Loading...
Note: File does not exist in v4.10.11.
1#ifdef CONFIG_SMP
2#include "sched-pelt.h"
3
4int __update_load_avg_blocked_se(u64 now, struct sched_entity *se);
5int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se);
6int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq);
7int update_rt_rq_load_avg(u64 now, struct rq *rq, int running);
8int update_dl_rq_load_avg(u64 now, struct rq *rq, int running);
9bool update_other_load_avgs(struct rq *rq);
10
11#ifdef CONFIG_SCHED_HW_PRESSURE
12int update_hw_load_avg(u64 now, struct rq *rq, u64 capacity);
13
14static inline u64 hw_load_avg(struct rq *rq)
15{
16 return READ_ONCE(rq->avg_hw.load_avg);
17}
18#else
19static inline int
20update_hw_load_avg(u64 now, struct rq *rq, u64 capacity)
21{
22 return 0;
23}
24
25static inline u64 hw_load_avg(struct rq *rq)
26{
27 return 0;
28}
29#endif
30
31#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
32int update_irq_load_avg(struct rq *rq, u64 running);
33#else
34static inline int
35update_irq_load_avg(struct rq *rq, u64 running)
36{
37 return 0;
38}
39#endif
40
41#define PELT_MIN_DIVIDER (LOAD_AVG_MAX - 1024)
42
43static inline u32 get_pelt_divider(struct sched_avg *avg)
44{
45 return PELT_MIN_DIVIDER + avg->period_contrib;
46}
47
48static inline void cfs_se_util_change(struct sched_avg *avg)
49{
50 unsigned int enqueued;
51
52 if (!sched_feat(UTIL_EST))
53 return;
54
55 /* Avoid store if the flag has been already reset */
56 enqueued = avg->util_est;
57 if (!(enqueued & UTIL_AVG_UNCHANGED))
58 return;
59
60 /* Reset flag to report util_avg has been updated */
61 enqueued &= ~UTIL_AVG_UNCHANGED;
62 WRITE_ONCE(avg->util_est, enqueued);
63}
64
65static inline u64 rq_clock_pelt(struct rq *rq)
66{
67 lockdep_assert_rq_held(rq);
68 assert_clock_updated(rq);
69
70 return rq->clock_pelt - rq->lost_idle_time;
71}
72
73/* The rq is idle, we can sync to clock_task */
74static inline void _update_idle_rq_clock_pelt(struct rq *rq)
75{
76 rq->clock_pelt = rq_clock_task(rq);
77
78 u64_u32_store(rq->clock_idle, rq_clock(rq));
79 /* Paired with smp_rmb in migrate_se_pelt_lag() */
80 smp_wmb();
81 u64_u32_store(rq->clock_pelt_idle, rq_clock_pelt(rq));
82}
83
84/*
85 * The clock_pelt scales the time to reflect the effective amount of
86 * computation done during the running delta time but then sync back to
87 * clock_task when rq is idle.
88 *
89 *
90 * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
91 * @ max capacity ------******---------------******---------------
92 * @ half capacity ------************---------************---------
93 * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16
94 *
95 */
96static inline void update_rq_clock_pelt(struct rq *rq, s64 delta)
97{
98 if (unlikely(is_idle_task(rq->curr))) {
99 _update_idle_rq_clock_pelt(rq);
100 return;
101 }
102
103 /*
104 * When a rq runs at a lower compute capacity, it will need
105 * more time to do the same amount of work than at max
106 * capacity. In order to be invariant, we scale the delta to
107 * reflect how much work has been really done.
108 * Running longer results in stealing idle time that will
109 * disturb the load signal compared to max capacity. This
110 * stolen idle time will be automatically reflected when the
111 * rq will be idle and the clock will be synced with
112 * rq_clock_task.
113 */
114
115 /*
116 * Scale the elapsed time to reflect the real amount of
117 * computation
118 */
119 delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq)));
120 delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq)));
121
122 rq->clock_pelt += delta;
123}
124
125/*
126 * When rq becomes idle, we have to check if it has lost idle time
127 * because it was fully busy. A rq is fully used when the /Sum util_sum
128 * is greater or equal to:
129 * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT;
130 * For optimization and computing rounding purpose, we don't take into account
131 * the position in the current window (period_contrib) and we use the higher
132 * bound of util_sum to decide.
133 */
134static inline void update_idle_rq_clock_pelt(struct rq *rq)
135{
136 u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX;
137 u32 util_sum = rq->cfs.avg.util_sum;
138 util_sum += rq->avg_rt.util_sum;
139 util_sum += rq->avg_dl.util_sum;
140
141 /*
142 * Reflecting stolen time makes sense only if the idle
143 * phase would be present at max capacity. As soon as the
144 * utilization of a rq has reached the maximum value, it is
145 * considered as an always running rq without idle time to
146 * steal. This potential idle time is considered as lost in
147 * this case. We keep track of this lost idle time compare to
148 * rq's clock_task.
149 */
150 if (util_sum >= divider)
151 rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt;
152
153 _update_idle_rq_clock_pelt(rq);
154}
155
156#ifdef CONFIG_CFS_BANDWIDTH
157static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
158{
159 u64 throttled;
160
161 if (unlikely(cfs_rq->throttle_count))
162 throttled = U64_MAX;
163 else
164 throttled = cfs_rq->throttled_clock_pelt_time;
165
166 u64_u32_store(cfs_rq->throttled_pelt_idle, throttled);
167}
168
169/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
170static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
171{
172 if (unlikely(cfs_rq->throttle_count))
173 return cfs_rq->throttled_clock_pelt - cfs_rq->throttled_clock_pelt_time;
174
175 return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_pelt_time;
176}
177#else
178static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { }
179static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
180{
181 return rq_clock_pelt(rq_of(cfs_rq));
182}
183#endif
184
185#else
186
187static inline int
188update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
189{
190 return 0;
191}
192
193static inline int
194update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
195{
196 return 0;
197}
198
199static inline int
200update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
201{
202 return 0;
203}
204
205static inline int
206update_hw_load_avg(u64 now, struct rq *rq, u64 capacity)
207{
208 return 0;
209}
210
211static inline u64 hw_load_avg(struct rq *rq)
212{
213 return 0;
214}
215
216static inline int
217update_irq_load_avg(struct rq *rq, u64 running)
218{
219 return 0;
220}
221
222static inline u64 rq_clock_pelt(struct rq *rq)
223{
224 return rq_clock_task(rq);
225}
226
227static inline void
228update_rq_clock_pelt(struct rq *rq, s64 delta) { }
229
230static inline void
231update_idle_rq_clock_pelt(struct rq *rq) { }
232
233static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { }
234#endif
235
236