Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   3 * Copyright (C) 2013, Intel Corporation
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
 
  16#include <linux/bitops.h>
  17#include <linux/init.h>
  18#include <linux/module.h>
 
  19#include <linux/device.h>
  20#include <linux/ioport.h>
  21#include <linux/errno.h>
  22#include <linux/err.h>
  23#include <linux/interrupt.h>
  24#include <linux/kernel.h>
  25#include <linux/pci.h>
  26#include <linux/platform_device.h>
  27#include <linux/spi/pxa2xx_spi.h>
  28#include <linux/spi/spi.h>
  29#include <linux/delay.h>
  30#include <linux/gpio.h>
  31#include <linux/gpio/consumer.h>
  32#include <linux/slab.h>
  33#include <linux/clk.h>
 
 
 
 
  34#include <linux/pm_runtime.h>
  35#include <linux/acpi.h>
 
 
  36
  37#include "spi-pxa2xx.h"
  38
  39MODULE_AUTHOR("Stephen Street");
  40MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41MODULE_LICENSE("GPL");
  42MODULE_ALIAS("platform:pxa2xx-spi");
  43
  44#define TIMOUT_DFLT		1000
  45
  46/*
  47 * for testing SSCR1 changes that require SSP restart, basically
  48 * everything except the service and interrupt enables, the pxa270 developer
  49 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  50 * list, but the PXA255 dev man says all bits without really meaning the
  51 * service and interrupt enables
  52 */
  53#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  54				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  55				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  56				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  57				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  58				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  59
  60#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
  61				| QUARK_X1000_SSCR1_EFWR	\
  62				| QUARK_X1000_SSCR1_RFT		\
  63				| QUARK_X1000_SSCR1_TFT		\
  64				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  65
  66#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  67				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  68				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  69				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  70				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
  71				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  72
 
 
 
 
 
 
 
 
  73#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
  74#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
  75#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
  76#define LPSS_CAPS_CS_EN_SHIFT			9
  77#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
  78
 
 
 
 
  79struct lpss_config {
  80	/* LPSS offset from drv_data->ioaddr */
  81	unsigned offset;
  82	/* Register offsets from drv_data->lpss_base or -1 */
  83	int reg_general;
  84	int reg_ssp;
  85	int reg_cs_ctrl;
  86	int reg_capabilities;
  87	/* FIFO thresholds */
  88	u32 rx_threshold;
  89	u32 tx_threshold_lo;
  90	u32 tx_threshold_hi;
  91	/* Chip select control */
  92	unsigned cs_sel_shift;
  93	unsigned cs_sel_mask;
  94	unsigned cs_num;
 
  95};
  96
  97/* Keep these sorted with enum pxa_ssp_type */
  98static const struct lpss_config lpss_platforms[] = {
  99	{	/* LPSS_LPT_SSP */
 100		.offset = 0x800,
 101		.reg_general = 0x08,
 102		.reg_ssp = 0x0c,
 103		.reg_cs_ctrl = 0x18,
 104		.reg_capabilities = -1,
 105		.rx_threshold = 64,
 106		.tx_threshold_lo = 160,
 107		.tx_threshold_hi = 224,
 108	},
 109	{	/* LPSS_BYT_SSP */
 110		.offset = 0x400,
 111		.reg_general = 0x08,
 112		.reg_ssp = 0x0c,
 113		.reg_cs_ctrl = 0x18,
 114		.reg_capabilities = -1,
 115		.rx_threshold = 64,
 116		.tx_threshold_lo = 160,
 117		.tx_threshold_hi = 224,
 118	},
 119	{	/* LPSS_BSW_SSP */
 120		.offset = 0x400,
 121		.reg_general = 0x08,
 122		.reg_ssp = 0x0c,
 123		.reg_cs_ctrl = 0x18,
 124		.reg_capabilities = -1,
 125		.rx_threshold = 64,
 126		.tx_threshold_lo = 160,
 127		.tx_threshold_hi = 224,
 128		.cs_sel_shift = 2,
 129		.cs_sel_mask = 1 << 2,
 130		.cs_num = 2,
 131	},
 132	{	/* LPSS_SPT_SSP */
 133		.offset = 0x200,
 134		.reg_general = -1,
 135		.reg_ssp = 0x20,
 136		.reg_cs_ctrl = 0x24,
 137		.reg_capabilities = -1,
 138		.rx_threshold = 1,
 139		.tx_threshold_lo = 32,
 140		.tx_threshold_hi = 56,
 141	},
 142	{	/* LPSS_BXT_SSP */
 143		.offset = 0x200,
 144		.reg_general = -1,
 145		.reg_ssp = 0x20,
 146		.reg_cs_ctrl = 0x24,
 147		.reg_capabilities = 0xfc,
 148		.rx_threshold = 1,
 149		.tx_threshold_lo = 16,
 150		.tx_threshold_hi = 48,
 151		.cs_sel_shift = 8,
 152		.cs_sel_mask = 3 << 8,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153	},
 154};
 155
 156static inline const struct lpss_config
 157*lpss_get_config(const struct driver_data *drv_data)
 158{
 159	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 160}
 161
 162static bool is_lpss_ssp(const struct driver_data *drv_data)
 163{
 164	switch (drv_data->ssp_type) {
 165	case LPSS_LPT_SSP:
 166	case LPSS_BYT_SSP:
 167	case LPSS_BSW_SSP:
 168	case LPSS_SPT_SSP:
 169	case LPSS_BXT_SSP:
 
 170		return true;
 171	default:
 172		return false;
 173	}
 174}
 175
 176static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 177{
 178	return drv_data->ssp_type == QUARK_X1000_SSP;
 179}
 180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 182{
 183	switch (drv_data->ssp_type) {
 184	case QUARK_X1000_SSP:
 185		return QUARK_X1000_SSCR1_CHANGE_MASK;
 186	case CE4100_SSP:
 187		return CE4100_SSCR1_CHANGE_MASK;
 188	default:
 189		return SSCR1_CHANGE_MASK;
 190	}
 191}
 192
 193static u32
 194pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 195{
 196	switch (drv_data->ssp_type) {
 197	case QUARK_X1000_SSP:
 198		return RX_THRESH_QUARK_X1000_DFLT;
 199	case CE4100_SSP:
 200		return RX_THRESH_CE4100_DFLT;
 201	default:
 202		return RX_THRESH_DFLT;
 203	}
 204}
 205
 206static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 207{
 208	u32 mask;
 209
 210	switch (drv_data->ssp_type) {
 211	case QUARK_X1000_SSP:
 212		mask = QUARK_X1000_SSSR_TFL_MASK;
 213		break;
 214	case CE4100_SSP:
 215		mask = CE4100_SSSR_TFL_MASK;
 216		break;
 217	default:
 218		mask = SSSR_TFL_MASK;
 219		break;
 220	}
 221
 222	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
 223}
 224
 225static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 226				     u32 *sccr1_reg)
 227{
 228	u32 mask;
 229
 230	switch (drv_data->ssp_type) {
 231	case QUARK_X1000_SSP:
 232		mask = QUARK_X1000_SSCR1_RFT;
 233		break;
 234	case CE4100_SSP:
 235		mask = CE4100_SSCR1_RFT;
 236		break;
 237	default:
 238		mask = SSCR1_RFT;
 239		break;
 240	}
 241	*sccr1_reg &= ~mask;
 242}
 243
 244static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 245				   u32 *sccr1_reg, u32 threshold)
 246{
 247	switch (drv_data->ssp_type) {
 248	case QUARK_X1000_SSP:
 249		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 250		break;
 251	case CE4100_SSP:
 252		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
 253		break;
 254	default:
 255		*sccr1_reg |= SSCR1_RxTresh(threshold);
 256		break;
 257	}
 258}
 259
 260static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 261				  u32 clk_div, u8 bits)
 262{
 263	switch (drv_data->ssp_type) {
 264	case QUARK_X1000_SSP:
 265		return clk_div
 266			| QUARK_X1000_SSCR0_Motorola
 267			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
 268			| SSCR0_SSE;
 269	default:
 270		return clk_div
 271			| SSCR0_Motorola
 272			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 273			| SSCR0_SSE
 274			| (bits > 16 ? SSCR0_EDSS : 0);
 275	}
 276}
 277
 278/*
 279 * Read and write LPSS SSP private registers. Caller must first check that
 280 * is_lpss_ssp() returns true before these can be called.
 281 */
 282static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 283{
 284	WARN_ON(!drv_data->lpss_base);
 285	return readl(drv_data->lpss_base + offset);
 286}
 287
 288static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 289				  unsigned offset, u32 value)
 290{
 291	WARN_ON(!drv_data->lpss_base);
 292	writel(value, drv_data->lpss_base + offset);
 293}
 294
 295/*
 296 * lpss_ssp_setup - perform LPSS SSP specific setup
 297 * @drv_data: pointer to the driver private data
 298 *
 299 * Perform LPSS SSP specific setup. This function must be called first if
 300 * one is going to use LPSS SSP private registers.
 301 */
 302static void lpss_ssp_setup(struct driver_data *drv_data)
 303{
 304	const struct lpss_config *config;
 305	u32 value;
 306
 307	config = lpss_get_config(drv_data);
 308	drv_data->lpss_base = drv_data->ioaddr + config->offset;
 309
 310	/* Enable software chip select control */
 311	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 312	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 313	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 314	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 315
 316	/* Enable multiblock DMA transfers */
 317	if (drv_data->master_info->enable_dma) {
 318		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 319
 320		if (config->reg_general >= 0) {
 321			value = __lpss_ssp_read_priv(drv_data,
 322						     config->reg_general);
 323			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 324			__lpss_ssp_write_priv(drv_data,
 325					      config->reg_general, value);
 326		}
 327	}
 328}
 329
 330static void lpss_ssp_select_cs(struct driver_data *drv_data,
 331			       const struct lpss_config *config)
 332{
 
 
 333	u32 value, cs;
 334
 335	if (!config->cs_sel_mask)
 336		return;
 337
 338	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 339
 340	cs = drv_data->master->cur_msg->spi->chip_select;
 341	cs <<= config->cs_sel_shift;
 342	if (cs != (value & config->cs_sel_mask)) {
 343		/*
 344		 * When switching another chip select output active the
 345		 * output must be selected first and wait 2 ssp_clk cycles
 346		 * before changing state to active. Otherwise a short
 347		 * glitch will occur on the previous chip select since
 348		 * output select is latched but state control is not.
 349		 */
 350		value &= ~config->cs_sel_mask;
 351		value |= cs;
 352		__lpss_ssp_write_priv(drv_data,
 353				      config->reg_cs_ctrl, value);
 354		ndelay(1000000000 /
 355		       (drv_data->master->max_speed_hz / 2));
 356	}
 357}
 358
 359static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
 360{
 
 
 361	const struct lpss_config *config;
 362	u32 value;
 363
 364	config = lpss_get_config(drv_data);
 365
 366	if (enable)
 367		lpss_ssp_select_cs(drv_data, config);
 368
 369	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 370	if (enable)
 371		value &= ~LPSS_CS_CONTROL_CS_HIGH;
 372	else
 373		value |= LPSS_CS_CONTROL_CS_HIGH;
 374	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 375}
 
 376
 377static void cs_assert(struct driver_data *drv_data)
 378{
 379	struct chip_data *chip =
 380		spi_get_ctldata(drv_data->master->cur_msg->spi);
 
 
 
 
 
 381
 382	if (drv_data->ssp_type == CE4100_SSP) {
 383		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
 384		return;
 385	}
 
 386
 387	if (chip->cs_control) {
 388		chip->cs_control(PXA2XX_CS_ASSERT);
 389		return;
 390	}
 391
 392	if (gpio_is_valid(chip->gpio_cs)) {
 393		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
 394		return;
 395	}
 396
 397	if (is_lpss_ssp(drv_data))
 398		lpss_ssp_cs_control(drv_data, true);
 399}
 400
 401static void cs_deassert(struct driver_data *drv_data)
 402{
 403	struct chip_data *chip =
 404		spi_get_ctldata(drv_data->master->cur_msg->spi);
 
 405
 406	if (drv_data->ssp_type == CE4100_SSP)
 407		return;
 408
 409	if (chip->cs_control) {
 410		chip->cs_control(PXA2XX_CS_DEASSERT);
 411		return;
 412	}
 413
 414	if (gpio_is_valid(chip->gpio_cs)) {
 415		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
 416		return;
 417	}
 418
 419	if (is_lpss_ssp(drv_data))
 420		lpss_ssp_cs_control(drv_data, false);
 
 
 
 
 
 
 
 
 421}
 422
 423int pxa2xx_spi_flush(struct driver_data *drv_data)
 424{
 425	unsigned long limit = loops_per_jiffy << 1;
 426
 427	do {
 428		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 429			pxa2xx_spi_read(drv_data, SSDR);
 430	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 431	write_SSSR_CS(drv_data, SSSR_ROR);
 432
 433	return limit;
 434}
 435
 
 
 
 
 
 
 
 
 
