Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1#include <linux/export.h>
   2#include <linux/bvec.h>
 
   3#include <linux/uio.h>
   4#include <linux/pagemap.h>
 
   5#include <linux/slab.h>
   6#include <linux/vmalloc.h>
   7#include <linux/splice.h>
   8#include <net/checksum.h>
   9
  10#define PIPE_PARANOIA /* for now */
  11
  12#define iterate_iovec(i, n, __v, __p, skip, STEP) {	\
  13	size_t left;					\
  14	size_t wanted = n;				\
  15	__p = i->iov;					\
  16	__v.iov_len = min(n, __p->iov_len - skip);	\
  17	if (likely(__v.iov_len)) {			\
  18		__v.iov_base = __p->iov_base + skip;	\
  19		left = (STEP);				\
  20		__v.iov_len -= left;			\
  21		skip += __v.iov_len;			\
  22		n -= __v.iov_len;			\
  23	} else {					\
  24		left = 0;				\
  25	}						\
  26	while (unlikely(!left && n)) {			\
  27		__p++;					\
  28		__v.iov_len = min(n, __p->iov_len);	\
  29		if (unlikely(!__v.iov_len))		\
  30			continue;			\
  31		__v.iov_base = __p->iov_base;		\
  32		left = (STEP);				\
  33		__v.iov_len -= left;			\
  34		skip = __v.iov_len;			\
  35		n -= __v.iov_len;			\
  36	}						\
  37	n = wanted - n;					\
  38}
  39
  40#define iterate_kvec(i, n, __v, __p, skip, STEP) {	\
  41	size_t wanted = n;				\
  42	__p = i->kvec;					\
  43	__v.iov_len = min(n, __p->iov_len - skip);	\
  44	if (likely(__v.iov_len)) {			\
  45		__v.iov_base = __p->iov_base + skip;	\
  46		(void)(STEP);				\
  47		skip += __v.iov_len;			\
  48		n -= __v.iov_len;			\
  49	}						\
  50	while (unlikely(n)) {				\
  51		__p++;					\
  52		__v.iov_len = min(n, __p->iov_len);	\
  53		if (unlikely(!__v.iov_len))		\
  54			continue;			\
  55		__v.iov_base = __p->iov_base;		\
  56		(void)(STEP);				\
  57		skip = __v.iov_len;			\
  58		n -= __v.iov_len;			\
  59	}						\
  60	n = wanted;					\
  61}
  62
  63#define iterate_bvec(i, n, __v, __bi, skip, STEP) {	\
  64	struct bvec_iter __start;			\
  65	__start.bi_size = n;				\
  66	__start.bi_bvec_done = skip;			\
  67	__start.bi_idx = 0;				\
  68	for_each_bvec(__v, i->bvec, __bi, __start) {	\
  69		if (!__v.bv_len)			\
  70			continue;			\
  71		(void)(STEP);				\
  72	}						\
  73}
  74
  75#define iterate_all_kinds(i, n, v, I, B, K) {			\
  76	if (likely(n)) {					\
  77		size_t skip = i->iov_offset;			\
  78		if (unlikely(i->type & ITER_BVEC)) {		\
  79			struct bio_vec v;			\
  80			struct bvec_iter __bi;			\
  81			iterate_bvec(i, n, v, __bi, skip, (B))	\
  82		} else if (unlikely(i->type & ITER_KVEC)) {	\
  83			const struct kvec *kvec;		\
  84			struct kvec v;				\
  85			iterate_kvec(i, n, v, kvec, skip, (K))	\
  86		} else {					\
  87			const struct iovec *iov;		\
  88			struct iovec v;				\
  89			iterate_iovec(i, n, v, iov, skip, (I))	\
  90		}						\
  91	}							\
  92}
  93
  94#define iterate_and_advance(i, n, v, I, B, K) {			\
  95	if (unlikely(i->count < n))				\
  96		n = i->count;					\
  97	if (i->count) {						\
  98		size_t skip = i->iov_offset;			\
  99		if (unlikely(i->type & ITER_BVEC)) {		\
 100			const struct bio_vec *bvec = i->bvec;	\
 101			struct bio_vec v;			\
 102			struct bvec_iter __bi;			\
 103			iterate_bvec(i, n, v, __bi, skip, (B))	\
 104			i->bvec = __bvec_iter_bvec(i->bvec, __bi);	\
 105			i->nr_segs -= i->bvec - bvec;		\
 106			skip = __bi.bi_bvec_done;		\
 107		} else if (unlikely(i->type & ITER_KVEC)) {	\
 108			const struct kvec *kvec;		\
 109			struct kvec v;				\
 110			iterate_kvec(i, n, v, kvec, skip, (K))	\
 111			if (skip == kvec->iov_len) {		\
 112				kvec++;				\
 113				skip = 0;			\
 114			}					\
 115			i->nr_segs -= kvec - i->kvec;		\
 116			i->kvec = kvec;				\
 117		} else {					\
 118			const struct iovec *iov;		\
 119			struct iovec v;				\
 120			iterate_iovec(i, n, v, iov, skip, (I))	\
 121			if (skip == iov->iov_len) {		\
 122				iov++;				\
 123				skip = 0;			\
 124			}					\
 125			i->nr_segs -= iov - i->iov;		\
 126			i->iov = iov;				\
 127		}						\
 128		i->count -= n;					\
 129		i->iov_offset = skip;				\
 130	}							\
 131}
 132
 133static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
 134			 struct iov_iter *i)
 
 135{
 136	size_t skip, copy, left, wanted;
 137	const struct iovec *iov;
 138	char __user *buf;
 139	void *kaddr, *from;
 140
 141	if (unlikely(bytes > i->count))
 142		bytes = i->count;
 143
 144	if (unlikely(!bytes))
 145		return 0;
 146
 147	wanted = bytes;
 148	iov = i->iov;
 149	skip = i->iov_offset;
 150	buf = iov->iov_base + skip;
 151	copy = min(bytes, iov->iov_len - skip);
 152
 153	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
 154		kaddr = kmap_atomic(page);
 155		from = kaddr + offset;
 156
 157		/* first chunk, usually the only one */
 158		left = __copy_to_user_inatomic(buf, from, copy);
 159		copy -= left;
 160		skip += copy;
 161		from += copy;
 162		bytes -= copy;
 163
 164		while (unlikely(!left && bytes)) {
 165			iov++;
 166			buf = iov->iov_base;
 167			copy = min(bytes, iov->iov_len);
 168			left = __copy_to_user_inatomic(buf, from, copy);
 169			copy -= left;
 170			skip = copy;
 171			from += copy;
 172			bytes -= copy;
 173		}
 174		if (likely(!bytes)) {
 175			kunmap_atomic(kaddr);
 176			goto done;
 177		}
 178		offset = from - kaddr;
 179		buf += copy;
 180		kunmap_atomic(kaddr);
 181		copy = min(bytes, iov->iov_len - skip);
 182	}
 183	/* Too bad - revert to non-atomic kmap */
 184
 185	kaddr = kmap(page);
 186	from = kaddr + offset;
 187	left = __copy_to_user(buf, from, copy);
 188	copy -= left;
 189	skip += copy;
 190	from += copy;
 191	bytes -= copy;
 192	while (unlikely(!left && bytes)) {
 193		iov++;
 194		buf = iov->iov_base;
 195		copy = min(bytes, iov->iov_len);
 196		left = __copy_to_user(buf, from, copy);
 197		copy -= left;
 198		skip = copy;
 199		from += copy;
 200		bytes -= copy;
 201	}
 202	kunmap(page);
 203
 204done:
 205	if (skip == iov->iov_len) {
 206		iov++;
 207		skip = 0;
 208	}
 209	i->count -= wanted - bytes;
 210	i->nr_segs -= iov - i->iov;
 211	i->iov = iov;
 212	i->iov_offset = skip;
 213	return wanted - bytes;
 214}
 215
 216static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
 217			 struct iov_iter *i)
 
 218{
 219	size_t skip, copy, left, wanted;
 220	const struct iovec *iov;
 221	char __user *buf;
 222	void *kaddr, *to;
 223
 224	if (unlikely(bytes > i->count))
 225		bytes = i->count;
 226
 227	if (unlikely(!bytes))
 228		return 0;
 
 
 229
 230	wanted = bytes;
 231	iov = i->iov;
 232	skip = i->iov_offset;
 233	buf = iov->iov_base + skip;
 234	copy = min(bytes, iov->iov_len - skip);
 235
 236	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
 237		kaddr = kmap_atomic(page);
 238		to = kaddr + offset;
 239
 240		/* first chunk, usually the only one */
 241		left = __copy_from_user_inatomic(to, buf, copy);
 242		copy -= left;
 243		skip += copy;
 244		to += copy;
 245		bytes -= copy;
 246
 247		while (unlikely(!left && bytes)) {
 248			iov++;
 249			buf = iov->iov_base;
 250			copy = min(bytes, iov->iov_len);
 251			left = __copy_from_user_inatomic(to, buf, copy);
 252			copy -= left;
 253			skip = copy;
 254			to += copy;
 255			bytes -= copy;
 256		}
 257		if (likely(!bytes)) {
 258			kunmap_atomic(kaddr);
 259			goto done;
 260		}
 261		offset = to - kaddr;
 262		buf += copy;
 263		kunmap_atomic(kaddr);
 264		copy = min(bytes, iov->iov_len - skip);
 265	}
 266	/* Too bad - revert to non-atomic kmap */
 267
 268	kaddr = kmap(page);
 269	to = kaddr + offset;
 270	left = __copy_from_user(to, buf, copy);
 271	copy -= left;
 272	skip += copy;
 273	to += copy;
 274	bytes -= copy;
 275	while (unlikely(!left && bytes)) {
 276		iov++;
 277		buf = iov->iov_base;
 278		copy = min(bytes, iov->iov_len);
 279		left = __copy_from_user(to, buf, copy);
 280		copy -= left;
 281		skip = copy;
 282		to += copy;
 283		bytes -= copy;
 284	}
 285	kunmap(page);
 286
 287done:
 288	if (skip == iov->iov_len) {
 289		iov++;
 290		skip = 0;
 291	}
 292	i->count -= wanted - bytes;
 293	i->nr_segs -= iov - i->iov;
 294	i->iov = iov;
 295	i->iov_offset = skip;
 296	return wanted - bytes;
 297}
 298
 299#ifdef PIPE_PARANOIA
 300static bool sanity(const struct iov_iter *i)
 301{
 302	struct pipe_inode_info *pipe = i->pipe;
 303	int idx = i->idx;
 304	int next = pipe->curbuf + pipe->nrbufs;
 305	if (i->iov_offset) {
 306		struct pipe_buffer *p;
 307		if (unlikely(!pipe->nrbufs))
 308			goto Bad;	// pipe must be non-empty
 309		if (unlikely(idx != ((next - 1) & (pipe->buffers - 1))))
 310			goto Bad;	// must be at the last buffer...
 311
 312		p = &pipe->bufs[idx];
 313		if (unlikely(p->offset + p->len != i->iov_offset))
 314			goto Bad;	// ... at the end of segment
 315	} else {
 316		if (idx != (next & (pipe->buffers - 1)))
 317			goto Bad;	// must be right after the last buffer
 318	}
 319	return true;
 320Bad:
 321	printk(KERN_ERR "idx = %d, offset = %zd\n", i->idx, i->iov_offset);
 322	printk(KERN_ERR "curbuf = %d, nrbufs = %d, buffers = %d\n",
 323			pipe->curbuf, pipe->nrbufs, pipe->buffers);
 324	for (idx = 0; idx < pipe->buffers; idx++)
 325		printk(KERN_ERR "[%p %p %d %d]\n",
 326			pipe->bufs[idx].ops,
 327			pipe->bufs[idx].page,
 328			pipe->bufs[idx].offset,
 329			pipe->bufs[idx].len);
 330	WARN_ON(1);
 331	return false;
 332}
 333#else
 334#define sanity(i) true
 335#endif
 336
 337static inline int next_idx(int idx, struct pipe_inode_info *pipe)
 
 
 338{
 339	return (idx + 1) & (pipe->buffers - 1);
 
 340}
 341
 342static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
 343			 struct iov_iter *i)
 
 344{
 345	struct pipe_inode_info *pipe = i->pipe;
 346	struct pipe_buffer *buf;
 347	size_t off;
 348	int idx;
 349
 350	if (unlikely(bytes > i->count))
 351		bytes = i->count;
 352
 353	if (unlikely(!bytes))
 354		return 0;
 355
 356	if (!sanity(i))
 357		return 0;
 358
 359	off = i->iov_offset;
 360	idx = i->idx;
 361	buf = &pipe->bufs[idx];
 362	if (off) {
 363		if (offset == off && buf->page == page) {
 364			/* merge with the last one */
 365			buf->len += bytes;
 366			i->iov_offset += bytes;
 367			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368		}
 369		idx = next_idx(idx, pipe);
 370		buf = &pipe->bufs[idx];
 371	}
 372	if (idx == pipe->curbuf && pipe->nrbufs)
 373		return 0;
 374	pipe->nrbufs++;
 375	buf->ops = &page_cache_pipe_buf_ops;
 376	get_page(buf->page = page);
 377	buf->offset = offset;
 378	buf->len = bytes;
 379	i->iov_offset = offset + bytes;
 380	i->idx = idx;
 381out:
 382	i->count -= bytes;
 383	return bytes;
 384}
 
 385
 386/*
 387 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
 388 * bytes.  For each iovec, fault in each page that constitutes the iovec.
 
