Linux Audio

Check our new training course

Loading...
v4.10.11
 
 
 
  1
  2#ifdef CONFIG_SCHEDSTATS
  3
 
 
  4/*
  5 * Expects runqueue lock to be held for atomicity of update
  6 */
  7static inline void
  8rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
  9{
 10	if (rq) {
 11		rq->rq_sched_info.run_delay += delta;
 12		rq->rq_sched_info.pcount++;
 13	}
 14}
 15
 16/*
 17 * Expects runqueue lock to be held for atomicity of update
 18 */
 19static inline void
 20rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 21{
 22	if (rq)
 23		rq->rq_cpu_time += delta;
 24}
 25
 26static inline void
 27rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
 28{
 29	if (rq)
 30		rq->rq_sched_info.run_delay += delta;
 31}
 32#define schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
 33#define schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0)
 34#define schedstat_add(var, amt)		do { if (schedstat_enabled()) { var += (amt); } } while (0)
 35#define schedstat_set(var, val)		do { if (schedstat_enabled()) { var = (val); } } while (0)
 36#define schedstat_val(var)		(var)
 37#define schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0)
 
 
 
 
 
 
 
 
 
 
 
 38
 39#else /* !CONFIG_SCHEDSTATS */
 40static inline void
 41rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
 42{}
 43static inline void
 44rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
 45{}
 46static inline void
 47rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 48{}
 49#define schedstat_enabled()		0
 50#define schedstat_inc(var)		do { } while (0)
 51#define schedstat_add(var, amt)		do { } while (0)
 52#define schedstat_set(var, val)		do { } while (0)
 53#define schedstat_val(var)		0
 54#define schedstat_val_or_zero(var)	0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55#endif /* CONFIG_SCHEDSTATS */
 56
 57#ifdef CONFIG_SCHED_INFO
 58static inline void sched_info_reset_dequeued(struct task_struct *t)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59{
 60	t->sched_info.last_queued = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 61}
 62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 63/*
 64 * We are interested in knowing how long it was from the *first* time a
 65 * task was queued to the time that it finally hit a cpu, we call this routine
 66 * from dequeue_task() to account for possible rq->clock skew across cpus. The
 67 * delta taken on each cpu would annul the skew.
 68 */
 69static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
 70{
 71	unsigned long long now = rq_clock(rq), delta = 0;
 72
 73	if (unlikely(sched_info_on()))
 74		if (t->sched_info.last_queued)
 75			delta = now - t->sched_info.last_queued;
 76	sched_info_reset_dequeued(t);
 
 77	t->sched_info.run_delay += delta;
 78
 79	rq_sched_info_dequeued(rq, delta);
 80}
 81
 82/*
 83 * Called when a task finally hits the cpu.  We can now calculate how
 84 * long it was waiting to run.  We also note when it began so that we
 85 * can keep stats on how long its timeslice is.
 86 */
 87static void sched_info_arrive(struct rq *rq, struct task_struct *t)
 88{
 89	unsigned long long now = rq_clock(rq), delta = 0;
 90
 91	if (t->sched_info.last_queued)
 92		delta = now - t->sched_info.last_queued;
 93	sched_info_reset_dequeued(t);
 
 
 
