Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
Note: File does not exist in v4.10.11.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include "bcachefs.h"
  4#include "btree_update.h"
  5#include "btree_iter.h"
  6#include "btree_journal_iter.h"
  7#include "btree_locking.h"
  8#include "buckets.h"
  9#include "debug.h"
 10#include "errcode.h"
 11#include "error.h"
 12#include "extents.h"
 13#include "keylist.h"
 14#include "snapshot.h"
 15#include "trace.h"
 16
 17static inline int btree_insert_entry_cmp(const struct btree_insert_entry *l,
 18					 const struct btree_insert_entry *r)
 19{
 20	return   cmp_int(l->btree_id,	r->btree_id) ?:
 21		 cmp_int(l->cached,	r->cached) ?:
 22		 -cmp_int(l->level,	r->level) ?:
 23		 bpos_cmp(l->k->k.p,	r->k->k.p);
 24}
 25
 26static int __must_check
 27bch2_trans_update_by_path(struct btree_trans *, btree_path_idx_t,
 28			  struct bkey_i *, enum btree_iter_update_trigger_flags,
 29			  unsigned long ip);
 30
 31static noinline int extent_front_merge(struct btree_trans *trans,
 32				       struct btree_iter *iter,
 33				       struct bkey_s_c k,
 34				       struct bkey_i **insert,
 35				       enum btree_iter_update_trigger_flags flags)
 36{
 37	struct bch_fs *c = trans->c;
 38	struct bkey_i *update;
 39	int ret;
 40
 41	if (unlikely(trans->journal_replay_not_finished))
 42		return 0;
 43
 44	update = bch2_bkey_make_mut_noupdate(trans, k);
 45	ret = PTR_ERR_OR_ZERO(update);
 46	if (ret)
 47		return ret;
 48
 49	if (!bch2_bkey_merge(c, bkey_i_to_s(update), bkey_i_to_s_c(*insert)))
 50		return 0;
 51
 52	ret =   bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p) ?:
 53		bch2_key_has_snapshot_overwrites(trans, iter->btree_id, (*insert)->k.p);
 54	if (ret < 0)
 55		return ret;
 56	if (ret)
 57		return 0;
 58
 59	ret = bch2_btree_delete_at(trans, iter, flags);
 60	if (ret)
 61		return ret;
 62
 63	*insert = update;
 64	return 0;
 65}
 66
 67static noinline int extent_back_merge(struct btree_trans *trans,
 68				      struct btree_iter *iter,
 69				      struct bkey_i *insert,
 70				      struct bkey_s_c k)
 71{
 72	struct bch_fs *c = trans->c;
 73	int ret;
 74
 75	if (unlikely(trans->journal_replay_not_finished))
 76		return 0;
 77
 78	ret =   bch2_key_has_snapshot_overwrites(trans, iter->btree_id, insert->k.p) ?:
 79		bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p);
 80	if (ret < 0)
 81		return ret;
 82	if (ret)
 83		return 0;
 84
 85	bch2_bkey_merge(c, bkey_i_to_s(insert), k);
 86	return 0;
 87}
 88
 89/*
 90 * When deleting, check if we need to emit a whiteout (because we're overwriting
 91 * something in an ancestor snapshot)
 92 */
 93static int need_whiteout_for_snapshot(struct btree_trans *trans,
 94				      enum btree_id btree_id, struct bpos pos)
 95{
 96	struct btree_iter iter;
 97	struct bkey_s_c k;
 98	u32 snapshot = pos.snapshot;
 99	int ret;
100
101	if (!bch2_snapshot_parent(trans->c, pos.snapshot))
102		return 0;
103
104	pos.snapshot++;
105
106	for_each_btree_key_norestart(trans, iter, btree_id, pos,
107			   BTREE_ITER_all_snapshots|
108			   BTREE_ITER_nopreserve, k, ret) {
109		if (!bkey_eq(k.k->p, pos))
110			break;
111
112		if (bch2_snapshot_is_ancestor(trans->c, snapshot,
113					      k.k->p.snapshot)) {
114			ret = !bkey_whiteout(k.k);
115			break;
116		}
117	}
118	bch2_trans_iter_exit(trans, &iter);
119
120	return ret;
121}
122
123int __bch2_insert_snapshot_whiteouts(struct btree_trans *trans,
124				   enum btree_id id,
125				   struct bpos old_pos,
126				   struct bpos new_pos)
127{
128	struct bch_fs *c = trans->c;
129	struct btree_iter old_iter, new_iter = { NULL };
