Linux Audio

Check our new training course

Loading...
v4.10.11
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * journal.c
   5 *
   6 * Defines functions of journalling api
   7 *
   8 * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public
  12 * License as published by the Free Software Foundation; either
  13 * version 2 of the License, or (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public
  21 * License along with this program; if not, write to the
  22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  23 * Boston, MA 021110-1307, USA.
  24 */
  25
  26#include <linux/fs.h>
  27#include <linux/types.h>
  28#include <linux/slab.h>
  29#include <linux/highmem.h>
  30#include <linux/kthread.h>
  31#include <linux/time.h>
  32#include <linux/random.h>
  33#include <linux/delay.h>
 
  34
  35#include <cluster/masklog.h>
  36
  37#include "ocfs2.h"
  38
  39#include "alloc.h"
  40#include "blockcheck.h"
  41#include "dir.h"
  42#include "dlmglue.h"
  43#include "extent_map.h"
  44#include "heartbeat.h"
  45#include "inode.h"
  46#include "journal.h"
  47#include "localalloc.h"
  48#include "slot_map.h"
  49#include "super.h"
  50#include "sysfile.h"
  51#include "uptodate.h"
  52#include "quota.h"
  53#include "file.h"
  54#include "namei.h"
  55
  56#include "buffer_head_io.h"
  57#include "ocfs2_trace.h"
  58
  59DEFINE_SPINLOCK(trans_inc_lock);
  60
  61#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
  62
  63static int ocfs2_force_read_journal(struct inode *inode);
  64static int ocfs2_recover_node(struct ocfs2_super *osb,
  65			      int node_num, int slot_num);
  66static int __ocfs2_recovery_thread(void *arg);
  67static int ocfs2_commit_cache(struct ocfs2_super *osb);
  68static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
  69static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
  70				      int dirty, int replayed);
  71static int ocfs2_trylock_journal(struct ocfs2_super *osb,
  72				 int slot_num);
  73static int ocfs2_recover_orphans(struct ocfs2_super *osb,
  74				 int slot,
  75				 enum ocfs2_orphan_reco_type orphan_reco_type);
  76static int ocfs2_commit_thread(void *arg);
  77static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
  78					    int slot_num,
  79					    struct ocfs2_dinode *la_dinode,
  80					    struct ocfs2_dinode *tl_dinode,
  81					    struct ocfs2_quota_recovery *qrec,
  82					    enum ocfs2_orphan_reco_type orphan_reco_type);
  83
  84static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
  85{
  86	return __ocfs2_wait_on_mount(osb, 0);
  87}
  88
  89static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
  90{
  91	return __ocfs2_wait_on_mount(osb, 1);
  92}
  93
  94/*
  95 * This replay_map is to track online/offline slots, so we could recover
  96 * offline slots during recovery and mount
  97 */
  98
  99enum ocfs2_replay_state {
 100	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
 101	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
 102	REPLAY_DONE 		/* Replay was already queued */
 103};
 104
 105struct ocfs2_replay_map {
 106	unsigned int rm_slots;
 107	enum ocfs2_replay_state rm_state;
 108	unsigned char rm_replay_slots[0];
 109};
 110
 111static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
 112{
 113	if (!osb->replay_map)
 114		return;
 115
 116	/* If we've already queued the replay, we don't have any more to do */
 117	if (osb->replay_map->rm_state == REPLAY_DONE)
 118		return;
 119
 120	osb->replay_map->rm_state = state;
 121}
 122
 123int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
 124{
 125	struct ocfs2_replay_map *replay_map;
 126	int i, node_num;
 127
 128	/* If replay map is already set, we don't do it again */
 129	if (osb->replay_map)
 130		return 0;
 131
 132	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
 133			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
 134
 135	if (!replay_map) {
 136		mlog_errno(-ENOMEM);
 137		return -ENOMEM;
 138	}
 139
 140	spin_lock(&osb->osb_lock);
 141
 142	replay_map->rm_slots = osb->max_slots;
 143	replay_map->rm_state = REPLAY_UNNEEDED;
 144
 145	/* set rm_replay_slots for offline slot(s) */
 146	for (i = 0; i < replay_map->rm_slots; i++) {
 147		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
 148			replay_map->rm_replay_slots[i] = 1;
 149	}
 150
 151	osb->replay_map = replay_map;
 152	spin_unlock(&osb->osb_lock);
 153	return 0;
 154}
 155
 156static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
 157		enum ocfs2_orphan_reco_type orphan_reco_type)
 158{
 159	struct ocfs2_replay_map *replay_map = osb->replay_map;
 160	int i;
 161
 162	if (!replay_map)
 163		return;
 164
 165	if (replay_map->rm_state != REPLAY_NEEDED)
 166		return;
 167
 168	for (i = 0; i < replay_map->rm_slots; i++)
 169		if (replay_map->rm_replay_slots[i])
 170			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
 171							NULL, NULL,
 172							orphan_reco_type);
 173	replay_map->rm_state = REPLAY_DONE;
 174}
 175
 176static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
 177{
 178	struct ocfs2_replay_map *replay_map = osb->replay_map;
 179
 180	if (!osb->replay_map)
 181		return;
 182
 183	kfree(replay_map);
 184	osb->replay_map = NULL;
 185}
 186
 187int ocfs2_recovery_init(struct ocfs2_super *osb)
 188{
 189	struct ocfs2_recovery_map *rm;
 190
 191	mutex_init(&osb->recovery_lock);
 192	osb->disable_recovery = 0;
 193	osb->recovery_thread_task = NULL;
 194	init_waitqueue_head(&osb->recovery_event);
 195
 196	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
 197		     osb->max_slots * sizeof(unsigned int),
 198		     GFP_KERNEL);
 199	if (!rm) {
 200		mlog_errno(-ENOMEM);
 201		return -ENOMEM;
 202	}
 203
 204	rm->rm_entries = (unsigned int *)((char *)rm +
 205					  sizeof(struct ocfs2_recovery_map));
 206	osb->recovery_map = rm;
 207
 208	return 0;
 209}
 210
 211/* we can't grab the goofy sem lock from inside wait_event, so we use
 212 * memory barriers to make sure that we'll see the null task before
 213 * being woken up */
 214static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
 215{
 216	mb();
 217	return osb->recovery_thread_task != NULL;
 218}
 219
 220void ocfs2_recovery_exit(struct ocfs2_super *osb)
 221{
 222	struct ocfs2_recovery_map *rm;
 223
 224	/* disable any new recovery threads and wait for any currently
 225	 * running ones to exit. Do this before setting the vol_state. */
 226	mutex_lock(&osb->recovery_lock);
 227	osb->disable_recovery = 1;
 228	mutex_unlock(&osb->recovery_lock);
 229	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
 230
 231	/* At this point, we know that no more recovery threads can be
 232	 * launched, so wait for any recovery completion work to
 233	 * complete. */
 234	flush_workqueue(osb->ocfs2_wq);
 
 235
 236	/*
 237	 * Now that recovery is shut down, and the osb is about to be
 238	 * freed,  the osb_lock is not taken here.
 239	 */
 240	rm = osb->recovery_map;
 241	/* XXX: Should we bug if there are dirty entries? */
 242
 243	kfree(rm);
 244}
 245
 246static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
 247				     unsigned int node_num)
 248{
 249	int i;
 250	struct ocfs2_recovery_map *rm = osb->recovery_map;
 251
 252	assert_spin_locked(&osb->osb_lock);
 253
 254	for (i = 0; i < rm->rm_used; i++) {
 255		if (rm->rm_entries[i] == node_num)
 256			return 1;
 257	}
 258
 259	return 0;
 260}
 261
 262/* Behaves like test-and-set.  Returns the previous value */
 263static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
 264				  unsigned int node_num)
 265{
 266	struct ocfs2_recovery_map *rm = osb->recovery_map;
 267
 268	spin_lock(&osb->osb_lock);
 269	if (__ocfs2_recovery_map_test(osb, node_num)) {
 270		spin_unlock(&osb->osb_lock);
 271		return 1;
 272	}
 273
 274	/* XXX: Can this be exploited? Not from o2dlm... */
 275	BUG_ON(rm->rm_used >= osb->max_slots);
 276
 277	rm->rm_entries[rm->rm_used] = node_num;
 278	rm->rm_used++;
 279	spin_unlock(&osb->osb_lock);
 280
 281	return 0;
 282}
 283
 284static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
 285				     unsigned int node_num)
 286{
 287	int i;
 288	struct ocfs2_recovery_map *rm = osb->recovery_map;
 289
 290	spin_lock(&osb->osb_lock);
 291
 292	for (i = 0; i < rm->rm_used; i++) {
 293		if (rm->rm_entries[i] == node_num)
 294			break;
 295	}
 296
 297	if (i < rm->rm_used) {
 298		/* XXX: be careful with the pointer math */
 299		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
 300			(rm->rm_used - i - 1) * sizeof(unsigned int));
 301		rm->rm_used--;
 302	}
 303
 304	spin_unlock(&osb->osb_lock);
 305}
 306
 307static int ocfs2_commit_cache(struct ocfs2_super *osb)
 308{
 309	int status = 0;
 310	unsigned int flushed;
 311	struct ocfs2_journal *journal = NULL;
 312
 313	journal = osb->journal;
 314
 315	/* Flush all pending commits and checkpoint the journal. */
 316	down_write(&journal->j_trans_barrier);
 317
 318	flushed = atomic_read(&journal->j_num_trans);
 319	trace_ocfs2_commit_cache_begin(flushed);
 320	if (flushed == 0) {
 321		up_write(&journal->j_trans_barrier);
 322		goto finally;
 323	}
 324
 325	jbd2_journal_lock_updates(journal->j_journal);
 326	status = jbd2_journal_flush(journal->j_journal);
 327	jbd2_journal_unlock_updates(journal->j_journal);
 328	if (status < 0) {
 329		up_write(&journal->j_trans_barrier);
 330		mlog_errno(status);
 331		goto finally;
 332	}
 333
 334	ocfs2_inc_trans_id(journal);
 335
 336	flushed = atomic_read(&journal->j_num_trans);
 337	atomic_set(&journal->j_num_trans, 0);
 338	up_write(&journal->j_trans_barrier);
 339
 340	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
 341
 342	ocfs2_wake_downconvert_thread(osb);
 343	wake_up(&journal->j_checkpointed);
 344finally:
 345	return status;
 346}
 347
 348handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
 349{
 350	journal_t *journal = osb->journal->j_journal;
 351	handle_t *handle;
 352
 353	BUG_ON(!osb || !osb->journal->j_journal);
 354
 355	if (ocfs2_is_hard_readonly(osb))
 356		return ERR_PTR(-EROFS);
 357
 358	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
 359	BUG_ON(max_buffs <= 0);
 360
 361	/* Nested transaction? Just return the handle... */
 362	if (journal_current_handle())
 363		return jbd2_journal_start(journal, max_buffs);
 364
 365	sb_start_intwrite(osb->sb);
 366
 367	down_read(&osb->journal->j_trans_barrier);
 368
 369	handle = jbd2_journal_start(journal, max_buffs);
 370	if (IS_ERR(handle)) {
 371		up_read(&osb->journal->j_trans_barrier);
 372		sb_end_intwrite(osb->sb);
 373
 374		mlog_errno(PTR_ERR(handle));
 375
 376		if (is_journal_aborted(journal)) {
 377			ocfs2_abort(osb->sb, "Detected aborted journal\n");
 378			handle = ERR_PTR(-EROFS);
 379		}
 380	} else {
 381		if (!ocfs2_mount_local(osb))
 382			atomic_inc(&(osb->journal->j_num_trans));
 383	}
 384
 385	return handle;
 386}
 387
 388int ocfs2_commit_trans(struct ocfs2_super *osb,
 389		       handle_t *handle)
 390{
 391	int ret, nested;
 392	struct ocfs2_journal *journal = osb->journal;
 393
 394	BUG_ON(!handle);
 395
 396	nested = handle->h_ref > 1;
 397	ret = jbd2_journal_stop(handle);
 398	if (ret < 0)
 399		mlog_errno(ret);
 400
 401	if (!nested) {
 402		up_read(&journal->j_trans_barrier);
 403		sb_end_intwrite(osb->sb);
 404	}
 405
 406	return ret;
 407}
 408
 409/*
 410 * 'nblocks' is what you want to add to the current transaction.
 411 *
 412 * This might call jbd2_journal_restart() which will commit dirty buffers
 413 * and then restart the transaction. Before calling
 414 * ocfs2_extend_trans(), any changed blocks should have been
 415 * dirtied. After calling it, all blocks which need to be changed must
 416 * go through another set of journal_access/journal_dirty calls.
 417 *
 418 * WARNING: This will not release any semaphores or disk locks taken
 419 * during the transaction, so make sure they were taken *before*
 420 * start_trans or we'll have ordering deadlocks.
 421 *
 422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
 423 * good because transaction ids haven't yet been recorded on the
 424 * cluster locks associated with this handle.
 425 */
 426int ocfs2_extend_trans(handle_t *handle, int nblocks)
 427{
 428	int status, old_nblocks;
 429
 430	BUG_ON(!handle);
 431	BUG_ON(nblocks < 0);
 432
 433	if (!nblocks)
 434		return 0;
 435
 436	old_nblocks = handle->h_buffer_credits;
 437
 438	trace_ocfs2_extend_trans(old_nblocks, nblocks);
 439
 440#ifdef CONFIG_OCFS2_DEBUG_FS
 441	status = 1;
 442#else
 443	status = jbd2_journal_extend(handle, nblocks);
 444	if (status < 0) {
 445		mlog_errno(status);
 446		goto bail;
 447	}
 448#endif
 449
 450	if (status > 0) {
 451		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
 452		status = jbd2_journal_restart(handle,
 453					      old_nblocks + nblocks);
 454		if (status < 0) {
 455			mlog_errno(status);
 456			goto bail;
 457		}
 458	}
 459
 460	status = 0;
 461bail:
 462	return status;
 463}
 464
 465/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
 467 * If that fails, restart the transaction & regain write access for the
 468 * buffer head which is used for metadata modifications.
 469 * Taken from Ext4: extend_or_restart_transaction()
 470 */
 471int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
 472{
 473	int status, old_nblks;
 474
 475	BUG_ON(!handle);
 476
 477	old_nblks = handle->h_buffer_credits;
 478	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
 479
 480	if (old_nblks < thresh)
 481		return 0;
 482
 483	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
 484	if (status < 0) {
 485		mlog_errno(status);
 486		goto bail;
 487	}
 488
 489	if (status > 0) {
 490		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
 491		if (status < 0)
 492			mlog_errno(status);
 493	}
 494
 495bail:
 496	return status;
 497}
 498
 499
 500struct ocfs2_triggers {
 501	struct jbd2_buffer_trigger_type	ot_triggers;
 502	int				ot_offset;
 503};
 504
 505static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
 506{
 507	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
 508}
 509
 510static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 511				 struct buffer_head *bh,
 512				 void *data, size_t size)
 513{
 514	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
 515
 516	/*
 517	 * We aren't guaranteed to have the superblock here, so we
 518	 * must unconditionally compute the ecc data.
 519	 * __ocfs2_journal_access() will only set the triggers if
 520	 * metaecc is enabled.
 521	 */
 522	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
 523}
 524
 525/*
 526 * Quota blocks have their own trigger because the struct ocfs2_block_check
 527 * offset depends on the blocksize.
 528 */
 529static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 530				 struct buffer_head *bh,
 531				 void *data, size_t size)
 532{
 533	struct ocfs2_disk_dqtrailer *dqt =
 534		ocfs2_block_dqtrailer(size, data);
 535
 536	/*
 537	 * We aren't guaranteed to have the superblock here, so we
 538	 * must unconditionally compute the ecc data.
 539	 * __ocfs2_journal_access() will only set the triggers if
 540	 * metaecc is enabled.
 541	 */
 542	ocfs2_block_check_compute(data, size, &dqt->dq_check);
 543}
 544
 545/*
 546 * Directory blocks also have their own trigger because the
 547 * struct ocfs2_block_check offset depends on the blocksize.
 548 */
 549static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 550				 struct buffer_head *bh,
 551				 void *data, size_t size)
 552{
 553	struct ocfs2_dir_block_trailer *trailer =
 554		ocfs2_dir_trailer_from_size(size, data);
 555
 556	/*
 557	 * We aren't guaranteed to have the superblock here, so we
 558	 * must unconditionally compute the ecc data.
 559	 * __ocfs2_journal_access() will only set the triggers if
 560	 * metaecc is enabled.
 561	 */
 562	ocfs2_block_check_compute(data, size, &trailer->db_check);
 563}
 564
 565static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
 566				struct buffer_head *bh)
 567{
 
 
 568	mlog(ML_ERROR,
 569	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
 570	     "bh->b_blocknr = %llu\n",
 571	     (unsigned long)bh,
 572	     (unsigned long long)bh->b_blocknr);
 573
 574	ocfs2_error(bh->b_bdev->bd_super,
 575		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
 576}
 577
 578static struct ocfs2_triggers di_triggers = {
 579	.ot_triggers = {
 580		.t_frozen = ocfs2_frozen_trigger,
 581		.t_abort = ocfs2_abort_trigger,
 582	},
 583	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
 584};
 585
 586static struct ocfs2_triggers eb_triggers = {
 587	.ot_triggers = {
 588		.t_frozen = ocfs2_frozen_trigger,
 589		.t_abort = ocfs2_abort_trigger,
 590	},
 591	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
 592};
 593
 594static struct ocfs2_triggers rb_triggers = {
 595	.ot_triggers = {
 596		.t_frozen = ocfs2_frozen_trigger,
 597		.t_abort = ocfs2_abort_trigger,
 598	},
 599	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
 600};
 601
 602static struct ocfs2_triggers gd_triggers = {
 603	.ot_triggers = {
 604		.t_frozen = ocfs2_frozen_trigger,
 605		.t_abort = ocfs2_abort_trigger,
 606	},
 607	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
 608};
 609
 610static struct ocfs2_triggers db_triggers = {
 611	.ot_triggers = {
 612		.t_frozen = ocfs2_db_frozen_trigger,
 613		.t_abort = ocfs2_abort_trigger,
 614	},
 615};
 616
 617static struct ocfs2_triggers xb_triggers = {
 618	.ot_triggers = {
 619		.t_frozen = ocfs2_frozen_trigger,
 620		.t_abort = ocfs2_abort_trigger,
 621	},
 622	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
 623};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624
 625static struct ocfs2_triggers dq_triggers = {
 626	.ot_triggers = {
 627		.t_frozen = ocfs2_dq_frozen_trigger,
 628		.t_abort = ocfs2_abort_trigger,
 629	},
 630};
 631
 632static struct ocfs2_triggers dr_triggers = {
 633	.ot_triggers = {
 634		.t_frozen = ocfs2_frozen_trigger,
 635		.t_abort = ocfs2_abort_trigger,
 636	},
 637	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
 638};
 639
 640static struct ocfs2_triggers dl_triggers = {
 641	.ot_triggers = {
 642		.t_frozen = ocfs2_frozen_trigger,
 643		.t_abort = ocfs2_abort_trigger,
 644	},
 645	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
 646};
 647
 648static int __ocfs2_journal_access(handle_t *handle,
 649				  struct ocfs2_caching_info *ci,
 650				  struct buffer_head *bh,
 651				  struct ocfs2_triggers *triggers,
 652				  int type)
 653{
 654	int status;
 655	struct ocfs2_super *osb =
 656		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 657
 658	BUG_ON(!ci || !ci->ci_ops);
 659	BUG_ON(!handle);
 660	BUG_ON(!bh);
 661
 662	trace_ocfs2_journal_access(
 663		(unsigned long long)ocfs2_metadata_cache_owner(ci),
 664		(unsigned long long)bh->b_blocknr, type, bh->b_size);
 665
 666	/* we can safely remove this assertion after testing. */
 667	if (!buffer_uptodate(bh)) {
 668		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
 669		mlog(ML_ERROR, "b_blocknr=%llu\n",
 670		     (unsigned long long)bh->b_blocknr);
 671
 672		lock_buffer(bh);
 673		/*
 674		 * A previous attempt to write this buffer head failed.
 675		 * Nothing we can do but to retry the write and hope for
 676		 * the best.
 
