Loading...
1/*
2 * cfg80211 scan result handling
3 *
4 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 * Copyright 2016 Intel Deutschland GmbH
7 */
8#include <linux/kernel.h>
9#include <linux/slab.h>
10#include <linux/module.h>
11#include <linux/netdevice.h>
12#include <linux/wireless.h>
13#include <linux/nl80211.h>
14#include <linux/etherdevice.h>
15#include <net/arp.h>
16#include <net/cfg80211.h>
17#include <net/cfg80211-wext.h>
18#include <net/iw_handler.h>
19#include "core.h"
20#include "nl80211.h"
21#include "wext-compat.h"
22#include "rdev-ops.h"
23
24/**
25 * DOC: BSS tree/list structure
26 *
27 * At the top level, the BSS list is kept in both a list in each
28 * registered device (@bss_list) as well as an RB-tree for faster
29 * lookup. In the RB-tree, entries can be looked up using their
30 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
31 * for other BSSes.
32 *
33 * Due to the possibility of hidden SSIDs, there's a second level
34 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
35 * The hidden_list connects all BSSes belonging to a single AP
36 * that has a hidden SSID, and connects beacon and probe response
37 * entries. For a probe response entry for a hidden SSID, the
38 * hidden_beacon_bss pointer points to the BSS struct holding the
39 * beacon's information.
40 *
41 * Reference counting is done for all these references except for
42 * the hidden_list, so that a beacon BSS struct that is otherwise
43 * not referenced has one reference for being on the bss_list and
44 * one for each probe response entry that points to it using the
45 * hidden_beacon_bss pointer. When a BSS struct that has such a
46 * pointer is get/put, the refcount update is also propagated to
47 * the referenced struct, this ensure that it cannot get removed
48 * while somebody is using the probe response version.
49 *
50 * Note that the hidden_beacon_bss pointer never changes, due to
51 * the reference counting. Therefore, no locking is needed for
52 * it.
53 *
54 * Also note that the hidden_beacon_bss pointer is only relevant
55 * if the driver uses something other than the IEs, e.g. private
56 * data stored stored in the BSS struct, since the beacon IEs are
57 * also linked into the probe response struct.
58 */
59
60/*
61 * Limit the number of BSS entries stored in mac80211. Each one is
62 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
63 * If somebody wants to really attack this though, they'd likely
64 * use small beacons, and only one type of frame, limiting each of
65 * the entries to a much smaller size (in order to generate more
66 * entries in total, so overhead is bigger.)
67 */
68static int bss_entries_limit = 1000;
69module_param(bss_entries_limit, int, 0644);
70MODULE_PARM_DESC(bss_entries_limit,
71 "limit to number of scan BSS entries (per wiphy, default 1000)");
72
73#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
74
75static void bss_free(struct cfg80211_internal_bss *bss)
76{
77 struct cfg80211_bss_ies *ies;
78
79 if (WARN_ON(atomic_read(&bss->hold)))
80 return;
81
82 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
83 if (ies && !bss->pub.hidden_beacon_bss)
84 kfree_rcu(ies, rcu_head);
85 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
86 if (ies)
87 kfree_rcu(ies, rcu_head);
88
89 /*
90 * This happens when the module is removed, it doesn't
91 * really matter any more save for completeness
92 */
93 if (!list_empty(&bss->hidden_list))
94 list_del(&bss->hidden_list);
95
96 kfree(bss);
97}
98
99static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
100 struct cfg80211_internal_bss *bss)
101{
102 lockdep_assert_held(&rdev->bss_lock);
103
104 bss->refcount++;
105 if (bss->pub.hidden_beacon_bss) {
106 bss = container_of(bss->pub.hidden_beacon_bss,
107 struct cfg80211_internal_bss,
108 pub);
109 bss->refcount++;
110 }
111}
112
113static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
114 struct cfg80211_internal_bss *bss)
115{
116 lockdep_assert_held(&rdev->bss_lock);
117
118 if (bss->pub.hidden_beacon_bss) {
119 struct cfg80211_internal_bss *hbss;
120 hbss = container_of(bss->pub.hidden_beacon_bss,
121 struct cfg80211_internal_bss,
122 pub);
123 hbss->refcount--;
124 if (hbss->refcount == 0)
125 bss_free(hbss);
126 }
127 bss->refcount--;
128 if (bss->refcount == 0)
129 bss_free(bss);
130}
131
132static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
133 struct cfg80211_internal_bss *bss)
134{
135 lockdep_assert_held(&rdev->bss_lock);
136
137 if (!list_empty(&bss->hidden_list)) {
138 /*
139 * don't remove the beacon entry if it has
140 * probe responses associated with it
141 */
142 if (!bss->pub.hidden_beacon_bss)
143 return false;
144 /*
145 * if it's a probe response entry break its
146 * link to the other entries in the group
147 */
148 list_del_init(&bss->hidden_list);
149 }
150
151 list_del_init(&bss->list);
152 rb_erase(&bss->rbn, &rdev->bss_tree);
153 rdev->bss_entries--;
154 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
155 "rdev bss entries[%d]/list[empty:%d] corruption\n",
156 rdev->bss_entries, list_empty(&rdev->bss_list));
157 bss_ref_put(rdev, bss);
158 return true;
159}
160
161static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
162 unsigned long expire_time)
163{
164 struct cfg80211_internal_bss *bss, *tmp;
165 bool expired = false;
166
167 lockdep_assert_held(&rdev->bss_lock);
168
169 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
170 if (atomic_read(&bss->hold))
171 continue;
172 if (!time_after(expire_time, bss->ts))
173 continue;
174
175 if (__cfg80211_unlink_bss(rdev, bss))
176 expired = true;
177 }
178
179 if (expired)
180 rdev->bss_generation++;
181}
182
183static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
184{
185 struct cfg80211_internal_bss *bss, *oldest = NULL;
186 bool ret;
187
188 lockdep_assert_held(&rdev->bss_lock);
189
190 list_for_each_entry(bss, &rdev->bss_list, list) {
191 if (atomic_read(&bss->hold))
192 continue;
193
194 if (!list_empty(&bss->hidden_list) &&
195 !bss->pub.hidden_beacon_bss)
196 continue;
197
198 if (oldest && time_before(oldest->ts, bss->ts))
199 continue;
200 oldest = bss;
201 }
202
203 if (WARN_ON(!oldest))
204 return false;
205
206 /*
207 * The callers make sure to increase rdev->bss_generation if anything
208 * gets removed (and a new entry added), so there's no need to also do
209 * it here.
210 */
211
212 ret = __cfg80211_unlink_bss(rdev, oldest);
213 WARN_ON(!ret);
214 return ret;
215}
216
217void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
218 bool send_message)
219{
220 struct cfg80211_scan_request *request;
221 struct wireless_dev *wdev;
222 struct sk_buff *msg;
223#ifdef CONFIG_CFG80211_WEXT
224 union iwreq_data wrqu;
225#endif
226
227 ASSERT_RTNL();
228
229 if (rdev->scan_msg) {
230 nl80211_send_scan_result(rdev, rdev->scan_msg);
231 rdev->scan_msg = NULL;
232 return;
233 }
234
235 request = rdev->scan_req;
236 if (!request)
237 return;
238
239 wdev = request->wdev;
240
241 /*
242 * This must be before sending the other events!
243 * Otherwise, wpa_supplicant gets completely confused with
244 * wext events.
245 */
246 if (wdev->netdev)
247 cfg80211_sme_scan_done(wdev->netdev);
248
249 if (!request->info.aborted &&
250 request->flags & NL80211_SCAN_FLAG_FLUSH) {
251 /* flush entries from previous scans */
252 spin_lock_bh(&rdev->bss_lock);
253 __cfg80211_bss_expire(rdev, request->scan_start);
254 spin_unlock_bh(&rdev->bss_lock);
255 }
256
257 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
258
259#ifdef CONFIG_CFG80211_WEXT
260 if (wdev->netdev && !request->info.aborted) {
261 memset(&wrqu, 0, sizeof(wrqu));
262
263 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
264 }
265#endif
266
267 if (wdev->netdev)
268 dev_put(wdev->netdev);
269
270 rdev->scan_req = NULL;
271 kfree(request);
272
273 if (!send_message)
274 rdev->scan_msg = msg;
275 else
276 nl80211_send_scan_result(rdev, msg);
277}
278
279void __cfg80211_scan_done(struct work_struct *wk)
280{
281 struct cfg80211_registered_device *rdev;
282
283 rdev = container_of(wk, struct cfg80211_registered_device,
284 scan_done_wk);
285
286 rtnl_lock();
287 ___cfg80211_scan_done(rdev, true);
288 rtnl_unlock();
289}
290
291void cfg80211_scan_done(struct cfg80211_scan_request *request,
292 struct cfg80211_scan_info *info)
293{
294 trace_cfg80211_scan_done(request, info);
295 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req);
296
297 request->info = *info;
298 request->notified = true;
299 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
300}
301EXPORT_SYMBOL(cfg80211_scan_done);
302
303void __cfg80211_sched_scan_results(struct work_struct *wk)
304{
305 struct cfg80211_registered_device *rdev;
306 struct cfg80211_sched_scan_request *request;
307
308 rdev = container_of(wk, struct cfg80211_registered_device,
309 sched_scan_results_wk);
310
311 rtnl_lock();
312
313 request = rtnl_dereference(rdev->sched_scan_req);
314
315 /* we don't have sched_scan_req anymore if the scan is stopping */
316 if (request) {
317 if (request->flags & NL80211_SCAN_FLAG_FLUSH) {
318 /* flush entries from previous scans */
319 spin_lock_bh(&rdev->bss_lock);
320 __cfg80211_bss_expire(rdev, request->scan_start);
321 spin_unlock_bh(&rdev->bss_lock);
322 request->scan_start = jiffies;
323 }
324 nl80211_send_sched_scan_results(rdev, request->dev);
325 }
326
327 rtnl_unlock();
328}
329
330void cfg80211_sched_scan_results(struct wiphy *wiphy)
331{
332 trace_cfg80211_sched_scan_results(wiphy);
333 /* ignore if we're not scanning */
334
335 if (rcu_access_pointer(wiphy_to_rdev(wiphy)->sched_scan_req))
336 queue_work(cfg80211_wq,
337 &wiphy_to_rdev(wiphy)->sched_scan_results_wk);
338}
339EXPORT_SYMBOL(cfg80211_sched_scan_results);
340
341void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy)
342{
343 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
344
345 ASSERT_RTNL();
346
347 trace_cfg80211_sched_scan_stopped(wiphy);
348
349 __cfg80211_stop_sched_scan(rdev, true);
350}
351EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
352
353void cfg80211_sched_scan_stopped(struct wiphy *wiphy)
354{
355 rtnl_lock();
356 cfg80211_sched_scan_stopped_rtnl(wiphy);
357 rtnl_unlock();
358}
359EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
360
361int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
362 bool driver_initiated)
363{
364 struct cfg80211_sched_scan_request *sched_scan_req;
365 struct net_device *dev;
366
367 ASSERT_RTNL();
368
369 if (!rdev->sched_scan_req)
370 return -ENOENT;
371
372 sched_scan_req = rtnl_dereference(rdev->sched_scan_req);
373 dev = sched_scan_req->dev;
374
375 if (!driver_initiated) {
376 int err = rdev_sched_scan_stop(rdev, dev);
377 if (err)
378 return err;
379 }
380
381 nl80211_send_sched_scan(rdev, dev, NL80211_CMD_SCHED_SCAN_STOPPED);
382
383 RCU_INIT_POINTER(rdev->sched_scan_req, NULL);
384 kfree_rcu(sched_scan_req, rcu_head);
385
386 return 0;
387}
388
389void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
390 unsigned long age_secs)
391{
392 struct cfg80211_internal_bss *bss;
393 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
394
395 spin_lock_bh(&rdev->bss_lock);
396 list_for_each_entry(bss, &rdev->bss_list, list)
397 bss->ts -= age_jiffies;
398 spin_unlock_bh(&rdev->bss_lock);
399}
400
401void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
402{
403 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
404}
405
406const u8 *cfg80211_find_ie_match(u8 eid, const u8 *ies, int len,
407 const u8 *match, int match_len,
408 int match_offset)
409{
410 /* match_offset can't be smaller than 2, unless match_len is
411 * zero, in which case match_offset must be zero as well.
412 */
413 if (WARN_ON((match_len && match_offset < 2) ||
414 (!match_len && match_offset)))
415 return NULL;
416
417 while (len >= 2 && len >= ies[1] + 2) {
418 if ((ies[0] == eid) &&
419 (ies[1] + 2 >= match_offset + match_len) &&
420 !memcmp(ies + match_offset, match, match_len))
421 return ies;
422
423 len -= ies[1] + 2;
424 ies += ies[1] + 2;
425 }
426
427 return NULL;
428}
429EXPORT_SYMBOL(cfg80211_find_ie_match);
430
431const u8 *cfg80211_find_vendor_ie(unsigned int oui, int oui_type,
432 const u8 *ies, int len)
433{
434 const u8 *ie;
435 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
436 int match_len = (oui_type < 0) ? 3 : sizeof(match);
437
438 if (WARN_ON(oui_type > 0xff))
439 return NULL;
440
441 ie = cfg80211_find_ie_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
442 match, match_len, 2);
443
444 if (ie && (ie[1] < 4))
445 return NULL;
446
447 return ie;
448}
449EXPORT_SYMBOL(cfg80211_find_vendor_ie);
450
451static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
452 const u8 *ssid, size_t ssid_len)
453{
454 const struct cfg80211_bss_ies *ies;
455 const u8 *ssidie;
456
457 if (bssid && !ether_addr_equal(a->bssid, bssid))
458 return false;
459
460 if (!ssid)
461 return true;
462
463 ies = rcu_access_pointer(a->ies);
464 if (!ies)
465 return false;
466 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
467 if (!ssidie)
468 return false;
469 if (ssidie[1] != ssid_len)
470 return false;
471 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
472}
473
474/**
475 * enum bss_compare_mode - BSS compare mode
476 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
477 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
478 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
479 */
480enum bss_compare_mode {
481 BSS_CMP_REGULAR,
482 BSS_CMP_HIDE_ZLEN,
483 BSS_CMP_HIDE_NUL,
484};
485
486static int cmp_bss(struct cfg80211_bss *a,
487 struct cfg80211_bss *b,
488 enum bss_compare_mode mode)
489{
490 const struct cfg80211_bss_ies *a_ies, *b_ies;
491 const u8 *ie1 = NULL;
492 const u8 *ie2 = NULL;
493 int i, r;
494
495 if (a->channel != b->channel)
496 return b->channel->center_freq - a->channel->center_freq;
497
498 a_ies = rcu_access_pointer(a->ies);
499 if (!a_ies)
500 return -1;
501 b_ies = rcu_access_pointer(b->ies);
502 if (!b_ies)
503 return 1;
504
505 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
506 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
507 a_ies->data, a_ies->len);
508 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
509 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
510 b_ies->data, b_ies->len);
511 if (ie1 && ie2) {
512 int mesh_id_cmp;
513
514 if (ie1[1] == ie2[1])
515 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
516 else
517 mesh_id_cmp = ie2[1] - ie1[1];
518
519 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
520 a_ies->data, a_ies->len);
521 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
522 b_ies->data, b_ies->len);
523 if (ie1 && ie2) {
524 if (mesh_id_cmp)
525 return mesh_id_cmp;
526 if (ie1[1] != ie2[1])
527 return ie2[1] - ie1[1];
528 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
529 }
530 }
531
532 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
533 if (r)
534 return r;
535
536 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
537 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
538
539 if (!ie1 && !ie2)
540 return 0;
541
542 /*
543 * Note that with "hide_ssid", the function returns a match if
544 * the already-present BSS ("b") is a hidden SSID beacon for
545 * the new BSS ("a").
546 */
547
548 /* sort missing IE before (left of) present IE */
549 if (!ie1)
550 return -1;
551 if (!ie2)
552 return 1;
553
554 switch (mode) {
555 case BSS_CMP_HIDE_ZLEN:
556 /*
557 * In ZLEN mode we assume the BSS entry we're
558 * looking for has a zero-length SSID. So if
559 * the one we're looking at right now has that,
560 * return 0. Otherwise, return the difference
561 * in length, but since we're looking for the
562 * 0-length it's really equivalent to returning
563 * the length of the one we're looking at.
564 *
565 * No content comparison is needed as we assume
566 * the content length is zero.
567 */
568 return ie2[1];
569 case BSS_CMP_REGULAR:
570 default:
571 /* sort by length first, then by contents */
572 if (ie1[1] != ie2[1])
573 return ie2[1] - ie1[1];
574 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
575 case BSS_CMP_HIDE_NUL:
576 if (ie1[1] != ie2[1])
577 return ie2[1] - ie1[1];
578 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
579 for (i = 0; i < ie2[1]; i++)
580 if (ie2[i + 2])
581 return -1;
582 return 0;
583 }
584}
585
586static bool cfg80211_bss_type_match(u16 capability,
587 enum nl80211_band band,
588 enum ieee80211_bss_type bss_type)
589{
590 bool ret = true;
591 u16 mask, val;
592
593 if (bss_type == IEEE80211_BSS_TYPE_ANY)
594 return ret;
595
596 if (band == NL80211_BAND_60GHZ) {
597 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
598 switch (bss_type) {
599 case IEEE80211_BSS_TYPE_ESS:
600 val = WLAN_CAPABILITY_DMG_TYPE_AP;
601 break;
602 case IEEE80211_BSS_TYPE_PBSS:
603 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
604 break;
605 case IEEE80211_BSS_TYPE_IBSS:
606 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
607 break;
608 default:
609 return false;
610 }
611 } else {
612 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
613 switch (bss_type) {
614 case IEEE80211_BSS_TYPE_ESS:
615 val = WLAN_CAPABILITY_ESS;
616 break;
617 case IEEE80211_BSS_TYPE_IBSS:
618 val = WLAN_CAPABILITY_IBSS;
619 break;
620 case IEEE80211_BSS_TYPE_MBSS:
621 val = 0;
622 break;
623 default:
624 return false;
625 }
626 }
627
628 ret = ((capability & mask) == val);
629 return ret;
630}
631
632/* Returned bss is reference counted and must be cleaned up appropriately. */
633struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
634 struct ieee80211_channel *channel,
635 const u8 *bssid,
636 const u8 *ssid, size_t ssid_len,
637 enum ieee80211_bss_type bss_type,
638 enum ieee80211_privacy privacy)
639{
640 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
641 struct cfg80211_internal_bss *bss, *res = NULL;
642 unsigned long now = jiffies;
643 int bss_privacy;
644
645 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
646 privacy);
647
648 spin_lock_bh(&rdev->bss_lock);
649
650 list_for_each_entry(bss, &rdev->bss_list, list) {
651 if (!cfg80211_bss_type_match(bss->pub.capability,
652 bss->pub.channel->band, bss_type))
653 continue;
654
655 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
656 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
657 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
658 continue;
659 if (channel && bss->pub.channel != channel)
660 continue;
661 if (!is_valid_ether_addr(bss->pub.bssid))
662 continue;
663 /* Don't get expired BSS structs */
664 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
665 !atomic_read(&bss->hold))
666 continue;
667 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
668 res = bss;
669 bss_ref_get(rdev, res);
670 break;
671 }
672 }
673
674 spin_unlock_bh(&rdev->bss_lock);
675 if (!res)
676 return NULL;
677 trace_cfg80211_return_bss(&res->pub);
678 return &res->pub;
679}
680EXPORT_SYMBOL(cfg80211_get_bss);
681
682static void rb_insert_bss(struct cfg80211_registered_device *rdev,
683 struct cfg80211_internal_bss *bss)
684{
685 struct rb_node **p = &rdev->bss_tree.rb_node;
686 struct rb_node *parent = NULL;
687 struct cfg80211_internal_bss *tbss;
688 int cmp;
689
690 while (*p) {
691 parent = *p;
692 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
693
694 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
695
696 if (WARN_ON(!cmp)) {
697 /* will sort of leak this BSS */
698 return;
699 }
700
701 if (cmp < 0)
702 p = &(*p)->rb_left;
703 else
704 p = &(*p)->rb_right;
705 }
706
707 rb_link_node(&bss->rbn, parent, p);
708 rb_insert_color(&bss->rbn, &rdev->bss_tree);
709}
710
711static struct cfg80211_internal_bss *
712rb_find_bss(struct cfg80211_registered_device *rdev,
713 struct cfg80211_internal_bss *res,
714 enum bss_compare_mode mode)
715{
716 struct rb_node *n = rdev->bss_tree.rb_node;
717 struct cfg80211_internal_bss *bss;
718 int r;
719
720 while (n) {
721 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
722 r = cmp_bss(&res->pub, &bss->pub, mode);
723
724 if (r == 0)
725 return bss;
726 else if (r < 0)
727 n = n->rb_left;
728 else
729 n = n->rb_right;
730 }
731
732 return NULL;
733}
734
735static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
736 struct cfg80211_internal_bss *new)
737{
738 const struct cfg80211_bss_ies *ies;
739 struct cfg80211_internal_bss *bss;
740 const u8 *ie;
741 int i, ssidlen;
742 u8 fold = 0;
743 u32 n_entries = 0;
744
745 ies = rcu_access_pointer(new->pub.beacon_ies);
746 if (WARN_ON(!ies))
747 return false;
748
749 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
750 if (!ie) {
751 /* nothing to do */
752 return true;
753 }
754
755 ssidlen = ie[1];
756 for (i = 0; i < ssidlen; i++)
757 fold |= ie[2 + i];
758
759 if (fold) {
760 /* not a hidden SSID */
761 return true;
762 }
763
764 /* This is the bad part ... */
765
766 list_for_each_entry(bss, &rdev->bss_list, list) {
767 /*
768 * we're iterating all the entries anyway, so take the
769 * opportunity to validate the list length accounting
770 */
771 n_entries++;
772
773 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
774 continue;
775 if (bss->pub.channel != new->pub.channel)
776 continue;
777 if (bss->pub.scan_width != new->pub.scan_width)
778 continue;
779 if (rcu_access_pointer(bss->pub.beacon_ies))
780 continue;
781 ies = rcu_access_pointer(bss->pub.ies);
782 if (!ies)
783 continue;
784 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
785 if (!ie)
786 continue;
787 if (ssidlen && ie[1] != ssidlen)
788 continue;
789 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
790 continue;
791 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
792 list_del(&bss->hidden_list);
793 /* combine them */
794 list_add(&bss->hidden_list, &new->hidden_list);
795 bss->pub.hidden_beacon_bss = &new->pub;
796 new->refcount += bss->refcount;
797 rcu_assign_pointer(bss->pub.beacon_ies,
798 new->pub.beacon_ies);
799 }
800
801 WARN_ONCE(n_entries != rdev->bss_entries,
802 "rdev bss entries[%d]/list[len:%d] corruption\n",
803 rdev->bss_entries, n_entries);
804
805 return true;
806}
807
808/* Returned bss is reference counted and must be cleaned up appropriately. */
809static struct cfg80211_internal_bss *
810cfg80211_bss_update(struct cfg80211_registered_device *rdev,
811 struct cfg80211_internal_bss *tmp,
812 bool signal_valid)
813{
814 struct cfg80211_internal_bss *found = NULL;
815
816 if (WARN_ON(!tmp->pub.channel))
817 return NULL;
818
819 tmp->ts = jiffies;
820
821 spin_lock_bh(&rdev->bss_lock);
822
823 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
824 spin_unlock_bh(&rdev->bss_lock);
825 return NULL;
826 }
827
828 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
829
830 if (found) {
831 /* Update IEs */
832 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
833 const struct cfg80211_bss_ies *old;
834
835 old = rcu_access_pointer(found->pub.proberesp_ies);
836
837 rcu_assign_pointer(found->pub.proberesp_ies,
838 tmp->pub.proberesp_ies);
839 /* Override possible earlier Beacon frame IEs */
840 rcu_assign_pointer(found->pub.ies,
841 tmp->pub.proberesp_ies);
842 if (old)
843 kfree_rcu((struct cfg80211_bss_ies *)old,
844 rcu_head);
845 } else if (rcu_access_pointer(tmp->pub.beacon_ies)) {
846 const struct cfg80211_bss_ies *old;
847 struct cfg80211_internal_bss *bss;
848
849 if (found->pub.hidden_beacon_bss &&
850 !list_empty(&found->hidden_list)) {
851 const struct cfg80211_bss_ies *f;
852
853 /*
854 * The found BSS struct is one of the probe
855 * response members of a group, but we're
856 * receiving a beacon (beacon_ies in the tmp
857 * bss is used). This can only mean that the
858 * AP changed its beacon from not having an
859 * SSID to showing it, which is confusing so
860 * drop this information.
