ERR, sdev,
1222			    "rejecting I/O to dead device\n");
1223		return BLK_STS_IOERR;
1224	case SDEV_BLOCK:
1225	case SDEV_CREATED_BLOCK:
1226		return BLK_STS_RESOURCE;
1227	case SDEV_QUIESCE:
1228		/*
1229		 * If the device is blocked we only accept power management
1230		 * commands.
1231		 */
1232		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1233			return BLK_STS_RESOURCE;
1234		return BLK_STS_OK;
1235	default:
1236		/*
1237		 * For any other not fully online state we only allow
1238		 * power management commands.
1239		 */
1240		if (req && !(req->rq_flags & RQF_PM))
1241			return BLK_STS_OFFLINE;
1242		return BLK_STS_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
1243	}
 
 
 
 
 
 
 
 
 
1244}
1245
1246/*
1247 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1248 * and return the token else return -1.
 
 
1249 */
1250static inline int scsi_dev_queue_ready(struct request_queue *q,
1251				  struct scsi_device *sdev)
1252{
1253	int token;
1254
1255	token = sbitmap_get(&sdev->budget_map);
1256	if (atomic_read(&sdev->device_blocked)) {
1257		if (token < 0)
1258			goto out;
1259
1260		if (scsi_device_busy(sdev) > 1)
1261			goto out_dec;
1262
1263		/*
1264		 * unblock after device_blocked iterates to zero
1265		 */
1266		if (atomic_dec_return(&sdev->device_blocked) > 0)
 
 
 
 
 
1267			goto out_dec;
 
1268		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1269				   "unblocking device at zero depth\n"));
1270	}
1271
1272	return token;
 
 
 
1273out_dec:
1274	if (token >= 0)
1275		sbitmap_put(&sdev->budget_map, token);
1276out:
1277	return -1;
1278}
1279
1280/*
1281 * scsi_target_queue_ready: checks if there we can send commands to target
1282 * @sdev: scsi device on starget to check.
1283 */
1284static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1285					   struct scsi_device *sdev)
1286{
1287	struct scsi_target *starget = scsi_target(sdev);
1288	unsigned int busy;
1289
1290	if (starget->single_lun) {
1291		spin_lock_irq(shost->host_lock);
1292		if (starget->starget_sdev_user &&
1293		    starget->starget_sdev_user != sdev) {
1294			spin_unlock_irq(shost->host_lock);
1295			return 0;
1296		}
1297		starget->starget_sdev_user = sdev;
1298		spin_unlock_irq(shost->host_lock);
1299	}
1300
1301	if (starget->can_queue <= 0)
1302		return 1;
1303
1304	busy = atomic_inc_return(&starget->target_busy) - 1;
1305	if (atomic_read(&starget->target_blocked) > 0) {
1306		if (busy)
1307			goto starved;
1308
1309		/*
1310		 * unblock after target_blocked iterates to zero
1311		 */
1312		if (atomic_dec_return(&starget->target_blocked) > 0)
1313			goto out_dec;
1314
1315		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1316				 "unblocking target at zero depth\n"));
1317	}
1318
1319	if (busy >= starget->can_queue)
1320		goto starved;
1321
1322	return 1;
1323
1324starved:
1325	spin_lock_irq(shost->host_lock);
1326	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1327	spin_unlock_irq(shost->host_lock);
1328out_dec:
1329	if (starget->can_queue > 0)
1330		atomic_dec(&starget->target_busy);
1331	return 0;
1332}
1333
1334/*
1335 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1336 * return 0. We must end up running the queue again whenever 0 is
1337 * returned, else IO can hang.
1338 */
1339static inline int scsi_host_queue_ready(struct request_queue *q,
1340				   struct Scsi_Host *shost,
1341				   struct scsi_device *sdev,
1342				   struct scsi_cmnd *cmd)
1343{
 
 
 
 
 
 
1344	if (atomic_read(&shost->host_blocked) > 0) {
1345		if (scsi_host_busy(shost) > 0)
1346			goto starved;
1347
1348		/*
1349		 * unblock after host_blocked iterates to zero
1350		 */
1351		if (atomic_dec_return(&shost->host_blocked) > 0)
1352			goto out_dec;
1353
1354		SCSI_LOG_MLQUEUE(3,
1355			shost_printk(KERN_INFO, shost,
1356				     "unblocking host at zero depth\n"));
1357	}
1358
 
 
1359	if (shost->host_self_blocked)
1360		goto starved;
1361
1362	/* We're OK to process the command, so we can't be starved */
1363	if (!list_empty(&sdev->starved_entry)) {
1364		spin_lock_irq(shost->host_lock);
1365		if (!list_empty(&sdev->starved_entry))
1366			list_del_init(&sdev->starved_entry);
1367		spin_unlock_irq(shost->host_lock);
1368	}
1369
1370	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1371
1372	return 1;
1373
1374starved:
1375	spin_lock_irq(shost->host_lock);
1376	if (list_empty(&sdev->starved_entry))
1377		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1378	spin_unlock_irq(shost->host_lock);
1379out_dec:
1380	scsi_dec_host_busy(shost, cmd);
1381	return 0;
1382}
1383
1384/*
1385 * Busy state exporting function for request stacking drivers.
1386 *
1387 * For efficiency, no lock is taken to check the busy state of
1388 * shost/starget/sdev, since the returned value is not guaranteed and
1389 * may be changed after request stacking drivers call the function,
1390 * regardless of taking lock or not.
1391 *
1392 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1393 * needs to return 'not busy'. Otherwise, request stacking drivers
1394 * may hold requests forever.
1395 */
1396static bool scsi_mq_lld_busy(struct request_queue *q)
1397{
1398	struct scsi_device *sdev = q->queuedata;
1399	struct Scsi_Host *shost;
1400
1401	if (blk_queue_dying(q))
1402		return false;
1403
1404	shost = sdev->host;
1405
1406	/*
1407	 * Ignore host/starget busy state.
1408	 * Since block layer does not have a concept of fairness across
1409	 * multiple queues, congestion of host/starget needs to be handled
1410	 * in SCSI layer.
1411	 */
1412	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1413		return true;
1414
1415	return false;
1416}
1417
1418/*
1419 * Block layer request completion callback. May be called from interrupt
1420 * context.
1421 */
1422static void scsi_complete(struct request *rq)
1423{
1424	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1425	enum scsi_disposition disposition;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1426
1427	INIT_LIST_HEAD(&cmd->eh_entry);
1428
1429	atomic_inc(&cmd->device->iodone_cnt);
1430	if (cmd->result)
1431		atomic_inc(&cmd->device->ioerr_cnt);
1432
1433	disposition = scsi_decide_disposition(cmd);
1434	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
 
 
 
 
1435		disposition = SUCCESS;
 
1436
1437	scsi_log_completion(cmd, disposition);
1438
1439	switch (disposition) {
1440	case SUCCESS:
1441		scsi_finish_command(cmd);
1442		break;
1443	case NEEDS_RETRY:
1444		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1445		break;
1446	case ADD_TO_MLQUEUE:
1447		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1448		break;
1449	default:
1450		scsi_eh_scmd_add(cmd);
1451		break;
1452	}
1453}
1454
1455/**
1456 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1457 * @cmd: command block we are dispatching.
1458 *
1459 * Return: nonzero return request was rejected and device's queue needs to be
1460 * plugged.
1461 */
1462static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1463{
1464	struct Scsi_Host *host = cmd->device->host;
1465	int rtn = 0;
1466
 