130	struct bkey_s_c old_k, new_k;
131	snapshot_id_list s;
132	struct bkey_i *update;
133	int ret = 0;
134
135	if (!bch2_snapshot_has_children(c, old_pos.snapshot))
136		return 0;
137
138	darray_init(&s);
139
140	bch2_trans_iter_init(trans, &old_iter, id, old_pos,
141			     BTREE_ITER_not_extents|
142			     BTREE_ITER_all_snapshots);
143	while ((old_k = bch2_btree_iter_prev(&old_iter)).k &&
144	       !(ret = bkey_err(old_k)) &&
145	       bkey_eq(old_pos, old_k.k->p)) {
146		struct bpos whiteout_pos =
147			SPOS(new_pos.inode, new_pos.offset, old_k.k->p.snapshot);;
148
149		if (!bch2_snapshot_is_ancestor(c, old_k.k->p.snapshot, old_pos.snapshot) ||
150		    snapshot_list_has_ancestor(c, &s, old_k.k->p.snapshot))
151			continue;
152
153		new_k = bch2_bkey_get_iter(trans, &new_iter, id, whiteout_pos,
154					   BTREE_ITER_not_extents|
155					   BTREE_ITER_intent);
156		ret = bkey_err(new_k);
157		if (ret)
158			break;
159
160		if (new_k.k->type == KEY_TYPE_deleted) {
161			update = bch2_trans_kmalloc(trans, sizeof(struct bkey_i));
162			ret = PTR_ERR_OR_ZERO(update);
163			if (ret)
164				break;
165
166			bkey_init(&update->k);
167			update->k.p		= whiteout_pos;
168			update->k.type		= KEY_TYPE_whiteout;
169
170			ret = bch2_trans_update(trans, &new_iter, update,
171						BTREE_UPDATE_internal_snapshot_node);
172		}
173		bch2_trans_iter_exit(trans, &new_iter);
174
175		ret = snapshot_list_add(c, &s, old_k.k->p.snapshot);
176		if (ret)
177			break;
178	}
179	bch2_trans_iter_exit(trans, &new_iter);
180	bch2_trans_iter_exit(trans, &old_iter);
181	darray_exit(&s);
182
183	return ret;
184}
185
186int bch2_trans_update_extent_overwrite(struct btree_trans *trans,
187				       struct btree_iter *iter,
188				       enum btree_iter_update_trigger_flags flags,
189				       struct bkey_s_c old,
190				       struct bkey_s_c new)
191{
192	enum btree_id btree_id = iter->btree_id;
193	struct bkey_i *update;
194	struct bpos new_start = bkey_start_pos(new.k);
195	unsigned front_split = bkey_lt(bkey_start_pos(old.k), new_start);
196	unsigned back_split  = bkey_gt(old.k->p, new.k->p);
197	unsigned middle_split = (front_split || back_split) &&
198		old.k->p.snapshot != new.k->p.snapshot;
199	unsigned nr_splits = front_split + back_split + middle_split;
200	int ret = 0, compressed_sectors;
201
202	/*
203	 * If we're going to be splitting a compressed extent, note it
204	 * so that __bch2_trans_commit() can increase our disk
205	 * reservation:
206	 */
207	if (nr_splits > 1 &&
208	    (compressed_sectors = bch2_bkey_sectors_compressed(old)))
209		trans->extra_disk_res += compressed_sectors * (nr_splits - 1);
210
211	if (front_split) {
212		update = bch2_bkey_make_mut_noupdate(trans, old);
213		if ((ret = PTR_ERR_OR_ZERO(update)))
214			return ret;
215
216		bch2_cut_back(new_start, update);
217
218		ret =   bch2_insert_snapshot_whiteouts(trans, btree_id,
219					old.k->p, update->k.p) ?:
220			bch2_btree_insert_nonextent(trans, btree_id, update,
221					BTREE_UPDATE_internal_snapshot_node|flags);
222		if (ret)
223			return ret;
224	}
225
226	/* If we're overwriting in a different snapshot - middle split: */
227	if (middle_split) {
228		update = bch2_bkey_make_mut_noupdate(trans, old);
229		if ((ret = PTR_ERR_OR_ZERO(update)))
230			return ret;
231
232		bch2_cut_front(new_start, update);
233		bch2_cut_back(new.k->p, update);
234
235		ret =   bch2_insert_snapshot_whiteouts(trans, btree_id,
236					old.k->p, update->k.p) ?:
237			bch2_btree_insert_nonextent(trans, btree_id, update,
238					  BTREE_UPDATE_internal_snapshot_node|flags);
239		if (ret)
240			return ret;