 389 *
 390 * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
 391 * because it is an invalid address).
 
 
 
 
 
 
 392 */
 393int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
 394{
 395	size_t skip = i->iov_offset;
 396	const struct iovec *iov;
 397	int err;
 398	struct iovec v;
 399
 400	if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
 401		iterate_iovec(i, bytes, v, iov, skip, ({
 402			err = fault_in_pages_readable(v.iov_base, v.iov_len);
 403			if (unlikely(err))
 404			return err;
 405		0;}))
 
 
 
 
 
 
 
 
 
 
 
 406	}
 407	return 0;
 408}
 409EXPORT_SYMBOL(iov_iter_fault_in_readable);
 410
 411void iov_iter_init(struct iov_iter *i, int direction,
 412			const struct iovec *iov, unsigned long nr_segs,
 413			size_t count)
 414{
 415	/* It will get better.  Eventually... */
 416	if (segment_eq(get_fs(), KERNEL_DS)) {
 417		direction |= ITER_KVEC;
 418		i->type = direction;
 419		i->kvec = (struct kvec *)iov;
 420	} else {
 421		i->type = direction;
 422		i->iov = iov;
 423	}
 424	i->nr_segs = nr_segs;
 425	i->iov_offset = 0;
 426	i->count = count;
 427}
 428EXPORT_SYMBOL(iov_iter_init);
 429
 430static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
 431{
 432	char *from = kmap_atomic(page);
 433	memcpy(to, from + offset, len);
 434	kunmap_atomic(from);
 
 
 
 435}
 
 436
 437static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
 
 
 
 438{
 439	char *to = kmap_atomic(page);
 440	memcpy(to + offset, from, len);
 441	kunmap_atomic(to);
 
 
 
 442}
 443
 444static void memzero_page(struct page *page, size_t offset, size_t len)
 
 
 445{
 446	char *addr = kmap_atomic(page);
 447	memset(addr + offset, 0, len);
 448	kunmap_atomic(addr);
 449}
 450
 451static inline bool allocated(struct pipe_buffer *buf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452{
 453	return buf->ops == &default_pipe_buf_ops;
 
 
 
 
 
 454}
 
 
 455
 456static inline void data_start(const struct iov_iter *i, int *idxp, size_t *offp)
 
 457{
 458	size_t off = i->iov_offset;
 459	int idx = i->idx;
 460	if (off && (!allocated(&i->pipe->bufs[idx]) || off == PAGE_SIZE)) {
 461		idx = next_idx(idx, i->pipe);
 462		off = 0;
 463	}
 464	*idxp = idx;
 465	*offp = off;
 466}
 467
 468static size_t push_pipe(struct iov_iter *i, size_t size,
 469			int *idxp, size_t *offp)
 470{
 471	struct pipe_inode_info *pipe = i->pipe;
 472	size_t off;
 473	int idx;
 474	ssize_t left;
 475
 476	if (unlikely(size > i->count))
 477		size = i->count;
 478	if (unlikely(!size))
 479		return 0;
 480
 481	left = size;
 482	data_start(i, &idx, &off);
 483	*idxp = idx;
 484	*offp = off;
 485	if (off) {
 486		left -= PAGE_SIZE - off;
 487		if (left <= 0) {
 488			pipe->bufs[idx].len += size;
 489			return size;
 490		}
 491		pipe->bufs[idx].len = PAGE_SIZE;
 492		idx = next_idx(idx, pipe);
 493	}
 494	while (idx != pipe->curbuf || !pipe->nrbufs) {
 495		struct page *page = alloc_page(GFP_USER);
 496		if (!page)
 497			break;
 498		pipe->nrbufs++;
 499		pipe->bufs[idx].ops = &default_pipe_buf_ops;
 500		pipe->bufs[idx].page = page;
 501		pipe->bufs[idx].offset = 0;
 502		if (left <= PAGE_SIZE) {
 503			pipe->bufs[idx].len = left;
 504			return size;
 505		}
 506		pipe->bufs[idx].len = PAGE_SIZE;
 507		left -= PAGE_SIZE;
 508		idx = next_idx(idx, pipe);
 509	}
 510	return size - left;
 511}
 
 512
 513static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
 514				struct iov_iter *i)
 
 515{
 516	struct pipe_inode_info *pipe = i->pipe;
 517	size_t n, off;
 518	int idx;
 519
 520	if (!sanity(i))
 
 
 521		return 0;
 522
 523	bytes = n = push_pipe(i, bytes, &idx, &off);
 524	if (unlikely(!n))
 525		return 0;
 526	for ( ; n; idx = next_idx(idx, pipe), off = 0) {
 527		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
 528		memcpy_to_page(pipe->bufs[idx].page, off, addr, chunk);
 529		i->idx = idx;
 530		i->iov_offset = off + chunk;
 531		n -= chunk;
 532		addr += chunk;
 533	}
 534	i->count -= bytes;
 535	return bytes;
 536}
 537
 538size_t copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
 539{
 540	const char *from = addr;
 541	if (unlikely(i->type & ITER_PIPE))
 542		return copy_pipe_to_iter(addr, bytes, i);
 543	iterate_and_advance(i, bytes, v,
 544		__copy_to_user(v.iov_base, (from += v.iov_len) - v.iov_len,
 545			       v.iov_len),
 546		memcpy_to_page(v.bv_page, v.bv_offset,
 547			       (from += v.bv_len) - v.bv_len, v.bv_len),
 548		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
 549	)
 550
 551	return bytes;
 552}
 553EXPORT_SYMBOL(copy_to_iter);
 554
 555size_t copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
 556{
 557	char *to = addr;
 558	if (unlikely(i->type & ITER_PIPE)) {
 559		WARN_ON(1);
 560		return 0;
 561	}
 562	iterate_and_advance(i, bytes, v,
 563		__copy_from_user((to += v.iov_len) - v.iov_len, v.iov_base,
 564				 v.iov_len),
 565		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
 566				 v.bv_offset, v.bv_len),
 567		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
 568	)
 569
 570	return bytes;
 571}
 572EXPORT_SYMBOL(copy_from_iter);
 573
 574bool copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
 575{
 576	char *to = addr;
 577	if (unlikely(i->type & ITER_PIPE)) {
 578		WARN_ON(1);
 579		return false;
 580	}
 581	if (unlikely(i->count < bytes))
 582		return false;
 583
 584	iterate_all_kinds(i, bytes, v, ({
 585		if (__copy_from_user((to += v.iov_len) - v.iov_len,
 586				      v.iov_base, v.iov_len))
 587			return false;
 588		0;}),
 589		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
 590				 v.bv_offset, v.bv_len),
 591		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
 592	)
 593
 594	iov_iter_advance(i, bytes);
 595	return true;
 
 
 
 
 596}
 597EXPORT_SYMBOL(copy_from_iter_full);
 598
 599size_t copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600{
 601	char *to = addr;
 602	if (unlikely(i->type & ITER_PIPE)) {
 603		WARN_ON(1);
 604		return 0;
 605	}
 606	iterate_and_advance(i, bytes, v,
 607		__copy_from_user_nocache((to += v.iov_len) - v.iov_len,
 608					 v.iov_base, v.iov_len),
 609		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
 610				 v.bv_offset, v.bv_len),
 611		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
 612	)
 613
 614	return bytes;
 615}
 616EXPORT_SYMBOL(copy_from_iter_nocache);
 617
 618bool copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
 619{
 620	char *to = addr;
 621	if (unlikely(i->type & ITER_PIPE)) {
 622		WARN_ON(1);
 623		return false;
 624	}
 625	if (unlikely(i->count < bytes))
 626		return false;
 627	iterate_all_kinds(i, bytes, v, ({
 628		if (__copy_from_user_nocache((to += v.iov_len) - v.iov_len,
 629					     v.iov_base, v.iov_len))
 630			return false;
 631		0;}),
 632		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
 633				 v.bv_offset, v.bv_len),
 634		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
 635	)
 636
 637	iov_iter_advance(i, bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638	return true;
 639}
 640EXPORT_SYMBOL(copy_from_iter_full_nocache);
 641
 642size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
 643			 struct iov_iter *i)
 644{
 645	if (i->type & (ITER_BVEC|ITER_KVEC)) {
 646		void *kaddr = kmap_atomic(page);
 647		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
 648		kunmap_atomic(kaddr);
 649		return wanted;
 650	} else if (likely(!(i->type & ITER_PIPE)))
 651		return copy_page_to_iter_iovec(page, offset, bytes, i);
 652	else
 653		return copy_page_to_iter_pipe(page, offset, bytes, i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654}
 655EXPORT_SYMBOL(copy_page_to_iter);
 656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
 658			 struct iov_iter *i)
 659{
 660	if (unlikely(i->type & ITER_PIPE)) {
 661		WARN_ON(1);
 662		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 663	}
 664	if (i->type & (ITER_BVEC|ITER_KVEC)) {
 665		void *kaddr = kmap_atomic(page);
 666		size_t wanted = copy_from_iter(kaddr + offset, bytes, i);
 667		kunmap_atomic(kaddr);
 668		return wanted;
 669	} else
 670		return copy_page_from_iter_iovec(page, offset, bytes, i);
 671}
 672EXPORT_SYMBOL(copy_page_from_iter);
 673
 674static size_t pipe_zero(size_t bytes, struct iov_iter *i)
 
 
 675{
 676	struct pipe_inode_info *pipe = i->pipe;
 677	size_t n, off;
 678	int idx;
 679
 680	if (!sanity(i))
 681		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682
 683	bytes = n = push_pipe(i, bytes, &idx, &off);
 684	if (unlikely(!n))
 
 685		return 0;
 686
 687	for ( ; n; idx = next_idx(idx, pipe), off = 0) {
 688		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
 689		memzero_page(pipe->bufs[idx].page, off, chunk);
 690		i->idx = idx;
 691		i->iov_offset = off + chunk;
 692		n -= chunk;
 693	}
 694	i->count -= bytes;
 695	return bytes;
 
 
 
 
 
 
 
 
 
 696}
 
 697
 698size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
 699{
 700	if (unlikely(i->type & ITER_PIPE))
 701		return pipe_zero(bytes, i);
 702	iterate_and_advance(i, bytes, v,
 703		__clear_user(v.iov_base, v.iov_len),
 704		memzero_page(v.bv_page, v.bv_offset, v.bv_len),
 705		memset(v.iov_base, 0, v.iov_len)
 706	)
 707
 708	return bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 709}
 710EXPORT_SYMBOL(iov_iter_zero);
 711
 712size_t iov_iter_copy_from_user_atomic(struct page *page,
 713		struct iov_iter *i, unsigned long offset, size_t bytes)
 714{
 715	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
 716	if (unlikely(i->type & ITER_PIPE)) {
 717		kunmap_atomic(kaddr);
 718		WARN_ON(1);
 719		return 0;
 
 
 
 
 
 
 720	}
 721	iterate_all_kinds(i, bytes, v,
 722		__copy_from_user_inatomic((p += v.iov_len) - v.iov_len,
 723					  v.iov_base, v.iov_len),
 724		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
 725				 v.bv_offset, v.bv_len),
 726		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
 727	)
 728	kunmap_atomic(kaddr);
 729	return bytes;
 730}
 731EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
 732
 733static inline void pipe_truncate(struct iov_iter *i)
 734{
 735	struct pipe_inode_info *pipe = i->pipe;
 736	if (pipe->nrbufs) {
 737		size_t off = i->iov_offset;
 738		int idx = i->idx;
 739		int nrbufs = (idx - pipe->curbuf) & (pipe->buffers - 1);
 740		if (off) {
 741			pipe->bufs[idx].len = off - pipe->bufs[idx].offset;
 742			idx = next_idx(idx, pipe);
 743			nrbufs++;
 744		}
 745		while (pipe->nrbufs > nrbufs) {
 746			pipe_buf_release(pipe, &pipe->bufs[idx]);
 747			idx = next_idx(idx, pipe);
 748			pipe->nrbufs--;
 749		}
 750	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751}
 752
 753static void pipe_advance(struct iov_iter *i, size_t size)
 754{
 755	struct pipe_inode_info *pipe = i->pipe;
 756	if (unlikely(i->count < size))
 757		size = i->count;
 758	if (size) {
 759		struct pipe_buffer *buf;
 760		size_t off = i->iov_offset, left = size;
 761		int idx = i->idx;
 762		if (off) /* make it relative to the beginning of buffer */
 763			left += off - pipe->bufs[idx].offset;
 764		while (1) {
 765			buf = &pipe->bufs[idx];
 766			if (left <= buf->len)
 767				break;
 768			left -= buf->len;
 769			idx = next_idx(idx, pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 770		}
 771		i->idx = idx;
 772		i->iov_offset = buf->offset + left;
 773	}
 774	i->count -= size;
 775	/* ... and discard everything past that point */
 776	pipe_truncate(i);
 777}
 778
 779void iov_iter_advance(struct iov_iter *i, size_t size)
 780{
 781	if (unlikely(i->type & ITER_PIPE)) {
 782		pipe_advance(i, size);
 783		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784	}
 785	iterate_and_advance(i, size, v, 0, 0, 0)
 786}
 787EXPORT_SYMBOL(iov_iter_advance);
 788
 789/*
 790 * Return the count of just the current iov_iter segment.
 791 */
 792size_t iov_iter_single_seg_count(const struct iov_iter *i)
 793{
 794	if (unlikely(i->type & ITER_PIPE))
 795		return i->count;	// it is a silly place, anyway
 796	if (i->nr_segs == 1)
 797		return i->count;
 798	else if (i->type & ITER_BVEC)
 799		return min(i->count, i->bvec->bv_len - i->iov_offset);
 800	else
 801		return min(i->count, i->iov->iov_len - i->iov_offset);
 