 
 
 
 
 677		 */
 678		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
 679			clear_buffer_write_io_error(bh);
 680			set_buffer_uptodate(bh);
 681		}
 682
 683		if (!buffer_uptodate(bh)) {
 684			unlock_buffer(bh);
 685			return -EIO;
 
 686		}
 687		unlock_buffer(bh);
 688	}
 689
 690	/* Set the current transaction information on the ci so
 691	 * that the locking code knows whether it can drop it's locks
 692	 * on this ci or not. We're protected from the commit
 693	 * thread updating the current transaction id until
 694	 * ocfs2_commit_trans() because ocfs2_start_trans() took
 695	 * j_trans_barrier for us. */
 696	ocfs2_set_ci_lock_trans(osb->journal, ci);
 697
 698	ocfs2_metadata_cache_io_lock(ci);
 699	switch (type) {
 700	case OCFS2_JOURNAL_ACCESS_CREATE:
 701	case OCFS2_JOURNAL_ACCESS_WRITE:
 702		status = jbd2_journal_get_write_access(handle, bh);
 703		break;
 704
 705	case OCFS2_JOURNAL_ACCESS_UNDO:
 706		status = jbd2_journal_get_undo_access(handle, bh);
 707		break;
 708
 709	default:
 710		status = -EINVAL;
 711		mlog(ML_ERROR, "Unknown access type!\n");
 712	}
 713	if (!status && ocfs2_meta_ecc(osb) && triggers)
 714		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
 715	ocfs2_metadata_cache_io_unlock(ci);
 716
 717	if (status < 0)
 718		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
 719		     status, type);
 720
 721	return status;
 722}
 723
 724int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
 725			    struct buffer_head *bh, int type)
 726{
 727	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
 
 
 
 
 728}
 729
 730int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
 731			    struct buffer_head *bh, int type)
 732{
 733	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
 
 
 
 
 734}
 735
 736int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
 737			    struct buffer_head *bh, int type)
 738{
 739	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
 
 
 
 740				      type);
 741}
 742
 743int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
 744			    struct buffer_head *bh, int type)
 745{
 746	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
 
 
 
 
 747}
 748
 749int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
 750			    struct buffer_head *bh, int type)
 751{
 752	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
 
 
 
 
 753}
 754
 755int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
 756			    struct buffer_head *bh, int type)
 757{
 758	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
 
 
 
 
 759}
 760
 761int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
 762			    struct buffer_head *bh, int type)
 763{
 764	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
 
 
 
 
 765}
 766
 767int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
 768			    struct buffer_head *bh, int type)
 769{
 770	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
 
 
 
 
 771}
 772
 773int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
 774			    struct buffer_head *bh, int type)
 775{
 776	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
 
 
 
 
 777}
 778
 779int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
 780			 struct buffer_head *bh, int type)
 781{
 782	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
 783}
 784
 785void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
 786{
 787	int status;
 788
 789	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
 790
 791	status = jbd2_journal_dirty_metadata(handle, bh);
 792	if (status) {
 793		mlog_errno(status);
 794		if (!is_handle_aborted(handle)) {
 795			journal_t *journal = handle->h_transaction->t_journal;
 796			struct super_block *sb = bh->b_bdev->bd_super;
 797
 798			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
 799					"Aborting transaction and journal.\n");
 
 
 
 
 800			handle->h_err = status;
 801			jbd2_journal_abort_handle(handle);
 802			jbd2_journal_abort(journal, status);
 803			ocfs2_abort(sb, "Journal already aborted.\n");
 804		}
 805	}
 806}
 807
 808#define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
 809
 810void ocfs2_set_journal_params(struct ocfs2_super *osb)
 811{
 812	journal_t *journal = osb->journal->j_journal;
 813	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
 814
 815	if (osb->osb_commit_interval)
 816		commit_interval = osb->osb_commit_interval;
 817
 818	write_lock(&journal->j_state_lock);
 819	journal->j_commit_interval = commit_interval;
 820	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
 821		journal->j_flags |= JBD2_BARRIER;
 822	else
 823		journal->j_flags &= ~JBD2_BARRIER;
 824	write_unlock(&journal->j_state_lock);
 825}
 826
 827int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 828{
 829	int status = -1;
 830	struct inode *inode = NULL; /* the journal inode */
 831	journal_t *j_journal = NULL;
 
 832	struct ocfs2_dinode *di = NULL;
 833	struct buffer_head *bh = NULL;
 834	struct ocfs2_super *osb;
 835	int inode_lock = 0;
 836
 837	BUG_ON(!journal);
 838
 839	osb = journal->j_osb;
 840
 841	/* already have the inode for our journal */
 842	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
 843					    osb->slot_num);
 844	if (inode == NULL) {
 845		status = -EACCES;
 846		mlog_errno(status);
 847		goto done;
 848	}
 849	if (is_bad_inode(inode)) {
 850		mlog(ML_ERROR, "access error (bad inode)\n");
 851		iput(inode);
 852		inode = NULL;
 853		status = -EACCES;
 854		goto done;
 855	}
 856
 857	SET_INODE_JOURNAL(inode);
 858	OCFS2_I(inode)->ip_open_count++;
 859
 860	/* Skip recovery waits here - journal inode metadata never
 861	 * changes in a live cluster so it can be considered an
 862	 * exception to the rule. */
 863	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
 864	if (status < 0) {
 865		if (status != -ERESTARTSYS)
 866			mlog(ML_ERROR, "Could not get lock on journal!\n");
 867		goto done;
 868	}
 869
 870	inode_lock = 1;
 871	di = (struct ocfs2_dinode *)bh->b_data;
 872
 873	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
 874		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
 875		     i_size_read(inode));
 876		status = -EINVAL;
 877		goto done;
 878	}
 879
 880	trace_ocfs2_journal_init(i_size_read(inode),
 881				 (unsigned long long)inode->i_blocks,
 882				 OCFS2_I(inode)->ip_clusters);
 883
 884	/* call the kernels journal init function now */
 885	j_journal = jbd2_journal_init_inode(inode);
 886	if (j_journal == NULL) {
 887		mlog(ML_ERROR, "Linux journal layer error\n");
 888		status = -EINVAL;
 889		goto done;
 890	}
 891
 892	trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
 893
 894	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
 895		  OCFS2_JOURNAL_DIRTY_FL);
 896
 897	journal->j_journal = j_journal;
 
 
 
 
 898	journal->j_inode = inode;
 899	journal->j_bh = bh;
 900
 901	ocfs2_set_journal_params(osb);
 902
 903	journal->j_state = OCFS2_JOURNAL_LOADED;
 904
 905	status = 0;
 906done:
 907	if (status < 0) {
 908		if (inode_lock)
 909			ocfs2_inode_unlock(inode, 1);
 910		brelse(bh);
 911		if (inode) {
 912			OCFS2_I(inode)->ip_open_count--;
 913			iput(inode);
 914		}
 915	}
 916
 917	return status;
 918}
 919
 920static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
 921{
 922	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
 923}
 924
 925static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
 926{
 927	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
 928}
 929
 930static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
 931				      int dirty, int replayed)
 932{
 933	int status;
 934	unsigned int flags;
 935	struct ocfs2_journal *journal = osb->journal;
 936	struct buffer_head *bh = journal->j_bh;
 937	struct ocfs2_dinode *fe;
 938
 939	fe = (struct ocfs2_dinode *)bh->b_data;
 940
 941	/* The journal bh on the osb always comes from ocfs2_journal_init()
 942	 * and was validated there inside ocfs2_inode_lock_full().  It's a
 943	 * code bug if we mess it up. */
 944	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
 945
 946	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
 947	if (dirty)
 948		flags |= OCFS2_JOURNAL_DIRTY_FL;
 949	else
 950		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
 951	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
 952
 953	if (replayed)
 954		ocfs2_bump_recovery_generation(fe);
 955
 956	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
 957	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
 958	if (status < 0)
 959		mlog_errno(status);
 960
 961	return status;
 962}
 963
 964/*
 965 * If the journal has been kmalloc'd it needs to be freed after this
 966 * call.
 967 */
 968void ocfs2_journal_shutdown(struct ocfs2_super *osb)
 969{
 970	struct ocfs2_journal *journal = NULL;
 971	int status = 0;
 972	struct inode *inode = NULL;
 973	int num_running_trans = 0;
 974
 975	BUG_ON(!osb);
 976
 977	journal = osb->journal;
 978	if (!journal)
 979		goto done;
 980
 981	inode = journal->j_inode;
 982
 983	if (journal->j_state != OCFS2_JOURNAL_LOADED)
 984		goto done;
 985
 986	/* need to inc inode use count - jbd2_journal_destroy will iput. */
 987	if (!igrab(inode))
 988		BUG();
 989
 990	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
 991	trace_ocfs2_journal_shutdown(num_running_trans);
 992
 993	/* Do a commit_cache here. It will flush our journal, *and*
 994	 * release any locks that are still held.
 995	 * set the SHUTDOWN flag and release the trans lock.
 996	 * the commit thread will take the trans lock for us below. */
 997	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
 998
 999	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1000	 * drop the trans_lock (which we want to hold until we
1001	 * completely destroy the journal. */
1002	if (osb->commit_task) {
1003		/* Wait for the commit thread */
1004		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1005		kthread_stop(osb->commit_task);
1006		osb->commit_task = NULL;
1007	}
1008
1009	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1010
1011	if (ocfs2_mount_local(osb)) {
 
1012		jbd2_journal_lock_updates(journal->j_journal);
1013		status = jbd2_journal_flush(journal->j_journal);
1014		jbd2_journal_unlock_updates(journal->j_journal);
1015		if (status < 0)
1016			mlog_errno(status);
1017	}
1018
1019	if (status == 0) {
 
1020		/*
1021		 * Do not toggle if flush was unsuccessful otherwise
1022		 * will leave dirty metadata in a "clean" journal
1023		 */
1024		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1025		if (status < 0)
1026			mlog_errno(status);
1027	}
1028
1029	/* Shutdown the kernel journal system */
1030	jbd2_journal_destroy(journal->j_journal);
1031	journal->j_journal = NULL;
1032
1033	OCFS2_I(inode)->ip_open_count--;
1034
1035	/* unlock our journal */
1036	ocfs2_inode_unlock(inode, 1);
1037
1038	brelse(journal->j_bh);
1039	journal->j_bh = NULL;
1040
1041	journal->j_state = OCFS2_JOURNAL_FREE;
1042
1043//	up_write(&journal->j_trans_barrier);
1044done:
1045	iput(inode);
 
 
1046}
1047
1048static void ocfs2_clear_journal_error(struct super_block *sb,
1049				      journal_t *journal,
1050				      int slot)
1051{
1052	int olderr;
1053
1054	olderr = jbd2_journal_errno(journal);
1055	if (olderr) {
1056		mlog(ML_ERROR, "File system error %d recorded in "
1057		     "journal %u.\n", olderr, slot);
1058		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1059		     sb->s_id);
1060
1061		jbd2_journal_ack_err(journal);
1062		jbd2_journal_clear_err(journal);
1063	}
1064}
1065
1066int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1067{
1068	int status = 0;
1069	struct ocfs2_super *osb;
1070
1071	BUG_ON(!journal);
1072
1073	osb = journal->j_osb;
1074
1075	status = jbd2_journal_load(journal->j_journal);
1076	if (status < 0) {
1077		mlog(ML_ERROR, "Failed to load journal!\n");
1078		goto done;
1079	}
1080
1081	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1082
 
 
 
 
 
 
 