 94	t->sched_info.run_delay += delta;
 95	t->sched_info.last_arrival = now;
 96	t->sched_info.pcount++;
 97
 98	rq_sched_info_arrive(rq, delta);
 99}
100
101/*
102 * This function is only called from enqueue_task(), but also only updates
103 * the timestamp if it is already not set.  It's assumed that
104 * sched_info_dequeued() will clear that stamp when appropriate.
105 */
106static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
107{
108	if (unlikely(sched_info_on()))
109		if (!t->sched_info.last_queued)
110			t->sched_info.last_queued = rq_clock(rq);
111}
112
113/*
114 * Called when a process ceases being the active-running process involuntarily
115 * due, typically, to expiring its time slice (this may also be called when
116 * switching to the idle task).  Now we can calculate how long we ran.
117 * Also, if the process is still in the TASK_RUNNING state, call
118 * sched_info_queued() to mark that it has now again started waiting on
119 * the runqueue.
120 */
121static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
122{
123	unsigned long long delta = rq_clock(rq) -
124					t->sched_info.last_arrival;
125
126	rq_sched_info_depart(rq, delta);
127
128	if (t->state == TASK_RUNNING)
129		sched_info_queued(rq, t);
130}
131
132/*
133 * Called when tasks are switched involuntarily due, typically, to expiring
134 * their time slice.  (This may also be called when switching to or from
135 * the idle task.)  We are only called when prev != next.
136 */
137static inline void
138__sched_info_switch(struct rq *rq,
139		    struct task_struct *prev, struct task_struct *next)
140{
141	/*
142	 * prev now departs the cpu.  It's not interesting to record
143	 * stats about how efficient we were at scheduling the idle
144	 * process, however.
145	 */
146	if (prev != rq->idle)
147		sched_info_depart(rq, prev);
148
149	if (next != rq->idle)
150		sched_info_arrive(rq, next);
151}
152static inline void
153sched_info_switch(struct rq *rq,
154		  struct task_struct *prev, struct task_struct *next)
155{
156	if (unlikely(sched_info_on()))
157		__sched_info_switch(rq, prev, next);
158}
159#else
160#define sched_info_queued(rq, t)		do { } while (0)
161#define sched_info_reset_dequeued(t)	do { } while (0)
162#define sched_info_dequeued(rq, t)		do { } while (0)
163#define sched_info_depart(rq, t)		do { } while (0)
164#define sched_info_arrive(rq, next)		do { } while (0)
165#define sched_info_switch(rq, t, next)		do { } while (0)
166#endif /* CONFIG_SCHED_INFO */
167
168/*
169 * The following are functions that support scheduler-internal time accounting.
170 * These functions are generally called at the timer tick.  None of this depends
171 * on CONFIG_SCHEDSTATS.
172 */
173
174/**
175 * cputimer_running - return true if cputimer is running
176 *
177 * @tsk:	Pointer to target task.
178 */
179static inline bool cputimer_running(struct task_struct *tsk)
180
181{
182	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
183
184	/* Check if cputimer isn't running. This is accessed without locking. */
185	if (!READ_ONCE(cputimer->running))
186		return false;
187
188	/*
189	 * After we flush the task's sum_exec_runtime to sig->sum_sched_runtime
190	 * in __exit_signal(), we won't account to the signal struct further
191	 * cputime consumed by that task, even though the task can still be
192	 * ticking after __exit_signal().
193	 *
194	 * In order to keep a consistent behaviour between thread group cputime
195	 * and thread group cputimer accounting, lets also ignore the cputime
196	 * elapsing after __exit_signal() in any thread group timer running.
197	 *
198	 * This makes sure that POSIX CPU clocks and timers are synchronized, so
199	 * that a POSIX CPU timer won't expire while the corresponding POSIX CPU
200	 * clock delta is behind the expiring timer value.
201	 */
202	if (unlikely(!tsk->sighand))
203		return false;
204
205	return true;
206}
207
208/**
209 * account_group_user_time - Maintain utime for a thread group.
210 *
211 * @tsk:	Pointer to task structure.
212 * @cputime:	Time value by which to increment the utime field of the
213 *		thread_group_cputime structure.
214 *
215 * If thread group time is being maintained, get the structure for the
216 * running CPU and update the utime field there.
217 */
218static inline void account_group_user_time(struct task_struct *tsk,
219					   cputime_t cputime)
220{
221	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
222
223	if (!cputimer_running(tsk))
224		return;
225
226	atomic64_add(cputime, &cputimer->cputime_atomic.utime);
227}
228
229/**
230 * account_group_system_time - Maintain stime for a thread group.
231 *
232 * @tsk:	Pointer to task structure.
233 * @cputime:	Time value by which to increment the stime field of the
234 *		thread_group_cputime structure.
235 *
236 * If thread group time is being maintained, get the structure for the
237 * running CPU and update the stime field there.
238 */
239static inline void account_group_system_time(struct task_struct *tsk,
240					     cputime_t cputime)
241{
242	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
243
244	if (!cputimer_running(tsk))
245		return;
246
247	atomic64_add(cputime, &cputimer->cputime_atomic.stime);
248}
249
250/**
251 * account_group_exec_runtime - Maintain exec runtime for a thread group.
252 *
253 * @tsk:	Pointer to task structure.
254 * @ns:		Time value by which to increment the sum_exec_runtime field
255 *		of the thread_group_cputime structure.
256 *
257 * If thread group time is being maintained, get the structure for the
258 * running CPU and update the sum_exec_runtime field there.
259 */
260static inline void account_group_exec_runtime(struct task_struct *tsk,
261					      unsigned long long ns)
262{
263	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
264
265	if (!cputimer_running(tsk))
266		return;
267
268	atomic64_add(ns, &cputimer->cputime_atomic.sum_exec_runtime);
269}
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _KERNEL_STATS_H
  3#define _KERNEL_STATS_H
  4
  5#ifdef CONFIG_SCHEDSTATS
  6
  7extern struct static_key_false sched_schedstats;
  8
  9/*
 10 * Expects runqueue lock to be held for atomicity of update
 11 */
 12static inline void
 13rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
 14{
 15	if (rq) {
 16		rq->rq_sched_info.run_delay += delta;
 17		rq->rq_sched_info.pcount++;
 18	}
 19}
 20
 21/*
 22 * Expects runqueue lock to be held for atomicity of update
 23 */
 24static inline void
 25rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 26{
 27	if (rq)
 28		rq->rq_cpu_time += delta;
 29}
 30
 31static inline void
 32rq_sched_info_dequeue(struct rq *rq, unsigned long long delta)
 33{
 34	if (rq)
 35		rq->rq_sched_info.run_delay += delta;
 36}
 37#define   schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
 38#define __schedstat_inc(var)		do { var++; } while (0)
 39#define   schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0)
 40#define __schedstat_add(var, amt)	do { var += (amt); } while (0)
 41#define   schedstat_add(var, amt)	do { if (schedstat_enabled()) { var += (amt); } } while (0)
 42#define __schedstat_set(var, val)	do { var = (val); } while (0)
 43#define   schedstat_set(var, val)	do { if (schedstat_enabled()) { var = (val); } } while (0)
 44#define   schedstat_val(var)		(var)
 45#define   schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0)
 46
 47void __update_stats_wait_start(struct rq *rq, struct task_struct *p,
 48			       struct sched_statistics *stats);
 49
 50void __update_stats_wait_end(struct rq *rq, struct task_struct *p,
 51			     struct sched_statistics *stats);
 52void __update_stats_enqueue_sleeper(struct rq *rq, struct task_struct *p,
 53				    struct sched_statistics *stats);
 54
 
