Loading...
1/**************************************************************************
2 *
3 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27/*
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29 */
30
31#include <drm/ttm/ttm_bo_driver.h>
32#include <drm/ttm/ttm_placement.h>
33#include <drm/drm_vma_manager.h>
34#include <linux/io.h>
35#include <linux/highmem.h>
36#include <linux/wait.h>
37#include <linux/slab.h>
38#include <linux/vmalloc.h>
39#include <linux/module.h>
40#include <linux/reservation.h>
41
42void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
43{
44 ttm_bo_mem_put(bo, &bo->mem);
45}
46
47int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
48 bool interruptible, bool no_wait_gpu,
49 struct ttm_mem_reg *new_mem)
50{
51 struct ttm_tt *ttm = bo->ttm;
52 struct ttm_mem_reg *old_mem = &bo->mem;
53 int ret;
54
55 if (old_mem->mem_type != TTM_PL_SYSTEM) {
56 ret = ttm_bo_wait(bo, interruptible, no_wait_gpu);
57
58 if (unlikely(ret != 0)) {
59 if (ret != -ERESTARTSYS)
60 pr_err("Failed to expire sync object before unbinding TTM\n");
61 return ret;
62 }
63
64 ttm_tt_unbind(ttm);
65 ttm_bo_free_old_node(bo);
66 ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
67 TTM_PL_MASK_MEM);
68 old_mem->mem_type = TTM_PL_SYSTEM;
69 }
70
71 ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
72 if (unlikely(ret != 0))
73 return ret;
74
75 if (new_mem->mem_type != TTM_PL_SYSTEM) {
76 ret = ttm_tt_bind(ttm, new_mem);
77 if (unlikely(ret != 0))
78 return ret;
79 }
80
81 *old_mem = *new_mem;
82 new_mem->mm_node = NULL;
83
84 return 0;
85}
86EXPORT_SYMBOL(ttm_bo_move_ttm);
87
88int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
89{
90 if (likely(man->io_reserve_fastpath))
91 return 0;
92
93 if (interruptible)
94 return mutex_lock_interruptible(&man->io_reserve_mutex);
95
96 mutex_lock(&man->io_reserve_mutex);
97 return 0;
98}
99EXPORT_SYMBOL(ttm_mem_io_lock);
100
101void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
102{
103 if (likely(man->io_reserve_fastpath))
104 return;
105
106 mutex_unlock(&man->io_reserve_mutex);
107}
108EXPORT_SYMBOL(ttm_mem_io_unlock);
109
110static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
111{
112 struct ttm_buffer_object *bo;
113
114 if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
115 return -EAGAIN;
116
117 bo = list_first_entry(&man->io_reserve_lru,
118 struct ttm_buffer_object,
119 io_reserve_lru);
120 list_del_init(&bo->io_reserve_lru);
121 ttm_bo_unmap_virtual_locked(bo);
122
123 return 0;
124}
125
126
127int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
128 struct ttm_mem_reg *mem)
129{
130 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
131 int ret = 0;
132
133 if (!bdev->driver->io_mem_reserve)
134 return 0;
135 if (likely(man->io_reserve_fastpath))
136 return bdev->driver->io_mem_reserve(bdev, mem);
137
138 if (bdev->driver->io_mem_reserve &&
139 mem->bus.io_reserved_count++ == 0) {
140retry:
141 ret = bdev->driver->io_mem_reserve(bdev, mem);
142 if (ret == -EAGAIN) {
143 ret = ttm_mem_io_evict(man);
144 if (ret == 0)
145 goto retry;
146 }
147 }
148 return ret;
149}
150EXPORT_SYMBOL(ttm_mem_io_reserve);
151
152void ttm_mem_io_free(struct ttm_bo_device *bdev,
153 struct ttm_mem_reg *mem)
154{
155 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
156
157 if (likely(man->io_reserve_fastpath))
158 return;
159
160 if (bdev->driver->io_mem_reserve &&
161 --mem->bus.io_reserved_count == 0 &&
162 bdev->driver->io_mem_free)
163 bdev->driver->io_mem_free(bdev, mem);
164
165}
166EXPORT_SYMBOL(ttm_mem_io_free);
167
168int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
169{
170 struct ttm_mem_reg *mem = &bo->mem;
171 int ret;
172
173 if (!mem->bus.io_reserved_vm) {
174 struct ttm_mem_type_manager *man =
175 &bo->bdev->man[mem->mem_type];
176
177 ret = ttm_mem_io_reserve(bo->bdev, mem);
178 if (unlikely(ret != 0))
179 return ret;
180 mem->bus.io_reserved_vm = true;
181 if (man->use_io_reserve_lru)
182 list_add_tail(&bo->io_reserve_lru,
183 &man->io_reserve_lru);
184 }
185 return 0;
186}
187
188void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
189{
190 struct ttm_mem_reg *mem = &bo->mem;
191
192 if (mem->bus.io_reserved_vm) {
193 mem->bus.io_reserved_vm = false;
194 list_del_init(&bo->io_reserve_lru);
195 ttm_mem_io_free(bo->bdev, mem);
196 }
197}
198
199static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
200 void **virtual)
201{
202 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
203 int ret;
204 void *addr;
205
206 *virtual = NULL;
207 (void) ttm_mem_io_lock(man, false);
208 ret = ttm_mem_io_reserve(bdev, mem);
209 ttm_mem_io_unlock(man);
210 if (ret || !mem->bus.is_iomem)
211 return ret;
212
213 if (mem->bus.addr) {
214 addr = mem->bus.addr;
215 } else {
216 if (mem->placement & TTM_PL_FLAG_WC)
217 addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
218 else
219 addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