 
1083	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1084	if (status < 0) {
1085		mlog_errno(status);
1086		goto done;
1087	}
1088
1089	/* Launch the commit thread */
1090	if (!local) {
1091		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1092				"ocfs2cmt-%s", osb->uuid_str);
1093		if (IS_ERR(osb->commit_task)) {
1094			status = PTR_ERR(osb->commit_task);
1095			osb->commit_task = NULL;
1096			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1097			     "error=%d", status);
1098			goto done;
1099		}
1100	} else
1101		osb->commit_task = NULL;
1102
1103done:
1104	return status;
1105}
1106
1107
1108/* 'full' flag tells us whether we clear out all blocks or if we just
1109 * mark the journal clean */
1110int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1111{
1112	int status;
1113
1114	BUG_ON(!journal);
1115
1116	status = jbd2_journal_wipe(journal->j_journal, full);
1117	if (status < 0) {
1118		mlog_errno(status);
1119		goto bail;
1120	}
1121
1122	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1123	if (status < 0)
1124		mlog_errno(status);
1125
1126bail:
1127	return status;
1128}
1129
1130static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1131{
1132	int empty;
1133	struct ocfs2_recovery_map *rm = osb->recovery_map;
1134
1135	spin_lock(&osb->osb_lock);
1136	empty = (rm->rm_used == 0);
1137	spin_unlock(&osb->osb_lock);
1138
1139	return empty;
1140}
1141
1142void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1143{
1144	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1145}
1146
1147/*
1148 * JBD Might read a cached version of another nodes journal file. We
1149 * don't want this as this file changes often and we get no
1150 * notification on those changes. The only way to be sure that we've
1151 * got the most up to date version of those blocks then is to force
1152 * read them off disk. Just searching through the buffer cache won't
1153 * work as there may be pages backing this file which are still marked
1154 * up to date. We know things can't change on this file underneath us
1155 * as we have the lock by now :)
1156 */
1157static int ocfs2_force_read_journal(struct inode *inode)
1158{
1159	int status = 0;
1160	int i;
1161	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1162	struct buffer_head *bh = NULL;
1163	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1164
1165	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1166	v_blkno = 0;
1167	while (v_blkno < num_blocks) {
1168		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1169						     &p_blkno, &p_blocks, NULL);
1170		if (status < 0) {
1171			mlog_errno(status);
1172			goto bail;
1173		}
1174
1175		for (i = 0; i < p_blocks; i++, p_blkno++) {
1176			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1177					osb->sb->s_blocksize);
1178			/* block not cached. */
1179			if (!bh)
1180				continue;
1181
1182			brelse(bh);
1183			bh = NULL;
1184			/* We are reading journal data which should not
1185			 * be put in the uptodate cache.
1186			 */
1187			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1188			if (status < 0) {
1189				mlog_errno(status);
1190				goto bail;
1191			}
1192
1193			brelse(bh);
1194			bh = NULL;
1195		}
1196
1197		v_blkno += p_blocks;
1198	}
1199
1200bail:
1201	return status;
1202}
1203
1204struct ocfs2_la_recovery_item {
1205	struct list_head	lri_list;
1206	int			lri_slot;
1207	struct ocfs2_dinode	*lri_la_dinode;
1208	struct ocfs2_dinode	*lri_tl_dinode;
1209	struct ocfs2_quota_recovery *lri_qrec;
1210	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1211};
1212
1213/* Does the second half of the recovery process. By this point, the
1214 * node is marked clean and can actually be considered recovered,
1215 * hence it's no longer in the recovery map, but there's still some
1216 * cleanup we can do which shouldn't happen within the recovery thread
1217 * as locking in that context becomes very difficult if we are to take
1218 * recovering nodes into account.
1219 *
1220 * NOTE: This function can and will sleep on recovery of other nodes
1221 * during cluster locking, just like any other ocfs2 process.
1222 */
1223void ocfs2_complete_recovery(struct work_struct *work)
1224{
1225	int ret = 0;
1226	struct ocfs2_journal *journal =
1227		container_of(work, struct ocfs2_journal, j_recovery_work);
1228	struct ocfs2_super *osb = journal->j_osb;
1229	struct ocfs2_dinode *la_dinode, *tl_dinode;
1230	struct ocfs2_la_recovery_item *item, *n;
1231	struct ocfs2_quota_recovery *qrec;
1232	enum ocfs2_orphan_reco_type orphan_reco_type;
1233	LIST_HEAD(tmp_la_list);
1234
1235	trace_ocfs2_complete_recovery(
1236		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1237
1238	spin_lock(&journal->j_lock);
1239	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1240	spin_unlock(&journal->j_lock);
1241
1242	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1243		list_del_init(&item->lri_list);
1244
1245		ocfs2_wait_on_quotas(osb);
1246
1247		la_dinode = item->lri_la_dinode;
1248		tl_dinode = item->lri_tl_dinode;
1249		qrec = item->lri_qrec;
1250		orphan_reco_type = item->lri_orphan_reco_type;
1251
1252		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1253			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1254			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1255			qrec);
1256
1257		if (la_dinode) {
1258			ret = ocfs2_complete_local_alloc_recovery(osb,
1259								  la_dinode);
1260			if (ret < 0)
1261				mlog_errno(ret);
1262
1263			kfree(la_dinode);
1264		}
1265
1266		if (tl_dinode) {
1267			ret = ocfs2_complete_truncate_log_recovery(osb,
1268								   tl_dinode);
1269			if (ret < 0)
1270				mlog_errno(ret);
1271
1272			kfree(tl_dinode);
1273		}
1274
1275		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1276				orphan_reco_type);
1277		if (ret < 0)
1278			mlog_errno(ret);
1279
1280		if (qrec) {
1281			ret = ocfs2_finish_quota_recovery(osb, qrec,
1282							  item->lri_slot);
1283			if (ret < 0)
1284				mlog_errno(ret);
1285			/* Recovery info is already freed now */
1286		}
1287
1288		kfree(item);
1289	}
1290
1291	trace_ocfs2_complete_recovery_end(ret);
1292}
1293
1294/* NOTE: This function always eats your references to la_dinode and
1295 * tl_dinode, either manually on error, or by passing them to
1296 * ocfs2_complete_recovery */
1297static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1298					    int slot_num,
1299					    struct ocfs2_dinode *la_dinode,
1300					    struct ocfs2_dinode *tl_dinode,
1301					    struct ocfs2_quota_recovery *qrec,
1302					    enum ocfs2_orphan_reco_type orphan_reco_type)
1303{
1304	struct ocfs2_la_recovery_item *item;
1305
1306	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1307	if (!item) {
1308		/* Though we wish to avoid it, we are in fact safe in
1309		 * skipping local alloc cleanup as fsck.ocfs2 is more
1310		 * than capable of reclaiming unused space. */
1311		kfree(la_dinode);
1312		kfree(tl_dinode);
1313
1314		if (qrec)
1315			ocfs2_free_quota_recovery(qrec);
1316
1317		mlog_errno(-ENOMEM);
1318		return;
1319	}
1320
1321	INIT_LIST_HEAD(&item->lri_list);
1322	item->lri_la_dinode = la_dinode;
1323	item->lri_slot = slot_num;
1324	item->lri_tl_dinode = tl_dinode;
1325	item->lri_qrec = qrec;
1326	item->lri_orphan_reco_type = orphan_reco_type;
1327
1328	spin_lock(&journal->j_lock);
1329	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1330	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1331	spin_unlock(&journal->j_lock);
1332}
1333
1334/* Called by the mount code to queue recovery the last part of
1335 * recovery for it's own and offline slot(s). */
1336void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1337{
1338	struct ocfs2_journal *journal = osb->journal;
1339
1340	if (ocfs2_is_hard_readonly(osb))
1341		return;
1342
1343	/* No need to queue up our truncate_log as regular cleanup will catch
1344	 * that */
1345	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1346					osb->local_alloc_copy, NULL, NULL,
1347					ORPHAN_NEED_TRUNCATE);
1348	ocfs2_schedule_truncate_log_flush(osb, 0);
1349
1350	osb->local_alloc_copy = NULL;
1351	osb->dirty = 0;
1352
1353	/* queue to recover orphan slots for all offline slots */
1354	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1355	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1356	ocfs2_free_replay_slots(osb);
1357}
1358
1359void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1360{
1361	if (osb->quota_rec) {
1362		ocfs2_queue_recovery_completion(osb->journal,
1363						osb->slot_num,
1364						NULL,
1365						NULL,
1366						osb->quota_rec,
1367						ORPHAN_NEED_TRUNCATE);
1368		osb->quota_rec = NULL;
1369	}
1370}
1371
1372static int __ocfs2_recovery_thread(void *arg)
1373{
1374	int status, node_num, slot_num;
1375	struct ocfs2_super *osb = arg;
1376	struct ocfs2_recovery_map *rm = osb->recovery_map;
1377	int *rm_quota = NULL;
1378	int rm_quota_used = 0, i;
1379	struct ocfs2_quota_recovery *qrec;
1380
 
 
 
 
 
 
1381	status = ocfs2_wait_on_mount(osb);
1382	if (status < 0) {
1383		goto bail;
1384	}
1385
1386	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1387	if (!rm_quota) {
1388		status = -ENOMEM;
1389		goto bail;
 
 
1390	}
1391restart:
1392	status = ocfs2_super_lock(osb, 1);
1393	if (status < 0) {
1394		mlog_errno(status);
1395		goto bail;
1396	}
1397
1398	status = ocfs2_compute_replay_slots(osb);
1399	if (status < 0)
1400		mlog_errno(status);
1401
1402	/* queue recovery for our own slot */
1403	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1404					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1405
1406	spin_lock(&osb->osb_lock);
1407	while (rm->rm_used) {
1408		/* It's always safe to remove entry zero, as we won't
1409		 * clear it until ocfs2_recover_node() has succeeded. */
1410		node_num = rm->rm_entries[0];
1411		spin_unlock(&osb->osb_lock);
1412		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1413		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1414		if (slot_num == -ENOENT) {
1415			status = 0;
1416			goto skip_recovery;
1417		}
1418
1419		/* It is a bit subtle with quota recovery. We cannot do it
1420		 * immediately because we have to obtain cluster locks from
1421		 * quota files and we also don't want to just skip it because
1422		 * then quota usage would be out of sync until some node takes
1423		 * the slot. So we remember which nodes need quota recovery
1424		 * and when everything else is done, we recover quotas. */
1425		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1426		if (i == rm_quota_used)
1427			rm_quota[rm_quota_used++] = slot_num;
 
 
 
 
 
1428
1429		status = ocfs2_recover_node(osb, node_num, slot_num);
1430skip_recovery:
1431		if (!status) {
1432			ocfs2_recovery_map_clear(osb, node_num);
1433		} else {
1434			mlog(ML_ERROR,
1435			     "Error %d recovering node %d on device (%u,%u)!\n",
1436			     status, node_num,
1437			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1438			mlog(ML_ERROR, "Volume requires unmount.\n");
1439		}
1440
1441		spin_lock(&osb->osb_lock);
1442	}
1443	spin_unlock(&osb->osb_lock);
1444	trace_ocfs2_recovery_thread_end(status);
1445
1446	/* Refresh all journal recovery generations from disk */
1447	status = ocfs2_check_journals_nolocks(osb);
1448	status = (status == -EROFS) ? 0 : status;
1449	if (status < 0)
1450		mlog_errno(status);
1451
1452	/* Now it is right time to recover quotas... We have to do this under
1453	 * superblock lock so that no one can start using the slot (and crash)
1454	 * before we recover it */
1455	for (i = 0; i < rm_quota_used; i++) {
1456		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1457		if (IS_ERR(qrec)) {
1458			status = PTR_ERR(qrec);
1459			mlog_errno(status);
1460			continue;
 
 
 
 
 
 
1461		}
1462		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1463						NULL, NULL, qrec,
1464						ORPHAN_NEED_TRUNCATE);
1465	}
1466
1467	ocfs2_super_unlock(osb, 1);
1468
1469	/* queue recovery for offline slots */
1470	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1471
1472bail:
1473	mutex_lock(&osb->recovery_lock);
1474	if (!status && !ocfs2_recovery_completed(osb)) {
1475		mutex_unlock(&osb->recovery_lock);
1476		goto restart;
1477	}
1478
1479	ocfs2_free_replay_slots(osb);
1480	osb->recovery_thread_task = NULL;
1481	mb(); /* sync with ocfs2_recovery_thread_running */
1482	wake_up(&osb->recovery_event);
1483
1484	mutex_unlock(&osb->recovery_lock);
1485
1486	kfree(rm_quota);
 