 
 802}
 803EXPORT_SYMBOL(iov_iter_single_seg_count);
 804
 805void iov_iter_kvec(struct iov_iter *i, int direction,
 806			const struct kvec *kvec, unsigned long nr_segs,
 807			size_t count)
 808{
 809	BUG_ON(!(direction & ITER_KVEC));
 810	i->type = direction;
 811	i->kvec = kvec;
 812	i->nr_segs = nr_segs;
 813	i->iov_offset = 0;
 814	i->count = count;
 
 
 
 815}
 816EXPORT_SYMBOL(iov_iter_kvec);
 817
 818void iov_iter_bvec(struct iov_iter *i, int direction,
 819			const struct bio_vec *bvec, unsigned long nr_segs,
 820			size_t count)
 821{
 822	BUG_ON(!(direction & ITER_BVEC));
 823	i->type = direction;
 824	i->bvec = bvec;
 825	i->nr_segs = nr_segs;
 826	i->iov_offset = 0;
 827	i->count = count;
 
 
 
 828}
 829EXPORT_SYMBOL(iov_iter_bvec);
 830
 831void iov_iter_pipe(struct iov_iter *i, int direction,
 832			struct pipe_inode_info *pipe,
 833			size_t count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834{
 835	BUG_ON(direction != ITER_PIPE);
 836	WARN_ON(pipe->nrbufs == pipe->buffers);
 837	i->type = direction;
 838	i->pipe = pipe;
 839	i->idx = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
 840	i->iov_offset = 0;
 841	i->count = count;
 
 
 842}
 843EXPORT_SYMBOL(iov_iter_pipe);
 844
 845unsigned long iov_iter_alignment(const struct iov_iter *i)
 
 
 
 
 
 
 
 
 
 846{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847	unsigned long res = 0;
 848	size_t size = i->count;
 
 849
 850	if (unlikely(i->type & ITER_PIPE)) {
 851		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->idx]))
 852			return size | i->iov_offset;
 853		return size;
 854	}
 855	iterate_all_kinds(i, size, v,
 856		(res |= (unsigned long)v.iov_base | v.iov_len, 0),
 857		res |= v.bv_offset | v.bv_len,
 858		res |= (unsigned long)v.iov_base | v.iov_len
 859	)
 
 
 860	return res;
 861}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862EXPORT_SYMBOL(iov_iter_alignment);
 863
 864unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
 865{
 866	unsigned long res = 0;
 
 867	size_t size = i->count;
 
 
 
 
 868
 869	if (unlikely(i->type & ITER_PIPE)) {
 870		WARN_ON(1);
 871		return ~0U;
 872	}
 873
 874	iterate_all_kinds(i, size, v,
 875		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
 876			(size != v.iov_len ? size : 0), 0),
 877		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
 878			(size != v.bv_len ? size : 0)),
 879		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
 880			(size != v.iov_len ? size : 0))
 881		);
 
 
 
 
 882	return res;
 883}
 884EXPORT_SYMBOL(iov_iter_gap_alignment);
 885
 886static inline size_t __pipe_get_pages(struct iov_iter *i,
 887				size_t maxsize,
 888				struct page **pages,
 889				int idx,
 890				size_t *start)
 891{
 892	struct pipe_inode_info *pipe = i->pipe;
 893	ssize_t n = push_pipe(i, maxsize, &idx, start);
 894	if (!n)
 895		return -EFAULT;
 896
 897	maxsize = n;
 898	n += *start;
 899	while (n > 0) {
 900		get_page(*pages++ = pipe->bufs[idx].page);
 901		idx = next_idx(idx, pipe);
 902		n -= PAGE_SIZE;
 
 903	}
 904
 905	return maxsize;
 906}
 907
 908static ssize_t pipe_get_pages(struct iov_iter *i,
 909		   struct page **pages, size_t maxsize, unsigned maxpages,
 910		   size_t *start)
 911{
 912	unsigned npages;
 913	size_t capacity;
 914	int idx;
 
 915
 916	if (!maxsize)
 917		return 0;
 
 
 
 
 918
 919	if (!sanity(i))
 920		return -EFAULT;
 
 
 
 921
 922	data_start(i, &idx, start);
 923	/* some of this one + all after this one */
 924	npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
 925	capacity = min(npages,maxpages) * PAGE_SIZE - *start;
 
 
 
 
 
 
 
 
 
 
 
 
 926
 927	return __pipe_get_pages(i, min(maxsize, capacity), pages, idx, start);
 928}
 929
 930ssize_t iov_iter_get_pages(struct iov_iter *i,
 931		   struct page **pages, size_t maxsize, unsigned maxpages,
 932		   size_t *start)
 933{
 934	if (maxsize > i->count)
 935		maxsize = i->count;
 
 
 
 936
 937	if (unlikely(i->type & ITER_PIPE))
 938		return pipe_get_pages(i, pages, maxsize, maxpages, start);
 939	iterate_all_kinds(i, maxsize, v, ({
 940		unsigned long addr = (unsigned long)v.iov_base;
 941		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
 942		int n;
 943		int res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 944
 945		if (len > maxpages * PAGE_SIZE)
 946			len = maxpages * PAGE_SIZE;
 947		addr &= ~(PAGE_SIZE - 1);
 948		n = DIV_ROUND_UP(len, PAGE_SIZE);
 949		res = get_user_pages_fast(addr, n, (i->type & WRITE) != WRITE, pages);
 950		if (unlikely(res < 0))
 951			return res;
 952		return (res == n ? len : res * PAGE_SIZE) - *start;
 953	0;}),({
 954		/* can't be more than PAGE_SIZE */
 955		*start = v.bv_offset;
 956		get_page(*pages = v.bv_page);
 957		return v.bv_len;
 958	}),({
 959		return -EFAULT;
 960	})
 961	)
 962	return 0;
 963}
 964EXPORT_SYMBOL(iov_iter_get_pages);
 965
 966static struct page **get_pages_array(size_t n)
 
 
 967{
 968	struct page **p = kmalloc(n * sizeof(struct page *), GFP_KERNEL);
 969	if (!p)
 970		p = vmalloc(n * sizeof(struct page *));
 971	return p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972}
 973
 974static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
 975		   struct page ***pages, size_t maxsize,
 976		   size_t *start)
 977{
 978	struct page **p;
 979	size_t n;
 980	int idx;
 981	int npages;
 982
 983	if (!maxsize)
 984		return 0;
 985
 986	if (!sanity(i))
 987		return -EFAULT;
 
 988
 989	data_start(i, &idx, start);
 990	/* some of this one + all after this one */
 991	npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
 992	n = npages * PAGE_SIZE - *start;
 993	if (maxsize > n)
 994		maxsize = n;
 995	else
 996		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
 997	p = get_pages_array(npages);
 998	if (!p)
 999		return -ENOMEM;
1000	n = __pipe_get_pages(i, maxsize, p, idx, start);
1001	if (n > 0)
1002		*pages = p;
1003	else
1004		kvfree(p);
1005	return n;
 
 
 
 
 
 
1006}
1007
1008ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1009		   struct page ***pages, size_t maxsize,
1010		   size_t *start)
1011{
1012	struct page **p;
1013
1014	if (maxsize > i->count)
1015		maxsize = i->count;
 
 
 
 
1016
1017	if (unlikely(i->type & ITER_PIPE))
1018		return pipe_get_pages_alloc(i, pages, maxsize, start);
1019	iterate_all_kinds(i, maxsize, v, ({
1020		unsigned long addr = (unsigned long)v.iov_base;
1021		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1022		int n;
1023		int res;
1024
1025		addr &= ~(PAGE_SIZE - 1);
1026		n = DIV_ROUND_UP(len, PAGE_SIZE);
1027		p = get_pages_array(n);
1028		if (!p)
 
 
 
 
 
 
1029			return -ENOMEM;
1030		res = get_user_pages_fast(addr, n, (i->type & WRITE) != WRITE, p);
1031		if (unlikely(res < 0)) {
1032			kvfree(p);
1033			return res;
1034		}
1035		*pages = p;
1036		return (res == n ? len : res * PAGE_SIZE) - *start;
1037	0;}),({
1038		/* can't be more than PAGE_SIZE */
1039		*start = v.bv_offset;
1040		*pages = p = get_pages_array(1);
1041		if (!p)
 
 
 
1042			return -ENOMEM;
1043		get_page(*p = v.bv_page);
1044		return v.bv_len;
1045	}),({
1046		return -EFAULT;
1047	})
1048	)
1049	return 0;
 
 
 
 
 
 
 
 
 
 
 
1050}
1051EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1052
1053size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1054			       struct iov_iter *i)
1055{
1056	char *to = addr;
1057	__wsum sum, next;
1058	size_t off = 0;
1059	sum = *csum;
1060	if (unlikely(i->type & ITER_PIPE)) {
1061		WARN_ON(1);
1062		return 0;
1063	}
1064	iterate_and_advance(i, bytes, v, ({
1065		int err = 0;
1066		next = csum_and_copy_from_user(v.iov_base,
1067					       (to += v.iov_len) - v.iov_len,
1068					       v.iov_len, 0, &err);
1069		if (!err) {
1070			sum = csum_block_add(sum, next, off);
1071			off += v.iov_len;
1072		}
1073		err ? v.iov_len : 0;
1074	}), ({
1075		char *p = kmap_atomic(v.bv_page);
1076		next = csum_partial_copy_nocheck(p + v.bv_offset,
1077						 (to += v.bv_len) - v.bv_len,
1078						 v.bv_len, 0);
1079		kunmap_atomic(p);
1080		sum = csum_block_add(sum, next, off);
1081		off += v.bv_len;
1082	}),({
1083		next = csum_partial_copy_nocheck(v.iov_base,
1084						 (to += v.iov_len) - v.iov_len,
1085						 v.iov_len, 0);
1086		sum = csum_block_add(sum, next, off);
1087		off += v.iov_len;
1088	})
1089	)
1090	*csum = sum;
1091	return bytes;
1092}
1093EXPORT_SYMBOL(csum_and_copy_from_iter);
1094
1095bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1096			       struct iov_iter *i)
1097{
1098	char *to = addr;
1099	__wsum sum, next;
1100	size_t off = 0;
1101	sum = *csum;
1102	if (unlikely(i->type & ITER_PIPE)) {
1103		WARN_ON(1);
1104		return false;
1105	}
1106	if (unlikely(i->count < bytes))
1107		return false;
1108	iterate_all_kinds(i, bytes, v, ({
1109		int err = 0;
1110		next = csum_and_copy_from_user(v.iov_base,
1111					       (to += v.iov_len) - v.iov_len,
1112					       v.iov_len, 0, &err);
1113		if (err)
1114			return false;
1115		sum = csum_block_add(sum, next, off);
1116		off += v.iov_len;
1117		0;
1118	}), ({
1119		char *p = kmap_atomic(v.bv_page);
1120		next = csum_partial_copy_nocheck(p + v.bv_offset,
1121						 (to += v.bv_len) - v.bv_len,
1122						 v.bv_len, 0);
1123		kunmap_atomic(p);
1124		sum = csum_block_add(sum, next, off);
1125		off += v.bv_len;
1126	}),({
1127		next = csum_partial_copy_nocheck(v.iov_base,
1128						 (to += v.iov_len) - v.iov_len,
1129						 v.iov_len, 0);
1130		sum = csum_block_add(sum, next, off);
1131		off += v.iov_len;
1132	})
1133	)
1134	*csum = sum;
1135	iov_iter_advance(i, bytes);
1136	return true;
1137}
1138EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1139
1140size_t csum_and_copy_to_iter(const void *addr, size_t bytes, __wsum *csum,
1141			     struct iov_iter *i)
1142{
1143	const char *from = addr;
1144	__wsum sum, next;
1145	size_t off = 0;
1146	sum = *csum;
1147	if (unlikely(i->type & ITER_PIPE)) {
1148		WARN_ON(1);	/* for now */
1149		return 0;
 