861 */
862
863 f = rcu_access_pointer(tmp->pub.beacon_ies);
864 kfree_rcu((struct cfg80211_bss_ies *)f,
865 rcu_head);
866 goto drop;
867 }
868
869 old = rcu_access_pointer(found->pub.beacon_ies);
870
871 rcu_assign_pointer(found->pub.beacon_ies,
872 tmp->pub.beacon_ies);
873
874 /* Override IEs if they were from a beacon before */
875 if (old == rcu_access_pointer(found->pub.ies))
876 rcu_assign_pointer(found->pub.ies,
877 tmp->pub.beacon_ies);
878
879 /* Assign beacon IEs to all sub entries */
880 list_for_each_entry(bss, &found->hidden_list,
881 hidden_list) {
882 const struct cfg80211_bss_ies *ies;
883
884 ies = rcu_access_pointer(bss->pub.beacon_ies);
885 WARN_ON(ies != old);
886
887 rcu_assign_pointer(bss->pub.beacon_ies,
888 tmp->pub.beacon_ies);
889 }
890
891 if (old)
892 kfree_rcu((struct cfg80211_bss_ies *)old,
893 rcu_head);
894 }
895
896 found->pub.beacon_interval = tmp->pub.beacon_interval;
897 /*
898 * don't update the signal if beacon was heard on
899 * adjacent channel.
900 */
901 if (signal_valid)
902 found->pub.signal = tmp->pub.signal;
903 found->pub.capability = tmp->pub.capability;
904 found->ts = tmp->ts;
905 found->ts_boottime = tmp->ts_boottime;
906 found->parent_tsf = tmp->parent_tsf;
907 ether_addr_copy(found->parent_bssid, tmp->parent_bssid);
908 } else {
909 struct cfg80211_internal_bss *new;
910 struct cfg80211_internal_bss *hidden;
911 struct cfg80211_bss_ies *ies;
912
913 /*
914 * create a copy -- the "res" variable that is passed in
915 * is allocated on the stack since it's not needed in the
916 * more common case of an update
917 */
918 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
919 GFP_ATOMIC);
920 if (!new) {
921 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
922 if (ies)
923 kfree_rcu(ies, rcu_head);
924 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
925 if (ies)
926 kfree_rcu(ies, rcu_head);
927 goto drop;
928 }
929 memcpy(new, tmp, sizeof(*new));
930 new->refcount = 1;
931 INIT_LIST_HEAD(&new->hidden_list);
932
933 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
934 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
935 if (!hidden)
936 hidden = rb_find_bss(rdev, tmp,
937 BSS_CMP_HIDE_NUL);
938 if (hidden) {
939 new->pub.hidden_beacon_bss = &hidden->pub;
940 list_add(&new->hidden_list,
941 &hidden->hidden_list);
942 hidden->refcount++;
943 rcu_assign_pointer(new->pub.beacon_ies,
944 hidden->pub.beacon_ies);
945 }
946 } else {
947 /*
948 * Ok so we found a beacon, and don't have an entry. If
949 * it's a beacon with hidden SSID, we might be in for an
950 * expensive search for any probe responses that should
951 * be grouped with this beacon for updates ...
952 */
953 if (!cfg80211_combine_bsses(rdev, new)) {
954 kfree(new);
955 goto drop;
956 }
957 }
958
959 if (rdev->bss_entries >= bss_entries_limit &&
960 !cfg80211_bss_expire_oldest(rdev)) {
961 kfree(new);
962 goto drop;
963 }
964
965 list_add_tail(&new->list, &rdev->bss_list);
966 rdev->bss_entries++;
967 rb_insert_bss(rdev, new);
968 found = new;
969 }
970
971 rdev->bss_generation++;
972 bss_ref_get(rdev, found);
973 spin_unlock_bh(&rdev->bss_lock);
974
975 return found;
976 drop:
977 spin_unlock_bh(&rdev->bss_lock);
978 return NULL;
979}
980
981static struct ieee80211_channel *
982cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
983 struct ieee80211_channel *channel)
984{
985 const u8 *tmp;
986 u32 freq;
987 int channel_number = -1;
988
989 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
990 if (tmp && tmp[1] == 1) {
991 channel_number = tmp[2];
992 } else {
993 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
994 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
995 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
996
997 channel_number = htop->primary_chan;
998 }
999 }
1000
1001 if (channel_number < 0)
1002 return channel;
1003
1004 freq = ieee80211_channel_to_frequency(channel_number, channel->band);
1005 channel = ieee80211_get_channel(wiphy, freq);
1006 if (!channel)
1007 return NULL;
1008 if (channel->flags & IEEE80211_CHAN_DISABLED)
1009 return NULL;
1010 return channel;
1011}
1012
1013/* Returned bss is reference counted and must be cleaned up appropriately. */
1014struct cfg80211_bss *
1015cfg80211_inform_bss_data(struct wiphy *wiphy,
1016 struct cfg80211_inform_bss *data,
1017 enum cfg80211_bss_frame_type ftype,
1018 const u8 *bssid, u64 tsf, u16 capability,
1019 u16 beacon_interval, const u8 *ie, size_t ielen,
1020 gfp_t gfp)
1021{
1022 struct cfg80211_bss_ies *ies;
1023 struct ieee80211_channel *channel;
1024 struct cfg80211_internal_bss tmp = {}, *res;
1025 int bss_type;
1026 bool signal_valid;
1027
1028 if (WARN_ON(!wiphy))
1029 return NULL;
1030
1031 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1032 (data->signal < 0 || data->signal > 100)))
1033 return NULL;
1034
1035 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan);
1036 if (!channel)
1037 return NULL;
1038
1039 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1040 tmp.pub.channel = channel;
1041 tmp.pub.scan_width = data->scan_width;
1042 tmp.pub.signal = data->signal;
1043 tmp.pub.beacon_interval = beacon_interval;
1044 tmp.pub.capability = capability;
1045 tmp.ts_boottime = data->boottime_ns;
1046
1047 /*
1048 * If we do not know here whether the IEs are from a Beacon or Probe
1049 * Response frame, we need to pick one of the options and only use it
1050 * with the driver that does not provide the full Beacon/Probe Response
1051 * frame. Use Beacon frame pointer to avoid indicating that this should
1052 * override the IEs pointer should we have received an earlier
1053 * indication of Probe Response data.
1054 */
1055 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1056 if (!ies)
1057 return NULL;
1058 ies->len = ielen;
1059 ies->tsf = tsf;
1060 ies->from_beacon = false;
1061 memcpy(ies->data, ie, ielen);
1062
1063 switch (ftype) {
1064 case CFG80211_BSS_FTYPE_BEACON:
1065 ies->from_beacon = true;
1066 /* fall through to assign */
1067 case CFG80211_BSS_FTYPE_UNKNOWN:
1068 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1069 break;
1070 case CFG80211_BSS_FTYPE_PRESP:
1071 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1072 break;
1073 }
1074 rcu_assign_pointer(tmp.pub.ies, ies);
1075
1076 signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1077 wiphy->max_adj_channel_rssi_comp;
1078 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid);
1079 if (!res)
1080 return NULL;
1081
1082 if (channel->band == NL80211_BAND_60GHZ) {
1083 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1084 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1085 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1086 regulatory_hint_found_beacon(wiphy, channel, gfp);
1087 } else {
1088 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1089 regulatory_hint_found_beacon(wiphy, channel, gfp);
1090 }
1091
1092 trace_cfg80211_return_bss(&res->pub);
1093 /* cfg80211_bss_update gives us a referenced result */
1094 return &res->pub;
1095}
1096EXPORT_SYMBOL(cfg80211_inform_bss_data);
1097
1098/* cfg80211_inform_bss_width_frame helper */
1099struct cfg80211_bss *
1100cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1101 struct cfg80211_inform_bss *data,
1102 struct ieee80211_mgmt *mgmt, size_t len,
1103 gfp_t gfp)
1104
1105{
1106 struct cfg80211_internal_bss tmp = {}, *res;
1107 struct cfg80211_bss_ies *ies;
1108 struct ieee80211_channel *channel;
1109 bool signal_valid;
1110 size_t ielen = len - offsetof(struct ieee80211_mgmt,
1111 u.probe_resp.variable);
1112 int bss_type;
1113
1114 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
1115 offsetof(struct ieee80211_mgmt, u.beacon.variable));
1116
1117 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
1118
1119 if (WARN_ON(!mgmt))
1120 return NULL;
1121
1122 if (WARN_ON(!wiphy))
1123 return NULL;
1124
1125 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1126 (data->signal < 0 || data->signal > 100)))
1127 return NULL;
1128
1129 if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable)))
1130 return NULL;
1131
1132 channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable,
1133 ielen, data->chan);
1134 if (!channel)
1135 return NULL;
1136
1137 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1138 if (!ies)
1139 return NULL;
1140 ies->len = ielen;
1141 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1142 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1143 memcpy(ies->data, mgmt->u.probe_resp.variable, ielen);
1144
1145 if (ieee80211_is_probe_resp(mgmt->frame_control))
1146 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1147 else
1148 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1149 rcu_assign_pointer(tmp.pub.ies, ies);
1150
1151 memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN);
1152 tmp.pub.channel = channel;
1153 tmp.pub.scan_width = data->scan_width;
1154 tmp.pub.signal = data->signal;
1155 tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
1156 tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
1157 tmp.ts_boottime = data->boottime_ns;
1158 tmp.parent_tsf = data->parent_tsf;
1159 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1160
1161 signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1162 wiphy->max_adj_channel_rssi_comp;
1163 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid);
1164 if (!res)
1165 return NULL;
1166
1167 if (channel->band == NL80211_BAND_60GHZ) {
1168 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1169 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1170 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1171 regulatory_hint_found_beacon(wiphy, channel, gfp);
1172 } else {
1173 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1174 regulatory_hint_found_beacon(wiphy, channel, gfp);
1175 }
1176
1177 trace_cfg80211_return_bss(&res->pub);
1178 /* cfg80211_bss_update gives us a referenced result */
1179 return &res->pub;
1180}
1181EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
1182
1183void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1184{
1185 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1186 struct cfg80211_internal_bss *bss;
1187
1188 if (!pub)
1189 return;
1190
1191 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1192
1193 spin_lock_bh(&rdev->bss_lock);
1194 bss_ref_get(rdev, bss);
1195 spin_unlock_bh(&rdev->bss_lock);
1196}
1197EXPORT_SYMBOL(cfg80211_ref_bss);
1198
1199void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1200{
1201 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1202 struct cfg80211_internal_bss *bss;
1203
1204 if (!pub)
1205 return;
1206
1207 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1208
1209 spin_lock_bh(&rdev->bss_lock);
1210 bss_ref_put(rdev, bss);
1211 spin_unlock_bh(&rdev->bss_lock);
1212}
1213EXPORT_SYMBOL(cfg80211_put_bss);
1214
1215void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1216{
1217 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1218 struct cfg80211_internal_bss *bss;
1219
1220 if (WARN_ON(!pub))
1221 return;
1222
1223 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1224
1225 spin_lock_bh(&rdev->bss_lock);
1226 if (!list_empty(&bss->list)) {
1227 if (__cfg80211_unlink_bss(rdev, bss))
1228 rdev->bss_generation++;
1229 }
1230 spin_unlock_bh(&rdev->bss_lock);
1231}
1232EXPORT_SYMBOL(cfg80211_unlink_bss);
1233
1234#ifdef CONFIG_CFG80211_WEXT
1235static struct cfg80211_registered_device *
1236cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
1237{
1238 struct cfg80211_registered_device *rdev;
1239 struct net_device *dev;
1240
1241 ASSERT_RTNL();
1242
1243 dev = dev_get_by_index(net, ifindex);
1244 if (!dev)
1245 return ERR_PTR(-ENODEV);
1246 if (dev->ieee80211_ptr)
1247 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
1248 else
1249 rdev = ERR_PTR(-ENODEV);
1250 dev_put(dev);
1251 return rdev;
1252}
1253
1254int cfg80211_wext_siwscan(struct net_device *dev,
1255 struct iw_request_info *info,
1256 union iwreq_data *wrqu, char *extra)
1257{
1258 struct cfg80211_registered_device *rdev;
1259 struct wiphy *wiphy;
1260 struct iw_scan_req *wreq = NULL;
1261 struct cfg80211_scan_request *creq = NULL;
1262 int i, err, n_channels = 0;
1263 enum nl80211_band band;
1264
1265 if (!netif_running(dev))
1266 return -ENETDOWN;
1267
1268 if (wrqu->data.length == sizeof(struct iw_scan_req))
1269 wreq = (struct iw_scan_req *)extra;
1270
1271 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
1272
1273 if (IS_ERR(rdev))
1274 return PTR_ERR(rdev);
1275
1276 if (rdev->scan_req || rdev->scan_msg) {
1277 err = -EBUSY;
1278 goto out;
1279 }
1280
1281 wiphy = &rdev->wiphy;
1282
1283 /* Determine number of channels, needed to allocate creq */
1284 if (wreq && wreq->num_channels)
1285 n_channels = wreq->num_channels;
1286 else
1287 n_channels = ieee80211_get_num_supported_channels(wiphy);
1288
1289 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
1290 n_channels * sizeof(void *),
1291 GFP_ATOMIC);
1292 if (!creq) {
1293 err = -ENOMEM;
1294 goto out;
1295 }
1296
1297 creq->wiphy = wiphy;
1298 creq->wdev = dev->ieee80211_ptr;
1299 /* SSIDs come after channels */
1300 creq->ssids = (void *)&creq->channels[n_channels];
1301 creq->n_channels = n_channels;
1302 creq->n_ssids = 1;
1303 creq->scan_start = jiffies;
1304
1305 /* translate "Scan on frequencies" request */
1306 i = 0;
1307 for (band = 0; band < NUM_NL80211_BANDS; band++) {
1308 int j;
1309
1310 if (!wiphy->bands[band])
1311 continue;
1312
1313 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
1314 /* ignore disabled channels */
1315 if (wiphy->bands[band]->channels[j].flags &
1316 IEEE80211_CHAN_DISABLED)
1317 continue;
1318
1319 /* If we have a wireless request structure and the
1320 * wireless request specifies frequencies, then search
1321 * for the matching hardware channel.