1487
1488	/* no one is callint kthread_stop() for us so the kthread() api
1489	 * requires that we call do_exit().  And it isn't exported, but
1490	 * complete_and_exit() seems to be a minimal wrapper around it. */
1491	complete_and_exit(NULL, status);
1492}
1493
1494void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1495{
1496	mutex_lock(&osb->recovery_lock);
1497
1498	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1499		osb->disable_recovery, osb->recovery_thread_task,
1500		osb->disable_recovery ?
1501		-1 : ocfs2_recovery_map_set(osb, node_num));
1502
1503	if (osb->disable_recovery)
1504		goto out;
1505
1506	if (osb->recovery_thread_task)
1507		goto out;
1508
1509	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1510			"ocfs2rec-%s", osb->uuid_str);
1511	if (IS_ERR(osb->recovery_thread_task)) {
1512		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1513		osb->recovery_thread_task = NULL;
1514	}
1515
1516out:
1517	mutex_unlock(&osb->recovery_lock);
1518	wake_up(&osb->recovery_event);
1519}
1520
1521static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1522				    int slot_num,
1523				    struct buffer_head **bh,
1524				    struct inode **ret_inode)
1525{
1526	int status = -EACCES;
1527	struct inode *inode = NULL;
1528
1529	BUG_ON(slot_num >= osb->max_slots);
1530
1531	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1532					    slot_num);
1533	if (!inode || is_bad_inode(inode)) {
1534		mlog_errno(status);
1535		goto bail;
1536	}
1537	SET_INODE_JOURNAL(inode);
1538
1539	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1540	if (status < 0) {
1541		mlog_errno(status);
1542		goto bail;
1543	}
1544
1545	status = 0;
1546
1547bail:
1548	if (inode) {
1549		if (status || !ret_inode)
1550			iput(inode);
1551		else
1552			*ret_inode = inode;
1553	}
1554	return status;
1555}
1556
1557/* Does the actual journal replay and marks the journal inode as
1558 * clean. Will only replay if the journal inode is marked dirty. */
1559static int ocfs2_replay_journal(struct ocfs2_super *osb,
1560				int node_num,
1561				int slot_num)
1562{
1563	int status;
1564	int got_lock = 0;
1565	unsigned int flags;
1566	struct inode *inode = NULL;
1567	struct ocfs2_dinode *fe;
1568	journal_t *journal = NULL;
1569	struct buffer_head *bh = NULL;
1570	u32 slot_reco_gen;
1571
1572	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1573	if (status) {
1574		mlog_errno(status);
1575		goto done;
1576	}
1577
1578	fe = (struct ocfs2_dinode *)bh->b_data;
1579	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1580	brelse(bh);
1581	bh = NULL;
1582
1583	/*
1584	 * As the fs recovery is asynchronous, there is a small chance that
1585	 * another node mounted (and recovered) the slot before the recovery
1586	 * thread could get the lock. To handle that, we dirty read the journal
1587	 * inode for that slot to get the recovery generation. If it is
1588	 * different than what we expected, the slot has been recovered.
1589	 * If not, it needs recovery.
1590	 */
1591	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1592		trace_ocfs2_replay_journal_recovered(slot_num,
1593		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1594		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1595		status = -EBUSY;
1596		goto done;
1597	}
1598
1599	/* Continue with recovery as the journal has not yet been recovered */
1600
1601	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1602	if (status < 0) {
1603		trace_ocfs2_replay_journal_lock_err(status);
1604		if (status != -ERESTARTSYS)
1605			mlog(ML_ERROR, "Could not lock journal!\n");
1606		goto done;
1607	}
1608	got_lock = 1;
1609
1610	fe = (struct ocfs2_dinode *) bh->b_data;
1611
1612	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1613	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1614
1615	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1616		trace_ocfs2_replay_journal_skip(node_num);
1617		/* Refresh recovery generation for the slot */
1618		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1619		goto done;
1620	}
1621
1622	/* we need to run complete recovery for offline orphan slots */
1623	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1624
1625	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1626	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1627	       MINOR(osb->sb->s_dev));
1628
1629	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1630
1631	status = ocfs2_force_read_journal(inode);
1632	if (status < 0) {
1633		mlog_errno(status);
1634		goto done;
1635	}
1636
1637	journal = jbd2_journal_init_inode(inode);
1638	if (journal == NULL) {
1639		mlog(ML_ERROR, "Linux journal layer error\n");
1640		status = -EIO;
1641		goto done;
1642	}
1643
1644	status = jbd2_journal_load(journal);
1645	if (status < 0) {
1646		mlog_errno(status);
1647		if (!igrab(inode))
1648			BUG();
1649		jbd2_journal_destroy(journal);
1650		goto done;
1651	}
1652
1653	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1654
1655	/* wipe the journal */
1656	jbd2_journal_lock_updates(journal);
1657	status = jbd2_journal_flush(journal);
1658	jbd2_journal_unlock_updates(journal);
1659	if (status < 0)
1660		mlog_errno(status);
1661
1662	/* This will mark the node clean */
1663	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1664	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1665	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1666
1667	/* Increment recovery generation to indicate successful recovery */
1668	ocfs2_bump_recovery_generation(fe);
1669	osb->slot_recovery_generations[slot_num] =
1670					ocfs2_get_recovery_generation(fe);
1671
1672	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1673	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1674	if (status < 0)
1675		mlog_errno(status);
1676
1677	if (!igrab(inode))
1678		BUG();
1679
1680	jbd2_journal_destroy(journal);
1681
1682	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1683	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1684	       MINOR(osb->sb->s_dev));
1685done:
1686	/* drop the lock on this nodes journal */
1687	if (got_lock)
1688		ocfs2_inode_unlock(inode, 1);
1689
1690	iput(inode);
1691	brelse(bh);
1692
1693	return status;
1694}
1695
1696/*
1697 * Do the most important parts of node recovery:
1698 *  - Replay it's journal
1699 *  - Stamp a clean local allocator file
1700 *  - Stamp a clean truncate log
1701 *  - Mark the node clean
1702 *
1703 * If this function completes without error, a node in OCFS2 can be
1704 * said to have been safely recovered. As a result, failure during the
1705 * second part of a nodes recovery process (local alloc recovery) is
1706 * far less concerning.
1707 */
1708static int ocfs2_recover_node(struct ocfs2_super *osb,
1709			      int node_num, int slot_num)
1710{
1711	int status = 0;
1712	struct ocfs2_dinode *la_copy = NULL;
1713	struct ocfs2_dinode *tl_copy = NULL;
1714
1715	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1716
1717	/* Should not ever be called to recover ourselves -- in that
1718	 * case we should've called ocfs2_journal_load instead. */
1719	BUG_ON(osb->node_num == node_num);
1720
1721	status = ocfs2_replay_journal(osb, node_num, slot_num);
1722	if (status < 0) {
1723		if (status == -EBUSY) {
1724			trace_ocfs2_recover_node_skip(slot_num, node_num);
1725			status = 0;
1726			goto done;
1727		}
1728		mlog_errno(status);
1729		goto done;
1730	}
1731
1732	/* Stamp a clean local alloc file AFTER recovering the journal... */
1733	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1734	if (status < 0) {
1735		mlog_errno(status);
1736		goto done;
1737	}
1738
1739	/* An error from begin_truncate_log_recovery is not
1740	 * serious enough to warrant halting the rest of
1741	 * recovery. */
1742	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1743	if (status < 0)
1744		mlog_errno(status);
1745
1746	/* Likewise, this would be a strange but ultimately not so
1747	 * harmful place to get an error... */
1748	status = ocfs2_clear_slot(osb, slot_num);
1749	if (status < 0)
1750		mlog_errno(status);
1751
1752	/* This will kfree the memory pointed to by la_copy and tl_copy */
1753	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1754					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1755
1756	status = 0;
1757done:
1758
1759	return status;
1760}
1761
1762/* Test node liveness by trylocking his journal. If we get the lock,
1763 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1764 * still alive (we couldn't get the lock) and < 0 on error. */
1765static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1766				 int slot_num)
1767{
1768	int status, flags;
1769	struct inode *inode = NULL;
1770
1771	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1772					    slot_num);
1773	if (inode == NULL) {
1774		mlog(ML_ERROR, "access error\n");
1775		status = -EACCES;
1776		goto bail;
1777	}
1778	if (is_bad_inode(inode)) {
1779		mlog(ML_ERROR, "access error (bad inode)\n");
1780		iput(inode);
1781		inode = NULL;
1782		status = -EACCES;
1783		goto bail;
1784	}
1785	SET_INODE_JOURNAL(inode);
1786
1787	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1788	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1789	if (status < 0) {
1790		if (status != -EAGAIN)
1791			mlog_errno(status);
1792		goto bail;
1793	}
1794
1795	ocfs2_inode_unlock(inode, 1);
1796bail:
1797	iput(inode);
1798
1799	return status;
1800}
1801
1802/* Call this underneath ocfs2_super_lock. It also assumes that the
1803 * slot info struct has been updated from disk. */
1804int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1805{
1806	unsigned int node_num;
1807	int status, i;
1808	u32 gen;
1809	struct buffer_head *bh = NULL;
1810	struct ocfs2_dinode *di;
1811
1812	/* This is called with the super block cluster lock, so we
1813	 * know that the slot map can't change underneath us. */
1814
1815	for (i = 0; i < osb->max_slots; i++) {
1816		/* Read journal inode to get the recovery generation */
1817		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1818		if (status) {
1819			mlog_errno(status);
1820			goto bail;
1821		}
1822		di = (struct ocfs2_dinode *)bh->b_data;
1823		gen = ocfs2_get_recovery_generation(di);
1824		brelse(bh);
1825		bh = NULL;
1826
1827		spin_lock(&osb->osb_lock);
1828		osb->slot_recovery_generations[i] = gen;
1829
1830		trace_ocfs2_mark_dead_nodes(i,
1831					    osb->slot_recovery_generations[i]);
1832
1833		if (i == osb->slot_num) {
1834			spin_unlock(&osb->osb_lock);
1835			continue;
1836		}
1837
1838		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1839		if (status == -ENOENT) {
1840			spin_unlock(&osb->osb_lock);
1841			continue;
1842		}
1843
1844		if (__ocfs2_recovery_map_test(osb, node_num)) {
1845			spin_unlock(&osb->osb_lock);
1846			continue;
1847		}
1848		spin_unlock(&osb->osb_lock);
1849
1850		/* Ok, we have a slot occupied by another node which
1851		 * is not in the recovery map. We trylock his journal
1852		 * file here to test if he's alive. */
1853		status = ocfs2_trylock_journal(osb, i);
1854		if (!status) {
1855			/* Since we're called from mount, we know that
1856			 * the recovery thread can't race us on
1857			 * setting / checking the recovery bits. */
1858			ocfs2_recovery_thread(osb, node_num);
1859		} else if ((status < 0) && (status != -EAGAIN)) {
1860			mlog_errno(status);
1861			goto bail;
1862		}
1863	}
1864
1865	status = 0;
1866bail:
1867	return status;
1868}
1869
1870/*
1871 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1872 * randomness to the timeout to minimize multple nodes firing the timer at the
1873 * same time.
1874 */
1875static inline unsigned long ocfs2_orphan_scan_timeout(void)
1876{
1877	unsigned long time;
1878
1879	get_random_bytes(&time, sizeof(time));
1880	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1881	return msecs_to_jiffies(time);
1882}
1883
1884/*
1885 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1886 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1887 * is done to catch any orphans that are left over in orphan directories.
1888 *
1889 * It scans all slots, even ones that are in use. It does so to handle the
1890 * case described below:
1891 *
1892 *   Node 1 has an inode it was using. The dentry went away due to memory
1893 *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1894 *   has the open lock.
1895 *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1896 *   but node 1 has no dentry and doesn't get the message. It trylocks the
1897 *   open lock, sees that another node has a PR, and does nothing.
1898 *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1899 *   open lock, sees the PR still, and does nothing.
1900 *   Basically, we have to trigger an orphan iput on node 1. The only way
1901 *   for this to happen is if node 1 runs node 2's orphan dir.
1902 *
1903 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1904 * seconds.  It gets an EX lock on os_lockres and checks sequence number
1905 * stored in LVB. If the sequence number has changed, it means some other
1906 * node has done the scan.  This node skips the scan and tracks the
1907 * sequence number.  If the sequence number didn't change, it means a scan
1908 * hasn't happened.  The node queues a scan and increments the
1909 * sequence number in the LVB.
1910 */
1911static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1912{
1913	struct ocfs2_orphan_scan *os;
1914	int status, i;
1915	u32 seqno = 0;
1916
1917	os = &osb->osb_orphan_scan;
1918
1919	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1920		goto out;
1921
1922	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1923					    atomic_read(&os->os_state));
1924
1925	status = ocfs2_orphan_scan_lock(osb, &seqno);
1926	if (status < 0) {
1927		if (status != -EAGAIN)
1928			mlog_errno(status);
1929		goto out;
1930	}
1931
1932	/* Do no queue the tasks if the volume is being umounted */
1933	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1934		goto unlock;
1935
1936	if (os->os_seqno != seqno) {
1937		os->os_seqno = seqno;
1938		goto unlock;
1939	}
1940
1941	for (i = 0; i < osb->max_slots; i++)
1942		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1943						NULL, ORPHAN_NO_NEED_TRUNCATE);
1944	/*
1945	 * We queued a recovery on orphan slots, increment the sequence
1946	 * number and update LVB so other node will skip the scan for a while
1947	 */
1948	seqno++;
1949	os->os_count++;
1950	os->os_scantime = ktime_get_seconds();
1951unlock:
1952	ocfs2_orphan_scan_unlock(osb, seqno);
1953out:
1954	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1955					  atomic_read(&os->os_state));
1956	return;
1957}
1958
1959/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1960static void ocfs2_orphan_scan_work(struct work_struct *work)
1961{
1962	struct ocfs2_orphan_scan *os;
1963	struct ocfs2_super *osb;
1964
1965	os = container_of(work, struct ocfs2_orphan_scan,
1966			  os_orphan_scan_work.work);
1967	osb = os->os_osb;
1968
1969	mutex_lock(&os->os_lock);
1970	ocfs2_queue_orphan_scan(osb);
1971	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1972		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1973				      ocfs2_orphan_scan_timeout());
1974	mutex_unlock(&os->os_lock);
1975}
1976
1977void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1978{
1979	struct ocfs2_orphan_scan *os;
1980
1981	os = &osb->osb_orphan_scan;
1982	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1983		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1984		mutex_lock(&os->os_lock);
1985		cancel_delayed_work(&os->os_orphan_scan_work);
1986		mutex_unlock(&os->os_lock);
1987	}
1988}
1989
1990void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1991{
1992	struct ocfs2_orphan_scan *os;
1993
1994	os = &osb->osb_orphan_scan;
1995	os->os_osb = osb;
1996	os->os_count = 0;
1997	os->os_seqno = 0;
1998	mutex_init(&os->os_lock);
1999	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2000}
2001
2002void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2003{
2004	struct ocfs2_orphan_scan *os;
2005
2006	os = &osb->osb_orphan_scan;
2007	os->os_scantime = ktime_get_seconds();
2008	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2009		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2010	else {
2011		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2012		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2013				   ocfs2_orphan_scan_timeout());
2014	}
2015}
2016
2017struct ocfs2_orphan_filldir_priv {
2018	struct dir_context	ctx;
2019	struct inode		*head;
2020	struct ocfs2_super	*osb;
2021	enum ocfs2_orphan_reco_type orphan_reco_type;
2022};
2023
2024static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2025				int name_len, loff_t pos, u64 ino,
2026				unsigned type)
2027{
2028	struct ocfs2_orphan_filldir_priv *p =
2029		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2030	struct inode *iter;
2031
2032	if (name_len == 1 && !strncmp(".", name, 1))
2033		return 0;
2034	if (name_len == 2 && !strncmp("..", name, 2))
2035		return 0;
2036
2037	/* do not include dio entry in case of orphan scan */
2038	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2039			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2040			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2041		return 0;
2042
2043	/* Skip bad inodes so that recovery can continue */
2044	iter = ocfs2_iget(p->osb, ino,
2045			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2046	if (IS_ERR(iter))
2047		return 0;
2048
2049	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2050			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2051		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2052
2053	/* Skip inodes which are already added to recover list, since dio may
2054	 * happen concurrently with unlink/rename */
2055	if (OCFS2_I(iter)->ip_next_orphan) {
2056		iput(iter);
2057		return 0;
2058	}
2059
2060	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2061	/* No locking is required for the next_orphan queue as there
2062	 * is only ever a single process doing orphan recovery. */
2063	OCFS2_I(iter)->ip_next_orphan = p->head;
2064	p->head = iter;
2065
2066	return 0;
2067}
2068
2069static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2070			       int slot,
2071			       struct inode **head,
2072			       enum ocfs2_orphan_reco_type orphan_reco_type)
2073{
2074	int status;
2075	struct inode *orphan_dir_inode = NULL;
2076	struct ocfs2_orphan_filldir_priv priv = {
2077		.ctx.actor = ocfs2_orphan_filldir,
2078		.osb = osb,
2079		.head = *head,
2080		.orphan_reco_type = orphan_reco_type
2081	};
2082
2083	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2084						       ORPHAN_DIR_SYSTEM_INODE,
2085						       slot);
2086	if  (!orphan_dir_inode) {
2087		status = -ENOENT;
2088		mlog_errno(status);
2089		return status;
2090	}
2091
2092	inode_lock(orphan_dir_inode);
2093	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2094	if (status < 0) {
2095		mlog_errno(status);
2096		goto out;
2097	}
2098
2099	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2100	if (status) {
2101		mlog_errno(status);
2102		goto out_cluster;
2103	}
2104
2105	*head = priv.head;
2106
2107out_cluster:
2108	ocfs2_inode_unlock(orphan_dir_inode, 0);
2109out:
2110	inode_unlock(orphan_dir_inode);
2111	iput(orphan_dir_inode);
2112	return status;
2113}
2114
2115static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2116					      int slot)
2117{
2118	int ret;
2119
2120	spin_lock(&osb->osb_lock);
2121	ret = !osb->osb_orphan_wipes[slot];
2122	spin_unlock(&osb->osb_lock);
2123	return ret;
2124}
2125
2126static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2127					     int slot)
2128{
2129	spin_lock(&osb->osb_lock);
2130	/* Mark ourselves such that new processes in delete_inode()
2131	 * know to quit early. */
2132	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2133	while (osb->osb_orphan_wipes[slot]) {
2134		/* If any processes are already in the middle of an
2135		 * orphan wipe on this dir, then we need to wait for
2136		 * them. */
2137		spin_unlock(&osb->osb_lock);
2138		wait_event_interruptible(osb->osb_wipe_event,
2139					 ocfs2_orphan_recovery_can_continue(osb, slot));
2140		spin_lock(&osb->osb_lock);
2141	}
2142	spin_unlock(&osb->osb_lock);
2143}
2144
2145static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2146					      int slot)
2147{
2148	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2149}
2150
2151/*
2152 * Orphan recovery. Each mounted node has it's own orphan dir which we
2153 * must run during recovery. Our strategy here is to build a list of
2154 * the inodes in the orphan dir and iget/iput them. The VFS does
2155 * (most) of the rest of the work.
2156 *
2157 * Orphan recovery can happen at any time, not just mount so we have a
2158 * couple of extra considerations.
2159 *
2160 * - We grab as many inodes as we can under the orphan dir lock -
2161 *   doing iget() outside the orphan dir risks getting a reference on
2162 *   an invalid inode.
2163 * - We must be sure not to deadlock with other processes on the
2164 *   system wanting to run delete_inode(). This can happen when they go
2165 *   to lock the orphan dir and the orphan recovery process attempts to
2166 *   iget() inside the orphan dir lock. This can be avoided by
2167 *   advertising our state to ocfs2_delete_inode().
2168 */
2169static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2170				 int slot,
2171				 enum ocfs2_orphan_reco_type orphan_reco_type)
2172{
2173	int ret = 0;
2174	struct inode *inode = NULL;
2175	struct inode *iter;
2176	struct ocfs2_inode_info *oi;
2177	struct buffer_head *di_bh = NULL;
2178	struct ocfs2_dinode *di = NULL;
2179
2180	trace_ocfs2_recover_orphans(slot);
2181
2182	ocfs2_mark_recovering_orphan_dir(osb, slot);
2183	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2184	ocfs2_clear_recovering_orphan_dir(osb, slot);
2185
2186	/* Error here should be noted, but we want to continue with as
2187	 * many queued inodes as we've got. */
2188	if (ret)
2189		mlog_errno(ret);
2190
2191	while (inode) {
2192		oi = OCFS2_I(inode);
2193		trace_ocfs2_recover_orphans_iput(
2194					(unsigned long long)oi->ip_blkno);
2195
2196		iter = oi->ip_next_orphan;
2197		oi->ip_next_orphan = NULL;
2198
2199		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2200			inode_lock(inode);
2201			ret = ocfs2_rw_lock(inode, 1);
2202			if (ret < 0) {
2203				mlog_errno(ret);
2204				goto unlock_mutex;
2205			}
2206			/*
2207			 * We need to take and drop the inode lock to
2208			 * force read inode from disk.
2209			 */
2210			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2211			if (ret) {
2212				mlog_errno(ret);
2213				goto unlock_rw;
2214			}
2215
2216			di = (struct ocfs2_dinode *)di_bh->b_data;
2217
2218			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2219				ret = ocfs2_truncate_file(inode, di_bh,
2220						i_size_read(inode));
2221				if (ret < 0) {
2222					if (ret != -ENOSPC)
2223						mlog_errno(ret);
2224					goto unlock_inode;
2225				}
2226
2227				ret = ocfs2_del_inode_from_orphan(osb, inode,
2228						di_bh, 0, 0);
2229				if (ret)
2230					mlog_errno(ret);
2231			}
2232unlock_inode:
2233			ocfs2_inode_unlock(inode, 1);
2234			brelse(di_bh);
2235			di_bh = NULL;
2236unlock_rw:
2237			ocfs2_rw_unlock(inode, 1);
2238unlock_mutex:
2239			inode_unlock(inode);
2240
2241			/* clear dio flag in ocfs2_inode_info */
2242			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2243		} else {
2244			spin_lock(&oi->ip_lock);
2245			/* Set the proper information to get us going into
2246			 * ocfs2_delete_inode. */
2247			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2248			spin_unlock(&oi->ip_lock);
2249		}
2250
2251		iput(inode);
2252		inode = iter;
2253	}
2254
2255	return ret;
2256}
2257
2258static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2259{
2260	/* This check is good because ocfs2 will wait on our recovery
2261	 * thread before changing it to something other than MOUNTED
2262	 * or DISABLED. */
2263	wait_event(osb->osb_mount_event,
2264		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2265		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2266		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2267
2268	/* If there's an error on mount, then we may never get to the
2269	 * MOUNTED flag, but this is set right before
2270	 * dismount_volume() so we can trust it. */
2271	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2272		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2273		mlog(0, "mount error, exiting!\n");
2274		return -EBUSY;
2275	}
2276
2277	return 0;
2278}
2279
2280static int ocfs2_commit_thread(void *arg)
2281{
2282	int status;
2283	struct ocfs2_super *osb = arg;
2284	struct ocfs2_journal *journal = osb->journal;
2285
2286	/* we can trust j_num_trans here because _should_stop() is only set in
2287	 * shutdown and nobody other than ourselves should be able to start
2288	 * transactions.  committing on shutdown might take a few iterations
2289	 * as final transactions put deleted inodes on the list */
2290	while (!(kthread_should_stop() &&
2291		 atomic_read(&journal->j_num_trans) == 0)) {
2292
2293		wait_event_interruptible(osb->checkpoint_event,
2294					 atomic_read(&journal->j_num_trans)
2295					 || kthread_should_stop());
2296
2297		status = ocfs2_commit_cache(osb);
2298		if (status < 0) {
2299			static unsigned long abort_warn_time;
2300
2301			/* Warn about this once per minute */
2302			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2303				mlog(ML_ERROR, "status = %d, journal is "
2304						"already aborted.\n", status);
2305			/*
2306			 * After ocfs2_commit_cache() fails, j_num_trans has a
2307			 * non-zero value.  Sleep here to avoid a busy-wait
2308			 * loop.
2309			 */
2310			msleep_interruptible(1000);
2311		}
2312
2313		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2314			mlog(ML_KTHREAD,
2315			     "commit_thread: %u transactions pending on "
2316			     "shutdown\n",
2317			     atomic_read(&journal->j_num_trans));
2318		}
2319	}
2320
2321	return 0;
2322}
2323
2324/* Reads all the journal inodes without taking any cluster locks. Used
2325 * for hard readonly access to determine whether any journal requires
2326 * recovery. Also used to refresh the recovery generation numbers after
2327 * a journal has been recovered by another node.
2328 */
2329int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2330{
2331	int ret = 0;
2332	unsigned int slot;
2333	struct buffer_head *di_bh = NULL;
2334	struct ocfs2_dinode *di;
2335	int journal_dirty = 0;
2336
2337	for(slot = 0; slot < osb->max_slots; slot++) {
2338		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2339		if (ret) {
2340			mlog_errno(ret);
2341			goto out;
2342		}
2343
2344		di = (struct ocfs2_dinode *) di_bh->b_data;
2345
2346		osb->slot_recovery_generations[slot] =
2347					ocfs2_get_recovery_generation(di);
2348
2349		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2350		    OCFS2_JOURNAL_DIRTY_FL)
2351			journal_dirty = 1;
2352
2353		brelse(di_bh);
2354		di_bh = NULL;
2355	}
2356
2357out:
2358	if (journal_dirty)
2359		ret = -EROFS;
2360	return ret;
2361}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
 
