Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v4.10.11
 
   1/*
   2 * core.h - DesignWare HS OTG Controller common declarations
   3 *
   4 * Copyright (C) 2004-2013 Synopsys, Inc.
   5 *
   6 * Redistribution and use in source and binary forms, with or without
   7 * modification, are permitted provided that the following conditions
   8 * are met:
   9 * 1. Redistributions of source code must retain the above copyright
  10 *    notice, this list of conditions, and the following disclaimer,
  11 *    without modification.
  12 * 2. Redistributions in binary form must reproduce the above copyright
  13 *    notice, this list of conditions and the following disclaimer in the
  14 *    documentation and/or other materials provided with the distribution.
  15 * 3. The names of the above-listed copyright holders may not be used
  16 *    to endorse or promote products derived from this software without
  17 *    specific prior written permission.
  18 *
  19 * ALTERNATIVELY, this software may be distributed under the terms of the
  20 * GNU General Public License ("GPL") as published by the Free Software
  21 * Foundation; either version 2 of the License, or (at your option) any
  22 * later version.
  23 *
  24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  35 */
  36
  37#ifndef __DWC2_CORE_H__
  38#define __DWC2_CORE_H__
  39
 
  40#include <linux/phy/phy.h>
  41#include <linux/regulator/consumer.h>
  42#include <linux/usb/gadget.h>
  43#include <linux/usb/otg.h>
  44#include <linux/usb/phy.h>
  45#include "hw.h"
  46
  47/*
  48 * Suggested defines for tracers:
  49 * - no_printk:    Disable tracing
  50 * - pr_info:      Print this info to the console
  51 * - trace_printk: Print this info to trace buffer (good for verbose logging)
  52 */
  53
  54#define DWC2_TRACE_SCHEDULER		no_printk
  55#define DWC2_TRACE_SCHEDULER_VB		no_printk
  56
  57/* Detailed scheduler tracing, but won't overwhelm console */
  58#define dwc2_sch_dbg(hsotg, fmt, ...)					\
  59	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
  60			     dev_name(hsotg->dev), ##__VA_ARGS__)
  61
  62/* Verbose scheduler tracing */
  63#define dwc2_sch_vdbg(hsotg, fmt, ...)					\
  64	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
  65				dev_name(hsotg->dev), ##__VA_ARGS__)
  66
  67#ifdef CONFIG_MIPS
  68/*
  69 * There are some MIPS machines that can run in either big-endian
  70 * or little-endian mode and that use the dwc2 register without
  71 * a byteswap in both ways.
  72 * Unlike other architectures, MIPS apparently does not require a
  73 * barrier before the __raw_writel() to synchronize with DMA but does
  74 * require the barrier after the __raw_writel() to serialize a set of
  75 * writes. This set of operations was added specifically for MIPS and
  76 * should only be used there.
  77 */
  78static inline u32 dwc2_readl(const void __iomem *addr)
  79{
  80	u32 value = __raw_readl(addr);
  81
  82	/* In order to preserve endianness __raw_* operation is used. Therefore
  83	 * a barrier is needed to ensure IO access is not re-ordered across
  84	 * reads or writes
  85	 */
  86	mb();
  87	return value;
  88}
  89
  90static inline void dwc2_writel(u32 value, void __iomem *addr)
  91{
  92	__raw_writel(value, addr);
  93
  94	/*
  95	 * In order to preserve endianness __raw_* operation is used. Therefore
  96	 * a barrier is needed to ensure IO access is not re-ordered across
  97	 * reads or writes
  98	 */
  99	mb();
 100#ifdef DWC2_LOG_WRITES
 101	pr_info("INFO:: wrote %08x to %p\n", value, addr);
 102#endif
 103}
 104#else
 105/* Normal architectures just use readl/write */
 106static inline u32 dwc2_readl(const void __iomem *addr)
 107{
 108	return readl(addr);
 109}
 110
 111static inline void dwc2_writel(u32 value, void __iomem *addr)
 112{
 113	writel(value, addr);
 114
 115#ifdef DWC2_LOG_WRITES
 116	pr_info("info:: wrote %08x to %p\n", value, addr);
 117#endif
 118}
 119#endif
 120
 121/* Maximum number of Endpoints/HostChannels */
 122#define MAX_EPS_CHANNELS	16
 123
 124/* dwc2-hsotg declarations */
 125static const char * const dwc2_hsotg_supply_names[] = {
 126	"vusb_d",               /* digital USB supply, 1.2V */
 127	"vusb_a",               /* analog USB supply, 1.1V */
 128};
 129
 
 
 130/*
 131 * EP0_MPS_LIMIT
 132 *
 133 * Unfortunately there seems to be a limit of the amount of data that can
 134 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
 135 * packets (which practically means 1 packet and 63 bytes of data) when the
 136 * MPS is set to 64.
 137 *
 138 * This means if we are wanting to move >127 bytes of data, we need to
 139 * split the transactions up, but just doing one packet at a time does
 140 * not work (this may be an implicit DATA0 PID on first packet of the
 141 * transaction) and doing 2 packets is outside the controller's limits.
 142 *
 143 * If we try to lower the MPS size for EP0, then no transfers work properly
 144 * for EP0, and the system will fail basic enumeration. As no cause for this
 145 * has currently been found, we cannot support any large IN transfers for
 146 * EP0.
 147 */
 148#define EP0_MPS_LIMIT   64
 149
 150struct dwc2_hsotg;
 151struct dwc2_hsotg_req;
 152
 153/**
 154 * struct dwc2_hsotg_ep - driver endpoint definition.
 155 * @ep: The gadget layer representation of the endpoint.
 156 * @name: The driver generated name for the endpoint.
 157 * @queue: Queue of requests for this endpoint.
 158 * @parent: Reference back to the parent device structure.
 159 * @req: The current request that the endpoint is processing. This is
 160 *       used to indicate an request has been loaded onto the endpoint
 161 *       and has yet to be completed (maybe due to data move, or simply
 162 *       awaiting an ack from the core all the data has been completed).
 163 * @debugfs: File entry for debugfs file for this endpoint.
 164 * @lock: State lock to protect contents of endpoint.
 165 * @dir_in: Set to true if this endpoint is of the IN direction, which
 166 *          means that it is sending data to the Host.
 
 167 * @index: The index for the endpoint registers.
 168 * @mc: Multi Count - number of transactions per microframe
 169 * @interval - Interval for periodic endpoints, in frames or microframes.
 170 * @name: The name array passed to the USB core.
 171 * @halted: Set if the endpoint has been halted.
 172 * @periodic: Set if this is a periodic ep, such as Interrupt
 173 * @isochronous: Set if this is a isochronous ep
 174 * @send_zlp: Set if we need to send a zero-length packet.
 
 175 * @desc_list_dma: The DMA address of descriptor chain currently in use.
 176 * @desc_list: Pointer to descriptor DMA chain head currently in use.
 177 * @desc_count: Count of entries within the DMA descriptor chain of EP.
 178 * @isoc_chain_num: Number of ISOC chain currently in use - either 0 or 1.
 179 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
 
 180 * @total_data: The total number of data bytes done.
 181 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 
 182 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 183 * @last_load: The offset of data for the last start of request.
 184 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 185 * @target_frame: Targeted frame num to setup next ISOC transfer
 186 * @frame_overrun: Indicates SOF number overrun in DSTS
 187 *
 188 * This is the driver's state for each registered enpoint, allowing it
 189 * to keep track of transactions that need doing. Each endpoint has a
 190 * lock to protect the state, to try and avoid using an overall lock
 191 * for the host controller as much as possible.
 192 *
 193 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 194 * and keep track of the amount of data in the periodic FIFO for each
 195 * of these as we don't have a status register that tells us how much
 196 * is in each of them. (note, this may actually be useless information
 197 * as in shared-fifo mode periodic in acts like a single-frame packet
 198 * buffer than a fifo)
 199 */
 200struct dwc2_hsotg_ep {
 201	struct usb_ep           ep;
 202	struct list_head        queue;
 203	struct dwc2_hsotg       *parent;
 204	struct dwc2_hsotg_req    *req;
 205	struct dentry           *debugfs;
 206
 207	unsigned long           total_data;
 208	unsigned int            size_loaded;
 209	unsigned int            last_load;
 210	unsigned int            fifo_load;
 211	unsigned short          fifo_size;
 212	unsigned short		fifo_index;
 213
 214	unsigned char           dir_in;
 
 215	unsigned char           index;
 216	unsigned char           mc;
 217	unsigned char           interval;
 218
 219	unsigned int            halted:1;
 220	unsigned int            periodic:1;
 221	unsigned int            isochronous:1;
 222	unsigned int            send_zlp:1;
 
 223	unsigned int            target_frame;
 224#define TARGET_FRAME_INITIAL   0xFFFFFFFF
 225	bool			frame_overrun;
 226
 227	dma_addr_t		desc_list_dma;
 228	struct dwc2_dma_desc	*desc_list;
 229	u8			desc_count;
 230
 231	unsigned char		isoc_chain_num;
 232	unsigned int		next_desc;
 
 233
 234	char                    name[10];
 235};
 236
 237/**
 238 * struct dwc2_hsotg_req - data transfer request
 239 * @req: The USB gadget request
 240 * @queue: The list of requests for the endpoint this is queued for.
 241 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
 242 */
 243struct dwc2_hsotg_req {
 244	struct usb_request      req;
 245	struct list_head        queue;
 246	void *saved_req_buf;
 247};
 248
 249#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 
 250#define call_gadget(_hs, _entry) \
 251do { \
 252	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
 253		(_hs)->driver && (_hs)->driver->_entry) { \
 254		spin_unlock(&_hs->lock); \
 255		(_hs)->driver->_entry(&(_hs)->gadget); \
 256		spin_lock(&_hs->lock); \
 257	} \
 258} while (0)
 259#else
 260#define call_gadget(_hs, _entry)	do {} while (0)
 261#endif
 262
 263struct dwc2_hsotg;
 264struct dwc2_host_chan;
 265
 266/* Device States */
 267enum dwc2_lx_state {
 268	DWC2_L0,	/* On state */
 269	DWC2_L1,	/* LPM sleep state */
 270	DWC2_L2,	/* USB suspend state */
 271	DWC2_L3,	/* Off state */
 272};
 273
 274/*
 275 * Gadget periodic tx fifo sizes as used by legacy driver
 276 * EP0 is not included
 277 */
 278#define DWC2_G_P_LEGACY_TX_FIFO_SIZE {256, 256, 256, 256, 768, 768, 768, \
 279					   768, 0, 0, 0, 0, 0, 0, 0}
 280
 281/* Gadget ep0 states */
 282enum dwc2_ep0_state {
 283	DWC2_EP0_SETUP,
 284	DWC2_EP0_DATA_IN,
 285	DWC2_EP0_DATA_OUT,
 286	DWC2_EP0_STATUS_IN,
 287	DWC2_EP0_STATUS_OUT,
 288};
 289
 290/**
 291 * struct dwc2_core_params - Parameters for configuring the core
 292 *
 293 * @otg_cap:            Specifies the OTG capabilities.
 294 *                       0 - HNP and SRP capable
 295 *                       1 - SRP Only capable
 296 *                       2 - No HNP/SRP capable (always available)
 297 *                      Defaults to best available option (0, 1, then 2)
 298 * @otg_ver:            OTG version supported
 299 *                       0 - 1.3 (default)
 300 *                       1 - 2.0
 301 * @host_dma:           Specifies whether to use slave or DMA mode for accessing
 302 *                      the data FIFOs. The driver will automatically detect the
 303 *                      value for this parameter if none is specified.
 304 *                       0 - Slave (always available)
 305 *                       1 - DMA (default, if available)
 306 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 307 *                      address DMA mode or descriptor DMA mode for accessing
 308 *                      the data FIFOs. The driver will automatically detect the
 309 *                      value for this if none is specified.
 310 *                       0 - Address DMA
 311 *                       1 - Descriptor DMA (default, if available)
 312 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
 313 *                      address DMA mode or descriptor DMA mode for accessing
 314 *                      the data FIFOs in Full Speed mode only. The driver
 315 *                      will automatically detect the value for this if none is
 316 *                      specified.
 317 *                       0 - Address DMA
 318 *                       1 - Descriptor DMA in FS (default, if available)
 319 * @speed:              Specifies the maximum speed of operation in host and
 320 *                      device mode. The actual speed depends on the speed of
 321 *                      the attached device and the value of phy_type.
 322 *                       0 - High Speed
 323 *                           (default when phy_type is UTMI+ or ULPI)
 324 *                       1 - Full Speed
 325 *                           (default when phy_type is Full Speed)
 326 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
 327 *                       1 - Allow dynamic FIFO sizing (default, if available)
 328 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
 329 *                      are enabled for non-periodic IN endpoints in device
 330 *                      mode.
 331 * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
 332 *                      dynamic FIFO sizing is enabled
 333 *                       16 to 32768
 334 *                      Actual maximum value is autodetected and also
 335 *                      the default.
 336 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 337 *                      in host mode when dynamic FIFO sizing is enabled
 338 *                       16 to 32768
 339 *                      Actual maximum value is autodetected and also
 340 *                      the default.
 341 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 342 *                      host mode when dynamic FIFO sizing is enabled
 343 *                       16 to 32768
 344 *                      Actual maximum value is autodetected and also
 345 *                      the default.
 346 * @max_transfer_size:  The maximum transfer size supported, in bytes
 347 *                       2047 to 65,535
 348 *                      Actual maximum value is autodetected and also
 349 *                      the default.
 350 * @max_packet_count:   The maximum number of packets in a transfer
 351 *                       15 to 511
 352 *                      Actual maximum value is autodetected and also
 353 *                      the default.
 354 * @host_channels:      The number of host channel registers to use
 355 *                       1 to 16
 356 *                      Actual maximum value is autodetected and also
 357 *                      the default.
 358 * @phy_type:           Specifies the type of PHY interface to use. By default,
 359 *                      the driver will automatically detect the phy_type.
 360 *                       0 - Full Speed Phy
 361 *                       1 - UTMI+ Phy
 362 *                       2 - ULPI Phy
 363 *                      Defaults to best available option (2, 1, then 0)
 364 * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
 365 *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
 366 *                      ULPI phy_type, this parameter indicates the data width
 367 *                      between the MAC and the ULPI Wrapper.) Also, this
 368 *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
 369 *                      parameter was set to "8 and 16 bits", meaning that the
 370 *                      core has been configured to work at either data path
 371 *                      width.
 372 *                       8 or 16 (default 16 if available)
 