 
1467	/* check if the device is still usable */
1468	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1469		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1470		 * returns an immediate error upwards, and signals
1471		 * that the device is no longer present */
1472		cmd->result = DID_NO_CONNECT << 16;
1473		goto done;
1474	}
1475
1476	/* Check to see if the scsi lld made this device blocked. */
1477	if (unlikely(scsi_device_blocked(cmd->device))) {
1478		/*
1479		 * in blocked state, the command is just put back on
1480		 * the device queue.  The suspend state has already
1481		 * blocked the queue so future requests should not
1482		 * occur until the device transitions out of the
1483		 * suspend state.
1484		 */
1485		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1486			"queuecommand : device blocked\n"));
1487		return SCSI_MLQUEUE_DEVICE_BUSY;
1488	}
1489
1490	/* Store the LUN value in cmnd, if needed. */
1491	if (cmd->device->lun_in_cdb)
1492		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1493			       (cmd->device->lun << 5 & 0xe0);
1494
1495	scsi_log_send(cmd);
1496
1497	/*
1498	 * Before we queue this command, check if the command
1499	 * length exceeds what the host adapter can handle.
1500	 */
1501	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1502		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1503			       "queuecommand : command too long. "
1504			       "cdb_size=%d host->max_cmd_len=%d\n",
1505			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1506		cmd->result = (DID_ABORT << 16);
1507		goto done;
1508	}
1509
1510	if (unlikely(host->shost_state == SHOST_DEL)) {
1511		cmd->result = (DID_NO_CONNECT << 16);
1512		goto done;
1513
1514	}
1515
1516	trace_scsi_dispatch_cmd_start(cmd);
1517	rtn = host->hostt->queuecommand(host, cmd);
1518	if (rtn) {
1519		trace_scsi_dispatch_cmd_error(cmd, rtn);
1520		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1521		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1522			rtn = SCSI_MLQUEUE_HOST_BUSY;
1523
1524		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1525			"queuecommand : request rejected\n"));
1526	}
1527
1528	return rtn;
1529 done:
1530	scsi_done(cmd);
1531	return 0;
1532}
1533
1534/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1535static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
 
 
 
 
 
 
 
 
 
 
1536{
1537	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1538		sizeof(struct scatterlist);
1539}
1540
1541static blk_status_t scsi_prepare_cmd(struct request *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
1542{
1543	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1544	struct scsi_device *sdev = req->q->queuedata;
1545	struct Scsi_Host *shost = sdev->host;
1546	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1547	struct scatterlist *sg;
1548
1549	scsi_init_command(sdev, cmd);
1550
1551	cmd->eh_eflags = 0;
1552	cmd->prot_type = 0;
1553	cmd->prot_flags = 0;
1554	cmd->submitter = 0;
1555	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1556	cmd->underflow = 0;
1557	cmd->transfersize = 0;
1558	cmd->host_scribble = NULL;
1559	cmd->result = 0;
1560	cmd->extra_len = 0;
1561	cmd->state = 0;
1562	if (in_flight)
1563		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1564
1565	/*
1566	 * Only clear the driver-private command data if the LLD does not supply
1567	 * a function to initialize that data.
1568	 */
1569	if (!shost->hostt->init_cmd_priv)
1570		memset(cmd + 1, 0, shost->hostt->cmd_size);
 
 
 
 
 
 
 
 
 
1571
1572	cmd->prot_op = SCSI_PROT_NORMAL;
1573	if (blk_rq_bytes(req))
1574		cmd->sc_data_direction = rq_dma_dir(req);
1575	else
1576		cmd->sc_data_direction = DMA_NONE;
 
1577
1578	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1579	cmd->sdb.table.sgl = sg;
1580
1581	if (scsi_host_get_prot(shost)) {
1582		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
 
 
 
1583
1584		cmd->prot_sdb->table.sgl =
1585			(struct scatterlist *)(cmd->prot_sdb + 1);
1586	}
 
 
 
 
 
 
 
1587
1588	/*
1589	 * Special handling for passthrough commands, which don't go to the ULP
1590	 * at all:
1591	 */
1592	if (blk_rq_is_passthrough(req))
1593		return scsi_setup_scsi_cmnd(sdev, req);
 
 
 
 
 
 
 
 
 
 
1594
1595	if (sdev->handler && sdev->handler->prep_fn) {
1596		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1597
1598		if (ret != BLK_STS_OK)
1599			return ret;
1600	}
 
 
 
 
1601
1602	/* Usually overridden by the ULP */
1603	cmd->allowed = 0;
1604	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1605	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1606}
1607
1608static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1609{
1610	struct request *req = scsi_cmd_to_rq(cmd);
1611
1612	switch (cmd->submitter) {
1613	case SUBMITTED_BY_BLOCK_LAYER:
1614		break;
1615	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1616		return scsi_eh_done(cmd);
1617	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1618		return;
1619	}
1620
1621	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1622		return;
1623	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1624		return;
1625	trace_scsi_dispatch_cmd_done(cmd);
1626
1627	if (complete_directly)
1628		blk_mq_complete_request_direct(req, scsi_complete);
1629	else
1630		blk_mq_complete_request(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1631}
1632
1633void scsi_done(struct scsi_cmnd *cmd)
1634{
1635	scsi_done_internal(cmd, false);
 
 
 
 
 
 
 
1636}
1637EXPORT_SYMBOL(scsi_done);
1638
1639void scsi_done_direct(struct scsi_cmnd *cmd)
1640{
1641	scsi_done_internal(cmd, true);
1642}
1643EXPORT_SYMBOL(scsi_done_direct);
 
 
 
 
 
 
 
 
 
 
 
 
1644
1645static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1646{
1647	struct scsi_device *sdev = q->queuedata;
1648
1649	sbitmap_put(&sdev->budget_map, budget_token);
1650}
 
1651
1652/*
1653 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1654 * not change behaviour from the previous unplug mechanism, experimentation
1655 * may prove this needs changing.
1656 */
1657#define SCSI_QUEUE_DELAY 3
1658
1659static int scsi_mq_get_budget(struct request_queue *q)
1660{
1661	struct scsi_device *sdev = q->queuedata;
1662	int token = scsi_dev_queue_ready(q, sdev);
1663
1664	if (token >= 0)
1665		return token;
 
 
 
 
1666
1667	atomic_inc(&sdev->restarts);
 
 
1668
1669	/*
1670	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1671	 * .restarts must be incremented before .device_busy is read because the
1672	 * code in scsi_run_queue_async() depends on the order of these operations.
1673	 */
1674	smp_mb__after_atomic();
 
1675
1676	/*
1677	 * If all in-flight requests originated from this LUN are completed
1678	 * before reading .device_busy, sdev->device_busy will be observed as
1679	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1680	 * soon. Otherwise, completion of one of these requests will observe
1681	 * the .restarts flag, and the request queue will be run for handling
1682	 * this request, see scsi_end_request().
1683	 */
1684	if (unlikely(scsi_device_busy(sdev) == 0 &&
1685				!scsi_device_blocked(sdev)))
1686		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1687	return -1;
1688}
1689
1690static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1691{
1692	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1693
1694	cmd->budget_token = token;
1695}
1696
1697static int scsi_mq_get_rq_budget_token(struct request *req)
1698{
1699	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1700
1701	return cmd->budget_token;
1702}
1703
1704static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1705			 const struct blk_mq_queue_data *bd)
1706{
1707	struct request *req = bd->rq;
1708	struct request_queue *q = req->q;
1709	struct scsi_device *sdev = q->queuedata;
1710	struct Scsi_Host *shost = sdev->host;
1711	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1712	blk_status_t ret;
1713	int reason;
1714
1715	WARN_ON_ONCE(cmd->budget_token < 0);
 
 
 
 
 
 
1716
1717	/*
1718	 * If the device is not in running state we will reject some or all
1719	 * commands.
1720	 */
1721	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1722		ret = scsi_device_state_check(sdev, req);
1723		if (ret != BLK_STS_OK)
1724			goto out_put_budget;
1725	}
1726
1727	ret = BLK_STS_RESOURCE;
1728	if (!scsi_target_queue_ready(shost, sdev))
1729		goto out_put_budget;
1730	if (unlikely(scsi_host_in_recovery(shost))) {
1731		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1732			ret = BLK_STS_OFFLINE;
1733		goto out_dec_target_busy;
1734	}
1735	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1736		goto out_dec_target_busy;
 