220 if (!addr) {
221 (void) ttm_mem_io_lock(man, false);
222 ttm_mem_io_free(bdev, mem);
223 ttm_mem_io_unlock(man);
224 return -ENOMEM;
225 }
226 }
227 *virtual = addr;
228 return 0;
229}
230
231static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
232 void *virtual)
233{
234 struct ttm_mem_type_manager *man;
235
236 man = &bdev->man[mem->mem_type];
237
238 if (virtual && mem->bus.addr == NULL)
239 iounmap(virtual);
240 (void) ttm_mem_io_lock(man, false);
241 ttm_mem_io_free(bdev, mem);
242 ttm_mem_io_unlock(man);
243}
244
245static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
246{
247 uint32_t *dstP =
248 (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
249 uint32_t *srcP =
250 (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
251
252 int i;
253 for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
254 iowrite32(ioread32(srcP++), dstP++);
255 return 0;
256}
257
258static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
259 unsigned long page,
260 pgprot_t prot)
261{
262 struct page *d = ttm->pages[page];
263 void *dst;
264
265 if (!d)
266 return -ENOMEM;
267
268 src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
269
270#ifdef CONFIG_X86
271 dst = kmap_atomic_prot(d, prot);
272#else
273 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
274 dst = vmap(&d, 1, 0, prot);
275 else
276 dst = kmap(d);
277#endif
278 if (!dst)
279 return -ENOMEM;
280
281 memcpy_fromio(dst, src, PAGE_SIZE);
282
283#ifdef CONFIG_X86
284 kunmap_atomic(dst);
285#else
286 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
287 vunmap(dst);
288 else
289 kunmap(d);
290#endif
291
292 return 0;
293}
294
295static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
296 unsigned long page,
297 pgprot_t prot)
298{
299 struct page *s = ttm->pages[page];
300 void *src;
301
302 if (!s)
303 return -ENOMEM;
304
305 dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
306#ifdef CONFIG_X86
307 src = kmap_atomic_prot(s, prot);
308#else
309 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
310 src = vmap(&s, 1, 0, prot);
311 else
312 src = kmap(s);
313#endif
314 if (!src)
315 return -ENOMEM;
316
317 memcpy_toio(dst, src, PAGE_SIZE);
318
319#ifdef CONFIG_X86
320 kunmap_atomic(src);
321#else
322 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
323 vunmap(src);
324 else
325 kunmap(s);
326#endif
327
328 return 0;
329}
330
331int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
332 bool interruptible, bool no_wait_gpu,
333 struct ttm_mem_reg *new_mem)
334{
335 struct ttm_bo_device *bdev = bo->bdev;
336 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
337 struct ttm_tt *ttm = bo->ttm;
338 struct ttm_mem_reg *old_mem = &bo->mem;
339 struct ttm_mem_reg old_copy = *old_mem;
340 void *old_iomap;
341 void *new_iomap;
342 int ret;
343 unsigned long i;
344 unsigned long page;
345 unsigned long add = 0;
346 int dir;
347
348 ret = ttm_bo_wait(bo, interruptible, no_wait_gpu);
349 if (ret)
350 return ret;
351
352 ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
353 if (ret)
354 return ret;
355 ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
356 if (ret)
357 goto out;
358
359 /*
360 * Single TTM move. NOP.
361 */
362 if (old_iomap == NULL && new_iomap == NULL)
363 goto out2;
364
365 /*
366 * Don't move nonexistent data. Clear destination instead.
367 */
368 if (old_iomap == NULL &&
369 (ttm == NULL || (ttm->state == tt_unpopulated &&
370 !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
371 memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
372 goto out2;
373 }
374
375 /*
376 * TTM might be null for moves within the same region.
377 */
378 if (ttm && ttm->state == tt_unpopulated) {
379 ret = ttm->bdev->driver->ttm_tt_populate(ttm);
380 if (ret)
381 goto out1;
382 }
383
384 add = 0;
385 dir = 1;
386
387 if ((old_mem->mem_type == new_mem->mem_type) &&
388 (new_mem->start < old_mem->start + old_mem->size)) {
389 dir = -1;
390 add = new_mem->num_pages - 1;
391 }
392
393 for (i = 0; i < new_mem->num_pages; ++i) {
394 page = i * dir + add;
395 if (old_iomap == NULL) {
396 pgprot_t prot = ttm_io_prot(old_mem->placement,
397 PAGE_KERNEL);
398 ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
399 prot);
400 } else if (new_iomap == NULL) {
401 pgprot_t prot = ttm_io_prot(new_mem->placement,
402 PAGE_KERNEL);
403 ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
404 prot);
405 } else
406 ret = ttm_copy_io_page(new_iomap, old_iomap, page);
407 if (ret)
408 goto out1;
409 }
410 mb();
411out2:
412 old_copy = *old_mem;
413 *old_mem = *new_mem;
414 new_mem->mm_node = NULL;
415
416 if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
417 ttm_tt_destroy(ttm);
418 bo->ttm = NULL;
419 }
420
421out1:
422 ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
423out:
424 ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
425
426 /*
427 * On error, keep the mm node!