 436static int null_writer(struct driver_data *drv_data)
 437{
 438	u8 n_bytes = drv_data->n_bytes;
 439
 440	if (pxa2xx_spi_txfifo_full(drv_data)
 441		|| (drv_data->tx == drv_data->tx_end))
 442		return 0;
 443
 444	pxa2xx_spi_write(drv_data, SSDR, 0);
 445	drv_data->tx += n_bytes;
 446
 447	return 1;
 448}
 449
 450static int null_reader(struct driver_data *drv_data)
 451{
 452	u8 n_bytes = drv_data->n_bytes;
 453
 454	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 455	       && (drv_data->rx < drv_data->rx_end)) {
 456		pxa2xx_spi_read(drv_data, SSDR);
 457		drv_data->rx += n_bytes;
 458	}
 459
 460	return drv_data->rx == drv_data->rx_end;
 461}
 462
 463static int u8_writer(struct driver_data *drv_data)
 464{
 465	if (pxa2xx_spi_txfifo_full(drv_data)
 466		|| (drv_data->tx == drv_data->tx_end))
 467		return 0;
 468
 469	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 470	++drv_data->tx;
 471
 472	return 1;
 473}
 474
 475static int u8_reader(struct driver_data *drv_data)
 476{
 477	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 478	       && (drv_data->rx < drv_data->rx_end)) {
 479		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 480		++drv_data->rx;
 481	}
 482
 483	return drv_data->rx == drv_data->rx_end;
 484}
 485
 486static int u16_writer(struct driver_data *drv_data)
 487{
 488	if (pxa2xx_spi_txfifo_full(drv_data)
 489		|| (drv_data->tx == drv_data->tx_end))
 490		return 0;
 491
 492	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 493	drv_data->tx += 2;
 494
 495	return 1;
 496}
 497
 498static int u16_reader(struct driver_data *drv_data)
 499{
 500	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 501	       && (drv_data->rx < drv_data->rx_end)) {
 502		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 503		drv_data->rx += 2;
 504	}
 505
 506	return drv_data->rx == drv_data->rx_end;
 507}
 508
 509static int u32_writer(struct driver_data *drv_data)
 510{
 511	if (pxa2xx_spi_txfifo_full(drv_data)
 512		|| (drv_data->tx == drv_data->tx_end))
 513		return 0;
 514
 515	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 516	drv_data->tx += 4;
 517
 518	return 1;
 519}
 520
 521static int u32_reader(struct driver_data *drv_data)
 522{
 523	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 524	       && (drv_data->rx < drv_data->rx_end)) {
 525		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 526		drv_data->rx += 4;
 527	}
 528
 529	return drv_data->rx == drv_data->rx_end;
 530}
 531
 532void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
 533{
 534	struct spi_message *msg = drv_data->master->cur_msg;
 535	struct spi_transfer *trans = drv_data->cur_transfer;
 536
 537	/* Move to next transfer */
 538	if (trans->transfer_list.next != &msg->transfers) {
 539		drv_data->cur_transfer =
 540			list_entry(trans->transfer_list.next,
 541					struct spi_transfer,
 542					transfer_list);
 543		return RUNNING_STATE;
 544	} else
 545		return DONE_STATE;
 546}
 547
 548/* caller already set message->status; dma and pio irqs are blocked */
 549static void giveback(struct driver_data *drv_data)
 550{
 551	struct spi_transfer* last_transfer;
 552	struct spi_message *msg;
 553	unsigned long timeout;
 554
 555	msg = drv_data->master->cur_msg;
 556	drv_data->cur_transfer = NULL;
 557
 558	last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
 559					transfer_list);
 560
 561	/* Delay if requested before any change in chip select */
 562	if (last_transfer->delay_usecs)
 563		udelay(last_transfer->delay_usecs);
 564
 565	/* Wait until SSP becomes idle before deasserting the CS */
 566	timeout = jiffies + msecs_to_jiffies(10);
 567	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 568	       !time_after(jiffies, timeout))
 569		cpu_relax();
 570
 571	/* Drop chip select UNLESS cs_change is true or we are returning
 572	 * a message with an error, or next message is for another chip
 573	 */
 574	if (!last_transfer->cs_change)
 575		cs_deassert(drv_data);
 576	else {
 577		struct spi_message *next_msg;
 578
 579		/* Holding of cs was hinted, but we need to make sure
 580		 * the next message is for the same chip.  Don't waste
 581		 * time with the following tests unless this was hinted.
 582		 *
 583		 * We cannot postpone this until pump_messages, because
 584		 * after calling msg->complete (below) the driver that
 585		 * sent the current message could be unloaded, which
 586		 * could invalidate the cs_control() callback...
 587		 */
 588
 589		/* get a pointer to the next message, if any */
 590		next_msg = spi_get_next_queued_message(drv_data->master);
 591
 592		/* see if the next and current messages point
 593		 * to the same chip
 594		 */
 595		if ((next_msg && next_msg->spi != msg->spi) ||
 596		    msg->state == ERROR_STATE)
 597			cs_deassert(drv_data);
 598	}
 599
 600	spi_finalize_current_message(drv_data->master);
 601}
 602
 603static void reset_sccr1(struct driver_data *drv_data)
 604{
 605	struct chip_data *chip =
 606		spi_get_ctldata(drv_data->master->cur_msg->spi);
 607	u32 sccr1_reg;
 608
 609	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
 610	switch (drv_data->ssp_type) {
 611	case QUARK_X1000_SSP:
 612		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
 613		break;
 614	case CE4100_SSP:
 615		sccr1_reg &= ~CE4100_SSCR1_RFT;
 616		break;
 617	default:
 618		sccr1_reg &= ~SSCR1_RFT;
 619		break;
 620	}
 621	sccr1_reg |= chip->threshold;
 622	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 623}
 624
 625static void int_error_stop(struct driver_data *drv_data, const char* msg)
 626{
 627	/* Stop and reset SSP */
 628	write_SSSR_CS(drv_data, drv_data->clear_sr);
 629	reset_sccr1(drv_data);
 630	if (!pxa25x_ssp_comp(drv_data))
 631		pxa2xx_spi_write(drv_data, SSTO, 0);
 632	pxa2xx_spi_flush(drv_data);
 633	pxa2xx_spi_write(drv_data, SSCR0,
 634			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 635
 636	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 637
 638	drv_data->master->cur_msg->state = ERROR_STATE;
 639	tasklet_schedule(&drv_data->pump_transfers);
 640}
 641
 642static void int_transfer_complete(struct driver_data *drv_data)
 643{
 644	/* Clear and disable interrupts */
 645	write_SSSR_CS(drv_data, drv_data->clear_sr);
 646	reset_sccr1(drv_data);
 647	if (!pxa25x_ssp_comp(drv_data))
 648		pxa2xx_spi_write(drv_data, SSTO, 0);
 649
 650	/* Update total byte transferred return count actual bytes read */
 651	drv_data->master->cur_msg->actual_length += drv_data->len -
 652				(drv_data->rx_end - drv_data->rx);
 653
 654	/* Transfer delays and chip select release are
 655	 * handled in pump_transfers or giveback
 656	 */
 657
 658	/* Move to next transfer */
 659	drv_data->master->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
 
 660
 661	/* Schedule transfer tasklet */
 662	tasklet_schedule(&drv_data->pump_transfers);
 663}
 664
 665static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 666{
 667	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
 668		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 669
 670	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
 
 
 671
 672	if (irq_status & SSSR_ROR) {
 673		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 
 
 
 
 
 674		return IRQ_HANDLED;
 675	}
 676
 677	if (irq_status & SSSR_TINT) {
 678		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 679		if (drv_data->read(drv_data)) {
 680			int_transfer_complete(drv_data);
 681			return IRQ_HANDLED;
 682		}
 683	}
 684
 685	/* Drain rx fifo, Fill tx fifo and prevent overruns */
 686	do {
 687		if (drv_data->read(drv_data)) {
 688			int_transfer_complete(drv_data);
 689			return IRQ_HANDLED;
 690		}
 691	} while (drv_data->write(drv_data));
 692
 693	if (drv_data->read(drv_data)) {
 694		int_transfer_complete(drv_data);
 695		return IRQ_HANDLED;
 696	}
 697
 698	if (drv_data->tx == drv_data->tx_end) {
 699		u32 bytes_left;
 700		u32 sccr1_reg;
 701
 702		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 703		sccr1_reg &= ~SSCR1_TIE;
 704
 705		/*
 706		 * PXA25x_SSP has no timeout, set up rx threshould for the
 707		 * remaining RX bytes.
 708		 */
 709		if (pxa25x_ssp_comp(drv_data)) {
 710			u32 rx_thre;
 711
 712			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 713
 714			bytes_left = drv_data->rx_end - drv_data->rx;
 715			switch (drv_data->n_bytes) {
 716			case 4:
 717				bytes_left >>= 1;
 
 718			case 2:
 719				bytes_left >>= 1;
 
 720			}
 721
 722			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 723			if (rx_thre > bytes_left)
 724				rx_thre = bytes_left;
 725
 726			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 727		}
 728		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 729	}
 730
 731	/* We did something */
 732	return IRQ_HANDLED;
 733}
 734
 
 
 
 
 
 
 
 
 735static irqreturn_t ssp_int(int irq, void *dev_id)
 736{
 737	struct driver_data *drv_data = dev_id;
 738	u32 sccr1_reg;
 739	u32 mask = drv_data->mask_sr;
 740	u32 status;
 741
 742	/*
 743	 * The IRQ might be shared with other peripherals so we must first
 744	 * check that are we RPM suspended or not. If we are we assume that
 745	 * the IRQ was not for us (we shouldn't be RPM suspended when the
 746	 * interrupt is enabled).
 747	 */
 748	if (pm_runtime_suspended(&drv_data->pdev->dev))
 749		return IRQ_NONE;
 750
 751	/*
 752	 * If the device is not yet in RPM suspended state and we get an
 753	 * interrupt that is meant for another device, check if status bits
 754	 * are all set to one. That means that the device is already
 755	 * powered off.
 756	 */
 757	status = pxa2xx_spi_read(drv_data, SSSR);
 758	if (status == ~0)
 759		return IRQ_NONE;
 760
 761	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 762
 763	/* Ignore possible writes if we don't need to write */
 764	if (!(sccr1_reg & SSCR1_TIE))
 765		mask &= ~SSSR_TFS;
 766
 767	/* Ignore RX timeout interrupt if it is disabled */
 768	if (!(sccr1_reg & SSCR1_TINTE))
 769		mask &= ~SSSR_TINT;
 770
 771	if (!(status & mask))
 772		return IRQ_NONE;
 773
 774	if (!drv_data->master->cur_msg) {
 775
 776		pxa2xx_spi_write(drv_data, SSCR0,
 777				 pxa2xx_spi_read(drv_data, SSCR0)
 778				 & ~SSCR0_SSE);
 779		pxa2xx_spi_write(drv_data, SSCR1,
 780				 pxa2xx_spi_read(drv_data, SSCR1)
 781				 & ~drv_data->int_cr1);
 782		if (!pxa25x_ssp_comp(drv_data))
 783			pxa2xx_spi_write(drv_data, SSTO, 0);
 784		write_SSSR_CS(drv_data, drv_data->clear_sr);
 785
 786		dev_err(&drv_data->pdev->dev,
 787			"bad message state in interrupt handler\n");
 788
 
 
 789		/* Never fail */
 790		return IRQ_HANDLED;
 791	}
 792
 793	return drv_data->transfer_handler(drv_data);
 794}
 795
 796/*
 797 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 798 * input frequency by fractions of 2^24. It also has a divider by 5.
 799 *
 800 * There are formulas to get baud rate value for given input frequency and
 801 * divider parameters, such as DDS_CLK_RATE and SCR:
 802 *
 803 * Fsys = 200MHz
 804 *
 805 * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
 806 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
 807 *
 808 * DDS_CLK_RATE either 2^n or 2^n / 5.
 809 * SCR is in range 0 .. 255
 810 *
 811 * Divisor = 5^i * 2^j * 2 * k
 812 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 813 *       j = [0, 23]     j = 0 iff i = 1
 814 *       k = [1, 256]
 815 * Special case: j = 0, i = 1: Divisor = 2 / 5
 816 *
 817 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 818 * are:
 819 *	Case 1:		2^n, n = [0, 23]
 820 *	Case 2:		2^24 * 2 / 5 (0x666666)
 821 *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
 822 *
 823 * In all cases the lowest possible value is better.
 824 *
 825 * The function calculates parameters for all cases and chooses the one closest
 826 * to the asked baud rate.
 827 */
 828static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 829{
 830	unsigned long xtal = 200000000;
 831	unsigned long fref = xtal / 2;		/* mandatory division by 2,
 832						   see (2) */
 833						/* case 3 */
 834	unsigned long fref1 = fref / 2;		/* case 1 */
 835	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
 836	unsigned long scale;
 837	unsigned long q, q1, q2;
 838	long r, r1, r2;
 839	u32 mul;
 840
 841	/* Case 1 */
 842
 843	/* Set initial value for DDS_CLK_RATE */
 844	mul = (1 << 24) >> 1;
 845
 846	/* Calculate initial quot */
 847	q1 = DIV_ROUND_UP(fref1, rate);
 848
 849	/* Scale q1 if it's too big */
 850	if (q1 > 256) {
 851		/* Scale q1 to range [1, 512] */
 852		scale = fls_long(q1 - 1);
 853		if (scale > 9) {
 854			q1 >>= scale - 9;
 855			mul >>= scale - 9;
 856		}
 857
 858		/* Round the result if we have a remainder */
 859		q1 += q1 & 1;
 860	}
 861
 862	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 863	scale = __ffs(q1);
 864	q1 >>= scale;
 865	mul >>= scale;
 866
 867	/* Get the remainder */
 868	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 869
 870	/* Case 2 */
 871
 872	q2 = DIV_ROUND_UP(fref2, rate);
 873	r2 = abs(fref2 / q2 - rate);
 874
 875	/*
 876	 * Choose the best between two: less remainder we have the better. We
 877	 * can't go case 2 if q2 is greater than 256 since SCR register can
 878	 * hold only values 0 .. 255.
 879	 */
 880	if (r2 >= r1 || q2 > 256) {
 881		/* case 1 is better */
 882		r = r1;
 883		q = q1;
 884	} else {
 885		/* case 2 is better */
 886		r = r2;
 887		q = q2;
 888		mul = (1 << 24) * 2 / 5;
 889	}
 890
 891	/* Check case 3 only if the divisor is big enough */
 892	if (fref / rate >= 80) {
 893		u64 fssp;
 894		u32 m;
 895
 896		/* Calculate initial quot */
 897		q1 = DIV_ROUND_UP(fref, rate);
 898		m = (1 << 24) / q1;
 899
 900		/* Get the remainder */
 901		fssp = (u64)fref * m;
 902		do_div(fssp, 1 << 24);
 903		r1 = abs(fssp - rate);
 904
 905		/* Choose this one if it suits better */
 906		if (r1 < r) {
 907			/* case 3 is better */
 908			q = 1;
 909			mul = m;
 910		}
 911	}
 912
 913	*dds = mul;
 914	return q - 1;
 915}
 916
 917static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 918{
 919	unsigned long ssp_clk = drv_data->master->max_speed_hz;
 920	const struct ssp_device *ssp = drv_data->ssp;
 921
 922	rate = min_t(int, ssp_clk, rate);
 923
 