1150	}
1151	iterate_and_advance(i, bytes, v, ({
1152		int err = 0;
1153		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1154					     v.iov_base,
1155					     v.iov_len, 0, &err);
1156		if (!err) {
1157			sum = csum_block_add(sum, next, off);
1158			off += v.iov_len;
1159		}
1160		err ? v.iov_len : 0;
1161	}), ({
1162		char *p = kmap_atomic(v.bv_page);
1163		next = csum_partial_copy_nocheck((from += v.bv_len) - v.bv_len,
1164						 p + v.bv_offset,
1165						 v.bv_len, 0);
1166		kunmap_atomic(p);
1167		sum = csum_block_add(sum, next, off);
1168		off += v.bv_len;
1169	}),({
1170		next = csum_partial_copy_nocheck((from += v.iov_len) - v.iov_len,
1171						 v.iov_base,
1172						 v.iov_len, 0);
1173		sum = csum_block_add(sum, next, off);
1174		off += v.iov_len;
1175	})
1176	)
1177	*csum = sum;
1178	return bytes;
1179}
1180EXPORT_SYMBOL(csum_and_copy_to_iter);
1181
1182int iov_iter_npages(const struct iov_iter *i, int maxpages)
1183{
1184	size_t size = i->count;
 
1185	int npages = 0;
1186
1187	if (!size)
1188		return 0;
1189
1190	if (unlikely(i->type & ITER_PIPE)) {
1191		struct pipe_inode_info *pipe = i->pipe;
1192		size_t off;
1193		int idx;
 
 
 
 
 
 
1194
1195		if (!sanity(i))
1196			return 0;
 
 
 
1197
1198		data_start(i, &idx, &off);
1199		/* some of this one + all after this one */
1200		npages = ((pipe->curbuf - idx - 1) & (pipe->buffers - 1)) + 1;
1201		if (npages >= maxpages)
1202			return maxpages;
1203	} else iterate_all_kinds(i, size, v, ({
1204		unsigned long p = (unsigned long)v.iov_base;
1205		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1206			- p / PAGE_SIZE;
1207		if (npages >= maxpages)
1208			return maxpages;
1209	0;}),({
1210		npages++;
1211		if (npages >= maxpages)
1212			return maxpages;
1213	}),({
1214		unsigned long p = (unsigned long)v.iov_base;
1215		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1216			- p / PAGE_SIZE;
1217		if (npages >= maxpages)
1218			return maxpages;
1219	})
1220	)
1221	return npages;
1222}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223EXPORT_SYMBOL(iov_iter_npages);
1224
1225const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1226{
1227	*new = *old;
1228	if (unlikely(new->type & ITER_PIPE)) {
1229		WARN_ON(1);
1230		return NULL;
1231	}
1232	if (new->type & ITER_BVEC)
1233		return new->bvec = kmemdup(new->bvec,
1234				    new->nr_segs * sizeof(struct bio_vec),
1235				    flags);
1236	else
1237		/* iovec and kvec have identical layout */
1238		return new->iov = kmemdup(new->iov,
1239				   new->nr_segs * sizeof(struct iovec),
1240				   flags);
 
1241}
1242EXPORT_SYMBOL(dup_iter);
1243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244/**
1245 * import_iovec() - Copy an array of &struct iovec from userspace
1246 *     into the kernel, check that it is valid, and initialize a new
1247 *     &struct iov_iter iterator to access it.
1248 *
1249 * @type: One of %READ or %WRITE.
1250 * @uvector: Pointer to the userspace array.
1251 * @nr_segs: Number of elements in userspace array.
1252 * @fast_segs: Number of elements in @iov.
1253 * @iov: (input and output parameter) Pointer to pointer to (usually small
1254 *     on-stack) kernel array.
1255 * @i: Pointer to iterator that will be initialized on success.
1256 *
1257 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1258 * then this function places %NULL in *@iov on return. Otherwise, a new
1259 * array will be allocated and the result placed in *@iov. This means that
1260 * the caller may call kfree() on *@iov regardless of whether the small
1261 * on-stack array was used or not (and regardless of whether this function
1262 * returns an error or not).
1263 *
1264 * Return: 0 on success or negative error code on error.
1265 */
1266int import_iovec(int type, const struct iovec __user * uvector,
1267		 unsigned nr_segs, unsigned fast_segs,
1268		 struct iovec **iov, struct iov_iter *i)
1269{
1270	ssize_t n;
1271	struct iovec *p;
1272	n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1273				  *iov, &p);
1274	if (n < 0) {
1275		if (p != *iov)
1276			kfree(p);
1277		*iov = NULL;
1278		return n;
1279	}
1280	iov_iter_init(i, type, p, nr_segs, n);
1281	*iov = p == *iov ? NULL : p;
1282	return 0;
1283}
1284EXPORT_SYMBOL(import_iovec);
1285
1286#ifdef CONFIG_COMPAT
1287#include <linux/compat.h>
 
 
 
 
1288
1289int compat_import_iovec(int type, const struct compat_iovec __user * uvector,
1290		 unsigned nr_segs, unsigned fast_segs,
1291		 struct iovec **iov, struct iov_iter *i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1292{
1293	ssize_t n;
1294	struct iovec *p;
1295	n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1296				  *iov, &p);
1297	if (n < 0) {
1298		if (p != *iov)
1299			kfree(p);
1300		*iov = NULL;
1301		return n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1302	}
1303	iov_iter_init(i, type, p, nr_segs, n);
1304	*iov = p == *iov ? NULL : p;
1305	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306}
1307#endif
1308
1309int import_single_range(int rw, void __user *buf, size_t len,
1310		 struct iovec *iov, struct iov_iter *i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1311{
1312	if (len > MAX_RW_COUNT)
1313		len = MAX_RW_COUNT;
1314	if (unlikely(!access_ok(!rw, buf, len)))
1315		return -EFAULT;
1316
1317	iov->iov_base = buf;
1318	iov->iov_len = len;
1319	iov_iter_init(i, rw, iov, 1, len);
1320	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1321}
1322EXPORT_SYMBOL(import_single_range);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/export.h>
   3#include <linux/bvec.h>
   4#include <linux/fault-inject-usercopy.h>
   5#include <linux/uio.h>
   6#include <linux/pagemap.h>
   7#include <linux/highmem.h>
   8#include <linux/slab.h>
   9#include <linux/vmalloc.h>
  10#include <linux/splice.h>
  11#include <linux/compat.h>
  12#include <linux/scatterlist.h>
  13#include <linux/instrumented.h>
  14#include <linux/iov_iter.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  15
  16static __always_inline
  17size_t copy_to_user_iter(void __user *iter_to, size_t progress,
  18			 size_t len, void *from, void *priv2)
  19{
  20	if (should_fail_usercopy())
  21		return len;
  22	if (access_ok(iter_to, len)) {
  23		from += progress;
  24		instrument_copy_to_user(iter_to, from, len);
  25		len = raw_copy_to_user(iter_to, from, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  26	}
  27	return len;
 
 
 
 
  28}
  29
  30static __always_inline
  31size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress,
  32				 size_t len, void *from, void *priv2)
  33{
  34	ssize_t res;
 
 
 
  35
  36	if (should_fail_usercopy())
  37		return len;
  38
  39	from += progress;
  40	res = copy_to_user_nofault(iter_to, from, len);
  41	return res < 0 ? len : res;
  42}
  43
  44static __always_inline
  45size_t copy_from_user_iter(void __user *iter_from, size_t progress,
  46			   size_t len, void *to, void *priv2)
  47{
  48	size_t res = len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49
  50	if (should_fail_usercopy())
  51		return len;
  52	if (access_ok(iter_from, len)) {
  53		to += progress;
  54		instrument_copy_from_user_before(to, iter_from, len);
  55		res = raw_copy_from_user(to, iter_from, len);
  56		instrument_copy_from_user_after(to, iter_from, len, res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  57	}
  58	return res;
 
 
 
 
 
 
 
 
 
 
 
 
  59}
 
 
 
  60
  61static __always_inline
  62size_t memcpy_to_iter(void *iter_to, size_t progress,
  63		      size_t len, void *from, void *priv2)
  64{
  65	memcpy(iter_to, from + progress, len);
  66	return 0;
  67}
  68
  69static __always_inline
  70size_t memcpy_from_iter(void *iter_from, size_t progress,
  71			size_t len, void *to, void *priv2)
  72{
  73	memcpy(to + progress, iter_from, len);
  74	return 0;
  75}
 
 
 
 
 
 
 
 
 
 
  76
  77/*
  78 * fault_in_iov_iter_readable - fault in iov iterator for reading
  79 * @i: iterator
  80 * @size: maximum length
  81 *
  82 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
  83 * @size.  For each iovec, fault in each page that constitutes the iovec.
  84 *
  85 * Returns the number of bytes not faulted in (like copy_to_user() and
  86 * copy_from_user()).
  87 *
  88 * Always returns 0 for non-userspace iterators.
  89 */
  90size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
  91{
  92	if (iter_is_ubuf(i)) {
  93		size_t n = min(size, iov_iter_count(i));
  94		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
  95		return size - n;
  96	} else if (iter_is_iovec(i)) {
  97		size_t count = min(size, iov_iter_count(i));
  98		const struct iovec *p;
  99		size_t skip;
 100
 101		size -= count;
 102		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
 103			size_t len = min(count, p->iov_len - skip);
 104			size_t ret;
 105
 106			if (unlikely(!len))
 107				continue;
 108			ret = fault_in_readable(p->iov_base + skip, len);
 109			count -= len - ret;
 110			if (ret)
 111				break;
 112		}
 113		return count + size;
 
 114	}
 115	return 0;
 
 
 
 
 
 
 
 
 
 
 
 116}
 117EXPORT_SYMBOL(fault_in_iov_iter_readable);
 118
 119/*
 120 * fault_in_iov_iter_writeable - fault in iov iterator for writing
 121 * @i: iterator
 122 * @size: maximum length
 123 *
 124 * Faults in the iterator using get_user_pages(), i.e., without triggering
 125 * hardware page faults.  This is primarily useful when we already know that
 126 * some or all of the pages in @i aren't in memory.
 127 *
 128 * Returns the number of bytes not faulted in, like copy_to_user() and
 129 * copy_from_user().
 130 *
 131 * Always returns 0 for non-user-space iterators.
 132 */
 133size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
 134{
 135	if (iter_is_ubuf(i)) {
 136		size_t n = min(size, iov_iter_count(i));
 137		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
 138		return size - n;
 139	} else if (iter_is_iovec(i)) {
 140		size_t count = min(size, iov_iter_count(i));
 141		const struct iovec *p;
 142		size_t skip;
 143
 144		size -= count;
 145		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
 146			size_t len = min(count, p->iov_len - skip);
 147			size_t ret;
 148
 149			if (unlikely(!len))
 150				continue;
 151			ret = fault_in_safe_writeable(p->iov_base + skip, len);
 152			count -= len - ret;
 153			if (ret)
 154				break;
 155		}
 156		return count + size;
 157	}
 158	return 0;
 159}
 160EXPORT_SYMBOL(fault_in_iov_iter_writeable);
 161
 162void iov_iter_init(struct iov_iter *i, unsigned int direction,
 163			const struct iovec *iov, unsigned long nr_segs,
 164			size_t count)
 165{
 166	WARN_ON(direction & ~(READ | WRITE));
 167	*i = (struct iov_iter) {
 168		.iter_type = ITER_IOVEC,
 169		.nofault = false,
 170		.data_source = direction,
 171		.__iov = iov,
 172		.nr_segs = nr_segs,
 173		.iov_offset = 0,
 174		.count = count
 175	};
 
 
 176}
 177EXPORT_SYMBOL(iov_iter_init);
 178
 179size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
 180{
 181	if (WARN_ON_ONCE(i->data_source))
 182		return 0;
 183	if (user_backed_iter(i))
 184		might_fault();
 185	return iterate_and_advance(i, bytes, (void *)addr,
 186				   copy_to_user_iter, memcpy_to_iter);
 187}
 188EXPORT_SYMBOL(_copy_to_iter);
 189
 190#ifdef CONFIG_ARCH_HAS_COPY_MC
 191static __always_inline
 192size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress,
 193			    size_t len, void *from, void *priv2)
 194{
 195	if (access_ok(iter_to, len)) {
 196		from += progress;
 197		instrument_copy_to_user(iter_to, from, len);
 198		len = copy_mc_to_user(iter_to, from, len);
 199	}
 200	return len;
 201}
 202
 203static __always_inline
 204size_t memcpy_to_iter_mc(void *iter_to, size_t progress,
 205			 size_t len, void *from, void *priv2)
 206{
 207	return copy_mc_to_kernel(iter_to, from + progress, len);
 
 
 208}
 209
 210/**
 211 * _copy_mc_to_iter - copy to iter with source memory error exception handling
 212 * @addr: source kernel address
 213 * @bytes: total transfer length
 214 * @i: destination iterator
 215 *
 216 * The pmem driver deploys this for the dax operation
 217 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
 218 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
 219 * successfully copied.
 220 *
 221 * The main differences between this and typical _copy_to_iter().
 222 *
 223 * * Typical tail/residue handling after a fault retries the copy
 224 *   byte-by-byte until the fault happens again. Re-triggering machine
 225 *   checks is potentially fatal so the implementation uses source
 226 *   alignment and poison alignment assumptions to avoid re-triggering
 227 *   hardware exceptions.
 228 *
 229 * * ITER_KVEC and ITER_BVEC can return short copies.  Compare to
 230 *   copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
 231 *
 232 * Return: number of bytes copied (may be %0)
 233 */
 234size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
 235{
 236	if (WARN_ON_ONCE(i->data_source))
 237		return 0;
 238	if (user_backed_iter(i))
 239		might_fault();
 240	return iterate_and_advance(i, bytes, (void *)addr,
 241				   copy_to_user_iter_mc, memcpy_to_iter_mc);
 242}
 243EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
 244#endif /* CONFIG_ARCH_HAS_COPY_MC */
 245
 246static __always_inline
 247size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
 248{
 249	return iterate_and_advance(i, bytes, addr,
 250				   copy_from_user_iter, memcpy_from_iter);
 