428 */
429 if (!ret)
430 ttm_bo_mem_put(bo, &old_copy);
431 return ret;
432}
433EXPORT_SYMBOL(ttm_bo_move_memcpy);
434
435static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
436{
437 kfree(bo);
438}
439
440/**
441 * ttm_buffer_object_transfer
442 *
443 * @bo: A pointer to a struct ttm_buffer_object.
444 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
445 * holding the data of @bo with the old placement.
446 *
447 * This is a utility function that may be called after an accelerated move
448 * has been scheduled. A new buffer object is created as a placeholder for
449 * the old data while it's being copied. When that buffer object is idle,
450 * it can be destroyed, releasing the space of the old placement.
451 * Returns:
452 * !0: Failure.
453 */
454
455static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
456 struct ttm_buffer_object **new_obj)
457{
458 struct ttm_buffer_object *fbo;
459 int ret;
460
461 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
462 if (!fbo)
463 return -ENOMEM;
464
465 *fbo = *bo;
466
467 /**
468 * Fix up members that we shouldn't copy directly:
469 * TODO: Explicit member copy would probably be better here.
470 */
471
472 INIT_LIST_HEAD(&fbo->ddestroy);
473 INIT_LIST_HEAD(&fbo->lru);
474 INIT_LIST_HEAD(&fbo->swap);
475 INIT_LIST_HEAD(&fbo->io_reserve_lru);
476 fbo->moving = NULL;
477 drm_vma_node_reset(&fbo->vma_node);
478 atomic_set(&fbo->cpu_writers, 0);
479
480 kref_init(&fbo->list_kref);
481 kref_init(&fbo->kref);
482 fbo->destroy = &ttm_transfered_destroy;
483 fbo->acc_size = 0;
484 fbo->resv = &fbo->ttm_resv;
485 reservation_object_init(fbo->resv);
486 ret = ww_mutex_trylock(&fbo->resv->lock);
487 WARN_ON(!ret);
488
489 *new_obj = fbo;
490 return 0;
491}
492
493pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
494{
495 /* Cached mappings need no adjustment */
496 if (caching_flags & TTM_PL_FLAG_CACHED)
497 return tmp;
498
499#if defined(__i386__) || defined(__x86_64__)
500 if (caching_flags & TTM_PL_FLAG_WC)
501 tmp = pgprot_writecombine(tmp);
502 else if (boot_cpu_data.x86 > 3)
503 tmp = pgprot_noncached(tmp);
504#endif
505#if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
506 defined(__powerpc__)
507 if (caching_flags & TTM_PL_FLAG_WC)
508 tmp = pgprot_writecombine(tmp);
509 else
510 tmp = pgprot_noncached(tmp);
511#endif
512#if defined(__sparc__) || defined(__mips__)
513 tmp = pgprot_noncached(tmp);
514#endif
515 return tmp;
516}
517EXPORT_SYMBOL(ttm_io_prot);
518
519static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
520 unsigned long offset,
521 unsigned long size,
522 struct ttm_bo_kmap_obj *map)
523{
524 struct ttm_mem_reg *mem = &bo->mem;
525
526 if (bo->mem.bus.addr) {
527 map->bo_kmap_type = ttm_bo_map_premapped;
528 map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
529 } else {
530 map->bo_kmap_type = ttm_bo_map_iomap;
531 if (mem->placement & TTM_PL_FLAG_WC)
532 map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
533 size);
534 else
535 map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
536 size);
537 }
538 return (!map->virtual) ? -ENOMEM : 0;
539}
540
541static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
542 unsigned long start_page,
543 unsigned long num_pages,
544 struct ttm_bo_kmap_obj *map)
545{
546 struct ttm_mem_reg *mem = &bo->mem; pgprot_t prot;
547 struct ttm_tt *ttm = bo->ttm;
548 int ret;
549
550 BUG_ON(!ttm);
551
552 if (ttm->state == tt_unpopulated) {
553 ret = ttm->bdev->driver->ttm_tt_populate(ttm);
554 if (ret)
555 return ret;
556 }
557
558 if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
559 /*
560 * We're mapping a single page, and the desired
561 * page protection is consistent with the bo.
562 */
563
564 map->bo_kmap_type = ttm_bo_map_kmap;
565 map->page = ttm->pages[start_page];
566 map->virtual = kmap(map->page);
567 } else {
568 /*
569 * We need to use vmap to get the desired page protection
570 * or to make the buffer object look contiguous.