   3 * journal.c
   4 *
   5 * Defines functions of journalling api
   6 *
   7 * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8 */
   9
  10#include <linux/fs.h>
  11#include <linux/types.h>
  12#include <linux/slab.h>
  13#include <linux/highmem.h>
  14#include <linux/kthread.h>
  15#include <linux/time.h>
  16#include <linux/random.h>
  17#include <linux/delay.h>
  18#include <linux/writeback.h>
  19
  20#include <cluster/masklog.h>
  21
  22#include "ocfs2.h"
  23
  24#include "alloc.h"
  25#include "blockcheck.h"
  26#include "dir.h"
  27#include "dlmglue.h"
  28#include "extent_map.h"
  29#include "heartbeat.h"
  30#include "inode.h"
  31#include "journal.h"
  32#include "localalloc.h"
  33#include "slot_map.h"
  34#include "super.h"
  35#include "sysfile.h"
  36#include "uptodate.h"
  37#include "quota.h"
  38#include "file.h"
  39#include "namei.h"
  40
  41#include "buffer_head_io.h"
  42#include "ocfs2_trace.h"
  43
  44DEFINE_SPINLOCK(trans_inc_lock);
  45
  46#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
  47
  48static int ocfs2_force_read_journal(struct inode *inode);
  49static int ocfs2_recover_node(struct ocfs2_super *osb,
  50			      int node_num, int slot_num);
  51static int __ocfs2_recovery_thread(void *arg);
  52static int ocfs2_commit_cache(struct ocfs2_super *osb);
  53static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
  54static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
  55				      int dirty, int replayed);
  56static int ocfs2_trylock_journal(struct ocfs2_super *osb,
  57				 int slot_num);
  58static int ocfs2_recover_orphans(struct ocfs2_super *osb,
  59				 int slot,
  60				 enum ocfs2_orphan_reco_type orphan_reco_type);
  61static int ocfs2_commit_thread(void *arg);
  62static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
  63					    int slot_num,
  64					    struct ocfs2_dinode *la_dinode,
  65					    struct ocfs2_dinode *tl_dinode,
  66					    struct ocfs2_quota_recovery *qrec,
  67					    enum ocfs2_orphan_reco_type orphan_reco_type);
  68
  69static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
  70{
  71	return __ocfs2_wait_on_mount(osb, 0);
  72}
  73
  74static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
  75{
  76	return __ocfs2_wait_on_mount(osb, 1);
  77}
  78
  79/*
  80 * This replay_map is to track online/offline slots, so we could recover
  81 * offline slots during recovery and mount
  82 */
  83
  84enum ocfs2_replay_state {
  85	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
  86	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
  87	REPLAY_DONE 		/* Replay was already queued */
  88};
  89
  90struct ocfs2_replay_map {
  91	unsigned int rm_slots;
  92	enum ocfs2_replay_state rm_state;
  93	unsigned char rm_replay_slots[] __counted_by(rm_slots);
  94};
  95
  96static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
  97{
  98	if (!osb->replay_map)
  99		return;
 100
 101	/* If we've already queued the replay, we don't have any more to do */
 102	if (osb->replay_map->rm_state == REPLAY_DONE)
 103		return;
 104
 105	osb->replay_map->rm_state = state;
 106}
 107
 108int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
 109{
 110	struct ocfs2_replay_map *replay_map;
 111	int i, node_num;
 112
 113	/* If replay map is already set, we don't do it again */
 114	if (osb->replay_map)
 115		return 0;
 116
 117	replay_map = kzalloc(struct_size(replay_map, rm_replay_slots,
 118					 osb->max_slots),
 119			     GFP_KERNEL);
 120	if (!replay_map) {
 121		mlog_errno(-ENOMEM);
 122		return -ENOMEM;
 123	}
 124
 125	spin_lock(&osb->osb_lock);
 126
 127	replay_map->rm_slots = osb->max_slots;
 128	replay_map->rm_state = REPLAY_UNNEEDED;
 129
 130	/* set rm_replay_slots for offline slot(s) */
 131	for (i = 0; i < replay_map->rm_slots; i++) {
 132		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
 133			replay_map->rm_replay_slots[i] = 1;
 134	}
 135
 136	osb->replay_map = replay_map;
 137	spin_unlock(&osb->osb_lock);
 138	return 0;
 139}
 140
 141static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
 142		enum ocfs2_orphan_reco_type orphan_reco_type)
 143{
 144	struct ocfs2_replay_map *replay_map = osb->replay_map;
 145	int i;
 146
 147	if (!replay_map)
 148		return;
 149
 150	if (replay_map->rm_state != REPLAY_NEEDED)
 151		return;
 152
 153	for (i = 0; i < replay_map->rm_slots; i++)
 154		if (replay_map->rm_replay_slots[i])
 155			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
 156							NULL, NULL,
 157							orphan_reco_type);
 158	replay_map->rm_state = REPLAY_DONE;
 159}
 160
 161void ocfs2_free_replay_slots(struct ocfs2_super *osb)
 162{
 163	struct ocfs2_replay_map *replay_map = osb->replay_map;
 164
 165	if (!osb->replay_map)
 166		return;
 167
 168	kfree(replay_map);
 169	osb->replay_map = NULL;
 170}
 171
 172int ocfs2_recovery_init(struct ocfs2_super *osb)
 173{
 174	struct ocfs2_recovery_map *rm;
 175
 176	mutex_init(&osb->recovery_lock);
 177	osb->disable_recovery = 0;
 178	osb->recovery_thread_task = NULL;
 179	init_waitqueue_head(&osb->recovery_event);
 180
 181	rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots),
 
 182		     GFP_KERNEL);
 183	if (!rm) {
 184		mlog_errno(-ENOMEM);
 185		return -ENOMEM;
 186	}
 187
 
 
 188	osb->recovery_map = rm;
 189
 190	return 0;
 191}
 192
 193/* we can't grab the goofy sem lock from inside wait_event, so we use
 194 * memory barriers to make sure that we'll see the null task before
 195 * being woken up */
 196static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
 197{
 198	mb();
 199	return osb->recovery_thread_task != NULL;
 200}
 201
 202void ocfs2_recovery_exit(struct ocfs2_super *osb)
 203{
 204	struct ocfs2_recovery_map *rm;
 205
 206	/* disable any new recovery threads and wait for any currently
 207	 * running ones to exit. Do this before setting the vol_state. */
 208	mutex_lock(&osb->recovery_lock);
 209	osb->disable_recovery = 1;
 210	mutex_unlock(&osb->recovery_lock);
 211	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
 212
 213	/* At this point, we know that no more recovery threads can be
 214	 * launched, so wait for any recovery completion work to
 215	 * complete. */
 216	if (osb->ocfs2_wq)
 217		flush_workqueue(osb->ocfs2_wq);
 218
 219	/*
 220	 * Now that recovery is shut down, and the osb is about to be
 221	 * freed,  the osb_lock is not taken here.
 222	 */
 223	rm = osb->recovery_map;
 224	/* XXX: Should we bug if there are dirty entries? */
 225
 226	kfree(rm);
 227}
 228
 229static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
 230				     unsigned int node_num)
 231{
 232	int i;
 233	struct ocfs2_recovery_map *rm = osb->recovery_map;
 234
 235	assert_spin_locked(&osb->osb_lock);
 236
 237	for (i = 0; i < rm->rm_used; i++) {
 238		if (rm->rm_entries[i] == node_num)
 239			return 1;
 240	}
 241
 242	return 0;
 243}
 244
 245/* Behaves like test-and-set.  Returns the previous value */
 246static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
 247				  unsigned int node_num)
 248{
 249	struct ocfs2_recovery_map *rm = osb->recovery_map;
 250
 251	spin_lock(&osb->osb_lock);
 252	if (__ocfs2_recovery_map_test(osb, node_num)) {
 253		spin_unlock(&osb->osb_lock);
 254		return 1;
 255	}
 256
 257	/* XXX: Can this be exploited? Not from o2dlm... */
 258	BUG_ON(rm->rm_used >= osb->max_slots);
 259
 260	rm->rm_entries[rm->rm_used] = node_num;
 261	rm->rm_used++;
 262	spin_unlock(&osb->osb_lock);
 263
 264	return 0;
 265}
 266
 267static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
 268				     unsigned int node_num)
 269{
 270	int i;
 271	struct ocfs2_recovery_map *rm = osb->recovery_map;
 272
 273	spin_lock(&osb->osb_lock);
 274
 275	for (i = 0; i < rm->rm_used; i++) {
 276		if (rm->rm_entries[i] == node_num)
 277			break;
 278	}
 279
 280	if (i < rm->rm_used) {
 281		/* XXX: be careful with the pointer math */
 282		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
 283			(rm->rm_used - i - 1) * sizeof(unsigned int));
 284		rm->rm_used--;
 285	}
 286
 287	spin_unlock(&osb->osb_lock);
 288}
 289
 290static int ocfs2_commit_cache(struct ocfs2_super *osb)
 291{
 292	int status = 0;
 293	unsigned int flushed;
 294	struct ocfs2_journal *journal = NULL;
 295
 296	journal = osb->journal;
 297
 298	/* Flush all pending commits and checkpoint the journal. */
 299	down_write(&journal->j_trans_barrier);
 300
 301	flushed = atomic_read(&journal->j_num_trans);
 302	trace_ocfs2_commit_cache_begin(flushed);
 303	if (flushed == 0) {
 304		up_write(&journal->j_trans_barrier);
 305		goto finally;
 306	}
 307
 308	jbd2_journal_lock_updates(journal->j_journal);
 309	status = jbd2_journal_flush(journal->j_journal, 0);
 310	jbd2_journal_unlock_updates(journal->j_journal);
 311	if (status < 0) {
 312		up_write(&journal->j_trans_barrier);
 313		mlog_errno(status);
 314		goto finally;
 315	}
 316
 317	ocfs2_inc_trans_id(journal);
 318
 319	flushed = atomic_read(&journal->j_num_trans);
 320	atomic_set(&journal->j_num_trans, 0);
 321	up_write(&journal->j_trans_barrier);
 322
 323	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
 324
 325	ocfs2_wake_downconvert_thread(osb);
 326	wake_up(&journal->j_checkpointed);
 327finally:
 328	return status;
 329}
 330
 331handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
 332{
 333	journal_t *journal = osb->journal->j_journal;
 334	handle_t *handle;
 335
 336	BUG_ON(!osb || !osb->journal->j_journal);
 337
 338	if (ocfs2_is_hard_readonly(osb))
 339		return ERR_PTR(-EROFS);
 340
 341	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
 342	BUG_ON(max_buffs <= 0);
 343
 344	/* Nested transaction? Just return the handle... */
 345	if (journal_current_handle())
 346		return jbd2_journal_start(journal, max_buffs);
 347
 348	sb_start_intwrite(osb->sb);
 349
 350	down_read(&osb->journal->j_trans_barrier);
 351
 352	handle = jbd2_journal_start(journal, max_buffs);
 353	if (IS_ERR(handle)) {
 354		up_read(&osb->journal->j_trans_barrier);
 355		sb_end_intwrite(osb->sb);
 356
 357		mlog_errno(PTR_ERR(handle));
 358
 359		if (is_journal_aborted(journal)) {
 360			ocfs2_abort(osb->sb, "Detected aborted journal\n");
 361			handle = ERR_PTR(-EROFS);
 362		}
 363	} else {
 364		if (!ocfs2_mount_local(osb))
 365			atomic_inc(&(osb->journal->j_num_trans));
 366	}
 367
 368	return handle;
 369}
 370
 371int ocfs2_commit_trans(struct ocfs2_super *osb,
 372		       handle_t *handle)
 373{
 374	int ret, nested;
 375	struct ocfs2_journal *journal = osb->journal;
 376
 377	BUG_ON(!handle);
 378
 379	nested = handle->h_ref > 1;
 380	ret = jbd2_journal_stop(handle);
 381	if (ret < 0)
 382		mlog_errno(ret);
 383
 384	if (!nested) {
 385		up_read(&journal->j_trans_barrier);
 386		sb_end_intwrite(osb->sb);
 387	}
 388
 389	return ret;
 390}
 391
 392/*
 393 * 'nblocks' is what you want to add to the current transaction.
 394 *
 395 * This might call jbd2_journal_restart() which will commit dirty buffers
 396 * and then restart the transaction. Before calling
 397 * ocfs2_extend_trans(), any changed blocks should have been
 398 * dirtied. After calling it, all blocks which need to be changed must
 399 * go through another set of journal_access/journal_dirty calls.
 400 *
 401 * WARNING: This will not release any semaphores or disk locks taken
 402 * during the transaction, so make sure they were taken *before*
 403 * start_trans or we'll have ordering deadlocks.
 404 *
 405 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
 406 * good because transaction ids haven't yet been recorded on the
 407 * cluster locks associated with this handle.
 408 */
 409int ocfs2_extend_trans(handle_t *handle, int nblocks)
 410{
 411	int status, old_nblocks;
 412
 413	BUG_ON(!handle);
 414	BUG_ON(nblocks < 0);
 415
 416	if (!nblocks)
 417		return 0;
 418
 419	old_nblocks = jbd2_handle_buffer_credits(handle);
 420
 421	trace_ocfs2_extend_trans(old_nblocks, nblocks);
 422
 423#ifdef CONFIG_OCFS2_DEBUG_FS
 424	status = 1;
 425#else
 426	status = jbd2_journal_extend(handle, nblocks, 0);
 427	if (status < 0) {
 428		mlog_errno(status);
 429		goto bail;
 430	}
 431#endif
 432
 433	if (status > 0) {
 434		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
 435		status = jbd2_journal_restart(handle,
 436					      old_nblocks + nblocks);
 437		if (status < 0) {
 438			mlog_errno(status);
 439			goto bail;
 440		}
 441	}
 442
 443	status = 0;
 444bail:
 445	return status;
 446}
 447
 448/*
 449 * Make sure handle has at least 'nblocks' credits available. If it does not
 450 * have that many credits available, we will try to extend the handle to have
 451 * enough credits. If that fails, we will restart transaction to have enough
 452 * credits. Similar notes regarding data consistency and locking implications
 453 * as for ocfs2_extend_trans() apply here.
 454 */
 455int ocfs2_assure_trans_credits(handle_t *handle, int nblocks)
 456{
 457	int old_nblks = jbd2_handle_buffer_credits(handle);
 458
 459	trace_ocfs2_assure_trans_credits(old_nblks);
 460	if (old_nblks >= nblocks)
 461		return 0;
 462	return ocfs2_extend_trans(handle, nblocks - old_nblks);
 463}
 464
 465/*
 466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
 467 * If that fails, restart the transaction & regain write access for the
 468 * buffer head which is used for metadata modifications.
 469 * Taken from Ext4: extend_or_restart_transaction()
 470 */
 471int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
 472{
 473	int status, old_nblks;
 474
 475	BUG_ON(!handle);
 476
 477	old_nblks = jbd2_handle_buffer_credits(handle);
 478	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
 479
 480	if (old_nblks < thresh)
 481		return 0;
 482
 483	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
 484	if (status < 0) {
 485		mlog_errno(status);
 486		goto bail;
 487	}
 488
 489	if (status > 0) {
 490		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
 491		if (status < 0)
 492			mlog_errno(status);
 493	}
 494
 495bail:
 496	return status;
 497}
 498
 
 
 
 
 
 
 499static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
 500{
 501	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
 502}
 503
 504static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 505				 struct buffer_head *bh,
 506				 void *data, size_t size)
 507{
 508	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
 509
 510	/*
 511	 * We aren't guaranteed to have the superblock here, so we
 512	 * must unconditionally compute the ecc data.
 513	 * __ocfs2_journal_access() will only set the triggers if
 514	 * metaecc is enabled.
 515	 */
 516	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
 517}
 518
 519/*
 520 * Quota blocks have their own trigger because the struct ocfs2_block_check
 521 * offset depends on the blocksize.
 522 */
 523static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 524				 struct buffer_head *bh,
 525				 void *data, size_t size)
 526{
 527	struct ocfs2_disk_dqtrailer *dqt =
 528		ocfs2_block_dqtrailer(size, data);
 529
 530	/*
 531	 * We aren't guaranteed to have the superblock here, so we
 532	 * must unconditionally compute the ecc data.
 533	 * __ocfs2_journal_access() will only set the triggers if
 534	 * metaecc is enabled.
 535	 */
 536	ocfs2_block_check_compute(data, size, &dqt->dq_check);
 537}
 538
 539/*
 540 * Directory blocks also have their own trigger because the
 541 * struct ocfs2_block_check offset depends on the blocksize.
 542 */
 543static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 544				 struct buffer_head *bh,
 545				 void *data, size_t size)
 546{
 547	struct ocfs2_dir_block_trailer *trailer =
 548		ocfs2_dir_trailer_from_size(size, data);
 549
 550	/*
 551	 * We aren't guaranteed to have the superblock here, so we
 552	 * must unconditionally compute the ecc data.
 553	 * __ocfs2_journal_access() will only set the triggers if
 554	 * metaecc is enabled.
 555	 */
 556	ocfs2_block_check_compute(data, size, &trailer->db_check);
 557}
 558
 559static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
 560				struct buffer_head *bh)
 561{
 562	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
 563
 564	mlog(ML_ERROR,
 565	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
 566	     "bh->b_blocknr = %llu\n",
 567	     (unsigned long)bh,
 568	     (unsigned long long)bh->b_blocknr);
 569
 570	ocfs2_error(ot->sb,
 571		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
 572}
 573
 574static void ocfs2_setup_csum_triggers(struct super_block *sb,
 575				      enum ocfs2_journal_trigger_type type,
 576				      struct ocfs2_triggers *ot)
 577{
 578	BUG_ON(type >= OCFS2_JOURNAL_TRIGGER_COUNT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579
 580	switch (type) {
 581	case OCFS2_JTR_DI:
 582		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
 583		ot->ot_offset = offsetof(struct ocfs2_dinode, i_check);
 584		break;
 585	case OCFS2_JTR_EB:
 586		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
 587		ot->ot_offset = offsetof(struct ocfs2_extent_block, h_check);
 588		break;
 589	case OCFS2_JTR_RB:
 590		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
 591		ot->ot_offset = offsetof(struct ocfs2_refcount_block, rf_check);
 592		break;
 593	case OCFS2_JTR_GD:
 594		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
 595		ot->ot_offset = offsetof(struct ocfs2_group_desc, bg_check);
 596		break;
 597	case OCFS2_JTR_DB:
 598		ot->ot_triggers.t_frozen = ocfs2_db_frozen_trigger;
 599		break;
 600	case OCFS2_JTR_XB:
 601		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
 602		ot->ot_offset = offsetof(struct ocfs2_xattr_block, xb_check);
 603		break;
 604	case OCFS2_JTR_DQ:
 605		ot->ot_triggers.t_frozen = ocfs2_dq_frozen_trigger;
 606		break;
 607	case OCFS2_JTR_DR:
 608		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
 609		ot->ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check);
 610		break;
 611	case OCFS2_JTR_DL:
 612		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
 613		ot->ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check);
 614		break;
 615	case OCFS2_JTR_NONE:
 616		/* To make compiler happy... */
 617		return;
 618	}
 619
 620	ot->ot_triggers.t_abort = ocfs2_abort_trigger;
 621	ot->sb = sb;
 622}
 
 
 
 623
 624void ocfs2_initialize_journal_triggers(struct super_block *sb,
 625				       struct ocfs2_triggers triggers[])
 626{
 627	enum ocfs2_journal_trigger_type type;
 
 
 
 628
 629	for (type = OCFS2_JTR_DI; type < OCFS2_JOURNAL_TRIGGER_COUNT; type++)
 630		ocfs2_setup_csum_triggers(sb, type, &triggers[type]);
 631}
 
 
 