241	}
242
243	if (bkey_le(old.k->p, new.k->p)) {
244		update = bch2_trans_kmalloc(trans, sizeof(*update));
245		if ((ret = PTR_ERR_OR_ZERO(update)))
246			return ret;
247
248		bkey_init(&update->k);
249		update->k.p = old.k->p;
250		update->k.p.snapshot = new.k->p.snapshot;
251
252		if (new.k->p.snapshot != old.k->p.snapshot) {
253			update->k.type = KEY_TYPE_whiteout;
254		} else if (btree_type_has_snapshots(btree_id)) {
255			ret = need_whiteout_for_snapshot(trans, btree_id, update->k.p);
256			if (ret < 0)
257				return ret;
258			if (ret)
259				update->k.type = KEY_TYPE_whiteout;
260		}
261
262		ret = bch2_btree_insert_nonextent(trans, btree_id, update,
263					  BTREE_UPDATE_internal_snapshot_node|flags);
264		if (ret)
265			return ret;
266	}
267
268	if (back_split) {
269		update = bch2_bkey_make_mut_noupdate(trans, old);
270		if ((ret = PTR_ERR_OR_ZERO(update)))
271			return ret;
272
273		bch2_cut_front(new.k->p, update);
274
275		ret = bch2_trans_update_by_path(trans, iter->path, update,
276					  BTREE_UPDATE_internal_snapshot_node|
277					  flags, _RET_IP_);
278		if (ret)
279			return ret;
280	}
281
282	return 0;
283}
284
285static int bch2_trans_update_extent(struct btree_trans *trans,
286				    struct btree_iter *orig_iter,
287				    struct bkey_i *insert,
288				    enum btree_iter_update_trigger_flags flags)
289{
290	struct btree_iter iter;
291	struct bkey_s_c k;
292	enum btree_id btree_id = orig_iter->btree_id;
293	int ret = 0;
294
295	bch2_trans_iter_init(trans, &iter, btree_id, bkey_start_pos(&insert->k),
296			     BTREE_ITER_intent|
297			     BTREE_ITER_with_updates|
298			     BTREE_ITER_not_extents);
299	k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
300	if ((ret = bkey_err(k)))
301		goto err;
302	if (!k.k)
303		goto out;
304
305	if (bkey_eq(k.k->p, bkey_start_pos(&insert->k))) {
306		if (bch2_bkey_maybe_mergable(k.k, &insert->k)) {
307			ret = extent_front_merge(trans, &iter, k, &insert, flags);
308			if (ret)
309				goto err;
310		}
311
312		goto next;
313	}
314
315	while (bkey_gt(insert->k.p, bkey_start_pos(k.k))) {
316		bool done = bkey_lt(insert->k.p, k.k->p);
317
318		ret = bch2_trans_update_extent_overwrite(trans, &iter, flags, k, bkey_i_to_s_c(insert));
319		if (ret)
320			goto err;
321
322		if (done)
323			goto out;
324next:
325		bch2_btree_iter_advance(&iter);
326		k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
327		if ((ret = bkey_err(k)))
328			goto err;
329		if (!k.k)
330			goto out;
331	}
332
333	if (bch2_bkey_maybe_mergable(&insert->k, k.k)) {
334		ret = extent_back_merge(trans, &iter, insert, k);
335		if (ret)
336			goto err;
337	}
338out:
339	if (!bkey_deleted(&insert->k))
340		ret = bch2_btree_insert_nonextent(trans, btree_id, insert, flags);
341err:
342	bch2_trans_iter_exit(trans, &iter);
343
344	return ret;
345}
346
347static noinline int flush_new_cached_update(struct btree_trans *trans,
348					    struct btree_insert_entry *i,
349					    enum btree_iter_update_trigger_flags flags,
350					    unsigned long ip)
351{
352	struct bkey k;
353	int ret;
354
355	btree_path_idx_t path_idx =
356		bch2_path_get(trans, i->btree_id, i->old_k.p, 1, 0,
357			      BTREE_ITER_intent, _THIS_IP_);
358	ret = bch2_btree_path_traverse(trans, path_idx, 0);
359	if (ret)
360		goto out;
361
362	struct btree_path *btree_path = trans->paths + path_idx;
363
364	/*
365	 * The old key in the insert entry might actually refer to an existing
366	 * key in the btree that has been deleted from cache and not yet
367	 * flushed. Check for this and skip the flush so we don't run triggers
368	 * against a stale key.