 
 
 
 
 
 
 55static inline void
 56check_schedstat_required(void)
 57{
 58	if (schedstat_enabled())
 59		return;
 60
 61	/* Force schedstat enabled if a dependent tracepoint is active */
 62	if (trace_sched_stat_wait_enabled()    ||
 63	    trace_sched_stat_sleep_enabled()   ||
 64	    trace_sched_stat_iowait_enabled()  ||
 65	    trace_sched_stat_blocked_enabled() ||
 66	    trace_sched_stat_runtime_enabled())
 67		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, stat_blocked and stat_runtime require the kernel parameter schedstats=enable or kernel.sched_schedstats=1\n");
 68}
 69
 70#else /* !CONFIG_SCHEDSTATS: */
 71
 72static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { }
 73static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { }
 74static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { }
 75# define   schedstat_enabled()		0
 76# define __schedstat_inc(var)		do { } while (0)
 77# define   schedstat_inc(var)		do { } while (0)
 78# define __schedstat_add(var, amt)	do { } while (0)
 79# define   schedstat_add(var, amt)	do { } while (0)
 80# define __schedstat_set(var, val)	do { } while (0)
 81# define   schedstat_set(var, val)	do { } while (0)
 82# define   schedstat_val(var)		0
 83# define   schedstat_val_or_zero(var)	0
 84
 85# define __update_stats_wait_start(rq, p, stats)       do { } while (0)
 86# define __update_stats_wait_end(rq, p, stats)         do { } while (0)
 87# define __update_stats_enqueue_sleeper(rq, p, stats)  do { } while (0)
 88# define check_schedstat_required()                    do { } while (0)
 89
 90#endif /* CONFIG_SCHEDSTATS */
 91
 92#ifdef CONFIG_FAIR_GROUP_SCHED
 93struct sched_entity_stats {
 94	struct sched_entity     se;
 95	struct sched_statistics stats;
 96} __no_randomize_layout;
 97#endif
 98
 99static inline struct sched_statistics *
100__schedstats_from_se(struct sched_entity *se)
101{
102#ifdef CONFIG_FAIR_GROUP_SCHED
103	if (!entity_is_task(se))
104		return &container_of(se, struct sched_entity_stats, se)->stats;
105#endif
106	return &task_of(se)->stats;
107}
108
109#ifdef CONFIG_PSI
110void psi_task_change(struct task_struct *task, int clear, int set);
111void psi_task_switch(struct task_struct *prev, struct task_struct *next,
112		     bool sleep);
113#ifdef CONFIG_IRQ_TIME_ACCOUNTING
114void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev);
115#else
116static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
117				       struct task_struct *prev) {}
118#endif /*CONFIG_IRQ_TIME_ACCOUNTING */
119/*
120 * PSI tracks state that persists across sleeps, such as iowaits and
121 * memory stalls. As a result, it has to distinguish between sleeps,
122 * where a task's runnable state changes, and migrations, where a task
123 * and its runnable state are being moved between CPUs and runqueues.
124 *
125 * A notable case is a task whose dequeue is delayed. PSI considers
126 * those sleeping, but because they are still on the runqueue they can
127 * go through migration requeues. In this case, *sleeping* states need
128 * to be transferred.
129 */
130static inline void psi_enqueue(struct task_struct *p, int flags)
131{
132	int clear = 0, set = 0;
133
134	if (static_branch_likely(&psi_disabled))
135		return;
136
137	/* Same runqueue, nothing changed for psi */
138	if (flags & ENQUEUE_RESTORE)
139		return;
140
141	/* psi_sched_switch() will handle the flags */
142	if (task_on_cpu(task_rq(p), p))
143		return;
144
145	if (p->se.sched_delayed) {
146		/* CPU migration of "sleeping" task */
147		SCHED_WARN_ON(!(flags & ENQUEUE_MIGRATED));
148		if (p->in_memstall)
149			set |= TSK_MEMSTALL;
150		if (p->in_iowait)
151			set |= TSK_IOWAIT;
152	} else if (flags & ENQUEUE_MIGRATED) {
153		/* CPU migration of runnable task */
154		set = TSK_RUNNING;
155		if (p->in_memstall)
156			set |= TSK_MEMSTALL | TSK_MEMSTALL_RUNNING;
157	} else {