 
 632
 633static int __ocfs2_journal_access(handle_t *handle,
 634				  struct ocfs2_caching_info *ci,
 635				  struct buffer_head *bh,
 636				  struct ocfs2_triggers *triggers,
 637				  int type)
 638{
 639	int status;
 640	struct ocfs2_super *osb =
 641		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 642
 643	BUG_ON(!ci || !ci->ci_ops);
 644	BUG_ON(!handle);
 645	BUG_ON(!bh);
 646
 647	trace_ocfs2_journal_access(
 648		(unsigned long long)ocfs2_metadata_cache_owner(ci),
 649		(unsigned long long)bh->b_blocknr, type, bh->b_size);
 650
 651	/* we can safely remove this assertion after testing. */
 652	if (!buffer_uptodate(bh)) {
 653		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
 654		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
 655		     (unsigned long long)bh->b_blocknr, bh->b_state);
 656
 657		lock_buffer(bh);
 658		/*
 659		 * A previous transaction with a couple of buffer heads fail
 660		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
 661		 * For current transaction, the bh is just among those error
 662		 * bhs which previous transaction handle. We can't just clear
 663		 * its BH_Write_EIO and reuse directly, since other bhs are
 664		 * not written to disk yet and that will cause metadata
 665		 * inconsistency. So we should set fs read-only to avoid
 666		 * further damage.
 667		 */
 668		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
 
 
 
 
 
 669			unlock_buffer(bh);
 670			return ocfs2_error(osb->sb, "A previous attempt to "
 671					"write this buffer head failed\n");
 672		}
 673		unlock_buffer(bh);
 674	}
 675
 676	/* Set the current transaction information on the ci so
 677	 * that the locking code knows whether it can drop it's locks
 678	 * on this ci or not. We're protected from the commit
 679	 * thread updating the current transaction id until
 680	 * ocfs2_commit_trans() because ocfs2_start_trans() took
 681	 * j_trans_barrier for us. */
 682	ocfs2_set_ci_lock_trans(osb->journal, ci);
 683
 684	ocfs2_metadata_cache_io_lock(ci);
 685	switch (type) {
 686	case OCFS2_JOURNAL_ACCESS_CREATE:
 687	case OCFS2_JOURNAL_ACCESS_WRITE:
 688		status = jbd2_journal_get_write_access(handle, bh);
 689		break;
 690
 691	case OCFS2_JOURNAL_ACCESS_UNDO:
 692		status = jbd2_journal_get_undo_access(handle, bh);
 693		break;
 694
 695	default:
 696		status = -EINVAL;
 697		mlog(ML_ERROR, "Unknown access type!\n");
 698	}
 699	if (!status && ocfs2_meta_ecc(osb) && triggers)
 700		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
 701	ocfs2_metadata_cache_io_unlock(ci);
 702
 703	if (status < 0)
 704		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
 705		     status, type);
 706
 707	return status;
 708}
 709
 710int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
 711			    struct buffer_head *bh, int type)
 712{
 713	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 714
 715	return __ocfs2_journal_access(handle, ci, bh,
 716				      &osb->s_journal_triggers[OCFS2_JTR_DI],
 717				      type);
 718}
 719
 720int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
 721			    struct buffer_head *bh, int type)
 722{
 723	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 724
 725	return __ocfs2_journal_access(handle, ci, bh,
 726				      &osb->s_journal_triggers[OCFS2_JTR_EB],
 727				      type);
 728}
 729
 730int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
 731			    struct buffer_head *bh, int type)
 732{
 733	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 734
 735	return __ocfs2_journal_access(handle, ci, bh,
 736				      &osb->s_journal_triggers[OCFS2_JTR_RB],
 737				      type);
 738}
 739
 740int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
 741			    struct buffer_head *bh, int type)
 742{
 743	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 744
 745	return __ocfs2_journal_access(handle, ci, bh,
 746				     &osb->s_journal_triggers[OCFS2_JTR_GD],
 747				     type);
 748}
 749
 750int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
 751			    struct buffer_head *bh, int type)
 752{
 753	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 754
 755	return __ocfs2_journal_access(handle, ci, bh,
 756				     &osb->s_journal_triggers[OCFS2_JTR_DB],
 757				     type);
 758}
 759
 760int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
 761			    struct buffer_head *bh, int type)
 762{
 763	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 764
 765	return __ocfs2_journal_access(handle, ci, bh,
 766				     &osb->s_journal_triggers[OCFS2_JTR_XB],
 767				     type);
 768}
 769
 770int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
 771			    struct buffer_head *bh, int type)
 772{
 773	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 774
 775	return __ocfs2_journal_access(handle, ci, bh,
 776				     &osb->s_journal_triggers[OCFS2_JTR_DQ],
 777				     type);
 778}
 779
 780int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
 781			    struct buffer_head *bh, int type)
 782{
 783	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 784
 785	return __ocfs2_journal_access(handle, ci, bh,
 786				     &osb->s_journal_triggers[OCFS2_JTR_DR],
 787				     type);
 788}
 789
 790int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
 791			    struct buffer_head *bh, int type)
 792{
 793	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 794
 795	return __ocfs2_journal_access(handle, ci, bh,
 796				     &osb->s_journal_triggers[OCFS2_JTR_DL],
 797				     type);
 798}
 799
 800int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
 801			 struct buffer_head *bh, int type)
 802{
 803	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
 804}
 805
 806void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
 807{
 808	int status;
 809
 810	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
 811
 812	status = jbd2_journal_dirty_metadata(handle, bh);
 813	if (status) {
 814		mlog_errno(status);
 815		if (!is_handle_aborted(handle)) {
 816			journal_t *journal = handle->h_transaction->t_journal;
 
 817
 818			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed: "
 819			     "handle type %u started at line %u, credits %u/%u "
 820			     "errcode %d. Aborting transaction and journal.\n",
 821			     handle->h_type, handle->h_line_no,
 822			     handle->h_requested_credits,
 823			     jbd2_handle_buffer_credits(handle), status);
 824			handle->h_err = status;
 825			jbd2_journal_abort_handle(handle);
 826			jbd2_journal_abort(journal, status);
 
 827		}
 828	}
 829}
 830
 831#define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
 832
 833void ocfs2_set_journal_params(struct ocfs2_super *osb)
 834{
 835	journal_t *journal = osb->journal->j_journal;
 836	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
 837
 838	if (osb->osb_commit_interval)
 839		commit_interval = osb->osb_commit_interval;
 840
 841	write_lock(&journal->j_state_lock);
 842	journal->j_commit_interval = commit_interval;
 843	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
 844		journal->j_flags |= JBD2_BARRIER;
 845	else
 846		journal->j_flags &= ~JBD2_BARRIER;
 847	write_unlock(&journal->j_state_lock);
 848}
 849
 850/*
 851 * alloc & initialize skeleton for journal structure.
 852 * ocfs2_journal_init() will make fs have journal ability.
 853 */
 854int ocfs2_journal_alloc(struct ocfs2_super *osb)
 855{
 856	int status = 0;
 857	struct ocfs2_journal *journal;
 858
 859	journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
 860	if (!journal) {
 861		mlog(ML_ERROR, "unable to alloc journal\n");
 862		status = -ENOMEM;
 863		goto bail;
 864	}
 865	osb->journal = journal;
 866	journal->j_osb = osb;
 867
 868	atomic_set(&journal->j_num_trans, 0);
 869	init_rwsem(&journal->j_trans_barrier);
 870	init_waitqueue_head(&journal->j_checkpointed);
 871	spin_lock_init(&journal->j_lock);
 872	journal->j_trans_id = 1UL;
 873	INIT_LIST_HEAD(&journal->j_la_cleanups);
 874	INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
 875	journal->j_state = OCFS2_JOURNAL_FREE;
 876
 877bail:
 878	return status;
 879}
 880
 881static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
 882{
 883	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
 884	struct writeback_control wbc = {
 885		.sync_mode =  WB_SYNC_ALL,
 886		.nr_to_write = mapping->nrpages * 2,
 887		.range_start = jinode->i_dirty_start,
 888		.range_end = jinode->i_dirty_end,
 889	};
 890
 891	return filemap_fdatawrite_wbc(mapping, &wbc);
 892}
 893
 894int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
 895{
 896	int status = -1;
 897	struct inode *inode = NULL; /* the journal inode */
 898	journal_t *j_journal = NULL;
 899	struct ocfs2_journal *journal = osb->journal;
 900	struct ocfs2_dinode *di = NULL;
 901	struct buffer_head *bh = NULL;
 
 902	int inode_lock = 0;
 903
 904	BUG_ON(!journal);
 
 
 
 905	/* already have the inode for our journal */
 906	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
 907					    osb->slot_num);
 908	if (inode == NULL) {
 909		status = -EACCES;
 910		mlog_errno(status);
 911		goto done;
 912	}
 913	if (is_bad_inode(inode)) {
 914		mlog(ML_ERROR, "access error (bad inode)\n");
 915		iput(inode);
 916		inode = NULL;
 917		status = -EACCES;
 918		goto done;
 919	}
 920
 921	SET_INODE_JOURNAL(inode);
 922	OCFS2_I(inode)->ip_open_count++;
 923
 924	/* Skip recovery waits here - journal inode metadata never
 925	 * changes in a live cluster so it can be considered an
 926	 * exception to the rule. */
 927	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
 928	if (status < 0) {
 929		if (status != -ERESTARTSYS)
 930			mlog(ML_ERROR, "Could not get lock on journal!\n");
 931		goto done;
 932	}
 933
 934	inode_lock = 1;
 935	di = (struct ocfs2_dinode *)bh->b_data;
 936
 937	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
 938		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
 939		     i_size_read(inode));
 940		status = -EINVAL;
 941		goto done;
 942	}
 943
 944	trace_ocfs2_journal_init(i_size_read(inode),
 945				 (unsigned long long)inode->i_blocks,
 946				 OCFS2_I(inode)->ip_clusters);
 947
 948	/* call the kernels journal init function now */
 949	j_journal = jbd2_journal_init_inode(inode);
 950	if (IS_ERR(j_journal)) {
 951		mlog(ML_ERROR, "Linux journal layer error\n");
 952		status = PTR_ERR(j_journal);
 953		goto done;
 954	}
 955
 956	trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
 957
 958	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
 959		  OCFS2_JOURNAL_DIRTY_FL);
 960
 961	journal->j_journal = j_journal;
 962	journal->j_journal->j_submit_inode_data_buffers =
 963		ocfs2_journal_submit_inode_data_buffers;
 964	journal->j_journal->j_finish_inode_data_buffers =
 965		jbd2_journal_finish_inode_data_buffers;
 966	journal->j_inode = inode;
 967	journal->j_bh = bh;
 968
 969	ocfs2_set_journal_params(osb);
 970
 971	journal->j_state = OCFS2_JOURNAL_LOADED;
 972
 973	status = 0;
 974done:
 975	if (status < 0) {
 976		if (inode_lock)
 977			ocfs2_inode_unlock(inode, 1);
 978		brelse(bh);
 979		if (inode) {
 980			OCFS2_I(inode)->ip_open_count--;
 981			iput(inode);
 982		}
 983	}
 984
 985	return status;
 986}
 987
 988static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
 989{
 990	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
 991}
 992
 993static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
 994{
 995	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
 996}
 997
 998static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
 999				      int dirty, int replayed)
1000{
1001	int status;
1002	unsigned int flags;
1003	struct ocfs2_journal *journal = osb->journal;
1004	struct buffer_head *bh = journal->j_bh;
1005	struct ocfs2_dinode *fe;
1006
1007	fe = (struct ocfs2_dinode *)bh->b_data;
1008
1009	/* The journal bh on the osb always comes from ocfs2_journal_init()
1010	 * and was validated there inside ocfs2_inode_lock_full().  It's a
1011	 * code bug if we mess it up. */
1012	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
1013
1014	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1015	if (dirty)
1016		flags |= OCFS2_JOURNAL_DIRTY_FL;
1017	else
1018		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1019	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1020
1021	if (replayed)
1022		ocfs2_bump_recovery_generation(fe);
1023
1024	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1025	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
1026	if (status < 0)
1027		mlog_errno(status);
1028
1029	return status;
1030}
1031
1032/*
1033 * If the journal has been kmalloc'd it needs to be freed after this
1034 * call.
1035 */
1036void ocfs2_journal_shutdown(struct ocfs2_super *osb)
1037{
1038	struct ocfs2_journal *journal = NULL;
1039	int status = 0;
1040	struct inode *inode = NULL;
1041	int num_running_trans = 0;
1042
1043	BUG_ON(!osb);
1044
1045	journal = osb->journal;
1046	if (!journal)
1047		goto done;
1048
1049	inode = journal->j_inode;
1050
1051	if (journal->j_state != OCFS2_JOURNAL_LOADED)
1052		goto done;
1053
1054	/* need to inc inode use count - jbd2_journal_destroy will iput. */
1055	if (!igrab(inode))
1056		BUG();
1057
1058	num_running_trans = atomic_read(&(journal->j_num_trans));
1059	trace_ocfs2_journal_shutdown(num_running_trans);
1060
1061	/* Do a commit_cache here. It will flush our journal, *and*
1062	 * release any locks that are still held.
1063	 * set the SHUTDOWN flag and release the trans lock.
1064	 * the commit thread will take the trans lock for us below. */
1065	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1066
1067	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1068	 * drop the trans_lock (which we want to hold until we
1069	 * completely destroy the journal. */
1070	if (osb->commit_task) {
1071		/* Wait for the commit thread */
1072		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1073		kthread_stop(osb->commit_task);
1074		osb->commit_task = NULL;
1075	}
1076
1077	BUG_ON(atomic_read(&(journal->j_num_trans)) != 0);
1078
1079	if (ocfs2_mount_local(osb) &&
1080	    (journal->j_journal->j_flags & JBD2_LOADED)) {
1081		jbd2_journal_lock_updates(journal->j_journal);
1082		status = jbd2_journal_flush(journal->j_journal, 0);
1083		jbd2_journal_unlock_updates(journal->j_journal);
1084		if (status < 0)
1085			mlog_errno(status);
1086	}
1087
1088	/* Shutdown the kernel journal system */
1089	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1090		/*
1091		 * Do not toggle if flush was unsuccessful otherwise
1092		 * will leave dirty metadata in a "clean" journal
1093		 */
1094		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1095		if (status < 0)
1096			mlog_errno(status);
1097	}
 
 
 
1098	journal->j_journal = NULL;
1099
1100	OCFS2_I(inode)->ip_open_count--;
1101
1102	/* unlock our journal */
1103	ocfs2_inode_unlock(inode, 1);
1104
1105	brelse(journal->j_bh);
1106	journal->j_bh = NULL;
1107
1108	journal->j_state = OCFS2_JOURNAL_FREE;
1109
 