 
 
 
 
 373 * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
 374 *                      data rate. This parameter is only applicable if phy_type
 375 *                      is ULPI.
 376 *                       0 - single data rate ULPI interface with 8 bit wide
 377 *                           data bus (default)
 378 *                       1 - double data rate ULPI interface with 4 bit wide
 379 *                           data bus
 380 * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
 381 *                      external supply to drive the VBus
 382 *                       0 - Internal supply (default)
 383 *                       1 - External supply
 384 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 385 *                      speed PHY. This parameter is only applicable if phy_type
 386 *                      is FS.
 387 *                       0 - No (default)
 388 *                       1 - Yes
 
 
 
 
 
 
 389 * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
 390 *                       0 - No (default)
 391 *                       1 - Yes
 392 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
 393 *                      when attached to a Full Speed or Low Speed device in
 394 *                      host mode.
 395 *                       0 - Don't support low power mode (default)
 396 *                       1 - Support low power mode
 397 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
 398 *                      when connected to a Low Speed device in host
 399 *                      mode. This parameter is applicable only if
 400 *                      host_support_fs_ls_low_power is enabled.
 401 *                       0 - 48 MHz
 402 *                           (default when phy_type is UTMI+ or ULPI)
 403 *                       1 - 6 MHz
 404 *                           (default when phy_type is Full Speed)
 
 
 
 405 * @ts_dline:           Enable Term Select Dline pulsing
 406 *                       0 - No (default)
 407 *                       1 - Yes
 408 * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
 409 *                       0 - No (default for core < 2.92a)
 410 *                       1 - Yes (default for core >= 2.92a)
 411 * @ahbcfg:             This field allows the default value of the GAHBCFG
 412 *                      register to be overridden
 413 *                       -1         - GAHBCFG value will be set to 0x06
 414 *                                    (INCR4, default)
 415 *                       all others - GAHBCFG value will be overridden with
 416 *                                    this value
 417 *                      Not all bits can be controlled like this, the
 418 *                      bits defined by GAHBCFG_CTRL_MASK are controlled
 419 *                      by the driver and are ignored in this
 420 *                      configuration value.
 421 * @uframe_sched:       True to enable the microframe scheduler
 422 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
 423 *                      Disable CONIDSTSCHNG controller interrupt in such
 424 *                      case.
 425 *                      0 - No (default)
 426 *                      1 - Yes
 427 * @hibernation:	Specifies whether the controller support hibernation.
 428 *			If hibernation is enabled, the controller will enter
 429 *			hibernation in both peripheral and host mode when
 430 *			needed.
 431 *			0 - No (default)
 
 
 
 
 
 
 
 
 
 
 
 
 
 432 *			1 - Yes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433 * @g_dma:              Enables gadget dma usage (default: autodetect).
 434 * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
 435 * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
 436 *			DWORDS from 16-32768 (default: 2048 if
 437 *			possible, otherwise autodetect).
 438 * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
 439 *			DWORDS from 16-32768 (default: 1024 if
 440 *			possible, otherwise autodetect).
 441 * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
 442 *			mode. Each value corresponds to one EP
 443 *			starting from EP1 (max 15 values). Sizes are
 444 *			in DWORDS with possible values from from
 445 *			16-32768 (default: 256, 256, 256, 256, 768,
 446 *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
 
 
 
 
 
 
 
 
 447 *
 448 * The following parameters may be specified when starting the module. These
 449 * parameters define how the DWC_otg controller should be configured. A
 450 * value of -1 (or any other out of range value) for any parameter means
 451 * to read the value from hardware (if possible) or use the builtin
 452 * default described above.
 453 */
 454struct dwc2_core_params {
 455	/*
 456	 * Don't add any non-int members here, this will break
 457	 * dwc2_set_all_params!
 458	 */
 459	int otg_cap;
 460#define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
 461#define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
 462#define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
 463
 464	int otg_ver;
 465	int dma_desc_enable;
 466	int dma_desc_fs_enable;
 467	int speed;
 468#define DWC2_SPEED_PARAM_HIGH	0
 469#define DWC2_SPEED_PARAM_FULL	1
 470#define DWC2_SPEED_PARAM_LOW	2
 471
 472	int enable_dynamic_fifo;
 473	int en_multiple_tx_fifo;
 474	int host_rx_fifo_size;
 475	int host_nperio_tx_fifo_size;
 476	int host_perio_tx_fifo_size;
 477	int max_transfer_size;
 478	int max_packet_count;
 479	int host_channels;
 480	int phy_type;
 481#define DWC2_PHY_TYPE_PARAM_FS		0
 482#define DWC2_PHY_TYPE_PARAM_UTMI	1
 483#define DWC2_PHY_TYPE_PARAM_ULPI	2
 484
 485	int phy_utmi_width;
 486	int phy_ulpi_ddr;
 487	int phy_ulpi_ext_vbus;
 488#define DWC2_PHY_ULPI_INTERNAL_VBUS	0
 489#define DWC2_PHY_ULPI_EXTERNAL_VBUS	1
 490
 491	int i2c_enable;
 492	int ulpi_fs_ls;
 493	int host_support_fs_ls_low_power;
 494	int host_ls_low_power_phy_clk;
 495#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ	0
 496#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ	1
 497
 498	int ts_dline;
 499	int reload_ctl;
 500	int ahbcfg;
 501	int uframe_sched;
 502	int external_id_pin_ctl;
 503	int hibernation;
 504
 505	/*
 506	 * The following parameters are *only* set via device
 507	 * properties and cannot be set directly in this structure.
 508	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509
 510	/* Host parameters */
 511	bool host_dma;
 
 
 
 
 
 
 
 
 
 
 512
 513	/* Gadget parameters */
 514	bool g_dma;
 515	bool g_dma_desc;
 516	u32 g_rx_fifo_size;
 517	u32 g_np_tx_fifo_size;
 518	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
 
 
 519};
 520
 521/**
 522 * struct dwc2_hw_params - Autodetected parameters.
 523 *
 524 * These parameters are the various parameters read from hardware
 525 * registers during initialization. They typically contain the best
 526 * supported or maximum value that can be configured in the
 527 * corresponding dwc2_core_params value.
 528 *
 529 * The values that are not in dwc2_core_params are documented below.
 530 *
 531 * @op_mode             Mode of Operation
 532 *                       0 - HNP- and SRP-Capable OTG (Host & Device)
 533 *                       1 - SRP-Capable OTG (Host & Device)
 534 *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
 535 *                       3 - SRP-Capable Device
 536 *                       4 - Non-OTG Device
 537 *                       5 - SRP-Capable Host
 538 *                       6 - Non-OTG Host
 539 * @arch                Architecture
 540 *                       0 - Slave only
 541 *                       1 - External DMA
 542 *                       2 - Internal DMA
 543 * @power_optimized     Are power optimizations enabled?
 544 * @num_dev_ep          Number of device endpoints available
 545 * @num_dev_perio_in_ep Number of device periodic IN endpoints
 546 *                      available
 547 * @dev_token_q_depth   Device Mode IN Token Sequence Learning Queue
 
 
 
 
 
 
 
 548 *                      Depth
 549 *                       0 to 30
 550 * @host_perio_tx_q_depth
 551 *                      Host Mode Periodic Request Queue Depth
 552 *                       2, 4 or 8
 553 * @nperio_tx_q_depth
 554 *                      Non-Periodic Request Queue Depth
 555 *                       2, 4 or 8
 556 * @hs_phy_type         High-speed PHY interface type
 557 *                       0 - High-speed interface not supported
 558 *                       1 - UTMI+
 559 *                       2 - ULPI
 560 *                       3 - UTMI+ and ULPI
 561 * @fs_phy_type         Full-speed PHY interface type
 562 *                       0 - Full speed interface not supported
 563 *                       1 - Dedicated full speed interface
 564 *                       2 - FS pins shared with UTMI+ pins
 565 *                       3 - FS pins shared with ULPI pins
 566 * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
 567 * @utmi_phy_data_width UTMI+ PHY data width
 
 568 *                       0 - 8 bits
 569 *                       1 - 16 bits
 570 *                       2 - 8 or 16 bits
 571 * @snpsid:             Value from SNPSID register
 572 * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573 */
 574struct dwc2_hw_params {
 575	unsigned op_mode:3;
 576	unsigned arch:2;
 577	unsigned dma_desc_enable:1;
 578	unsigned enable_dynamic_fifo:1;
 579	unsigned en_multiple_tx_fifo:1;
 580	unsigned rx_fifo_size:16;
 581	unsigned host_nperio_tx_fifo_size:16;
 582	unsigned dev_nperio_tx_fifo_size:16;
 583	unsigned host_perio_tx_fifo_size:16;
 584	unsigned nperio_tx_q_depth:3;
 585	unsigned host_perio_tx_q_depth:3;
 586	unsigned dev_token_q_depth:5;
 587	unsigned max_transfer_size:26;
 588	unsigned max_packet_count:11;
 589	unsigned host_channels:5;
 590	unsigned hs_phy_type:2;
 591	unsigned fs_phy_type:2;
 592	unsigned i2c_enable:1;
 
 593	unsigned num_dev_ep:4;
 
 594	unsigned num_dev_perio_in_ep:4;
 595	unsigned total_fifo_size:16;
 596	unsigned power_optimized:1;
 
 597	unsigned utmi_phy_data_width:2;
 
 
 
 598	u32 snpsid;
 599	u32 dev_ep_dirs;
 
 600};
 601
 602/* Size of control and EP0 buffers */
 603#define DWC2_CTRL_BUFF_SIZE 8
 604
 605/**
 606 * struct dwc2_gregs_backup - Holds global registers state before entering partial
 607 * power down
 608 * @gotgctl:		Backup of GOTGCTL register
 609 * @gintmsk:		Backup of GINTMSK register
 610 * @gahbcfg:		Backup of GAHBCFG register
 611 * @gusbcfg:		Backup of GUSBCFG register
 612 * @grxfsiz:		Backup of GRXFSIZ register
 613 * @gnptxfsiz:		Backup of GNPTXFSIZ register
 614 * @gi2cctl:		Backup of GI2CCTL register
 615 * @hptxfsiz:		Backup of HPTXFSIZ register
 616 * @gdfifocfg:		Backup of GDFIFOCFG register
 
 
 617 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
 618 * @gpwrdn:		Backup of GPWRDN register
 
 619 */
 620struct dwc2_gregs_backup {
 621	u32 gotgctl;
 622	u32 gintmsk;
 623	u32 gahbcfg;
 624	u32 gusbcfg;
 625	u32 grxfsiz;
 626	u32 gnptxfsiz;
 627	u32 gi2cctl;
 628	u32 hptxfsiz;
 629	u32 pcgcctl;
 
 630	u32 gdfifocfg;
 631	u32 dtxfsiz[MAX_EPS_CHANNELS];
 632	u32 gpwrdn;
 633	bool valid;
 634};
 635
 636/**
 637 * struct  dwc2_dregs_backup - Holds device registers state before entering partial
 638 * power down
 639 * @dcfg:		Backup of DCFG register
 640 * @dctl:		Backup of DCTL register
 641 * @daintmsk:		Backup of DAINTMSK register
 642 * @diepmsk:		Backup of DIEPMSK register
 643 * @doepmsk:		Backup of DOEPMSK register
 644 * @diepctl:		Backup of DIEPCTL register
 645 * @dieptsiz:		Backup of DIEPTSIZ register
 646 * @diepdma:		Backup of DIEPDMA register
 647 * @doepctl:		Backup of DOEPCTL register
 648 * @doeptsiz:		Backup of DOEPTSIZ register
 649 * @doepdma:		Backup of DOEPDMA register
 
 
 650 */
 651struct dwc2_dregs_backup {
 652	u32 dcfg;
 653	u32 dctl;
 654	u32 daintmsk;
 655	u32 diepmsk;
 656	u32 doepmsk;
 657	u32 diepctl[MAX_EPS_CHANNELS];
 658	u32 dieptsiz[MAX_EPS_CHANNELS];
 659	u32 diepdma[MAX_EPS_CHANNELS];
 660	u32 doepctl[MAX_EPS_CHANNELS];
 661	u32 doeptsiz[MAX_EPS_CHANNELS];
 662	u32 doepdma[MAX_EPS_CHANNELS];
 
 663	bool valid;
 664};
 665
 666/**
 667 * struct  dwc2_hregs_backup - Holds host registers state before entering partial
 668 * power down
 669 * @hcfg:		Backup of HCFG register
 