1737
1738	if (!(req->rq_flags & RQF_DONTPREP)) {
1739		ret = scsi_prepare_cmd(req);
1740		if (ret != BLK_STS_OK)
1741			goto out_dec_host_busy;
1742		req->rq_flags |= RQF_DONTPREP;
1743	} else {
1744		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1745	}
1746
1747	cmd->flags &= SCMD_PRESERVED_FLAGS;
1748	if (sdev->simple_tags)
1749		cmd->flags |= SCMD_TAGGED;
1750	if (bd->last)
1751		cmd->flags |= SCMD_LAST;
1752
1753	scsi_set_resid(cmd, 0);
1754	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1755	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1756
1757	blk_mq_start_request(req);
1758	reason = scsi_dispatch_cmd(cmd);
1759	if (reason) {
1760		scsi_set_blocked(cmd, reason);
1761		ret = BLK_STS_RESOURCE;
1762		goto out_dec_host_busy;
1763	}
1764
1765	atomic_inc(&cmd->device->iorequest_cnt);
1766	return BLK_STS_OK;
1767
1768out_dec_host_busy:
1769	scsi_dec_host_busy(shost, cmd);
1770out_dec_target_busy:
1771	if (scsi_target(sdev)->can_queue > 0)
1772		atomic_dec(&scsi_target(sdev)->target_busy);
1773out_put_budget:
1774	scsi_mq_put_budget(q, cmd->budget_token);
1775	cmd->budget_token = -1;
 
 
1776	switch (ret) {
1777	case BLK_STS_OK:
1778		break;
1779	case BLK_STS_RESOURCE:
1780	case BLK_STS_ZONE_RESOURCE:
1781		if (scsi_device_blocked(sdev))
1782			ret = BLK_STS_DEV_RESOURCE;
1783		break;
1784	case BLK_STS_AGAIN:
1785		cmd->result = DID_BUS_BUSY << 16;
1786		if (req->rq_flags & RQF_DONTPREP)
1787			scsi_mq_uninit_cmd(cmd);
1788		break;
1789	default:
1790		if (unlikely(!scsi_device_online(sdev)))
1791			cmd->result = DID_NO_CONNECT << 16;
1792		else
1793			cmd->result = DID_ERROR << 16;
1794		/*
1795		 * Make sure to release all allocated resources when
1796		 * we hit an error, as we will never see this command
1797		 * again.
1798		 */
1799		if (req->rq_flags & RQF_DONTPREP)
1800			scsi_mq_uninit_cmd(cmd);
1801		scsi_run_queue_async(sdev);
 
1802		break;
1803	}
1804	return ret;
1805}
1806
1807static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1808				unsigned int hctx_idx, unsigned int numa_node)
 
 
 
 
 
 
 
 
 
1809{
1810	struct Scsi_Host *shost = set->driver_data;
1811	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1812	struct scatterlist *sg;
1813	int ret = 0;
1814
1815	cmd->sense_buffer =
1816		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1817	if (!cmd->sense_buffer)
1818		return -ENOMEM;
1819
1820	if (scsi_host_get_prot(shost)) {
1821		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1822			shost->hostt->cmd_size;
1823		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1824	}
1825
1826	if (shost->hostt->init_cmd_priv) {
1827		ret = shost->hostt->init_cmd_priv(shost, cmd);
1828		if (ret < 0)
1829			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1830	}
1831
1832	return ret;
1833}
1834
1835static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1836				 unsigned int hctx_idx)
1837{
1838	struct Scsi_Host *shost = set->driver_data;
1839	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1840
1841	if (shost->hostt->exit_cmd_priv)
1842		shost->hostt->exit_cmd_priv(shost, cmd);
1843	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1844}
1845
1846
1847static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1848{
1849	struct Scsi_Host *shost = hctx->driver_data;
1850
1851	if (shost->hostt->mq_poll)
1852		return shost->hostt->mq_poll(shost, hctx->queue_num);
1853
1854	return 0;
1855}
1856
1857static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1858			  unsigned int hctx_idx)
1859{
1860	struct Scsi_Host *shost = data;
 
1861
1862	hctx->driver_data = shost;
1863	return 0;
1864}
 
 
 
 
 
1865
1866static void scsi_map_queues(struct blk_mq_tag_set *set)
1867{
1868	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1869
1870	if (shost->hostt->map_queues)
1871		return shost->hostt->map_queues(shost);
1872	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1873}
1874
1875void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1876{
1877	struct device *dev = shost->dma_dev;
1878
1879	/*
1880	 * this limit is imposed by hardware restrictions
1881	 */
1882	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1883					SG_MAX_SEGMENTS));
1884
1885	if (scsi_host_prot_dma(shost)) {
1886		shost->sg_prot_tablesize =
1887			min_not_zero(shost->sg_prot_tablesize,
1888				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1889		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1890		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1891	}
1892
1893	blk_queue_max_hw_sectors(q, shost->max_sectors);
 
1894	blk_queue_segment_boundary(q, shost->dma_boundary);
1895	dma_set_seg_boundary(dev, shost->dma_boundary);
1896
1897	blk_queue_max_segment_size(q, shost->max_segment_size);
1898	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1899	dma_set_max_seg_size(dev, queue_max_segment_size(q));
 
1900
1901	/*
1902	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1903	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1904	 * which is set by the platform.
1905	 *
1906	 * Devices that require a bigger alignment can increase it later.
1907	 */
1908	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1909}
1910EXPORT_SYMBOL_GPL(__scsi_init_queue);
1911
1912static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1913	.get_budget	= scsi_mq_get_budget,
1914	.put_budget	= scsi_mq_put_budget,
1915	.queue_rq	= scsi_queue_rq,
1916	.complete	= scsi_complete,
1917	.timeout	= scsi_timeout,
1918#ifdef CONFIG_BLK_DEBUG_FS
1919	.show_rq	= scsi_show_rq,
1920#endif
1921	.init_request	= scsi_mq_init_request,
1922	.exit_request	= scsi_mq_exit_request,
1923	.cleanup_rq	= scsi_cleanup_rq,
1924	.busy		= scsi_mq_lld_busy,
1925	.map_queues	= scsi_map_queues,
1926	.init_hctx	= scsi_init_hctx,
1927	.poll		= scsi_mq_poll,
1928	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1929	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1930};
1931
 
 
 
 
 
 
 
1932
1933static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1934{
1935	struct Scsi_Host *shost = hctx->driver_data;
 
 
 
 
1936
1937	shost->hostt->commit_rqs(shost, hctx->queue_num);
 
 
 
 
 
1938}
1939
1940static const struct blk_mq_ops scsi_mq_ops = {
1941	.get_budget	= scsi_mq_get_budget,
1942	.put_budget	= scsi_mq_put_budget,
1943	.queue_rq	= scsi_queue_rq,
1944	.commit_rqs	= scsi_commit_rqs,
1945	.complete	= scsi_complete,
1946	.timeout	= scsi_timeout,
1947#ifdef CONFIG_BLK_DEBUG_FS
1948	.show_rq	= scsi_show_rq,
1949#endif
1950	.init_request	= scsi_mq_init_request,
1951	.exit_request	= scsi_mq_exit_request,
1952	.cleanup_rq	= scsi_cleanup_rq,
1953	.busy		= scsi_mq_lld_busy,
1954	.map_queues	= scsi_map_queues,
1955	.init_hctx	= scsi_init_hctx,
1956	.poll		= scsi_mq_poll,
1957	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1958	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1959};
1960
 
 
 
 
 
 
 
 
 
 
 
1961int scsi_mq_setup_tags(struct Scsi_Host *shost)
1962{
1963	unsigned int cmd_size, sgl_size;
1964	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1965
1966	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1967				scsi_mq_inline_sgl_size(shost));
 
 
1968	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1969	if (scsi_host_get_prot(shost))
1970		cmd_size += sizeof(struct scsi_data_buffer) +
1971			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1972
1973	memset(tag_set, 0, sizeof(*tag_set));
1974	if (shost->hostt->commit_rqs)
1975		tag_set->ops = &scsi_mq_ops;
1976	else
1977		tag_set->ops = &scsi_mq_ops_no_commit;
1978	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1979	tag_set->nr_maps = shost->nr_maps ? : 1;
1980	tag_set->queue_depth = shost->can_queue;
1981	tag_set->cmd_size = cmd_size;
1982	tag_set->numa_node = dev_to_node(shost->dma_dev);
1983	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1984	tag_set->flags |=
1985		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1986	tag_set->driver_data = shost;
1987	if (shost->host_tagset)
1988		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1989
1990	return blk_mq_alloc_tag_set(tag_set);
1991}
1992
1993void scsi_mq_free_tags(struct kref *kref)
1994{
1995	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
1996					       tagset_refcnt);
1997
1998	blk_mq_free_tag_set(&shost->tag_set);
1999	complete(&shost->tagset_freed);
2000}
2001
2002/**
2003 * scsi_device_from_queue - return sdev associated with a request_queue
2004 * @q: The request queue to return the sdev from
2005 *
2006 * Return the sdev associated with a request queue or NULL if the
2007 * request_queue does not reference a SCSI device.
2008 */
2009struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2010{
2011	struct scsi_device *sdev = NULL;
2012
2013	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2014	    q->mq_ops == &scsi_mq_ops)
 