1110done:
1111	iput(inode);
1112	kfree(journal);
1113	osb->journal = NULL;
1114}
1115
1116static void ocfs2_clear_journal_error(struct super_block *sb,
1117				      journal_t *journal,
1118				      int slot)
1119{
1120	int olderr;
1121
1122	olderr = jbd2_journal_errno(journal);
1123	if (olderr) {
1124		mlog(ML_ERROR, "File system error %d recorded in "
1125		     "journal %u.\n", olderr, slot);
1126		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1127		     sb->s_id);
1128
1129		jbd2_journal_ack_err(journal);
1130		jbd2_journal_clear_err(journal);
1131	}
1132}
1133
1134int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1135{
1136	int status = 0;
1137	struct ocfs2_super *osb;
1138
1139	BUG_ON(!journal);
1140
1141	osb = journal->j_osb;
1142
1143	status = jbd2_journal_load(journal->j_journal);
1144	if (status < 0) {
1145		mlog(ML_ERROR, "Failed to load journal!\n");
1146		goto done;
1147	}
1148
1149	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1150
1151	if (replayed) {
1152		jbd2_journal_lock_updates(journal->j_journal);
1153		status = jbd2_journal_flush(journal->j_journal, 0);
1154		jbd2_journal_unlock_updates(journal->j_journal);
1155		if (status < 0)
1156			mlog_errno(status);
1157	}
1158
1159	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1160	if (status < 0) {
1161		mlog_errno(status);
1162		goto done;
1163	}
1164
1165	/* Launch the commit thread */
1166	if (!local) {
1167		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1168				"ocfs2cmt-%s", osb->uuid_str);
1169		if (IS_ERR(osb->commit_task)) {
1170			status = PTR_ERR(osb->commit_task);
1171			osb->commit_task = NULL;
1172			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1173			     "error=%d", status);
1174			goto done;
1175		}
1176	} else
1177		osb->commit_task = NULL;
1178
1179done:
1180	return status;
1181}
1182
1183
1184/* 'full' flag tells us whether we clear out all blocks or if we just
1185 * mark the journal clean */
1186int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1187{
1188	int status;
1189
1190	BUG_ON(!journal);
1191
1192	status = jbd2_journal_wipe(journal->j_journal, full);
1193	if (status < 0) {
1194		mlog_errno(status);
1195		goto bail;
1196	}
1197
1198	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1199	if (status < 0)
1200		mlog_errno(status);
1201
1202bail:
1203	return status;
1204}
1205
1206static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1207{
1208	int empty;
1209	struct ocfs2_recovery_map *rm = osb->recovery_map;
1210
1211	spin_lock(&osb->osb_lock);
1212	empty = (rm->rm_used == 0);
1213	spin_unlock(&osb->osb_lock);
1214
1215	return empty;
1216}
1217
1218void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1219{
1220	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1221}
1222
1223/*
1224 * JBD Might read a cached version of another nodes journal file. We
1225 * don't want this as this file changes often and we get no
1226 * notification on those changes. The only way to be sure that we've
1227 * got the most up to date version of those blocks then is to force
1228 * read them off disk. Just searching through the buffer cache won't
1229 * work as there may be pages backing this file which are still marked
1230 * up to date. We know things can't change on this file underneath us
1231 * as we have the lock by now :)
1232 */
1233static int ocfs2_force_read_journal(struct inode *inode)
1234{
1235	int status = 0;
1236	int i;
1237	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1238	struct buffer_head *bh = NULL;
1239	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1240
1241	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1242	v_blkno = 0;
1243	while (v_blkno < num_blocks) {
1244		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1245						     &p_blkno, &p_blocks, NULL);
1246		if (status < 0) {
1247			mlog_errno(status);
1248			goto bail;
1249		}
1250
1251		for (i = 0; i < p_blocks; i++, p_blkno++) {
1252			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1253					osb->sb->s_blocksize);
1254			/* block not cached. */
1255			if (!bh)
1256				continue;
1257
1258			brelse(bh);
1259			bh = NULL;
1260			/* We are reading journal data which should not
1261			 * be put in the uptodate cache.
1262			 */
1263			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1264			if (status < 0) {
1265				mlog_errno(status);
1266				goto bail;
1267			}
1268
1269			brelse(bh);
1270			bh = NULL;
1271		}
1272
1273		v_blkno += p_blocks;
1274	}
1275
1276bail:
1277	return status;
1278}
1279
1280struct ocfs2_la_recovery_item {
1281	struct list_head	lri_list;
1282	int			lri_slot;
1283	struct ocfs2_dinode	*lri_la_dinode;
1284	struct ocfs2_dinode	*lri_tl_dinode;
1285	struct ocfs2_quota_recovery *lri_qrec;
1286	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1287};
1288
1289/* Does the second half of the recovery process. By this point, the
1290 * node is marked clean and can actually be considered recovered,
1291 * hence it's no longer in the recovery map, but there's still some
1292 * cleanup we can do which shouldn't happen within the recovery thread
1293 * as locking in that context becomes very difficult if we are to take
1294 * recovering nodes into account.
1295 *
1296 * NOTE: This function can and will sleep on recovery of other nodes
1297 * during cluster locking, just like any other ocfs2 process.
1298 */
1299void ocfs2_complete_recovery(struct work_struct *work)
1300{
1301	int ret = 0;
1302	struct ocfs2_journal *journal =
1303		container_of(work, struct ocfs2_journal, j_recovery_work);
1304	struct ocfs2_super *osb = journal->j_osb;
1305	struct ocfs2_dinode *la_dinode, *tl_dinode;
1306	struct ocfs2_la_recovery_item *item, *n;
1307	struct ocfs2_quota_recovery *qrec;
1308	enum ocfs2_orphan_reco_type orphan_reco_type;
1309	LIST_HEAD(tmp_la_list);
1310
1311	trace_ocfs2_complete_recovery(
1312		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1313
1314	spin_lock(&journal->j_lock);
1315	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1316	spin_unlock(&journal->j_lock);
1317
1318	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1319		list_del_init(&item->lri_list);
1320
1321		ocfs2_wait_on_quotas(osb);
1322
1323		la_dinode = item->lri_la_dinode;
1324		tl_dinode = item->lri_tl_dinode;
1325		qrec = item->lri_qrec;
1326		orphan_reco_type = item->lri_orphan_reco_type;
1327
1328		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1329			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1330			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1331			qrec);
1332
1333		if (la_dinode) {
1334			ret = ocfs2_complete_local_alloc_recovery(osb,
1335								  la_dinode);
1336			if (ret < 0)
1337				mlog_errno(ret);
1338
1339			kfree(la_dinode);
1340		}
1341
1342		if (tl_dinode) {
1343			ret = ocfs2_complete_truncate_log_recovery(osb,
1344								   tl_dinode);
1345			if (ret < 0)
1346				mlog_errno(ret);
1347
1348			kfree(tl_dinode);
1349		}
1350
1351		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1352				orphan_reco_type);
1353		if (ret < 0)
1354			mlog_errno(ret);
1355
1356		if (qrec) {
1357			ret = ocfs2_finish_quota_recovery(osb, qrec,
1358							  item->lri_slot);
1359			if (ret < 0)
1360				mlog_errno(ret);
1361			/* Recovery info is already freed now */
1362		}
1363
1364		kfree(item);
1365	}
1366
1367	trace_ocfs2_complete_recovery_end(ret);
1368}
1369
1370/* NOTE: This function always eats your references to la_dinode and
1371 * tl_dinode, either manually on error, or by passing them to
1372 * ocfs2_complete_recovery */
1373static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1374					    int slot_num,
1375					    struct ocfs2_dinode *la_dinode,
1376					    struct ocfs2_dinode *tl_dinode,
1377					    struct ocfs2_quota_recovery *qrec,
1378					    enum ocfs2_orphan_reco_type orphan_reco_type)
1379{
1380	struct ocfs2_la_recovery_item *item;
1381
1382	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1383	if (!item) {
1384		/* Though we wish to avoid it, we are in fact safe in
1385		 * skipping local alloc cleanup as fsck.ocfs2 is more
1386		 * than capable of reclaiming unused space. */
1387		kfree(la_dinode);
1388		kfree(tl_dinode);
1389
1390		if (qrec)
1391			ocfs2_free_quota_recovery(qrec);
1392
1393		mlog_errno(-ENOMEM);
1394		return;
1395	}
1396
1397	INIT_LIST_HEAD(&item->lri_list);
1398	item->lri_la_dinode = la_dinode;
1399	item->lri_slot = slot_num;
1400	item->lri_tl_dinode = tl_dinode;
1401	item->lri_qrec = qrec;
1402	item->lri_orphan_reco_type = orphan_reco_type;
1403
1404	spin_lock(&journal->j_lock);
1405	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1406	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1407	spin_unlock(&journal->j_lock);
1408}
1409
1410/* Called by the mount code to queue recovery the last part of
1411 * recovery for it's own and offline slot(s). */
1412void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1413{
1414	struct ocfs2_journal *journal = osb->journal;
1415
1416	if (ocfs2_is_hard_readonly(osb))
1417		return;
1418
1419	/* No need to queue up our truncate_log as regular cleanup will catch
1420	 * that */
1421	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1422					osb->local_alloc_copy, NULL, NULL,
1423					ORPHAN_NEED_TRUNCATE);
1424	ocfs2_schedule_truncate_log_flush(osb, 0);
1425
1426	osb->local_alloc_copy = NULL;
 
1427
1428	/* queue to recover orphan slots for all offline slots */
1429	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1430	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1431	ocfs2_free_replay_slots(osb);
1432}
1433
1434void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1435{
1436	if (osb->quota_rec) {
1437		ocfs2_queue_recovery_completion(osb->journal,
1438						osb->slot_num,
1439						NULL,
1440						NULL,
1441						osb->quota_rec,
1442						ORPHAN_NEED_TRUNCATE);
1443		osb->quota_rec = NULL;
1444	}
1445}
1446
1447static int __ocfs2_recovery_thread(void *arg)
1448{
1449	int status, node_num, slot_num;
1450	struct ocfs2_super *osb = arg;
1451	struct ocfs2_recovery_map *rm = osb->recovery_map;
1452	int *rm_quota = NULL;
1453	int rm_quota_used = 0, i;
1454	struct ocfs2_quota_recovery *qrec;
1455
1456	/* Whether the quota supported. */
1457	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1458			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1459		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1460			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1461
1462	status = ocfs2_wait_on_mount(osb);
1463	if (status < 0) {
1464		goto bail;
1465	}
1466
1467	if (quota_enabled) {
1468		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1469		if (!rm_quota) {
1470			status = -ENOMEM;
1471			goto bail;
1472		}
1473	}
1474restart:
1475	status = ocfs2_super_lock(osb, 1);
1476	if (status < 0) {
1477		mlog_errno(status);
1478		goto bail;
1479	}
1480
1481	status = ocfs2_compute_replay_slots(osb);
1482	if (status < 0)
1483		mlog_errno(status);
1484
1485	/* queue recovery for our own slot */
1486	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1487					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1488
1489	spin_lock(&osb->osb_lock);
1490	while (rm->rm_used) {
1491		/* It's always safe to remove entry zero, as we won't
1492		 * clear it until ocfs2_recover_node() has succeeded. */
1493		node_num = rm->rm_entries[0];
1494		spin_unlock(&osb->osb_lock);
1495		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1496		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1497		if (slot_num == -ENOENT) {
1498			status = 0;
1499			goto skip_recovery;
1500		}
1501
1502		/* It is a bit subtle with quota recovery. We cannot do it
1503		 * immediately because we have to obtain cluster locks from
1504		 * quota files and we also don't want to just skip it because
1505		 * then quota usage would be out of sync until some node takes
1506		 * the slot. So we remember which nodes need quota recovery
1507		 * and when everything else is done, we recover quotas. */
1508		if (quota_enabled) {
1509			for (i = 0; i < rm_quota_used
1510					&& rm_quota[i] != slot_num; i++)
1511				;
1512
1513			if (i == rm_quota_used)
1514				rm_quota[rm_quota_used++] = slot_num;
1515		}
1516
1517		status = ocfs2_recover_node(osb, node_num, slot_num);
1518skip_recovery:
1519		if (!status) {
1520			ocfs2_recovery_map_clear(osb, node_num);
1521		} else {
1522			mlog(ML_ERROR,
1523			     "Error %d recovering node %d on device (%u,%u)!\n",
1524			     status, node_num,
1525			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1526			mlog(ML_ERROR, "Volume requires unmount.\n");
1527		}
1528
1529		spin_lock(&osb->osb_lock);
1530	}
1531	spin_unlock(&osb->osb_lock);
1532	trace_ocfs2_recovery_thread_end(status);
1533
1534	/* Refresh all journal recovery generations from disk */
1535	status = ocfs2_check_journals_nolocks(osb);
1536	status = (status == -EROFS) ? 0 : status;
1537	if (status < 0)
1538		mlog_errno(status);
1539
1540	/* Now it is right time to recover quotas... We have to do this under
1541	 * superblock lock so that no one can start using the slot (and crash)
1542	 * before we recover it */
1543	if (quota_enabled) {
1544		for (i = 0; i < rm_quota_used; i++) {
1545			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1546			if (IS_ERR(qrec)) {
1547				status = PTR_ERR(qrec);
1548				mlog_errno(status);
1549				continue;
1550			}
1551			ocfs2_queue_recovery_completion(osb->journal,
1552					rm_quota[i],
1553					NULL, NULL, qrec,
1554					ORPHAN_NEED_TRUNCATE);
1555		}
 
 
 
1556	}
1557
1558	ocfs2_super_unlock(osb, 1);
1559
1560	/* queue recovery for offline slots */
1561	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1562
1563bail:
1564	mutex_lock(&osb->recovery_lock);
1565	if (!status && !ocfs2_recovery_completed(osb)) {
1566		mutex_unlock(&osb->recovery_lock);
1567		goto restart;
1568	}
1569
1570	ocfs2_free_replay_slots(osb);
1571	osb->recovery_thread_task = NULL;
1572	mb(); /* sync with ocfs2_recovery_thread_running */
1573	wake_up(&osb->recovery_event);
1574
1575	mutex_unlock(&osb->recovery_lock);
1576
1577	if (quota_enabled)
1578		kfree(rm_quota);
1579
1580	return status;
 
 
 
1581}
1582
1583void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1584{
1585	mutex_lock(&osb->recovery_lock);
1586
1587	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1588		osb->disable_recovery, osb->recovery_thread_task,
1589		osb->disable_recovery ?
1590		-1 : ocfs2_recovery_map_set(osb, node_num));
1591
1592	if (osb->disable_recovery)
1593		goto out;
1594
1595	if (osb->recovery_thread_task)
1596		goto out;
1597
1598	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1599			"ocfs2rec-%s", osb->uuid_str);
1600	if (IS_ERR(osb->recovery_thread_task)) {
1601		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1602		osb->recovery_thread_task = NULL;
1603	}
1604
1605out:
1606	mutex_unlock(&osb->recovery_lock);
1607	wake_up(&osb->recovery_event);
1608}
1609
1610static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1611				    int slot_num,
1612				    struct buffer_head **bh,
1613				    struct inode **ret_inode)
1614{
1615	int status = -EACCES;
1616	struct inode *inode = NULL;
1617
1618	BUG_ON(slot_num >= osb->max_slots);
1619
1620	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1621					    slot_num);
1622	if (!inode || is_bad_inode(inode)) {
1623		mlog_errno(status);
1624		goto bail;
1625	}
1626	SET_INODE_JOURNAL(inode);
1627
1628	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1629	if (status < 0) {
1630		mlog_errno(status);
1631		goto bail;
1632	}
1633
1634	status = 0;
1635
1636bail:
1637	if (inode) {
1638		if (status || !ret_inode)
1639			iput(inode);
1640		else
1641			*ret_inode = inode;
1642	}
1643	return status;
1644}
1645
1646/* Does the actual journal replay and marks the journal inode as
1647 * clean. Will only replay if the journal inode is marked dirty. */
1648static int ocfs2_replay_journal(struct ocfs2_super *osb,
1649				int node_num,
1650				int slot_num)
1651{
1652	int status;
1653	int got_lock = 0;
1654	unsigned int flags;
1655	struct inode *inode = NULL;
1656	struct ocfs2_dinode *fe;
1657	journal_t *journal = NULL;
1658	struct buffer_head *bh = NULL;
1659	u32 slot_reco_gen;
1660
1661	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1662	if (status) {
1663		mlog_errno(status);
1664		goto done;
1665	}
1666
1667	fe = (struct ocfs2_dinode *)bh->b_data;
1668	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1669	brelse(bh);
1670	bh = NULL;
1671
1672	/*
1673	 * As the fs recovery is asynchronous, there is a small chance that
1674	 * another node mounted (and recovered) the slot before the recovery
1675	 * thread could get the lock. To handle that, we dirty read the journal
1676	 * inode for that slot to get the recovery generation. If it is
1677	 * different than what we expected, the slot has been recovered.
1678	 * If not, it needs recovery.
1679	 */
1680	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1681		trace_ocfs2_replay_journal_recovered(slot_num,
1682		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1683		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1684		status = -EBUSY;
1685		goto done;
1686	}
1687
1688	/* Continue with recovery as the journal has not yet been recovered */
1689
1690	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1691	if (status < 0) {
1692		trace_ocfs2_replay_journal_lock_err(status);
1693		if (status != -ERESTARTSYS)
1694			mlog(ML_ERROR, "Could not lock journal!\n");
1695		goto done;
1696	}
1697	got_lock = 1;
1698
1699	fe = (struct ocfs2_dinode *) bh->b_data;
1700
1701	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1702	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1703
1704	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1705		trace_ocfs2_replay_journal_skip(node_num);
1706		/* Refresh recovery generation for the slot */
1707		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1708		goto done;
1709	}
1710
1711	/* we need to run complete recovery for offline orphan slots */
1712	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1713
1714	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1715	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1716	       MINOR(osb->sb->s_dev));
1717
1718	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1719
1720	status = ocfs2_force_read_journal(inode);
1721	if (status < 0) {
1722		mlog_errno(status);
1723		goto done;
1724	}
1725
1726	journal = jbd2_journal_init_inode(inode);
1727	if (IS_ERR(journal)) {
1728		mlog(ML_ERROR, "Linux journal layer error\n");
1729		status = PTR_ERR(journal);
1730		goto done;
1731	}
1732
1733	status = jbd2_journal_load(journal);
1734	if (status < 0) {
1735		mlog_errno(status);
1736		BUG_ON(!igrab(inode));
 
1737		jbd2_journal_destroy(journal);
1738		goto done;
1739	}
1740
1741	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1742
1743	/* wipe the journal */
1744	jbd2_journal_lock_updates(journal);
1745	status = jbd2_journal_flush(journal, 0);
1746	jbd2_journal_unlock_updates(journal);
1747	if (status < 0)
1748		mlog_errno(status);
1749
1750	/* This will mark the node clean */
1751	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1752	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1753	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1754
1755	/* Increment recovery generation to indicate successful recovery */
1756	ocfs2_bump_recovery_generation(fe);
1757	osb->slot_recovery_generations[slot_num] =
1758					ocfs2_get_recovery_generation(fe);
1759
1760	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1761	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1762	if (status < 0)
1763		mlog_errno(status);
1764
1765	BUG_ON(!igrab(inode));
 