 670 * @haintmsk:		Backup of HAINTMSK register
 
 
 671 * @hcintmsk:		Backup of HCINTMSK register
 672 * @hptr0:		Backup of HPTR0 register
 
 
 
 673 * @hfir:		Backup of HFIR register
 
 
 674 */
 675struct dwc2_hregs_backup {
 676	u32 hcfg;
 
 677	u32 haintmsk;
 
 
 678	u32 hcintmsk[MAX_EPS_CHANNELS];
 
 
 
 679	u32 hprt0;
 680	u32 hfir;
 
 681	bool valid;
 682};
 683
 684/*
 685 * Constants related to high speed periodic scheduling
 686 *
 687 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
 688 * reservation point of view it's assumed that the schedule goes right back to
 689 * the beginning after the end of the schedule.
 690 *
 691 * What does that mean for scheduling things with a long interval?  It means
 692 * we'll reserve time for them in every possible microframe that they could
 693 * ever be scheduled in.  ...but we'll still only actually schedule them as
 694 * often as they were requested.
 695 *
 696 * We keep our schedule in a "bitmap" structure.  This simplifies having
 697 * to keep track of and merge intervals: we just let the bitmap code do most
 698 * of the heavy lifting.  In a way scheduling is much like memory allocation.
 699 *
 700 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
 701 * supposed to schedule for periodic transfers).  That's according to spec.
 702 *
 703 * Note that though we only schedule 80% of each microframe, the bitmap that we
 704 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
 705 * space for each uFrame).
 706 *
 707 * Requirements:
 708 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
 709 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
 710 *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
 711 *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
 712 */
 713#define DWC2_US_PER_UFRAME		125
 714#define DWC2_HS_PERIODIC_US_PER_UFRAME	100
 715
 716#define DWC2_HS_SCHEDULE_UFRAMES	8
 717#define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
 718					 DWC2_HS_PERIODIC_US_PER_UFRAME)
 719
 720/*
 721 * Constants related to low speed scheduling
 722 *
 723 * For high speed we schedule every 1us.  For low speed that's a bit overkill,
 724 * so we make up a unit called a "slice" that's worth 25us.  There are 40
 725 * slices in a full frame and we can schedule 36 of those (90%) for periodic
 726 * transfers.
 727 *
 728 * Our low speed schedule can be as short as 1 frame or could be longer.  When
 729 * we only schedule 1 frame it means that we'll need to reserve a time every
 730 * frame even for things that only transfer very rarely, so something that runs
 731 * every 2048 frames will get time reserved in every frame.  Our low speed
 732 * schedule can be longer and we'll be able to handle more overlap, but that
 733 * will come at increased memory cost and increased time to schedule.
 734 *
 735 * Note: one other advantage of a short low speed schedule is that if we mess
 736 * up and miss scheduling we can jump in and use any of the slots that we
 737 * happened to reserve.
 738 *
 739 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
 740 * the schedule.  There will be one schedule per TT.
 741 *
 742 * Requirements:
 743 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
 744 */
 745#define DWC2_US_PER_SLICE	25
 746#define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
 747
 748#define DWC2_ROUND_US_TO_SLICE(us) \
 749				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
 750				 DWC2_US_PER_SLICE)
 751
 752#define DWC2_LS_PERIODIC_US_PER_FRAME \
 753				900
 754#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
 755				(DWC2_LS_PERIODIC_US_PER_FRAME / \
 756				 DWC2_US_PER_SLICE)
 757
 758#define DWC2_LS_SCHEDULE_FRAMES	1
 759#define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
 760				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
 761
 762/**
 763 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
 764 * and periodic schedules
 765 *
 766 * These are common for both host and peripheral modes:
 767 *
 768 * @dev:                The struct device pointer
 769 * @regs:		Pointer to controller regs
 770 * @hw_params:          Parameters that were autodetected from the
 771 *                      hardware registers
 772 * @core_params:	Parameters that define how the core should be configured
 773 * @op_state:           The operational State, during transitions (a_host=>
 774 *                      a_peripheral and b_device=>b_host) this may not match
 775 *                      the core, but allows the software to determine
 776 *                      transitions
 777 * @dr_mode:            Requested mode of operation, one of following:
 778 *                      - USB_DR_MODE_PERIPHERAL
 779 *                      - USB_DR_MODE_HOST
 780 *                      - USB_DR_MODE_OTG
 781 * @hcd_enabled		Host mode sub-driver initialization indicator.
 782 * @gadget_enabled	Peripheral mode sub-driver initialization indicator.
 783 * @ll_hw_enabled	Status of low-level hardware resources.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784 * @phy:                The otg phy transceiver structure for phy control.
 785 * @uphy:               The otg phy transceiver structure for old USB phy control.
 786 * @plat:               The platform specific configuration data. This can be removed once
 787 *                      all SoCs support usb transceiver.
 
 788 * @supplies:           Definition of USB power supplies
 789 * @phyif:              PHY interface width
 
 
 790 * @lock:		Spinlock that protects all the driver data structures
 791 * @priv:		Stores a pointer to the struct usb_hcd
 792 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
 793 *                      transfer are in process of being queued
 794 * @srp_success:        Stores status of SRP request in the case of a FS PHY
 795 *                      with an I2C interface
 796 * @wq_otg:             Workqueue object used for handling of some interrupts
 797 * @wf_otg:             Work object for handling Connector ID Status Change
 798 *                      interrupt
 799 * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
 800 * @lx_state:           Lx state of connected device
 801 * @gregs_backup: Backup of global registers during suspend
 802 * @dregs_backup: Backup of device registers during suspend
 803 * @hregs_backup: Backup of host registers during suspend
 
 804 *
 805 * These are for host mode:
 806 *
 807 * @flags:              Flags for handling root port state changes
 
 
 
 
 
 
 
 
 
 
 
 
 808 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
 809 *                      Transfers associated with these QHs are not currently
 810 *                      assigned to a host channel.
 811 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
 812 *                      Transfers associated with these QHs are currently
 813 *                      assigned to a host channel.
 814 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
 815 *                      non-periodic schedule
 
 
 
 816 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
 817 *                      list of QHs for periodic transfers that are _not_
 818 *                      scheduled for the next frame. Each QH in the list has an
 819 *                      interval counter that determines when it needs to be
 820 *                      scheduled for execution. This scheduling mechanism
 821 *                      allows only a simple calculation for periodic bandwidth
 822 *                      used (i.e. must assume that all periodic transfers may
 823 *                      need to execute in the same frame). However, it greatly
 824 *                      simplifies scheduling and should be sufficient for the
 825 *                      vast majority of OTG hosts, which need to connect to a
 826 *                      small number of peripherals at one time. Items move from
 827 *                      this list to periodic_sched_ready when the QH interval
 828 *                      counter is 0 at SOF.
 829 * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
 830 *                      the next frame, but have not yet been assigned to host
 831 *                      channels. Items move from this list to
 832 *                      periodic_sched_assigned as host channels become
 833 *                      available during the current frame.
 834 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
 835 *                      frame that are assigned to host channels. Items move
 836 *                      from this list to periodic_sched_queued as the
 837 *                      transactions for the QH are queued to the DWC_otg
 838 *                      controller.
 839 * @periodic_sched_queued: List of periodic QHs that have been queued for
 840 *                      execution. Items move from this list to either
 841 *                      periodic_sched_inactive or periodic_sched_ready when the
 842 *                      channel associated with the transfer is released. If the
 843 *                      interval for the QH is 1, the item moves to
 844 *                      periodic_sched_ready because it must be rescheduled for
 845 *                      the next frame. Otherwise, the item moves to
 846 *                      periodic_sched_inactive.
 847 * @split_order:        List keeping track of channels doing splits, in order.
 848 * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
 849 *                      This value is in microseconds per (micro)frame. The
 850 *                      assumption is that all periodic transfers may occur in
 851 *                      the same (micro)frame.
 852 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
 853 *                      host is in high speed mode; low speed schedules are
 854 *                      stored elsewhere since we need one per TT.
 855 * @frame_number:       Frame number read from the core at SOF. The value ranges
 856 *                      from 0 to HFNUM_MAX_FRNUM.
 857 * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
 858 *                      SOF enable/disable.
 859 * @free_hc_list:       Free host channels in the controller. This is a list of
 860 *                      struct dwc2_host_chan items.
 861 * @periodic_channels:  Number of host channels assigned to periodic transfers.
 862 *                      Currently assuming that there is a dedicated host
 863 *                      channel for each periodic transaction and at least one
 864 *                      host channel is available for non-periodic transactions.
 865 * @non_periodic_channels: Number of host channels assigned to non-periodic
 866 *                      transfers
 867 * @available_host_channels Number of host channels available for the microframe
 868 *                      scheduler to use
 869 * @hc_ptr_array:       Array of pointers to the host channel descriptors.
 870 *                      Allows accessing a host channel descriptor given the
 871 *                      host channel number. This is useful in interrupt
 872 *                      handlers.
 873 * @status_buf:         Buffer used for data received during the status phase of
 874 *                      a control transfer.
 875 * @status_buf_dma:     DMA address for status_buf
 876 * @start_work:         Delayed work for handling host A-cable connection
 877 * @reset_work:         Delayed work for handling a port reset
 
 878 * @otg_port:           OTG port number
 879 * @frame_list:         Frame list
 880 * @frame_list_dma:     Frame list DMA address
 881 * @frame_list_sz:      Frame list size
 882 * @desc_gen_cache:     Kmem cache for generic descriptors
 883 * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
 
 884 *
 885 * These are for peripheral mode:
 886 *
 887 * @driver:             USB gadget driver
 888 * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
 889 * @num_of_eps:         Number of available EPs (excluding EP0)
 890 * @debug_root:         Root directrory for debugfs.
 891 * @debug_file:         Main status file for debugfs.
 892 * @debug_testmode:     Testmode status file for debugfs.
 893 * @debug_fifo:         FIFO status file for debugfs.
 894 * @ep0_reply:          Request used for ep0 reply.
 895 * @ep0_buff:           Buffer for EP0 reply data, if needed.
 896 * @ctrl_buff:          Buffer for EP0 control requests.
 897 * @ctrl_req:           Request for EP0 control packets.
 898 * @ep0_state:          EP0 control transfers state
 
 899 * @test_mode:          USB test mode requested by the host
 
 
 900 * @setup_desc_dma:	EP0 setup stage desc chain DMA address
 901 * @setup_desc:		EP0 setup stage desc chain pointer
 902 * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
 903 * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
 904 * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
 905 * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
 906 * @eps:                The endpoints being supplied to the gadget framework
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 907 */
 908struct dwc2_hsotg {
 909	struct device *dev;
 910	void __iomem *regs;
 911	/** Params detected from hardware */
 912	struct dwc2_hw_params hw_params;
 913	/** Params to actually use */
 914	struct dwc2_core_params params;
 915	enum usb_otg_state op_state;
 916	enum usb_dr_mode dr_mode;
 
 
 917	unsigned int hcd_enabled:1;
 918	unsigned int gadget_enabled:1;
 919	unsigned int ll_hw_enabled:1;
 
 
 
 
 
 
 
 920
 921	struct phy *phy;
 922	struct usb_phy *uphy;
 923	struct dwc2_hsotg_plat *plat;
 924	struct regulator_bulk_data supplies[ARRAY_SIZE(dwc2_hsotg_supply_names)];
 925	u32 phyif;
 
 926
 927	spinlock_t lock;
 928	void *priv;
 929	int     irq;
 930	struct clk *clk;
 
 931	struct reset_control *reset;
 
 932
 933	unsigned int queuing_high_bandwidth:1;
 934	unsigned int srp_success:1;
 935
 936	struct workqueue_struct *wq_otg;
 937	struct work_struct wf_otg;
 938	struct timer_list wkp_timer;
 939	enum dwc2_lx_state lx_state;
 940	struct dwc2_gregs_backup gr_backup;
 941	struct dwc2_dregs_backup dr_backup;
 942	struct dwc2_hregs_backup hr_backup;
 943
 944	struct dentry *debug_root;
 945	struct debugfs_regset32 *regset;
 
 946
 947	/* DWC OTG HW Release versions */
 
 948#define DWC2_CORE_REV_2_71a	0x4f54271a
 
 
 949#define DWC2_CORE_REV_2_90a	0x4f54290a
 
 950#define DWC2_CORE_REV_2_92a	0x4f54292a
 951#define DWC2_CORE_REV_2_94a	0x4f54294a
 952#define DWC2_CORE_REV_3_00a	0x4f54300a
 953#define DWC2_CORE_REV_3_10a	0x4f54310a
 
 
 
 954#define DWC2_FS_IOT_REV_1_00a	0x5531100a
 955#define DWC2_HS_IOT_REV_1_00a	0x5532100a
 
 
 
 
 
 
 
 956
 957#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 958	union dwc2_hcd_internal_flags {
 959		u32 d32;
 960		struct {
 961			unsigned port_connect_status_change:1;
 962			unsigned port_connect_status:1;
 963			unsigned port_reset_change:1;
 964			unsigned port_enable_change:1;
 965			unsigned port_suspend_change:1;
 966			unsigned port_over_current_change:1;
 967			unsigned port_l1_change:1;
 968			unsigned reserved:25;
 969		} b;
 970	} flags;
 971
 972	struct list_head non_periodic_sched_inactive;
 