 
 
 
 924	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 925		return (ssp_clk / (2 * rate) - 1) & 0xff;
 926	else
 927		return (ssp_clk / rate - 1) & 0xfff;
 928}
 929
 930static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 931					   int rate)
 932{
 933	struct chip_data *chip =
 934		spi_get_ctldata(drv_data->master->cur_msg->spi);
 935	unsigned int clk_div;
 936
 937	switch (drv_data->ssp_type) {
 938	case QUARK_X1000_SSP:
 939		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 940		break;
 941	default:
 942		clk_div = ssp_get_clk_div(drv_data, rate);
 943		break;
 944	}
 945	return clk_div << 8;
 946}
 947
 948static bool pxa2xx_spi_can_dma(struct spi_master *master,
 949			       struct spi_device *spi,
 950			       struct spi_transfer *xfer)
 951{
 952	struct chip_data *chip = spi_get_ctldata(spi);
 953
 954	return chip->enable_dma &&
 955	       xfer->len <= MAX_DMA_LEN &&
 956	       xfer->len >= chip->dma_burst_size;
 957}
 958
 959static void pump_transfers(unsigned long data)
 
 
 960{
 961	struct driver_data *drv_data = (struct driver_data *)data;
 962	struct spi_master *master = drv_data->master;
 963	struct spi_message *message = master->cur_msg;
 964	struct chip_data *chip = spi_get_ctldata(message->spi);
 965	u32 dma_thresh = chip->dma_threshold;
 966	u32 dma_burst = chip->dma_burst_size;
 967	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 968	struct spi_transfer *transfer;
 969	struct spi_transfer *previous;
 970	u32 clk_div;
 971	u8 bits;
 972	u32 speed;
 973	u32 cr0;
 974	u32 cr1;
 975	int err;
 976	int dma_mapped;
 977
 978	/* Get current state information */
 979	transfer = drv_data->cur_transfer;
 980
 981	/* Handle for abort */
 982	if (message->state == ERROR_STATE) {
 983		message->status = -EIO;
 984		giveback(drv_data);
 985		return;
 986	}
 987
 988	/* Handle end of message */
 989	if (message->state == DONE_STATE) {
 990		message->status = 0;
 991		giveback(drv_data);
 992		return;
 993	}
 994
 995	/* Delay if requested at end of transfer before CS change */
 996	if (message->state == RUNNING_STATE) {
 997		previous = list_entry(transfer->transfer_list.prev,
 998					struct spi_transfer,
 999					transfer_list);
1000		if (previous->delay_usecs)
1001			udelay(previous->delay_usecs);
1002
1003		/* Drop chip select only if cs_change is requested */
1004		if (previous->cs_change)
1005			cs_deassert(drv_data);
1006	}
1007
1008	/* Check if we can DMA this transfer */
1009	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
1010
1011		/* reject already-mapped transfers; PIO won't always work */
1012		if (message->is_dma_mapped
1013				|| transfer->rx_dma || transfer->tx_dma) {
1014			dev_err(&drv_data->pdev->dev,
1015				"pump_transfers: mapped transfer length of "
1016				"%u is greater than %d\n",
1017				transfer->len, MAX_DMA_LEN);
1018			message->status = -EINVAL;
1019			giveback(drv_data);
1020			return;
1021		}
1022
1023		/* warn ... we force this to PIO mode */
1024		dev_warn_ratelimited(&message->spi->dev,
1025				     "pump_transfers: DMA disabled for transfer length %ld "
1026				     "greater than %d\n",
1027				     (long)drv_data->len, MAX_DMA_LEN);
1028	}
1029
1030	/* Setup the transfer state based on the type of transfer */
1031	if (pxa2xx_spi_flush(drv_data) == 0) {
1032		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1033		message->status = -EIO;
1034		giveback(drv_data);
1035		return;
1036	}
1037	drv_data->n_bytes = chip->n_bytes;
1038	drv_data->tx = (void *)transfer->tx_buf;
1039	drv_data->tx_end = drv_data->tx + transfer->len;
1040	drv_data->rx = transfer->rx_buf;
1041	drv_data->rx_end = drv_data->rx + transfer->len;
1042	drv_data->len = transfer->len;
1043	drv_data->write = drv_data->tx ? chip->write : null_writer;
1044	drv_data->read = drv_data->rx ? chip->read : null_reader;
1045
1046	/* Change speed and bit per word on a per transfer */
1047	bits = transfer->bits_per_word;
1048	speed = transfer->speed_hz;
1049
1050	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1051
1052	if (bits <= 8) {
1053		drv_data->n_bytes = 1;
1054		drv_data->read = drv_data->read != null_reader ?
1055					u8_reader : null_reader;
1056		drv_data->write = drv_data->write != null_writer ?
1057					u8_writer : null_writer;
1058	} else if (bits <= 16) {
1059		drv_data->n_bytes = 2;
1060		drv_data->read = drv_data->read != null_reader ?
1061					u16_reader : null_reader;
1062		drv_data->write = drv_data->write != null_writer ?
1063					u16_writer : null_writer;
1064	} else if (bits <= 32) {
1065		drv_data->n_bytes = 4;
1066		drv_data->read = drv_data->read != null_reader ?
1067					u32_reader : null_reader;
1068		drv_data->write = drv_data->write != null_writer ?
1069					u32_writer : null_writer;
1070	}
1071	/*
1072	 * if bits/word is changed in dma mode, then must check the
1073	 * thresholds and burst also
1074	 */
1075	if (chip->enable_dma) {
1076		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1077						message->spi,
1078						bits, &dma_burst,
1079						&dma_thresh))
1080			dev_warn_ratelimited(&message->spi->dev,
1081					     "pump_transfers: DMA burst size reduced to match bits_per_word\n");
1082	}
1083
1084	message->state = RUNNING_STATE;
1085
1086	dma_mapped = master->can_dma &&
1087		     master->can_dma(master, message->spi, transfer) &&
1088		     master->cur_msg_mapped;
1089	if (dma_mapped) {
1090
1091		/* Ensure we have the correct interrupt handler */
1092		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1093
1094		err = pxa2xx_spi_dma_prepare(drv_data, dma_burst);
1095		if (err) {
1096			message->status = err;
1097			giveback(drv_data);
1098			return;
1099		}
1100
1101		/* Clear status and start DMA engine */
1102		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1103		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1104
1105		pxa2xx_spi_dma_start(drv_data);
1106	} else {
1107		/* Ensure we have the correct interrupt handler	*/
1108		drv_data->transfer_handler = interrupt_transfer;
1109
1110		/* Clear status  */
1111		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1112		write_SSSR_CS(drv_data, drv_data->clear_sr);
1113	}
1114
1115	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1116	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1117	if (!pxa25x_ssp_comp(drv_data))
1118		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1119			master->max_speed_hz
1120				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1121			dma_mapped ? "DMA" : "PIO");
1122	else
1123		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1124			master->max_speed_hz / 2
1125				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1126			dma_mapped ? "DMA" : "PIO");
1127
1128	if (is_lpss_ssp(drv_data)) {
1129		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1130		    != chip->lpss_rx_threshold)
1131			pxa2xx_spi_write(drv_data, SSIRF,
1132					 chip->lpss_rx_threshold);
1133		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1134		    != chip->lpss_tx_threshold)
1135			pxa2xx_spi_write(drv_data, SSITF,
1136					 chip->lpss_tx_threshold);
1137	}
1138
1139	if (is_quark_x1000_ssp(drv_data) &&
1140	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1141		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1142
1143	/* see if we need to reload the config registers */
1144	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1145	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1146	    != (cr1 & change_mask)) {
1147		/* stop the SSP, and update the other bits */
1148		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1149		if (!pxa25x_ssp_comp(drv_data))
1150			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1151		/* first set CR1 without interrupt and service enables */
1152		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1153		/* restart the SSP */
1154		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1155
1156	} else {
1157		if (!pxa25x_ssp_comp(drv_data))
1158			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
 
 
 
 
 
1159	}
1160
1161	cs_assert(drv_data);
 
1162
1163	/* after chip select, release the data by enabling service
1164	 * requests and interrupts, without changing any mode bits */
1165	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1166}
1167
1168static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
1169					   struct spi_message *msg)
1170{
1171	struct driver_data *drv_data = spi_master_get_devdata(master);
1172
1173	/* Initial message state*/
1174	msg->state = START_STATE;
1175	drv_data->cur_transfer = list_entry(msg->transfers.next,
1176						struct spi_transfer,
1177						transfer_list);
1178
1179	/* Mark as busy and launch transfers */
1180	tasklet_schedule(&drv_data->pump_transfers);
1181	return 0;
1182}
1183
1184static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1185{
1186	struct driver_data *drv_data = spi_master_get_devdata(master);
 
 
 
 
 
 
 
 
 
 
 
1187
1188	/* Disable the SSP now */
1189	pxa2xx_spi_write(drv_data, SSCR0,
1190			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 
 
 
 
 
 
1191
1192	return 0;
 
 
 
 
 
 
1193}
1194
1195static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1196		    struct pxa2xx_spi_chip *chip_info)
1197{
1198	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1199	int err = 0;
1200
1201	if (chip == NULL)
1202		return 0;
1203
1204	if (drv_data->cs_gpiods) {
1205		struct gpio_desc *gpiod;
1206
1207		gpiod = drv_data->cs_gpiods[spi->chip_select];
1208		if (gpiod) {
1209			chip->gpio_cs = desc_to_gpio(gpiod);
1210			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1211			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1212		}
1213
1214		return 0;
1215	}
1216
1217	if (chip_info == NULL)
1218		return 0;
1219
1220	/* NOTE: setup() can be called multiple times, possibly with
1221	 * different chip_info, release previously requested GPIO
 
 
 
 
1222	 */
1223	if (gpio_is_valid(chip->gpio_cs))
1224		gpio_free(chip->gpio_cs);
1225
1226	/* If (*cs_control) is provided, ignore GPIO chip select */
1227	if (chip_info->cs_control) {
1228		chip->cs_control = chip_info->cs_control;
1229		return 0;
1230	}
1231
1232	if (gpio_is_valid(chip_info->gpio_cs)) {
1233		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1234		if (err) {
1235			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1236				chip_info->gpio_cs);
1237			return err;
1238		}
1239
1240		chip->gpio_cs = chip_info->gpio_cs;
1241		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
 
1242
1243		err = gpio_direction_output(chip->gpio_cs,
1244					!chip->gpio_cs_inverted);
1245	}
1246
1247	return err;
1248}
1249
1250static int setup(struct spi_device *spi)
1251{
1252	struct pxa2xx_spi_chip *chip_info;
1253	struct chip_data *chip;
1254	const struct lpss_config *config;
1255	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
 
1256	uint tx_thres, tx_hi_thres, rx_thres;
1257
1258	switch (drv_data->ssp_type) {
1259	case QUARK_X1000_SSP:
1260		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1261		tx_hi_thres = 0;
1262		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1263		break;
 
 
 
 
 
1264	case CE4100_SSP:
1265		tx_thres = TX_THRESH_CE4100_DFLT;
1266		tx_hi_thres = 0;
1267		rx_thres = RX_THRESH_CE4100_DFLT;
1268		break;
1269	case LPSS_LPT_SSP:
1270	case LPSS_BYT_SSP:
1271	case LPSS_BSW_SSP:
1272	case LPSS_SPT_SSP:
1273	case LPSS_BXT_SSP:
 
1274		config = lpss_get_config(drv_data);
1275		tx_thres = config->tx_threshold_lo;
1276		tx_hi_thres = config->tx_threshold_hi;
1277		rx_thres = config->rx_threshold;
1278		break;
1279	default:
1280		tx_thres = TX_THRESH_DFLT;
1281		tx_hi_thres = 0;
1282		rx_thres = RX_THRESH_DFLT;
 
 
 
 
 
 
1283		break;
1284	}
1285
1286	/* Only alloc on first setup */
 
 
 
 
 
 
 