369	 */
370	bch2_btree_path_peek_slot_exact(btree_path, &k);
371	if (!bkey_deleted(&k))
372		goto out;
373
374	i->key_cache_already_flushed = true;
375	i->flags |= BTREE_TRIGGER_norun;
376
377	btree_path_set_should_be_locked(trans, btree_path);
378	ret = bch2_trans_update_by_path(trans, path_idx, i->k, flags, ip);
379out:
380	bch2_path_put(trans, path_idx, true);
381	return ret;
382}
383
384static int __must_check
385bch2_trans_update_by_path(struct btree_trans *trans, btree_path_idx_t path_idx,
386			  struct bkey_i *k, enum btree_iter_update_trigger_flags flags,
387			  unsigned long ip)
388{
389	struct bch_fs *c = trans->c;
390	struct btree_insert_entry *i, n;
391	int cmp;
392
393	struct btree_path *path = trans->paths + path_idx;
394	EBUG_ON(!path->should_be_locked);
395	EBUG_ON(trans->nr_updates >= trans->nr_paths);
396	EBUG_ON(!bpos_eq(k->k.p, path->pos));
397
398	n = (struct btree_insert_entry) {
399		.flags		= flags,
400		.bkey_type	= __btree_node_type(path->level, path->btree_id),
401		.btree_id	= path->btree_id,
402		.level		= path->level,
403		.cached		= path->cached,
404		.path		= path_idx,
405		.k		= k,
406		.ip_allocated	= ip,
407	};
408
409#ifdef CONFIG_BCACHEFS_DEBUG
410	trans_for_each_update(trans, i)
411		BUG_ON(i != trans->updates &&
412		       btree_insert_entry_cmp(i - 1, i) >= 0);
413#endif
414
415	/*
416	 * Pending updates are kept sorted: first, find position of new update,
417	 * then delete/trim any updates the new update overwrites:
418	 */
419	for (i = trans->updates; i < trans->updates + trans->nr_updates; i++) {
420		cmp = btree_insert_entry_cmp(&n, i);
421		if (cmp <= 0)
422			break;
423	}
424
425	bool overwrite = !cmp && i < trans->updates + trans->nr_updates;
426
427	if (overwrite) {
428		EBUG_ON(i->insert_trigger_run || i->overwrite_trigger_run);
429
430		bch2_path_put(trans, i->path, true);
431		i->flags	= n.flags;
432		i->cached	= n.cached;
433		i->k		= n.k;
434		i->path		= n.path;
435		i->ip_allocated	= n.ip_allocated;
436	} else {
437		array_insert_item(trans->updates, trans->nr_updates,
438				  i - trans->updates, n);
439
440		i->old_v = bch2_btree_path_peek_slot_exact(path, &i->old_k).v;
441		i->old_btree_u64s = !bkey_deleted(&i->old_k) ? i->old_k.u64s : 0;
442
443		if (unlikely(trans->journal_replay_not_finished)) {
444			struct bkey_i *j_k =
445				bch2_journal_keys_peek_slot(c, n.btree_id, n.level, k->k.p);
446
447			if (j_k) {
448				i->old_k = j_k->k;
449				i->old_v = &j_k->v;
450			}
451		}
452	}
453
454	__btree_path_get(trans, trans->paths + i->path, true);
455
456	trace_update_by_path(trans, path, i, overwrite);
457
458	/*
459	 * If a key is present in the key cache, it must also exist in the
460	 * btree - this is necessary for cache coherency. When iterating over
461	 * a btree that's cached in the key cache, the btree iter code checks
462	 * the key cache - but the key has to exist in the btree for that to
463	 * work:
464	 */
465	if (path->cached && !i->old_btree_u64s)
466		return flush_new_cached_update(trans, i, flags, ip);
467
468	return 0;
469}
470
471static noinline int bch2_trans_update_get_key_cache(struct btree_trans *trans,
472						    struct btree_iter *iter,
473						    struct btree_path *path)