 
 
 
 
 
 251}
 252
 253size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
 
 254{
 255	if (WARN_ON_ONCE(!i->data_source))
 
 
 
 
 
 
 
 256		return 0;
 257
 258	if (user_backed_iter(i))
 259		might_fault();
 260	return __copy_from_iter(addr, bytes, i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 261}
 262EXPORT_SYMBOL(_copy_from_iter);
 263
 264static __always_inline
 265size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress,
 266				   size_t len, void *to, void *priv2)
 267{
 268	return __copy_from_user_inatomic_nocache(to + progress, iter_from, len);
 269}
 
 270
 271size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
 272{
 273	if (WARN_ON_ONCE(!i->data_source))
 274		return 0;
 275
 276	return iterate_and_advance(i, bytes, addr,
 277				   copy_from_user_iter_nocache,
 278				   memcpy_from_iter);
 279}
 280EXPORT_SYMBOL(_copy_from_iter_nocache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281
 282#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
 283static __always_inline
 284size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress,
 285				      size_t len, void *to, void *priv2)
 286{
 287	return __copy_from_user_flushcache(to + progress, iter_from, len);
 288}
 
 
 289
 290static __always_inline
 291size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress,
 292				   size_t len, void *to, void *priv2)
 293{
 294	memcpy_flushcache(to + progress, iter_from, len);
 295	return 0;
 296}
 
 297
 298/**
 299 * _copy_from_iter_flushcache - write destination through cpu cache
 300 * @addr: destination kernel address
 301 * @bytes: total transfer length
 302 * @i: source iterator
 303 *
 304 * The pmem driver arranges for filesystem-dax to use this facility via
 305 * dax_copy_from_iter() for ensuring that writes to persistent memory
 306 * are flushed through the CPU cache. It is differentiated from
 307 * _copy_from_iter_nocache() in that guarantees all data is flushed for
 308 * all iterator types. The _copy_from_iter_nocache() only attempts to
 309 * bypass the cache for the ITER_IOVEC case, and on some archs may use
 310 * instructions that strand dirty-data in the cache.
 311 *
 312 * Return: number of bytes copied (may be %0)
 313 */
 314size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
 315{
 316	if (WARN_ON_ONCE(!i->data_source))
 
 
 317		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318
 319	return iterate_and_advance(i, bytes, addr,
 320				   copy_from_user_iter_flushcache,
 321				   memcpy_from_iter_flushcache);
 322}
 323EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
 324#endif
 325
 326static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
 327{
 328	struct page *head;
 329	size_t v = n + offset;
 330
 331	/*
 332	 * The general case needs to access the page order in order
 333	 * to compute the page size.
 334	 * However, we mostly deal with order-0 pages and thus can
 335	 * avoid a possible cache line miss for requests that fit all
 336	 * page orders.
 337	 */
 338	if (n <= v && v <= PAGE_SIZE)
 339		return true;
 340
 341	head = compound_head(page);
 342	v += (page - head) << PAGE_SHIFT;
 343
 344	if (WARN_ON(n > v || v > page_size(head)))
 345		return false;
 346	return true;
 347}
 
 348
 349size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
 350			 struct iov_iter *i)
 351{
 352	size_t res = 0;
 353	if (!page_copy_sane(page, offset, bytes))
 354		return 0;
 355	if (WARN_ON_ONCE(i->data_source))
 356		return 0;
 357	page += offset / PAGE_SIZE; // first subpage
 358	offset %= PAGE_SIZE;
 359	while (1) {
 360		void *kaddr = kmap_local_page(page);
 361		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
 362		n = _copy_to_iter(kaddr + offset, n, i);
 363		kunmap_local(kaddr);
 364		res += n;
 365		bytes -= n;
 366		if (!bytes || !n)
 367			break;
 368		offset += n;
 369		if (offset == PAGE_SIZE) {
 370			page++;
 371			offset = 0;
 372		}
 373	}
 374	return res;
 375}
 376EXPORT_SYMBOL(copy_page_to_iter);
 377
 378size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
 379				 struct iov_iter *i)
 380{
 381	size_t res = 0;
 382
 383	if (!page_copy_sane(page, offset, bytes))
 384		return 0;
 385	if (WARN_ON_ONCE(i->data_source))
 386		return 0;
 387	page += offset / PAGE_SIZE; // first subpage
 388	offset %= PAGE_SIZE;
 389	while (1) {
 390		void *kaddr = kmap_local_page(page);
 391		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
 392
 393		n = iterate_and_advance(i, n, kaddr + offset,
 394					copy_to_user_iter_nofault,
 395					memcpy_to_iter);
 396		kunmap_local(kaddr);
 397		res += n;
 398		bytes -= n;
 399		if (!bytes || !n)
 400			break;
 401		offset += n;
 402		if (offset == PAGE_SIZE) {
 403			page++;
 404			offset = 0;
 405		}
 406	}
 407	return res;
 408}
 409EXPORT_SYMBOL(copy_page_to_iter_nofault);
 410
 411size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
 412			 struct iov_iter *i)
 413{
 414	size_t res = 0;
 415	if (!page_copy_sane(page, offset, bytes))
 416		return 0;
 417	page += offset / PAGE_SIZE; // first subpage
 418	offset %= PAGE_SIZE;
 419	while (1) {
 420		void *kaddr = kmap_local_page(page);
 421		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
 422		n = _copy_from_iter(kaddr + offset, n, i);
 423		kunmap_local(kaddr);
 424		res += n;
 425		bytes -= n;
 426		if (!bytes || !n)
 427			break;
 428		offset += n;
 429		if (offset == PAGE_SIZE) {
 430			page++;
 431			offset = 0;
 432		}
 433	}
 434	return res;
 
 
 
 
 
 
 435}
 436EXPORT_SYMBOL(copy_page_from_iter);
 437
 438static __always_inline
 439size_t zero_to_user_iter(void __user *iter_to, size_t progress,
 440			 size_t len, void *priv, void *priv2)
 441{
 442	return clear_user(iter_to, len);
 443}
 
 444
 445static __always_inline
 446size_t zero_to_iter(void *iter_to, size_t progress,
 447		    size_t len, void *priv, void *priv2)
 448{
 449	memset(iter_to, 0, len);
 450	return 0;
 451}
 452
 453size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
 454{
 455	return iterate_and_advance(i, bytes, NULL,
 456				   zero_to_user_iter, zero_to_iter);
 457}
 458EXPORT_SYMBOL(iov_iter_zero);
 459
 460size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
 461		size_t bytes, struct iov_iter *i)
 462{
 463	size_t n, copied = 0;
 464	bool uses_kmap = IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) ||
 465			 PageHighMem(page);
 466
 467	if (!page_copy_sane(page, offset, bytes))
 468		return 0;
 469	if (WARN_ON_ONCE(!i->data_source))
 470		return 0;
 471
 472	do {
 473		char *p;
 474
 475		n = bytes - copied;
 476		if (uses_kmap) {
 477			page += offset / PAGE_SIZE;
 478			offset %= PAGE_SIZE;
 479			n = min_t(size_t, n, PAGE_SIZE - offset);
 480		}
 481
 482		p = kmap_atomic(page) + offset;
 483		n = __copy_from_iter(p, n, i);
 484		kunmap_atomic(p);
 485		copied += n;
 486		offset += n;
 487	} while (uses_kmap && copied != bytes && n > 0);
 488
 489	return copied;
 490}
 491EXPORT_SYMBOL(copy_page_from_iter_atomic);
 492
 493static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
 494{
 495	const struct bio_vec *bvec, *end;
 
 
 
 
 
 
 496
 497	if (!i->count)
 498		return;
 499	i->count -= size;
 500
 501	size += i->iov_offset;
 502
 503	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
 504		if (likely(size < bvec->bv_len))
 505			break;
 506		size -= bvec->bv_len;
 507	}
 508	i->iov_offset = size;
 509	i->nr_segs -= bvec - i->bvec;
 510	i->bvec = bvec;
 511}
 
 512
 513static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
 
 514{
 515	const struct iovec *iov, *end;
 516
 517	if (!i->count)
 518		return;
 519	i->count -= size;
 520
 521	size += i->iov_offset; // from beginning of current segment
 522	for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
 523		if (likely(size < iov->iov_len))
 524			break;
 525		size -= iov->iov_len;
 526	}
 527	i->iov_offset = size;
 528	i->nr_segs -= iov - iter_iov(i);
 529	i->__iov = iov;
 
 
 
 
 
 
 530}
 
 531
 532static void iov_iter_folioq_advance(struct iov_iter *i, size_t size)
 533{
 534	const struct folio_queue *folioq = i->folioq;
 535	unsigned int slot = i->folioq_slot;
 536
 537	if (!i->count)
 538		return;
 539	i->count -= size;
 540
 541	if (slot >= folioq_nr_slots(folioq)) {
 542		folioq = folioq->next;
 543		slot = 0;
 
 
 
 
 
 544	}
 545
 546	size += i->iov_offset; /* From beginning of current segment. */
 547	do {
 548		size_t fsize = folioq_folio_size(folioq, slot);
 549
 550		if (likely(size < fsize))
 551			break;
 552		size -= fsize;
 553		slot++;
 554		if (slot >= folioq_nr_slots(folioq) && folioq->next) {
 555			folioq = folioq->next;
 556			slot = 0;
 557		}
 558	} while (size);
 559
 560	i->iov_offset = size;
 561	i->folioq_slot = slot;
 562	i->folioq = folioq;
 563}
 564
 565void iov_iter_advance(struct iov_iter *i, size_t size)
 566{
 
 567	if (unlikely(i->count < size))
 568		size = i->count;
 569	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
 570		i->iov_offset += size;
 571		i->count -= size;
 572	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
 573		/* iovec and kvec have identical layouts */
 574		iov_iter_iovec_advance(i, size);
 575	} else if (iov_iter_is_bvec(i)) {
 576		iov_iter_bvec_advance(i, size);
 577	} else if (iov_iter_is_folioq(i)) {
 578		iov_iter_folioq_advance(i, size);
 579	} else if (iov_iter_is_discard(i)) {
 580		i->count -= size;
 581	}
 582}
 583EXPORT_SYMBOL(iov_iter_advance);
 584
 585static void iov_iter_folioq_revert(struct iov_iter *i, size_t unroll)
 586{
 587	const struct folio_queue *folioq = i->folioq;
 588	unsigned int slot = i->folioq_slot;
 589
 590	for (;;) {
 591		size_t fsize;
 592
 593		if (slot == 0) {
 594			folioq = folioq->prev;
 595			slot = folioq_nr_slots(folioq);
 596		}
 597		slot--;
 598
 599		fsize = folioq_folio_size(folioq, slot);
 600		if (unroll <= fsize) {
 601			i->iov_offset = fsize - unroll;
 602			break;
 603		}
 604		unroll -= fsize;
 
 605	}
 606
 607	i->folioq_slot = slot;
 608	i->folioq = folioq;
 609}
 610
 611void iov_iter_revert(struct iov_iter *i, size_t unroll)
 612{
 613	if (!unroll)
 
 614		return;
 615	if (WARN_ON(unroll > MAX_RW_COUNT))
 616		return;
 617	i->count += unroll;
 618	if (unlikely(iov_iter_is_discard(i)))
 619		return;
 620	if (unroll <= i->iov_offset) {
 621		i->iov_offset -= unroll;
 622		return;
 623	}
 624	unroll -= i->iov_offset;
 625	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
 626		BUG(); /* We should never go beyond the start of the specified
 627			* range since we might then be straying into pages that
 628			* aren't pinned.
 629			*/
 630	} else if (iov_iter_is_bvec(i)) {
 631		const struct bio_vec *bvec = i->bvec;
 632		while (1) {
 633			size_t n = (--bvec)->bv_len;
 634			i->nr_segs++;
 635			if (unroll <= n) {
 636				i->bvec = bvec;
 637				i->iov_offset = n - unroll;
 638				return;
 639			}
 640			unroll -= n;
 641		}
 642	} else if (iov_iter_is_folioq(i)) {
 643		i->iov_offset = 0;
 644		iov_iter_folioq_revert(i, unroll);
 645	} else { /* same logics for iovec and kvec */
 646		const struct iovec *iov = iter_iov(i);
 647		while (1) {
 648			size_t n = (--iov)->iov_len;
 649			i->nr_segs++;
 650			if (unroll <= n) {
 651				i->__iov = iov;
 652				i->iov_offset = n - unroll;
 653				return;
 654			}
 655			unroll -= n;
 656		}
 657	}
 