1287	chip = spi_get_ctldata(spi);
1288	if (!chip) {
1289		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1290		if (!chip)
1291			return -ENOMEM;
 
1292
1293		if (drv_data->ssp_type == CE4100_SSP) {
1294			if (spi->chip_select > 4) {
1295				dev_err(&spi->dev,
1296					"failed setup: cs number must not be > 4.\n");
1297				kfree(chip);
1298				return -EINVAL;
1299			}
1300
1301			chip->frm = spi->chip_select;
1302		} else
1303			chip->gpio_cs = -1;
1304		chip->enable_dma = drv_data->master_info->enable_dma;
1305		chip->timeout = TIMOUT_DFLT;
1306	}
1307
1308	/* protocol drivers may change the chip settings, so...
1309	 * if chip_info exists, use it */
1310	chip_info = spi->controller_data;
 
 
1311
1312	/* chip_info isn't always needed */
1313	chip->cr1 = 0;
1314	if (chip_info) {
1315		if (chip_info->timeout)
1316			chip->timeout = chip_info->timeout;
1317		if (chip_info->tx_threshold)
1318			tx_thres = chip_info->tx_threshold;
1319		if (chip_info->tx_hi_threshold)
1320			tx_hi_thres = chip_info->tx_hi_threshold;
1321		if (chip_info->rx_threshold)
1322			rx_thres = chip_info->rx_threshold;
1323		chip->dma_threshold = 0;
1324		if (chip_info->enable_loopback)
1325			chip->cr1 = SSCR1_LBM;
1326	}
1327
1328	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1329	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1330				| SSITF_TxHiThresh(tx_hi_thres);
1331
1332	/* set dma burst and threshold outside of chip_info path so that if
1333	 * chip_info goes away after setting chip->enable_dma, the
1334	 * burst and threshold can still respond to changes in bits_per_word */
1335	if (chip->enable_dma) {
1336		/* set up legal burst and threshold for dma */
1337		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1338						spi->bits_per_word,
1339						&chip->dma_burst_size,
1340						&chip->dma_threshold)) {
1341			dev_warn(&spi->dev,
1342				 "in setup: DMA burst size reduced to match bits_per_word\n");
1343		}
1344	}
1345
1346	switch (drv_data->ssp_type) {
1347	case QUARK_X1000_SSP:
1348		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1349				   & QUARK_X1000_SSCR1_RFT)
1350				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1351				   & QUARK_X1000_SSCR1_TFT);
1352		break;
1353	case CE4100_SSP:
1354		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1355			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1356		break;
1357	default:
1358		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1359			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1360		break;
1361	}
1362
1363	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1364	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1365			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1366
1367	if (spi->mode & SPI_LOOP)
1368		chip->cr1 |= SSCR1_LBM;
1369
1370	if (spi->bits_per_word <= 8) {
1371		chip->n_bytes = 1;
1372		chip->read = u8_reader;
1373		chip->write = u8_writer;
1374	} else if (spi->bits_per_word <= 16) {
1375		chip->n_bytes = 2;
1376		chip->read = u16_reader;
1377		chip->write = u16_writer;
1378	} else if (spi->bits_per_word <= 32) {
1379		chip->n_bytes = 4;
1380		chip->read = u32_reader;
1381		chip->write = u32_writer;
1382	}
1383
1384	spi_set_ctldata(spi, chip);
1385
1386	if (drv_data->ssp_type == CE4100_SSP)
1387		return 0;
1388
1389	return setup_cs(spi, chip, chip_info);
1390}
1391
1392static void cleanup(struct spi_device *spi)
1393{
1394	struct chip_data *chip = spi_get_ctldata(spi);
1395	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1396
1397	if (!chip)
1398		return;
1399
1400	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1401	    gpio_is_valid(chip->gpio_cs))
1402		gpio_free(chip->gpio_cs);
1403
1404	kfree(chip);
1405}
1406
1407#ifdef CONFIG_PCI
1408#ifdef CONFIG_ACPI
1409
1410static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1411	{ "INT33C0", LPSS_LPT_SSP },
1412	{ "INT33C1", LPSS_LPT_SSP },
1413	{ "INT3430", LPSS_LPT_SSP },
1414	{ "INT3431", LPSS_LPT_SSP },
1415	{ "80860F0E", LPSS_BYT_SSP },
1416	{ "8086228E", LPSS_BSW_SSP },
1417	{ },
1418};
1419MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1420
1421static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1422{
1423	unsigned int devid;
1424	int port_id = -1;
1425
1426	if (adev && adev->pnp.unique_id &&
1427	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1428		port_id = devid;
1429	return port_id;
1430}
1431#else /* !CONFIG_ACPI */
1432static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1433{
1434	return -1;
1435}
1436#endif
1437
1438/*
1439 * PCI IDs of compound devices that integrate both host controller and private
1440 * integrated DMA engine. Please note these are not used in module
1441 * autoloading and probing in this module but matching the LPSS SSP type.
1442 */
1443static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1444	/* SPT-LP */
1445	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1446	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1447	/* SPT-H */
1448	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1449	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1450	/* KBL-H */
1451	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1452	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1453	/* BXT A-Step */
1454	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1455	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1456	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1457	/* BXT B-Step */
1458	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1459	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1460	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1461	/* APL */
1462	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1463	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1464	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1465	{ },
1466};
1467
1468static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1469{
1470	struct device *dev = param;
1471
1472	if (dev != chan->device->dev->parent)
1473		return false;
1474
1475	return true;
1476}
1477
1478static struct pxa2xx_spi_master *
1479pxa2xx_spi_init_pdata(struct platform_device *pdev)
1480{
1481	struct pxa2xx_spi_master *pdata;
1482	struct acpi_device *adev;
1483	struct ssp_device *ssp;
1484	struct resource *res;
1485	const struct acpi_device_id *adev_id = NULL;
1486	const struct pci_device_id *pcidev_id = NULL;
1487	int type;
1488
1489	adev = ACPI_COMPANION(&pdev->dev);
1490
1491	if (dev_is_pci(pdev->dev.parent))
1492		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1493					 to_pci_dev(pdev->dev.parent));
1494	else if (adev)
1495		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1496					    &pdev->dev);
1497	else
1498		return NULL;
1499
1500	if (adev_id)
1501		type = (int)adev_id->driver_data;
1502	else if (pcidev_id)
1503		type = (int)pcidev_id->driver_data;
1504	else
1505		return NULL;
1506
1507	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1508	if (!pdata)
1509		return NULL;
1510
1511	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1512	if (!res)
1513		return NULL;
1514
1515	ssp = &pdata->ssp;
1516
1517	ssp->phys_base = res->start;
1518	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1519	if (IS_ERR(ssp->mmio_base))
1520		return NULL;
1521
1522	if (pcidev_id) {
1523		pdata->tx_param = pdev->dev.parent;
1524		pdata->rx_param = pdev->dev.parent;
1525		pdata->dma_filter = pxa2xx_spi_idma_filter;
1526	}
1527
1528	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1529	ssp->irq = platform_get_irq(pdev, 0);
1530	ssp->type = type;
1531	ssp->pdev = pdev;
1532	ssp->port_id = pxa2xx_spi_get_port_id(adev);
1533
1534	pdata->num_chipselect = 1;
1535	pdata->enable_dma = true;
1536
1537	return pdata;
1538}
1539
1540#else /* !CONFIG_PCI */
1541static inline struct pxa2xx_spi_master *
1542pxa2xx_spi_init_pdata(struct platform_device *pdev)
1543{
1544	return NULL;
1545}
1546#endif
1547
1548static int pxa2xx_spi_fw_translate_cs(struct spi_master *master, unsigned cs)
 
1549{
1550	struct driver_data *drv_data = spi_master_get_devdata(master);
1551
1552	if (has_acpi_companion(&drv_data->pdev->dev)) {
1553		switch (drv_data->ssp_type) {
1554		/*
1555		 * For Atoms the ACPI DeviceSelection used by the Windows
1556		 * driver starts from 1 instead of 0 so translate it here
1557		 * to match what Linux expects.
1558		 */
1559		case LPSS_BYT_SSP:
1560		case LPSS_BSW_SSP:
1561			return cs - 1;
1562
1563		default:
1564			break;
1565		}
1566	}
1567
1568	return cs;
1569}
1570
1571static int pxa2xx_spi_probe(struct platform_device *pdev)
1572{
1573	struct device *dev = &pdev->dev;
1574	struct pxa2xx_spi_master *platform_info;
1575	struct spi_master *master;
1576	struct driver_data *drv_data;
1577	struct ssp_device *ssp;
1578	const struct lpss_config *config;
1579	int status, count;
1580	u32 tmp;
1581
1582	platform_info = dev_get_platdata(dev);
1583	if (!platform_info) {
1584		platform_info = pxa2xx_spi_init_pdata(pdev);
1585		if (!platform_info) {
1586			dev_err(&pdev->dev, "missing platform data\n");
1587			return -ENODEV;
1588		}
1589	}
1590
1591	ssp = pxa_ssp_request(pdev->id, pdev->name);
1592	if (!ssp)
1593		ssp = &platform_info->ssp;
1594
1595	if (!ssp->mmio_base) {
1596		dev_err(&pdev->dev, "failed to get ssp\n");
1597		return -ENODEV;
1598	}
1599
1600	master = spi_alloc_master(dev, sizeof(struct driver_data));
1601	if (!master) {
1602		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1603		pxa_ssp_free(ssp);
1604		return -ENOMEM;
1605	}
1606	drv_data = spi_master_get_devdata(master);
1607	drv_data->master = master;
1608	drv_data->master_info = platform_info;
1609	drv_data->pdev = pdev;
1610	drv_data->ssp = ssp;
1611
1612	master->dev.of_node = pdev->dev.of_node;
1613	/* the spi->mode bits understood by this driver: */
1614	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1615
1616	master->bus_num = ssp->port_id;
1617	master->dma_alignment = DMA_ALIGNMENT;
1618	master->cleanup = cleanup;
1619	master->setup = setup;
1620	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1621	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1622	master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1623	master->auto_runtime_pm = true;
1624	master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
 
 
 
 
1625
1626	drv_data->ssp_type = ssp->type;
1627
1628	drv_data->ioaddr = ssp->mmio_base;
1629	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1630	if (pxa25x_ssp_comp(drv_data)) {
1631		switch (drv_data->ssp_type) {
1632		case QUARK_X1000_SSP:
1633			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1634			break;
1635		default:
1636			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1637			break;
1638		}
1639
1640		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1641		drv_data->dma_cr1 = 0;
1642		drv_data->clear_sr = SSSR_ROR;
1643		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1644	} else {
1645		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1646		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1647		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1648		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1649		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
 
1650	}
1651
1652	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1653			drv_data);
1654	if (status < 0) {
1655		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1656		goto out_error_master_alloc;
1657	}
1658
1659	/* Setup DMA if requested */
1660	if (platform_info->enable_dma) {
1661		status = pxa2xx_spi_dma_setup(drv_data);
1662		if (status) {
1663			dev_dbg(dev, "no DMA channels available, using PIO\n");
1664			platform_info->enable_dma = false;
1665		} else {
1666			master->can_dma = pxa2xx_spi_can_dma;
 
 
 
 
 
1667		}
1668	}
1669
1670	/* Enable SOC clock */
1671	clk_prepare_enable(ssp->clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1672
1673	master->max_speed_hz = clk_get_rate(ssp->clk);
1674
1675	/* Load default SSP configuration */
1676	pxa2xx_spi_write(drv_data, SSCR0, 0);
1677	switch (drv_data->ssp_type) {
1678	case QUARK_X1000_SSP:
1679		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1680		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1681		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1682
1683		/* using the Motorola SPI protocol and use 8 bit frame */
1684		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1685		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1686		break;
1687	case CE4100_SSP:
1688		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1689		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1690		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1691		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1692		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1693		break;
1694	default:
1695		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1696		      SSCR1_TxTresh(TX_THRESH_DFLT);
 
 
 
 
 
 
 
 
 
 
1697		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1698		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
 
 
1699		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1700		break;
1701	}
1702
1703	if (!pxa25x_ssp_comp(drv_data))
1704		pxa2xx_spi_write(drv_data, SSTO, 0);
1705
1706	if (!is_quark_x1000_ssp(drv_data))
1707		pxa2xx_spi_write(drv_data, SSPSP, 0);
1708
1709	if (is_lpss_ssp(drv_data)) {
1710		lpss_ssp_setup(drv_data);
1711		config = lpss_get_config(drv_data);
1712		if (config->reg_capabilities >= 0) {
1713			tmp = __lpss_ssp_read_priv(drv_data,
1714						   config->reg_capabilities);
1715			tmp &= LPSS_CAPS_CS_EN_MASK;
1716			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1717			platform_info->num_chipselect = ffz(tmp);
1718		} else if (config->cs_num) {
1719			platform_info->num_chipselect = config->cs_num;
1720		}
1721	}
1722	master->num_chipselect = platform_info->num_chipselect;
 