1766
1767	jbd2_journal_destroy(journal);
1768
1769	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1770	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1771	       MINOR(osb->sb->s_dev));
1772done:
1773	/* drop the lock on this nodes journal */
1774	if (got_lock)
1775		ocfs2_inode_unlock(inode, 1);
1776
1777	iput(inode);
1778	brelse(bh);
1779
1780	return status;
1781}
1782
1783/*
1784 * Do the most important parts of node recovery:
1785 *  - Replay it's journal
1786 *  - Stamp a clean local allocator file
1787 *  - Stamp a clean truncate log
1788 *  - Mark the node clean
1789 *
1790 * If this function completes without error, a node in OCFS2 can be
1791 * said to have been safely recovered. As a result, failure during the
1792 * second part of a nodes recovery process (local alloc recovery) is
1793 * far less concerning.
1794 */
1795static int ocfs2_recover_node(struct ocfs2_super *osb,
1796			      int node_num, int slot_num)
1797{
1798	int status = 0;
1799	struct ocfs2_dinode *la_copy = NULL;
1800	struct ocfs2_dinode *tl_copy = NULL;
1801
1802	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1803
1804	/* Should not ever be called to recover ourselves -- in that
1805	 * case we should've called ocfs2_journal_load instead. */
1806	BUG_ON(osb->node_num == node_num);
1807
1808	status = ocfs2_replay_journal(osb, node_num, slot_num);
1809	if (status < 0) {
1810		if (status == -EBUSY) {
1811			trace_ocfs2_recover_node_skip(slot_num, node_num);
1812			status = 0;
1813			goto done;
1814		}
1815		mlog_errno(status);
1816		goto done;
1817	}
1818
1819	/* Stamp a clean local alloc file AFTER recovering the journal... */
1820	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1821	if (status < 0) {
1822		mlog_errno(status);
1823		goto done;
1824	}
1825
1826	/* An error from begin_truncate_log_recovery is not
1827	 * serious enough to warrant halting the rest of
1828	 * recovery. */
1829	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1830	if (status < 0)
1831		mlog_errno(status);
1832
1833	/* Likewise, this would be a strange but ultimately not so
1834	 * harmful place to get an error... */
1835	status = ocfs2_clear_slot(osb, slot_num);
1836	if (status < 0)
1837		mlog_errno(status);
1838
1839	/* This will kfree the memory pointed to by la_copy and tl_copy */
1840	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1841					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1842
1843	status = 0;
1844done:
1845
1846	return status;
1847}
1848
1849/* Test node liveness by trylocking his journal. If we get the lock,
1850 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1851 * still alive (we couldn't get the lock) and < 0 on error. */
1852static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1853				 int slot_num)
1854{
1855	int status, flags;
1856	struct inode *inode = NULL;
1857
1858	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1859					    slot_num);
1860	if (inode == NULL) {
1861		mlog(ML_ERROR, "access error\n");
1862		status = -EACCES;
1863		goto bail;
1864	}
1865	if (is_bad_inode(inode)) {
1866		mlog(ML_ERROR, "access error (bad inode)\n");
1867		iput(inode);
1868		inode = NULL;
1869		status = -EACCES;
1870		goto bail;
1871	}
1872	SET_INODE_JOURNAL(inode);
1873
1874	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1875	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1876	if (status < 0) {
1877		if (status != -EAGAIN)
1878			mlog_errno(status);
1879		goto bail;
1880	}
1881
1882	ocfs2_inode_unlock(inode, 1);
1883bail:
1884	iput(inode);
1885
1886	return status;
1887}
1888
1889/* Call this underneath ocfs2_super_lock. It also assumes that the
1890 * slot info struct has been updated from disk. */
1891int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1892{
1893	unsigned int node_num;
1894	int status, i;
1895	u32 gen;
1896	struct buffer_head *bh = NULL;
1897	struct ocfs2_dinode *di;
1898
1899	/* This is called with the super block cluster lock, so we
1900	 * know that the slot map can't change underneath us. */
1901
1902	for (i = 0; i < osb->max_slots; i++) {
1903		/* Read journal inode to get the recovery generation */
1904		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1905		if (status) {
1906			mlog_errno(status);
1907			goto bail;
1908		}
1909		di = (struct ocfs2_dinode *)bh->b_data;
1910		gen = ocfs2_get_recovery_generation(di);
1911		brelse(bh);
1912		bh = NULL;
1913
1914		spin_lock(&osb->osb_lock);
1915		osb->slot_recovery_generations[i] = gen;
1916
1917		trace_ocfs2_mark_dead_nodes(i,
1918					    osb->slot_recovery_generations[i]);
1919
1920		if (i == osb->slot_num) {
1921			spin_unlock(&osb->osb_lock);
1922			continue;
1923		}
1924
1925		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1926		if (status == -ENOENT) {
1927			spin_unlock(&osb->osb_lock);
1928			continue;
1929		}
1930
1931		if (__ocfs2_recovery_map_test(osb, node_num)) {
1932			spin_unlock(&osb->osb_lock);
1933			continue;
1934		}
1935		spin_unlock(&osb->osb_lock);
1936
1937		/* Ok, we have a slot occupied by another node which
1938		 * is not in the recovery map. We trylock his journal
1939		 * file here to test if he's alive. */
1940		status = ocfs2_trylock_journal(osb, i);
1941		if (!status) {
1942			/* Since we're called from mount, we know that
1943			 * the recovery thread can't race us on
1944			 * setting / checking the recovery bits. */
1945			ocfs2_recovery_thread(osb, node_num);
1946		} else if ((status < 0) && (status != -EAGAIN)) {
1947			mlog_errno(status);
1948			goto bail;
1949		}
1950	}
1951
1952	status = 0;
1953bail:
1954	return status;
1955}
1956
1957/*
1958 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1959 * randomness to the timeout to minimize multple nodes firing the timer at the
1960 * same time.
1961 */
1962static inline unsigned long ocfs2_orphan_scan_timeout(void)
1963{
1964	unsigned long time;
1965
1966	get_random_bytes(&time, sizeof(time));
1967	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1968	return msecs_to_jiffies(time);
1969}
1970
1971/*
1972 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1973 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1974 * is done to catch any orphans that are left over in orphan directories.
1975 *
1976 * It scans all slots, even ones that are in use. It does so to handle the
1977 * case described below:
1978 *
1979 *   Node 1 has an inode it was using. The dentry went away due to memory
1980 *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1981 *   has the open lock.
1982 *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1983 *   but node 1 has no dentry and doesn't get the message. It trylocks the
1984 *   open lock, sees that another node has a PR, and does nothing.
1985 *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1986 *   open lock, sees the PR still, and does nothing.
1987 *   Basically, we have to trigger an orphan iput on node 1. The only way
1988 *   for this to happen is if node 1 runs node 2's orphan dir.
1989 *
1990 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1991 * seconds.  It gets an EX lock on os_lockres and checks sequence number
1992 * stored in LVB. If the sequence number has changed, it means some other
1993 * node has done the scan.  This node skips the scan and tracks the
1994 * sequence number.  If the sequence number didn't change, it means a scan
1995 * hasn't happened.  The node queues a scan and increments the
1996 * sequence number in the LVB.
1997 */
1998static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1999{
2000	struct ocfs2_orphan_scan *os;
2001	int status, i;
2002	u32 seqno = 0;
2003
2004	os = &osb->osb_orphan_scan;
2005
2006	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2007		goto out;
2008
2009	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
2010					    atomic_read(&os->os_state));
2011
2012	status = ocfs2_orphan_scan_lock(osb, &seqno);
2013	if (status < 0) {
2014		if (status != -EAGAIN)
2015			mlog_errno(status);
2016		goto out;
2017	}
2018
2019	/* Do no queue the tasks if the volume is being umounted */
2020	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2021		goto unlock;
2022
2023	if (os->os_seqno != seqno) {
2024		os->os_seqno = seqno;
2025		goto unlock;
2026	}
2027
2028	for (i = 0; i < osb->max_slots; i++)
2029		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
2030						NULL, ORPHAN_NO_NEED_TRUNCATE);
2031	/*
2032	 * We queued a recovery on orphan slots, increment the sequence
2033	 * number and update LVB so other node will skip the scan for a while
2034	 */
2035	seqno++;
2036	os->os_count++;
2037	os->os_scantime = ktime_get_seconds();
2038unlock:
2039	ocfs2_orphan_scan_unlock(osb, seqno);
2040out:
2041	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
2042					  atomic_read(&os->os_state));
2043	return;
2044}
2045
2046/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
2047static void ocfs2_orphan_scan_work(struct work_struct *work)
2048{
2049	struct ocfs2_orphan_scan *os;
2050	struct ocfs2_super *osb;
2051
2052	os = container_of(work, struct ocfs2_orphan_scan,
2053			  os_orphan_scan_work.work);
2054	osb = os->os_osb;
2055
2056	mutex_lock(&os->os_lock);
2057	ocfs2_queue_orphan_scan(osb);
2058	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2059		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2060				      ocfs2_orphan_scan_timeout());
2061	mutex_unlock(&os->os_lock);
2062}
2063
2064void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2065{
2066	struct ocfs2_orphan_scan *os;
2067
2068	os = &osb->osb_orphan_scan;
2069	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2070		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2071		mutex_lock(&os->os_lock);
2072		cancel_delayed_work(&os->os_orphan_scan_work);
2073		mutex_unlock(&os->os_lock);
2074	}
2075}
2076
2077void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2078{
2079	struct ocfs2_orphan_scan *os;
2080
2081	os = &osb->osb_orphan_scan;
2082	os->os_osb = osb;
2083	os->os_count = 0;
2084	os->os_seqno = 0;
2085	mutex_init(&os->os_lock);
2086	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2087}
2088
2089void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2090{
2091	struct ocfs2_orphan_scan *os;
2092
2093	os = &osb->osb_orphan_scan;
2094	os->os_scantime = ktime_get_seconds();
2095	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2096		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2097	else {
2098		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2099		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2100				   ocfs2_orphan_scan_timeout());
2101	}
2102}
2103
2104struct ocfs2_orphan_filldir_priv {
2105	struct dir_context	ctx;
2106	struct inode		*head;
2107	struct ocfs2_super	*osb;
2108	enum ocfs2_orphan_reco_type orphan_reco_type;
2109};
2110
2111static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2112				int name_len, loff_t pos, u64 ino,
2113				unsigned type)
2114{
2115	struct ocfs2_orphan_filldir_priv *p =
2116		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2117	struct inode *iter;
2118
2119	if (name_len == 1 && !strncmp(".", name, 1))
2120		return true;
2121	if (name_len == 2 && !strncmp("..", name, 2))
2122		return true;
2123
2124	/* do not include dio entry in case of orphan scan */
2125	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2126			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2127			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2128		return true;
2129
2130	/* Skip bad inodes so that recovery can continue */
2131	iter = ocfs2_iget(p->osb, ino,
2132			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2133	if (IS_ERR(iter))
2134		return true;
2135
2136	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2137			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2138		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2139
2140	/* Skip inodes which are already added to recover list, since dio may
2141	 * happen concurrently with unlink/rename */
2142	if (OCFS2_I(iter)->ip_next_orphan) {
2143		iput(iter);
2144		return true;
2145	}
2146
2147	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2148	/* No locking is required for the next_orphan queue as there
2149	 * is only ever a single process doing orphan recovery. */
2150	OCFS2_I(iter)->ip_next_orphan = p->head;
2151	p->head = iter;
2152
2153	return true;
2154}
2155
2156static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2157			       int slot,
2158			       struct inode **head,
2159			       enum ocfs2_orphan_reco_type orphan_reco_type)
2160{
2161	int status;
2162	struct inode *orphan_dir_inode = NULL;
2163	struct ocfs2_orphan_filldir_priv priv = {
2164		.ctx.actor = ocfs2_orphan_filldir,
2165		.osb = osb,
2166		.head = *head,
2167		.orphan_reco_type = orphan_reco_type
2168	};
2169
2170	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2171						       ORPHAN_DIR_SYSTEM_INODE,
2172						       slot);
2173	if  (!orphan_dir_inode) {
2174		status = -ENOENT;
2175		mlog_errno(status);
2176		return status;
2177	}
2178
2179	inode_lock(orphan_dir_inode);
2180	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2181	if (status < 0) {
2182		mlog_errno(status);
2183		goto out;
2184	}
2185
2186	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2187	if (status) {
2188		mlog_errno(status);
2189		goto out_cluster;
2190	}
2191
2192	*head = priv.head;
2193
2194out_cluster:
2195	ocfs2_inode_unlock(orphan_dir_inode, 0);
2196out:
2197	inode_unlock(orphan_dir_inode);
2198	iput(orphan_dir_inode);
2199	return status;
2200}
2201
2202static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2203					      int slot)
2204{
2205	int ret;
2206
2207	spin_lock(&osb->osb_lock);
2208	ret = !osb->osb_orphan_wipes[slot];
2209	spin_unlock(&osb->osb_lock);
2210	return ret;
2211}
2212
2213static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2214					     int slot)
2215{
2216	spin_lock(&osb->osb_lock);
2217	/* Mark ourselves such that new processes in delete_inode()
2218	 * know to quit early. */
2219	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2220	while (osb->osb_orphan_wipes[slot]) {
2221		/* If any processes are already in the middle of an
2222		 * orphan wipe on this dir, then we need to wait for
2223		 * them. */
2224		spin_unlock(&osb->osb_lock);
2225		wait_event_interruptible(osb->osb_wipe_event,
2226					 ocfs2_orphan_recovery_can_continue(osb, slot));
2227		spin_lock(&osb->osb_lock);
2228	}
2229	spin_unlock(&osb->osb_lock);
2230}
2231
2232static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2233					      int slot)
2234{
2235	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2236}
2237
2238/*
2239 * Orphan recovery. Each mounted node has it's own orphan dir which we
2240 * must run during recovery. Our strategy here is to build a list of
2241 * the inodes in the orphan dir and iget/iput them. The VFS does
2242 * (most) of the rest of the work.
2243 *
2244 * Orphan recovery can happen at any time, not just mount so we have a
2245 * couple of extra considerations.
2246 *
2247 * - We grab as many inodes as we can under the orphan dir lock -
2248 *   doing iget() outside the orphan dir risks getting a reference on
2249 *   an invalid inode.
2250 * - We must be sure not to deadlock with other processes on the
2251 *   system wanting to run delete_inode(). This can happen when they go
2252 *   to lock the orphan dir and the orphan recovery process attempts to
2253 *   iget() inside the orphan dir lock. This can be avoided by
2254 *   advertising our state to ocfs2_delete_inode().
2255 */
2256static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2257				 int slot,
2258				 enum ocfs2_orphan_reco_type orphan_reco_type)
2259{
2260	int ret = 0;
2261	struct inode *inode = NULL;
2262	struct inode *iter;
2263	struct ocfs2_inode_info *oi;
2264	struct buffer_head *di_bh = NULL;
2265	struct ocfs2_dinode *di = NULL;
2266
2267	trace_ocfs2_recover_orphans(slot);
2268
2269	ocfs2_mark_recovering_orphan_dir(osb, slot);
2270	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2271	ocfs2_clear_recovering_orphan_dir(osb, slot);
2272
2273	/* Error here should be noted, but we want to continue with as
2274	 * many queued inodes as we've got. */
2275	if (ret)
2276		mlog_errno(ret);
2277
2278	while (inode) {
2279		oi = OCFS2_I(inode);
2280		trace_ocfs2_recover_orphans_iput(
2281					(unsigned long long)oi->ip_blkno);
2282
2283		iter = oi->ip_next_orphan;
2284		oi->ip_next_orphan = NULL;
2285
2286		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2287			inode_lock(inode);
2288			ret = ocfs2_rw_lock(inode, 1);
2289			if (ret < 0) {
2290				mlog_errno(ret);
2291				goto unlock_mutex;
2292			}
2293			/*
2294			 * We need to take and drop the inode lock to
2295			 * force read inode from disk.
2296			 */
2297			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2298			if (ret) {
2299				mlog_errno(ret);
2300				goto unlock_rw;
2301			}
2302
2303			di = (struct ocfs2_dinode *)di_bh->b_data;
2304
2305			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2306				ret = ocfs2_truncate_file(inode, di_bh,
2307						i_size_read(inode));
2308				if (ret < 0) {
2309					if (ret != -ENOSPC)
2310						mlog_errno(ret);
2311					goto unlock_inode;
2312				}
2313
2314				ret = ocfs2_del_inode_from_orphan(osb, inode,
2315						di_bh, 0, 0);
2316				if (ret)
2317					mlog_errno(ret);
2318			}
2319unlock_inode:
2320			ocfs2_inode_unlock(inode, 1);
2321			brelse(di_bh);
2322			di_bh = NULL;
2323unlock_rw:
2324			ocfs2_rw_unlock(inode, 1);
2325unlock_mutex:
2326			inode_unlock(inode);
2327
2328			/* clear dio flag in ocfs2_inode_info */
2329			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2330		} else {
2331			spin_lock(&oi->ip_lock);
2332			/* Set the proper information to get us going into
2333			 * ocfs2_delete_inode. */
2334			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2335			spin_unlock(&oi->ip_lock);
2336		}
2337
2338		iput(inode);
2339		inode = iter;
2340	}
2341
2342	return ret;
2343}
2344
2345static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2346{
2347	/* This check is good because ocfs2 will wait on our recovery
2348	 * thread before changing it to something other than MOUNTED
2349	 * or DISABLED. */
2350	wait_event(osb->osb_mount_event,
2351		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2352		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2353		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2354
2355	/* If there's an error on mount, then we may never get to the
2356	 * MOUNTED flag, but this is set right before
2357	 * dismount_volume() so we can trust it. */
2358	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2359		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2360		mlog(0, "mount error, exiting!\n");
2361		return -EBUSY;
2362	}
2363
2364	return 0;
2365}
2366
2367static int ocfs2_commit_thread(void *arg)
2368{
2369	int status;
2370	struct ocfs2_super *osb = arg;
2371	struct ocfs2_journal *journal = osb->journal;
2372
2373	/* we can trust j_num_trans here because _should_stop() is only set in
2374	 * shutdown and nobody other than ourselves should be able to start
2375	 * transactions.  committing on shutdown might take a few iterations
2376	 * as final transactions put deleted inodes on the list */
2377	while (!(kthread_should_stop() &&
2378		 atomic_read(&journal->j_num_trans) == 0)) {
2379
2380		wait_event_interruptible(osb->checkpoint_event,
2381					 atomic_read(&journal->j_num_trans)
2382					 || kthread_should_stop());
2383
2384		status = ocfs2_commit_cache(osb);
2385		if (status < 0) {
2386			static unsigned long abort_warn_time;
2387
2388			/* Warn about this once per minute */
2389			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2390				mlog(ML_ERROR, "status = %d, journal is "
2391						"already aborted.\n", status);
2392			/*
2393			 * After ocfs2_commit_cache() fails, j_num_trans has a
2394			 * non-zero value.  Sleep here to avoid a busy-wait
2395			 * loop.
2396			 */
2397			msleep_interruptible(1000);
2398		}
2399
2400		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2401			mlog(ML_KTHREAD,
2402			     "commit_thread: %u transactions pending on "
2403			     "shutdown\n",
2404			     atomic_read(&journal->j_num_trans));
2405		}
2406	}
2407
2408	return 0;
2409}
2410
2411/* Reads all the journal inodes without taking any cluster locks. Used
2412 * for hard readonly access to determine whether any journal requires
2413 * recovery. Also used to refresh the recovery generation numbers after
2414 * a journal has been recovered by another node.
2415 */
2416int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2417{
2418	int ret = 0;
2419	unsigned int slot;
2420	struct buffer_head *di_bh = NULL;
2421	struct ocfs2_dinode *di;
2422	int journal_dirty = 0;
2423
2424	for(slot = 0; slot < osb->max_slots; slot++) {
2425		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2426		if (ret) {
2427			mlog_errno(ret);
2428			goto out;
2429		}
2430
2431		di = (struct ocfs2_dinode *) di_bh->b_data;
2432
2433		osb->slot_recovery_generations[slot] =
2434					ocfs2_get_recovery_generation(di);
2435
2436		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2437		    OCFS2_JOURNAL_DIRTY_FL)
2438			journal_dirty = 1;
2439
2440		brelse(di_bh);
2441		di_bh = NULL;
2442	}
2443
2444out:
2445	if (journal_dirty)
2446		ret = -EROFS;
2447	return ret;
2448}