 973	struct list_head non_periodic_sched_active;
 974	struct list_head *non_periodic_qh_ptr;
 975	struct list_head periodic_sched_inactive;
 976	struct list_head periodic_sched_ready;
 977	struct list_head periodic_sched_assigned;
 978	struct list_head periodic_sched_queued;
 979	struct list_head split_order;
 980	u16 periodic_usecs;
 981	unsigned long hs_periodic_bitmap[
 982		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
 983	u16 frame_number;
 984	u16 periodic_qh_count;
 985	bool bus_suspended;
 986	bool new_connection;
 987
 988	u16 last_frame_num;
 989
 990#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
 991#define FRAME_NUM_ARRAY_SIZE 1000
 992	u16 *frame_num_array;
 993	u16 *last_frame_num_array;
 994	int frame_num_idx;
 995	int dumped_frame_num_array;
 996#endif
 997
 998	struct list_head free_hc_list;
 999	int periodic_channels;
1000	int non_periodic_channels;
1001	int available_host_channels;
1002	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1003	u8 *status_buf;
1004	dma_addr_t status_buf_dma;
1005#define DWC2_HCD_STATUS_BUF_SIZE 64
1006
1007	struct delayed_work start_work;
1008	struct delayed_work reset_work;
 
1009	u8 otg_port;
1010	u32 *frame_list;
1011	dma_addr_t frame_list_dma;
1012	u32 frame_list_sz;
1013	struct kmem_cache *desc_gen_cache;
1014	struct kmem_cache *desc_hsisoc_cache;
 
 
1015
1016#ifdef DEBUG
1017	u32 frrem_samples;
1018	u64 frrem_accum;
1019
1020	u32 hfnum_7_samples_a;
1021	u64 hfnum_7_frrem_accum_a;
1022	u32 hfnum_0_samples_a;
1023	u64 hfnum_0_frrem_accum_a;
1024	u32 hfnum_other_samples_a;
1025	u64 hfnum_other_frrem_accum_a;
1026
1027	u32 hfnum_7_samples_b;
1028	u64 hfnum_7_frrem_accum_b;
1029	u32 hfnum_0_samples_b;
1030	u64 hfnum_0_frrem_accum_b;
1031	u32 hfnum_other_samples_b;
1032	u64 hfnum_other_frrem_accum_b;
1033#endif
1034#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1035
1036#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 
1037	/* Gadget structures */
1038	struct usb_gadget_driver *driver;
1039	int fifo_mem;
1040	unsigned int dedicated_fifos:1;
1041	unsigned char num_of_eps;
1042	u32 fifo_map;
1043
1044	struct usb_request *ep0_reply;
1045	struct usb_request *ctrl_req;
1046	void *ep0_buff;
1047	void *ctrl_buff;
1048	enum dwc2_ep0_state ep0_state;
 
1049	u8 test_mode;
1050
1051	dma_addr_t setup_desc_dma[2];
1052	struct dwc2_dma_desc *setup_desc[2];
1053	dma_addr_t ctrl_in_desc_dma;
1054	struct dwc2_dma_desc *ctrl_in_desc;
1055	dma_addr_t ctrl_out_desc_dma;
1056	struct dwc2_dma_desc *ctrl_out_desc;
1057
1058	struct usb_gadget gadget;
1059	unsigned int enabled:1;
1060	unsigned int connected:1;
 
1061	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1062	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1063#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1064};
1065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1066/* Reasons for halting a host channel */
1067enum dwc2_halt_status {
1068	DWC2_HC_XFER_NO_HALT_STATUS,
1069	DWC2_HC_XFER_COMPLETE,
1070	DWC2_HC_XFER_URB_COMPLETE,
1071	DWC2_HC_XFER_ACK,
1072	DWC2_HC_XFER_NAK,
1073	DWC2_HC_XFER_NYET,
1074	DWC2_HC_XFER_STALL,
1075	DWC2_HC_XFER_XACT_ERR,
1076	DWC2_HC_XFER_FRAME_OVERRUN,
1077	DWC2_HC_XFER_BABBLE_ERR,
1078	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1079	DWC2_HC_XFER_AHB_ERR,
1080	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1081	DWC2_HC_XFER_URB_DEQUEUE,
1082};
1083
1084/* Core version information */
1085static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1086{
1087	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1088}
1089
1090static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1091{
1092	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1093}
1094
1095static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1096{
1097	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1098}
1099
1100/*
1101 * The following functions support initialization of the core driver component
1102 * and the DWC_otg controller
1103 */
1104extern int dwc2_core_reset(struct dwc2_hsotg *hsotg);
1105extern int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
1106extern int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
1107extern int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);
 
 
 
 
 
1108
1109bool dwc2_force_mode_if_needed(struct dwc2_hsotg *hsotg, bool host);
1110void dwc2_clear_force_mode(struct dwc2_hsotg *hsotg);
1111void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1112
1113extern bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
 
 
1114
1115/*
1116 * Common core Functions.
1117 * The following functions support managing the DWC_otg controller in either
1118 * device or host mode.
1119 */
1120extern void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1121extern void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1122extern void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
 
 
 
 
 
 
 
 
1123
1124extern void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1125extern void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1126
1127/* This function should be called on every hardware interrupt. */
1128extern irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1129
1130/* The device ID match table */
1131extern const struct of_device_id dwc2_of_match_table[];
 
 
1132
1133extern int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1134extern int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1135
 
 
 
 
 
1136/* Parameters */
1137int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1138int dwc2_init_params(struct dwc2_hsotg *hsotg);
1139
1140/*
1141 * The following functions check the controller's OTG operation mode
1142 * capability (GHWCFG2.OTG_MODE).
1143 *
1144 * These functions can be used before the internal hsotg->hw_params
1145 * are read in and cached so they always read directly from the
1146 * GHWCFG2 register.
1147 */
1148unsigned dwc2_op_mode(struct dwc2_hsotg *hsotg);
1149bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1150bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1151bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1152
1153/*
1154 * Returns the mode of operation, host or device
1155 */
1156static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1157{
1158	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1159}
 
1160static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1161{
1162	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1163}
1164
1165/*
1166 * Dump core registers and SPRAM
1167 */
1168extern void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1169extern void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1170extern void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1171
1172/*
1173 * Return OTG version - either 1.3 or 2.0
1174 */
1175extern u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg);
 
 
1176
1177/* Gadget defines */
1178#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1179extern int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1180extern int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1181extern int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1182extern int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
1183extern void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1184		bool reset);
1185extern void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1186extern void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1187extern int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
 
 
1188#define dwc2_is_device_connected(hsotg) (hsotg->connected)
 
1189int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1190int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191#else
1192static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1193{ return 0; }
1194static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1195{ return 0; }
1196static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1197{ return 0; }
1198static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
1199{ return 0; }
1200static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1201		bool reset) {}
 
1202static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1203static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1204static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1205							int testmode)
1206{ return 0; }
1207#define dwc2_is_device_connected(hsotg) (0)
 
1208static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1209{ return 0; }
1210static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211{ return 0; }
 
 
 
 
 
1212#endif
1213
1214#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1215extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1216extern int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1217extern void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1218extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1219extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
 
 
 
1220int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1221int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
 
 
 
 
 
 
 
 
 
 
 
1222#else
1223static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1224{ return 0; }
1225static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1226						   int us)
1227{ return 0; }
1228static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1229static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1230static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1231static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1232static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
 
 
 
 
 
 
1233{ return 0; }
1234static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1235{ return 0; }
1236static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1237{ return 0; }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238
1239#endif
1240
1241#endif /* __DWC2_CORE_H__ */
v6.13.7
   1/* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
   2/*
   3 * core.h - DesignWare HS OTG Controller common declarations
   4 *
   5 * Copyright (C) 2004-2013 Synopsys, Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#ifndef __DWC2_CORE_H__
   9#define __DWC2_CORE_H__
  10
  11#include <linux/acpi.h>
  12#include <linux/phy/phy.h>
  13#include <linux/regulator/consumer.h>
  14#include <linux/usb/gadget.h>
  15#include <linux/usb/otg.h>
  16#include <linux/usb/phy.h>
  17#include "hw.h"
  18
  19/*
  20 * Suggested defines for tracers:
  21 * - no_printk:    Disable tracing
  22 * - pr_info:      Print this info to the console
  23 * - trace_printk: Print this info to trace buffer (good for verbose logging)
  24 */
  25
  26#define DWC2_TRACE_SCHEDULER		no_printk
  27#define DWC2_TRACE_SCHEDULER_VB		no_printk
  28
  29/* Detailed scheduler tracing, but won't overwhelm console */
  30#define dwc2_sch_dbg(hsotg, fmt, ...)					\
  31	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
  32			     dev_name(hsotg->dev), ##__VA_ARGS__)
  33
  34/* Verbose scheduler tracing */
  35#define dwc2_sch_vdbg(hsotg, fmt, ...)					\
  36	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
  37				dev_name(hsotg->dev), ##__VA_ARGS__)
  38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39/* Maximum number of Endpoints/HostChannels */
  40#define MAX_EPS_CHANNELS	16
  41
  42/* dwc2-hsotg declarations */
  43static const char * const dwc2_hsotg_supply_names[] = {
  44	"vusb_d",               /* digital USB supply, 1.2V */
  45	"vusb_a",               /* analog USB supply, 1.1V */
  46};
  47
  48#define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
  49
  50/*
  51 * EP0_MPS_LIMIT
  52 *
  53 * Unfortunately there seems to be a limit of the amount of data that can
  54 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
  55 * packets (which practically means 1 packet and 63 bytes of data) when the
  56 * MPS is set to 64.
  57 *
  58 * This means if we are wanting to move >127 bytes of data, we need to
  59 * split the transactions up, but just doing one packet at a time does
  60 * not work (this may be an implicit DATA0 PID on first packet of the
  61 * transaction) and doing 2 packets is outside the controller's limits.
  62 *
  63 * If we try to lower the MPS size for EP0, then no transfers work properly
  64 * for EP0, and the system will fail basic enumeration. As no cause for this
  65 * has currently been found, we cannot support any large IN transfers for
  66 * EP0.
  67 */
  68#define EP0_MPS_LIMIT   64
  69
  70struct dwc2_hsotg;
  71struct dwc2_hsotg_req;
  72
  73/**
  74 * struct dwc2_hsotg_ep - driver endpoint definition.
  75 * @ep: The gadget layer representation of the endpoint.
  76 * @name: The driver generated name for the endpoint.
  77 * @queue: Queue of requests for this endpoint.
  78 * @parent: Reference back to the parent device structure.
  79 * @req: The current request that the endpoint is processing. This is
  80 *       used to indicate an request has been loaded onto the endpoint
  81 *       and has yet to be completed (maybe due to data move, or simply
  82 *       awaiting an ack from the core all the data has been completed).
  83 * @debugfs: File entry for debugfs file for this endpoint.
 
  84 * @dir_in: Set to true if this endpoint is of the IN direction, which
  85 *          means that it is sending data to the Host.
  86 * @map_dir: Set to the value of dir_in when the DMA buffer is mapped.
  87 * @index: The index for the endpoint registers.
  88 * @mc: Multi Count - number of transactions per microframe
  89 * @interval: Interval for periodic endpoints, in frames or microframes.
  90 * @name: The name array passed to the USB core.
  91 * @halted: Set if the endpoint has been halted.
  92 * @periodic: Set if this is a periodic ep, such as Interrupt
  93 * @isochronous: Set if this is a isochronous ep
  94 * @send_zlp: Set if we need to send a zero-length packet.
  95 * @wedged: Set if ep is wedged.
  96 * @desc_list_dma: The DMA address of descriptor chain currently in use.
  97 * @desc_list: Pointer to descriptor DMA chain head currently in use.
  98 * @desc_count: Count of entries within the DMA descriptor chain of EP.
 