1723
1724	count = gpiod_count(&pdev->dev, "cs");
1725	if (count > 0) {
1726		int i;
1727
1728		master->num_chipselect = max_t(int, count,
1729			master->num_chipselect);
1730
1731		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1732			master->num_chipselect, sizeof(struct gpio_desc *),
1733			GFP_KERNEL);
1734		if (!drv_data->cs_gpiods) {
1735			status = -ENOMEM;
1736			goto out_error_clock_enabled;
1737		}
1738
1739		for (i = 0; i < master->num_chipselect; i++) {
1740			struct gpio_desc *gpiod;
1741
1742			gpiod = devm_gpiod_get_index(dev, "cs", i,
1743						     GPIOD_OUT_HIGH);
1744			if (IS_ERR(gpiod)) {
1745				/* Means use native chip select */
1746				if (PTR_ERR(gpiod) == -ENOENT)
1747					continue;
1748
1749				status = (int)PTR_ERR(gpiod);
1750				goto out_error_clock_enabled;
1751			} else {
1752				drv_data->cs_gpiods[i] = gpiod;
1753			}
1754		}
1755	}
1756
1757	tasklet_init(&drv_data->pump_transfers, pump_transfers,
1758		     (unsigned long)drv_data);
1759
1760	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1761	pm_runtime_use_autosuspend(&pdev->dev);
1762	pm_runtime_set_active(&pdev->dev);
1763	pm_runtime_enable(&pdev->dev);
1764
1765	/* Register with the SPI framework */
1766	platform_set_drvdata(pdev, drv_data);
1767	status = devm_spi_register_master(&pdev->dev, master);
1768	if (status != 0) {
1769		dev_err(&pdev->dev, "problem registering spi master\n");
1770		goto out_error_clock_enabled;
1771	}
1772
1773	return status;
1774
1775out_error_clock_enabled:
1776	clk_disable_unprepare(ssp->clk);
 
 
1777	pxa2xx_spi_dma_release(drv_data);
1778	free_irq(ssp->irq, drv_data);
1779
1780out_error_master_alloc:
1781	spi_master_put(master);
1782	pxa_ssp_free(ssp);
1783	return status;
1784}
 
1785
1786static int pxa2xx_spi_remove(struct platform_device *pdev)
1787{
1788	struct driver_data *drv_data = platform_get_drvdata(pdev);
1789	struct ssp_device *ssp;
1790
1791	if (!drv_data)
1792		return 0;
1793	ssp = drv_data->ssp;
1794
1795	pm_runtime_get_sync(&pdev->dev);
1796
1797	/* Disable the SSP at the peripheral and SOC level */
1798	pxa2xx_spi_write(drv_data, SSCR0, 0);
1799	clk_disable_unprepare(ssp->clk);
1800
1801	/* Release DMA */
1802	if (drv_data->master_info->enable_dma)
1803		pxa2xx_spi_dma_release(drv_data);
1804
1805	pm_runtime_put_noidle(&pdev->dev);
1806	pm_runtime_disable(&pdev->dev);
1807
1808	/* Release IRQ */
1809	free_irq(ssp->irq, drv_data);
1810
1811	/* Release SSP */
1812	pxa_ssp_free(ssp);
1813
1814	return 0;
1815}
 
1816
1817static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1818{
1819	int status = 0;
1820
1821	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1822		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1823}
1824
1825#ifdef CONFIG_PM_SLEEP
1826static int pxa2xx_spi_suspend(struct device *dev)
1827{
1828	struct driver_data *drv_data = dev_get_drvdata(dev);
1829	struct ssp_device *ssp = drv_data->ssp;
1830	int status;
1831
1832	status = spi_master_suspend(drv_data->master);
1833	if (status != 0)
1834		return status;
1835	pxa2xx_spi_write(drv_data, SSCR0, 0);
 
1836
1837	if (!pm_runtime_suspended(dev))
1838		clk_disable_unprepare(ssp->clk);
1839
1840	return 0;
1841}
1842
1843static int pxa2xx_spi_resume(struct device *dev)
1844{
1845	struct driver_data *drv_data = dev_get_drvdata(dev);
1846	struct ssp_device *ssp = drv_data->ssp;
1847	int status;
1848
1849	/* Enable the SSP clock */
1850	if (!pm_runtime_suspended(dev))
1851		clk_prepare_enable(ssp->clk);
1852
1853	/* Restore LPSS private register bits */
1854	if (is_lpss_ssp(drv_data))
1855		lpss_ssp_setup(drv_data);
1856
1857	/* Start the queue running */
1858	status = spi_master_resume(drv_data->master);
1859	if (status != 0) {
1860		dev_err(dev, "problem starting queue (%d)\n", status);
1861		return status;
1862	}
1863
1864	return 0;
 
1865}
1866#endif
1867
1868#ifdef CONFIG_PM
1869static int pxa2xx_spi_runtime_suspend(struct device *dev)
1870{
1871	struct driver_data *drv_data = dev_get_drvdata(dev);
1872
1873	clk_disable_unprepare(drv_data->ssp->clk);
1874	return 0;
1875}
1876
1877static int pxa2xx_spi_runtime_resume(struct device *dev)
1878{
1879	struct driver_data *drv_data = dev_get_drvdata(dev);
1880
1881	clk_prepare_enable(drv_data->ssp->clk);
1882	return 0;
1883}
1884#endif
1885
1886static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1887	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1888	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1889			   pxa2xx_spi_runtime_resume, NULL)
1890};
1891
1892static struct platform_driver driver = {
1893	.driver = {
1894		.name	= "pxa2xx-spi",
1895		.pm	= &pxa2xx_spi_pm_ops,
1896		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1897	},
1898	.probe = pxa2xx_spi_probe,
1899	.remove = pxa2xx_spi_remove,
1900	.shutdown = pxa2xx_spi_shutdown,
1901};
1902
1903static int __init pxa2xx_spi_init(void)
1904{
1905	return platform_driver_register(&driver);
1906}
1907subsys_initcall(pxa2xx_spi_init);
1908
1909static void __exit pxa2xx_spi_exit(void)
1910{
1911	platform_driver_unregister(&driver);
1912}
1913module_exit(pxa2xx_spi_exit);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   4 * Copyright (C) 2013, 2021 Intel Corporation
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/atomic.h>
   8#include <linux/bitops.h>
   9#include <linux/bug.h>
  10#include <linux/clk.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/dmaengine.h>
 
  14#include <linux/err.h>
 
 
 
 
 
 
 
 
  15#include <linux/gpio/consumer.h>
  16#include <linux/interrupt.h>
  17#include <linux/io.h>
  18#include <linux/ioport.h>
  19#include <linux/math64.h>
  20#include <linux/minmax.h>
  21#include <linux/module.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/property.h>
  24#include <linux/slab.h>
  25#include <linux/types.h>
  26
  27#include <linux/spi/spi.h>
  28
  29#include "internals.h"
  30#include "spi-pxa2xx.h"
 
 
  31
  32#define TIMOUT_DFLT		1000
  33
  34/*
  35 * For testing SSCR1 changes that require SSP restart, basically
  36 * everything except the service and interrupt enables, the PXA270 developer
  37 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  38 * list, but the PXA255 developer manual says all bits without really meaning
  39 * the service and interrupt enables.
  40 */
  41#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  42				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  43				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  44				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  45				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  46				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  47
  48#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
  49				| QUARK_X1000_SSCR1_EFWR	\
  50				| QUARK_X1000_SSCR1_RFT		\
  51				| QUARK_X1000_SSCR1_TFT		\
  52				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  53
  54#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  55				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  56				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  57				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  58				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
  59				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  60
  61struct chip_data {
  62	u32 cr1;
  63	u32 dds_rate;
  64	u32 threshold;
  65	u16 lpss_rx_threshold;
  66	u16 lpss_tx_threshold;
  67};
  68
  69#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
  70#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
  71#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
  72#define LPSS_CAPS_CS_EN_SHIFT			9
  73#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
  74
  75#define LPSS_PRIV_CLOCK_GATE 0x38
  76#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
  77#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
  78
  79struct lpss_config {
  80	/* LPSS offset from drv_data->ioaddr */
  81	unsigned offset;
  82	/* Register offsets from drv_data->lpss_base or -1 */
  83	int reg_general;
  84	int reg_ssp;
  85	int reg_cs_ctrl;
  86	int reg_capabilities;
  87	/* FIFO thresholds */
  88	u32 rx_threshold;
  89	u32 tx_threshold_lo;
  90	u32 tx_threshold_hi;
  91	/* Chip select control */
  92	unsigned cs_sel_shift;
  93	unsigned cs_sel_mask;
  94	/* Quirks */
  95	unsigned cs_clk_stays_gated : 1;
  96};
  97
  98/* Keep these sorted with enum pxa_ssp_type */
  99static const struct lpss_config lpss_platforms[] = {
 100	{	/* LPSS_LPT_SSP */
 101		.offset = 0x800,
 102		.reg_general = 0x08,
 103		.reg_ssp = 0x0c,
 104		.reg_cs_ctrl = 0x18,
 105		.reg_capabilities = -1,
 106		.rx_threshold = 64,
 107		.tx_threshold_lo = 160,
 108		.tx_threshold_hi = 224,
 109	},
 110	{	/* LPSS_BYT_SSP */
 111		.offset = 0x400,
 112		.reg_general = 0x08,
 113		.reg_ssp = 0x0c,
 114		.reg_cs_ctrl = 0x18,
 115		.reg_capabilities = -1,
 116		.rx_threshold = 64,
 117		.tx_threshold_lo = 160,
 118		.tx_threshold_hi = 224,
 119	},
 120	{	/* LPSS_BSW_SSP */
 121		.offset = 0x400,
 122		.reg_general = 0x08,
 123		.reg_ssp = 0x0c,
 124		.reg_cs_ctrl = 0x18,
 125		.reg_capabilities = -1,
 126		.rx_threshold = 64,
 127		.tx_threshold_lo = 160,
 128		.tx_threshold_hi = 224,
 129		.cs_sel_shift = 2,
 130		.cs_sel_mask = 1 << 2,
 
 131	},
 132	{	/* LPSS_SPT_SSP */
 133		.offset = 0x200,
 134		.reg_general = -1,
 135		.reg_ssp = 0x20,
 136		.reg_cs_ctrl = 0x24,
 137		.reg_capabilities = -1,
 138		.rx_threshold = 1,
 139		.tx_threshold_lo = 32,
 140		.tx_threshold_hi = 56,
 141	},
 142	{	/* LPSS_BXT_SSP */
 143		.offset = 0x200,
 144		.reg_general = -1,
 145		.reg_ssp = 0x20,
 146		.reg_cs_ctrl = 0x24,
 147		.reg_capabilities = 0xfc,
 148		.rx_threshold = 1,
 149		.tx_threshold_lo = 16,
 150		.tx_threshold_hi = 48,
 151		.cs_sel_shift = 8,
 152		.cs_sel_mask = 3 << 8,
 153		.cs_clk_stays_gated = true,
 154	},
 155	{	/* LPSS_CNL_SSP */
 156		.offset = 0x200,
 157		.reg_general = -1,
 158		.reg_ssp = 0x20,
 159		.reg_cs_ctrl = 0x24,
 160		.reg_capabilities = 0xfc,
 161		.rx_threshold = 1,
 162		.tx_threshold_lo = 32,
 163		.tx_threshold_hi = 56,
 164		.cs_sel_shift = 8,
 165		.cs_sel_mask = 3 << 8,
 166		.cs_clk_stays_gated = true,
 167	},
 168};
 169
 170static inline const struct lpss_config
 171*lpss_get_config(const struct driver_data *drv_data)
 172{
 173	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 174}
 175
 176static bool is_lpss_ssp(const struct driver_data *drv_data)
 177{
 178	switch (drv_data->ssp_type) {
 179	case LPSS_LPT_SSP:
 180	case LPSS_BYT_SSP:
 181	case LPSS_BSW_SSP:
 182	case LPSS_SPT_SSP:
 183	case LPSS_BXT_SSP:
 184	case LPSS_CNL_SSP:
 185		return true;
 186	default:
 187		return false;
 188	}
 189}
 190
 191static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 192{
 193	return drv_data->ssp_type == QUARK_X1000_SSP;
 194}
 195
 196static bool is_mmp2_ssp(const struct driver_data *drv_data)
 197{
 198	return drv_data->ssp_type == MMP2_SSP;
 199}
 200
 201static bool is_mrfld_ssp(const struct driver_data *drv_data)
 202{
 203	return drv_data->ssp_type == MRFLD_SSP;
 204}
 205
 206static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
 207{
 208	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
 209		pxa2xx_spi_write(drv_data, reg, value & mask);
 210}
 211
 212static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 213{
 214	switch (drv_data->ssp_type) {
 215	case QUARK_X1000_SSP:
 216		return QUARK_X1000_SSCR1_CHANGE_MASK;
 217	case CE4100_SSP:
 218		return CE4100_SSCR1_CHANGE_MASK;
 219	default:
 220		return SSCR1_CHANGE_MASK;
 221	}
 222}
 223
 224static u32
 225pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 226{
 227	switch (drv_data->ssp_type) {
 228	case QUARK_X1000_SSP:
 229		return RX_THRESH_QUARK_X1000_DFLT;
 230	case CE4100_SSP:
 231		return RX_THRESH_CE4100_DFLT;
 232	default:
 233		return RX_THRESH_DFLT;
 234	}
 235}
 236
 237static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 238{
 239	u32 mask;
 240
 241	switch (drv_data->ssp_type) {
 242	case QUARK_X1000_SSP:
 243		mask = QUARK_X1000_SSSR_TFL_MASK;
 244		break;
 245	case CE4100_SSP:
 246		mask = CE4100_SSSR_TFL_MASK;
 247		break;
 248	default:
 249		mask = SSSR_TFL_MASK;
 250		break;
 251	}
 252
 253	return read_SSSR_bits(drv_data, mask) == mask;
 254}
 255
 256static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 257				     u32 *sccr1_reg)
 258{
 259	u32 mask;
 260
 261	switch (drv_data->ssp_type) {
 262	case QUARK_X1000_SSP:
 263		mask = QUARK_X1000_SSCR1_RFT;
 264		break;
 265	case CE4100_SSP:
 266		mask = CE4100_SSCR1_RFT;
 267		break;
 268	default:
 269		mask = SSCR1_RFT;
 270		break;
 271	}
 272	*sccr1_reg &= ~mask;
 273}
 274
 275static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 276				   u32 *sccr1_reg, u32 threshold)
 277{
 278	switch (drv_data->ssp_type) {
 279	case QUARK_X1000_SSP:
 280		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 281		break;
 282	case CE4100_SSP:
 283		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
 284		break;
 285	default:
 286		*sccr1_reg |= SSCR1_RxTresh(threshold);
 287		break;
 288	}
 289}
 290
 291static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 292				  u32 clk_div, u8 bits)
 293{
 294	switch (drv_data->ssp_type) {
 295	case QUARK_X1000_SSP:
 296		return clk_div
 297			| QUARK_X1000_SSCR0_Motorola
 298			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
 