 658}
 659EXPORT_SYMBOL(iov_iter_revert);
 660
 661/*
 662 * Return the count of just the current iov_iter segment.
 663 */
 664size_t iov_iter_single_seg_count(const struct iov_iter *i)
 665{
 666	if (i->nr_segs > 1) {
 667		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
 668			return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
 669		if (iov_iter_is_bvec(i))
 670			return min(i->count, i->bvec->bv_len - i->iov_offset);
 671	}
 672	if (unlikely(iov_iter_is_folioq(i)))
 673		return !i->count ? 0 :
 674			umin(folioq_folio_size(i->folioq, i->folioq_slot), i->count);
 675	return i->count;
 676}
 677EXPORT_SYMBOL(iov_iter_single_seg_count);
 678
 679void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
 680			const struct kvec *kvec, unsigned long nr_segs,
 681			size_t count)
 682{
 683	WARN_ON(direction & ~(READ | WRITE));
 684	*i = (struct iov_iter){
 685		.iter_type = ITER_KVEC,
 686		.data_source = direction,
 687		.kvec = kvec,
 688		.nr_segs = nr_segs,
 689		.iov_offset = 0,
 690		.count = count
 691	};
 692}
 693EXPORT_SYMBOL(iov_iter_kvec);
 694
 695void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
 696			const struct bio_vec *bvec, unsigned long nr_segs,
 697			size_t count)
 698{
 699	WARN_ON(direction & ~(READ | WRITE));
 700	*i = (struct iov_iter){
 701		.iter_type = ITER_BVEC,
 702		.data_source = direction,
 703		.bvec = bvec,
 704		.nr_segs = nr_segs,
 705		.iov_offset = 0,
 706		.count = count
 707	};
 708}
 709EXPORT_SYMBOL(iov_iter_bvec);
 710
 711/**
 712 * iov_iter_folio_queue - Initialise an I/O iterator to use the folios in a folio queue
 713 * @i: The iterator to initialise.
 714 * @direction: The direction of the transfer.
 715 * @folioq: The starting point in the folio queue.
 716 * @first_slot: The first slot in the folio queue to use
 717 * @offset: The offset into the folio in the first slot to start at
 718 * @count: The size of the I/O buffer in bytes.
 719 *
 720 * Set up an I/O iterator to either draw data out of the pages attached to an
 721 * inode or to inject data into those pages.  The pages *must* be prevented
 722 * from evaporation, either by taking a ref on them or locking them by the
 723 * caller.
 724 */
 725void iov_iter_folio_queue(struct iov_iter *i, unsigned int direction,
 726			  const struct folio_queue *folioq, unsigned int first_slot,
 727			  unsigned int offset, size_t count)
 728{
 729	BUG_ON(direction & ~1);
 730	*i = (struct iov_iter) {
 731		.iter_type = ITER_FOLIOQ,
 732		.data_source = direction,
 733		.folioq = folioq,
 734		.folioq_slot = first_slot,
 735		.count = count,
 736		.iov_offset = offset,
 737	};
 738}
 739EXPORT_SYMBOL(iov_iter_folio_queue);
 740
 741/**
 742 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
 743 * @i: The iterator to initialise.
 744 * @direction: The direction of the transfer.
 745 * @xarray: The xarray to access.
 746 * @start: The start file position.
 747 * @count: The size of the I/O buffer in bytes.
 748 *
 749 * Set up an I/O iterator to either draw data out of the pages attached to an
 750 * inode or to inject data into those pages.  The pages *must* be prevented
 751 * from evaporation, either by taking a ref on them or locking them by the
 752 * caller.
 753 */
 754void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
 755		     struct xarray *xarray, loff_t start, size_t count)
 756{
 757	BUG_ON(direction & ~1);
 758	*i = (struct iov_iter) {
 759		.iter_type = ITER_XARRAY,
 760		.data_source = direction,
 761		.xarray = xarray,
 762		.xarray_start = start,
 763		.count = count,
 764		.iov_offset = 0
 765	};
 766}
 767EXPORT_SYMBOL(iov_iter_xarray);
 768
 769/**
 770 * iov_iter_discard - Initialise an I/O iterator that discards data
 771 * @i: The iterator to initialise.
 772 * @direction: The direction of the transfer.
 773 * @count: The size of the I/O buffer in bytes.
 774 *
 775 * Set up an I/O iterator that just discards everything that's written to it.
 776 * It's only available as a READ iterator.
 777 */
 778void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
 779{
 780	BUG_ON(direction != READ);
 781	*i = (struct iov_iter){
 782		.iter_type = ITER_DISCARD,
 783		.data_source = false,
 784		.count = count,
 785		.iov_offset = 0
 786	};
 787}
 788EXPORT_SYMBOL(iov_iter_discard);
 789
 790static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
 791				   unsigned len_mask)
 792{
 793	const struct iovec *iov = iter_iov(i);
 794	size_t size = i->count;
 795	size_t skip = i->iov_offset;
 796
 797	do {
 798		size_t len = iov->iov_len - skip;
 799
 800		if (len > size)
 801			len = size;
 802		if (len & len_mask)
 803			return false;
 804		if ((unsigned long)(iov->iov_base + skip) & addr_mask)
 805			return false;
 806
 807		iov++;
 808		size -= len;
 809		skip = 0;
 810	} while (size);
 811
 812	return true;
 813}
 814
 815static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
 816				  unsigned len_mask)
 817{
 818	const struct bio_vec *bvec = i->bvec;
 819	unsigned skip = i->iov_offset;
 820	size_t size = i->count;
 821
 822	do {
 823		size_t len = bvec->bv_len;
 824
 825		if (len > size)
 826			len = size;
 827		if (len & len_mask)
 828			return false;
 829		if ((unsigned long)(bvec->bv_offset + skip) & addr_mask)
 830			return false;
 831
 832		bvec++;
 833		size -= len;
 834		skip = 0;
 835	} while (size);
 836
 837	return true;
 838}
 839
 840/**
 841 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
 842 * 	are aligned to the parameters.
 843 *
 844 * @i: &struct iov_iter to restore
 845 * @addr_mask: bit mask to check against the iov element's addresses
 846 * @len_mask: bit mask to check against the iov element's lengths
 847 *
 848 * Return: false if any addresses or lengths intersect with the provided masks
 849 */
 850bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
 851			 unsigned len_mask)
 852{
 853	if (likely(iter_is_ubuf(i))) {
 854		if (i->count & len_mask)
 855			return false;
 856		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
 857			return false;
 858		return true;
 859	}
 860
 861	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
 862		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
 863
 864	if (iov_iter_is_bvec(i))
 865		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
 866
 867	/* With both xarray and folioq types, we're dealing with whole folios. */
 868	if (iov_iter_is_xarray(i)) {
 869		if (i->count & len_mask)
 870			return false;
 871		if ((i->xarray_start + i->iov_offset) & addr_mask)
 872			return false;
 873	}
 874	if (iov_iter_is_folioq(i)) {
 875		if (i->count & len_mask)
 876			return false;
 877		if (i->iov_offset & addr_mask)
 878			return false;
 879	}
 880
 881	return true;
 882}
 883EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
 884
 885static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
 886{
 887	const struct iovec *iov = iter_iov(i);
 888	unsigned long res = 0;
 889	size_t size = i->count;
 890	size_t skip = i->iov_offset;
 891
 892	do {
 893		size_t len = iov->iov_len - skip;
 894		if (len) {
 895			res |= (unsigned long)iov->iov_base + skip;
 896			if (len > size)
 897				len = size;
 898			res |= len;
 899			size -= len;
 900		}
 901		iov++;
 902		skip = 0;
 903	} while (size);
 904	return res;
 905}
 906
 907static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
 908{
 909	const struct bio_vec *bvec = i->bvec;
 910	unsigned res = 0;
 911	size_t size = i->count;
 912	unsigned skip = i->iov_offset;
 913
 914	do {
 915		size_t len = bvec->bv_len - skip;
 916		res |= (unsigned long)bvec->bv_offset + skip;
 917		if (len > size)
 918			len = size;
 919		res |= len;
 920		bvec++;
 921		size -= len;
 922		skip = 0;
 923	} while (size);
 924
 925	return res;
 926}
 927
 928unsigned long iov_iter_alignment(const struct iov_iter *i)
 929{
 930	if (likely(iter_is_ubuf(i))) {
 931		size_t size = i->count;
 932		if (size)
 933			return ((unsigned long)i->ubuf + i->iov_offset) | size;
 934		return 0;
 935	}
 936
 937	/* iovec and kvec have identical layouts */
 938	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
 939		return iov_iter_alignment_iovec(i);
 940
 941	if (iov_iter_is_bvec(i))
 942		return iov_iter_alignment_bvec(i);
 943
 944	/* With both xarray and folioq types, we're dealing with whole folios. */
 945	if (iov_iter_is_folioq(i))
 946		return i->iov_offset | i->count;
 947	if (iov_iter_is_xarray(i))
 948		return (i->xarray_start + i->iov_offset) | i->count;
 949
 950	return 0;
 951}
 952EXPORT_SYMBOL(iov_iter_alignment);
 953
 954unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
 955{
 956	unsigned long res = 0;
 957	unsigned long v = 0;
 958	size_t size = i->count;
 959	unsigned k;
 960
 961	if (iter_is_ubuf(i))
 962		return 0;
 963
 964	if (WARN_ON(!iter_is_iovec(i)))
 
 965		return ~0U;
 
 966
 967	for (k = 0; k < i->nr_segs; k++) {
 968		const struct iovec *iov = iter_iov(i) + k;
 969		if (iov->iov_len) {
 970			unsigned long base = (unsigned long)iov->iov_base;
 971			if (v) // if not the first one
 972				res |= base | v; // this start | previous end
 973			v = base + iov->iov_len;
 974			if (size <= iov->iov_len)
 975				break;
 976			size -= iov->iov_len;
 977		}
 978	}
 979	return res;
 980}
 981EXPORT_SYMBOL(iov_iter_gap_alignment);
 982
 983static int want_pages_array(struct page ***res, size_t size,
 984			    size_t start, unsigned int maxpages)
 985{
 986	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
 
 
 
 
 
 
 987
 988	if (count > maxpages)
 989		count = maxpages;
 990	WARN_ON(!count);	// caller should've prevented that
 991	if (!*res) {
 992		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
 993		if (!*res)
 994			return 0;
 995	}
 996	return count;
 
 997}
 998
 999static ssize_t iter_folioq_get_pages(struct iov_iter *iter,
1000				     struct page ***ppages, size_t maxsize,
1001				     unsigned maxpages, size_t *_start_offset)
1002{
1003	const struct folio_queue *folioq = iter->folioq;
1004	struct page **pages;
1005	unsigned int slot = iter->folioq_slot;
1006	size_t extracted = 0, count = iter->count, iov_offset = iter->iov_offset;
1007
1008	if (slot >= folioq_nr_slots(folioq)) {
1009		folioq = folioq->next;
1010		slot = 0;
1011		if (WARN_ON(iov_offset != 0))
1012			return -EIO;
1013	}
1014
1015	maxpages = want_pages_array(ppages, maxsize, iov_offset & ~PAGE_MASK, maxpages);
1016	if (!maxpages)
1017		return -ENOMEM;
1018	*_start_offset = iov_offset & ~PAGE_MASK;
1019	pages = *ppages;
1020
1021	for (;;) {
1022		struct folio *folio = folioq_folio(folioq, slot);
1023		size_t offset = iov_offset, fsize = folioq_folio_size(folioq, slot);
1024		size_t part = PAGE_SIZE - offset % PAGE_SIZE;
1025
1026		if (offset < fsize) {
1027			part = umin(part, umin(maxsize - extracted, fsize - offset));
1028			count -= part;
1029			iov_offset += part;
1030			extracted += part;
1031
1032			*pages = folio_page(folio, offset / PAGE_SIZE);
1033			get_page(*pages);
1034			pages++;
1035			maxpages--;
1036		}
1037
1038		if (maxpages == 0 || extracted >= maxsize)
1039			break;
1040
1041		if (iov_offset >= fsize) {
1042			iov_offset = 0;
1043			slot++;
1044			if (slot == folioq_nr_slots(folioq) && folioq->next) {
1045				folioq = folioq->next;
1046				slot = 0;
1047			}
1048		}
1049	}
1050
1051	iter->count = count;
1052	iter->iov_offset = iov_offset;
1053	iter->folioq = folioq;
1054	iter->folioq_slot = slot;
1055	return extracted;
1056}
1057
1058static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1059					  pgoff_t index, unsigned int nr_pages)
1060{
1061	XA_STATE(xas, xa, index);
1062	struct page *page;
1063	unsigned int ret = 0;
1064
1065	rcu_read_lock();
1066	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1067		if (xas_retry(&xas, page))
1068			continue;
1069
1070		/* Has the page moved or been split? */
1071		if (unlikely(page != xas_reload(&xas))) {
1072			xas_reset(&xas);
1073			continue;
1074		}
1075
1076		pages[ret] = find_subpage(page, xas.xa_index);
1077		get_page(pages[ret]);
1078		if (++ret == nr_pages)
1079			break;
1080	}
1081	rcu_read_unlock();
1082	return ret;
 
 
 
 
 
 
 
 
 
 
 
1083}
 
1084
1085static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1086				     struct page ***pages, size_t maxsize,
1087				     unsigned maxpages, size_t *_start_offset)
1088{
1089	unsigned nr, offset, count;
1090	pgoff_t index;
1091	loff_t pos;
1092
1093	pos = i->xarray_start + i->iov_offset;
1094	index = pos >> PAGE_SHIFT;
1095	offset = pos & ~PAGE_MASK;
1096	*_start_offset = offset;
1097
1098	count = want_pages_array(pages, maxsize, offset, maxpages);
1099	if (!count)
1100		return -ENOMEM;
1101	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1102	if (nr == 0)
1103		return 0;
1104
1105	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1106	i->iov_offset += maxsize;
1107	i->count -= maxsize;
1108	return maxsize;
1109}
1110
1111/* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1112static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
 