571 */
572 prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
573 map->bo_kmap_type = ttm_bo_map_vmap;
574 map->virtual = vmap(ttm->pages + start_page, num_pages,
575 0, prot);
576 }
577 return (!map->virtual) ? -ENOMEM : 0;
578}
579
580int ttm_bo_kmap(struct ttm_buffer_object *bo,
581 unsigned long start_page, unsigned long num_pages,
582 struct ttm_bo_kmap_obj *map)
583{
584 struct ttm_mem_type_manager *man =
585 &bo->bdev->man[bo->mem.mem_type];
586 unsigned long offset, size;
587 int ret;
588
589 BUG_ON(!list_empty(&bo->swap));
590 map->virtual = NULL;
591 map->bo = bo;
592 if (num_pages > bo->num_pages)
593 return -EINVAL;
594 if (start_page > bo->num_pages)
595 return -EINVAL;
596#if 0
597 if (num_pages > 1 && !capable(CAP_SYS_ADMIN))
598 return -EPERM;
599#endif
600 (void) ttm_mem_io_lock(man, false);
601 ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
602 ttm_mem_io_unlock(man);
603 if (ret)
604 return ret;
605 if (!bo->mem.bus.is_iomem) {
606 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
607 } else {
608 offset = start_page << PAGE_SHIFT;
609 size = num_pages << PAGE_SHIFT;
610 return ttm_bo_ioremap(bo, offset, size, map);
611 }
612}
613EXPORT_SYMBOL(ttm_bo_kmap);
614
615void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
616{
617 struct ttm_buffer_object *bo = map->bo;
618 struct ttm_mem_type_manager *man =
619 &bo->bdev->man[bo->mem.mem_type];
620
621 if (!map->virtual)
622 return;
623 switch (map->bo_kmap_type) {
624 case ttm_bo_map_iomap:
625 iounmap(map->virtual);
626 break;
627 case ttm_bo_map_vmap:
628 vunmap(map->virtual);
629 break;
630 case ttm_bo_map_kmap:
631 kunmap(map->page);
632 break;
633 case ttm_bo_map_premapped:
634 break;
635 default:
636 BUG();
637 }
638 (void) ttm_mem_io_lock(man, false);
639 ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
640 ttm_mem_io_unlock(man);
641 map->virtual = NULL;
642 map->page = NULL;
643}
644EXPORT_SYMBOL(ttm_bo_kunmap);
645
646int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
647 struct dma_fence *fence,
648 bool evict,
649 struct ttm_mem_reg *new_mem)
650{
651 struct ttm_bo_device *bdev = bo->bdev;
652 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
653 struct ttm_mem_reg *old_mem = &bo->mem;
654 int ret;
655 struct ttm_buffer_object *ghost_obj;
656
657 reservation_object_add_excl_fence(bo->resv, fence);
658 if (evict) {
659 ret = ttm_bo_wait(bo, false, false);
660 if (ret)
661 return ret;
662
663 if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
664 ttm_tt_destroy(bo->ttm);
665 bo->ttm = NULL;
666 }
667 ttm_bo_free_old_node(bo);
668 } else {
669 /**
670 * This should help pipeline ordinary buffer moves.
671 *
672 * Hang old buffer memory on a new buffer object,
673 * and leave it to be released when the GPU
674 * operation has completed.
675 */
676
677 dma_fence_put(bo->moving);
678 bo->moving = dma_fence_get(fence);
679
680 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
681 if (ret)
682 return ret;
683
684 reservation_object_add_excl_fence(ghost_obj->resv, fence);
685
686 /**
687 * If we're not moving to fixed memory, the TTM object
688 * needs to stay alive. Otherwhise hang it on the ghost
689 * bo to be unbound and destroyed.
690 */
691
692 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
693 ghost_obj->ttm = NULL;
694 else
695 bo->ttm = NULL;
696
697 ttm_bo_unreserve(ghost_obj);
698 ttm_bo_unref(&ghost_obj);
699 }
700
701 *old_mem = *new_mem;
702 new_mem->mm_node = NULL;
703
704 return 0;
705}
706EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
707
708int ttm_bo_pipeline_move(struct ttm_buffer_object *bo,
709 struct dma_fence *fence, bool evict,
710 struct ttm_mem_reg *new_mem)
711{
712 struct ttm_bo_device *bdev = bo->bdev;
713 struct ttm_mem_reg *old_mem = &bo->mem;
714
715 struct ttm_mem_type_manager *from = &bdev->man[old_mem->mem_type];
716 struct ttm_mem_type_manager *to = &bdev->man[new_mem->mem_type];
717
718 int ret;
719
720 reservation_object_add_excl_fence(bo->resv, fence);
721
722 if (!evict) {
723 struct ttm_buffer_object *ghost_obj;
724
725 /**
726 * This should help pipeline ordinary buffer moves.
727 *
728 * Hang old buffer memory on a new buffer object,
729 * and leave it to be released when the GPU
730 * operation has completed.
731 */
732
733 dma_fence_put(bo->moving);
734 bo->moving = dma_fence_get(fence);
735
736 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
737 if (ret)
738 return ret;
739
740 reservation_object_add_excl_fence(ghost_obj->resv, fence);
741
742 /**
743 * If we're not moving to fixed memory, the TTM object
744 * needs to stay alive. Otherwhise hang it on the ghost
745 * bo to be unbound and destroyed.
746 */
747
748 if (!(to->flags & TTM_MEMTYPE_FLAG_FIXED))
749 ghost_obj->ttm = NULL;
750 else
751 bo->ttm = NULL;
752
753 ttm_bo_unreserve(ghost_obj);
754 ttm_bo_unref(&ghost_obj);
755
756 } else if (from->flags & TTM_MEMTYPE_FLAG_FIXED) {
757
758 /**
759 * BO doesn't have a TTM we need to bind/unbind. Just remember
760 * this eviction and free up the allocation
761 */
762
763 spin_lock(&from->move_lock);
764 if (!from->move || dma_fence_is_later(fence, from->move)) {
765 dma_fence_put(from->move);
766 from->move = dma_fence_get(fence);
767 }
768 spin_unlock(&from->move_lock);
769
770 ttm_bo_free_old_node(bo);
771
772 dma_fence_put(bo->moving);
773 bo->moving = dma_fence_get(fence);
774
775 } else {
776 /**
777 * Last resort, wait for the move to be completed.