 299	default:
 300		return clk_div
 301			| SSCR0_Motorola
 302			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 
 303			| (bits > 16 ? SSCR0_EDSS : 0);
 304	}
 305}
 306
 307/*
 308 * Read and write LPSS SSP private registers. Caller must first check that
 309 * is_lpss_ssp() returns true before these can be called.
 310 */
 311static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 312{
 313	WARN_ON(!drv_data->lpss_base);
 314	return readl(drv_data->lpss_base + offset);
 315}
 316
 317static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 318				  unsigned offset, u32 value)
 319{
 320	WARN_ON(!drv_data->lpss_base);
 321	writel(value, drv_data->lpss_base + offset);
 322}
 323
 324/*
 325 * lpss_ssp_setup - perform LPSS SSP specific setup
 326 * @drv_data: pointer to the driver private data
 327 *
 328 * Perform LPSS SSP specific setup. This function must be called first if
 329 * one is going to use LPSS SSP private registers.
 330 */
 331static void lpss_ssp_setup(struct driver_data *drv_data)
 332{
 333	const struct lpss_config *config;
 334	u32 value;
 335
 336	config = lpss_get_config(drv_data);
 337	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
 338
 339	/* Enable software chip select control */
 340	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 341	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 342	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 343	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 344
 345	/* Enable multiblock DMA transfers */
 346	if (drv_data->controller_info->enable_dma) {
 347		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 348
 349		if (config->reg_general >= 0) {
 350			value = __lpss_ssp_read_priv(drv_data,
 351						     config->reg_general);
 352			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 353			__lpss_ssp_write_priv(drv_data,
 354					      config->reg_general, value);
 355		}
 356	}
 357}
 358
 359static void lpss_ssp_select_cs(struct spi_device *spi,
 360			       const struct lpss_config *config)
 361{
 362	struct driver_data *drv_data =
 363		spi_controller_get_devdata(spi->controller);
 364	u32 value, cs;
 365
 366	if (!config->cs_sel_mask)
 367		return;
 368
 369	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 370
 371	cs = spi_get_chipselect(spi, 0);
 372	cs <<= config->cs_sel_shift;
 373	if (cs != (value & config->cs_sel_mask)) {
 374		/*
 375		 * When switching another chip select output active the
 376		 * output must be selected first and wait 2 ssp_clk cycles
 377		 * before changing state to active. Otherwise a short
 378		 * glitch will occur on the previous chip select since
 379		 * output select is latched but state control is not.
 380		 */
 381		value &= ~config->cs_sel_mask;
 382		value |= cs;
 383		__lpss_ssp_write_priv(drv_data,
 384				      config->reg_cs_ctrl, value);
 385		ndelay(1000000000 /
 386		       (drv_data->controller->max_speed_hz / 2));
 387	}
 388}
 389
 390static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
 391{
 392	struct driver_data *drv_data =
 393		spi_controller_get_devdata(spi->controller);
 394	const struct lpss_config *config;
 395	u32 value;
 396
 397	config = lpss_get_config(drv_data);
 398
 399	if (enable)
 400		lpss_ssp_select_cs(spi, config);
 401
 402	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 403	if (enable)
 404		value &= ~LPSS_CS_CONTROL_CS_HIGH;
 405	else
 406		value |= LPSS_CS_CONTROL_CS_HIGH;
 407	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 408	if (config->cs_clk_stays_gated) {
 409		u32 clkgate;
 410
 411		/*
 412		 * Changing CS alone when dynamic clock gating is on won't
 413		 * actually flip CS at that time. This ruins SPI transfers
 414		 * that specify delays, or have no data. Toggle the clock mode
 415		 * to force on briefly to poke the CS pin to move.
 416		 */
 417		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
 418		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
 419			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
 420
 421		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
 422		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
 
 423	}
 424}
 425
 426static void cs_assert(struct spi_device *spi)
 427{
 428	struct driver_data *drv_data =
 429		spi_controller_get_devdata(spi->controller);
 430
 431	if (drv_data->ssp_type == CE4100_SSP) {
 432		pxa2xx_spi_write(drv_data, SSSR, spi_get_chipselect(spi, 0));
 433		return;
 434	}
 435
 436	if (is_lpss_ssp(drv_data))
 437		lpss_ssp_cs_control(spi, true);
 438}
 439
 440static void cs_deassert(struct spi_device *spi)
 441{
 442	struct driver_data *drv_data =
 443		spi_controller_get_devdata(spi->controller);
 444	unsigned long timeout;
 445
 446	if (drv_data->ssp_type == CE4100_SSP)
 447		return;
 448
 449	/* Wait until SSP becomes idle before deasserting the CS */
 450	timeout = jiffies + msecs_to_jiffies(10);
 451	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 452	       !time_after(jiffies, timeout))
 453		cpu_relax();
 
 
 
 
 454
 455	if (is_lpss_ssp(drv_data))
 456		lpss_ssp_cs_control(spi, false);
 457}
 458
 459static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
 460{
 461	if (level)
 462		cs_deassert(spi);
 463	else
 464		cs_assert(spi);
 465}
 466
 467int pxa2xx_spi_flush(struct driver_data *drv_data)
 468{
 469	unsigned long limit = loops_per_jiffy << 1;
 470
 471	do {
 472		while (read_SSSR_bits(drv_data, SSSR_RNE))
 473			pxa2xx_spi_read(drv_data, SSDR);
 474	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 475	write_SSSR_CS(drv_data, SSSR_ROR);
 476
 477	return limit;
 478}
 479
 480static void pxa2xx_spi_off(struct driver_data *drv_data)
 481{
 482	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
 483	if (is_mmp2_ssp(drv_data))
 484		return;
 485
 486	pxa_ssp_disable(drv_data->ssp);
 487}
 488
 489static int null_writer(struct driver_data *drv_data)
 490{
 491	u8 n_bytes = drv_data->n_bytes;
 492
 493	if (pxa2xx_spi_txfifo_full(drv_data)
 494		|| (drv_data->tx == drv_data->tx_end))
 495		return 0;
 496
 497	pxa2xx_spi_write(drv_data, SSDR, 0);
 498	drv_data->tx += n_bytes;
 499
 500	return 1;
 501}
 502
 503static int null_reader(struct driver_data *drv_data)
 504{
 505	u8 n_bytes = drv_data->n_bytes;
 506
 507	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 
 508		pxa2xx_spi_read(drv_data, SSDR);
 509		drv_data->rx += n_bytes;
 510	}
 511
 512	return drv_data->rx == drv_data->rx_end;
 513}
 514
 515static int u8_writer(struct driver_data *drv_data)
 516{
 517	if (pxa2xx_spi_txfifo_full(drv_data)
 518		|| (drv_data->tx == drv_data->tx_end))
 519		return 0;
 520
 521	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 522	++drv_data->tx;
 523
 524	return 1;
 525}
 526
 527static int u8_reader(struct driver_data *drv_data)
 528{
 529	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 
 530		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 531		++drv_data->rx;
 532	}
 533
 534	return drv_data->rx == drv_data->rx_end;
 535}
 536
 537static int u16_writer(struct driver_data *drv_data)
 538{
 539	if (pxa2xx_spi_txfifo_full(drv_data)
 540		|| (drv_data->tx == drv_data->tx_end))
 541		return 0;
 542
 543	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 544	drv_data->tx += 2;
 545
 546	return 1;
 547}
 548
 549static int u16_reader(struct driver_data *drv_data)
 550{
 551	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 
 552		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 553		drv_data->rx += 2;
 554	}
 555
 556	return drv_data->rx == drv_data->rx_end;
 557}
 558
 559static int u32_writer(struct driver_data *drv_data)
 560{
 561	if (pxa2xx_spi_txfifo_full(drv_data)
 562		|| (drv_data->tx == drv_data->tx_end))
 563		return 0;
 564
 565	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 566	drv_data->tx += 4;
 567
 568	return 1;
 569}
 570
 571static int u32_reader(struct driver_data *drv_data)
 572{
 573	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 
 574		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 575		drv_data->rx += 4;
 576	}
 577
 578	return drv_data->rx == drv_data->rx_end;
 579}
 580
 581static void reset_sccr1(struct driver_data *drv_data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 582{
 583	u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
 584	struct chip_data *chip;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 585
 586	if (drv_data->controller->cur_msg) {
 587		chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
 588		threshold = chip->threshold;
 589	} else {
 590		threshold = 0;
 
 591	}
 592
 
 
 
 
 
 
 
 
 
 
 593	switch (drv_data->ssp_type) {
 594	case QUARK_X1000_SSP:
 595		mask |= QUARK_X1000_SSCR1_RFT;
 596		break;
 597	case CE4100_SSP:
 598		mask |= CE4100_SSCR1_RFT;
 599		break;
 600	default:
 601		mask |= SSCR1_RFT;
 602		break;
 603	}
 604
 605	pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
 606}
 607
 608static void int_stop_and_reset(struct driver_data *drv_data)
 609{
 610	/* Clear and disable interrupts */
 611	write_SSSR_CS(drv_data, drv_data->clear_sr);
 612	reset_sccr1(drv_data);
 613	if (pxa25x_ssp_comp(drv_data))
 614		return;
 
 
 
 
 
 615
 616	pxa2xx_spi_write(drv_data, SSTO, 0);
 
 617}
 618
 619static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
 620{
 621	int_stop_and_reset(drv_data);
 622	pxa2xx_spi_flush(drv_data);
 623	pxa2xx_spi_off(drv_data);
 
 
 624
 625	dev_err(drv_data->ssp->dev, "%s\n", msg);
 
 
 626
 627	drv_data->controller->cur_msg->status = err;
 628	spi_finalize_current_transfer(drv_data->controller);
 629}
 630
 631static void int_transfer_complete(struct driver_data *drv_data)
 632{
 633	int_stop_and_reset(drv_data);
 634
 635	spi_finalize_current_transfer(drv_data->controller);
 
 636}
 637
 638static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 639{
 640	u32 irq_status;
 
 641
 642	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
 643	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
 644		irq_status &= ~SSSR_TFS;
 645
 646	if (irq_status & SSSR_ROR) {
 647		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
 648		return IRQ_HANDLED;
 649	}
 650
 651	if (irq_status & SSSR_TUR) {
 652		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
 653		return IRQ_HANDLED;
 654	}
 655
 656	if (irq_status & SSSR_TINT) {
 657		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 658		if (drv_data->read(drv_data)) {
 659			int_transfer_complete(drv_data);
 660			return IRQ_HANDLED;
 661		}
 662	}
 663
 664	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
 665	do {
 666		if (drv_data->read(drv_data)) {
 667			int_transfer_complete(drv_data);
 668			return IRQ_HANDLED;
 669		}
 670	} while (drv_data->write(drv_data));
 671
 672	if (drv_data->read(drv_data)) {
 673		int_transfer_complete(drv_data);
 674		return IRQ_HANDLED;
 675	}
 676
 677	if (drv_data->tx == drv_data->tx_end) {
 678		u32 bytes_left;
 679		u32 sccr1_reg;
 680
 681		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 682		sccr1_reg &= ~SSCR1_TIE;
 683
 684		/*
 685		 * PXA25x_SSP has no timeout, set up Rx threshold for
 686		 * the remaining Rx bytes.
 687		 */
 688		if (pxa25x_ssp_comp(drv_data)) {
 689			u32 rx_thre;
 690
 691			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 692
 693			bytes_left = drv_data->rx_end - drv_data->rx;
 694			switch (drv_data->n_bytes) {
 695			case 4:
 696				bytes_left >>= 2;
 697				break;
 698			case 2:
 699				bytes_left >>= 1;
 700				break;
 701			}
 702
 703			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 704			if (rx_thre > bytes_left)
 705				rx_thre = bytes_left;
 706
 707			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 708		}
 709		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 710	}
 711
 712	/* We did something */
 713	return IRQ_HANDLED;
 714}
 715
 716static void handle_bad_msg(struct driver_data *drv_data)
 717{
 718	int_stop_and_reset(drv_data);
 719	pxa2xx_spi_off(drv_data);
 720
 721	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
 722}
 723
 724static irqreturn_t ssp_int(int irq, void *dev_id)
 725{
 726	struct driver_data *drv_data = dev_id;
 727	u32 sccr1_reg;
 728	u32 mask = drv_data->mask_sr;
 729	u32 status;
 730
 731	/*
 732	 * The IRQ might be shared with other peripherals so we must first
 733	 * check that are we RPM suspended or not. If we are we assume that
 734	 * the IRQ was not for us (we shouldn't be RPM suspended when the
 735	 * interrupt is enabled).
 736	 */
 737	if (pm_runtime_suspended(drv_data->ssp->dev))
 738		return IRQ_NONE;
 739
 740	/*
 741	 * If the device is not yet in RPM suspended state and we get an
 742	 * interrupt that is meant for another device, check if status bits
 743	 * are all set to one. That means that the device is already
 744	 * powered off.
 745	 */
 746	status = pxa2xx_spi_read(drv_data, SSSR);
 747	if (status == ~0)
 748		return IRQ_NONE;
 749
 750	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 751
 752	/* Ignore possible writes if we don't need to write */
 753	if (!(sccr1_reg & SSCR1_TIE))
 754		mask &= ~SSSR_TFS;
 755
 756	/* Ignore RX timeout interrupt if it is disabled */
 757	if (!(sccr1_reg & SSCR1_TINTE))
 758		mask &= ~SSSR_TINT;
 759
 760	if (!(status & mask))
 761		return IRQ_NONE;
 762
 763	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
 764	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 
 