474{
475	struct btree_path *key_cache_path = btree_iter_key_cache_path(trans, iter);
476
477	if (!key_cache_path ||
478	    !key_cache_path->should_be_locked ||
479	    !bpos_eq(key_cache_path->pos, iter->pos)) {
480		struct bkey_cached *ck;
481		int ret;
482
483		if (!iter->key_cache_path)
484			iter->key_cache_path =
485				bch2_path_get(trans, path->btree_id, path->pos, 1, 0,
486					      BTREE_ITER_intent|
487					      BTREE_ITER_cached, _THIS_IP_);
488
489		iter->key_cache_path =
490			bch2_btree_path_set_pos(trans, iter->key_cache_path, path->pos,
491						iter->flags & BTREE_ITER_intent,
492						_THIS_IP_);
493
494		ret = bch2_btree_path_traverse(trans, iter->key_cache_path, BTREE_ITER_cached);
495		if (unlikely(ret))
496			return ret;
497
498		ck = (void *) trans->paths[iter->key_cache_path].l[0].b;
499
500		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
501			trace_and_count(trans->c, trans_restart_key_cache_raced, trans, _RET_IP_);
502			return btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_raced);
503		}
504
505		btree_path_set_should_be_locked(trans, trans->paths + iter->key_cache_path);
506	}
507
508	return 0;
509}
510
511int __must_check bch2_trans_update(struct btree_trans *trans, struct btree_iter *iter,
512				   struct bkey_i *k, enum btree_iter_update_trigger_flags flags)
513{
514	btree_path_idx_t path_idx = iter->update_path ?: iter->path;
515	int ret;
516
517	if (iter->flags & BTREE_ITER_is_extents)
518		return bch2_trans_update_extent(trans, iter, k, flags);
519
520	if (bkey_deleted(&k->k) &&
521	    !(flags & BTREE_UPDATE_key_cache_reclaim) &&
522	    (iter->flags & BTREE_ITER_filter_snapshots)) {
523		ret = need_whiteout_for_snapshot(trans, iter->btree_id, k->k.p);
524		if (unlikely(ret < 0))
525			return ret;
526
527		if (ret)
528			k->k.type = KEY_TYPE_whiteout;
529	}
530
531	/*
532	 * Ensure that updates to cached btrees go to the key cache:
533	 */
534	struct btree_path *path = trans->paths + path_idx;
535	if (!(flags & BTREE_UPDATE_key_cache_reclaim) &&
536	    !path->cached &&
537	    !path->level &&
538	    btree_id_cached(trans->c, path->btree_id)) {
539		ret = bch2_trans_update_get_key_cache(trans, iter, path);
540		if (ret)
541			return ret;
542
543		path_idx = iter->key_cache_path;
544	}
545
546	return bch2_trans_update_by_path(trans, path_idx, k, flags, _RET_IP_);
547}
548
549int bch2_btree_insert_clone_trans(struct btree_trans *trans,
550				  enum btree_id btree,
551				  struct bkey_i *k)
552{
553	struct bkey_i *n = bch2_trans_kmalloc(trans, bkey_bytes(&k->k));
554	int ret = PTR_ERR_OR_ZERO(n);
555	if (ret)
556		return ret;
557
558	bkey_copy(n, k);
559	return bch2_btree_insert_trans(trans, btree, n, 0);
560}
561
562struct jset_entry *__bch2_trans_jset_entry_alloc(struct btree_trans *trans, unsigned u64s)
563{
564	unsigned new_top = trans->journal_entries_u64s + u64s;
565	unsigned old_size = trans->journal_entries_size;
566
567	if (new_top > trans->journal_entries_size) {
568		trans->journal_entries_size = roundup_pow_of_two(new_top);
569
570		btree_trans_stats(trans)->journal_entries_size = trans->journal_entries_size;
571	}
572
573	struct jset_entry *n =
574		bch2_trans_kmalloc_nomemzero(trans,