 
2015		sdev = q->queuedata;
2016	if (!sdev || !get_device(&sdev->sdev_gendev))
2017		sdev = NULL;
2018
2019	return sdev;
2020}
2021/*
2022 * pktcdvd should have been integrated into the SCSI layers, but for historical
2023 * reasons like the old IDE driver it isn't.  This export allows it to safely
2024 * probe if a given device is a SCSI one and only attach to that.
2025 */
2026#ifdef CONFIG_CDROM_PKTCDVD_MODULE
2027EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2028#endif
2029
2030/**
2031 * scsi_block_requests - Utility function used by low-level drivers to prevent
2032 * further commands from being queued to the device.
2033 * @shost:  host in question
 
 
 
 
 
 
 
2034 *
2035 * There is no timer nor any other means by which the requests get unblocked
2036 * other than the low-level driver calling scsi_unblock_requests().
 
2037 */
2038void scsi_block_requests(struct Scsi_Host *shost)
2039{
2040	shost->host_self_blocked = 1;
2041}
2042EXPORT_SYMBOL(scsi_block_requests);
2043
2044/**
2045 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2046 * further commands to be queued to the device.
2047 * @shost:  host in question
2048 *
2049 * There is no timer nor any other means by which the requests get unblocked
2050 * other than the low-level driver calling scsi_unblock_requests(). This is done
2051 * as an API function so that changes to the internals of the scsi mid-layer
2052 * won't require wholesale changes to drivers that use this feature.
 
 
 
 
 
 
 
 
 
 
2053 */
2054void scsi_unblock_requests(struct Scsi_Host *shost)
2055{
2056	shost->host_self_blocked = 0;
2057	scsi_run_host_queues(shost);
2058}
2059EXPORT_SYMBOL(scsi_unblock_requests);
2060
 
 
 
 
 
 
 
 
 
 
 
 
 
2061void scsi_exit_queue(void)
2062{
2063	kmem_cache_destroy(scsi_sense_cache);
2064}
2065
2066/**
2067 *	scsi_mode_select - issue a mode select
2068 *	@sdev:	SCSI device to be queried
2069 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2070 *	@sp:	Save page bit (0 == don't save, 1 == save)
 
2071 *	@buffer: request buffer (may not be smaller than eight bytes)
2072 *	@len:	length of request buffer.
2073 *	@timeout: command timeout
2074 *	@retries: number of retries before failing
2075 *	@data: returns a structure abstracting the mode header data
2076 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2077 *		must be SCSI_SENSE_BUFFERSIZE big.
2078 *
2079 *	Returns zero if successful; negative error number or scsi
2080 *	status on error
2081 *
2082 */
2083int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2084		     unsigned char *buffer, int len, int timeout, int retries,
2085		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
 
2086{
2087	unsigned char cmd[10];
2088	unsigned char *real_buffer;
2089	int ret;
2090
2091	memset(cmd, 0, sizeof(cmd));
2092	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2093
2094	/*
2095	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2096	 * and the mode select header cannot fit within the maximumm 255 bytes
2097	 * of the MODE SELECT(6) command.
2098	 */
2099	if (sdev->use_10_for_ms ||
2100	    len + 4 > 255 ||
2101	    data->block_descriptor_length > 255) {
2102		if (len > 65535 - 8)
2103			return -EINVAL;
2104		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2105		if (!real_buffer)
2106			return -ENOMEM;
2107		memcpy(real_buffer + 8, buffer, len);
2108		len += 8;
2109		real_buffer[0] = 0;
2110		real_buffer[1] = 0;
2111		real_buffer[2] = data->medium_type;
2112		real_buffer[3] = data->device_specific;
2113		real_buffer[4] = data->longlba ? 0x01 : 0;
2114		real_buffer[5] = 0;
2115		put_unaligned_be16(data->block_descriptor_length,
2116				   &real_buffer[6]);
2117
2118		cmd[0] = MODE_SELECT_10;
2119		put_unaligned_be16(len, &cmd[7]);
 
2120	} else {
2121		if (data->longlba)
 
2122			return -EINVAL;
2123
2124		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2125		if (!real_buffer)
2126			return -ENOMEM;
2127		memcpy(real_buffer + 4, buffer, len);
2128		len += 4;
2129		real_buffer[0] = 0;
2130		real_buffer[1] = data->medium_type;
2131		real_buffer[2] = data->device_specific;
2132		real_buffer[3] = data->block_descriptor_length;
 
2133
2134		cmd[0] = MODE_SELECT;
2135		cmd[4] = len;
2136	}
2137
2138	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2139			       sshdr, timeout, retries, NULL);
2140	kfree(real_buffer);
2141	return ret;
2142}
2143EXPORT_SYMBOL_GPL(scsi_mode_select);
2144
2145/**
2146 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2147 *	@sdev:	SCSI device to be queried
2148 *	@dbd:	set to prevent mode sense from returning block descriptors
2149 *	@modepage: mode page being requested
2150 *	@buffer: request buffer (may not be smaller than eight bytes)
2151 *	@len:	length of request buffer.
2152 *	@timeout: command timeout
2153 *	@retries: number of retries before failing
2154 *	@data: returns a structure abstracting the mode header data
2155 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2156 *		must be SCSI_SENSE_BUFFERSIZE big.
2157 *
2158 *	Returns zero if successful, or a negative error number on failure
 
 
2159 */
2160int
2161scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2162		  unsigned char *buffer, int len, int timeout, int retries,
2163		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2164{
2165	unsigned char cmd[12];
2166	int use_10_for_ms;
2167	int header_length;
2168	int result, retry_count = retries;
2169	struct scsi_sense_hdr my_sshdr;
2170
2171	memset(data, 0, sizeof(*data));
2172	memset(&cmd[0], 0, 12);
2173
2174	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2175	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2176	cmd[2] = modepage;
2177
2178	/* caller might not be interested in sense, but we need it */
2179	if (!sshdr)
2180		sshdr = &my_sshdr;
2181
2182 retry:
2183	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2184
2185	if (use_10_for_ms) {
2186		if (len < 8 || len > 65535)
2187			return -EINVAL;
2188
2189		cmd[0] = MODE_SENSE_10;
2190		put_unaligned_be16(len, &cmd[7]);
2191		header_length = 8;
2192	} else {
2193		if (len < 4)
2194			return -EINVAL;
2195
2196		cmd[0] = MODE_SENSE;
2197		cmd[4] = len;
2198		header_length = 4;
2199	}
2200
2201	memset(buffer, 0, len);
2202
2203	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2204				  sshdr, timeout, retries, NULL);
2205	if (result < 0)
2206		return result;
2207
2208	/* This code looks awful: what it's doing is making sure an
2209	 * ILLEGAL REQUEST sense return identifies the actual command
2210	 * byte as the problem.  MODE_SENSE commands can return
2211	 * ILLEGAL REQUEST if the code page isn't supported */
2212
2213	if (!scsi_status_is_good(result)) {
 