1322 */
1323 if (wreq && wreq->num_channels) {
1324 int k;
1325 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
1326 for (k = 0; k < wreq->num_channels; k++) {
1327 struct iw_freq *freq =
1328 &wreq->channel_list[k];
1329 int wext_freq =
1330 cfg80211_wext_freq(freq);
1331
1332 if (wext_freq == wiphy_freq)
1333 goto wext_freq_found;
1334 }
1335 goto wext_freq_not_found;
1336 }
1337
1338 wext_freq_found:
1339 creq->channels[i] = &wiphy->bands[band]->channels[j];
1340 i++;
1341 wext_freq_not_found: ;
1342 }
1343 }
1344 /* No channels found? */
1345 if (!i) {
1346 err = -EINVAL;
1347 goto out;
1348 }
1349
1350 /* Set real number of channels specified in creq->channels[] */
1351 creq->n_channels = i;
1352
1353 /* translate "Scan for SSID" request */
1354 if (wreq) {
1355 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
1356 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
1357 err = -EINVAL;
1358 goto out;
1359 }
1360 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
1361 creq->ssids[0].ssid_len = wreq->essid_len;
1362 }
1363 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
1364 creq->n_ssids = 0;
1365 }
1366
1367 for (i = 0; i < NUM_NL80211_BANDS; i++)
1368 if (wiphy->bands[i])
1369 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
1370
1371 eth_broadcast_addr(creq->bssid);
1372
1373 rdev->scan_req = creq;
1374 err = rdev_scan(rdev, creq);
1375 if (err) {
1376 rdev->scan_req = NULL;
1377 /* creq will be freed below */
1378 } else {
1379 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
1380 /* creq now owned by driver */
1381 creq = NULL;
1382 dev_hold(dev);
1383 }
1384 out:
1385 kfree(creq);
1386 return err;
1387}
1388EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
1389
1390static char *ieee80211_scan_add_ies(struct iw_request_info *info,
1391 const struct cfg80211_bss_ies *ies,
1392 char *current_ev, char *end_buf)
1393{
1394 const u8 *pos, *end, *next;
1395 struct iw_event iwe;
1396
1397 if (!ies)
1398 return current_ev;
1399
1400 /*
1401 * If needed, fragment the IEs buffer (at IE boundaries) into short
1402 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
1403 */
1404 pos = ies->data;
1405 end = pos + ies->len;
1406
1407 while (end - pos > IW_GENERIC_IE_MAX) {
1408 next = pos + 2 + pos[1];
1409 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
1410 next = next + 2 + next[1];
1411
1412 memset(&iwe, 0, sizeof(iwe));
1413 iwe.cmd = IWEVGENIE;
1414 iwe.u.data.length = next - pos;
1415 current_ev = iwe_stream_add_point_check(info, current_ev,
1416 end_buf, &iwe,
1417 (void *)pos);
1418 if (IS_ERR(current_ev))
1419 return current_ev;
1420 pos = next;
1421 }
1422
1423 if (end > pos) {
1424 memset(&iwe, 0, sizeof(iwe));
1425 iwe.cmd = IWEVGENIE;
1426 iwe.u.data.length = end - pos;
1427 current_ev = iwe_stream_add_point_check(info, current_ev,
1428 end_buf, &iwe,
1429 (void *)pos);
1430 if (IS_ERR(current_ev))
1431 return current_ev;
1432 }
1433
1434 return current_ev;
1435}
1436
1437static char *
1438ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
1439 struct cfg80211_internal_bss *bss, char *current_ev,
1440 char *end_buf)
1441{
1442 const struct cfg80211_bss_ies *ies;
1443 struct iw_event iwe;
1444 const u8 *ie;
1445 u8 buf[50];
1446 u8 *cfg, *p, *tmp;
1447 int rem, i, sig;
1448 bool ismesh = false;
1449
1450 memset(&iwe, 0, sizeof(iwe));
1451 iwe.cmd = SIOCGIWAP;
1452 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
1453 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
1454 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1455 IW_EV_ADDR_LEN);
1456 if (IS_ERR(current_ev))
1457 return current_ev;
1458
1459 memset(&iwe, 0, sizeof(iwe));
1460 iwe.cmd = SIOCGIWFREQ;
1461 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
1462 iwe.u.freq.e = 0;
1463 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1464 IW_EV_FREQ_LEN);
1465 if (IS_ERR(current_ev))
1466 return current_ev;
1467
1468 memset(&iwe, 0, sizeof(iwe));
1469 iwe.cmd = SIOCGIWFREQ;
1470 iwe.u.freq.m = bss->pub.channel->center_freq;
1471 iwe.u.freq.e = 6;
1472 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1473 IW_EV_FREQ_LEN);
1474 if (IS_ERR(current_ev))
1475 return current_ev;
1476
1477 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
1478 memset(&iwe, 0, sizeof(iwe));
1479 iwe.cmd = IWEVQUAL;
1480 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
1481 IW_QUAL_NOISE_INVALID |
1482 IW_QUAL_QUAL_UPDATED;
1483 switch (wiphy->signal_type) {
1484 case CFG80211_SIGNAL_TYPE_MBM:
1485 sig = bss->pub.signal / 100;
1486 iwe.u.qual.level = sig;
1487 iwe.u.qual.updated |= IW_QUAL_DBM;
1488 if (sig < -110) /* rather bad */
1489 sig = -110;
1490 else if (sig > -40) /* perfect */
1491 sig = -40;
1492 /* will give a range of 0 .. 70 */
1493 iwe.u.qual.qual = sig + 110;
1494 break;
1495 case CFG80211_SIGNAL_TYPE_UNSPEC:
1496 iwe.u.qual.level = bss->pub.signal;
1497 /* will give range 0 .. 100 */
1498 iwe.u.qual.qual = bss->pub.signal;
1499 break;
1500 default:
1501 /* not reached */
1502 break;
1503 }
1504 current_ev = iwe_stream_add_event_check(info, current_ev,
1505 end_buf, &iwe,
1506 IW_EV_QUAL_LEN);
1507 if (IS_ERR(current_ev))
1508 return current_ev;
1509 }
1510
1511 memset(&iwe, 0, sizeof(iwe));
1512 iwe.cmd = SIOCGIWENCODE;
1513 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
1514 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
1515 else
1516 iwe.u.data.flags = IW_ENCODE_DISABLED;
1517 iwe.u.data.length = 0;
1518 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
1519 &iwe, "");
1520 if (IS_ERR(current_ev))
1521 return current_ev;
1522
1523 rcu_read_lock();
1524 ies = rcu_dereference(bss->pub.ies);
1525 rem = ies->len;
1526 ie = ies->data;
1527
1528 while (rem >= 2) {
1529 /* invalid data */
1530 if (ie[1] > rem - 2)
1531 break;
1532
1533 switch (ie[0]) {
1534 case WLAN_EID_SSID:
1535 memset(&iwe, 0, sizeof(iwe));
1536 iwe.cmd = SIOCGIWESSID;
1537 iwe.u.data.length = ie[1];
1538 iwe.u.data.flags = 1;
1539 current_ev = iwe_stream_add_point_check(info,
1540 current_ev,
1541 end_buf, &iwe,
1542 (u8 *)ie + 2);
1543 if (IS_ERR(current_ev))
1544 goto unlock;
1545 break;
1546 case WLAN_EID_MESH_ID:
1547 memset(&iwe, 0, sizeof(iwe));
1548 iwe.cmd = SIOCGIWESSID;
1549 iwe.u.data.length = ie[1];
1550 iwe.u.data.flags = 1;
1551 current_ev = iwe_stream_add_point_check(info,
1552 current_ev,
1553 end_buf, &iwe,
1554 (u8 *)ie + 2);
1555 if (IS_ERR(current_ev))
1556 goto unlock;
1557 break;
1558 case WLAN_EID_MESH_CONFIG:
1559 ismesh = true;
1560 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
1561 break;
1562 cfg = (u8 *)ie + 2;
1563 memset(&iwe, 0, sizeof(iwe));
1564 iwe.cmd = IWEVCUSTOM;
1565 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
1566 "0x%02X", cfg[0]);
1567 iwe.u.data.length = strlen(buf);
1568 current_ev = iwe_stream_add_point_check(info,
1569 current_ev,
1570 end_buf,
1571 &iwe, buf);
1572 if (IS_ERR(current_ev))
1573 goto unlock;
1574 sprintf(buf, "Path Selection Metric ID: 0x%02X",
1575 cfg[1]);
1576 iwe.u.data.length = strlen(buf);
1577 current_ev = iwe_stream_add_point_check(info,
1578 current_ev,
1579 end_buf,
1580 &iwe, buf);
1581 if (IS_ERR(current_ev))
1582 goto unlock;
1583 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
1584 cfg[2]);
1585 iwe.u.data.length = strlen(buf);
1586 current_ev = iwe_stream_add_point_check(info,
1587 current_ev,
1588 end_buf,
1589 &iwe, buf);
1590 if (IS_ERR(current_ev))
1591 goto unlock;
1592 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
1593 iwe.u.data.length = strlen(buf);
1594 current_ev = iwe_stream_add_point_check(info,
1595 current_ev,
1596 end_buf,
1597 &iwe, buf);
1598 if (IS_ERR(current_ev))
1599 goto unlock;
1600 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
1601 iwe.u.data.length = strlen(buf);
1602 current_ev = iwe_stream_add_point_check(info,
1603 current_ev,
1604 end_buf,
1605 &iwe, buf);
1606 if (IS_ERR(current_ev))
1607 goto unlock;
1608 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
1609 iwe.u.data.length = strlen(buf);
1610 current_ev = iwe_stream_add_point_check(info,
1611 current_ev,
1612 end_buf,
1613 &iwe, buf);
1614 if (IS_ERR(current_ev))
1615 goto unlock;
1616 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
1617 iwe.u.data.length = strlen(buf);
1618 current_ev = iwe_stream_add_point_check(info,
1619 current_ev,
1620 end_buf,
1621 &iwe, buf);
1622 if (IS_ERR(current_ev))
1623 goto unlock;
1624 break;
1625 case WLAN_EID_SUPP_RATES:
1626 case WLAN_EID_EXT_SUPP_RATES:
1627 /* display all supported rates in readable format */
1628 p = current_ev + iwe_stream_lcp_len(info);
1629
1630 memset(&iwe, 0, sizeof(iwe));
1631 iwe.cmd = SIOCGIWRATE;
1632 /* Those two flags are ignored... */
1633 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
1634
1635 for (i = 0; i < ie[1]; i++) {
1636 iwe.u.bitrate.value =
1637 ((ie[i + 2] & 0x7f) * 500000);
1638 tmp = p;
1639 p = iwe_stream_add_value(info, current_ev, p,
1640 end_buf, &iwe,
1641 IW_EV_PARAM_LEN);
1642 if (p == tmp) {
1643 current_ev = ERR_PTR(-E2BIG);
1644 goto unlock;
1645 }
1646 }
1647 current_ev = p;
1648 break;
1649 }
1650 rem -= ie[1] + 2;
1651 ie += ie[1] + 2;
1652 }
1653
1654 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
1655 ismesh) {
1656 memset(&iwe, 0, sizeof(iwe));
1657 iwe.cmd = SIOCGIWMODE;
1658 if (ismesh)
1659 iwe.u.mode = IW_MODE_MESH;
1660 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
1661 iwe.u.mode = IW_MODE_MASTER;
1662 else
1663 iwe.u.mode = IW_MODE_ADHOC;
1664 current_ev = iwe_stream_add_event_check(info, current_ev,
1665 end_buf, &iwe,
1666 IW_EV_UINT_LEN);
1667 if (IS_ERR(current_ev))
1668 goto unlock;
1669 }
1670
1671 memset(&iwe, 0, sizeof(iwe));
1672 iwe.cmd = IWEVCUSTOM;
1673 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
1674 iwe.u.data.length = strlen(buf);
1675 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
1676 &iwe, buf);
1677 if (IS_ERR(current_ev))
1678 goto unlock;
1679 memset(&iwe, 0, sizeof(iwe));
1680 iwe.cmd = IWEVCUSTOM;
1681 sprintf(buf, " Last beacon: %ums ago",
1682 elapsed_jiffies_msecs(bss->ts));
1683 iwe.u.data.length = strlen(buf);
1684 current_ev = iwe_stream_add_point_check(info, current_ev,
1685 end_buf, &iwe, buf);
1686 if (IS_ERR(current_ev))
1687 goto unlock;
1688
1689 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
1690
1691 unlock:
1692 rcu_read_unlock();
1693 return current_ev;
1694}
1695
1696
1697static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
1698 struct iw_request_info *info,
1699 char *buf, size_t len)
1700{
1701 char *current_ev = buf;
1702 char *end_buf = buf + len;
1703 struct cfg80211_internal_bss *bss;
1704 int err = 0;
1705
1706 spin_lock_bh(&rdev->bss_lock);
1707 cfg80211_bss_expire(rdev);
1708
1709 list_for_each_entry(bss, &rdev->bss_list, list) {
1710 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
1711 err = -E2BIG;
1712 break;
1713 }
1714 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
1715 current_ev, end_buf);
1716 if (IS_ERR(current_ev)) {
1717 err = PTR_ERR(current_ev);
1718 break;
1719 }
1720 }
1721 spin_unlock_bh(&rdev->bss_lock);
1722
1723 if (err)
1724 return err;
1725 return current_ev - buf;
1726}
1727
1728
1729int cfg80211_wext_giwscan(struct net_device *dev,
1730 struct iw_request_info *info,
1731 struct iw_point *data, char *extra)
1732{
1733 struct cfg80211_registered_device *rdev;
1734 int res;
1735
1736 if (!netif_running(dev))
1737 return -ENETDOWN;
1738
1739 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
1740
1741 if (IS_ERR(rdev))
1742 return PTR_ERR(rdev);
1743
1744 if (rdev->scan_req || rdev->scan_msg)
1745 return -EAGAIN;
1746
1747 res = ieee80211_scan_results(rdev, info, extra, data->length);
1748 data->length = 0;
1749 if (res >= 0) {
1750 data->length = res;
1751 res = 0;
1752 }
1753
1754 return res;
1755}
1756EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
1757#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2024 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include <kunit/visibility.h>
24#include "core.h"
25#include "nl80211.h"
26#include "wext-compat.h"
27#include "rdev-ops.h"
28
29/**
30 * DOC: BSS tree/list structure
31 *
32 * At the top level, the BSS list is kept in both a list in each
33 * registered device (@bss_list) as well as an RB-tree for faster
34 * lookup. In the RB-tree, entries can be looked up using their
35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36 * for other BSSes.
37 *
38 * Due to the possibility of hidden SSIDs, there's a second level
39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40 * The hidden_list connects all BSSes belonging to a single AP
41 * that has a hidden SSID, and connects beacon and probe response
42 * entries. For a probe response entry for a hidden SSID, the
43 * hidden_beacon_bss pointer points to the BSS struct holding the
44 * beacon's information.
45 *
46 * Reference counting is done for all these references except for
47 * the hidden_list, so that a beacon BSS struct that is otherwise
48 * not referenced has one reference for being on the bss_list and
49 * one for each probe response entry that points to it using the
50 * hidden_beacon_bss pointer. When a BSS struct that has such a
51 * pointer is get/put, the refcount update is also propagated to
52 * the referenced struct, this ensure that it cannot get removed
53 * while somebody is using the probe response version.
54 *
55 * Note that the hidden_beacon_bss pointer never changes, due to
56 * the reference counting. Therefore, no locking is needed for
57 * it.
58 *
59 * Also note that the hidden_beacon_bss pointer is only relevant
60 * if the driver uses something other than the IEs, e.g. private
61 * data stored in the BSS struct, since the beacon IEs are
62 * also linked into the probe response struct.
63 */
64
65/*
66 * Limit the number of BSS entries stored in mac80211. Each one is
67 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68 * If somebody wants to really attack this though, they'd likely
69 * use small beacons, and only one type of frame, limiting each of
70 * the entries to a much smaller size (in order to generate more
71 * entries in total, so overhead is bigger.)
72 */
73static int bss_entries_limit = 1000;
74module_param(bss_entries_limit, int, 0644);
75MODULE_PARM_DESC(bss_entries_limit,
76 "limit to number of scan BSS entries (per wiphy, default 1000)");
77
78#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
79
80static void bss_free(struct cfg80211_internal_bss *bss)
81{
82 struct cfg80211_bss_ies *ies;
83
84 if (WARN_ON(atomic_read(&bss->hold)))
85 return;
86
87 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 if (ies && !bss->pub.hidden_beacon_bss)
89 kfree_rcu(ies, rcu_head);
90 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 if (ies)
92 kfree_rcu(ies, rcu_head);
93
94 /*
95 * This happens when the module is removed, it doesn't
96 * really matter any more save for completeness
97 */
98 if (!list_empty(&bss->hidden_list))
99 list_del(&bss->hidden_list);
100
101 kfree(bss);
102}
103
104static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 struct cfg80211_internal_bss *bss)
106{
107 lockdep_assert_held(&rdev->bss_lock);
108
109 bss->refcount++;
110
111 if (bss->pub.hidden_beacon_bss)
112 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113
114 if (bss->pub.transmitted_bss)
115 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116}
117
118static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 struct cfg80211_internal_bss *bss)
120{
121 lockdep_assert_held(&rdev->bss_lock);
122
123 if (bss->pub.hidden_beacon_bss) {
124 struct cfg80211_internal_bss *hbss;
125
126 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127 hbss->refcount--;
128 if (hbss->refcount == 0)
129 bss_free(hbss);
130 }
131
132 if (bss->pub.transmitted_bss) {
133 struct cfg80211_internal_bss *tbss;
134
135 tbss = bss_from_pub(bss->pub.transmitted_bss);
136 tbss->refcount--;
137 if (tbss->refcount == 0)
138 bss_free(tbss);
139 }
140
141 bss->refcount--;
142 if (bss->refcount == 0)
143 bss_free(bss);
144}
145
146static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 struct cfg80211_internal_bss *bss)
148{
149 lockdep_assert_held(&rdev->bss_lock);
150
151 if (!list_empty(&bss->hidden_list)) {
152 /*
153 * don't remove the beacon entry if it has
154 * probe responses associated with it
155 */
156 if (!bss->pub.hidden_beacon_bss)
157 return false;
158 /*
159 * if it's a probe response entry break its
160 * link to the other entries in the group
161 */
162 list_del_init(&bss->hidden_list);
163 }
164
165 list_del_init(&bss->list);
166 list_del_init(&bss->pub.nontrans_list);
167 rb_erase(&bss->rbn, &rdev->bss_tree);
168 rdev->bss_entries--;
169 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 rdev->bss_entries, list_empty(&rdev->bss_list));
172 bss_ref_put(rdev, bss);
173 return true;
174}
175
176bool cfg80211_is_element_inherited(const struct element *elem,
177 const struct element *non_inherit_elem)
178{
179 u8 id_len, ext_id_len, i, loop_len, id;
180 const u8 *list;
181
182 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 return false;
184
185 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 return false;
188
189 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 return true;
191
192 /*
193 * non inheritance element format is:
194 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 * Both lists are optional. Both lengths are mandatory.
196 * This means valid length is:
197 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 */
199 id_len = non_inherit_elem->data[1];
200 if (non_inherit_elem->datalen < 3 + id_len)
201 return true;
202
203 ext_id_len = non_inherit_elem->data[2 + id_len];
204 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 return true;
206
207 if (elem->id == WLAN_EID_EXTENSION) {
208 if (!ext_id_len)
209 return true;
210 loop_len = ext_id_len;
211 list = &non_inherit_elem->data[3 + id_len];
212 id = elem->data[0];
213 } else {
214 if (!id_len)
215 return true;
216 loop_len = id_len;
217 list = &non_inherit_elem->data[2];
218 id = elem->id;
219 }
220
221 for (i = 0; i < loop_len; i++) {
222 if (list[i] == id)
223 return false;
224 }
225
226 return true;
227}
228EXPORT_SYMBOL(cfg80211_is_element_inherited);
229
230static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 const u8 *ie, size_t ie_len,
232 u8 **pos, u8 *buf, size_t buf_len)
233{
234 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 elem->data + elem->datalen > ie + ie_len))
236 return 0;
237
238 if (elem->datalen + 2 > buf + buf_len - *pos)
239 return 0;
240
241 memcpy(*pos, elem, elem->datalen + 2);
242 *pos += elem->datalen + 2;
243
244 /* Finish if it is not fragmented */
245 if (elem->datalen != 255)
246 return *pos - buf;
247
248 ie_len = ie + ie_len - elem->data - elem->datalen;
249 ie = (const u8 *)elem->data + elem->datalen;
250
251 for_each_element(elem, ie, ie_len) {
252 if (elem->id != WLAN_EID_FRAGMENT)
253 break;
254
255 if (elem->datalen + 2 > buf + buf_len - *pos)
256 return 0;
257
258 memcpy(*pos, elem, elem->datalen + 2);
259 *pos += elem->datalen + 2;
260
261 if (elem->datalen != 255)
262 break;
263 }
264
265 return *pos - buf;
266}
267
268VISIBLE_IF_CFG80211_KUNIT size_t
269cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 const u8 *subie, size_t subie_len,
271 u8 *new_ie, size_t new_ie_len)
272{
273 const struct element *non_inherit_elem, *parent, *sub;
274 u8 *pos = new_ie;
275 u8 id, ext_id;
276 unsigned int match_len;
277
278 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
279 subie, subie_len);
280
281 /* We copy the elements one by one from the parent to the generated
282 * elements.
283 * If they are not inherited (included in subie or in the non
284 * inheritance element), then we copy all occurrences the first time
285 * we see this element type.
286 */
287 for_each_element(parent, ie, ielen) {
288 if (parent->id == WLAN_EID_FRAGMENT)
289 continue;
290
291 if (parent->id == WLAN_EID_EXTENSION) {
292 if (parent->datalen < 1)
293 continue;
294
295 id = WLAN_EID_EXTENSION;
296 ext_id = parent->data[0];
297 match_len = 1;
298 } else {
299 id = parent->id;
300 match_len = 0;
301 }
302
303 /* Find first occurrence in subie */
304 sub = cfg80211_find_elem_match(id, subie, subie_len,
305 &ext_id, match_len, 0);
306
307 /* Copy from parent if not in subie and inherited */
308 if (!sub &&
309 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
310 if (!cfg80211_copy_elem_with_frags(parent,
311 ie, ielen,
312 &pos, new_ie,
313 new_ie_len))
314 return 0;
315
316 continue;
317 }
318
319 /* Already copied if an earlier element had the same type */
320 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
321 &ext_id, match_len, 0))
322 continue;
323
324 /* Not inheriting, copy all similar elements from subie */
325 while (sub) {
326 if (!cfg80211_copy_elem_with_frags(sub,
327 subie, subie_len,
328 &pos, new_ie,
329 new_ie_len))
330 return 0;
331
332 sub = cfg80211_find_elem_match(id,
333 sub->data + sub->datalen,
334 subie_len + subie -
335 (sub->data +
336 sub->datalen),
337 &ext_id, match_len, 0);
338 }
339 }
340
341 /* The above misses elements that are included in subie but not in the
342 * parent, so do a pass over subie and append those.
343 * Skip the non-tx BSSID caps and non-inheritance element.