  99 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
 100 * @compl_desc: index of next descriptor to be completed by xFerComplete
 101 * @total_data: The total number of data bytes done.
 102 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 103 * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
 104 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 105 * @last_load: The offset of data for the last start of request.
 106 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 107 * @target_frame: Targeted frame num to setup next ISOC transfer
 108 * @frame_overrun: Indicates SOF number overrun in DSTS
 109 *
 110 * This is the driver's state for each registered endpoint, allowing it
 111 * to keep track of transactions that need doing. Each endpoint has a
 112 * lock to protect the state, to try and avoid using an overall lock
 113 * for the host controller as much as possible.
 114 *
 115 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 116 * and keep track of the amount of data in the periodic FIFO for each
 117 * of these as we don't have a status register that tells us how much
 118 * is in each of them. (note, this may actually be useless information
 119 * as in shared-fifo mode periodic in acts like a single-frame packet
 120 * buffer than a fifo)
 121 */
 122struct dwc2_hsotg_ep {
 123	struct usb_ep           ep;
 124	struct list_head        queue;
 125	struct dwc2_hsotg       *parent;
 126	struct dwc2_hsotg_req    *req;
 127	struct dentry           *debugfs;
 128
 129	unsigned long           total_data;
 130	unsigned int            size_loaded;
 131	unsigned int            last_load;
 132	unsigned int            fifo_load;
 133	unsigned short          fifo_size;
 134	unsigned short		fifo_index;
 135
 136	unsigned char           dir_in;
 137	unsigned char           map_dir;
 138	unsigned char           index;
 139	unsigned char           mc;
 140	u16                     interval;
 141
 142	unsigned int            halted:1;
 143	unsigned int            periodic:1;
 144	unsigned int            isochronous:1;
 145	unsigned int            send_zlp:1;
 146	unsigned int            wedged:1;
 147	unsigned int            target_frame;
 148#define TARGET_FRAME_INITIAL   0xFFFFFFFF
 149	bool			frame_overrun;
 150
 151	dma_addr_t		desc_list_dma;
 152	struct dwc2_dma_desc	*desc_list;
 153	u8			desc_count;
 154
 
 155	unsigned int		next_desc;
 156	unsigned int		compl_desc;
 157
 158	char                    name[10];
 159};
 160
 161/**
 162 * struct dwc2_hsotg_req - data transfer request
 163 * @req: The USB gadget request
 164 * @queue: The list of requests for the endpoint this is queued for.
 165 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
 166 */
 167struct dwc2_hsotg_req {
 168	struct usb_request      req;
 169	struct list_head        queue;
 170	void *saved_req_buf;
 171};
 172
 173#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
 174	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 175#define call_gadget(_hs, _entry) \
 176do { \
 177	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
 178		(_hs)->driver && (_hs)->driver->_entry) { \
 179		spin_unlock(&_hs->lock); \
 180		(_hs)->driver->_entry(&(_hs)->gadget); \
 181		spin_lock(&_hs->lock); \
 182	} \
 183} while (0)
 184#else
 185#define call_gadget(_hs, _entry)	do {} while (0)
 186#endif
 187
 188struct dwc2_hsotg;
 189struct dwc2_host_chan;
 190
 191/* Device States */
 192enum dwc2_lx_state {
 193	DWC2_L0,	/* On state */
 194	DWC2_L1,	/* LPM sleep state */
 195	DWC2_L2,	/* USB suspend state */
 196	DWC2_L3,	/* Off state */
 197};
 198
 
 
 
 
 
 
 
 199/* Gadget ep0 states */
 200enum dwc2_ep0_state {
 201	DWC2_EP0_SETUP,
 202	DWC2_EP0_DATA_IN,
 203	DWC2_EP0_DATA_OUT,
 204	DWC2_EP0_STATUS_IN,
 205	DWC2_EP0_STATUS_OUT,
 206};
 207
 208/**
 209 * struct dwc2_core_params - Parameters for configuring the core
 210 *
 211 * @otg_caps:           Specifies the OTG capabilities. OTG caps from the platform parameters,
 212 *                      used to setup the:
 213 *                       - HNP and SRP capable
 214 *                       - SRP Only capable
 215 *                       - No HNP/SRP capable (always available)
 216 *                       Defaults to best available option
 217 *                       - OTG revision number the device is compliant with, in binary-coded
 218 *                         decimal (i.e. 2.0 is 0200H). (see struct usb_otg_caps)
 219 * @host_dma:           Specifies whether to use slave or DMA mode for accessing
 220 *                      the data FIFOs. The driver will automatically detect the
 221 *                      value for this parameter if none is specified.
 222 *                       0 - Slave (always available)
 223 *                       1 - DMA (default, if available)
 224 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 225 *                      address DMA mode or descriptor DMA mode for accessing
 226 *                      the data FIFOs. The driver will automatically detect the
 227 *                      value for this if none is specified.
 228 *                       0 - Address DMA
 229 *                       1 - Descriptor DMA (default, if available)
 230 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
 231 *                      address DMA mode or descriptor DMA mode for accessing
 232 *                      the data FIFOs in Full Speed mode only. The driver
 233 *                      will automatically detect the value for this if none is
 234 *                      specified.
 235 *                       0 - Address DMA
 236 *                       1 - Descriptor DMA in FS (default, if available)
 237 * @speed:              Specifies the maximum speed of operation in host and
 238 *                      device mode. The actual speed depends on the speed of
 239 *                      the attached device and the value of phy_type.
 240 *                       0 - High Speed
 241 *                           (default when phy_type is UTMI+ or ULPI)
 242 *                       1 - Full Speed
 243 *                           (default when phy_type is Full Speed)
 244 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
 245 *                       1 - Allow dynamic FIFO sizing (default, if available)
 246 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
 247 *                      are enabled for non-periodic IN endpoints in device
 248 *                      mode.
 249 * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
 250 *                      dynamic FIFO sizing is enabled
 251 *                       16 to 32768
 252 *                      Actual maximum value is autodetected and also
 253 *                      the default.
 254 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 255 *                      in host mode when dynamic FIFO sizing is enabled
 256 *                       16 to 32768
 257 *                      Actual maximum value is autodetected and also
 258 *                      the default.
 259 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 260 *                      host mode when dynamic FIFO sizing is enabled
 261 *                       16 to 32768
 262 *                      Actual maximum value is autodetected and also
 263 *                      the default.
 264 * @max_transfer_size:  The maximum transfer size supported, in bytes
 265 *                       2047 to 65,535
 266 *                      Actual maximum value is autodetected and also
 267 *                      the default.
 268 * @max_packet_count:   The maximum number of packets in a transfer
 269 *                       15 to 511
 270 *                      Actual maximum value is autodetected and also
 271 *                      the default.
 272 * @host_channels:      The number of host channel registers to use
 273 *                       1 to 16
 274 *                      Actual maximum value is autodetected and also
 275 *                      the default.
 276 * @phy_type:           Specifies the type of PHY interface to use. By default,
 277 *                      the driver will automatically detect the phy_type.
 278 *                       0 - Full Speed Phy
 279 *                       1 - UTMI+ Phy
 280 *                       2 - ULPI Phy
 281 *                      Defaults to best available option (2, 1, then 0)
 282 * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
 283 *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
 284 *                      ULPI phy_type, this parameter indicates the data width
 285 *                      between the MAC and the ULPI Wrapper.) Also, this
 286 *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
 287 *                      parameter was set to "8 and 16 bits", meaning that the
 288 *                      core has been configured to work at either data path
 289 *                      width.
 290 *                       8 or 16 (default 16 if available)
 291 * @eusb2_disc:         Specifies whether eUSB2 PHY disconnect support flow
 292 *                      applicable or no. Applicable in device mode of HSOTG
 293 *                      and HS IOT cores v5.00 or higher.
 294 *                       0 - eUSB2 PHY disconnect support flow not applicable
 295 *                       1 - eUSB2 PHY disconnect support flow applicable
 296 * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
 297 *                      data rate. This parameter is only applicable if phy_type
 298 *                      is ULPI.
 299 *                       0 - single data rate ULPI interface with 8 bit wide
 300 *                           data bus (default)
 301 *                       1 - double data rate ULPI interface with 4 bit wide
 302 *                           data bus
 303 * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
 304 *                      external supply to drive the VBus
 305 *                       0 - Internal supply (default)
 306 *                       1 - External supply
 307 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 308 *                      speed PHY. This parameter is only applicable if phy_type
 309 *                      is FS.
 310 *                       0 - No (default)
 311 *                       1 - Yes
 312 * @ipg_isoc_en:        Indicates the IPG supports is enabled or disabled.
 313 *                       0 - Disable (default)
 314 *                       1 - Enable
 315 * @acg_enable:		For enabling Active Clock Gating in the controller
 316 *                       0 - No
 317 *                       1 - Yes
 318 * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
 319 *                       0 - No (default)
 320 *                       1 - Yes
 321 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
 322 *                      when attached to a Full Speed or Low Speed device in
 323 *                      host mode.
 324 *                       0 - Don't support low power mode (default)
 325 *                       1 - Support low power mode
 326 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
 327 *                      when connected to a Low Speed device in host
 328 *                      mode. This parameter is applicable only if
 329 *                      host_support_fs_ls_low_power is enabled.
 330 *                       0 - 48 MHz
 331 *                           (default when phy_type is UTMI+ or ULPI)
 332 *                       1 - 6 MHz
 333 *                           (default when phy_type is Full Speed)
 334 * @oc_disable:		Flag to disable overcurrent condition.
 335 *			0 - Allow overcurrent condition to get detected
 336 *			1 - Disable overcurrent condtion to get detected
 337 * @ts_dline:           Enable Term Select Dline pulsing
 338 *                       0 - No (default)
 339 *                       1 - Yes
 340 * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
 341 *                       0 - No (default for core < 2.92a)
 342 *                       1 - Yes (default for core >= 2.92a)
 343 * @ahbcfg:             This field allows the default value of the GAHBCFG
 344 *                      register to be overridden
 345 *                       -1         - GAHBCFG value will be set to 0x06
 346 *                                    (INCR, default)
 347 *                       all others - GAHBCFG value will be overridden with
 348 *                                    this value
 349 *                      Not all bits can be controlled like this, the
 350 *                      bits defined by GAHBCFG_CTRL_MASK are controlled
 351 *                      by the driver and are ignored in this
 352 *                      configuration value.
 353 * @uframe_sched:       True to enable the microframe scheduler
 354 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
 355 *                      Disable CONIDSTSCHNG controller interrupt in such
 356 *                      case.
 357 *                      0 - No (default)
 358 *                      1 - Yes
 359 * @power_down:         Specifies whether the controller support power_down.
 360 *			If power_down is enabled, the controller will enter
 361 *			power_down in both peripheral and host mode when
 362 *			needed.
 363 *			0 - No (default)
 364 *			1 - Partial power down
 365 *			2 - Hibernation
 366 * @no_clock_gating:	Specifies whether to avoid clock gating feature.
 367 *			0 - No (use clock gating)
 368 *			1 - Yes (avoid it)
 369 * @lpm:		Enable LPM support.
 370 *			0 - No
 371 *			1 - Yes
 372 * @lpm_clock_gating:		Enable core PHY clock gating.
 373 *			0 - No
 374 *			1 - Yes
 375 * @besl:		Enable LPM Errata support.
 376 *			0 - No
 377 *			1 - Yes
 378 * @hird_threshold_en:	HIRD or HIRD Threshold enable.
 379 *			0 - No
 380 *			1 - Yes
 381 * @hird_threshold:	Value of BESL or HIRD Threshold.
 382 * @ref_clk_per:        Indicates in terms of pico seconds the period
 383 *                      of ref_clk.
 384 *			62500 - 16MHz
 385 *                      58823 - 17MHz
 386 *                      52083 - 19.2MHz
 387 *			50000 - 20MHz
 388 *			41666 - 24MHz
 389 *			33333 - 30MHz (default)
 390 *			25000 - 40MHz
 391 * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which
 392 *                      the controller should generate an interrupt if the
 393 *                      device had been in L1 state until that period.
 394 *                      This is used by SW to initiate Remote WakeUp in the
 395 *                      controller so as to sync to the uF number from the host.
 396 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
 397 *			register.
 398 *			0 - Deactivate the transceiver (default)
 399 *			1 - Activate the transceiver
 400 * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level
 401 *			detection using GGPIO register.
 402 *			0 - Deactivate the external level detection (default)
 403 *			1 - Activate the external level detection
 404 * @activate_ingenic_overcurrent_detection: Activate Ingenic overcurrent
 405 *			detection.
 406 *			0 - Deactivate the overcurrent detection
 407 *			1 - Activate the overcurrent detection (default)
 408 * @g_dma:              Enables gadget dma usage (default: autodetect).
 409 * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
 410 * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
 411 *			DWORDS from 16-32768 (default: 2048 if
 412 *			possible, otherwise autodetect).
 413 * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
 414 *			DWORDS from 16-32768 (default: 1024 if
 415 *			possible, otherwise autodetect).
 416 * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
 417 *			mode. Each value corresponds to one EP
 418 *			starting from EP1 (max 15 values). Sizes are
 419 *			in DWORDS with possible values from
 420 *			16-32768 (default: 256, 256, 256, 256, 768,
 421 *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
 422 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
 423 *                      while full&low speed device connect. And change speed
 424 *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
 425 *			0 - No (default)
 426 *			1 - Yes
 427 * @service_interval:   Enable service interval based scheduling.
 428 *                      0 - No
 429 *                      1 - Yes
 430 *
 431 * The following parameters may be specified when starting the module. These
 432 * parameters define how the DWC_otg controller should be configured. A
 433 * value of -1 (or any other out of range value) for any parameter means
 434 * to read the value from hardware (if possible) or use the builtin
 435 * default described above.
 436 */
 437struct dwc2_core_params {
 438	struct usb_otg_caps otg_caps;
 439	u8 phy_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440#define DWC2_PHY_TYPE_PARAM_FS		0
 441#define DWC2_PHY_TYPE_PARAM_UTMI	1
 442#define DWC2_PHY_TYPE_PARAM_ULPI	2
 443
 444	u8 speed;
 445#define DWC2_SPEED_PARAM_HIGH	0
 446#define DWC2_SPEED_PARAM_FULL	1
 447#define DWC2_SPEED_PARAM_LOW	2
 448
 449	u8 phy_utmi_width;
 450	bool eusb2_disc;
 451	bool phy_ulpi_ddr;
 452	bool phy_ulpi_ext_vbus;
 453	bool enable_dynamic_fifo;
 454	bool en_multiple_tx_fifo;
 455	bool i2c_enable;
 456	bool acg_enable;
 457	bool ulpi_fs_ls;
 458	bool ts_dline;
 459	bool reload_ctl;
 460	bool uframe_sched;
 461	bool external_id_pin_ctl;
 462
 463	int power_down;
 464#define DWC2_POWER_DOWN_PARAM_NONE		0
 465#define DWC2_POWER_DOWN_PARAM_PARTIAL		1
 466#define DWC2_POWER_DOWN_PARAM_HIBERNATION	2
 467	bool no_clock_gating;
 468
 469	bool lpm;
 470	bool lpm_clock_gating;
 471	bool besl;
 472	bool hird_threshold_en;
 473	bool service_interval;
 474	u8 hird_threshold;
 475	bool activate_stm_fs_transceiver;
 476	bool activate_stm_id_vb_detection;
 477	bool activate_ingenic_overcurrent_detection;
 478	bool ipg_isoc_en;
 479	u16 max_packet_count;
 480	u32 max_transfer_size;
 481	u32 ahbcfg;
 482
 483	/* GREFCLK parameters */
 484	u32 ref_clk_per;
 485	u16 sof_cnt_wkup_alert;
 486
 487	/* Host parameters */
 488	bool host_dma;
 489	bool dma_desc_enable;
 490	bool dma_desc_fs_enable;
 491	bool host_support_fs_ls_low_power;
 492	bool host_ls_low_power_phy_clk;
 493	bool oc_disable;
 494
 495	u8 host_channels;
 496	u16 host_rx_fifo_size;
 497	u16 host_nperio_tx_fifo_size;
 498	u16 host_perio_tx_fifo_size;
 499
 500	/* Gadget parameters */
 501	bool g_dma;
 502	bool g_dma_desc;
 503	u32 g_rx_fifo_size;
 504	u32 g_np_tx_fifo_size;
 505	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
 506
 507	bool change_speed_quirk;
 508};
 509
 510/**
 511 * struct dwc2_hw_params - Autodetected parameters.
 512 *
 513 * These parameters are the various parameters read from hardware
 514 * registers during initialization. They typically contain the best
 515 * supported or maximum value that can be configured in the
 516 * corresponding dwc2_core_params value.
 517 *
 518 * The values that are not in dwc2_core_params are documented below.
 519 *
 520 * @op_mode:             Mode of Operation
 521 *                       0 - HNP- and SRP-Capable OTG (Host & Device)
 522 *                       1 - SRP-Capable OTG (Host & Device)
 523 *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
 524 *                       3 - SRP-Capable Device
 525 *                       4 - Non-OTG Device
 526 *                       5 - SRP-Capable Host
 527 *                       6 - Non-OTG Host
 528 * @arch:                Architecture
 529 *                       0 - Slave only
 530 *                       1 - External DMA
 531 *                       2 - Internal DMA
 532 * @ipg_isoc_en:        This feature indicates that the controller supports
 533 *                      the worst-case scenario of Rx followed by Rx
 534 *                      Interpacket Gap (IPG) (32 bitTimes) as per the utmi
 535 *                      specification for any token following ISOC OUT token.
 536 *                       0 - Don't support
 537 *                       1 - Support
 538 * @power_optimized:    Are power optimizations enabled?
 539 * @num_dev_ep:         Number of device endpoints available
 540 * @num_dev_in_eps:     Number of device IN endpoints available
 541 * @num_dev_perio_in_ep: Number of device periodic IN endpoints
 542 *                       available
 543 * @dev_token_q_depth:  Device Mode IN Token Sequence Learning Queue
 544 *                      Depth
 545 *                       0 to 30
 546 * @host_perio_tx_q_depth:
 547 *                      Host Mode Periodic Request Queue Depth
 548 *                       2, 4 or 8
 549 * @nperio_tx_q_depth:
 550 *                      Non-Periodic Request Queue Depth
 551 *                       2, 4 or 8
 552 * @hs_phy_type:         High-speed PHY interface type
 553 *                       0 - High-speed interface not supported
 554 *                       1 - UTMI+
 555 *                       2 - ULPI
 556 *                       3 - UTMI+ and ULPI
 557 * @fs_phy_type:         Full-speed PHY interface type
 558 *                       0 - Full speed interface not supported
 559 *                       1 - Dedicated full speed interface
 560 *                       2 - FS pins shared with UTMI+ pins
 561 *                       3 - FS pins shared with ULPI pins
 562 * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
 563 * @hibernation:	Is hibernation enabled?
 564 * @utmi_phy_data_width: UTMI+ PHY data width
 565 *                       0 - 8 bits
 566 *                       1 - 16 bits
 567 *                       2 - 8 or 16 bits
 568 * @snpsid:             Value from SNPSID register
 569 * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
 570 * @g_tx_fifo_size:	Power-on values of TxFIFO sizes
 571 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 572 *                      address DMA mode or descriptor DMA mode for accessing
 573 *                      the data FIFOs. The driver will automatically detect the
 574 *                      value for this if none is specified.
 575 *                       0 - Address DMA
 576 *                       1 - Descriptor DMA (default, if available)
 577 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
 578 *                       1 - Allow dynamic FIFO sizing (default, if available)
 579 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
 580 *                      are enabled for non-periodic IN endpoints in device
 581 *                      mode.
 582 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 583 *                      in host mode when dynamic FIFO sizing is enabled
 584 *                       16 to 32768
 585 *                      Actual maximum value is autodetected and also
 586 *                      the default.
 587 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 588 *                      host mode when dynamic FIFO sizing is enabled
 589 *                       16 to 32768
 590 *                      Actual maximum value is autodetected and also
 591 *                      the default.
 592 * @max_transfer_size:  The maximum transfer size supported, in bytes
 593 *                       2047 to 65,535
 594 *                      Actual maximum value is autodetected and also
 595 *                      the default.
 596 * @max_packet_count:   The maximum number of packets in a transfer
 597 *                       15 to 511
 598 *                      Actual maximum value is autodetected and also
 599 *                      the default.
 600 * @host_channels:      The number of host channel registers to use
 601 *                       1 to 16
 602 *                      Actual maximum value is autodetected and also
 603 *                      the default.
 604 * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 605 *			     in device mode when dynamic FIFO sizing is enabled
 606 *			     16 to 32768
 607 *			     Actual maximum value is autodetected and also
 608 *			     the default.
 609 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 610 *                      speed PHY. This parameter is only applicable if phy_type
 611 *                      is FS.
 612 *                       0 - No (default)
 613 *                       1 - Yes
 614 * @acg_enable:		For enabling Active Clock Gating in the controller
 615 *                       0 - Disable
 616 *                       1 - Enable
 617 * @lpm_mode:		For enabling Link Power Management in the controller
 618 *                       0 - Disable
 619 *                       1 - Enable
 620 * @rx_fifo_size:	Number of 4-byte words in the  Rx FIFO when dynamic
 621 *			FIFO sizing is enabled 16 to 32768
 622 *			Actual maximum value is autodetected and also
 623 *			the default.
 624 * @service_interval_mode: For enabling service interval based scheduling in the
 625 *                         controller.
 626 *                           0 - Disable
 627 *                           1 - Enable
 628 */
 629struct dwc2_hw_params {
 630	unsigned op_mode:3;
 631	unsigned arch:2;
 632	unsigned dma_desc_enable:1;
 633	unsigned enable_dynamic_fifo:1;
 634	unsigned en_multiple_tx_fifo:1;
 635	unsigned rx_fifo_size:16;
 636	unsigned host_nperio_tx_fifo_size:16;
 637	unsigned dev_nperio_tx_fifo_size:16;
 638	unsigned host_perio_tx_fifo_size:16;
 639	unsigned nperio_tx_q_depth:3;
 640	unsigned host_perio_tx_q_depth:3;
 641	unsigned dev_token_q_depth:5;
 642	unsigned max_transfer_size:26;
 643	unsigned max_packet_count:11;
 644	unsigned host_channels:5;
 645	unsigned hs_phy_type:2;
 646	unsigned fs_phy_type:2;
 647	unsigned i2c_enable:1;
 648	unsigned acg_enable:1;
 649	unsigned num_dev_ep:4;
 650	unsigned num_dev_in_eps : 4;
 651	unsigned num_dev_perio_in_ep:4;
 652	unsigned total_fifo_size:16;
 653	unsigned power_optimized:1;
 654	unsigned hibernation:1;
 655	unsigned utmi_phy_data_width:2;
 656	unsigned lpm_mode:1;
 657	unsigned ipg_isoc_en:1;
 658	unsigned service_interval_mode:1;
 659	u32 snpsid;
 660	u32 dev_ep_dirs;
 661	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
 662};
 663
 664/* Size of control and EP0 buffers */
 665#define DWC2_CTRL_BUFF_SIZE 8
 666
 667/**
 668 * struct dwc2_gregs_backup - Holds global registers state before
 669 * entering partial power down
 670 * @gotgctl:		Backup of GOTGCTL register
 671 * @gintmsk:		Backup of GINTMSK register
 672 * @gahbcfg:		Backup of GAHBCFG register
 673 * @gusbcfg:		Backup of GUSBCFG register
 674 * @grxfsiz:		Backup of GRXFSIZ register
 675 * @gnptxfsiz:		Backup of GNPTXFSIZ register
 676 * @gi2cctl:		Backup of GI2CCTL register
 677 * @glpmcfg:		Backup of GLPMCFG register
 678 * @gdfifocfg:		Backup of GDFIFOCFG register
 679 * @pcgcctl:		Backup of PCGCCTL register
 680 * @pcgcctl1:		Backup of PCGCCTL1 register
 681 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
 682 * @gpwrdn:		Backup of GPWRDN register
 683 * @valid:		True if registers values backuped.
 684 */
 685struct dwc2_gregs_backup {
 686	u32 gotgctl;
 687	u32 gintmsk;
 688	u32 gahbcfg;
 689	u32 gusbcfg;
 690	u32 grxfsiz;
 691	u32 gnptxfsiz;
 692	u32 gi2cctl;
 693	u32 glpmcfg;
 694	u32 pcgcctl;
 695	u32 pcgcctl1;
 696	u32 gdfifocfg;
 