1113{
1114	size_t skip;
1115	long k;
 
 
1116
1117	if (iter_is_ubuf(i))
1118		return (unsigned long)i->ubuf + i->iov_offset;
1119
1120	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1121		const struct iovec *iov = iter_iov(i) + k;
1122		size_t len = iov->iov_len - skip;
1123
1124		if (unlikely(!len))
1125			continue;
1126		if (*size > len)
1127			*size = len;
1128		return (unsigned long)iov->iov_base + skip;
1129	}
1130	BUG(); // if it had been empty, we wouldn't get called
1131}
1132
1133/* must be done on non-empty ITER_BVEC one */
1134static struct page *first_bvec_segment(const struct iov_iter *i,
1135				       size_t *size, size_t *start)
1136{
1137	struct page *page;
1138	size_t skip = i->iov_offset, len;
1139
1140	len = i->bvec->bv_len - skip;
1141	if (*size > len)
1142		*size = len;
1143	skip += i->bvec->bv_offset;
1144	page = i->bvec->bv_page + skip / PAGE_SIZE;
1145	*start = skip % PAGE_SIZE;
1146	return page;
1147}
1148
1149static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1150		   struct page ***pages, size_t maxsize,
1151		   unsigned int maxpages, size_t *start)
1152{
1153	unsigned int n, gup_flags = 0;
1154
1155	if (maxsize > i->count)
1156		maxsize = i->count;
1157	if (!maxsize)
1158		return 0;
1159	if (maxsize > MAX_RW_COUNT)
1160		maxsize = MAX_RW_COUNT;
1161
1162	if (likely(user_backed_iter(i))) {
1163		unsigned long addr;
 
 
 
 
1164		int res;
1165
1166		if (iov_iter_rw(i) != WRITE)
1167			gup_flags |= FOLL_WRITE;
1168		if (i->nofault)
1169			gup_flags |= FOLL_NOFAULT;
1170
1171		addr = first_iovec_segment(i, &maxsize);
1172		*start = addr % PAGE_SIZE;
1173		addr &= PAGE_MASK;
1174		n = want_pages_array(pages, maxsize, *start, maxpages);
1175		if (!n)
1176			return -ENOMEM;
1177		res = get_user_pages_fast(addr, n, gup_flags, *pages);
1178		if (unlikely(res <= 0))
 
1179			return res;
1180		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1181		iov_iter_advance(i, maxsize);
1182		return maxsize;
1183	}
1184	if (iov_iter_is_bvec(i)) {
1185		struct page **p;
1186		struct page *page;
1187
1188		page = first_bvec_segment(i, &maxsize, start);
1189		n = want_pages_array(pages, maxsize, *start, maxpages);
1190		if (!n)
1191			return -ENOMEM;
1192		p = *pages;
1193		for (int k = 0; k < n; k++)
1194			get_page(p[k] = page + k);
1195		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1196		i->count -= maxsize;
1197		i->iov_offset += maxsize;
1198		if (i->iov_offset == i->bvec->bv_len) {
1199			i->iov_offset = 0;
1200			i->bvec++;
1201			i->nr_segs--;
1202		}
1203		return maxsize;
1204	}
1205	if (iov_iter_is_folioq(i))
1206		return iter_folioq_get_pages(i, pages, maxsize, maxpages, start);
1207	if (iov_iter_is_xarray(i))
1208		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1209	return -EFAULT;
1210}
 
1211
1212ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1213		size_t maxsize, unsigned maxpages, size_t *start)
1214{
1215	if (!maxpages)
 
 
 
 
 
1216		return 0;
1217	BUG_ON(!pages);
1218
1219	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1220}
1221EXPORT_SYMBOL(iov_iter_get_pages2);
1222
1223ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1224		struct page ***pages, size_t maxsize, size_t *start)
1225{
1226	ssize_t len;
1227
1228	*pages = NULL;
1229
1230	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1231	if (len <= 0) {
1232		kvfree(*pages);
1233		*pages = NULL;
1234	}
1235	return len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236}
1237EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1238
1239static int iov_npages(const struct iov_iter *i, int maxpages)
1240{
1241	size_t skip = i->iov_offset, size = i->count;
1242	const struct iovec *p;
1243	int npages = 0;
1244
1245	for (p = iter_iov(i); size; skip = 0, p++) {
1246		unsigned offs = offset_in_page(p->iov_base + skip);
1247		size_t len = min(p->iov_len - skip, size);
1248
1249		if (len) {
1250			size -= len;
1251			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1252			if (unlikely(npages > maxpages))
1253				return maxpages;
1254		}
1255	}
1256	return npages;
1257}
1258
1259static int bvec_npages(const struct iov_iter *i, int maxpages)
1260{
1261	size_t skip = i->iov_offset, size = i->count;
1262	const struct bio_vec *p;
1263	int npages = 0;
1264
1265	for (p = i->bvec; size; skip = 0, p++) {
1266		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1267		size_t len = min(p->bv_len - skip, size);
1268
1269		size -= len;
1270		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1271		if (unlikely(npages > maxpages))
 
 
 
1272			return maxpages;
1273	}
 
 
 
 
 
 
 
 
 
 
 
1274	return npages;
1275}
1276
1277int iov_iter_npages(const struct iov_iter *i, int maxpages)
1278{
1279	if (unlikely(!i->count))
1280		return 0;
1281	if (likely(iter_is_ubuf(i))) {
1282		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1283		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1284		return min(npages, maxpages);
1285	}
1286	/* iovec and kvec have identical layouts */
1287	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1288		return iov_npages(i, maxpages);
1289	if (iov_iter_is_bvec(i))
1290		return bvec_npages(i, maxpages);
1291	if (iov_iter_is_folioq(i)) {
1292		unsigned offset = i->iov_offset % PAGE_SIZE;
1293		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1294		return min(npages, maxpages);
1295	}
1296	if (iov_iter_is_xarray(i)) {
1297		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1298		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1299		return min(npages, maxpages);
1300	}
1301	return 0;
1302}
1303EXPORT_SYMBOL(iov_iter_npages);
1304
1305const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1306{
1307	*new = *old;
1308	if (iov_iter_is_bvec(new))
 
 
 
 
1309		return new->bvec = kmemdup(new->bvec,
1310				    new->nr_segs * sizeof(struct bio_vec),
1311				    flags);
1312	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1313		/* iovec and kvec have identical layout */
1314		return new->__iov = kmemdup(new->__iov,
1315				   new->nr_segs * sizeof(struct iovec),
1316				   flags);
1317	return NULL;
1318}
1319EXPORT_SYMBOL(dup_iter);
1320
1321static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1322		const struct iovec __user *uvec, u32 nr_segs)
1323{
1324	const struct compat_iovec __user *uiov =
1325		(const struct compat_iovec __user *)uvec;
1326	int ret = -EFAULT;
1327	u32 i;
1328
1329	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1330		return -EFAULT;
1331
1332	for (i = 0; i < nr_segs; i++) {
1333		compat_uptr_t buf;
1334		compat_ssize_t len;
1335
1336		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1337		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1338
1339		/* check for compat_size_t not fitting in compat_ssize_t .. */
1340		if (len < 0) {
1341			ret = -EINVAL;
1342			goto uaccess_end;
1343		}
1344		iov[i].iov_base = compat_ptr(buf);
1345		iov[i].iov_len = len;
1346	}
1347
1348	ret = 0;
1349uaccess_end:
1350	user_access_end();
1351	return ret;
1352}
1353
1354static __noclone int copy_iovec_from_user(struct iovec *iov,
1355		const struct iovec __user *uiov, unsigned long nr_segs)
1356{
1357	int ret = -EFAULT;
1358
1359	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1360		return -EFAULT;
1361
1362	do {
1363		void __user *buf;
1364		ssize_t len;
1365
1366		unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1367		unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1368
1369		/* check for size_t not fitting in ssize_t .. */
1370		if (unlikely(len < 0)) {
1371			ret = -EINVAL;
1372			goto uaccess_end;
1373		}
1374		iov->iov_base = buf;
1375		iov->iov_len = len;
1376
1377		uiov++; iov++;
1378	} while (--nr_segs);
1379
1380	ret = 0;
1381uaccess_end:
1382	user_access_end();
1383	return ret;
1384}
1385
1386struct iovec *iovec_from_user(const struct iovec __user *uvec,
1387		unsigned long nr_segs, unsigned long fast_segs,
1388		struct iovec *fast_iov, bool compat)
1389{
1390	struct iovec *iov = fast_iov;
1391	int ret;
1392
1393	/*
1394	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1395	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1396	 * traditionally returned zero for zero segments, so...
1397	 */
1398	if (nr_segs == 0)
1399		return iov;
1400	if (nr_segs > UIO_MAXIOV)
1401		return ERR_PTR(-EINVAL);
1402	if (nr_segs > fast_segs) {
1403		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1404		if (!iov)
1405			return ERR_PTR(-ENOMEM);
1406	}
1407
1408	if (unlikely(compat))
1409		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1410	else
1411		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1412	if (ret) {
1413		if (iov != fast_iov)
1414			kfree(iov);
1415		return ERR_PTR(ret);
1416	}
1417
1418	return iov;
1419}
1420
1421/*
1422 * Single segment iovec supplied by the user, import it as ITER_UBUF.
1423 */
1424static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1425				   struct iovec **iovp, struct iov_iter *i,
1426				   bool compat)
1427{
1428	struct iovec *iov = *iovp;
1429	ssize_t ret;
1430
1431	*iovp = NULL;
1432
1433	if (compat)
1434		ret = copy_compat_iovec_from_user(iov, uvec, 1);
1435	else
1436		ret = copy_iovec_from_user(iov, uvec, 1);
1437	if (unlikely(ret))
1438		return ret;
1439
1440	ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1441	if (unlikely(ret))
1442		return ret;
1443	return i->count;
1444}
1445
1446ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1447		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1448		 struct iov_iter *i, bool compat)
1449{
1450	ssize_t total_len = 0;
1451	unsigned long seg;
1452	struct iovec *iov;
1453
1454	if (nr_segs == 1)
1455		return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1456
1457	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1458	if (IS_ERR(iov)) {
1459		*iovp = NULL;
1460		return PTR_ERR(iov);
1461	}
1462
1463	/*
1464	 * According to the Single Unix Specification we should return EINVAL if
1465	 * an element length is < 0 when cast to ssize_t or if the total length
1466	 * would overflow the ssize_t return value of the system call.
1467	 *
1468	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1469	 * overflow case.
1470	 */
1471	for (seg = 0; seg < nr_segs; seg++) {
1472		ssize_t len = (ssize_t)iov[seg].iov_len;
1473
1474		if (!access_ok(iov[seg].iov_base, len)) {
1475			if (iov != *iovp)
1476				kfree(iov);
1477			*iovp = NULL;
1478			return -EFAULT;
1479		}
1480
1481		if (len > MAX_RW_COUNT - total_len) {
1482			len = MAX_RW_COUNT - total_len;
1483			iov[seg].iov_len = len;
1484		}
1485		total_len += len;
1486	}
1487
1488	iov_iter_init(i, type, iov, nr_segs, total_len);
1489	if (iov == *iovp)
1490		*iovp = NULL;
1491	else
1492		*iovp = iov;
1493	return total_len;
1494}
1495
1496/**
1497 * import_iovec() - Copy an array of &struct iovec from userspace
1498 *     into the kernel, check that it is valid, and initialize a new
1499 *     &struct iov_iter iterator to access it.
1500 *
1501 * @type: One of %READ or %WRITE.
1502 * @uvec: Pointer to the userspace array.
1503 * @nr_segs: Number of elements in userspace array.
1504 * @fast_segs: Number of elements in @iov.
1505 * @iovp: (input and output parameter) Pointer to pointer to (usually small
1506 *     on-stack) kernel array.
1507 * @i: Pointer to iterator that will be initialized on success.
1508 *
1509 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1510 * then this function places %NULL in *@iov on return. Otherwise, a new
1511 * array will be allocated and the result placed in *@iov. This means that
1512 * the caller may call kfree() on *@iov regardless of whether the small
1513 * on-stack array was used or not (and regardless of whether this function
1514 * returns an error or not).
1515 *
1516 * Return: Negative error code on error, bytes imported on success
1517 */
1518ssize_t import_iovec(int type, const struct iovec __user *uvec,
1519		 unsigned nr_segs, unsigned fast_segs,
1520		 struct iovec **iovp, struct iov_iter *i)
1521{
1522	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1523			      in_compat_syscall());
 
 
 
 
 
 
 
 
 
 
 