575				trans->journal_entries_size * sizeof(u64));
576	if (IS_ERR(n))
577		return ERR_CAST(n);
578
579	if (trans->journal_entries)
580		memcpy(n, trans->journal_entries, old_size * sizeof(u64));
581	trans->journal_entries = n;
582
583	struct jset_entry *e = btree_trans_journal_entries_top(trans);
584	trans->journal_entries_u64s = new_top;
585	return e;
586}
587
588int bch2_bkey_get_empty_slot(struct btree_trans *trans, struct btree_iter *iter,
589			     enum btree_id btree, struct bpos end)
590{
591	struct bkey_s_c k;
592	int ret = 0;
593
594	bch2_trans_iter_init(trans, iter, btree, POS_MAX, BTREE_ITER_intent);
595	k = bch2_btree_iter_prev(iter);
596	ret = bkey_err(k);
597	if (ret)
598		goto err;
599
600	bch2_btree_iter_advance(iter);
601	k = bch2_btree_iter_peek_slot(iter);
602	ret = bkey_err(k);
603	if (ret)
604		goto err;
605
606	BUG_ON(k.k->type != KEY_TYPE_deleted);
607
608	if (bkey_gt(k.k->p, end)) {
609		ret = -BCH_ERR_ENOSPC_btree_slot;
610		goto err;
611	}
612
613	return 0;
614err:
615	bch2_trans_iter_exit(trans, iter);
616	return ret;
617}
618
619void bch2_trans_commit_hook(struct btree_trans *trans,
620			    struct btree_trans_commit_hook *h)
621{
622	h->next = trans->hooks;
623	trans->hooks = h;
624}
625
626int bch2_btree_insert_nonextent(struct btree_trans *trans,
627				enum btree_id btree, struct bkey_i *k,
628				enum btree_iter_update_trigger_flags flags)
629{
630	struct btree_iter iter;
631	int ret;
632
633	bch2_trans_iter_init(trans, &iter, btree, k->k.p,
634			     BTREE_ITER_cached|
635			     BTREE_ITER_not_extents|
636			     BTREE_ITER_intent);
637	ret   = bch2_btree_iter_traverse(&iter) ?:
638		bch2_trans_update(trans, &iter, k, flags);
639	bch2_trans_iter_exit(trans, &iter);
640	return ret;
641}
642
643int bch2_btree_insert_trans(struct btree_trans *trans, enum btree_id id,
644			    struct bkey_i *k, enum btree_iter_update_trigger_flags flags)
645{
646	struct btree_iter iter;
647	bch2_trans_iter_init(trans, &iter, id, bkey_start_pos(&k->k),
648			     BTREE_ITER_intent|flags);
649	int ret = bch2_btree_iter_traverse(&iter) ?:
650		  bch2_trans_update(trans, &iter, k, flags);
651	bch2_trans_iter_exit(trans, &iter);
652	return ret;
653}
654
655/**
656 * bch2_btree_insert - insert keys into the extent btree
657 * @c:			pointer to struct bch_fs
658 * @id:			btree to insert into
659 * @k:			key to insert
660 * @disk_res:		must be non-NULL whenever inserting or potentially
661 *			splitting data extents
662 * @flags:		transaction commit flags
663 * @iter_flags:		btree iter update trigger flags
664 *
665 * Returns:		0 on success, error code on failure
666 */
667int bch2_btree_insert(struct bch_fs *c, enum btree_id id, struct bkey_i *k,
668		      struct disk_reservation *disk_res, int flags,
669		      enum btree_iter_update_trigger_flags iter_flags)
670{
671	return bch2_trans_commit_do(c, disk_res, NULL, flags,
672			     bch2_btree_insert_trans(trans, id, k, iter_flags));
673}
674
675int bch2_btree_delete_extent_at(struct btree_trans *trans, struct btree_iter *iter,
676				unsigned len, unsigned update_flags)
677{
678	struct bkey_i *k;
679
680	k = bch2_trans_kmalloc(trans, sizeof(*k));
681	if (IS_ERR(k))
682		return PTR_ERR(k);
683
684	bkey_init(&k->k);