2214		if (scsi_sense_valid(sshdr)) {
2215			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2216			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2217				/*
2218				 * Invalid command operation code: retry using
2219				 * MODE SENSE(6) if this was a MODE SENSE(10)
2220				 * request, except if the request mode page is
2221				 * too large for MODE SENSE single byte
2222				 * allocation length field.
2223				 */
2224				if (use_10_for_ms) {
2225					if (len > 255)
2226						return -EIO;
2227					sdev->use_10_for_ms = 0;
2228					goto retry;
2229				}
2230			}
2231			if (scsi_status_is_check_condition(result) &&
2232			    sshdr->sense_key == UNIT_ATTENTION &&
2233			    retry_count) {
2234				retry_count--;
2235				goto retry;
2236			}
2237		}
2238		return -EIO;
2239	}
2240	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2241		     (modepage == 6 || modepage == 8))) {
2242		/* Initio breakage? */
2243		header_length = 0;
2244		data->length = 13;
2245		data->medium_type = 0;
2246		data->device_specific = 0;
2247		data->longlba = 0;
2248		data->block_descriptor_length = 0;
2249	} else if (use_10_for_ms) {
2250		data->length = get_unaligned_be16(&buffer[0]) + 2;
2251		data->medium_type = buffer[2];
2252		data->device_specific = buffer[3];
2253		data->longlba = buffer[4] & 0x01;
2254		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2255	} else {
2256		data->length = buffer[0] + 1;
2257		data->medium_type = buffer[1];
2258		data->device_specific = buffer[2];
2259		data->block_descriptor_length = buffer[3];
 
 
 
 
 
 
 
 
 
 
2260	}
2261	data->header_length = header_length;
2262
2263	return 0;
2264}
2265EXPORT_SYMBOL(scsi_mode_sense);
2266
2267/**
2268 *	scsi_test_unit_ready - test if unit is ready
2269 *	@sdev:	scsi device to change the state of.
2270 *	@timeout: command timeout
2271 *	@retries: number of retries before failing
2272 *	@sshdr: outpout pointer for decoded sense information.
 
 
2273 *
2274 *	Returns zero if unsuccessful or an error if TUR failed.  For
2275 *	removable media, UNIT_ATTENTION sets ->changed flag.
2276 **/
2277int
2278scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2279		     struct scsi_sense_hdr *sshdr)
2280{
2281	char cmd[] = {
2282		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2283	};
 
2284	int result;
2285
 
 
 
 
 
2286	/* try to eat the UNIT_ATTENTION if there are enough retries */
2287	do {
2288		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2289					  timeout, 1, NULL);
2290		if (sdev->removable && scsi_sense_valid(sshdr) &&
2291		    sshdr->sense_key == UNIT_ATTENTION)
2292			sdev->changed = 1;
2293	} while (scsi_sense_valid(sshdr) &&
2294		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2295
 
 
2296	return result;
2297}
2298EXPORT_SYMBOL(scsi_test_unit_ready);
2299
2300/**
2301 *	scsi_device_set_state - Take the given device through the device state model.
2302 *	@sdev:	scsi device to change the state of.
2303 *	@state:	state to change to.
2304 *
2305 *	Returns zero if successful or an error if the requested
2306 *	transition is illegal.
2307 */
2308int
2309scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2310{
2311	enum scsi_device_state oldstate = sdev->sdev_state;
2312
2313	if (state == oldstate)
2314		return 0;
2315
2316	switch (state) {
2317	case SDEV_CREATED:
2318		switch (oldstate) {
2319		case SDEV_CREATED_BLOCK:
2320			break;
2321		default:
2322			goto illegal;
2323		}
2324		break;
2325
2326	case SDEV_RUNNING:
2327		switch (oldstate) {
2328		case SDEV_CREATED:
2329		case SDEV_OFFLINE:
2330		case SDEV_TRANSPORT_OFFLINE:
2331		case SDEV_QUIESCE:
2332		case SDEV_BLOCK:
2333			break;
2334		default:
2335			goto illegal;
2336		}
2337		break;
2338
2339	case SDEV_QUIESCE:
2340		switch (oldstate) {
2341		case SDEV_RUNNING:
2342		case SDEV_OFFLINE:
2343		case SDEV_TRANSPORT_OFFLINE:
2344			break;
2345		default:
2346			goto illegal;
2347		}
2348		break;
2349
2350	case SDEV_OFFLINE:
2351	case SDEV_TRANSPORT_OFFLINE:
2352		switch (oldstate) {
2353		case SDEV_CREATED:
2354		case SDEV_RUNNING:
2355		case SDEV_QUIESCE:
2356		case SDEV_BLOCK:
2357			break;
2358		default:
2359			goto illegal;
2360		}
2361		break;
2362
2363	case SDEV_BLOCK:
2364		switch (oldstate) {
2365		case SDEV_RUNNING:
2366		case SDEV_CREATED_BLOCK:
2367		case SDEV_QUIESCE:
2368		case SDEV_OFFLINE:
2369			break;
2370		default:
2371			goto illegal;
2372		}
2373		break;
2374
2375	case SDEV_CREATED_BLOCK:
2376		switch (oldstate) {
2377		case SDEV_CREATED:
2378			break;
2379		default:
2380			goto illegal;
2381		}
2382		break;
2383
2384	case SDEV_CANCEL:
2385		switch (oldstate) {
2386		case SDEV_CREATED:
2387		case SDEV_RUNNING:
2388		case SDEV_QUIESCE:
2389		case SDEV_OFFLINE:
2390		case SDEV_TRANSPORT_OFFLINE:
 
2391			break;
2392		default:
2393			goto illegal;
2394		}
2395		break;
2396
2397	case SDEV_DEL:
2398		switch (oldstate) {
2399		case SDEV_CREATED:
2400		case SDEV_RUNNING:
2401		case SDEV_OFFLINE:
2402		case SDEV_TRANSPORT_OFFLINE:
2403		case SDEV_CANCEL:
2404		case SDEV_BLOCK:
2405		case SDEV_CREATED_BLOCK:
2406			break;
2407		default:
2408			goto illegal;
2409		}
2410		break;
2411
2412	}
2413	sdev->offline_already = false;
2414	sdev->sdev_state = state;
2415	return 0;
2416
2417 illegal:
2418	SCSI_LOG_ERROR_RECOVERY(1,
2419				sdev_printk(KERN_ERR, sdev,
2420					    "Illegal state transition %s->%s",
2421					    scsi_device_state_name(oldstate),
2422					    scsi_device_state_name(state))
2423				);
2424	return -EINVAL;
2425}
2426EXPORT_SYMBOL(scsi_device_set_state);
2427
2428/**
2429 *	scsi_evt_emit - emit a single SCSI device uevent
2430 *	@sdev: associated SCSI device
2431 *	@evt: event to emit
2432 *
2433 *	Send a single uevent (scsi_event) to the associated scsi_device.
2434 */
2435static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2436{
2437	int idx = 0;
2438	char *envp[3];
2439
2440	switch (evt->evt_type) {
2441	case SDEV_EVT_MEDIA_CHANGE:
2442		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2443		break;
2444	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2445		scsi_rescan_device(&sdev->sdev_gendev);
2446		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2447		break;
2448	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2449		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2450		break;
2451	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2452	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2453		break;
2454	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2455		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2456		break;
2457	case SDEV_EVT_LUN_CHANGE_REPORTED:
2458		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2459		break;
2460	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2461		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2462		break;
2463	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2464		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2465		break;
2466	default:
2467		/* do nothing */
2468		break;
2469	}
2470
2471	envp[idx++] = NULL;
2472
2473	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2474}
2475
2476/**
2477 *	scsi_evt_thread - send a uevent for each scsi event
2478 *	@work: work struct for scsi_device
2479 *
2480 *	Dispatch queued events to their associated scsi_device kobjects
2481 *	as uevents.
2482 */
2483void scsi_evt_thread(struct work_struct *work)
2484{
2485	struct scsi_device *sdev;
2486	enum scsi_device_event evt_type;
2487	LIST_HEAD(event_list);
2488
2489	sdev = container_of(work, struct scsi_device, event_work);
2490
2491	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2492		if (test_and_clear_bit(evt_type, sdev->pending_events))
2493			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2494
2495	while (1) {
2496		struct scsi_event *evt;
2497		struct list_head *this, *tmp;
2498		unsigned long flags;
2499
2500		spin_lock_irqsave(&sdev->list_lock, flags);
2501		list_splice_init(&sdev->event_list, &event_list);
2502		spin_unlock_irqrestore(&sdev->list_lock, flags);
2503
2504		if (list_empty(&event_list))
2505			break;
2506
2507		list_for_each_safe(this, tmp, &event_list) {
2508			evt = list_entry(this, struct scsi_event, node);
2509			list_del(&evt->node);
2510			scsi_evt_emit(sdev, evt);
2511			kfree(evt);
2512		}
2513	}
2514}
2515
2516/**
2517 * 	sdev_evt_send - send asserted event to uevent thread
2518 *	@sdev: scsi_device event occurred on
2519 *	@evt: event to send
2520 *
2521 *	Assert scsi device event asynchronously.
2522 */
2523void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2524{
2525	unsigned long flags;
2526
2527#if 0
2528	/* FIXME: currently this check eliminates all media change events
2529	 * for polled devices.  Need to update to discriminate between AN
2530	 * and polled events */
2531	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2532		kfree(evt);
2533		return;
2534	}
2535#endif
2536
2537	spin_lock_irqsave(&sdev->list_lock, flags);
2538	list_add_tail(&evt->node, &sdev->event_list);
2539	schedule_work(&sdev->event_work);
2540	spin_unlock_irqrestore(&sdev->list_lock, flags);
2541}
2542EXPORT_SYMBOL_GPL(sdev_evt_send);
2543
2544/**
2545 * 	sdev_evt_alloc - allocate a new scsi event
2546 *	@evt_type: type of event to allocate
2547 *	@gfpflags: GFP flags for allocation
2548 *
2549 *	Allocates and returns a new scsi_event.
2550 */
2551struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2552				  gfp_t gfpflags)
2553{
2554	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2555	if (!evt)
2556		return NULL;
2557
2558	evt->evt_type = evt_type;
2559	INIT_LIST_HEAD(&evt->node);
2560
2561	/* evt_type-specific initialization, if any */
2562	switch (evt_type) {
2563	case SDEV_EVT_MEDIA_CHANGE:
2564	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2565	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2566	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2567	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2568	case SDEV_EVT_LUN_CHANGE_REPORTED:
2569	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2570	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2571	default:
2572		/* do nothing */
2573		break;
2574	}
2575
2576	return evt;
2577}
2578EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2579
2580/**
2581 * 	sdev_evt_send_simple - send asserted event to uevent thread
2582 *	@sdev: scsi_device event occurred on
2583 *	@evt_type: type of event to send
2584 *	@gfpflags: GFP flags for allocation
2585 *
2586 *	Assert scsi device event asynchronously, given an event type.
2587 */
2588void sdev_evt_send_simple(struct scsi_device *sdev,
2589			  enum scsi_device_event evt_type, gfp_t gfpflags)
2590{
2591	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2592	if (!evt) {
2593		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2594			    evt_type);
2595		return;
2596	}
2597
2598	sdev_evt_send(sdev, evt);
2599}
2600EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2601
2602/**
2603 *	scsi_device_quiesce - Block all commands except power management.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2604 *	@sdev:	scsi device to quiesce.
2605 *
2606 *	This works by trying to transition to the SDEV_QUIESCE state
2607 *	(which must be a legal transition).  When the device is in this
2608 *	state, only power management requests will be accepted, all others will
2609 *	be deferred.
 