 
 
 
 
 
 
 
 
 
 
 765
 766	if (!drv_data->controller->cur_msg) {
 767		handle_bad_msg(drv_data);
 768		/* Never fail */
 769		return IRQ_HANDLED;
 770	}
 771
 772	return drv_data->transfer_handler(drv_data);
 773}
 774
 775/*
 776 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 777 * input frequency by fractions of 2^24. It also has a divider by 5.
 778 *
 779 * There are formulas to get baud rate value for given input frequency and
 780 * divider parameters, such as DDS_CLK_RATE and SCR:
 781 *
 782 * Fsys = 200MHz
 783 *
 784 * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
 785 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
 786 *
 787 * DDS_CLK_RATE either 2^n or 2^n / 5.
 788 * SCR is in range 0 .. 255
 789 *
 790 * Divisor = 5^i * 2^j * 2 * k
 791 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 792 *       j = [0, 23]     j = 0 iff i = 1
 793 *       k = [1, 256]
 794 * Special case: j = 0, i = 1: Divisor = 2 / 5
 795 *
 796 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 797 * are:
 798 *	Case 1:		2^n, n = [0, 23]
 799 *	Case 2:		2^24 * 2 / 5 (0x666666)
 800 *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
 801 *
 802 * In all cases the lowest possible value is better.
 803 *
 804 * The function calculates parameters for all cases and chooses the one closest
 805 * to the asked baud rate.
 806 */
 807static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 808{
 809	unsigned long xtal = 200000000;
 810	unsigned long fref = xtal / 2;		/* mandatory division by 2,
 811						   see (2) */
 812						/* case 3 */
 813	unsigned long fref1 = fref / 2;		/* case 1 */
 814	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
 815	unsigned long scale;
 816	unsigned long q, q1, q2;
 817	long r, r1, r2;
 818	u32 mul;
 819
 820	/* Case 1 */
 821
 822	/* Set initial value for DDS_CLK_RATE */
 823	mul = (1 << 24) >> 1;
 824
 825	/* Calculate initial quot */
 826	q1 = DIV_ROUND_UP(fref1, rate);
 827
 828	/* Scale q1 if it's too big */
 829	if (q1 > 256) {
 830		/* Scale q1 to range [1, 512] */
 831		scale = fls_long(q1 - 1);
 832		if (scale > 9) {
 833			q1 >>= scale - 9;
 834			mul >>= scale - 9;
 835		}
 836
 837		/* Round the result if we have a remainder */
 838		q1 += q1 & 1;
 839	}
 840
 841	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 842	scale = __ffs(q1);
 843	q1 >>= scale;
 844	mul >>= scale;
 845
 846	/* Get the remainder */
 847	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 848
 849	/* Case 2 */
 850
 851	q2 = DIV_ROUND_UP(fref2, rate);
 852	r2 = abs(fref2 / q2 - rate);
 853
 854	/*
 855	 * Choose the best between two: less remainder we have the better. We
 856	 * can't go case 2 if q2 is greater than 256 since SCR register can
 857	 * hold only values 0 .. 255.
 858	 */
 859	if (r2 >= r1 || q2 > 256) {
 860		/* case 1 is better */
 861		r = r1;
 862		q = q1;
 863	} else {
 864		/* case 2 is better */
 865		r = r2;
 866		q = q2;
 867		mul = (1 << 24) * 2 / 5;
 868	}
 869
 870	/* Check case 3 only if the divisor is big enough */
 871	if (fref / rate >= 80) {
 872		u64 fssp;
 873		u32 m;
 874
 875		/* Calculate initial quot */
 876		q1 = DIV_ROUND_UP(fref, rate);
 877		m = (1 << 24) / q1;
 878
 879		/* Get the remainder */
 880		fssp = (u64)fref * m;
 881		do_div(fssp, 1 << 24);
 882		r1 = abs(fssp - rate);
 883
 884		/* Choose this one if it suits better */
 885		if (r1 < r) {
 886			/* case 3 is better */
 887			q = 1;
 888			mul = m;
 889		}
 890	}
 891
 892	*dds = mul;
 893	return q - 1;
 894}
 895
 896static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 897{
 898	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
 899	const struct ssp_device *ssp = drv_data->ssp;
 900
 901	rate = min_t(int, ssp_clk, rate);
 902
 903	/*
 904	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
 905	 * that the SSP transmission rate can be greater than the device rate.
 906	 */
 907	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 908		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
 909	else
 910		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
 911}
 912
 913static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 914					   int rate)
 915{
 916	struct chip_data *chip =
 917		spi_get_ctldata(drv_data->controller->cur_msg->spi);
 918	unsigned int clk_div;
 919
 920	switch (drv_data->ssp_type) {
 921	case QUARK_X1000_SSP:
 922		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 923		break;
 924	default:
 925		clk_div = ssp_get_clk_div(drv_data, rate);
 926		break;
 927	}
 928	return clk_div << 8;
 929}
 930
 931static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
 932			       struct spi_device *spi,
 933			       struct spi_transfer *xfer)
 934{
 935	struct driver_data *drv_data = spi_controller_get_devdata(controller);
 936
 937	return drv_data->controller_info->enable_dma &&
 938	       xfer->len <= MAX_DMA_LEN &&
 939	       xfer->len >= drv_data->controller_info->dma_burst_size;
 940}
 941
 942static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
 943				   struct spi_device *spi,
 944				   struct spi_transfer *transfer)
 945{
 946	struct driver_data *drv_data = spi_controller_get_devdata(controller);
 947	struct chip_data *chip = spi_get_ctldata(spi);
 
 
 
 
 948	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 949	u32 dma_thresh;
 
 950	u32 clk_div;
 951	u8 bits;
 952	u32 speed;
 953	u32 cr0;
 954	u32 cr1;
 955	int err;
 956	int dma_mapped;
 957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 958	/* Check if we can DMA this transfer */
 959	if (transfer->len > MAX_DMA_LEN && drv_data->controller_info->enable_dma) {
 960		/* Warn ... we force this to PIO mode */
 961		dev_warn_ratelimited(&spi->dev,
 962				     "DMA disabled for transfer length %u greater than %d\n",
 963				     transfer->len, MAX_DMA_LEN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964	}
 965
 966	/* Setup the transfer state based on the type of transfer */
 967	if (pxa2xx_spi_flush(drv_data) == 0) {
 968		dev_err(&spi->dev, "Flush failed\n");
 969		return -EIO;
 
 
 970	}
 
 971	drv_data->tx = (void *)transfer->tx_buf;
 972	drv_data->tx_end = drv_data->tx + transfer->len;
 973	drv_data->rx = transfer->rx_buf;
 974	drv_data->rx_end = drv_data->rx + transfer->len;
 
 
 
 975
 976	/* Change speed and bit per word on a per transfer */
 977	bits = transfer->bits_per_word;
 978	speed = transfer->speed_hz;
 979
 980	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
 981
 982	if (bits <= 8) {
 983		drv_data->n_bytes = 1;
 984		drv_data->read = drv_data->rx ? u8_reader : null_reader;
 985		drv_data->write = drv_data->tx ? u8_writer : null_writer;
 
 
 986	} else if (bits <= 16) {
 987		drv_data->n_bytes = 2;
 988		drv_data->read = drv_data->rx ? u16_reader : null_reader;
 989		drv_data->write = drv_data->tx ? u16_writer : null_writer;
 
 
 990	} else if (bits <= 32) {
 991		drv_data->n_bytes = 4;
 992		drv_data->read = drv_data->rx ? u32_reader : null_reader;
 993		drv_data->write = drv_data->tx ? u32_writer : null_writer;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994	}
 995
 996	dma_thresh = SSCR1_RxTresh(RX_THRESH_DFLT) | SSCR1_TxTresh(TX_THRESH_DFLT);
 997	dma_mapped = spi_xfer_is_dma_mapped(controller, spi, transfer);
 
 
 
 998	if (dma_mapped) {
 
 999		/* Ensure we have the correct interrupt handler */
1000		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1001
1002		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1003		if (err)
1004			return err;
 
 
 
1005
1006		/* Clear status and start DMA engine */
1007		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1008		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1009
1010		pxa2xx_spi_dma_start(drv_data);
1011	} else {
1012		/* Ensure we have the correct interrupt handler	*/
1013		drv_data->transfer_handler = interrupt_transfer;
1014
1015		/* Clear status  */
1016		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1017		write_SSSR_CS(drv_data, drv_data->clear_sr);
1018	}
1019
1020	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1021	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1022	if (!pxa25x_ssp_comp(drv_data))
1023		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1024			controller->max_speed_hz
1025				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1026			dma_mapped ? "DMA" : "PIO");
1027	else
1028		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1029			controller->max_speed_hz / 2
1030				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1031			dma_mapped ? "DMA" : "PIO");
1032
1033	if (is_lpss_ssp(drv_data)) {
1034		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1035		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1036	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037
1038	if (is_mrfld_ssp(drv_data)) {
1039		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1040		u32 thresh = 0;
1041
1042		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1043		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1044
1045		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1046	}
1047
1048	if (is_quark_x1000_ssp(drv_data))
1049		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1050
1051	/* Stop the SSP */
1052	if (!is_mmp2_ssp(drv_data))
1053		pxa_ssp_disable(drv_data->ssp);
 
1054
1055	if (!pxa25x_ssp_comp(drv_data))
1056		pxa2xx_spi_write(drv_data, SSTO, TIMOUT_DFLT);
 
 
1057
1058	/* First set CR1 without interrupt and service enables */
1059	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
 
 
 
1060
1061	/* See if we need to reload the configuration registers */
1062	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
 
 
1063
1064	/* Restart the SSP */
1065	pxa_ssp_enable(drv_data->ssp);
1066
1067	if (is_mmp2_ssp(drv_data)) {
1068		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1069
1070		if (tx_level) {
1071			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1072			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1073			if (tx_level > transfer->len)
1074				tx_level = transfer->len;
1075			drv_data->tx += tx_level;
1076		}
1077	}
1078
1079	if (spi_controller_is_target(controller)) {
1080		while (drv_data->write(drv_data))
1081			;
1082		if (drv_data->gpiod_ready) {
1083			gpiod_set_value(drv_data->gpiod_ready, 1);
1084			udelay(1);
1085			gpiod_set_value(drv_data->gpiod_ready, 0);
1086		}
1087	}
1088
1089	/*
1090	 * Release the data by enabling service requests and interrupts,
1091	 * without changing any mode bits.
1092	 */
1093	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1094
1095	return 1;
1096}
1097
1098static int pxa2xx_spi_target_abort(struct spi_controller *controller)
 
1099{
1100	struct driver_data *drv_data = spi_controller_get_devdata(controller);
 
1101
1102	int_error_stop(drv_data, "transfer aborted", -EINTR);
 
1103
1104	return 0;
1105}
1106
1107static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1108				 struct spi_message *msg)
1109{
1110	struct driver_data *drv_data = spi_controller_get_devdata(controller);
 
 
1111
1112	int_stop_and_reset(drv_data);
 
1113
1114	/* Disable the SSP */
1115	pxa2xx_spi_off(drv_data);
1116
1117	/*
1118	 * Stop the DMA if running. Note DMA callback handler may have unset
1119	 * the dma_running already, which is fine as stopping is not needed
1120	 * then but we shouldn't rely this flag for anything else than
1121	 * stopping. For instance to differentiate between PIO and DMA
1122	 * transfers.
1123	 */
1124	if (atomic_read(&drv_data->dma_running))
1125		pxa2xx_spi_dma_stop(drv_data);
1126}
 
 
 
 
 
 
 
 
 
 
 
 
 
1127
1128static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1129{
1130	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1131
1132	/* Disable the SSP now */
1133	pxa2xx_spi_off(drv_data);
 
1134
1135	return 0;
1136}
1137
1138static int setup(struct spi_device *spi)
1139{
 