778 *
779 * Should never happen in pratice.
780 */
781
782 ret = ttm_bo_wait(bo, false, false);
783 if (ret)
784 return ret;
785
786 if (to->flags & TTM_MEMTYPE_FLAG_FIXED) {
787 ttm_tt_destroy(bo->ttm);
788 bo->ttm = NULL;
789 }
790 ttm_bo_free_old_node(bo);
791 }
792
793 *old_mem = *new_mem;
794 new_mem->mm_node = NULL;
795
796 return 0;
797}
798EXPORT_SYMBOL(ttm_bo_pipeline_move);
1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
2/**************************************************************************
3 *
4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28/*
29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30 */
31
32#include <drm/ttm/ttm_bo_driver.h>
33#include <drm/ttm/ttm_placement.h>
34#include <drm/drm_cache.h>
35#include <drm/drm_vma_manager.h>
36#include <linux/iosys-map.h>
37#include <linux/io.h>
38#include <linux/highmem.h>
39#include <linux/wait.h>
40#include <linux/slab.h>
41#include <linux/vmalloc.h>
42#include <linux/module.h>
43#include <linux/dma-resv.h>
44
45struct ttm_transfer_obj {
46 struct ttm_buffer_object base;
47 struct ttm_buffer_object *bo;
48};
49
50int ttm_mem_io_reserve(struct ttm_device *bdev,
51 struct ttm_resource *mem)
52{
53 if (mem->bus.offset || mem->bus.addr)
54 return 0;
55
56 mem->bus.is_iomem = false;
57 if (!bdev->funcs->io_mem_reserve)
58 return 0;
59
60 return bdev->funcs->io_mem_reserve(bdev, mem);
61}
62
63void ttm_mem_io_free(struct ttm_device *bdev,
64 struct ttm_resource *mem)
65{
66 if (!mem)
67 return;
68
69 if (!mem->bus.offset && !mem->bus.addr)
70 return;
71
72 if (bdev->funcs->io_mem_free)
73 bdev->funcs->io_mem_free(bdev, mem);
74
75 mem->bus.offset = 0;
76 mem->bus.addr = NULL;
77}
78
79/**
80 * ttm_move_memcpy - Helper to perform a memcpy ttm move operation.
81 * @clear: Whether to clear rather than copy.
82 * @num_pages: Number of pages of the operation.
83 * @dst_iter: A struct ttm_kmap_iter representing the destination resource.
84 * @src_iter: A struct ttm_kmap_iter representing the source resource.
85 *
86 * This function is intended to be able to move out async under a
87 * dma-fence if desired.
88 */
89void ttm_move_memcpy(bool clear,
90 u32 num_pages,
91 struct ttm_kmap_iter *dst_iter,
92 struct ttm_kmap_iter *src_iter)
93{
94 const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops;
95 const struct ttm_kmap_iter_ops *src_ops = src_iter->ops;
96 struct iosys_map src_map, dst_map;
97 pgoff_t i;
98
99 /* Single TTM move. NOP */
100 if (dst_ops->maps_tt && src_ops->maps_tt)
101 return;
102
103 /* Don't move nonexistent data. Clear destination instead. */
104 if (clear) {
105 for (i = 0; i < num_pages; ++i) {
106 dst_ops->map_local(dst_iter, &dst_map, i);
107 if (dst_map.is_iomem)
108 memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE);
109 else
110 memset(dst_map.vaddr, 0, PAGE_SIZE);
111 if (dst_ops->unmap_local)
112 dst_ops->unmap_local(dst_iter, &dst_map);
113 }
114 return;
115 }
116
117 for (i = 0; i < num_pages; ++i) {
118 dst_ops->map_local(dst_iter, &dst_map, i);
119 src_ops->map_local(src_iter, &src_map, i);
120
121 drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE);
122
123 if (src_ops->unmap_local)
124 src_ops->unmap_local(src_iter, &src_map);
125 if (dst_ops->unmap_local)
126 dst_ops->unmap_local(dst_iter, &dst_map);
127 }
128}
129EXPORT_SYMBOL(ttm_move_memcpy);
130
131int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
132 struct ttm_operation_ctx *ctx,
133 struct ttm_resource *dst_mem)
134{
135 struct ttm_device *bdev = bo->bdev;
136 struct ttm_resource_manager *dst_man =
137 ttm_manager_type(bo->bdev, dst_mem->mem_type);
138 struct ttm_tt *ttm = bo->ttm;
139 struct ttm_resource *src_mem = bo->resource;
140 struct ttm_resource_manager *src_man;
141 union {
142 struct ttm_kmap_iter_tt tt;
143 struct ttm_kmap_iter_linear_io io;
144 } _dst_iter, _src_iter;
145 struct ttm_kmap_iter *dst_iter, *src_iter;
146 bool clear;
147 int ret = 0;
148
149 if (!src_mem)
150 return 0;
151
152 src_man = ttm_manager_type(bdev, src_mem->mem_type);
153 if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) ||
154 dst_man->use_tt)) {
155 ret = ttm_tt_populate(bdev, ttm, ctx);
156 if (ret)
157 return ret;
158 }
159
160 dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem);
161 if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt)
162 dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm);
163 if (IS_ERR(dst_iter))
164 return PTR_ERR(dst_iter);
165
166 src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem);
167 if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt)
168 src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm);
169 if (IS_ERR(src_iter)) {
170 ret = PTR_ERR(src_iter);
171 goto out_src_iter;
172 }
173
174 clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm));
175 if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC)))
176 ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter);
177
178 if (!src_iter->ops->maps_tt)
179 ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem);
180 ttm_bo_move_sync_cleanup(bo, dst_mem);
181
182out_src_iter:
183 if (!dst_iter->ops->maps_tt)
184 ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem);
185
186 return ret;
187}
188EXPORT_SYMBOL(ttm_bo_move_memcpy);
189
190static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
191{
192 struct ttm_transfer_obj *fbo;
193
194 fbo = container_of(bo, struct ttm_transfer_obj, base);
195 dma_resv_fini(&fbo->base.base._resv);
196 ttm_bo_put(fbo->bo);
197 kfree(fbo);
198}
199
200/**
201 * ttm_buffer_object_transfer
202 *
203 * @bo: A pointer to a struct ttm_buffer_object.