 
2610 *
2611 *	Must be called with user context, may sleep.
2612 *
2613 *	Returns zero if unsuccessful or an error if not.
2614 */
2615int
2616scsi_device_quiesce(struct scsi_device *sdev)
2617{
2618	struct request_queue *q = sdev->request_queue;
2619	int err;
2620
2621	/*
2622	 * It is allowed to call scsi_device_quiesce() multiple times from
2623	 * the same context but concurrent scsi_device_quiesce() calls are
2624	 * not allowed.
2625	 */
2626	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2627
2628	if (sdev->quiesced_by == current)
2629		return 0;
2630
2631	blk_set_pm_only(q);
2632
2633	blk_mq_freeze_queue(q);
2634	/*
2635	 * Ensure that the effect of blk_set_pm_only() will be visible
2636	 * for percpu_ref_tryget() callers that occur after the queue
2637	 * unfreeze even if the queue was already frozen before this function
2638	 * was called. See also https://lwn.net/Articles/573497/.
2639	 */
2640	synchronize_rcu();
2641	blk_mq_unfreeze_queue(q);
2642
2643	mutex_lock(&sdev->state_mutex);
2644	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2645	if (err == 0)
2646		sdev->quiesced_by = current;
2647	else
2648		blk_clear_pm_only(q);
2649	mutex_unlock(&sdev->state_mutex);
2650
2651	return err;
2652}
2653EXPORT_SYMBOL(scsi_device_quiesce);
2654
2655/**
2656 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2657 *	@sdev:	scsi device to resume.
2658 *
2659 *	Moves the device from quiesced back to running and restarts the
2660 *	queues.
2661 *
2662 *	Must be called with user context, may sleep.
2663 */
2664void scsi_device_resume(struct scsi_device *sdev)
2665{
2666	/* check if the device state was mutated prior to resume, and if
2667	 * so assume the state is being managed elsewhere (for example
2668	 * device deleted during suspend)
2669	 */
2670	mutex_lock(&sdev->state_mutex);
2671	if (sdev->sdev_state == SDEV_QUIESCE)
2672		scsi_device_set_state(sdev, SDEV_RUNNING);
2673	if (sdev->quiesced_by) {
2674		sdev->quiesced_by = NULL;
2675		blk_clear_pm_only(sdev->request_queue);
2676	}
2677	mutex_unlock(&sdev->state_mutex);
2678}
2679EXPORT_SYMBOL(scsi_device_resume);
2680
2681static void
2682device_quiesce_fn(struct scsi_device *sdev, void *data)
2683{
2684	scsi_device_quiesce(sdev);
2685}
2686
2687void
2688scsi_target_quiesce(struct scsi_target *starget)
2689{
2690	starget_for_each_device(starget, NULL, device_quiesce_fn);
2691}
2692EXPORT_SYMBOL(scsi_target_quiesce);
2693
2694static void
2695device_resume_fn(struct scsi_device *sdev, void *data)
2696{
2697	scsi_device_resume(sdev);
2698}
2699
2700void
2701scsi_target_resume(struct scsi_target *starget)
2702{
2703	starget_for_each_device(starget, NULL, device_resume_fn);
2704}
2705EXPORT_SYMBOL(scsi_target_resume);
2706
2707static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2708{
2709	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2710		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2711
2712	return 0;
2713}
2714
2715void scsi_start_queue(struct scsi_device *sdev)
2716{
2717	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2718		blk_mq_unquiesce_queue(sdev->request_queue);
2719}
2720
2721static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2722{
2723	/*
2724	 * The atomic variable of ->queue_stopped covers that
2725	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2726	 *
2727	 * However, we still need to wait until quiesce is done
2728	 * in case that queue has been stopped.
2729	 */
2730	if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2731		if (nowait)
2732			blk_mq_quiesce_queue_nowait(sdev->request_queue);
2733		else
2734			blk_mq_quiesce_queue(sdev->request_queue);
2735	} else {
2736		if (!nowait)
2737			blk_mq_wait_quiesce_done(sdev->request_queue->tag_set);
2738	}
2739}
2740
2741/**
2742 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2743 * @sdev: device to block
 
 
2744 *
2745 * Pause SCSI command processing on the specified device. Does not sleep.
 
2746 *
2747 * Returns zero if successful or a negative error code upon failure.
2748 *
2749 * Notes:
2750 * This routine transitions the device to the SDEV_BLOCK state (which must be
2751 * a legal transition). When the device is in this state, command processing
2752 * is paused until the device leaves the SDEV_BLOCK state. See also
2753 * scsi_internal_device_unblock_nowait().
 