1524}
1525EXPORT_SYMBOL(import_iovec);
1526
1527int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1528{
1529	if (len > MAX_RW_COUNT)
1530		len = MAX_RW_COUNT;
1531	if (unlikely(!access_ok(buf, len)))
1532		return -EFAULT;
1533
1534	iov_iter_ubuf(i, rw, buf, len);
1535	return 0;
1536}
1537EXPORT_SYMBOL_GPL(import_ubuf);
1538
1539/**
1540 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1541 *     iov_iter_save_state() was called.
1542 *
1543 * @i: &struct iov_iter to restore
1544 * @state: state to restore from
1545 *
1546 * Used after iov_iter_save_state() to bring restore @i, if operations may
1547 * have advanced it.
1548 *
1549 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1550 */
1551void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1552{
1553	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1554			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1555		return;
1556	i->iov_offset = state->iov_offset;
1557	i->count = state->count;
1558	if (iter_is_ubuf(i))
1559		return;
1560	/*
1561	 * For the *vec iters, nr_segs + iov is constant - if we increment
1562	 * the vec, then we also decrement the nr_segs count. Hence we don't
1563	 * need to track both of these, just one is enough and we can deduct
1564	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1565	 * size, so we can just increment the iov pointer as they are unionzed.
1566	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1567	 * not. Be safe and handle it separately.
1568	 */
1569	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1570	if (iov_iter_is_bvec(i))
1571		i->bvec -= state->nr_segs - i->nr_segs;
1572	else
1573		i->__iov -= state->nr_segs - i->nr_segs;
1574	i->nr_segs = state->nr_segs;
1575}
1576
1577/*
1578 * Extract a list of contiguous pages from an ITER_FOLIOQ iterator.  This does
1579 * not get references on the pages, nor does it get a pin on them.
1580 */
1581static ssize_t iov_iter_extract_folioq_pages(struct iov_iter *i,
1582					     struct page ***pages, size_t maxsize,
1583					     unsigned int maxpages,
1584					     iov_iter_extraction_t extraction_flags,
1585					     size_t *offset0)
1586{
1587	const struct folio_queue *folioq = i->folioq;
1588	struct page **p;
1589	unsigned int nr = 0;
1590	size_t extracted = 0, offset, slot = i->folioq_slot;
1591
1592	if (slot >= folioq_nr_slots(folioq)) {
1593		folioq = folioq->next;
1594		slot = 0;
1595		if (WARN_ON(i->iov_offset != 0))
1596			return -EIO;
1597	}
1598
1599	offset = i->iov_offset & ~PAGE_MASK;
1600	*offset0 = offset;
1601
1602	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1603	if (!maxpages)
1604		return -ENOMEM;
1605	p = *pages;
1606
1607	for (;;) {
1608		struct folio *folio = folioq_folio(folioq, slot);
1609		size_t offset = i->iov_offset, fsize = folioq_folio_size(folioq, slot);
1610		size_t part = PAGE_SIZE - offset % PAGE_SIZE;
1611
1612		if (offset < fsize) {
1613			part = umin(part, umin(maxsize - extracted, fsize - offset));
1614			i->count -= part;
1615			i->iov_offset += part;
1616			extracted += part;
1617
1618			p[nr++] = folio_page(folio, offset / PAGE_SIZE);
1619		}
1620
1621		if (nr >= maxpages || extracted >= maxsize)
1622			break;
1623
1624		if (i->iov_offset >= fsize) {
1625			i->iov_offset = 0;
1626			slot++;
1627			if (slot == folioq_nr_slots(folioq) && folioq->next) {
1628				folioq = folioq->next;
1629				slot = 0;
1630			}
1631		}
1632	}
1633
1634	i->folioq = folioq;
1635	i->folioq_slot = slot;
1636	return extracted;
1637}
 
1638
1639/*
1640 * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
1641 * get references on the pages, nor does it get a pin on them.
1642 */
1643static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1644					     struct page ***pages, size_t maxsize,
1645					     unsigned int maxpages,
1646					     iov_iter_extraction_t extraction_flags,
1647					     size_t *offset0)
1648{
1649	struct page *page, **p;
1650	unsigned int nr = 0, offset;
1651	loff_t pos = i->xarray_start + i->iov_offset;
1652	pgoff_t index = pos >> PAGE_SHIFT;
1653	XA_STATE(xas, i->xarray, index);
1654
1655	offset = pos & ~PAGE_MASK;
1656	*offset0 = offset;
1657
1658	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1659	if (!maxpages)
1660		return -ENOMEM;
1661	p = *pages;
1662
1663	rcu_read_lock();
1664	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1665		if (xas_retry(&xas, page))
1666			continue;
1667
1668		/* Has the page moved or been split? */
1669		if (unlikely(page != xas_reload(&xas))) {
1670			xas_reset(&xas);
1671			continue;
1672		}
1673
1674		p[nr++] = find_subpage(page, xas.xa_index);
1675		if (nr == maxpages)
1676			break;
1677	}
1678	rcu_read_unlock();
1679
1680	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1681	iov_iter_advance(i, maxsize);
1682	return maxsize;
1683}
1684
1685/*
1686 * Extract a list of virtually contiguous pages from an ITER_BVEC iterator.
1687 * This does not get references on the pages, nor does it get a pin on them.
1688 */
1689static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1690					   struct page ***pages, size_t maxsize,
1691					   unsigned int maxpages,
1692					   iov_iter_extraction_t extraction_flags,
1693					   size_t *offset0)
1694{
1695	size_t skip = i->iov_offset, size = 0;
1696	struct bvec_iter bi;
1697	int k = 0;
1698
1699	if (i->nr_segs == 0)
1700		return 0;
1701
1702	if (i->iov_offset == i->bvec->bv_len) {
1703		i->iov_offset = 0;
1704		i->nr_segs--;
1705		i->bvec++;
1706		skip = 0;
1707	}
1708	bi.bi_idx = 0;
1709	bi.bi_size = maxsize;
1710	bi.bi_bvec_done = skip;
1711
1712	maxpages = want_pages_array(pages, maxsize, skip, maxpages);
1713
1714	while (bi.bi_size && bi.bi_idx < i->nr_segs) {
1715		struct bio_vec bv = bvec_iter_bvec(i->bvec, bi);
1716
1717		/*
1718		 * The iov_iter_extract_pages interface only allows an offset
1719		 * into the first page.  Break out of the loop if we see an
1720		 * offset into subsequent pages, the caller will have to call
1721		 * iov_iter_extract_pages again for the reminder.
1722		 */
1723		if (k) {
1724			if (bv.bv_offset)
1725				break;
1726		} else {
1727			*offset0 = bv.bv_offset;
1728		}
1729
1730		(*pages)[k++] = bv.bv_page;
1731		size += bv.bv_len;
1732
1733		if (k >= maxpages)
1734			break;
1735
1736		/*
1737		 * We are done when the end of the bvec doesn't align to a page
1738		 * boundary as that would create a hole in the returned space.
1739		 * The caller will handle this with another call to
1740		 * iov_iter_extract_pages.
1741		 */
1742		if (bv.bv_offset + bv.bv_len != PAGE_SIZE)
1743			break;
1744
1745		bvec_iter_advance_single(i->bvec, &bi, bv.bv_len);
1746	}
1747
1748	iov_iter_advance(i, size);
1749	return size;
1750}
1751
1752/*
1753 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1754 * This does not get references on the pages, nor does it get a pin on them.
1755 */
1756static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1757					   struct page ***pages, size_t maxsize,
1758					   unsigned int maxpages,
1759					   iov_iter_extraction_t extraction_flags,
1760					   size_t *offset0)
1761{
1762	struct page **p, *page;
1763	const void *kaddr;
1764	size_t skip = i->iov_offset, offset, len, size;
1765	int k;
1766
1767	for (;;) {
1768		if (i->nr_segs == 0)
1769			return 0;
1770		size = min(maxsize, i->kvec->iov_len - skip);
1771		if (size)
1772			break;
1773		i->iov_offset = 0;
1774		i->nr_segs--;
1775		i->kvec++;
1776		skip = 0;
1777	}
1778
1779	kaddr = i->kvec->iov_base + skip;
1780	offset = (unsigned long)kaddr & ~PAGE_MASK;
1781	*offset0 = offset;
1782
1783	maxpages = want_pages_array(pages, size, offset, maxpages);
1784	if (!maxpages)
1785		return -ENOMEM;
1786	p = *pages;
1787
1788	kaddr -= offset;
1789	len = offset + size;
1790	for (k = 0; k < maxpages; k++) {
1791		size_t seg = min_t(size_t, len, PAGE_SIZE);
1792
1793		if (is_vmalloc_or_module_addr(kaddr))
1794			page = vmalloc_to_page(kaddr);
1795		else
1796			page = virt_to_page(kaddr);
1797
1798		p[k] = page;
1799		len -= seg;
1800		kaddr += PAGE_SIZE;
1801	}
1802
1803	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1804	iov_iter_advance(i, size);
1805	return size;
1806}
1807
1808/*
1809 * Extract a list of contiguous pages from a user iterator and get a pin on
1810 * each of them.  This should only be used if the iterator is user-backed
1811 * (IOBUF/UBUF).
1812 *
1813 * It does not get refs on the pages, but the pages must be unpinned by the
1814 * caller once the transfer is complete.
1815 *
1816 * This is safe to be used where background IO/DMA *is* going to be modifying
1817 * the buffer; using a pin rather than a ref makes forces fork() to give the
1818 * child a copy of the page.
1819 */
1820static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1821					   struct page ***pages,
1822					   size_t maxsize,
1823					   unsigned int maxpages,
1824					   iov_iter_extraction_t extraction_flags,
1825					   size_t *offset0)
1826{
1827	unsigned long addr;
1828	unsigned int gup_flags = 0;
1829	size_t offset;
1830	int res;
1831
1832	if (i->data_source == ITER_DEST)
1833		gup_flags |= FOLL_WRITE;
1834	if (extraction_flags & ITER_ALLOW_P2PDMA)
1835		gup_flags |= FOLL_PCI_P2PDMA;
1836	if (i->nofault)
1837		gup_flags |= FOLL_NOFAULT;
1838
1839	addr = first_iovec_segment(i, &maxsize);
1840	*offset0 = offset = addr % PAGE_SIZE;
1841	addr &= PAGE_MASK;
1842	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1843	if (!maxpages)
1844		return -ENOMEM;
1845	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1846	if (unlikely(res <= 0))
1847		return res;
1848	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1849	iov_iter_advance(i, maxsize);
1850	return maxsize;
1851}
1852
1853/**
1854 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1855 * @i: The iterator to extract from
1856 * @pages: Where to return the list of pages
1857 * @maxsize: The maximum amount of iterator to extract
1858 * @maxpages: The maximum size of the list of pages
1859 * @extraction_flags: Flags to qualify request
1860 * @offset0: Where to return the starting offset into (*@pages)[0]
1861 *
1862 * Extract a list of contiguous pages from the current point of the iterator,
1863 * advancing the iterator.  The maximum number of pages and the maximum amount
1864 * of page contents can be set.
1865 *
1866 * If *@pages is NULL, a page list will be allocated to the required size and
1867 * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
1868 * that the caller allocated a page list at least @maxpages in size and this
1869 * will be filled in.
1870 *
1871 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1872 * be allowed on the pages extracted.
1873 *
1874 * The iov_iter_extract_will_pin() function can be used to query how cleanup
1875 * should be performed.
1876 *
1877 * Extra refs or pins on the pages may be obtained as follows:
1878 *
1879 *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1880 *      added to the pages, but refs will not be taken.
1881 *      iov_iter_extract_will_pin() will return true.
1882 *
1883 *  (*) If the iterator is ITER_KVEC, ITER_BVEC, ITER_FOLIOQ or ITER_XARRAY, the
1884 *      pages are merely listed; no extra refs or pins are obtained.
1885 *      iov_iter_extract_will_pin() will return 0.
1886 *
1887 * Note also:
1888 *
1889 *  (*) Use with ITER_DISCARD is not supported as that has no content.
1890 *
1891 * On success, the function sets *@pages to the new pagelist, if allocated, and
1892 * sets *offset0 to the offset into the first page.
1893 *
1894 * It may also return -ENOMEM and -EFAULT.
1895 */
1896ssize_t iov_iter_extract_pages(struct iov_iter *i,
1897			       struct page ***pages,
1898			       size_t maxsize,
1899			       unsigned int maxpages,
1900			       iov_iter_extraction_t extraction_flags,
1901			       size_t *offset0)
1902{
1903	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1904	if (!maxsize)
1905		return 0;
 
1906
1907	if (likely(user_backed_iter(i)))
1908		return iov_iter_extract_user_pages(i, pages, maxsize,
1909						   maxpages, extraction_flags,
1910						   offset0);
1911	if (iov_iter_is_kvec(i))
1912		return iov_iter_extract_kvec_pages(i, pages, maxsize,
1913						   maxpages, extraction_flags,
1914						   offset0);
1915	if (iov_iter_is_bvec(i))
1916		return iov_iter_extract_bvec_pages(i, pages, maxsize,
1917						   maxpages, extraction_flags,
1918						   offset0);
1919	if (iov_iter_is_folioq(i))
1920		return iov_iter_extract_folioq_pages(i, pages, maxsize,
1921						     maxpages, extraction_flags,
1922						     offset0);
1923	if (iov_iter_is_xarray(i))
1924		return iov_iter_extract_xarray_pages(i, pages, maxsize,
1925						     maxpages, extraction_flags,
1926						     offset0);
1927	return -EFAULT;
1928}
1929EXPORT_SYMBOL_GPL(iov_iter_extract_pages);