 697	u32 gpwrdn;
 698	bool valid;
 699};
 700
 701/**
 702 * struct dwc2_dregs_backup - Holds device registers state before
 703 * entering partial power down
 704 * @dcfg:		Backup of DCFG register
 705 * @dctl:		Backup of DCTL register
 706 * @daintmsk:		Backup of DAINTMSK register
 707 * @diepmsk:		Backup of DIEPMSK register
 708 * @doepmsk:		Backup of DOEPMSK register
 709 * @diepctl:		Backup of DIEPCTL register
 710 * @dieptsiz:		Backup of DIEPTSIZ register
 711 * @diepdma:		Backup of DIEPDMA register
 712 * @doepctl:		Backup of DOEPCTL register
 713 * @doeptsiz:		Backup of DOEPTSIZ register
 714 * @doepdma:		Backup of DOEPDMA register
 715 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
 716 * @valid:      True if registers values backuped.
 717 */
 718struct dwc2_dregs_backup {
 719	u32 dcfg;
 720	u32 dctl;
 721	u32 daintmsk;
 722	u32 diepmsk;
 723	u32 doepmsk;
 724	u32 diepctl[MAX_EPS_CHANNELS];
 725	u32 dieptsiz[MAX_EPS_CHANNELS];
 726	u32 diepdma[MAX_EPS_CHANNELS];
 727	u32 doepctl[MAX_EPS_CHANNELS];
 728	u32 doeptsiz[MAX_EPS_CHANNELS];
 729	u32 doepdma[MAX_EPS_CHANNELS];
 730	u32 dtxfsiz[MAX_EPS_CHANNELS];
 731	bool valid;
 732};
 733
 734/**
 735 * struct dwc2_hregs_backup - Holds host registers state before
 736 * entering partial power down
 737 * @hcfg:		Backup of HCFG register
 738 * @hflbaddr:		Backup of HFLBADDR register
 739 * @haintmsk:		Backup of HAINTMSK register
 740 * @hcchar:		Backup of HCCHAR register
 741 * @hcsplt:		Backup of HCSPLT register
 742 * @hcintmsk:		Backup of HCINTMSK register
 743 * @hctsiz:		Backup of HCTSIZ register
 744 * @hdma:		Backup of HCDMA register
 745 * @hcdmab:		Backup of HCDMAB register
 746 * @hprt0:		Backup of HPTR0 register
 747 * @hfir:		Backup of HFIR register
 748 * @hptxfsiz:		Backup of HPTXFSIZ register
 749 * @valid:      True if registers values backuped.
 750 */
 751struct dwc2_hregs_backup {
 752	u32 hcfg;
 753	u32 hflbaddr;
 754	u32 haintmsk;
 755	u32 hcchar[MAX_EPS_CHANNELS];
 756	u32 hcsplt[MAX_EPS_CHANNELS];
 757	u32 hcintmsk[MAX_EPS_CHANNELS];
 758	u32 hctsiz[MAX_EPS_CHANNELS];
 759	u32 hcidma[MAX_EPS_CHANNELS];
 760	u32 hcidmab[MAX_EPS_CHANNELS];
 761	u32 hprt0;
 762	u32 hfir;
 763	u32 hptxfsiz;
 764	bool valid;
 765};
 766
 767/*
 768 * Constants related to high speed periodic scheduling
 769 *
 770 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
 771 * reservation point of view it's assumed that the schedule goes right back to
 772 * the beginning after the end of the schedule.
 773 *
 774 * What does that mean for scheduling things with a long interval?  It means
 775 * we'll reserve time for them in every possible microframe that they could
 776 * ever be scheduled in.  ...but we'll still only actually schedule them as
 777 * often as they were requested.
 778 *
 779 * We keep our schedule in a "bitmap" structure.  This simplifies having
 780 * to keep track of and merge intervals: we just let the bitmap code do most
 781 * of the heavy lifting.  In a way scheduling is much like memory allocation.
 782 *
 783 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
 784 * supposed to schedule for periodic transfers).  That's according to spec.
 785 *
 786 * Note that though we only schedule 80% of each microframe, the bitmap that we
 787 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
 788 * space for each uFrame).
 789 *
 790 * Requirements:
 791 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
 792 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
 793 *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
 794 *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
 795 */
 796#define DWC2_US_PER_UFRAME		125
 797#define DWC2_HS_PERIODIC_US_PER_UFRAME	100
 798
 799#define DWC2_HS_SCHEDULE_UFRAMES	8
 800#define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
 801					 DWC2_HS_PERIODIC_US_PER_UFRAME)
 802
 803/*
 804 * Constants related to low speed scheduling
 805 *
 806 * For high speed we schedule every 1us.  For low speed that's a bit overkill,
 807 * so we make up a unit called a "slice" that's worth 25us.  There are 40
 808 * slices in a full frame and we can schedule 36 of those (90%) for periodic
 809 * transfers.
 810 *
 811 * Our low speed schedule can be as short as 1 frame or could be longer.  When
 812 * we only schedule 1 frame it means that we'll need to reserve a time every
 813 * frame even for things that only transfer very rarely, so something that runs
 814 * every 2048 frames will get time reserved in every frame.  Our low speed
 815 * schedule can be longer and we'll be able to handle more overlap, but that
 816 * will come at increased memory cost and increased time to schedule.
 817 *
 818 * Note: one other advantage of a short low speed schedule is that if we mess
 819 * up and miss scheduling we can jump in and use any of the slots that we
 820 * happened to reserve.
 821 *
 822 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
 823 * the schedule.  There will be one schedule per TT.
 824 *
 825 * Requirements:
 826 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
 827 */
 828#define DWC2_US_PER_SLICE	25
 829#define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
 830
 831#define DWC2_ROUND_US_TO_SLICE(us) \
 832				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
 833				 DWC2_US_PER_SLICE)
 834
 835#define DWC2_LS_PERIODIC_US_PER_FRAME \
 836				900
 837#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
 838				(DWC2_LS_PERIODIC_US_PER_FRAME / \
 839				 DWC2_US_PER_SLICE)
 840
 841#define DWC2_LS_SCHEDULE_FRAMES	1
 842#define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
 843				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
 844
 845/**
 846 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
 847 * and periodic schedules
 848 *
 849 * These are common for both host and peripheral modes:
 850 *
 851 * @dev:                The struct device pointer
 852 * @regs:		Pointer to controller regs
 853 * @hw_params:          Parameters that were autodetected from the
 854 *                      hardware registers
 855 * @params:	Parameters that define how the core should be configured
 856 * @op_state:           The operational State, during transitions (a_host=>
 857 *                      a_peripheral and b_device=>b_host) this may not match
 858 *                      the core, but allows the software to determine
 859 *                      transitions
 860 * @dr_mode:            Requested mode of operation, one of following:
 861 *                      - USB_DR_MODE_PERIPHERAL
 862 *                      - USB_DR_MODE_HOST
 863 *                      - USB_DR_MODE_OTG
 864 * @role_sw:		usb_role_switch handle
 865 * @role_sw_default_mode: default operation mode of controller while usb role
 866 *			is USB_ROLE_NONE
 867 * @hcd_enabled:	Host mode sub-driver initialization indicator.
 868 * @gadget_enabled:	Peripheral mode sub-driver initialization indicator.
 869 * @ll_hw_enabled:	Status of low-level hardware resources.
 870 * @hibernated:		True if core is hibernated
 871 * @in_ppd:		True if core is partial power down mode.
 872 * @bus_suspended:	True if bus is suspended
 873 * @reset_phy_on_wake:	Quirk saying that we should assert PHY reset on a
 874 *			remote wakeup.
 875 * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend.
 876 * @need_phy_for_wake:	Quirk saying that we should keep the PHY on at
 877 *			suspend if we need USB to wake us up.
 878 * @frame_number:       Frame number read from the core. For both device
 879 *			and host modes. The value ranges are from 0
 880 *			to HFNUM_MAX_FRNUM.
 881 * @phy:                The otg phy transceiver structure for phy control.
 882 * @uphy:               The otg phy transceiver structure for old USB phy
 883 *                      control.
 884 * @plat:               The platform specific configuration data. This can be
 885 *                      removed once all SoCs support usb transceiver.
 886 * @supplies:           Definition of USB power supplies
 887 * @vbus_supply:        Regulator supplying vbus.
 888 * @usb33d:		Optional 3.3v regulator used on some stm32 devices to
 889 *			supply ID and VBUS detection hardware.
 890 * @lock:		Spinlock that protects all the driver data structures
 891 * @priv:		Stores a pointer to the struct usb_hcd
 892 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
 893 *                      transfer are in process of being queued
 894 * @srp_success:        Stores status of SRP request in the case of a FS PHY
 895 *                      with an I2C interface
 896 * @wq_otg:             Workqueue object used for handling of some interrupts
 897 * @wf_otg:             Work object for handling Connector ID Status Change
 898 *                      interrupt
 899 * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
 900 * @lx_state:           Lx state of connected device
 901 * @gr_backup: Backup of global registers during suspend
 902 * @dr_backup: Backup of device registers during suspend
 903 * @hr_backup: Backup of host registers during suspend
 904 * @needs_byte_swap:		Specifies whether the opposite endianness.
 905 *
 906 * These are for host mode:
 907 *
 908 * @flags:              Flags for handling root port state changes
 909 * @flags.d32:          Contain all root port flags
 910 * @flags.b:            Separate root port flags from each other
 911 * @flags.b.port_connect_status_change: True if root port connect status
 912 *                      changed
 913 * @flags.b.port_connect_status: True if device connected to root port
 914 * @flags.b.port_reset_change: True if root port reset status changed
 915 * @flags.b.port_enable_change: True if root port enable status changed
 916 * @flags.b.port_suspend_change: True if root port suspend status changed
 917 * @flags.b.port_over_current_change: True if root port over current state
 918 *                       changed.
 919 * @flags.b.port_l1_change: True if root port l1 status changed
 920 * @flags.b.reserved:   Reserved bits of root port register
 921 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
 922 *                      Transfers associated with these QHs are not currently
 923 *                      assigned to a host channel.
 924 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
 925 *                      Transfers associated with these QHs are currently
 926 *                      assigned to a host channel.
 927 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
 928 *                      non-periodic schedule
 929 * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
 930 *                      Transfers associated with these QHs are not currently
 931 *                      assigned to a host channel.
 932 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
 933 *                      list of QHs for periodic transfers that are _not_
 934 *                      scheduled for the next frame. Each QH in the list has an
 935 *                      interval counter that determines when it needs to be
 936 *                      scheduled for execution. This scheduling mechanism
 937 *                      allows only a simple calculation for periodic bandwidth
 938 *                      used (i.e. must assume that all periodic transfers may
 939 *                      need to execute in the same frame). However, it greatly
 940 *                      simplifies scheduling and should be sufficient for the
 941 *                      vast majority of OTG hosts, which need to connect to a
 942 *                      small number of peripherals at one time. Items move from
 943 *                      this list to periodic_sched_ready when the QH interval
 944 *                      counter is 0 at SOF.
 945 * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
 946 *                      the next frame, but have not yet been assigned to host
 947 *                      channels. Items move from this list to
 948 *                      periodic_sched_assigned as host channels become
 949 *                      available during the current frame.
 950 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
 951 *                      frame that are assigned to host channels. Items move
 952 *                      from this list to periodic_sched_queued as the
 953 *                      transactions for the QH are queued to the DWC_otg
 954 *                      controller.
 955 * @periodic_sched_queued: List of periodic QHs that have been queued for
 956 *                      execution. Items move from this list to either
 957 *                      periodic_sched_inactive or periodic_sched_ready when the
 958 *                      channel associated with the transfer is released. If the
 959 *                      interval for the QH is 1, the item moves to
 960 *                      periodic_sched_ready because it must be rescheduled for
 961 *                      the next frame. Otherwise, the item moves to
 962 *                      periodic_sched_inactive.
 963 * @split_order:        List keeping track of channels doing splits, in order.
 964 * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
 965 *                      This value is in microseconds per (micro)frame. The
 966 *                      assumption is that all periodic transfers may occur in
 967 *                      the same (micro)frame.
 968 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
 969 *                      host is in high speed mode; low speed schedules are
 970 *                      stored elsewhere since we need one per TT.
 