 
 
 
2754 */
2755int scsi_internal_device_block_nowait(struct scsi_device *sdev)
 
2756{
2757	int ret = __scsi_internal_device_block_nowait(sdev);
 
 
 
 
 
 
 
 
 
 
2758
2759	/*
2760	 * The device has transitioned to SDEV_BLOCK.  Stop the
2761	 * block layer from calling the midlayer with this device's
2762	 * request queue.
2763	 */
2764	if (!ret)
2765		scsi_stop_queue(sdev, true);
2766	return ret;
2767}
2768EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
 
 
 
 
 
 
 
2769
2770/**
2771 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2772 * @sdev: device to block
2773 *
2774 * Pause SCSI command processing on the specified device and wait until all
2775 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2776 *
2777 * Returns zero if successful or a negative error code upon failure.
2778 *
2779 * Note:
2780 * This routine transitions the device to the SDEV_BLOCK state (which must be
2781 * a legal transition). When the device is in this state, command processing
2782 * is paused until the device leaves the SDEV_BLOCK state. See also
2783 * scsi_internal_device_unblock().
2784 */
2785static int scsi_internal_device_block(struct scsi_device *sdev)
2786{
2787	int err;
2788
2789	mutex_lock(&sdev->state_mutex);
2790	err = __scsi_internal_device_block_nowait(sdev);
2791	if (err == 0)
2792		scsi_stop_queue(sdev, false);
2793	mutex_unlock(&sdev->state_mutex);
2794
2795	return err;
2796}
2797
 
2798/**
2799 * scsi_internal_device_unblock_nowait - resume a device after a block request
2800 * @sdev:	device to resume
2801 * @new_state:	state to set the device to after unblocking
2802 *
2803 * Restart the device queue for a previously suspended SCSI device. Does not
2804 * sleep.
2805 *
2806 * Returns zero if successful or a negative error code upon failure.
2807 *
2808 * Notes:
2809 * This routine transitions the device to the SDEV_RUNNING state or to one of
2810 * the offline states (which must be a legal transition) allowing the midlayer
2811 * to goose the queue for this device.
 
 
 
 
2812 */
2813int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2814					enum scsi_device_state new_state)
 
2815{
2816	switch (new_state) {
2817	case SDEV_RUNNING:
2818	case SDEV_TRANSPORT_OFFLINE:
2819		break;
2820	default:
2821		return -EINVAL;
2822	}
2823
2824	/*
2825	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2826	 * offlined states and goose the device queue if successful.
2827	 */
2828	switch (sdev->sdev_state) {
2829	case SDEV_BLOCK:
2830	case SDEV_TRANSPORT_OFFLINE:
2831		sdev->sdev_state = new_state;
2832		break;
2833	case SDEV_CREATED_BLOCK:
2834		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2835		    new_state == SDEV_OFFLINE)
2836			sdev->sdev_state = new_state;
2837		else
2838			sdev->sdev_state = SDEV_CREATED;
2839		break;
2840	case SDEV_CANCEL:
2841	case SDEV_OFFLINE:
2842		break;
2843	default:
2844		return -EINVAL;
 
 
 
 
 
 
 
2845	}
2846	scsi_start_queue(sdev);
2847
2848	return 0;
2849}
2850EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2851
2852/**
2853 * scsi_internal_device_unblock - resume a device after a block request
2854 * @sdev:	device to resume
2855 * @new_state:	state to set the device to after unblocking
2856 *
2857 * Restart the device queue for a previously suspended SCSI device. May sleep.
2858 *
2859 * Returns zero if successful or a negative error code upon failure.
2860 *
2861 * Notes:
2862 * This routine transitions the device to the SDEV_RUNNING state or to one of
2863 * the offline states (which must be a legal transition) allowing the midlayer
2864 * to goose the queue for this device.
2865 */
2866static int scsi_internal_device_unblock(struct scsi_device *sdev,
2867					enum scsi_device_state new_state)
2868{
2869	int ret;
2870
2871	mutex_lock(&sdev->state_mutex);
2872	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2873	mutex_unlock(&sdev->state_mutex);
2874
2875	return ret;
2876}
2877
2878static void
2879device_block(struct scsi_device *sdev, void *data)
2880{
2881	int ret;
2882
2883	ret = scsi_internal_device_block(sdev);
2884
2885	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2886		  dev_name(&sdev->sdev_gendev), ret);
2887}
2888
2889static int
2890target_block(struct device *dev, void *data)
2891{
2892	if (scsi_is_target_device(dev))
2893		starget_for_each_device(to_scsi_target(dev), NULL,
2894					device_block);
2895	return 0;
2896}
2897
2898void
2899scsi_target_block(struct device *dev)
2900{
2901	if (scsi_is_target_device(dev))
2902		starget_for_each_device(to_scsi_target(dev), NULL,
2903					device_block);
2904	else
2905		device_for_each_child(dev, NULL, target_block);
2906}
2907EXPORT_SYMBOL_GPL(scsi_target_block);
2908
2909static void
2910device_unblock(struct scsi_device *sdev, void *data)
2911{
2912	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2913}
2914
2915static int
2916target_unblock(struct device *dev, void *data)
2917{
2918	if (scsi_is_target_device(dev))
2919		starget_for_each_device(to_scsi_target(dev), data,
2920					device_unblock);
2921	return 0;
2922}
2923
2924void
2925scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2926{
2927	if (scsi_is_target_device(dev))
2928		starget_for_each_device(to_scsi_target(dev), &new_state,
2929					device_unblock);
2930	else
2931		device_for_each_child(dev, &new_state, target_unblock);
2932}
2933EXPORT_SYMBOL_GPL(scsi_target_unblock);
2934
2935int
2936scsi_host_block(struct Scsi_Host *shost)
2937{
2938	struct scsi_device *sdev;
2939	int ret = 0;
2940
2941	/*
2942	 * Call scsi_internal_device_block_nowait so we can avoid
2943	 * calling synchronize_rcu() for each LUN.
2944	 */
2945	shost_for_each_device(sdev, shost) {
2946		mutex_lock(&sdev->state_mutex);
2947		ret = scsi_internal_device_block_nowait(sdev);
2948		mutex_unlock(&sdev->state_mutex);
2949		if (ret) {
2950			scsi_device_put(sdev);
2951			break;
2952		}
2953	}
2954
2955	/*
2956	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2957	 * calling synchronize_rcu() once is enough.
2958	 */
2959	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2960
2961	if (!ret)
2962		synchronize_rcu();
2963
2964	return ret;
2965}
2966EXPORT_SYMBOL_GPL(scsi_host_block);
2967
2968int
2969scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2970{
2971	struct scsi_device *sdev;
2972	int ret = 0;
2973
2974	shost_for_each_device(sdev, shost) {
2975		ret = scsi_internal_device_unblock(sdev, new_state);
2976		if (ret) {
2977			scsi_device_put(sdev);
2978			break;
2979		}
2980	}
2981	return ret;
2982}
2983EXPORT_SYMBOL_GPL(scsi_host_unblock);
2984
2985/**
2986 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2987 * @sgl:	scatter-gather list
2988 * @sg_count:	number of segments in sg
2989 * @offset:	offset in bytes into sg, on return offset into the mapped area
2990 * @len:	bytes to map, on return number of bytes mapped
2991 *
2992 * Returns virtual address of the start of the mapped page
2993 */
2994void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2995			  size_t *offset, size_t *len)
2996{
2997	int i;
2998	size_t sg_len = 0, len_complete = 0;
2999	struct scatterlist *sg;
3000	struct page *page;
3001
3002	WARN_ON(!irqs_disabled());
3003
3004	for_each_sg(sgl, sg, sg_count, i) {
3005		len_complete = sg_len; /* Complete sg-entries */
3006		sg_len += sg->length;
3007		if (sg_len > *offset)
3008			break;
3009	}
3010
3011	if (unlikely(i == sg_count)) {
3012		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3013			"elements %d\n",
3014		       __func__, sg_len, *offset, sg_count);
3015		WARN_ON(1);
3016		return NULL;
3017	}
3018
3019	/* Offset starting from the beginning of first page in this sg-entry */
3020	*offset = *offset - len_complete + sg->offset;
3021
3022	/* Assumption: contiguous pages can be accessed as "page + i" */
3023	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3024	*offset &= ~PAGE_MASK;
3025
3026	/* Bytes in this sg-entry from *offset to the end of the page */
3027	sg_len = PAGE_SIZE - *offset;
3028	if (*len > sg_len)
3029		*len = sg_len;
3030
3031	return kmap_atomic(page);
3032}
3033EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3034
3035/**
3036 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3037 * @virt:	virtual address to be unmapped
3038 */
3039void scsi_kunmap_atomic_sg(void *virt)
3040{
3041	kunmap_atomic(virt);
3042}
3043EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3044
3045void sdev_disable_disk_events(struct scsi_device *sdev)
3046{
3047	atomic_inc(&sdev->disk_events_disable_depth);
3048}
3049EXPORT_SYMBOL(sdev_disable_disk_events);
3050
3051void sdev_enable_disk_events(struct scsi_device *sdev)
3052{
3053	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3054		return;
3055	atomic_dec(&sdev->disk_events_disable_depth);
3056}
3057EXPORT_SYMBOL(sdev_enable_disk_events);
3058
3059static unsigned char designator_prio(const unsigned char *d)
3060{
3061	if (d[1] & 0x30)
3062		/* not associated with LUN */
3063		return 0;
3064
3065	if (d[3] == 0)
3066		/* invalid length */
3067		return 0;
3068
3069	/*
3070	 * Order of preference for lun descriptor:
3071	 * - SCSI name string
3072	 * - NAA IEEE Registered Extended
3073	 * - EUI-64 based 16-byte
3074	 * - EUI-64 based 12-byte
3075	 * - NAA IEEE Registered
3076	 * - NAA IEEE Extended
3077	 * - EUI-64 based 8-byte
3078	 * - SCSI name string (truncated)
3079	 * - T10 Vendor ID
3080	 * as longer descriptors reduce the likelyhood
3081	 * of identification clashes.
3082	 */
3083
3084	switch (d[1] & 0xf) {
3085	case 8:
3086		/* SCSI name string, variable-length UTF-8 */
3087		return 9;
3088	case 3:
3089		switch (d[4] >> 4) {
3090		case 6:
3091			/* NAA registered extended */
3092			return 8;
3093		case 5:
3094			/* NAA registered */
3095			return 5;
3096		case 4:
3097			/* NAA extended */
3098			return 4;
3099		case 3:
3100			/* NAA locally assigned */
3101			return 1;
3102		default:
3103			break;
3104		}
3105		break;
3106	case 2:
3107		switch (d[3]) {
3108		case 16:
3109			/* EUI64-based, 16 byte */
3110			return 7;
3111		case 12:
3112			/* EUI64-based, 12 byte */
3113			return 6;
3114		case 8:
3115			/* EUI64-based, 8 byte */
3116			return 3;
3117		default:
3118			break;
3119		}
3120		break;
3121	case 1:
3122		/* T10 vendor ID */
3123		return 1;
3124	default:
3125		break;
3126	}
3127
3128	return 0;
3129}
3130
3131/**
3132 * scsi_vpd_lun_id - return a unique device identification
3133 * @sdev: SCSI device
3134 * @id:   buffer for the identification
3135 * @id_len:  length of the buffer
3136 *
3137 * Copies a unique device identification into @id based
3138 * on the information in the VPD page 0x83 of the device.
3139 * The string will be formatted as a SCSI name string.
3140 *
3141 * Returns the length of the identification or error on failure.
3142 * If the identifier is longer than the supplied buffer the actual
3143 * identifier length is returned and the buffer is not zero-padded.
3144 */
3145int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3146{
3147	u8 cur_id_prio = 0;
3148	u8 cur_id_size = 0;
3149	const unsigned char *d, *cur_id_str;
3150	const struct scsi_vpd *vpd_pg83;
3151	int id_size = -EINVAL;
3152
3153	rcu_read_lock();
3154	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3155	if (!vpd_pg83) {
3156		rcu_read_unlock();
3157		return -ENXIO;
3158	}
3159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3160	/* The id string must be at least 20 bytes + terminating NULL byte */
3161	if (id_len < 21) {
3162		rcu_read_unlock();
3163		return -EINVAL;
3164	}
3165
3166	memset(id, 0, id_len);
3167	for (d = vpd_pg83->data + 4;
3168	     d < vpd_pg83->data + vpd_pg83->len;
3169	     d += d[3] + 4) {
3170		u8 prio = designator_prio(d);
3171
3172		if (prio == 0 || cur_id_prio > prio)
3173			continue;
3174
3175		switch (d[1] & 0xf) {
3176		case 0x1:
3177			/* T10 Vendor ID */
3178			if (cur_id_size > d[3])
3179				break;
3180			cur_id_prio = prio;
 