158		/* Wakeup of new or sleeping task */
159		if (p->in_iowait)
160			clear |= TSK_IOWAIT;
161		set = TSK_RUNNING;
162		if (p->in_memstall)
163			set |= TSK_MEMSTALL_RUNNING;
164	}
165
166	psi_task_change(p, clear, set);
167}
168
169static inline void psi_dequeue(struct task_struct *p, int flags)
170{
171	if (static_branch_likely(&psi_disabled))
172		return;
173
174	/* Same runqueue, nothing changed for psi */
175	if (flags & DEQUEUE_SAVE)
176		return;
177
178	/*
179	 * A voluntary sleep is a dequeue followed by a task switch. To
180	 * avoid walking all ancestors twice, psi_task_switch() handles
181	 * TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
182	 * Do nothing here.
183	 */
184	if (flags & DEQUEUE_SLEEP)
185		return;
186
187	/*
188	 * When migrating a task to another CPU, clear all psi
189	 * state. The enqueue callback above will work it out.
190	 */
191	psi_task_change(p, p->psi_flags, 0);
192}
193
194static inline void psi_ttwu_dequeue(struct task_struct *p)
195{
196	if (static_branch_likely(&psi_disabled))
197		return;
198	/*
199	 * Is the task being migrated during a wakeup? Make sure to
200	 * deregister its sleep-persistent psi states from the old
201	 * queue, and let psi_enqueue() know it has to requeue.
202	 */
203	if (unlikely(p->psi_flags)) {
204		struct rq_flags rf;
205		struct rq *rq;
206
207		rq = __task_rq_lock(p, &rf);
208		psi_task_change(p, p->psi_flags, 0);
209		__task_rq_unlock(rq, &rf);
210	}
211}
212
213static inline void psi_sched_switch(struct task_struct *prev,
214				    struct task_struct *next,
215				    bool sleep)
216{
217	if (static_branch_likely(&psi_disabled))
218		return;
219
220	psi_task_switch(prev, next, sleep);
221}
222
223#else /* CONFIG_PSI */
224static inline void psi_enqueue(struct task_struct *p, bool migrate) {}
225static inline void psi_dequeue(struct task_struct *p, bool migrate) {}
226static inline void psi_ttwu_dequeue(struct task_struct *p) {}
227static inline void psi_sched_switch(struct task_struct *prev,
228				    struct task_struct *next,
229				    bool sleep) {}
230static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
231				       struct task_struct *prev) {}
232#endif /* CONFIG_PSI */
233
234#ifdef CONFIG_SCHED_INFO
235/*
236 * We are interested in knowing how long it was from the *first* time a
237 * task was queued to the time that it finally hit a CPU, we call this routine
238 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
239 * delta taken on each CPU would annul the skew.
240 */
241static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t)
242{
243	unsigned long long delta = 0;
244
245	if (!t->sched_info.last_queued)
246		return;
247
248	delta = rq_clock(rq) - t->sched_info.last_queued;
249	t->sched_info.last_queued = 0;
250	t->sched_info.run_delay += delta;
251
252	rq_sched_info_dequeue(rq, delta);
253}
254
255/*
256 * Called when a task finally hits the CPU.  We can now calculate how
257 * long it was waiting to run.  We also note when it began so that we
258 * can keep stats on how long its time-slice is.
259 */
260static void sched_info_arrive(struct rq *rq, struct task_struct *t)
261{
262	unsigned long long now, delta = 0;
263
264	if (!t->sched_info.last_queued)
265		return;
266
267	now = rq_clock(rq);
268	delta = now - t->sched_info.last_queued;
269	t->sched_info.last_queued = 0;
270	t->sched_info.run_delay += delta;
271	t->sched_info.last_arrival = now;
272	t->sched_info.pcount++;
273
274	rq_sched_info_arrive(rq, delta);
275}
276
277/*
278 * This function is only called from enqueue_task(), but also only updates
279 * the timestamp if it is already not set.  It's assumed that
280 * sched_info_dequeue() will clear that stamp when appropriate.
281 */
282static inline void sched_info_enqueue(struct rq *rq, struct task_struct *t)
283{
284	if (!t->sched_info.last_queued)
285		t->sched_info.last_queued = rq_clock(rq);
 