344 */
345 for_each_element(sub, subie, subie_len) {
346 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
347 continue;
348
349 if (sub->id == WLAN_EID_FRAGMENT)
350 continue;
351
352 if (sub->id == WLAN_EID_EXTENSION) {
353 if (sub->datalen < 1)
354 continue;
355
356 id = WLAN_EID_EXTENSION;
357 ext_id = sub->data[0];
358 match_len = 1;
359
360 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
361 continue;
362 } else {
363 id = sub->id;
364 match_len = 0;
365 }
366
367 /* Processed if one was included in the parent */
368 if (cfg80211_find_elem_match(id, ie, ielen,
369 &ext_id, match_len, 0))
370 continue;
371
372 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
373 &pos, new_ie, new_ie_len))
374 return 0;
375 }
376
377 return pos - new_ie;
378}
379EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
380
381static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
382 const u8 *ssid, size_t ssid_len)
383{
384 const struct cfg80211_bss_ies *ies;
385 const struct element *ssid_elem;
386
387 if (bssid && !ether_addr_equal(a->bssid, bssid))
388 return false;
389
390 if (!ssid)
391 return true;
392
393 ies = rcu_access_pointer(a->ies);
394 if (!ies)
395 return false;
396 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
397 if (!ssid_elem)
398 return false;
399 if (ssid_elem->datalen != ssid_len)
400 return false;
401 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
402}
403
404static int
405cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
406 struct cfg80211_bss *nontrans_bss)
407{
408 const struct element *ssid_elem;
409 struct cfg80211_bss *bss = NULL;
410
411 rcu_read_lock();
412 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
413 if (!ssid_elem) {
414 rcu_read_unlock();
415 return -EINVAL;
416 }
417
418 /* check if nontrans_bss is in the list */
419 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
420 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
421 ssid_elem->datalen)) {
422 rcu_read_unlock();
423 return 0;
424 }
425 }
426
427 rcu_read_unlock();
428
429 /*
430 * This is a bit weird - it's not on the list, but already on another
431 * one! The only way that could happen is if there's some BSSID/SSID
432 * shared by multiple APs in their multi-BSSID profiles, potentially
433 * with hidden SSID mixed in ... ignore it.
434 */
435 if (!list_empty(&nontrans_bss->nontrans_list))
436 return -EINVAL;
437
438 /* add to the list */
439 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
440 return 0;
441}
442
443static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444 unsigned long expire_time)
445{
446 struct cfg80211_internal_bss *bss, *tmp;
447 bool expired = false;
448
449 lockdep_assert_held(&rdev->bss_lock);
450
451 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452 if (atomic_read(&bss->hold))
453 continue;
454 if (!time_after(expire_time, bss->ts))
455 continue;
456
457 if (__cfg80211_unlink_bss(rdev, bss))
458 expired = true;
459 }
460
461 if (expired)
462 rdev->bss_generation++;
463}
464
465static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466{
467 struct cfg80211_internal_bss *bss, *oldest = NULL;
468 bool ret;
469
470 lockdep_assert_held(&rdev->bss_lock);
471
472 list_for_each_entry(bss, &rdev->bss_list, list) {
473 if (atomic_read(&bss->hold))
474 continue;
475
476 if (!list_empty(&bss->hidden_list) &&
477 !bss->pub.hidden_beacon_bss)
478 continue;
479
480 if (oldest && time_before(oldest->ts, bss->ts))
481 continue;
482 oldest = bss;
483 }
484
485 if (WARN_ON(!oldest))
486 return false;
487
488 /*
489 * The callers make sure to increase rdev->bss_generation if anything
490 * gets removed (and a new entry added), so there's no need to also do
491 * it here.
492 */
493
494 ret = __cfg80211_unlink_bss(rdev, oldest);
495 WARN_ON(!ret);
496 return ret;
497}
498
499static u8 cfg80211_parse_bss_param(u8 data,
500 struct cfg80211_colocated_ap *coloc_ap)
501{
502 coloc_ap->oct_recommended =
503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504 coloc_ap->same_ssid =
505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506 coloc_ap->multi_bss =
507 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508 coloc_ap->transmitted_bssid =
509 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510 coloc_ap->unsolicited_probe =
511 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512 coloc_ap->colocated_ess =
513 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514
515 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516}
517
518static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519 const struct element **elem, u32 *s_ssid)
520{
521
522 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
523 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524 return -EINVAL;
525
526 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
527 return 0;
528}
529
530VISIBLE_IF_CFG80211_KUNIT void
531cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
532{
533 struct cfg80211_colocated_ap *ap, *tmp_ap;
534
535 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
536 list_del(&ap->list);
537 kfree(ap);
538 }
539}
540EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
541
542static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
543 const u8 *pos, u8 length,
544 const struct element *ssid_elem,
545 u32 s_ssid_tmp)
546{
547 u8 bss_params;
548
549 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
550
551 /* The length is already verified by the caller to contain bss_params */
552 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
553 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
554
555 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
556 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
557 entry->short_ssid_valid = true;
558
559 bss_params = tbtt_info->bss_params;
560
561 /* Ignore disabled links */
562 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
563 if (le16_get_bits(tbtt_info->mld_params.params,
564 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
565 return -EINVAL;
566 }
567
568 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
569 psd_20))
570 entry->psd_20 = tbtt_info->psd_20;
571 } else {
572 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
573
574 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
575
576 bss_params = tbtt_info->bss_params;
577
578 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
579 psd_20))
580 entry->psd_20 = tbtt_info->psd_20;
581 }
582
583 /* ignore entries with invalid BSSID */
584 if (!is_valid_ether_addr(entry->bssid))
585 return -EINVAL;
586
587 /* skip non colocated APs */
588 if (!cfg80211_parse_bss_param(bss_params, entry))
589 return -EINVAL;
590
591 /* no information about the short ssid. Consider the entry valid
592 * for now. It would later be dropped in case there are explicit
593 * SSIDs that need to be matched
594 */
595 if (!entry->same_ssid && !entry->short_ssid_valid)
596 return 0;
597
598 if (entry->same_ssid) {
599 entry->short_ssid = s_ssid_tmp;
600 entry->short_ssid_valid = true;
601
602 /*
603 * This is safe because we validate datalen in
604 * cfg80211_parse_colocated_ap(), before calling this
605 * function.
606 */
607 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
608 entry->ssid_len = ssid_elem->datalen;
609 }
610
611 return 0;
612}
613
614bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
615 enum cfg80211_rnr_iter_ret
616 (*iter)(void *data, u8 type,
617 const struct ieee80211_neighbor_ap_info *info,
618 const u8 *tbtt_info, u8 tbtt_info_len),
619 void *iter_data)
620{
621 const struct element *rnr;
622 const u8 *pos, *end;
623
624 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
625 elems, elems_len) {
626 const struct ieee80211_neighbor_ap_info *info;
627
628 pos = rnr->data;
629 end = rnr->data + rnr->datalen;
630
631 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
632 while (sizeof(*info) <= end - pos) {
633 u8 length, i, count;
634 u8 type;
635
636 info = (void *)pos;
637 count = u8_get_bits(info->tbtt_info_hdr,
638 IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
639 1;
640 length = info->tbtt_info_len;
641
642 pos += sizeof(*info);
643
644 if (count * length > end - pos)
645 return false;
646
647 type = u8_get_bits(info->tbtt_info_hdr,
648 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
649
650 for (i = 0; i < count; i++) {
651 switch (iter(iter_data, type, info,
652 pos, length)) {
653 case RNR_ITER_CONTINUE:
654 break;
655 case RNR_ITER_BREAK:
656 return true;
657 case RNR_ITER_ERROR:
658 return false;
659 }
660
661 pos += length;
662 }
663 }
664
665 if (pos != end)
666 return false;
667 }
668
669 return true;
670}
671EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
672
673struct colocated_ap_data {
674 const struct element *ssid_elem;
675 struct list_head ap_list;
676 u32 s_ssid_tmp;
677 int n_coloc;
678};
679
680static enum cfg80211_rnr_iter_ret
681cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
682 const struct ieee80211_neighbor_ap_info *info,
683 const u8 *tbtt_info, u8 tbtt_info_len)
684{
685 struct colocated_ap_data *data = _data;
686 struct cfg80211_colocated_ap *entry;
687 enum nl80211_band band;
688
689 if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
690 return RNR_ITER_CONTINUE;
691
692 if (!ieee80211_operating_class_to_band(info->op_class, &band))
693 return RNR_ITER_CONTINUE;
694
695 /* TBTT info must include bss param + BSSID + (short SSID or
696 * same_ssid bit to be set). Ignore other options, and move to
697 * the next AP info
698 */
699 if (band != NL80211_BAND_6GHZ ||
700 !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
701 bss_params) ||
702 tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
703 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
704 bss_params)))
705 return RNR_ITER_CONTINUE;
706
707 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
708 if (!entry)
709 return RNR_ITER_ERROR;
710
711 entry->center_freq =
712 ieee80211_channel_to_frequency(info->channel, band);
713
714 if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
715 data->ssid_elem, data->s_ssid_tmp)) {
716 data->n_coloc++;
717 list_add_tail(&entry->list, &data->ap_list);
718 } else {
719 kfree(entry);
720 }
721
722 return RNR_ITER_CONTINUE;
723}
724
725VISIBLE_IF_CFG80211_KUNIT int
726cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
727 struct list_head *list)
728{
729 struct colocated_ap_data data = {};
730 int ret;
731
732 INIT_LIST_HEAD(&data.ap_list);
733
734 ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
735 if (ret)
736 return 0;
737
738 if (!cfg80211_iter_rnr(ies->data, ies->len,
739 cfg80211_parse_colocated_ap_iter, &data)) {
740 cfg80211_free_coloc_ap_list(&data.ap_list);
741 return 0;
742 }
743
744 list_splice_tail(&data.ap_list, list);
745 return data.n_coloc;
746}
747EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
748
749static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
750 struct ieee80211_channel *chan,
751 bool add_to_6ghz)
752{
753 int i;
754 u32 n_channels = request->n_channels;
755 struct cfg80211_scan_6ghz_params *params =
756 &request->scan_6ghz_params[request->n_6ghz_params];
757
758 for (i = 0; i < n_channels; i++) {
759 if (request->channels[i] == chan) {
760 if (add_to_6ghz)
761 params->channel_idx = i;
762 return;
763 }
764 }
765
766 request->n_channels++;
767 request->channels[n_channels] = chan;
768 if (add_to_6ghz)
769 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
770 n_channels;
771}
772
773static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
774 struct cfg80211_scan_request *request)
775{
776 int i;
777 u32 s_ssid;
778
779 for (i = 0; i < request->n_ssids; i++) {
780 /* wildcard ssid in the scan request */
781 if (!request->ssids[i].ssid_len) {
782 if (ap->multi_bss && !ap->transmitted_bssid)
783 continue;
784
785 return true;
786 }
787
788 if (ap->ssid_len &&
789 ap->ssid_len == request->ssids[i].ssid_len) {
790 if (!memcmp(request->ssids[i].ssid, ap->ssid,
791 ap->ssid_len))
792 return true;
793 } else if (ap->short_ssid_valid) {
794 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
795 request->ssids[i].ssid_len);
796
797 if (ap->short_ssid == s_ssid)
798 return true;
799 }
800 }
801
802 return false;
803}
804
805static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
806{
807 u8 i;
808 struct cfg80211_colocated_ap *ap;
809 int n_channels, count = 0, err;
810 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
811 LIST_HEAD(coloc_ap_list);
812 bool need_scan_psc = true;
813 const struct ieee80211_sband_iftype_data *iftd;
814 size_t size, offs_ssids, offs_6ghz_params, offs_ies;
815
816 rdev_req->scan_6ghz = true;
817
818 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
819 return -EOPNOTSUPP;
820
821 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
822 rdev_req->wdev->iftype);
823 if (!iftd || !iftd->he_cap.has_he)
824 return -EOPNOTSUPP;
825
826 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
827
828 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
829 struct cfg80211_internal_bss *intbss;
830
831 spin_lock_bh(&rdev->bss_lock);
832 list_for_each_entry(intbss, &rdev->bss_list, list) {
833 struct cfg80211_bss *res = &intbss->pub;
834 const struct cfg80211_bss_ies *ies;
835 const struct element *ssid_elem;
836 struct cfg80211_colocated_ap *entry;
837 u32 s_ssid_tmp;
838 int ret;
839
840 ies = rcu_access_pointer(res->ies);
841 count += cfg80211_parse_colocated_ap(ies,
842 &coloc_ap_list);
843
844 /* In case the scan request specified a specific BSSID
845 * and the BSS is found and operating on 6GHz band then
846 * add this AP to the collocated APs list.
847 * This is relevant for ML probe requests when the lower
848 * band APs have not been discovered.
849 */
850 if (is_broadcast_ether_addr(rdev_req->bssid) ||
851 !ether_addr_equal(rdev_req->bssid, res->bssid) ||
852 res->channel->band != NL80211_BAND_6GHZ)
853 continue;
854
855 ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
856 &s_ssid_tmp);
857 if (ret)
858 continue;
859
860 entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
861 if (!entry)
862 continue;
863
864 memcpy(entry->bssid, res->bssid, ETH_ALEN);
865 entry->short_ssid = s_ssid_tmp;
866 memcpy(entry->ssid, ssid_elem->data,
867 ssid_elem->datalen);
868 entry->ssid_len = ssid_elem->datalen;
869 entry->short_ssid_valid = true;
870 entry->center_freq = res->channel->center_freq;
871
872 list_add_tail(&entry->list, &coloc_ap_list);
873 count++;
874 }
875 spin_unlock_bh(&rdev->bss_lock);
876 }
877
878 size = struct_size(request, channels, n_channels);
879 offs_ssids = size;
880 size += sizeof(*request->ssids) * rdev_req->n_ssids;
881 offs_6ghz_params = size;
882 size += sizeof(*request->scan_6ghz_params) * count;
883 offs_ies = size;
884 size += rdev_req->ie_len;
885
886 request = kzalloc(size, GFP_KERNEL);
887 if (!request) {
888 cfg80211_free_coloc_ap_list(&coloc_ap_list);
889 return -ENOMEM;
890 }
891
892 *request = *rdev_req;
893 request->n_channels = 0;
894 request->n_6ghz_params = 0;
895 if (rdev_req->n_ssids) {
896 /*
897 * Add the ssids from the parent scan request to the new
898 * scan request, so the driver would be able to use them
899 * in its probe requests to discover hidden APs on PSC
900 * channels.
901 */
902 request->ssids = (void *)request + offs_ssids;
903 memcpy(request->ssids, rdev_req->ssids,
904 sizeof(*request->ssids) * request->n_ssids);
905 }
906 request->scan_6ghz_params = (void *)request + offs_6ghz_params;
907
908 if (rdev_req->ie_len) {
909 void *ie = (void *)request + offs_ies;
910
911 memcpy(ie, rdev_req->ie, rdev_req->ie_len);
912 request->ie = ie;
913 }
914
915 /*
916 * PSC channels should not be scanned in case of direct scan with 1 SSID
917 * and at least one of the reported co-located APs with same SSID
918 * indicating that all APs in the same ESS are co-located
919 */
920 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
921 list_for_each_entry(ap, &coloc_ap_list, list) {
922 if (ap->colocated_ess &&
923 cfg80211_find_ssid_match(ap, request)) {
924 need_scan_psc = false;
925 break;
926 }
927 }
928 }
929
930 /*
931 * add to the scan request the channels that need to be scanned
932 * regardless of the collocated APs (PSC channels or all channels
933 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
934 */
935 for (i = 0; i < rdev_req->n_channels; i++) {
936 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
937 ((need_scan_psc &&
938 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
939 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
940 cfg80211_scan_req_add_chan(request,
941 rdev_req->channels[i],
942 false);
943 }
944 }
945
946 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
947 goto skip;
948
949 list_for_each_entry(ap, &coloc_ap_list, list) {
950 bool found = false;
951 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
952 &request->scan_6ghz_params[request->n_6ghz_params];
953 struct ieee80211_channel *chan =
954 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
955
956 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED ||
957 !cfg80211_wdev_channel_allowed(rdev_req->wdev, chan))
958 continue;
959
960 for (i = 0; i < rdev_req->n_channels; i++) {
961 if (rdev_req->channels[i] == chan)
962 found = true;
963 }
964
965 if (!found)
966 continue;
967
968 if (request->n_ssids > 0 &&
969 !cfg80211_find_ssid_match(ap, request))
970 continue;
971
972 if (!is_broadcast_ether_addr(request->bssid) &&
973 !ether_addr_equal(request->bssid, ap->bssid))
974 continue;
975
976 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
977 continue;
978
979 cfg80211_scan_req_add_chan(request, chan, true);
980 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
981 scan_6ghz_params->short_ssid = ap->short_ssid;
982 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
983 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
984 scan_6ghz_params->psd_20 = ap->psd_20;
985
986 /*
987 * If a PSC channel is added to the scan and 'need_scan_psc' is
988 * set to false, then all the APs that the scan logic is
989 * interested with on the channel are collocated and thus there
990 * is no need to perform the initial PSC channel listen.
991 */
992 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
993 scan_6ghz_params->psc_no_listen = true;
994
995 request->n_6ghz_params++;
996 }
997
998skip:
999 cfg80211_free_coloc_ap_list(&coloc_ap_list);
1000
1001 if (request->n_channels) {
1002 struct cfg80211_scan_request *old = rdev->int_scan_req;
1003
1004 rdev->int_scan_req = request;
1005
1006 /*
1007 * If this scan follows a previous scan, save the scan start
1008 * info from the first part of the scan
1009 */
1010 if (old)
1011 rdev->int_scan_req->info = old->info;
1012
1013 err = rdev_scan(rdev, request);
1014 if (err) {
1015 rdev->int_scan_req = old;
1016 kfree(request);
1017 } else {
1018 kfree(old);
1019 }
1020
1021 return err;
1022 }
1023
1024 kfree(request);
1025 return -EINVAL;
1026}
1027
1028int cfg80211_scan(struct cfg80211_registered_device *rdev)
1029{
1030 struct cfg80211_scan_request *request;
1031 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1032 u32 n_channels = 0, idx, i;
1033
1034 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1035 return rdev_scan(rdev, rdev_req);
1036
1037 for (i = 0; i < rdev_req->n_channels; i++) {
1038 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1039 n_channels++;
1040 }
1041
1042 if (!n_channels)
1043 return cfg80211_scan_6ghz(rdev);
1044
1045 request = kzalloc(struct_size(request, channels, n_channels),
1046 GFP_KERNEL);
1047 if (!request)
1048 return -ENOMEM;
1049
1050 *request = *rdev_req;
1051 request->n_channels = n_channels;
1052
1053 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1054 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1055 request->channels[idx++] = rdev_req->channels[i];
1056 }
1057
1058 rdev_req->scan_6ghz = false;
1059 rdev->int_scan_req = request;
1060 return rdev_scan(rdev, request);
1061}
1062
1063void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1064 bool send_message)
1065{
1066 struct cfg80211_scan_request *request, *rdev_req;
1067 struct wireless_dev *wdev;
1068 struct sk_buff *msg;
1069#ifdef CONFIG_CFG80211_WEXT
1070 union iwreq_data wrqu;
1071#endif
1072
1073 lockdep_assert_held(&rdev->wiphy.mtx);
1074
1075 if (rdev->scan_msg) {
1076 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1077 rdev->scan_msg = NULL;
1078 return;
1079 }
1080
1081 rdev_req = rdev->scan_req;
1082 if (!rdev_req)
1083 return;
1084
1085 wdev = rdev_req->wdev;
1086 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1087
1088 if (wdev_running(wdev) &&
1089 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1090 !rdev_req->scan_6ghz && !request->info.aborted &&
1091 !cfg80211_scan_6ghz(rdev))
1092 return;
1093
1094 /*
1095 * This must be before sending the other events!
1096 * Otherwise, wpa_supplicant gets completely confused with
1097 * wext events.
1098 */
1099 if (wdev->netdev)
1100 cfg80211_sme_scan_done(wdev->netdev);
1101
1102 if (!request->info.aborted &&
1103 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1104 /* flush entries from previous scans */
1105 spin_lock_bh(&rdev->bss_lock);
1106 __cfg80211_bss_expire(rdev, request->scan_start);
1107 spin_unlock_bh(&rdev->bss_lock);
1108 }
1109
1110 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1111
1112#ifdef CONFIG_CFG80211_WEXT
1113 if (wdev->netdev && !request->info.aborted) {
1114 memset(&wrqu, 0, sizeof(wrqu));
1115
1116 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1117 }
1118#endif
1119
1120 dev_put(wdev->netdev);
1121
1122 kfree(rdev->int_scan_req);
1123 rdev->int_scan_req = NULL;
1124
1125 kfree(rdev->scan_req);
1126 rdev->scan_req = NULL;
1127
1128 if (!send_message)
1129 rdev->scan_msg = msg;
1130 else
1131 nl80211_send_scan_msg(rdev, msg);
1132}
1133
1134void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1135{
1136 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1137}
1138
1139void cfg80211_scan_done(struct cfg80211_scan_request *request,
1140 struct cfg80211_scan_info *info)
1141{
1142 struct cfg80211_scan_info old_info = request->info;
1143
1144 trace_cfg80211_scan_done(request, info);
1145 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1146 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1147
1148 request->info = *info;
1149
1150 /*
1151 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1152 * be of the first part. In such a case old_info.scan_start_tsf should
1153 * be non zero.