 
 971 * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
 972 *                      SOF enable/disable.
 973 * @free_hc_list:       Free host channels in the controller. This is a list of
 974 *                      struct dwc2_host_chan items.
 975 * @periodic_channels:  Number of host channels assigned to periodic transfers.
 976 *                      Currently assuming that there is a dedicated host
 977 *                      channel for each periodic transaction and at least one
 978 *                      host channel is available for non-periodic transactions.
 979 * @non_periodic_channels: Number of host channels assigned to non-periodic
 980 *                      transfers
 981 * @available_host_channels: Number of host channels available for the
 982 *			     microframe scheduler to use
 983 * @hc_ptr_array:       Array of pointers to the host channel descriptors.
 984 *                      Allows accessing a host channel descriptor given the
 985 *                      host channel number. This is useful in interrupt
 986 *                      handlers.
 987 * @status_buf:         Buffer used for data received during the status phase of
 988 *                      a control transfer.
 989 * @status_buf_dma:     DMA address for status_buf
 990 * @start_work:         Delayed work for handling host A-cable connection
 991 * @reset_work:         Delayed work for handling a port reset
 992 * @phy_reset_work:     Work structure for doing a PHY reset
 993 * @otg_port:           OTG port number
 994 * @frame_list:         Frame list
 995 * @frame_list_dma:     Frame list DMA address
 996 * @frame_list_sz:      Frame list size
 997 * @desc_gen_cache:     Kmem cache for generic descriptors
 998 * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
 999 * @unaligned_cache:    Kmem cache for DMA mode to handle non-aligned buf
1000 *
1001 * These are for peripheral mode:
1002 *
1003 * @driver:             USB gadget driver
1004 * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
1005 * @num_of_eps:         Number of available EPs (excluding EP0)
1006 * @debug_root:         Root directrory for debugfs.
 
 
 