204 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
205 * holding the data of @bo with the old placement.
206 *
207 * This is a utility function that may be called after an accelerated move
208 * has been scheduled. A new buffer object is created as a placeholder for
209 * the old data while it's being copied. When that buffer object is idle,
210 * it can be destroyed, releasing the space of the old placement.
211 * Returns:
212 * !0: Failure.
213 */
214
215static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
216 struct ttm_buffer_object **new_obj)
217{
218 struct ttm_transfer_obj *fbo;
219 int ret;
220
221 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
222 if (!fbo)
223 return -ENOMEM;
224
225 fbo->base = *bo;
226
227 /**
228 * Fix up members that we shouldn't copy directly:
229 * TODO: Explicit member copy would probably be better here.
230 */
231
232 atomic_inc(&ttm_glob.bo_count);
233 INIT_LIST_HEAD(&fbo->base.ddestroy);
234 drm_vma_node_reset(&fbo->base.base.vma_node);
235
236 kref_init(&fbo->base.kref);
237 fbo->base.destroy = &ttm_transfered_destroy;
238 fbo->base.pin_count = 0;
239 if (bo->type != ttm_bo_type_sg)
240 fbo->base.base.resv = &fbo->base.base._resv;
241
242 dma_resv_init(&fbo->base.base._resv);
243 fbo->base.base.dev = NULL;
244 ret = dma_resv_trylock(&fbo->base.base._resv);
245 WARN_ON(!ret);
246
247 if (fbo->base.resource) {
248 ttm_resource_set_bo(fbo->base.resource, &fbo->base);
249 bo->resource = NULL;
250 ttm_bo_set_bulk_move(&fbo->base, NULL);
251 } else {
252 fbo->base.bulk_move = NULL;
253 }
254
255 ret = dma_resv_reserve_fences(&fbo->base.base._resv, 1);
256 if (ret) {
257 kfree(fbo);
258 return ret;
259 }
260
261 ttm_bo_get(bo);
262 fbo->bo = bo;
263
264 ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
265
266 *new_obj = &fbo->base;
267 return 0;
268}
269
270pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
271 pgprot_t tmp)
272{
273 struct ttm_resource_manager *man;
274 enum ttm_caching caching;
275
276 man = ttm_manager_type(bo->bdev, res->mem_type);
277 caching = man->use_tt ? bo->ttm->caching : res->bus.caching;
278
279 return ttm_prot_from_caching(caching, tmp);
280}
281EXPORT_SYMBOL(ttm_io_prot);
282
283static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
284 unsigned long offset,
285 unsigned long size,
286 struct ttm_bo_kmap_obj *map)
287{
288 struct ttm_resource *mem = bo->resource;
289
290 if (bo->resource->bus.addr) {
291 map->bo_kmap_type = ttm_bo_map_premapped;
292 map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
293 } else {
294 resource_size_t res = bo->resource->bus.offset + offset;
295
296 map->bo_kmap_type = ttm_bo_map_iomap;
297 if (mem->bus.caching == ttm_write_combined)
298 map->virtual = ioremap_wc(res, size);
299#ifdef CONFIG_X86
300 else if (mem->bus.caching == ttm_cached)
301 map->virtual = ioremap_cache(res, size);
302#endif
303 else
304 map->virtual = ioremap(res, size);
305 }
306 return (!map->virtual) ? -ENOMEM : 0;
307}
308
309static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
310 unsigned long start_page,
311 unsigned long num_pages,
312 struct ttm_bo_kmap_obj *map)
313{
314 struct ttm_resource *mem = bo->resource;
315 struct ttm_operation_ctx ctx = {
316 .interruptible = false,
317 .no_wait_gpu = false
318 };
319 struct ttm_tt *ttm = bo->ttm;
320 pgprot_t prot;
321 int ret;
322
323 BUG_ON(!ttm);
324
325 ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
326 if (ret)
327 return ret;
328
329 if (num_pages == 1 && ttm->caching == ttm_cached) {
330 /*
331 * We're mapping a single page, and the desired
332 * page protection is consistent with the bo.