1154 */
1155 if (request->scan_6ghz && old_info.scan_start_tsf) {
1156 request->info.scan_start_tsf = old_info.scan_start_tsf;
1157 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1158 sizeof(request->info.tsf_bssid));
1159 }
1160
1161 request->notified = true;
1162 wiphy_work_queue(request->wiphy,
1163 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1164}
1165EXPORT_SYMBOL(cfg80211_scan_done);
1166
1167void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1168 struct cfg80211_sched_scan_request *req)
1169{
1170 lockdep_assert_held(&rdev->wiphy.mtx);
1171
1172 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1173}
1174
1175static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1176 struct cfg80211_sched_scan_request *req)
1177{
1178 lockdep_assert_held(&rdev->wiphy.mtx);
1179
1180 list_del_rcu(&req->list);
1181 kfree_rcu(req, rcu_head);
1182}
1183
1184static struct cfg80211_sched_scan_request *
1185cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1186{
1187 struct cfg80211_sched_scan_request *pos;
1188
1189 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1190 lockdep_is_held(&rdev->wiphy.mtx)) {
1191 if (pos->reqid == reqid)
1192 return pos;
1193 }
1194 return NULL;
1195}
1196
1197/*
1198 * Determines if a scheduled scan request can be handled. When a legacy
1199 * scheduled scan is running no other scheduled scan is allowed regardless
1200 * whether the request is for legacy or multi-support scan. When a multi-support
1201 * scheduled scan is running a request for legacy scan is not allowed. In this
1202 * case a request for multi-support scan can be handled if resources are
1203 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1204 */
1205int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1206 bool want_multi)
1207{
1208 struct cfg80211_sched_scan_request *pos;
1209 int i = 0;
1210
1211 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1212 /* request id zero means legacy in progress */
1213 if (!i && !pos->reqid)
1214 return -EINPROGRESS;
1215 i++;
1216 }
1217
1218 if (i) {
1219 /* no legacy allowed when multi request(s) are active */
1220 if (!want_multi)
1221 return -EINPROGRESS;
1222
1223 /* resource limit reached */
1224 if (i == rdev->wiphy.max_sched_scan_reqs)
1225 return -ENOSPC;
1226 }
1227 return 0;
1228}
1229
1230void cfg80211_sched_scan_results_wk(struct work_struct *work)
1231{
1232 struct cfg80211_registered_device *rdev;
1233 struct cfg80211_sched_scan_request *req, *tmp;
1234
1235 rdev = container_of(work, struct cfg80211_registered_device,
1236 sched_scan_res_wk);
1237
1238 wiphy_lock(&rdev->wiphy);
1239 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1240 if (req->report_results) {
1241 req->report_results = false;
1242 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1243 /* flush entries from previous scans */
1244 spin_lock_bh(&rdev->bss_lock);
1245 __cfg80211_bss_expire(rdev, req->scan_start);
1246 spin_unlock_bh(&rdev->bss_lock);
1247 req->scan_start = jiffies;
1248 }
1249 nl80211_send_sched_scan(req,
1250 NL80211_CMD_SCHED_SCAN_RESULTS);
1251 }
1252 }
1253 wiphy_unlock(&rdev->wiphy);
1254}
1255
1256void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1257{
1258 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1259 struct cfg80211_sched_scan_request *request;
1260
1261 trace_cfg80211_sched_scan_results(wiphy, reqid);
1262 /* ignore if we're not scanning */
1263
1264 rcu_read_lock();
1265 request = cfg80211_find_sched_scan_req(rdev, reqid);
1266 if (request) {
1267 request->report_results = true;
1268 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1269 }
1270 rcu_read_unlock();
1271}
1272EXPORT_SYMBOL(cfg80211_sched_scan_results);
1273
1274void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1275{
1276 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1277
1278 lockdep_assert_held(&wiphy->mtx);
1279
1280 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1281
1282 __cfg80211_stop_sched_scan(rdev, reqid, true);
1283}
1284EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1285
1286void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1287{
1288 wiphy_lock(wiphy);
1289 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1290 wiphy_unlock(wiphy);
1291}
1292EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1293
1294int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1295 struct cfg80211_sched_scan_request *req,
1296 bool driver_initiated)
1297{
1298 lockdep_assert_held(&rdev->wiphy.mtx);
1299
1300 if (!driver_initiated) {
1301 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1302 if (err)
1303 return err;
1304 }
1305
1306 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1307
1308 cfg80211_del_sched_scan_req(rdev, req);
1309
1310 return 0;
1311}
1312
1313int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1314 u64 reqid, bool driver_initiated)
1315{
1316 struct cfg80211_sched_scan_request *sched_scan_req;
1317
1318 lockdep_assert_held(&rdev->wiphy.mtx);
1319
1320 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1321 if (!sched_scan_req)
1322 return -ENOENT;
1323
1324 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1325 driver_initiated);
1326}
1327
1328void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1329 unsigned long age_secs)
1330{
1331 struct cfg80211_internal_bss *bss;
1332 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1333
1334 spin_lock_bh(&rdev->bss_lock);
1335 list_for_each_entry(bss, &rdev->bss_list, list)
1336 bss->ts -= age_jiffies;
1337 spin_unlock_bh(&rdev->bss_lock);
1338}
1339
1340void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1341{
1342 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1343}
1344
1345void cfg80211_bss_flush(struct wiphy *wiphy)
1346{
1347 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1348
1349 spin_lock_bh(&rdev->bss_lock);
1350 __cfg80211_bss_expire(rdev, jiffies);
1351 spin_unlock_bh(&rdev->bss_lock);
1352}
1353EXPORT_SYMBOL(cfg80211_bss_flush);
1354
1355const struct element *
1356cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1357 const u8 *match, unsigned int match_len,
1358 unsigned int match_offset)
1359{
1360 const struct element *elem;
1361
1362 for_each_element_id(elem, eid, ies, len) {
1363 if (elem->datalen >= match_offset + match_len &&
1364 !memcmp(elem->data + match_offset, match, match_len))
1365 return elem;
1366 }
1367
1368 return NULL;
1369}
1370EXPORT_SYMBOL(cfg80211_find_elem_match);
1371
1372const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1373 const u8 *ies,
1374 unsigned int len)
1375{
1376 const struct element *elem;
1377 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1378 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1379
1380 if (WARN_ON(oui_type > 0xff))
1381 return NULL;
1382
1383 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1384 match, match_len, 0);
1385
1386 if (!elem || elem->datalen < 4)
1387 return NULL;
1388
1389 return elem;
1390}
1391EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1392
1393/**
1394 * enum bss_compare_mode - BSS compare mode
1395 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1396 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1397 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1398 */
1399enum bss_compare_mode {
1400 BSS_CMP_REGULAR,
1401 BSS_CMP_HIDE_ZLEN,
1402 BSS_CMP_HIDE_NUL,
1403};
1404
1405static int cmp_bss(struct cfg80211_bss *a,
1406 struct cfg80211_bss *b,
1407 enum bss_compare_mode mode)
1408{
1409 const struct cfg80211_bss_ies *a_ies, *b_ies;
1410 const u8 *ie1 = NULL;
1411 const u8 *ie2 = NULL;
1412 int i, r;
1413
1414 if (a->channel != b->channel)
1415 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1416 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1417
1418 a_ies = rcu_access_pointer(a->ies);
1419 if (!a_ies)
1420 return -1;
1421 b_ies = rcu_access_pointer(b->ies);
1422 if (!b_ies)
1423 return 1;
1424
1425 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1426 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1427 a_ies->data, a_ies->len);
1428 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1429 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1430 b_ies->data, b_ies->len);
1431 if (ie1 && ie2) {
1432 int mesh_id_cmp;
1433
1434 if (ie1[1] == ie2[1])
1435 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1436 else
1437 mesh_id_cmp = ie2[1] - ie1[1];
1438
1439 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1440 a_ies->data, a_ies->len);
1441 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1442 b_ies->data, b_ies->len);
1443 if (ie1 && ie2) {
1444 if (mesh_id_cmp)
1445 return mesh_id_cmp;
1446 if (ie1[1] != ie2[1])
1447 return ie2[1] - ie1[1];
1448 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1449 }
1450 }
1451
1452 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1453 if (r)
1454 return r;
1455
1456 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1457 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1458
1459 if (!ie1 && !ie2)
1460 return 0;
1461
1462 /*
1463 * Note that with "hide_ssid", the function returns a match if
1464 * the already-present BSS ("b") is a hidden SSID beacon for
1465 * the new BSS ("a").
1466 */
1467
1468 /* sort missing IE before (left of) present IE */
1469 if (!ie1)
1470 return -1;
1471 if (!ie2)
1472 return 1;
1473
1474 switch (mode) {
1475 case BSS_CMP_HIDE_ZLEN:
1476 /*
1477 * In ZLEN mode we assume the BSS entry we're
1478 * looking for has a zero-length SSID. So if
1479 * the one we're looking at right now has that,
1480 * return 0. Otherwise, return the difference
1481 * in length, but since we're looking for the
1482 * 0-length it's really equivalent to returning
1483 * the length of the one we're looking at.
1484 *
1485 * No content comparison is needed as we assume
1486 * the content length is zero.
1487 */
1488 return ie2[1];
1489 case BSS_CMP_REGULAR:
1490 default:
1491 /* sort by length first, then by contents */
1492 if (ie1[1] != ie2[1])
1493 return ie2[1] - ie1[1];
1494 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1495 case BSS_CMP_HIDE_NUL:
1496 if (ie1[1] != ie2[1])
1497 return ie2[1] - ie1[1];
1498 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1499 for (i = 0; i < ie2[1]; i++)
1500 if (ie2[i + 2])
1501 return -1;
1502 return 0;
1503 }
1504}
1505
1506static bool cfg80211_bss_type_match(u16 capability,
1507 enum nl80211_band band,
1508 enum ieee80211_bss_type bss_type)
1509{
1510 bool ret = true;
1511 u16 mask, val;
1512
1513 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1514 return ret;
1515
1516 if (band == NL80211_BAND_60GHZ) {
1517 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1518 switch (bss_type) {
1519 case IEEE80211_BSS_TYPE_ESS:
1520 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1521 break;
1522 case IEEE80211_BSS_TYPE_PBSS:
1523 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1524 break;
1525 case IEEE80211_BSS_TYPE_IBSS:
1526 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1527 break;
1528 default:
1529 return false;
1530 }
1531 } else {
1532 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1533 switch (bss_type) {
1534 case IEEE80211_BSS_TYPE_ESS:
1535 val = WLAN_CAPABILITY_ESS;
1536 break;
1537 case IEEE80211_BSS_TYPE_IBSS:
1538 val = WLAN_CAPABILITY_IBSS;
1539 break;
1540 case IEEE80211_BSS_TYPE_MBSS:
1541 val = 0;
1542 break;
1543 default:
1544 return false;
1545 }
1546 }
1547
1548 ret = ((capability & mask) == val);
1549 return ret;
1550}
1551
1552/* Returned bss is reference counted and must be cleaned up appropriately. */
1553struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1554 struct ieee80211_channel *channel,
1555 const u8 *bssid,
1556 const u8 *ssid, size_t ssid_len,
1557 enum ieee80211_bss_type bss_type,
1558 enum ieee80211_privacy privacy,
1559 u32 use_for)
1560{
1561 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1562 struct cfg80211_internal_bss *bss, *res = NULL;
1563 unsigned long now = jiffies;
1564 int bss_privacy;
1565
1566 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1567 privacy);
1568
1569 spin_lock_bh(&rdev->bss_lock);
1570
1571 list_for_each_entry(bss, &rdev->bss_list, list) {
1572 if (!cfg80211_bss_type_match(bss->pub.capability,
1573 bss->pub.channel->band, bss_type))
1574 continue;
1575
1576 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1577 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1578 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1579 continue;
1580 if (channel && bss->pub.channel != channel)
1581 continue;
1582 if (!is_valid_ether_addr(bss->pub.bssid))
1583 continue;
1584 if ((bss->pub.use_for & use_for) != use_for)
1585 continue;
1586 /* Don't get expired BSS structs */
1587 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1588 !atomic_read(&bss->hold))
1589 continue;
1590 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1591 res = bss;
1592 bss_ref_get(rdev, res);
1593 break;
1594 }
1595 }
1596
1597 spin_unlock_bh(&rdev->bss_lock);
1598 if (!res)
1599 return NULL;
1600 trace_cfg80211_return_bss(&res->pub);
1601 return &res->pub;
1602}
1603EXPORT_SYMBOL(__cfg80211_get_bss);
1604
1605static bool rb_insert_bss(struct cfg80211_registered_device *rdev,
1606 struct cfg80211_internal_bss *bss)
1607{
1608 struct rb_node **p = &rdev->bss_tree.rb_node;
1609 struct rb_node *parent = NULL;
1610 struct cfg80211_internal_bss *tbss;
1611 int cmp;
1612
1613 while (*p) {
1614 parent = *p;
1615 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1616
1617 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1618
1619 if (WARN_ON(!cmp)) {
1620 /* will sort of leak this BSS */
1621 return false;
1622 }
1623
1624 if (cmp < 0)
1625 p = &(*p)->rb_left;
1626 else
1627 p = &(*p)->rb_right;
1628 }
1629
1630 rb_link_node(&bss->rbn, parent, p);
1631 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1632 return true;
1633}
1634
1635static struct cfg80211_internal_bss *
1636rb_find_bss(struct cfg80211_registered_device *rdev,
1637 struct cfg80211_internal_bss *res,
1638 enum bss_compare_mode mode)
1639{
1640 struct rb_node *n = rdev->bss_tree.rb_node;
1641 struct cfg80211_internal_bss *bss;
1642 int r;
1643
1644 while (n) {
1645 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1646 r = cmp_bss(&res->pub, &bss->pub, mode);
1647
1648 if (r == 0)
1649 return bss;
1650 else if (r < 0)
1651 n = n->rb_left;
1652 else
1653 n = n->rb_right;
1654 }
1655
1656 return NULL;
1657}
1658
1659static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev,
1660 struct cfg80211_internal_bss *bss)
1661{
1662 lockdep_assert_held(&rdev->bss_lock);
1663
1664 if (!rb_insert_bss(rdev, bss))
1665 return;
1666 list_add_tail(&bss->list, &rdev->bss_list);
1667 rdev->bss_entries++;
1668}
1669
1670static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev,
1671 struct cfg80211_internal_bss *bss)
1672{
1673 lockdep_assert_held(&rdev->bss_lock);
1674
1675 rb_erase(&bss->rbn, &rdev->bss_tree);
1676 if (!rb_insert_bss(rdev, bss)) {
1677 list_del(&bss->list);
1678 if (!list_empty(&bss->hidden_list))
1679 list_del_init(&bss->hidden_list);
1680 if (!list_empty(&bss->pub.nontrans_list))
1681 list_del_init(&bss->pub.nontrans_list);
1682 rdev->bss_entries--;
1683 }
1684 rdev->bss_generation++;
1685}
1686
1687static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1688 struct cfg80211_internal_bss *new)
1689{
1690 const struct cfg80211_bss_ies *ies;
1691 struct cfg80211_internal_bss *bss;
1692 const u8 *ie;
1693 int i, ssidlen;
1694 u8 fold = 0;
1695 u32 n_entries = 0;
1696
1697 ies = rcu_access_pointer(new->pub.beacon_ies);
1698 if (WARN_ON(!ies))
1699 return false;
1700
1701 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1702 if (!ie) {
1703 /* nothing to do */
1704 return true;
1705 }
1706
1707 ssidlen = ie[1];
1708 for (i = 0; i < ssidlen; i++)
1709 fold |= ie[2 + i];
1710
1711 if (fold) {
1712 /* not a hidden SSID */
1713 return true;
1714 }
1715
1716 /* This is the bad part ... */
1717
1718 list_for_each_entry(bss, &rdev->bss_list, list) {
1719 /*
1720 * we're iterating all the entries anyway, so take the
1721 * opportunity to validate the list length accounting
1722 */
1723 n_entries++;
1724
1725 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1726 continue;
1727 if (bss->pub.channel != new->pub.channel)
1728 continue;
1729 if (rcu_access_pointer(bss->pub.beacon_ies))
1730 continue;
1731 ies = rcu_access_pointer(bss->pub.ies);
1732 if (!ies)
1733 continue;
1734 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1735 if (!ie)
1736 continue;
1737 if (ssidlen && ie[1] != ssidlen)
1738 continue;
1739 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1740 continue;
1741 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1742 list_del(&bss->hidden_list);
1743 /* combine them */
1744 list_add(&bss->hidden_list, &new->hidden_list);
1745 bss->pub.hidden_beacon_bss = &new->pub;
1746 new->refcount += bss->refcount;
1747 rcu_assign_pointer(bss->pub.beacon_ies,
1748 new->pub.beacon_ies);
1749 }
1750
1751 WARN_ONCE(n_entries != rdev->bss_entries,
1752 "rdev bss entries[%d]/list[len:%d] corruption\n",
1753 rdev->bss_entries, n_entries);
1754
1755 return true;
1756}
1757
1758static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1759 const struct cfg80211_bss_ies *new_ies,
1760 const struct cfg80211_bss_ies *old_ies)
1761{
1762 struct cfg80211_internal_bss *bss;
1763
1764 /* Assign beacon IEs to all sub entries */
1765 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1766 const struct cfg80211_bss_ies *ies;
1767
1768 ies = rcu_access_pointer(bss->pub.beacon_ies);
1769 WARN_ON(ies != old_ies);
1770
1771 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1772 }
1773}
1774
1775static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1776 struct cfg80211_internal_bss *known,
1777 const struct cfg80211_bss_ies *old)
1778{
1779 const struct ieee80211_ext_chansw_ie *ecsa;
1780 const struct element *elem_new, *elem_old;
1781 const struct cfg80211_bss_ies *new, *bcn;
1782
1783 if (known->pub.proberesp_ecsa_stuck)
1784 return;
1785
1786 new = rcu_dereference_protected(known->pub.proberesp_ies,
1787 lockdep_is_held(&rdev->bss_lock));
1788 if (WARN_ON(!new))
1789 return;
1790
1791 if (new->tsf - old->tsf < USEC_PER_SEC)
1792 return;
1793
1794 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1795 old->data, old->len);
1796 if (!elem_old)
1797 return;
1798
1799 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1800 new->data, new->len);
1801 if (!elem_new)
1802 return;
1803
1804 bcn = rcu_dereference_protected(known->pub.beacon_ies,
1805 lockdep_is_held(&rdev->bss_lock));
1806 if (bcn &&
1807 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1808 bcn->data, bcn->len))
1809 return;
1810
1811 if (elem_new->datalen != elem_old->datalen)
1812 return;
1813 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1814 return;
1815 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1816 return;
1817
1818 ecsa = (void *)elem_new->data;
1819
1820 if (!ecsa->mode)
1821 return;
1822
1823 if (ecsa->new_ch_num !=
1824 ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1825 return;
1826
1827 known->pub.proberesp_ecsa_stuck = 1;
1828}
1829
1830static bool
1831cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1832 struct cfg80211_internal_bss *known,
1833 struct cfg80211_internal_bss *new,
1834 bool signal_valid)
1835{
1836 lockdep_assert_held(&rdev->bss_lock);
1837
1838 /* Update IEs */
1839 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1840 const struct cfg80211_bss_ies *old;
1841
1842 old = rcu_access_pointer(known->pub.proberesp_ies);
1843
1844 rcu_assign_pointer(known->pub.proberesp_ies,
1845 new->pub.proberesp_ies);
1846 /* Override possible earlier Beacon frame IEs */
1847 rcu_assign_pointer(known->pub.ies,
1848 new->pub.proberesp_ies);
1849 if (old) {
1850 cfg80211_check_stuck_ecsa(rdev, known, old);
1851 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1852 }
1853 }
1854
1855 if (rcu_access_pointer(new->pub.beacon_ies)) {
1856 const struct cfg80211_bss_ies *old;
1857
1858 if (known->pub.hidden_beacon_bss &&
1859 !list_empty(&known->hidden_list)) {
1860 const struct cfg80211_bss_ies *f;
1861
1862 /* The known BSS struct is one of the probe
1863 * response members of a group, but we're
1864 * receiving a beacon (beacon_ies in the new
1865 * bss is used). This can only mean that the
1866 * AP changed its beacon from not having an
1867 * SSID to showing it, which is confusing so
1868 * drop this information.
1869 */
1870
1871 f = rcu_access_pointer(new->pub.beacon_ies);
1872 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1873 return false;
1874 }
1875
1876 old = rcu_access_pointer(known->pub.beacon_ies);
1877
1878 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1879
1880 /* Override IEs if they were from a beacon before */
1881 if (old == rcu_access_pointer(known->pub.ies))
1882 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1883
1884 cfg80211_update_hidden_bsses(known,
1885 rcu_access_pointer(new->pub.beacon_ies),
1886 old);
1887
1888 if (old)
1889 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1890 }
1891
1892 known->pub.beacon_interval = new->pub.beacon_interval;
1893
1894 /* don't update the signal if beacon was heard on
1895 * adjacent channel.