685	k->k.p = iter->pos;
686	bch2_key_resize(&k->k, len);
687	return bch2_trans_update(trans, iter, k, update_flags);
688}
689
690int bch2_btree_delete_at(struct btree_trans *trans,
691			 struct btree_iter *iter, unsigned update_flags)
692{
693	return bch2_btree_delete_extent_at(trans, iter, 0, update_flags);
694}
695
696int bch2_btree_delete(struct btree_trans *trans,
697		      enum btree_id btree, struct bpos pos,
698		      unsigned update_flags)
699{
700	struct btree_iter iter;
701	int ret;
702
703	bch2_trans_iter_init(trans, &iter, btree, pos,
704			     BTREE_ITER_cached|
705			     BTREE_ITER_intent);
706	ret   = bch2_btree_iter_traverse(&iter) ?:
707		bch2_btree_delete_at(trans, &iter, update_flags);
708	bch2_trans_iter_exit(trans, &iter);
709
710	return ret;
711}
712
713int bch2_btree_delete_range_trans(struct btree_trans *trans, enum btree_id id,
714				  struct bpos start, struct bpos end,
715				  unsigned update_flags,
716				  u64 *journal_seq)
717{
718	u32 restart_count = trans->restart_count;
719	struct btree_iter iter;
720	struct bkey_s_c k;
721	int ret = 0;
722
723	bch2_trans_iter_init(trans, &iter, id, start, BTREE_ITER_intent);
724	while ((k = bch2_btree_iter_peek_upto(&iter, end)).k) {
725		struct disk_reservation disk_res =
726			bch2_disk_reservation_init(trans->c, 0);
727		struct bkey_i delete;
728
729		ret = bkey_err(k);
730		if (ret)
731			goto err;
732
733		bkey_init(&delete.k);
734
735		/*
736		 * This could probably be more efficient for extents:
737		 */
738
739		/*
740		 * For extents, iter.pos won't necessarily be the same as
741		 * bkey_start_pos(k.k) (for non extents they always will be the
742		 * same). It's important that we delete starting from iter.pos
743		 * because the range we want to delete could start in the middle
744		 * of k.
745		 *
746		 * (bch2_btree_iter_peek() does guarantee that iter.pos >=
747		 * bkey_start_pos(k.k)).
748		 */
749		delete.k.p = iter.pos;
750
751		if (iter.flags & BTREE_ITER_is_extents)
752			bch2_key_resize(&delete.k,
753					bpos_min(end, k.k->p).offset -
754					iter.pos.offset);
755
756		ret   = bch2_trans_update(trans, &iter, &delete, update_flags) ?:
757			bch2_trans_commit(trans, &disk_res, journal_seq,
758					  BCH_TRANS_COMMIT_no_enospc);
759		bch2_disk_reservation_put(trans->c, &disk_res);
760err:
761		/*
762		 * the bch2_trans_begin() call is in a weird place because we
763		 * need to call it after every transaction commit, to avoid path
764		 * overflow, but don't want to call it if the delete operation
765		 * is a no-op and we have no work to do:
766		 */
767		bch2_trans_begin(trans);
768
769		if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
770			ret = 0;
771		if (ret)
772			break;
773	}
774	bch2_trans_iter_exit(trans, &iter);
775
776	return ret ?: trans_was_restarted(trans, restart_count);
777}
778
779/*
780 * bch_btree_delete_range - delete everything within a given range
781 *
782 * Range is a half open interval - [start, end)
783 */
784int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
785			    struct bpos start, struct bpos end,
786			    unsigned update_flags,
787			    u64 *journal_seq)
788{
789	int ret = bch2_trans_run(c,
790			bch2_btree_delete_range_trans(trans, id, start, end,