333 */
334
335 map->bo_kmap_type = ttm_bo_map_kmap;
336 map->page = ttm->pages[start_page];
337 map->virtual = kmap(map->page);
338 } else {
339 /*
340 * We need to use vmap to get the desired page protection
341 * or to make the buffer object look contiguous.
342 */
343 prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
344 map->bo_kmap_type = ttm_bo_map_vmap;
345 map->virtual = vmap(ttm->pages + start_page, num_pages,
346 0, prot);
347 }
348 return (!map->virtual) ? -ENOMEM : 0;
349}
350
351int ttm_bo_kmap(struct ttm_buffer_object *bo,
352 unsigned long start_page, unsigned long num_pages,
353 struct ttm_bo_kmap_obj *map)
354{
355 unsigned long offset, size;
356 int ret;
357
358 map->virtual = NULL;
359 map->bo = bo;
360 if (num_pages > PFN_UP(bo->resource->size))
361 return -EINVAL;
362 if ((start_page + num_pages) > PFN_UP(bo->resource->size))
363 return -EINVAL;
364
365 ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
366 if (ret)
367 return ret;
368 if (!bo->resource->bus.is_iomem) {
369 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
370 } else {
371 offset = start_page << PAGE_SHIFT;
372 size = num_pages << PAGE_SHIFT;
373 return ttm_bo_ioremap(bo, offset, size, map);
374 }
375}
376EXPORT_SYMBOL(ttm_bo_kmap);
377
378void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
379{
380 if (!map->virtual)
381 return;
382 switch (map->bo_kmap_type) {
383 case ttm_bo_map_iomap:
384 iounmap(map->virtual);
385 break;
386 case ttm_bo_map_vmap:
387 vunmap(map->virtual);
388 break;
389 case ttm_bo_map_kmap:
390 kunmap(map->page);
391 break;
392 case ttm_bo_map_premapped:
393 break;
394 default:
395 BUG();
396 }
397 ttm_mem_io_free(map->bo->bdev, map->bo->resource);
398 map->virtual = NULL;
399 map->page = NULL;
400}
401EXPORT_SYMBOL(ttm_bo_kunmap);
402
403int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map)
404{
405 struct ttm_resource *mem = bo->resource;
406 int ret;
407
408 dma_resv_assert_held(bo->base.resv);
409
410 ret = ttm_mem_io_reserve(bo->bdev, mem);
411 if (ret)
412 return ret;
413
414 if (mem->bus.is_iomem) {
415 void __iomem *vaddr_iomem;
416
417 if (mem->bus.addr)
418 vaddr_iomem = (void __iomem *)mem->bus.addr;
419 else if (mem->bus.caching == ttm_write_combined)
420 vaddr_iomem = ioremap_wc(mem->bus.offset,
421 bo->base.size);
422#ifdef CONFIG_X86
423 else if (mem->bus.caching == ttm_cached)
424 vaddr_iomem = ioremap_cache(mem->bus.offset,
425 bo->base.size);
426#endif
427 else
428 vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
429
430 if (!vaddr_iomem)
431 return -ENOMEM;
432
433 iosys_map_set_vaddr_iomem(map, vaddr_iomem);
434
435 } else {
436 struct ttm_operation_ctx ctx = {
437 .interruptible = false,
438 .no_wait_gpu = false
439 };
440 struct ttm_tt *ttm = bo->ttm;
441 pgprot_t prot;
442 void *vaddr;
443
444 ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
445 if (ret)
446 return ret;
447
448 /*
449 * We need to use vmap to get the desired page protection
450 * or to make the buffer object look contiguous.
451 */
452 prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
453 vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
454 if (!vaddr)
455 return -ENOMEM;
456
457 iosys_map_set_vaddr(map, vaddr);
458 }
459
460 return 0;
461}
462EXPORT_SYMBOL(ttm_bo_vmap);
463
464void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map)
465{
466 struct ttm_resource *mem = bo->resource;
467
468 dma_resv_assert_held(bo->base.resv);
469
470 if (iosys_map_is_null(map))
471 return;
472
473 if (!map->is_iomem)
474 vunmap(map->vaddr);
475 else if (!mem->bus.addr)
476 iounmap(map->vaddr_iomem);
477 iosys_map_clear(map);
478
479 ttm_mem_io_free(bo->bdev, bo->resource);
480}
481EXPORT_SYMBOL(ttm_bo_vunmap);
482
483static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
484 bool dst_use_tt)
485{
486 int ret;
487 ret = ttm_bo_wait(bo, false, false);
488 if (ret)
489 return ret;
490
491 if (!dst_use_tt)
492 ttm_bo_tt_destroy(bo);
493 ttm_resource_free(bo, &bo->resource);
494 return 0;
495}
496
497static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
498 struct dma_fence *fence,
499 bool dst_use_tt)
500{
501 struct ttm_buffer_object *ghost_obj;
502 int ret;
503
504 /**
505 * This should help pipeline ordinary buffer moves.