1896 */
1897 if (signal_valid)
1898 known->pub.signal = new->pub.signal;
1899 known->pub.capability = new->pub.capability;
1900 known->ts = new->ts;
1901 known->ts_boottime = new->ts_boottime;
1902 known->parent_tsf = new->parent_tsf;
1903 known->pub.chains = new->pub.chains;
1904 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1905 IEEE80211_MAX_CHAINS);
1906 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1907 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1908 known->pub.bssid_index = new->pub.bssid_index;
1909 known->pub.use_for &= new->pub.use_for;
1910 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1911 known->bss_source = new->bss_source;
1912
1913 return true;
1914}
1915
1916/* Returned bss is reference counted and must be cleaned up appropriately. */
1917static struct cfg80211_internal_bss *
1918__cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1919 struct cfg80211_internal_bss *tmp,
1920 bool signal_valid, unsigned long ts)
1921{
1922 struct cfg80211_internal_bss *found = NULL;
1923 struct cfg80211_bss_ies *ies;
1924
1925 if (WARN_ON(!tmp->pub.channel))
1926 goto free_ies;
1927
1928 tmp->ts = ts;
1929
1930 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1931 goto free_ies;
1932
1933 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1934
1935 if (found) {
1936 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1937 return NULL;
1938 } else {
1939 struct cfg80211_internal_bss *new;
1940 struct cfg80211_internal_bss *hidden;
1941
1942 /*
1943 * create a copy -- the "res" variable that is passed in
1944 * is allocated on the stack since it's not needed in the
1945 * more common case of an update
1946 */
1947 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1948 GFP_ATOMIC);
1949 if (!new)
1950 goto free_ies;
1951 memcpy(new, tmp, sizeof(*new));
1952 new->refcount = 1;
1953 INIT_LIST_HEAD(&new->hidden_list);
1954 INIT_LIST_HEAD(&new->pub.nontrans_list);
1955 /* we'll set this later if it was non-NULL */
1956 new->pub.transmitted_bss = NULL;
1957
1958 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1959 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1960 if (!hidden)
1961 hidden = rb_find_bss(rdev, tmp,
1962 BSS_CMP_HIDE_NUL);
1963 if (hidden) {
1964 new->pub.hidden_beacon_bss = &hidden->pub;
1965 list_add(&new->hidden_list,
1966 &hidden->hidden_list);
1967 hidden->refcount++;
1968
1969 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1970 rcu_assign_pointer(new->pub.beacon_ies,
1971 hidden->pub.beacon_ies);
1972 if (ies)
1973 kfree_rcu(ies, rcu_head);
1974 }
1975 } else {
1976 /*
1977 * Ok so we found a beacon, and don't have an entry. If
1978 * it's a beacon with hidden SSID, we might be in for an
1979 * expensive search for any probe responses that should
1980 * be grouped with this beacon for updates ...
1981 */
1982 if (!cfg80211_combine_bsses(rdev, new)) {
1983 bss_ref_put(rdev, new);
1984 return NULL;
1985 }
1986 }
1987
1988 if (rdev->bss_entries >= bss_entries_limit &&
1989 !cfg80211_bss_expire_oldest(rdev)) {
1990 bss_ref_put(rdev, new);
1991 return NULL;
1992 }
1993
1994 /* This must be before the call to bss_ref_get */
1995 if (tmp->pub.transmitted_bss) {
1996 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1997 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1998 }
1999
2000 cfg80211_insert_bss(rdev, new);
2001 found = new;
2002 }
2003
2004 rdev->bss_generation++;
2005 bss_ref_get(rdev, found);
2006
2007 return found;
2008
2009free_ies:
2010 ies = (void *)rcu_access_pointer(tmp->pub.beacon_ies);
2011 if (ies)
2012 kfree_rcu(ies, rcu_head);
2013 ies = (void *)rcu_access_pointer(tmp->pub.proberesp_ies);
2014 if (ies)
2015 kfree_rcu(ies, rcu_head);
2016
2017 return NULL;
2018}
2019
2020struct cfg80211_internal_bss *
2021cfg80211_bss_update(struct cfg80211_registered_device *rdev,
2022 struct cfg80211_internal_bss *tmp,
2023 bool signal_valid, unsigned long ts)
2024{
2025 struct cfg80211_internal_bss *res;
2026
2027 spin_lock_bh(&rdev->bss_lock);
2028 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
2029 spin_unlock_bh(&rdev->bss_lock);
2030
2031 return res;
2032}
2033
2034int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
2035 enum nl80211_band band)
2036{
2037 const struct element *tmp;
2038
2039 if (band == NL80211_BAND_6GHZ) {
2040 struct ieee80211_he_operation *he_oper;
2041
2042 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2043 ielen);
2044 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2045 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2046 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2047
2048 he_oper = (void *)&tmp->data[1];
2049
2050 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2051 if (!he_6ghz_oper)
2052 return -1;
2053
2054 return he_6ghz_oper->primary;
2055 }
2056 } else if (band == NL80211_BAND_S1GHZ) {
2057 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2058 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2059 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2060
2061 return s1gop->oper_ch;
2062 }
2063 } else {
2064 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2065 if (tmp && tmp->datalen == 1)
2066 return tmp->data[0];
2067
2068 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2069 if (tmp &&
2070 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2071 struct ieee80211_ht_operation *htop = (void *)tmp->data;
2072
2073 return htop->primary_chan;
2074 }
2075 }
2076
2077 return -1;
2078}
2079EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2080
2081/*
2082 * Update RX channel information based on the available frame payload
2083 * information. This is mainly for the 2.4 GHz band where frames can be received
2084 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2085 * element to indicate the current (transmitting) channel, but this might also
2086 * be needed on other bands if RX frequency does not match with the actual
2087 * operating channel of a BSS, or if the AP reports a different primary channel.
2088 */
2089static struct ieee80211_channel *
2090cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2091 struct ieee80211_channel *channel)
2092{
2093 u32 freq;
2094 int channel_number;
2095 struct ieee80211_channel *alt_channel;
2096
2097 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2098 channel->band);
2099
2100 if (channel_number < 0) {
2101 /* No channel information in frame payload */
2102 return channel;
2103 }
2104
2105 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2106
2107 /*
2108 * Frame info (beacon/prob res) is the same as received channel,
2109 * no need for further processing.
2110 */
2111 if (freq == ieee80211_channel_to_khz(channel))
2112 return channel;
2113
2114 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2115 if (!alt_channel) {
2116 if (channel->band == NL80211_BAND_2GHZ ||
2117 channel->band == NL80211_BAND_6GHZ) {
2118 /*
2119 * Better not allow unexpected channels when that could
2120 * be going beyond the 1-11 range (e.g., discovering
2121 * BSS on channel 12 when radio is configured for
2122 * channel 11) or beyond the 6 GHz channel range.
2123 */
2124 return NULL;
2125 }
2126
2127 /* No match for the payload channel number - ignore it */
2128 return channel;
2129 }
2130
2131 /*
2132 * Use the channel determined through the payload channel number
2133 * instead of the RX channel reported by the driver.
2134 */
2135 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2136 return NULL;
2137 return alt_channel;
2138}
2139
2140struct cfg80211_inform_single_bss_data {
2141 struct cfg80211_inform_bss *drv_data;
2142 enum cfg80211_bss_frame_type ftype;
2143 struct ieee80211_channel *channel;
2144 u8 bssid[ETH_ALEN];
2145 u64 tsf;
2146 u16 capability;
2147 u16 beacon_interval;
2148 const u8 *ie;
2149 size_t ielen;
2150
2151 enum bss_source_type bss_source;
2152 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2153 struct cfg80211_bss *source_bss;
2154 u8 max_bssid_indicator;
2155 u8 bssid_index;
2156
2157 u8 use_for;
2158 u64 cannot_use_reasons;
2159};
2160
2161enum ieee80211_ap_reg_power
2162cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len)
2163{
2164 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2165 struct ieee80211_he_operation *he_oper;
2166 const struct element *tmp;
2167
2168 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
2169 elems, elems_len);
2170 if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 ||
2171 tmp->datalen < ieee80211_he_oper_size(tmp->data + 1))
2172 return IEEE80211_REG_UNSET_AP;
2173
2174 he_oper = (void *)&tmp->data[1];
2175 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2176
2177 if (!he_6ghz_oper)
2178 return IEEE80211_REG_UNSET_AP;
2179
2180 switch (u8_get_bits(he_6ghz_oper->control,
2181 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2182 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2183 case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
2184 return IEEE80211_REG_LPI_AP;
2185 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2186 case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
2187 return IEEE80211_REG_SP_AP;
2188 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2189 return IEEE80211_REG_VLP_AP;
2190 default:
2191 return IEEE80211_REG_UNSET_AP;
2192 }
2193}
2194
2195static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len,
2196 const u32 flags)
2197{
2198 switch (cfg80211_get_6ghz_power_type(elems, elems_len)) {
2199 case IEEE80211_REG_LPI_AP:
2200 return true;
2201 case IEEE80211_REG_SP_AP:
2202 return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2203 case IEEE80211_REG_VLP_AP:
2204 return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2205 default:
2206 return false;
2207 }
2208}
2209
2210/* Returned bss is reference counted and must be cleaned up appropriately. */
2211static struct cfg80211_bss *
2212cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2213 struct cfg80211_inform_single_bss_data *data,
2214 gfp_t gfp)
2215{
2216 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2217 struct cfg80211_inform_bss *drv_data = data->drv_data;
2218 struct cfg80211_bss_ies *ies;
2219 struct ieee80211_channel *channel;
2220 struct cfg80211_internal_bss tmp = {}, *res;
2221 int bss_type;
2222 bool signal_valid;
2223 unsigned long ts;
2224
2225 if (WARN_ON(!wiphy))
2226 return NULL;
2227
2228 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2229 (drv_data->signal < 0 || drv_data->signal > 100)))
2230 return NULL;
2231
2232 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2233 return NULL;
2234
2235 channel = data->channel;
2236 if (!channel)
2237 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2238 drv_data->chan);
2239 if (!channel)
2240 return NULL;
2241
2242 if (channel->band == NL80211_BAND_6GHZ &&
2243 !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2244 channel->flags)) {
2245 data->use_for = 0;
2246 data->cannot_use_reasons =
2247 NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2248 }
2249
2250 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2251 tmp.pub.channel = channel;
2252 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2253 tmp.pub.signal = drv_data->signal;
2254 else
2255 tmp.pub.signal = 0;
2256 tmp.pub.beacon_interval = data->beacon_interval;
2257 tmp.pub.capability = data->capability;
2258 tmp.ts_boottime = drv_data->boottime_ns;
2259 tmp.parent_tsf = drv_data->parent_tsf;
2260 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2261 tmp.pub.chains = drv_data->chains;
2262 memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2263 IEEE80211_MAX_CHAINS);
2264 tmp.pub.use_for = data->use_for;
2265 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2266 tmp.bss_source = data->bss_source;
2267
2268 switch (data->bss_source) {
2269 case BSS_SOURCE_MBSSID:
2270 tmp.pub.transmitted_bss = data->source_bss;
2271 fallthrough;
2272 case BSS_SOURCE_STA_PROFILE:
2273 ts = bss_from_pub(data->source_bss)->ts;
2274 tmp.pub.bssid_index = data->bssid_index;
2275 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2276 break;
2277 case BSS_SOURCE_DIRECT:
2278 ts = jiffies;
2279
2280 if (channel->band == NL80211_BAND_60GHZ) {
2281 bss_type = data->capability &
2282 WLAN_CAPABILITY_DMG_TYPE_MASK;
2283 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2284 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2285 regulatory_hint_found_beacon(wiphy, channel,
2286 gfp);
2287 } else {
2288 if (data->capability & WLAN_CAPABILITY_ESS)
2289 regulatory_hint_found_beacon(wiphy, channel,
2290 gfp);
2291 }
2292 break;
2293 }
2294
2295 /*
2296 * If we do not know here whether the IEs are from a Beacon or Probe
2297 * Response frame, we need to pick one of the options and only use it
2298 * with the driver that does not provide the full Beacon/Probe Response
2299 * frame. Use Beacon frame pointer to avoid indicating that this should
2300 * override the IEs pointer should we have received an earlier
2301 * indication of Probe Response data.
2302 */
2303 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2304 if (!ies)
2305 return NULL;
2306 ies->len = data->ielen;
2307 ies->tsf = data->tsf;
2308 ies->from_beacon = false;
2309 memcpy(ies->data, data->ie, data->ielen);
2310
2311 switch (data->ftype) {
2312 case CFG80211_BSS_FTYPE_BEACON:
2313 case CFG80211_BSS_FTYPE_S1G_BEACON:
2314 ies->from_beacon = true;
2315 fallthrough;
2316 case CFG80211_BSS_FTYPE_UNKNOWN:
2317 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2318 break;
2319 case CFG80211_BSS_FTYPE_PRESP:
2320 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2321 break;
2322 }
2323 rcu_assign_pointer(tmp.pub.ies, ies);
2324
2325 signal_valid = drv_data->chan == channel;
2326 spin_lock_bh(&rdev->bss_lock);
2327 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2328 if (!res)
2329 goto drop;
2330
2331 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2332
2333 if (data->bss_source == BSS_SOURCE_MBSSID) {
2334 /* this is a nontransmitting bss, we need to add it to
2335 * transmitting bss' list if it is not there
2336 */
2337 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2338 if (__cfg80211_unlink_bss(rdev, res)) {
2339 rdev->bss_generation++;
2340 res = NULL;
2341 }
2342 }
2343
2344 if (!res)
2345 goto drop;
2346 }
2347 spin_unlock_bh(&rdev->bss_lock);
2348
2349 trace_cfg80211_return_bss(&res->pub);
2350 /* __cfg80211_bss_update gives us a referenced result */
2351 return &res->pub;
2352
2353drop:
2354 spin_unlock_bh(&rdev->bss_lock);
2355 return NULL;
2356}
2357
2358static const struct element
2359*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2360 const struct element *mbssid_elem,
2361 const struct element *sub_elem)
2362{
2363 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2364 const struct element *next_mbssid;
2365 const struct element *next_sub;
2366
2367 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2368 mbssid_end,
2369 ielen - (mbssid_end - ie));
2370
2371 /*
2372 * If it is not the last subelement in current MBSSID IE or there isn't
2373 * a next MBSSID IE - profile is complete.
2374 */
2375 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2376 !next_mbssid)
2377 return NULL;
2378
2379 /* For any length error, just return NULL */
2380
2381 if (next_mbssid->datalen < 4)
2382 return NULL;
2383
2384 next_sub = (void *)&next_mbssid->data[1];
2385
2386 if (next_mbssid->data + next_mbssid->datalen <
2387 next_sub->data + next_sub->datalen)
2388 return NULL;
2389
2390 if (next_sub->id != 0 || next_sub->datalen < 2)
2391 return NULL;
2392
2393 /*
2394 * Check if the first element in the next sub element is a start
2395 * of a new profile
2396 */
2397 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2398 NULL : next_mbssid;
2399}
2400
2401size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2402 const struct element *mbssid_elem,
2403 const struct element *sub_elem,
2404 u8 *merged_ie, size_t max_copy_len)
2405{
2406 size_t copied_len = sub_elem->datalen;
2407 const struct element *next_mbssid;
2408
2409 if (sub_elem->datalen > max_copy_len)
2410 return 0;
2411
2412 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2413
2414 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2415 mbssid_elem,
2416 sub_elem))) {
2417 const struct element *next_sub = (void *)&next_mbssid->data[1];
2418
2419 if (copied_len + next_sub->datalen > max_copy_len)
2420 break;
2421 memcpy(merged_ie + copied_len, next_sub->data,
2422 next_sub->datalen);
2423 copied_len += next_sub->datalen;
2424 }
2425
2426 return copied_len;
2427}
2428EXPORT_SYMBOL(cfg80211_merge_profile);
2429
2430static void
2431cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2432 struct cfg80211_inform_single_bss_data *tx_data,
2433 struct cfg80211_bss *source_bss,
2434 gfp_t gfp)
2435{
2436 struct cfg80211_inform_single_bss_data data = {
2437 .drv_data = tx_data->drv_data,
2438 .ftype = tx_data->ftype,
2439 .tsf = tx_data->tsf,
2440 .beacon_interval = tx_data->beacon_interval,
2441 .source_bss = source_bss,
2442 .bss_source = BSS_SOURCE_MBSSID,
2443 .use_for = tx_data->use_for,
2444 .cannot_use_reasons = tx_data->cannot_use_reasons,
2445 };
2446 const u8 *mbssid_index_ie;
2447 const struct element *elem, *sub;
2448 u8 *new_ie, *profile;
2449 u64 seen_indices = 0;
2450 struct cfg80211_bss *bss;
2451
2452 if (!source_bss)
2453 return;
2454 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2455 tx_data->ie, tx_data->ielen))
2456 return;
2457 if (!wiphy->support_mbssid)
2458 return;
2459 if (wiphy->support_only_he_mbssid &&
2460 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2461 tx_data->ie, tx_data->ielen))
2462 return;
2463
2464 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2465 if (!new_ie)
2466 return;
2467
2468 profile = kmalloc(tx_data->ielen, gfp);
2469 if (!profile)
2470 goto out;
2471
2472 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2473 tx_data->ie, tx_data->ielen) {
2474 if (elem->datalen < 4)
2475 continue;
2476 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2477 continue;
2478 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2479 u8 profile_len;
2480
2481 if (sub->id != 0 || sub->datalen < 4) {
2482 /* not a valid BSS profile */
2483 continue;
2484 }
2485
2486 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2487 sub->data[1] != 2) {
2488 /* The first element within the Nontransmitted
2489 * BSSID Profile is not the Nontransmitted
2490 * BSSID Capability element.