286}
287
288/*
289 * Called when a process ceases being the active-running process involuntarily
290 * due, typically, to expiring its time slice (this may also be called when
291 * switching to the idle task).  Now we can calculate how long we ran.
292 * Also, if the process is still in the TASK_RUNNING state, call
293 * sched_info_enqueue() to mark that it has now again started waiting on
294 * the runqueue.
295 */
296static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
297{
298	unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
 
299
300	rq_sched_info_depart(rq, delta);
301
302	if (task_is_running(t))
303		sched_info_enqueue(rq, t);
304}
305
306/*
307 * Called when tasks are switched involuntarily due, typically, to expiring
308 * their time slice.  (This may also be called when switching to or from
309 * the idle task.)  We are only called when prev != next.
310 */
311static inline void
312sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
 
313{
314	/*
315	 * prev now departs the CPU.  It's not interesting to record
316	 * stats about how efficient we were at scheduling the idle
317	 * process, however.
318	 */
319	if (prev != rq->idle)
320		sched_info_depart(rq, prev);
321
322	if (next != rq->idle)
323		sched_info_arrive(rq, next);
324}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325
326#else /* !CONFIG_SCHED_INFO: */
327# define sched_info_enqueue(rq, t)	do { } while (0)
328# define sched_info_dequeue(rq, t)	do { } while (0)
329# define sched_info_switch(rq, t, next)	do { } while (0)
330#endif /* CONFIG_SCHED_INFO */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331
332#endif /* _KERNEL_STATS_H */