1007 * @ep0_reply:          Request used for ep0 reply.
1008 * @ep0_buff:           Buffer for EP0 reply data, if needed.
1009 * @ctrl_buff:          Buffer for EP0 control requests.
1010 * @ctrl_req:           Request for EP0 control packets.
1011 * @ep0_state:          EP0 control transfers state
1012 * @delayed_status:		true when gadget driver asks for delayed status
1013 * @test_mode:          USB test mode requested by the host
1014 * @remote_wakeup_allowed: True if device is allowed to wake-up host by
1015 *                      remote-wakeup signalling
1016 * @setup_desc_dma:	EP0 setup stage desc chain DMA address
1017 * @setup_desc:		EP0 setup stage desc chain pointer
1018 * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
1019 * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
1020 * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
1021 * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
1022 * @irq:		Interrupt request line number
1023 * @clk:		Pointer to otg clock
1024 * @utmi_clk:		Pointer to utmi_clk clock
1025 * @reset:		Pointer to dwc2 reset controller
1026 * @reset_ecc:          Pointer to dwc2 optional reset controller in Stratix10.
1027 * @regset:		A pointer to a struct debugfs_regset32, which contains
1028 *			a pointer to an array of register definitions, the
1029 *			array size and the base address where the register bank
1030 *			is to be found.
1031 * @last_frame_num:	Number of last frame. Range from 0 to  32768
1032 * @frame_num_array:    Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1033 *			defined, for missed SOFs tracking. Array holds that
1034 *			frame numbers, which not equal to last_frame_num +1
1035 * @last_frame_num_array:   Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1036 *			    defined, for missed SOFs tracking.
1037 *			    If current_frame_number != last_frame_num+1
1038 *			    then last_frame_num added to this array
1039 * @frame_num_idx:	Actual size of frame_num_array and last_frame_num_array
1040 * @dumped_frame_num_array:	1 - if missed SOFs frame numbers dumbed
1041 *				0 - if missed SOFs frame numbers not dumbed
1042 * @fifo_mem:			Total internal RAM for FIFOs (bytes)
1043 * @fifo_map:		Each bit intend for concrete fifo. If that bit is set,
1044 *			then that fifo is used
1045 * @gadget:		Represents a usb gadget device
1046 * @connected:		Used in slave mode. True if device connected with host
1047 * @eps_in:		The IN endpoints being supplied to the gadget framework
1048 * @eps_out:		The OUT endpoints being supplied to the gadget framework
1049 * @new_connection:	Used in host mode. True if there are new connected
1050 *			device
1051 * @enabled:		Indicates the enabling state of controller
1052 *
1053 */
1054struct dwc2_hsotg {
1055	struct device *dev;
1056	void __iomem *regs;
1057	/** Params detected from hardware */
1058	struct dwc2_hw_params hw_params;
1059	/** Params to actually use */
1060	struct dwc2_core_params params;
1061	enum usb_otg_state op_state;
1062	enum usb_dr_mode dr_mode;
1063	struct usb_role_switch *role_sw;
1064	enum usb_dr_mode role_sw_default_mode;
1065	unsigned int hcd_enabled:1;
1066	unsigned int gadget_enabled:1;
1067	unsigned int ll_hw_enabled:1;
1068	unsigned int hibernated:1;
1069	unsigned int in_ppd:1;
1070	bool bus_suspended;
1071	unsigned int reset_phy_on_wake:1;
1072	unsigned int need_phy_for_wake:1;
1073	unsigned int phy_off_for_suspend:1;
1074	u16 frame_number;
1075
1076	struct phy *phy;
1077	struct usb_phy *uphy;
1078	struct dwc2_hsotg_plat *plat;
1079	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
1080	struct regulator *vbus_supply;
1081	struct regulator *usb33d;
1082
1083	spinlock_t lock;
1084	void *priv;
1085	int     irq;
1086	struct clk *clk;
1087	struct clk *utmi_clk;
1088	struct reset_control *reset;
1089	struct reset_control *reset_ecc;
1090
1091	unsigned int queuing_high_bandwidth:1;
1092	unsigned int srp_success:1;
1093
1094	struct workqueue_struct *wq_otg;
1095	struct work_struct wf_otg;
1096	struct timer_list wkp_timer;
1097	enum dwc2_lx_state lx_state;
1098	struct dwc2_gregs_backup gr_backup;
1099	struct dwc2_dregs_backup dr_backup;
1100	struct dwc2_hregs_backup hr_backup;
1101
1102	struct dentry *debug_root;
1103	struct debugfs_regset32 *regset;
1104	bool needs_byte_swap;
1105
1106	/* DWC OTG HW Release versions */
1107#define DWC2_CORE_REV_4_30a	0x4f54430a
1108#define DWC2_CORE_REV_2_71a	0x4f54271a
1109#define DWC2_CORE_REV_2_72a     0x4f54272a
1110#define DWC2_CORE_REV_2_80a	0x4f54280a
1111#define DWC2_CORE_REV_2_90a	0x4f54290a
1112#define DWC2_CORE_REV_2_91a	0x4f54291a
1113#define DWC2_CORE_REV_2_92a	0x4f54292a
1114#define DWC2_CORE_REV_2_94a	0x4f54294a
1115#define DWC2_CORE_REV_3_00a	0x4f54300a
1116#define DWC2_CORE_REV_3_10a	0x4f54310a
1117#define DWC2_CORE_REV_4_00a	0x4f54400a
1118#define DWC2_CORE_REV_4_20a	0x4f54420a
1119#define DWC2_CORE_REV_5_00a	0x4f54500a
1120#define DWC2_FS_IOT_REV_1_00a	0x5531100a
1121#define DWC2_HS_IOT_REV_1_00a	0x5532100a
1122#define DWC2_HS_IOT_REV_5_00a	0x5532500a
1123#define DWC2_CORE_REV_MASK	0x0000ffff
1124
1125	/* DWC OTG HW Core ID */
1126#define DWC2_OTG_ID		0x4f540000
1127#define DWC2_FS_IOT_ID		0x55310000
1128#define DWC2_HS_IOT_ID		0x55320000
1129
1130#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1131	union dwc2_hcd_internal_flags {
1132		u32 d32;
1133		struct {
1134			unsigned port_connect_status_change:1;
1135			unsigned port_connect_status:1;
1136			unsigned port_reset_change:1;
1137			unsigned port_enable_change:1;
1138			unsigned port_suspend_change:1;
1139			unsigned port_over_current_change:1;
1140			unsigned port_l1_change:1;
1141			unsigned reserved:25;
1142		} b;
1143	} flags;
1144
1145	struct list_head non_periodic_sched_inactive;
1146	struct list_head non_periodic_sched_waiting;
1147	struct list_head non_periodic_sched_active;
1148	struct list_head *non_periodic_qh_ptr;
1149	struct list_head periodic_sched_inactive;
1150	struct list_head periodic_sched_ready;
1151	struct list_head periodic_sched_assigned;
1152	struct list_head periodic_sched_queued;
1153	struct list_head split_order;
1154	u16 periodic_usecs;
1155	DECLARE_BITMAP(hs_periodic_bitmap, DWC2_HS_SCHEDULE_US);
 
 
1156	u16 periodic_qh_count;
 
1157	bool new_connection;
1158
1159	u16 last_frame_num;
1160
1161#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1162#define FRAME_NUM_ARRAY_SIZE 1000
1163	u16 *frame_num_array;
1164	u16 *last_frame_num_array;
1165	int frame_num_idx;
1166	int dumped_frame_num_array;
1167#endif
1168
1169	struct list_head free_hc_list;
1170	int periodic_channels;
1171	int non_periodic_channels;
1172	int available_host_channels;
1173	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1174	u8 *status_buf;
1175	dma_addr_t status_buf_dma;
1176#define DWC2_HCD_STATUS_BUF_SIZE 64
1177
1178	struct delayed_work start_work;
1179	struct delayed_work reset_work;
1180	struct work_struct phy_reset_work;
1181	u8 otg_port;
1182	u32 *frame_list;
1183	dma_addr_t frame_list_dma;
1184	u32 frame_list_sz;
1185	struct kmem_cache *desc_gen_cache;
1186	struct kmem_cache *desc_hsisoc_cache;
1187	struct kmem_cache *unaligned_cache;
1188#define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
1189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1190#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1191
1192#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1193	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1194	/* Gadget structures */
1195	struct usb_gadget_driver *driver;
1196	int fifo_mem;
1197	unsigned int dedicated_fifos:1;
1198	unsigned char num_of_eps;
1199	u32 fifo_map;
1200
1201	struct usb_request *ep0_reply;
1202	struct usb_request *ctrl_req;
1203	void *ep0_buff;
1204	void *ctrl_buff;
1205	enum dwc2_ep0_state ep0_state;
1206	unsigned delayed_status : 1;
1207	u8 test_mode;
1208
1209	dma_addr_t setup_desc_dma[2];
1210	struct dwc2_dma_desc *setup_desc[2];
1211	dma_addr_t ctrl_in_desc_dma;
1212	struct dwc2_dma_desc *ctrl_in_desc;
1213	dma_addr_t ctrl_out_desc_dma;
1214	struct dwc2_dma_desc *ctrl_out_desc;
1215
1216	struct usb_gadget gadget;
1217	unsigned int enabled:1;
1218	unsigned int connected:1;
1219	unsigned int remote_wakeup_allowed:1;
1220	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1221	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1222#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1223};
1224
1225/* Normal architectures just use readl/write */
1226static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset)
1227{
1228	u32 val;
1229
1230	val = readl(hsotg->regs + offset);
1231	if (hsotg->needs_byte_swap)
1232		return swab32(val);
1233	else
1234		return val;
1235}
1236
1237static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset)
1238{
1239	if (hsotg->needs_byte_swap)
1240		writel(swab32(value), hsotg->regs + offset);
1241	else
1242		writel(value, hsotg->regs + offset);
1243
1244#ifdef DWC2_LOG_WRITES
1245	pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset);
1246#endif
1247}
1248
1249static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset,
1250				  void *buffer, unsigned int count)
1251{
1252	if (count) {
1253		u32 *buf = buffer;
1254
1255		do {
1256			u32 x = dwc2_readl(hsotg, offset);
1257			*buf++ = x;
1258		} while (--count);
1259	}
1260}
1261
1262static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset,
1263				   const void *buffer, unsigned int count)
1264{
1265	if (count) {
1266		const u32 *buf = buffer;
1267
1268		do {
1269			dwc2_writel(hsotg, *buf++, offset);
1270		} while (--count);
1271	}
1272}
1273
1274/* Reasons for halting a host channel */
1275enum dwc2_halt_status {
1276	DWC2_HC_XFER_NO_HALT_STATUS,
1277	DWC2_HC_XFER_COMPLETE,
1278	DWC2_HC_XFER_URB_COMPLETE,
1279	DWC2_HC_XFER_ACK,
1280	DWC2_HC_XFER_NAK,
1281	DWC2_HC_XFER_NYET,
1282	DWC2_HC_XFER_STALL,
1283	DWC2_HC_XFER_XACT_ERR,
1284	DWC2_HC_XFER_FRAME_OVERRUN,
1285	DWC2_HC_XFER_BABBLE_ERR,
1286	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1287	DWC2_HC_XFER_AHB_ERR,
1288	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1289	DWC2_HC_XFER_URB_DEQUEUE,
1290};
1291
1292/* Core version information */
1293static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1294{
1295	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1296}
1297
1298static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1299{
1300	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1301}
1302
1303static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1304{
1305	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1306}
1307
1308/*
1309 * The following functions support initialization of the core driver component
1310 * and the DWC_otg controller
1311 */
1312int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1313int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1314int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup,
1315				 bool restore);
1316int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1317int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
1318		int reset, int is_host);
1319void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg);
1320int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy);
1321
1322void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
 
1323void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1324
1325bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1326
1327int dwc2_check_core_version(struct dwc2_hsotg *hsotg);
1328
1329/*
1330 * Common core Functions.
1331 * The following functions support managing the DWC_otg controller in either
1332 * device or host mode.
1333 */
1334void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1335void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1336void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1337
1338void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1339void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1340
1341void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1342			     int is_host);
1343int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1344int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
1345
1346void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1347void dwc2_wakeup_from_lpm_l1(struct dwc2_hsotg *hsotg, bool remotewakeup);
1348
1349/* This function should be called on every hardware interrupt. */
1350irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1351
1352/* The device ID match table */
1353extern const struct of_device_id dwc2_of_match_table[];
1354extern const struct acpi_device_id dwc2_acpi_match[];
1355extern const struct pci_device_id dwc2_pci_ids[];
1356
1357int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1358int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1359
1360/* Common polling functions */
1361int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1362			    u32 timeout);
1363int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1364			      u32 timeout);
1365/* Parameters */
1366int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1367int dwc2_init_params(struct dwc2_hsotg *hsotg);
1368
1369/*
1370 * The following functions check the controller's OTG operation mode
1371 * capability (GHWCFG2.OTG_MODE).
1372 *
1373 * These functions can be used before the internal hsotg->hw_params
1374 * are read in and cached so they always read directly from the
1375 * GHWCFG2 register.
1376 */
1377unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1378bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1379bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1380bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1381
1382/*
1383 * Returns the mode of operation, host or device
1384 */
1385static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1386{
1387	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1388}
1389
1390static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1391{
1392	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1393}
1394
1395int dwc2_drd_init(struct dwc2_hsotg *hsotg);
1396void dwc2_drd_suspend(struct dwc2_hsotg *hsotg);
1397void dwc2_drd_resume(struct dwc2_hsotg *hsotg);
1398void dwc2_drd_exit(struct dwc2_hsotg *hsotg);
 
 
1399
1400/*
1401 * Dump core registers and SPRAM
1402 */
1403void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1404void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1405void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1406
1407/* Gadget defines */
1408#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1409	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1410int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1411int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1412int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1413int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1414void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1415				       bool reset);
1416void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg);
1417void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1418void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1419int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1420#define dwc2_is_device_connected(hsotg) (hsotg->connected)
1421#define dwc2_is_device_enabled(hsotg) (hsotg->enabled)
1422int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1423int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
1424int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1425int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1426				 int rem_wakeup, int reset);
1427int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1428int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1429					bool restore);
1430void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg);
1431void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1432				   int rem_wakeup);
1433int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1434int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1435int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1436void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1437void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg);
1438static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg)
1439{ hsotg->fifo_map = 0; }
1440#else
1441static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1442{ return 0; }
1443static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1444{ return 0; }
1445static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1446{ return 0; }
1447static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1448{ return 0; }
1449static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1450						     bool reset) {}
1451static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {}
1452static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1453static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1454static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1455					   int testmode)
1456{ return 0; }
1457#define dwc2_is_device_connected(hsotg) (0)
1458#define dwc2_is_device_enabled(hsotg) (0)
1459static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1460{ return 0; }
1461static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1462						int remote_wakeup)
1463{ return 0; }
1464static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1465{ return 0; }
1466static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1467					       int rem_wakeup, int reset)
1468{ return 0; }
1469static inline int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1470{ return 0; }
1471static inline int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1472						      bool restore)
1473{ return 0; }
1474static inline void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1475static inline void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1476						 int rem_wakeup) {}
1477static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1478{ return 0; }
1479static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1480{ return 0; }
1481static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1482{ return 0; }
1483static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
1484static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {}
1485static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) {}
1486#endif
1487
1488#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1489int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1490int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1491void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1492void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1493void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1494int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
1495int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex);
1496int dwc2_port_resume(struct dwc2_hsotg *hsotg);
1497int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1498int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1499int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1500int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1501			       int rem_wakeup, int reset);
1502int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1503int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1504				      int rem_wakeup, bool restore);
1505void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg);
1506void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup);
1507bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2);
1508static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg)
1509{ schedule_work(&hsotg->phy_reset_work); }
1510#else
1511static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1512{ return 0; }
1513static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1514						   int us)
1515{ return 0; }
1516static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1517static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1518static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1519static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1520static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1521{ return 0; }
1522static inline int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
1523{ return 0; }
1524static inline int dwc2_port_resume(struct dwc2_hsotg *hsotg)
1525{ return 0; }
1526static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1527{ return 0; }
1528static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1529{ return 0; }
1530static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1531{ return 0; }
1532static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1533{ return 0; }
1534static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1535					     int rem_wakeup, int reset)
1536{ return 0; }
1537static inline int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1538{ return 0; }
1539static inline int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1540						    int rem_wakeup, bool restore)
1541{ return 0; }
1542static inline void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1543static inline void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg,
1544					       int rem_wakeup) {}
1545static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
1546{ return false; }
1547static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {}
1548
1549#endif
1550
1551#endif /* __DWC2_CORE_H__ */