2491 */
2492 continue;
2493 }
2494
2495 memset(profile, 0, tx_data->ielen);
2496 profile_len = cfg80211_merge_profile(tx_data->ie,
2497 tx_data->ielen,
2498 elem,
2499 sub,
2500 profile,
2501 tx_data->ielen);
2502
2503 /* found a Nontransmitted BSSID Profile */
2504 mbssid_index_ie = cfg80211_find_ie
2505 (WLAN_EID_MULTI_BSSID_IDX,
2506 profile, profile_len);
2507 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2508 mbssid_index_ie[2] == 0 ||
2509 mbssid_index_ie[2] > 46 ||
2510 mbssid_index_ie[2] >= (1 << elem->data[0])) {
2511 /* No valid Multiple BSSID-Index element */
2512 continue;
2513 }
2514
2515 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2516 /* We don't support legacy split of a profile */
2517 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2518 mbssid_index_ie[2]);
2519
2520 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2521
2522 data.bssid_index = mbssid_index_ie[2];
2523 data.max_bssid_indicator = elem->data[0];
2524
2525 cfg80211_gen_new_bssid(tx_data->bssid,
2526 data.max_bssid_indicator,
2527 data.bssid_index,
2528 data.bssid);
2529
2530 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2531 data.ie = new_ie;
2532 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2533 tx_data->ielen,
2534 profile,
2535 profile_len,
2536 new_ie,
2537 IEEE80211_MAX_DATA_LEN);
2538 if (!data.ielen)
2539 continue;
2540
2541 data.capability = get_unaligned_le16(profile + 2);
2542 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2543 if (!bss)
2544 break;
2545 cfg80211_put_bss(wiphy, bss);
2546 }
2547 }
2548
2549out:
2550 kfree(new_ie);
2551 kfree(profile);
2552}
2553
2554ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2555 size_t ieslen, u8 *data, size_t data_len,
2556 u8 frag_id)
2557{
2558 const struct element *next;
2559 ssize_t copied;
2560 u8 elem_datalen;
2561
2562 if (!elem)
2563 return -EINVAL;
2564
2565 /* elem might be invalid after the memmove */
2566 next = (void *)(elem->data + elem->datalen);
2567 elem_datalen = elem->datalen;
2568
2569 if (elem->id == WLAN_EID_EXTENSION) {
2570 copied = elem->datalen - 1;
2571
2572 if (data) {
2573 if (copied > data_len)
2574 return -ENOSPC;
2575
2576 memmove(data, elem->data + 1, copied);
2577 }
2578 } else {
2579 copied = elem->datalen;
2580
2581 if (data) {
2582 if (copied > data_len)
2583 return -ENOSPC;
2584
2585 memmove(data, elem->data, copied);
2586 }
2587 }
2588
2589 /* Fragmented elements must have 255 bytes */
2590 if (elem_datalen < 255)
2591 return copied;
2592
2593 for (elem = next;
2594 elem->data < ies + ieslen &&
2595 elem->data + elem->datalen <= ies + ieslen;
2596 elem = next) {
2597 /* elem might be invalid after the memmove */
2598 next = (void *)(elem->data + elem->datalen);
2599
2600 if (elem->id != frag_id)
2601 break;
2602
2603 elem_datalen = elem->datalen;
2604
2605 if (data) {
2606 if (copied + elem_datalen > data_len)
2607 return -ENOSPC;
2608
2609 memmove(data + copied, elem->data, elem_datalen);
2610 }
2611
2612 copied += elem_datalen;
2613
2614 /* Only the last fragment may be short */
2615 if (elem_datalen != 255)
2616 break;
2617 }
2618
2619 return copied;
2620}
2621EXPORT_SYMBOL(cfg80211_defragment_element);
2622
2623struct cfg80211_mle {
2624 struct ieee80211_multi_link_elem *mle;
2625 struct ieee80211_mle_per_sta_profile
2626 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2627 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2628
2629 u8 data[];
2630};
2631
2632static struct cfg80211_mle *
2633cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2634 gfp_t gfp)
2635{
2636 const struct element *elem;
2637 struct cfg80211_mle *res;
2638 size_t buf_len;
2639 ssize_t mle_len;
2640 u8 common_size, idx;
2641
2642 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2643 return NULL;
2644
2645 /* Required length for first defragmentation */
2646 buf_len = mle->datalen - 1;
2647 for_each_element(elem, mle->data + mle->datalen,
2648 ielen - sizeof(*mle) + mle->datalen) {
2649 if (elem->id != WLAN_EID_FRAGMENT)
2650 break;
2651
2652 buf_len += elem->datalen;
2653 }
2654
2655 res = kzalloc(struct_size(res, data, buf_len), gfp);
2656 if (!res)
2657 return NULL;
2658
2659 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2660 res->data, buf_len,
2661 WLAN_EID_FRAGMENT);
2662 if (mle_len < 0)
2663 goto error;
2664
2665 res->mle = (void *)res->data;
2666
2667 /* Find the sub-element area in the buffer */
2668 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2669 ie = res->data + common_size;
2670 ielen = mle_len - common_size;
2671
2672 idx = 0;
2673 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2674 ie, ielen) {
2675 res->sta_prof[idx] = (void *)elem->data;
2676 res->sta_prof_len[idx] = elem->datalen;
2677
2678 idx++;
2679 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2680 break;
2681 }
2682 if (!for_each_element_completed(elem, ie, ielen))
2683 goto error;
2684
2685 /* Defragment sta_info in-place */
2686 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2687 idx++) {
2688 if (res->sta_prof_len[idx] < 255)
2689 continue;
2690
2691 elem = (void *)res->sta_prof[idx] - 2;
2692
2693 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2694 res->sta_prof[idx + 1])
2695 buf_len = (u8 *)res->sta_prof[idx + 1] -
2696 (u8 *)res->sta_prof[idx];
2697 else
2698 buf_len = ielen + ie - (u8 *)elem;
2699
2700 res->sta_prof_len[idx] =
2701 cfg80211_defragment_element(elem,
2702 (u8 *)elem, buf_len,
2703 (u8 *)res->sta_prof[idx],
2704 buf_len,
2705 IEEE80211_MLE_SUBELEM_FRAGMENT);
2706 if (res->sta_prof_len[idx] < 0)
2707 goto error;
2708 }
2709
2710 return res;
2711
2712error:
2713 kfree(res);
2714 return NULL;
2715}
2716
2717struct tbtt_info_iter_data {
2718 const struct ieee80211_neighbor_ap_info *ap_info;
2719 u8 param_ch_count;
2720 u32 use_for;
2721 u8 mld_id, link_id;
2722 bool non_tx;
2723};
2724
2725static enum cfg80211_rnr_iter_ret
2726cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2727 const struct ieee80211_neighbor_ap_info *info,
2728 const u8 *tbtt_info, u8 tbtt_info_len)
2729{
2730 const struct ieee80211_rnr_mld_params *mld_params;
2731 struct tbtt_info_iter_data *data = _data;
2732 u8 link_id;
2733 bool non_tx = false;
2734
2735 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2736 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2737 mld_params)) {
2738 const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2739 (void *)tbtt_info;
2740
2741 non_tx = (tbtt_info_ge_11->bss_params &
2742 (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2743 IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2744 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2745 mld_params = &tbtt_info_ge_11->mld_params;
2746 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2747 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2748 mld_params = (void *)tbtt_info;
2749 else
2750 return RNR_ITER_CONTINUE;
2751
2752 link_id = le16_get_bits(mld_params->params,
2753 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2754
2755 if (data->mld_id != mld_params->mld_id)
2756 return RNR_ITER_CONTINUE;
2757
2758 if (data->link_id != link_id)
2759 return RNR_ITER_CONTINUE;
2760
2761 data->ap_info = info;
2762 data->param_ch_count =
2763 le16_get_bits(mld_params->params,
2764 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2765 data->non_tx = non_tx;
2766
2767 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2768 data->use_for = NL80211_BSS_USE_FOR_ALL;
2769 else
2770 data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2771 return RNR_ITER_BREAK;
2772}
2773
2774static u8
2775cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2776 const struct ieee80211_neighbor_ap_info **ap_info,
2777 u8 *param_ch_count, bool *non_tx)
2778{
2779 struct tbtt_info_iter_data data = {
2780 .mld_id = mld_id,
2781 .link_id = link_id,
2782 };
2783
2784 cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2785
2786 *ap_info = data.ap_info;
2787 *param_ch_count = data.param_ch_count;
2788 *non_tx = data.non_tx;
2789
2790 return data.use_for;
2791}
2792
2793static struct element *
2794cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2795 bool same_mld, u8 link_id, u8 bss_change_count,
2796 gfp_t gfp)
2797{
2798 const struct cfg80211_bss_ies *ies;
2799 struct ieee80211_neighbor_ap_info ap_info;
2800 struct ieee80211_tbtt_info_ge_11 tbtt_info;
2801 u32 short_ssid;
2802 const struct element *elem;
2803 struct element *res;
2804
2805 /*
2806 * We only generate the RNR to permit ML lookups. For that we do not
2807 * need an entry for the corresponding transmitting BSS, lets just skip
2808 * it even though it would be easy to add.
2809 */
2810 if (!same_mld)
2811 return NULL;
2812
2813 /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2814 rcu_read_lock();
2815 ies = rcu_dereference(source_bss->ies);
2816
2817 ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2818 ap_info.tbtt_info_hdr =
2819 u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2820 IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2821 u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2822
2823 ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2824
2825 /* operating class */
2826 elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2827 ies->data, ies->len);
2828 if (elem && elem->datalen >= 1) {
2829 ap_info.op_class = elem->data[0];
2830 } else {
2831 struct cfg80211_chan_def chandef;
2832
2833 /* The AP is not providing us with anything to work with. So
2834 * make up a somewhat reasonable operating class, but don't
2835 * bother with it too much as no one will ever use the
2836 * information.
2837 */
2838 cfg80211_chandef_create(&chandef, source_bss->channel,
2839 NL80211_CHAN_NO_HT);
2840
2841 if (!ieee80211_chandef_to_operating_class(&chandef,
2842 &ap_info.op_class))
2843 goto out_unlock;
2844 }
2845
2846 /* Just set TBTT offset and PSD 20 to invalid/unknown */
2847 tbtt_info.tbtt_offset = 255;
2848 tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2849
2850 memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2851 if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2852 goto out_unlock;
2853
2854 rcu_read_unlock();
2855
2856 tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2857
2858 tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2859
2860 if (is_mbssid) {
2861 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2862 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2863 }
2864
2865 tbtt_info.mld_params.mld_id = 0;
2866 tbtt_info.mld_params.params =
2867 le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2868 le16_encode_bits(bss_change_count,
2869 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2870
2871 res = kzalloc(struct_size(res, data,
2872 sizeof(ap_info) + ap_info.tbtt_info_len),
2873 gfp);
2874 if (!res)
2875 return NULL;
2876
2877 /* Copy the data */
2878 res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2879 res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2880 memcpy(res->data, &ap_info, sizeof(ap_info));
2881 memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2882
2883 return res;
2884
2885out_unlock:
2886 rcu_read_unlock();
2887 return NULL;
2888}
2889
2890static void
2891cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2892 struct cfg80211_inform_single_bss_data *tx_data,
2893 struct cfg80211_bss *source_bss,
2894 const struct element *elem,
2895 gfp_t gfp)
2896{
2897 struct cfg80211_inform_single_bss_data data = {
2898 .drv_data = tx_data->drv_data,
2899 .ftype = tx_data->ftype,
2900 .source_bss = source_bss,
2901 .bss_source = BSS_SOURCE_STA_PROFILE,
2902 };
2903 struct element *reporter_rnr = NULL;
2904 struct ieee80211_multi_link_elem *ml_elem;
2905 struct cfg80211_mle *mle;
2906 const struct element *ssid_elem;
2907 const u8 *ssid = NULL;
2908 size_t ssid_len = 0;
2909 u16 control;
2910 u8 ml_common_len;
2911 u8 *new_ie = NULL;
2912 struct cfg80211_bss *bss;
2913 u8 mld_id, reporter_link_id, bss_change_count;
2914 u16 seen_links = 0;
2915 u8 i;
2916
2917 if (!ieee80211_mle_type_ok(elem->data + 1,
2918 IEEE80211_ML_CONTROL_TYPE_BASIC,
2919 elem->datalen - 1))
2920 return;
2921
2922 ml_elem = (void *)(elem->data + 1);
2923 control = le16_to_cpu(ml_elem->control);
2924 ml_common_len = ml_elem->variable[0];
2925
2926 /* Must be present when transmitted by an AP (in a probe response) */
2927 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2928 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2929 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2930 return;
2931
2932 reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2933 bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2934
2935 /*
2936 * The MLD ID of the reporting AP is always zero. It is set if the AP
2937 * is part of an MBSSID set and will be non-zero for ML Elements
2938 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2939 * Draft P802.11be_D3.2, 35.3.4.2)
2940 */
2941 mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2942
2943 /* Fully defrag the ML element for sta information/profile iteration */
2944 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2945 if (!mle)
2946 return;
2947
2948 /* No point in doing anything if there is no per-STA profile */
2949 if (!mle->sta_prof[0])
2950 goto out;
2951
2952 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2953 if (!new_ie)
2954 goto out;
2955
2956 reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2957 u16_get_bits(control,
2958 IEEE80211_MLC_BASIC_PRES_MLD_ID),
2959 mld_id == 0, reporter_link_id,
2960 bss_change_count,
2961 gfp);
2962
2963 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, tx_data->ie,
2964 tx_data->ielen);
2965 if (ssid_elem) {
2966 ssid = ssid_elem->data;
2967 ssid_len = ssid_elem->datalen;
2968 }
2969
2970 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2971 const struct ieee80211_neighbor_ap_info *ap_info;
2972 enum nl80211_band band;
2973 u32 freq;
2974 const u8 *profile;
2975 ssize_t profile_len;
2976 u8 param_ch_count;
2977 u8 link_id, use_for;
2978 bool non_tx;
2979
2980 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2981 mle->sta_prof_len[i]))
2982 continue;
2983
2984 control = le16_to_cpu(mle->sta_prof[i]->control);
2985
2986 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2987 continue;
2988
2989 link_id = u16_get_bits(control,
2990 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2991 if (seen_links & BIT(link_id))
2992 break;
2993 seen_links |= BIT(link_id);
2994
2995 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2996 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2997 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2998 continue;
2999
3000 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
3001 data.beacon_interval =
3002 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
3003 data.tsf = tx_data->tsf +
3004 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
3005
3006 /* sta_info_len counts itself */
3007 profile = mle->sta_prof[i]->variable +
3008 mle->sta_prof[i]->sta_info_len - 1;
3009 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
3010 profile;
3011
3012 if (profile_len < 2)
3013 continue;
3014
3015 data.capability = get_unaligned_le16(profile);
3016 profile += 2;
3017 profile_len -= 2;
3018
3019 /* Find in RNR to look up channel information */
3020 use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
3021 tx_data->ielen,
3022 mld_id, link_id,
3023 &ap_info,
3024 ¶m_ch_count,
3025 &non_tx);
3026 if (!use_for)
3027 continue;
3028
3029 /*
3030 * As of 802.11be_D5.0, the specification does not give us any
3031 * way of discovering both the MaxBSSID and the Multiple-BSSID
3032 * Index. It does seem like the Multiple-BSSID Index element
3033 * may be provided, but section 9.4.2.45 explicitly forbids
3034 * including a Multiple-BSSID Element (in this case without any
3035 * subelements).
3036 * Without both pieces of information we cannot calculate the
3037 * reference BSSID, so simply ignore the BSS.
3038 */
3039 if (non_tx)
3040 continue;
3041
3042 /* We could sanity check the BSSID is included */
3043
3044 if (!ieee80211_operating_class_to_band(ap_info->op_class,
3045 &band))
3046 continue;
3047
3048 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
3049 data.channel = ieee80211_get_channel_khz(wiphy, freq);
3050
3051 /* Skip if RNR element specifies an unsupported channel */
3052 if (!data.channel)
3053 continue;
3054
3055 /* Skip if BSS entry generated from MBSSID or DIRECT source
3056 * frame data available already.
3057 */
3058 bss = cfg80211_get_bss(wiphy, data.channel, data.bssid, ssid,
3059 ssid_len, IEEE80211_BSS_TYPE_ANY,
3060 IEEE80211_PRIVACY_ANY);
3061 if (bss) {
3062 struct cfg80211_internal_bss *ibss = bss_from_pub(bss);
3063
3064 if (data.capability == bss->capability &&
3065 ibss->bss_source != BSS_SOURCE_STA_PROFILE) {
3066 cfg80211_put_bss(wiphy, bss);
3067 continue;
3068 }
3069 cfg80211_put_bss(wiphy, bss);
3070 }
3071
3072 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
3073 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
3074 use_for = 0;
3075 data.cannot_use_reasons =
3076 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
3077 }
3078 data.use_for = use_for;
3079
3080 /* Generate new elements */
3081 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
3082 data.ie = new_ie;
3083 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
3084 profile, profile_len,
3085 new_ie,
3086 IEEE80211_MAX_DATA_LEN);
3087 if (!data.ielen)
3088 continue;
3089
3090 /* The generated elements do not contain:
3091 * - Basic ML element
3092 * - A TBTT entry in the RNR for the transmitting AP
3093 *
3094 * This information is needed both internally and in userspace
3095 * as such, we should append it here.
3096 */
3097 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3098 IEEE80211_MAX_DATA_LEN)
3099 continue;
3100
3101 /* Copy the Basic Multi-Link element including the common
3102 * information, and then fix up the link ID and BSS param
3103 * change count.
3104 * Note that the ML element length has been verified and we
3105 * also checked that it contains the link ID.
3106 */
3107 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3108 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3109 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3110 memcpy(new_ie + data.ielen, ml_elem,
3111 sizeof(*ml_elem) + ml_common_len);
3112
3113 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3114 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3115 param_ch_count;
3116
3117 data.ielen += sizeof(*ml_elem) + ml_common_len;
3118
3119 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3120 if (data.ielen + sizeof(struct element) +
3121 reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3122 continue;
3123
3124 memcpy(new_ie + data.ielen, reporter_rnr,
3125 sizeof(struct element) + reporter_rnr->datalen);
3126 data.ielen += sizeof(struct element) +
3127 reporter_rnr->datalen;
3128 }
3129
3130 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3131 if (!bss)
3132 break;
3133 cfg80211_put_bss(wiphy, bss);
3134 }
3135
3136out:
3137 kfree(reporter_rnr);
3138 kfree(new_ie);
3139 kfree(mle);
3140}
3141
3142static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3143 struct cfg80211_inform_single_bss_data *tx_data,
3144 struct cfg80211_bss *source_bss,
3145 gfp_t gfp)
3146{
3147 const struct element *elem;
3148
3149 if (!source_bss)
3150 return;
3151
3152 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3153 return;
3154
3155 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3156 tx_data->ie, tx_data->ielen)
3157 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3158 elem, gfp);
3159}
3160
3161struct cfg80211_bss *
3162cfg80211_inform_bss_data(struct wiphy *wiphy,
3163 struct cfg80211_inform_bss *data,
3164 enum cfg80211_bss_frame_type ftype,
3165 const u8 *bssid, u64 tsf, u16 capability,
3166 u16 beacon_interval, const u8 *ie, size_t ielen,
3167 gfp_t gfp)
3168{
3169 struct cfg80211_inform_single_bss_data inform_data = {
3170 .drv_data = data,
3171 .ftype = ftype,
3172 .tsf = tsf,
3173 .capability = capability,
3174 .beacon_interval = beacon_interval,
3175 .ie = ie,
3176 .ielen = ielen,
3177 .use_for = data->restrict_use ?
3178 data->use_for :
3179 NL80211_BSS_USE_FOR_ALL,
3180 .cannot_use_reasons = data->cannot_use_reasons,
3181 };
3182 struct cfg80211_bss *res;
3183
3184 memcpy(inform_data.bssid, bssid, ETH_ALEN);
3185
3186 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3187 if (!res)
3188 return NULL;
3189
3190 /* don't do any further MBSSID/ML handling for S1G */
3191 if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3192 return res;
3193
3194 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3195
3196 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3197
3198 return res;
3199}
3200EXPORT_SYMBOL(cfg80211_inform_bss_data);
3201
3202struct cfg80211_bss *
3203cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3204 struct cfg80211_inform_bss *data,
3205 struct ieee80211_mgmt *mgmt, size_t len,
3206 gfp_t gfp)
3207{
3208 size_t min_hdr_len;
3209 struct ieee80211_ext *ext = NULL;
3210 enum cfg80211_bss_frame_type ftype;
3211 u16 beacon_interval;
3212 const u8 *bssid;
3213 u16 capability;
3214 const u8 *ie;
3215 size_t ielen;
3216 u64 tsf;
3217
3218 if (WARN_ON(!mgmt))
3219 return NULL;
3220
3221 if (WARN_ON(!wiphy))
3222 return NULL;
3223
3224 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3225 offsetof(struct ieee80211_mgmt, u.beacon.variable));
3226
3227 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3228
3229 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3230 ext = (void *) mgmt;
3231 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3232 min_hdr_len = offsetof(struct ieee80211_ext,
3233 u.s1g_short_beacon.variable);
3234 else
3235 min_hdr_len = offsetof(struct ieee80211_ext,
3236 u.s1g_beacon.variable);
3237 } else {
3238 /* same for beacons */
3239 min_hdr_len = offsetof(struct ieee80211_mgmt,
3240 u.probe_resp.variable);
3241 }
3242
3243 if (WARN_ON(len < min_hdr_len))
3244 return NULL;
3245
3246 ielen = len - min_hdr_len;
3247 ie = mgmt->u.probe_resp.variable;
3248 if (ext) {
3249 const struct ieee80211_s1g_bcn_compat_ie *compat;
3250 const struct element *elem;
3251
3252 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3253 ie = ext->u.s1g_short_beacon.variable;
3254 else
3255 ie = ext->u.s1g_beacon.variable;
3256
3257 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3258 if (!elem)
3259 return NULL;
3260 if (elem->datalen < sizeof(*compat))
3261 return NULL;
3262 compat = (void *)elem->data;
3263 bssid = ext->u.s1g_beacon.sa;
3264 capability = le16_to_cpu(compat->compat_info);
3265 beacon_interval = le16_to_cpu(compat->beacon_int);
3266 } else {
3267 bssid = mgmt->bssid;
3268 beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3269 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3270 }
3271
3272 tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3273
3274 if (ieee80211_is_probe_resp(mgmt->frame_control))
3275 ftype = CFG80211_BSS_FTYPE_PRESP;
3276 else if (ext)
3277 ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3278 else
3279 ftype = CFG80211_BSS_FTYPE_BEACON;
3280
3281 return cfg80211_inform_bss_data(wiphy, data, ftype,
3282 bssid, tsf, capability,
3283 beacon_interval, ie, ielen,
3284 gfp);
3285}
3286EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3287
3288void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3289{
3290 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3291
3292 if (!pub)
3293 return;
3294
3295 spin_lock_bh(&rdev->bss_lock);
3296 bss_ref_get(rdev, bss_from_pub(pub));
3297 spin_unlock_bh(&rdev->bss_lock);
3298}
3299EXPORT_SYMBOL(cfg80211_ref_bss);
3300
3301void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3302{
3303 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3304
3305 if (!pub)
3306 return;
3307
3308 spin_lock_bh(&rdev->bss_lock);
3309 bss_ref_put(rdev, bss_from_pub(pub));
3310 spin_unlock_bh(&rdev->bss_lock);
3311}
3312EXPORT_SYMBOL(cfg80211_put_bss);
3313
3314void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3315{
3316 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3317 struct cfg80211_internal_bss *bss, *tmp1;
3318 struct cfg80211_bss *nontrans_bss, *tmp;
3319
3320 if (WARN_ON(!pub))
3321 return;
3322
3323 bss = bss_from_pub(pub);
3324
3325 spin_lock_bh(&rdev->bss_lock);
3326 if (list_empty(&bss->list))
3327 goto out;
3328
3329 list_for_each_entry_safe(nontrans_bss, tmp,
3330 &pub->nontrans_list,
3331 nontrans_list) {
3332 tmp1 = bss_from_pub(nontrans_bss);
3333 if (__cfg80211_unlink_bss(rdev, tmp1))
3334 rdev->bss_generation++;
3335 }
3336
3337 if (__cfg80211_unlink_bss(rdev, bss))
3338 rdev->bss_generation++;
3339out:
3340 spin_unlock_bh(&rdev->bss_lock);
3341}
3342EXPORT_SYMBOL(cfg80211_unlink_bss);
3343
3344void cfg80211_bss_iter(struct wiphy *wiphy,
3345 struct cfg80211_chan_def *chandef,
3346 void (*iter)(struct wiphy *wiphy,
3347 struct cfg80211_bss *bss,
3348 void *data),
3349 void *iter_data)
3350{
3351 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3352 struct cfg80211_internal_bss *bss;
3353
3354 spin_lock_bh(&rdev->bss_lock);
3355
3356 list_for_each_entry(bss, &rdev->bss_list, list) {
3357 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3358 false))
3359 iter(wiphy, &bss->pub, iter_data);
3360 }
3361
3362 spin_unlock_bh(&rdev->bss_lock);
3363}
3364EXPORT_SYMBOL(cfg80211_bss_iter);
3365
3366void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3367 unsigned int link_id,
3368 struct ieee80211_channel *chan)
3369{
3370 struct wiphy *wiphy = wdev->wiphy;
3371 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3372 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3373 struct cfg80211_internal_bss *new = NULL;
3374 struct cfg80211_internal_bss *bss;
3375 struct cfg80211_bss *nontrans_bss;
3376 struct cfg80211_bss *tmp;
3377
3378 spin_lock_bh(&rdev->bss_lock);
3379
3380 /*
3381 * Some APs use CSA also for bandwidth changes, i.e., without actually
3382 * changing the control channel, so no need to update in such a case.