 
3181			cur_id_size = d[3];
3182			if (cur_id_size + 4 > id_len)
3183				cur_id_size = id_len - 4;
3184			cur_id_str = d + 4;
 
3185			id_size = snprintf(id, id_len, "t10.%*pE",
3186					   cur_id_size, cur_id_str);
3187			break;
3188		case 0x2:
3189			/* EUI-64 */
3190			cur_id_prio = prio;
 
 
 
 
 
3191			cur_id_size = d[3];
3192			cur_id_str = d + 4;
 
3193			switch (cur_id_size) {
3194			case 8:
3195				id_size = snprintf(id, id_len,
3196						   "eui.%8phN",
3197						   cur_id_str);
3198				break;
3199			case 12:
3200				id_size = snprintf(id, id_len,
3201						   "eui.%12phN",
3202						   cur_id_str);
3203				break;
3204			case 16:
3205				id_size = snprintf(id, id_len,
3206						   "eui.%16phN",
3207						   cur_id_str);
3208				break;
3209			default:
 
3210				break;
3211			}
3212			break;
3213		case 0x3:
3214			/* NAA */
3215			cur_id_prio = prio;
 
3216			cur_id_size = d[3];
3217			cur_id_str = d + 4;
 
3218			switch (cur_id_size) {
3219			case 8:
3220				id_size = snprintf(id, id_len,
3221						   "naa.%8phN",
3222						   cur_id_str);
3223				break;
3224			case 16:
3225				id_size = snprintf(id, id_len,
3226						   "naa.%16phN",
3227						   cur_id_str);
3228				break;
3229			default:
 
3230				break;
3231			}
3232			break;
3233		case 0x8:
3234			/* SCSI name string */
3235			if (cur_id_size > d[3])
3236				break;
3237			/* Prefer others for truncated descriptor */
3238			if (d[3] > id_len) {
3239				prio = 2;
3240				if (cur_id_prio > prio)
3241					break;
3242			}
3243			cur_id_prio = prio;
3244			cur_id_size = id_size = d[3];
3245			cur_id_str = d + 4;
 
3246			if (cur_id_size >= id_len)
3247				cur_id_size = id_len - 1;
3248			memcpy(id, cur_id_str, cur_id_size);
 
 
 
3249			break;
3250		default:
3251			break;
3252		}
 
 
3253	}
3254	rcu_read_unlock();
3255
3256	return id_size;
3257}
3258EXPORT_SYMBOL(scsi_vpd_lun_id);
3259
3260/*
3261 * scsi_vpd_tpg_id - return a target port group identifier
3262 * @sdev: SCSI device
3263 *
3264 * Returns the Target Port Group identifier from the information
3265 * froom VPD page 0x83 of the device.
3266 *
3267 * Returns the identifier or error on failure.
3268 */
3269int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3270{
3271	const unsigned char *d;
3272	const struct scsi_vpd *vpd_pg83;
3273	int group_id = -EAGAIN, rel_port = -1;
3274
3275	rcu_read_lock();
3276	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3277	if (!vpd_pg83) {
3278		rcu_read_unlock();
3279		return -ENXIO;
3280	}
3281
3282	d = vpd_pg83->data + 4;
3283	while (d < vpd_pg83->data + vpd_pg83->len) {
3284		switch (d[1] & 0xf) {
3285		case 0x4:
3286			/* Relative target port */
3287			rel_port = get_unaligned_be16(&d[6]);
3288			break;
3289		case 0x5:
3290			/* Target port group */
3291			group_id = get_unaligned_be16(&d[6]);
3292			break;
3293		default:
3294			break;
3295		}
3296		d += d[3] + 4;
3297	}
3298	rcu_read_unlock();
3299
3300	if (group_id >= 0 && rel_id && rel_port != -1)
3301		*rel_id = rel_port;
3302
3303	return group_id;
3304}
3305EXPORT_SYMBOL(scsi_vpd_tpg_id);
3306
3307/**
3308 * scsi_build_sense - build sense data for a command
3309 * @scmd:	scsi command for which the sense should be formatted
3310 * @desc:	Sense format (non-zero == descriptor format,
3311 *              0 == fixed format)
3312 * @key:	Sense key
3313 * @asc:	Additional sense code
3314 * @ascq:	Additional sense code qualifier
3315 *
3316 **/
3317void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3318{
3319	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3320	scmd->result = SAM_STAT_CHECK_CONDITION;
3321}
3322EXPORT_SYMBOL_GPL(scsi_build_sense);