791						      update_flags, journal_seq));
792	if (ret == -BCH_ERR_transaction_restart_nested)
793		ret = 0;
794	return ret;
795}
796
797int bch2_btree_bit_mod(struct btree_trans *trans, enum btree_id btree,
798		       struct bpos pos, bool set)
799{
800	struct bkey_i *k = bch2_trans_kmalloc(trans, sizeof(*k));
801	int ret = PTR_ERR_OR_ZERO(k);
802	if (ret)
803		return ret;
804
805	bkey_init(&k->k);
806	k->k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
807	k->k.p = pos;
808
809	struct btree_iter iter;
810	bch2_trans_iter_init(trans, &iter, btree, pos, BTREE_ITER_intent);
811
812	ret   = bch2_btree_iter_traverse(&iter) ?:
813		bch2_trans_update(trans, &iter, k, 0);
814	bch2_trans_iter_exit(trans, &iter);
815	return ret;
816}
817
818int bch2_btree_bit_mod_buffered(struct btree_trans *trans, enum btree_id btree,
819				struct bpos pos, bool set)
820{
821	struct bkey_i k;
822
823	bkey_init(&k.k);
824	k.k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
825	k.k.p = pos;
826
827	return bch2_trans_update_buffered(trans, btree, &k);
828}
829
830static int __bch2_trans_log_msg(struct btree_trans *trans, struct printbuf *buf, unsigned u64s)
831{
832	struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, jset_u64s(u64s));
833	int ret = PTR_ERR_OR_ZERO(e);
834	if (ret)
835		return ret;
836
837	struct jset_entry_log *l = container_of(e, struct jset_entry_log, entry);
838	journal_entry_init(e, BCH_JSET_ENTRY_log, 0, 1, u64s);
839	memcpy(l->d, buf->buf, buf->pos);
840	return 0;
841}
842
843__printf(3, 0)
844static int
845__bch2_fs_log_msg(struct bch_fs *c, unsigned commit_flags, const char *fmt,
846		  va_list args)
847{
848	struct printbuf buf = PRINTBUF;
849	prt_vprintf(&buf, fmt, args);
850
851	unsigned u64s = DIV_ROUND_UP(buf.pos, sizeof(u64));
852	prt_chars(&buf, '\0', u64s * sizeof(u64) - buf.pos);
853
854	int ret = buf.allocation_failure ? -BCH_ERR_ENOMEM_trans_log_msg : 0;
855	if (ret)
856		goto err;
857
858	if (!test_bit(JOURNAL_running, &c->journal.flags)) {
859		ret = darray_make_room(&c->journal.early_journal_entries, jset_u64s(u64s));
860		if (ret)
861			goto err;
862
863		struct jset_entry_log *l = (void *) &darray_top(c->journal.early_journal_entries);
864		journal_entry_init(&l->entry, BCH_JSET_ENTRY_log, 0, 1, u64s);
865		memcpy(l->d, buf.buf, buf.pos);
866		c->journal.early_journal_entries.nr += jset_u64s(u64s);
867	} else {
868		ret = bch2_trans_commit_do(c, NULL, NULL,
869			BCH_TRANS_COMMIT_lazy_rw|commit_flags,
870			__bch2_trans_log_msg(trans, &buf, u64s));
871	}
872err:
873	printbuf_exit(&buf);
874	return ret;
875}
876
877__printf(2, 3)
878int bch2_fs_log_msg(struct bch_fs *c, const char *fmt, ...)
879{
880	va_list args;
881	int ret;
882
883	va_start(args, fmt);
884	ret = __bch2_fs_log_msg(c, 0, fmt, args);
885	va_end(args);
886	return ret;
887}
888
889/*
890 * Use for logging messages during recovery to enable reserved space and avoid
891 * blocking.
892 */
893__printf(2, 3)
894int bch2_journal_log_msg(struct bch_fs *c, const char *fmt, ...)
895{
896	va_list args;
897	int ret;
898
899	va_start(args, fmt);
900	ret = __bch2_fs_log_msg(c, BCH_WATERMARK_reclaim, fmt, args);
901	va_end(args);
902	return ret;
903}