506 *
507 * Hang old buffer memory on a new buffer object,
508 * and leave it to be released when the GPU
509 * operation has completed.
510 */
511
512 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
513 if (ret)
514 return ret;
515
516 dma_resv_add_fence(&ghost_obj->base._resv, fence,
517 DMA_RESV_USAGE_KERNEL);
518
519 /**
520 * If we're not moving to fixed memory, the TTM object
521 * needs to stay alive. Otherwhise hang it on the ghost
522 * bo to be unbound and destroyed.
523 */
524
525 if (dst_use_tt)
526 ghost_obj->ttm = NULL;
527 else
528 bo->ttm = NULL;
529
530 dma_resv_unlock(&ghost_obj->base._resv);
531 ttm_bo_put(ghost_obj);
532 return 0;
533}
534
535static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
536 struct dma_fence *fence)
537{
538 struct ttm_device *bdev = bo->bdev;
539 struct ttm_resource_manager *from;
540
541 from = ttm_manager_type(bdev, bo->resource->mem_type);
542
543 /**
544 * BO doesn't have a TTM we need to bind/unbind. Just remember
545 * this eviction and free up the allocation
546 */
547 spin_lock(&from->move_lock);
548 if (!from->move || dma_fence_is_later(fence, from->move)) {
549 dma_fence_put(from->move);
550 from->move = dma_fence_get(fence);
551 }
552 spin_unlock(&from->move_lock);
553
554 ttm_resource_free(bo, &bo->resource);
555}
556
557int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
558 struct dma_fence *fence,
559 bool evict,
560 bool pipeline,
561 struct ttm_resource *new_mem)
562{
563 struct ttm_device *bdev = bo->bdev;
564 struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
565 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
566 int ret = 0;
567
568 dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
569 if (!evict)
570 ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
571 else if (!from->use_tt && pipeline)
572 ttm_bo_move_pipeline_evict(bo, fence);
573 else
574 ret = ttm_bo_wait_free_node(bo, man->use_tt);
575
576 if (ret)
577 return ret;
578
579 ttm_bo_assign_mem(bo, new_mem);
580
581 return 0;
582}
583EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
584
585void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo,
586 struct ttm_resource *new_mem)
587{
588 struct ttm_device *bdev = bo->bdev;
589 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
590 int ret;
591
592 ret = ttm_bo_wait_free_node(bo, man->use_tt);
593 if (WARN_ON(ret))
594 return;
595
596 ttm_bo_assign_mem(bo, new_mem);
597}
598EXPORT_SYMBOL(ttm_bo_move_sync_cleanup);
599
600/**
601 * ttm_bo_pipeline_gutting - purge the contents of a bo
602 * @bo: The buffer object
603 *
604 * Purge the contents of a bo, async if the bo is not idle.
605 * After a successful call, the bo is left unpopulated in
606 * system placement. The function may wait uninterruptible
607 * for idle on OOM.
608 *
609 * Return: 0 if successful, negative error code on failure.
610 */
611int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
612{
613 static const struct ttm_place sys_mem = { .mem_type = TTM_PL_SYSTEM };
614 struct ttm_buffer_object *ghost;
615 struct ttm_resource *sys_res;
616 struct ttm_tt *ttm;
617 int ret;
618
619 ret = ttm_resource_alloc(bo, &sys_mem, &sys_res);
620 if (ret)
621 return ret;
622
623 /* If already idle, no need for ghost object dance. */
624 ret = ttm_bo_wait(bo, false, true);
625 if (ret != -EBUSY) {
626 if (!bo->ttm) {
627 /* See comment below about clearing. */
628 ret = ttm_tt_create(bo, true);
629 if (ret)
630 goto error_free_sys_mem;
631 } else {
632 ttm_tt_unpopulate(bo->bdev, bo->ttm);
633 if (bo->type == ttm_bo_type_device)
634 ttm_tt_mark_for_clear(bo->ttm);
635 }
636 ttm_resource_free(bo, &bo->resource);
637 ttm_bo_assign_mem(bo, sys_res);
638 return 0;
639 }
640
641 /*
642 * We need an unpopulated ttm_tt after giving our current one,
643 * if any, to the ghost object. And we can't afford to fail
644 * creating one *after* the operation. If the bo subsequently gets
645 * resurrected, make sure it's cleared (if ttm_bo_type_device)
646 * to avoid leaking sensitive information to user-space.
647 */
648
649 ttm = bo->ttm;
650 bo->ttm = NULL;
651 ret = ttm_tt_create(bo, true);
652 swap(bo->ttm, ttm);
653 if (ret)
654 goto error_free_sys_mem;
655
656 ret = ttm_buffer_object_transfer(bo, &ghost);
657 if (ret)
658 goto error_destroy_tt;
659
660 ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
661 /* Last resort, wait for the BO to be idle when we are OOM */
662 if (ret)
663 ttm_bo_wait(bo, false, false);
664
665 dma_resv_unlock(&ghost->base._resv);
666 ttm_bo_put(ghost);
667 bo->ttm = ttm;
668 ttm_bo_assign_mem(bo, sys_res);
669 return 0;
670
671error_destroy_tt:
672 ttm_tt_destroy(bo->bdev, ttm);
673
674error_free_sys_mem:
675 ttm_resource_free(bo, &sys_res);
676 return ret;
677}