3383 */
3384 if (cbss->pub.channel == chan)
3385 goto done;
3386
3387 /* use transmitting bss */
3388 if (cbss->pub.transmitted_bss)
3389 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3390
3391 cbss->pub.channel = chan;
3392
3393 list_for_each_entry(bss, &rdev->bss_list, list) {
3394 if (!cfg80211_bss_type_match(bss->pub.capability,
3395 bss->pub.channel->band,
3396 wdev->conn_bss_type))
3397 continue;
3398
3399 if (bss == cbss)
3400 continue;
3401
3402 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3403 new = bss;
3404 break;
3405 }
3406 }
3407
3408 if (new) {
3409 /* to save time, update IEs for transmitting bss only */
3410 cfg80211_update_known_bss(rdev, cbss, new, false);
3411 new->pub.proberesp_ies = NULL;
3412 new->pub.beacon_ies = NULL;
3413
3414 list_for_each_entry_safe(nontrans_bss, tmp,
3415 &new->pub.nontrans_list,
3416 nontrans_list) {
3417 bss = bss_from_pub(nontrans_bss);
3418 if (__cfg80211_unlink_bss(rdev, bss))
3419 rdev->bss_generation++;
3420 }
3421
3422 WARN_ON(atomic_read(&new->hold));
3423 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3424 rdev->bss_generation++;
3425 }
3426 cfg80211_rehash_bss(rdev, cbss);
3427
3428 list_for_each_entry_safe(nontrans_bss, tmp,
3429 &cbss->pub.nontrans_list,
3430 nontrans_list) {
3431 bss = bss_from_pub(nontrans_bss);
3432 bss->pub.channel = chan;
3433 cfg80211_rehash_bss(rdev, bss);
3434 }
3435
3436done:
3437 spin_unlock_bh(&rdev->bss_lock);
3438}
3439
3440#ifdef CONFIG_CFG80211_WEXT
3441static struct cfg80211_registered_device *
3442cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3443{
3444 struct cfg80211_registered_device *rdev;
3445 struct net_device *dev;
3446
3447 ASSERT_RTNL();
3448
3449 dev = dev_get_by_index(net, ifindex);
3450 if (!dev)
3451 return ERR_PTR(-ENODEV);
3452 if (dev->ieee80211_ptr)
3453 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3454 else
3455 rdev = ERR_PTR(-ENODEV);
3456 dev_put(dev);
3457 return rdev;
3458}
3459
3460int cfg80211_wext_siwscan(struct net_device *dev,
3461 struct iw_request_info *info,
3462 union iwreq_data *wrqu, char *extra)
3463{
3464 struct cfg80211_registered_device *rdev;
3465 struct wiphy *wiphy;
3466 struct iw_scan_req *wreq = NULL;
3467 struct cfg80211_scan_request *creq;
3468 int i, err, n_channels = 0;
3469 enum nl80211_band band;
3470
3471 if (!netif_running(dev))
3472 return -ENETDOWN;
3473
3474 if (wrqu->data.length == sizeof(struct iw_scan_req))
3475 wreq = (struct iw_scan_req *)extra;
3476
3477 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3478
3479 if (IS_ERR(rdev))
3480 return PTR_ERR(rdev);
3481
3482 if (rdev->scan_req || rdev->scan_msg)
3483 return -EBUSY;
3484
3485 wiphy = &rdev->wiphy;
3486
3487 /* Determine number of channels, needed to allocate creq */
3488 if (wreq && wreq->num_channels) {
3489 /* Passed from userspace so should be checked */
3490 if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES))
3491 return -EINVAL;
3492 n_channels = wreq->num_channels;
3493 } else {
3494 n_channels = ieee80211_get_num_supported_channels(wiphy);
3495 }
3496
3497 creq = kzalloc(struct_size(creq, channels, n_channels) +
3498 sizeof(struct cfg80211_ssid),
3499 GFP_ATOMIC);
3500 if (!creq)
3501 return -ENOMEM;
3502
3503 creq->wiphy = wiphy;
3504 creq->wdev = dev->ieee80211_ptr;
3505 /* SSIDs come after channels */
3506 creq->ssids = (void *)creq + struct_size(creq, channels, n_channels);
3507 creq->n_channels = n_channels;
3508 creq->n_ssids = 1;
3509 creq->scan_start = jiffies;
3510
3511 /* translate "Scan on frequencies" request */
3512 i = 0;
3513 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3514 int j;
3515
3516 if (!wiphy->bands[band])
3517 continue;
3518
3519 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3520 struct ieee80211_channel *chan;
3521
3522 /* ignore disabled channels */
3523 chan = &wiphy->bands[band]->channels[j];
3524 if (chan->flags & IEEE80211_CHAN_DISABLED ||
3525 !cfg80211_wdev_channel_allowed(creq->wdev, chan))
3526 continue;
3527
3528 /* If we have a wireless request structure and the
3529 * wireless request specifies frequencies, then search
3530 * for the matching hardware channel.
3531 */
3532 if (wreq && wreq->num_channels) {
3533 int k;
3534 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3535 for (k = 0; k < wreq->num_channels; k++) {
3536 struct iw_freq *freq =
3537 &wreq->channel_list[k];
3538 int wext_freq =
3539 cfg80211_wext_freq(freq);
3540
3541 if (wext_freq == wiphy_freq)
3542 goto wext_freq_found;
3543 }
3544 goto wext_freq_not_found;
3545 }
3546
3547 wext_freq_found:
3548 creq->channels[i] = &wiphy->bands[band]->channels[j];
3549 i++;
3550 wext_freq_not_found: ;
3551 }
3552 }
3553 /* No channels found? */
3554 if (!i) {
3555 err = -EINVAL;
3556 goto out;
3557 }
3558
3559 /* Set real number of channels specified in creq->channels[] */
3560 creq->n_channels = i;
3561
3562 /* translate "Scan for SSID" request */
3563 if (wreq) {
3564 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3565 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3566 err = -EINVAL;
3567 goto out;
3568 }
3569 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3570 creq->ssids[0].ssid_len = wreq->essid_len;
3571 }
3572 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) {
3573 creq->ssids = NULL;
3574 creq->n_ssids = 0;
3575 }
3576 }
3577
3578 for (i = 0; i < NUM_NL80211_BANDS; i++)
3579 if (wiphy->bands[i])
3580 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3581
3582 eth_broadcast_addr(creq->bssid);
3583
3584 wiphy_lock(&rdev->wiphy);
3585
3586 rdev->scan_req = creq;
3587 err = rdev_scan(rdev, creq);
3588 if (err) {
3589 rdev->scan_req = NULL;
3590 /* creq will be freed below */
3591 } else {
3592 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3593 /* creq now owned by driver */
3594 creq = NULL;
3595 dev_hold(dev);
3596 }
3597 wiphy_unlock(&rdev->wiphy);
3598 out:
3599 kfree(creq);
3600 return err;
3601}
3602
3603static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3604 const struct cfg80211_bss_ies *ies,
3605 char *current_ev, char *end_buf)
3606{
3607 const u8 *pos, *end, *next;
3608 struct iw_event iwe;
3609
3610 if (!ies)
3611 return current_ev;
3612
3613 /*
3614 * If needed, fragment the IEs buffer (at IE boundaries) into short
3615 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3616 */
3617 pos = ies->data;
3618 end = pos + ies->len;
3619
3620 while (end - pos > IW_GENERIC_IE_MAX) {
3621 next = pos + 2 + pos[1];
3622 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3623 next = next + 2 + next[1];
3624
3625 memset(&iwe, 0, sizeof(iwe));
3626 iwe.cmd = IWEVGENIE;
3627 iwe.u.data.length = next - pos;
3628 current_ev = iwe_stream_add_point_check(info, current_ev,
3629 end_buf, &iwe,
3630 (void *)pos);
3631 if (IS_ERR(current_ev))
3632 return current_ev;
3633 pos = next;
3634 }
3635
3636 if (end > pos) {
3637 memset(&iwe, 0, sizeof(iwe));
3638 iwe.cmd = IWEVGENIE;
3639 iwe.u.data.length = end - pos;
3640 current_ev = iwe_stream_add_point_check(info, current_ev,
3641 end_buf, &iwe,
3642 (void *)pos);
3643 if (IS_ERR(current_ev))
3644 return current_ev;
3645 }
3646
3647 return current_ev;
3648}
3649
3650static char *
3651ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3652 struct cfg80211_internal_bss *bss, char *current_ev,
3653 char *end_buf)
3654{
3655 const struct cfg80211_bss_ies *ies;
3656 struct iw_event iwe;
3657 const u8 *ie;
3658 u8 buf[50];
3659 u8 *cfg, *p, *tmp;
3660 int rem, i, sig;
3661 bool ismesh = false;
3662
3663 memset(&iwe, 0, sizeof(iwe));
3664 iwe.cmd = SIOCGIWAP;
3665 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3666 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3667 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3668 IW_EV_ADDR_LEN);
3669 if (IS_ERR(current_ev))
3670 return current_ev;
3671
3672 memset(&iwe, 0, sizeof(iwe));
3673 iwe.cmd = SIOCGIWFREQ;
3674 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3675 iwe.u.freq.e = 0;
3676 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3677 IW_EV_FREQ_LEN);
3678 if (IS_ERR(current_ev))
3679 return current_ev;
3680
3681 memset(&iwe, 0, sizeof(iwe));
3682 iwe.cmd = SIOCGIWFREQ;
3683 iwe.u.freq.m = bss->pub.channel->center_freq;
3684 iwe.u.freq.e = 6;
3685 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3686 IW_EV_FREQ_LEN);
3687 if (IS_ERR(current_ev))
3688 return current_ev;
3689
3690 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3691 memset(&iwe, 0, sizeof(iwe));
3692 iwe.cmd = IWEVQUAL;
3693 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3694 IW_QUAL_NOISE_INVALID |
3695 IW_QUAL_QUAL_UPDATED;
3696 switch (wiphy->signal_type) {
3697 case CFG80211_SIGNAL_TYPE_MBM:
3698 sig = bss->pub.signal / 100;
3699 iwe.u.qual.level = sig;
3700 iwe.u.qual.updated |= IW_QUAL_DBM;
3701 if (sig < -110) /* rather bad */
3702 sig = -110;
3703 else if (sig > -40) /* perfect */
3704 sig = -40;
3705 /* will give a range of 0 .. 70 */
3706 iwe.u.qual.qual = sig + 110;
3707 break;
3708 case CFG80211_SIGNAL_TYPE_UNSPEC:
3709 iwe.u.qual.level = bss->pub.signal;
3710 /* will give range 0 .. 100 */
3711 iwe.u.qual.qual = bss->pub.signal;
3712 break;
3713 default:
3714 /* not reached */
3715 break;
3716 }
3717 current_ev = iwe_stream_add_event_check(info, current_ev,
3718 end_buf, &iwe,
3719 IW_EV_QUAL_LEN);
3720 if (IS_ERR(current_ev))
3721 return current_ev;
3722 }
3723
3724 memset(&iwe, 0, sizeof(iwe));
3725 iwe.cmd = SIOCGIWENCODE;
3726 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3727 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3728 else
3729 iwe.u.data.flags = IW_ENCODE_DISABLED;
3730 iwe.u.data.length = 0;
3731 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3732 &iwe, "");
3733 if (IS_ERR(current_ev))
3734 return current_ev;
3735
3736 rcu_read_lock();
3737 ies = rcu_dereference(bss->pub.ies);
3738 rem = ies->len;
3739 ie = ies->data;
3740
3741 while (rem >= 2) {
3742 /* invalid data */
3743 if (ie[1] > rem - 2)
3744 break;
3745
3746 switch (ie[0]) {
3747 case WLAN_EID_SSID:
3748 memset(&iwe, 0, sizeof(iwe));
3749 iwe.cmd = SIOCGIWESSID;
3750 iwe.u.data.length = ie[1];
3751 iwe.u.data.flags = 1;
3752 current_ev = iwe_stream_add_point_check(info,
3753 current_ev,
3754 end_buf, &iwe,
3755 (u8 *)ie + 2);
3756 if (IS_ERR(current_ev))
3757 goto unlock;
3758 break;
3759 case WLAN_EID_MESH_ID:
3760 memset(&iwe, 0, sizeof(iwe));
3761 iwe.cmd = SIOCGIWESSID;
3762 iwe.u.data.length = ie[1];
3763 iwe.u.data.flags = 1;
3764 current_ev = iwe_stream_add_point_check(info,
3765 current_ev,
3766 end_buf, &iwe,
3767 (u8 *)ie + 2);
3768 if (IS_ERR(current_ev))
3769 goto unlock;
3770 break;
3771 case WLAN_EID_MESH_CONFIG:
3772 ismesh = true;
3773 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3774 break;
3775 cfg = (u8 *)ie + 2;
3776 memset(&iwe, 0, sizeof(iwe));
3777 iwe.cmd = IWEVCUSTOM;
3778 iwe.u.data.length = sprintf(buf,
3779 "Mesh Network Path Selection Protocol ID: 0x%02X",
3780 cfg[0]);
3781 current_ev = iwe_stream_add_point_check(info,
3782 current_ev,
3783 end_buf,
3784 &iwe, buf);
3785 if (IS_ERR(current_ev))
3786 goto unlock;
3787 iwe.u.data.length = sprintf(buf,
3788 "Path Selection Metric ID: 0x%02X",
3789 cfg[1]);
3790 current_ev = iwe_stream_add_point_check(info,
3791 current_ev,
3792 end_buf,
3793 &iwe, buf);
3794 if (IS_ERR(current_ev))
3795 goto unlock;
3796 iwe.u.data.length = sprintf(buf,
3797 "Congestion Control Mode ID: 0x%02X",
3798 cfg[2]);
3799 current_ev = iwe_stream_add_point_check(info,
3800 current_ev,
3801 end_buf,
3802 &iwe, buf);
3803 if (IS_ERR(current_ev))
3804 goto unlock;
3805 iwe.u.data.length = sprintf(buf,
3806 "Synchronization ID: 0x%02X",
3807 cfg[3]);
3808 current_ev = iwe_stream_add_point_check(info,
3809 current_ev,
3810 end_buf,
3811 &iwe, buf);
3812 if (IS_ERR(current_ev))
3813 goto unlock;
3814 iwe.u.data.length = sprintf(buf,
3815 "Authentication ID: 0x%02X",
3816 cfg[4]);
3817 current_ev = iwe_stream_add_point_check(info,
3818 current_ev,
3819 end_buf,
3820 &iwe, buf);
3821 if (IS_ERR(current_ev))
3822 goto unlock;
3823 iwe.u.data.length = sprintf(buf,
3824 "Formation Info: 0x%02X",
3825 cfg[5]);
3826 current_ev = iwe_stream_add_point_check(info,
3827 current_ev,
3828 end_buf,
3829 &iwe, buf);
3830 if (IS_ERR(current_ev))
3831 goto unlock;
3832 iwe.u.data.length = sprintf(buf,
3833 "Capabilities: 0x%02X",
3834 cfg[6]);
3835 current_ev = iwe_stream_add_point_check(info,
3836 current_ev,
3837 end_buf,
3838 &iwe, buf);
3839 if (IS_ERR(current_ev))
3840 goto unlock;
3841 break;
3842 case WLAN_EID_SUPP_RATES:
3843 case WLAN_EID_EXT_SUPP_RATES:
3844 /* display all supported rates in readable format */
3845 p = current_ev + iwe_stream_lcp_len(info);
3846
3847 memset(&iwe, 0, sizeof(iwe));
3848 iwe.cmd = SIOCGIWRATE;
3849 /* Those two flags are ignored... */
3850 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3851
3852 for (i = 0; i < ie[1]; i++) {
3853 iwe.u.bitrate.value =
3854 ((ie[i + 2] & 0x7f) * 500000);
3855 tmp = p;
3856 p = iwe_stream_add_value(info, current_ev, p,
3857 end_buf, &iwe,
3858 IW_EV_PARAM_LEN);
3859 if (p == tmp) {
3860 current_ev = ERR_PTR(-E2BIG);
3861 goto unlock;
3862 }
3863 }
3864 current_ev = p;
3865 break;
3866 }
3867 rem -= ie[1] + 2;
3868 ie += ie[1] + 2;
3869 }
3870
3871 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3872 ismesh) {
3873 memset(&iwe, 0, sizeof(iwe));
3874 iwe.cmd = SIOCGIWMODE;
3875 if (ismesh)
3876 iwe.u.mode = IW_MODE_MESH;
3877 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3878 iwe.u.mode = IW_MODE_MASTER;
3879 else
3880 iwe.u.mode = IW_MODE_ADHOC;
3881 current_ev = iwe_stream_add_event_check(info, current_ev,
3882 end_buf, &iwe,
3883 IW_EV_UINT_LEN);
3884 if (IS_ERR(current_ev))
3885 goto unlock;
3886 }
3887
3888 memset(&iwe, 0, sizeof(iwe));
3889 iwe.cmd = IWEVCUSTOM;
3890 iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3891 (unsigned long long)(ies->tsf));
3892 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3893 &iwe, buf);
3894 if (IS_ERR(current_ev))
3895 goto unlock;
3896 memset(&iwe, 0, sizeof(iwe));
3897 iwe.cmd = IWEVCUSTOM;
3898 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3899 elapsed_jiffies_msecs(bss->ts));
3900 current_ev = iwe_stream_add_point_check(info, current_ev,
3901 end_buf, &iwe, buf);
3902 if (IS_ERR(current_ev))
3903 goto unlock;
3904
3905 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3906
3907 unlock:
3908 rcu_read_unlock();
3909 return current_ev;
3910}
3911
3912
3913static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3914 struct iw_request_info *info,
3915 char *buf, size_t len)
3916{
3917 char *current_ev = buf;
3918 char *end_buf = buf + len;
3919 struct cfg80211_internal_bss *bss;
3920 int err = 0;
3921
3922 spin_lock_bh(&rdev->bss_lock);
3923 cfg80211_bss_expire(rdev);
3924
3925 list_for_each_entry(bss, &rdev->bss_list, list) {
3926 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3927 err = -E2BIG;
3928 break;
3929 }
3930 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3931 current_ev, end_buf);
3932 if (IS_ERR(current_ev)) {
3933 err = PTR_ERR(current_ev);
3934 break;
3935 }
3936 }
3937 spin_unlock_bh(&rdev->bss_lock);
3938
3939 if (err)
3940 return err;
3941 return current_ev - buf;
3942}
3943
3944
3945int cfg80211_wext_giwscan(struct net_device *dev,
3946 struct iw_request_info *info,
3947 union iwreq_data *wrqu, char *extra)
3948{
3949 struct iw_point *data = &wrqu->data;
3950 struct cfg80211_registered_device *rdev;
3951 int res;
3952
3953 if (!netif_running(dev))
3954 return -ENETDOWN;
3955
3956 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3957
3958 if (IS_ERR(rdev))
3959 return PTR_ERR(rdev);
3960
3961 if (rdev->scan_req || rdev->scan_msg)
3962 return -EAGAIN;
3963
3964 res = ieee80211_scan_results(rdev, info, extra, data->length);
3965 data->length = 0;
3966 if (res >= 0) {
3967 data->length = res;
3968 res = 0;
3969 }
3970
3971 return res;
3972}
3973#endif