1140	struct chip_data *chip;
1141	const struct lpss_config *config;
1142	struct driver_data *drv_data =
1143		spi_controller_get_devdata(spi->controller);
1144	uint tx_thres, tx_hi_thres, rx_thres;
1145
1146	switch (drv_data->ssp_type) {
1147	case QUARK_X1000_SSP:
1148		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1149		tx_hi_thres = 0;
1150		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1151		break;
1152	case MRFLD_SSP:
1153		tx_thres = TX_THRESH_MRFLD_DFLT;
1154		tx_hi_thres = 0;
1155		rx_thres = RX_THRESH_MRFLD_DFLT;
1156		break;
1157	case CE4100_SSP:
1158		tx_thres = TX_THRESH_CE4100_DFLT;
1159		tx_hi_thres = 0;
1160		rx_thres = RX_THRESH_CE4100_DFLT;
1161		break;
1162	case LPSS_LPT_SSP:
1163	case LPSS_BYT_SSP:
1164	case LPSS_BSW_SSP:
1165	case LPSS_SPT_SSP:
1166	case LPSS_BXT_SSP:
1167	case LPSS_CNL_SSP:
1168		config = lpss_get_config(drv_data);
1169		tx_thres = config->tx_threshold_lo;
1170		tx_hi_thres = config->tx_threshold_hi;
1171		rx_thres = config->rx_threshold;
1172		break;
1173	default:
 
1174		tx_hi_thres = 0;
1175		if (spi_controller_is_target(drv_data->controller)) {
1176			tx_thres = 1;
1177			rx_thres = 2;
1178		} else {
1179			tx_thres = TX_THRESH_DFLT;
1180			rx_thres = RX_THRESH_DFLT;
1181		}
1182		break;
1183	}
1184
1185	if (drv_data->ssp_type == CE4100_SSP) {
1186		if (spi_get_chipselect(spi, 0) > 4) {
1187			dev_err(&spi->dev, "failed setup: cs number must not be > 4.\n");
1188			return -EINVAL;
1189		}
1190	}
1191
1192	/* Only allocate on the first setup */
1193	chip = spi_get_ctldata(spi);
1194	if (!chip) {
1195		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1196		if (!chip)
1197			return -ENOMEM;
1198	}
1199
1200	chip->cr1 = 0;
1201	if (spi_controller_is_target(drv_data->controller)) {
1202		chip->cr1 |= SSCR1_SCFR;
1203		chip->cr1 |= SSCR1_SCLKDIR;
1204		chip->cr1 |= SSCR1_SFRMDIR;
1205		chip->cr1 |= SSCR1_SPH;
 
 
 
 
 
 
 
1206	}
1207
1208	if (is_lpss_ssp(drv_data)) {
1209		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1210		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1211					  SSITF_TxHiThresh(tx_hi_thres);
1212	}
1213
1214	if (is_mrfld_ssp(drv_data)) {
1215		chip->lpss_rx_threshold = rx_thres;
1216		chip->lpss_tx_threshold = tx_thres;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1217	}
1218
1219	switch (drv_data->ssp_type) {
1220	case QUARK_X1000_SSP:
1221		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1222				   & QUARK_X1000_SSCR1_RFT)
1223				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1224				   & QUARK_X1000_SSCR1_TFT);
1225		break;
1226	case CE4100_SSP:
1227		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1228			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1229		break;
1230	default:
1231		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1232			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1233		break;
1234	}
1235
1236	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1237	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1238		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1239
1240	if (spi->mode & SPI_LOOP)
1241		chip->cr1 |= SSCR1_LBM;
1242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243	spi_set_ctldata(spi, chip);
1244
1245	return 0;
 
 
 
1246}
1247
1248static void cleanup(struct spi_device *spi)
1249{
1250	struct chip_data *chip = spi_get_ctldata(spi);
 
 
 
 
 
 
 
 
1251
1252	kfree(chip);
1253}
1254
1255static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1256				      unsigned int cs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1257{
1258	struct driver_data *drv_data = spi_controller_get_devdata(controller);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259
1260	switch (drv_data->ssp_type) {
1261	/*
1262	 * For some of Intel Atoms the ACPI DeviceSelection used by the Windows
1263	 * driver starts from 1 instead of 0 so translate it here to match what
1264	 * Linux expects.
1265	 */
1266	case LPSS_BYT_SSP:
1267	case LPSS_BSW_SSP:
1268		return cs - 1;
 
 
 
 
 
1269
1270	default:
1271		return cs;
 
 
1272	}
 
 
 
 
 
 
 
 
 
 
 
1273}
1274
1275static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
 
 
1276{
1277	return MAX_DMA_LEN;
1278}
 
1279
1280int pxa2xx_spi_probe(struct device *dev, struct ssp_device *ssp,
1281		     struct pxa2xx_spi_controller *platform_info)
1282{
1283	struct spi_controller *controller;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284	struct driver_data *drv_data;
 
1285	const struct lpss_config *config;
1286	int status;
1287	u32 tmp;
1288
1289	if (platform_info->is_target)
1290		controller = devm_spi_alloc_target(dev, sizeof(*drv_data));
1291	else
1292		controller = devm_spi_alloc_host(dev, sizeof(*drv_data));
1293	if (!controller)
1294		return dev_err_probe(dev, -ENOMEM, "cannot alloc spi_controller\n");
1295
1296	drv_data = spi_controller_get_devdata(controller);
1297	drv_data->controller = controller;
1298	drv_data->controller_info = platform_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299	drv_data->ssp = ssp;
1300
1301	device_set_node(&controller->dev, dev_fwnode(dev));
1302
1303	/* The spi->mode bits understood by this driver: */
1304	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1305
1306	controller->bus_num = ssp->port_id;
1307	controller->dma_alignment = DMA_ALIGNMENT;
1308	controller->cleanup = cleanup;
1309	controller->setup = setup;
1310	controller->set_cs = pxa2xx_spi_set_cs;
1311	controller->transfer_one = pxa2xx_spi_transfer_one;
1312	controller->target_abort = pxa2xx_spi_target_abort;
1313	controller->handle_err = pxa2xx_spi_handle_err;
1314	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1315	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1316	controller->auto_runtime_pm = true;
1317	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1318
1319	drv_data->ssp_type = ssp->type;
1320
 
 
1321	if (pxa25x_ssp_comp(drv_data)) {
1322		switch (drv_data->ssp_type) {
1323		case QUARK_X1000_SSP:
1324			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1325			break;
1326		default:
1327			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1328			break;
1329		}
1330
1331		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1332		drv_data->dma_cr1 = 0;
1333		drv_data->clear_sr = SSSR_ROR;
1334		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1335	} else {
1336		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1337		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1338		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1339		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1340		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1341						| SSSR_ROR | SSSR_TUR;
1342	}
1343
1344	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1345			drv_data);
1346	if (status < 0)
1347		return dev_err_probe(dev, status, "cannot get IRQ %d\n", ssp->irq);
 
 
1348
1349	/* Setup DMA if requested */
1350	if (platform_info->enable_dma) {
1351		status = pxa2xx_spi_dma_setup(drv_data);
1352		if (status) {
1353			dev_warn(dev, "no DMA channels available, using PIO\n");
1354			platform_info->enable_dma = false;
1355		} else {
1356			controller->can_dma = pxa2xx_spi_can_dma;
1357			controller->max_dma_len = MAX_DMA_LEN;
1358			controller->max_transfer_size =
1359				pxa2xx_spi_max_dma_transfer_size;
1360
1361			dev_dbg(dev, "DMA burst size set to %u\n", platform_info->dma_burst_size);
1362		}
1363	}
1364
1365	/* Enable SOC clock */
1366	status = clk_prepare_enable(ssp->clk);
1367	if (status)
1368		goto out_error_dma_irq_alloc;
1369
1370	controller->max_speed_hz = clk_get_rate(ssp->clk);
1371	/*
1372	 * Set minimum speed for all other platforms than Intel Quark which is
1373	 * able do under 1 Hz transfers.
1374	 */
1375	if (!pxa25x_ssp_comp(drv_data))
1376		controller->min_speed_hz =
1377			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1378	else if (!is_quark_x1000_ssp(drv_data))
1379		controller->min_speed_hz =
1380			DIV_ROUND_UP(controller->max_speed_hz, 512);
1381
1382	pxa_ssp_disable(ssp);
1383
1384	/* Load default SSP configuration */
 
1385	switch (drv_data->ssp_type) {
1386	case QUARK_X1000_SSP:
1387		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1388		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1389		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1390
1391		/* Using the Motorola SPI protocol and use 8 bit frame */
1392		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1393		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1394		break;
1395	case CE4100_SSP:
1396		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1397		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1398		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1399		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1400		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1401		break;
1402	default:
1403
1404		if (spi_controller_is_target(controller)) {
1405			tmp = SSCR1_SCFR |
1406			      SSCR1_SCLKDIR |
1407			      SSCR1_SFRMDIR |
1408			      SSCR1_RxTresh(2) |
1409			      SSCR1_TxTresh(1) |
1410			      SSCR1_SPH;
1411		} else {
1412			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1413			      SSCR1_TxTresh(TX_THRESH_DFLT);
1414		}
1415		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1416		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1417		if (!spi_controller_is_target(controller))
1418			tmp |= SSCR0_SCR(2);
1419		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1420		break;
1421	}
1422
1423	if (!pxa25x_ssp_comp(drv_data))
1424		pxa2xx_spi_write(drv_data, SSTO, 0);
1425
1426	if (!is_quark_x1000_ssp(drv_data))
1427		pxa2xx_spi_write(drv_data, SSPSP, 0);
1428
1429	if (is_lpss_ssp(drv_data)) {
1430		lpss_ssp_setup(drv_data);
1431		config = lpss_get_config(drv_data);
1432		if (config->reg_capabilities >= 0) {
1433			tmp = __lpss_ssp_read_priv(drv_data,
1434						   config->reg_capabilities);
1435			tmp &= LPSS_CAPS_CS_EN_MASK;
1436			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1437			platform_info->num_chipselect = ffz(tmp);
 
 
1438		}
1439	}
1440	controller->num_chipselect = platform_info->num_chipselect;
1441	controller->use_gpio_descriptors = true;
1442
1443	if (platform_info->is_target) {
1444		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1445						"ready", GPIOD_OUT_LOW);
1446		if (IS_ERR(drv_data->gpiod_ready)) {
1447			status = PTR_ERR(drv_data->gpiod_ready);
 
 
 
 
 
 
 
1448			goto out_error_clock_enabled;
1449		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1450	}
1451
 
 
 
 
 
 
 
 
1452	/* Register with the SPI framework */
1453	dev_set_drvdata(dev, drv_data);
1454	status = spi_register_controller(controller);
1455	if (status) {
1456		dev_err_probe(dev, status, "problem registering SPI controller\n");
1457		goto out_error_clock_enabled;
1458	}
1459
1460	return status;
1461
1462out_error_clock_enabled:
1463	clk_disable_unprepare(ssp->clk);
1464
1465out_error_dma_irq_alloc:
1466	pxa2xx_spi_dma_release(drv_data);
1467	free_irq(ssp->irq, drv_data);
1468
 
 
 
1469	return status;
1470}
1471EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_probe, "SPI_PXA2xx");
1472
1473void pxa2xx_spi_remove(struct device *dev)
1474{
1475	struct driver_data *drv_data = dev_get_drvdata(dev);
1476	struct ssp_device *ssp = drv_data->ssp;
 
 
 
 
1477
1478	spi_unregister_controller(drv_data->controller);
1479
1480	/* Disable the SSP at the peripheral and SOC level */
1481	pxa_ssp_disable(ssp);
1482	clk_disable_unprepare(ssp->clk);
1483
1484	/* Release DMA */
1485	if (drv_data->controller_info->enable_dma)
1486		pxa2xx_spi_dma_release(drv_data);
1487
 
 
 
1488	/* Release IRQ */
1489	free_irq(ssp->irq, drv_data);
 
 
 
 
 
1490}
1491EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_remove, "SPI_PXA2xx");
1492
 
 
 
 
 
 
 
 
 
1493static int pxa2xx_spi_suspend(struct device *dev)
1494{
1495	struct driver_data *drv_data = dev_get_drvdata(dev);
1496	struct ssp_device *ssp = drv_data->ssp;
1497	int status;
1498
1499	status = spi_controller_suspend(drv_data->controller);
1500	if (status)
1501		return status;
1502
1503	pxa_ssp_disable(ssp);
1504
1505	if (!pm_runtime_suspended(dev))
1506		clk_disable_unprepare(ssp->clk);
1507
1508	return 0;
1509}
1510
1511static int pxa2xx_spi_resume(struct device *dev)
1512{
1513	struct driver_data *drv_data = dev_get_drvdata(dev);
1514	struct ssp_device *ssp = drv_data->ssp;
1515	int status;
1516
1517	/* Enable the SSP clock */
1518	if (!pm_runtime_suspended(dev)) {
1519		status = clk_prepare_enable(ssp->clk);
1520		if (status)
1521			return status;
 
 
 
 
 
 
 
 
1522	}
1523
1524	/* Start the queue running */
1525	return spi_controller_resume(drv_data->controller);
1526}
 
1527
 
1528static int pxa2xx_spi_runtime_suspend(struct device *dev)
1529{
1530	struct driver_data *drv_data = dev_get_drvdata(dev);
1531
1532	clk_disable_unprepare(drv_data->ssp->clk);
1533	return 0;
1534}
1535
1536static int pxa2xx_spi_runtime_resume(struct device *dev)
1537{
1538	struct driver_data *drv_data = dev_get_drvdata(dev);
1539
1540	return clk_prepare_enable(drv_data->ssp->clk);
 
1541}
 
1542
1543EXPORT_NS_GPL_DEV_PM_OPS(pxa2xx_spi_pm_ops, SPI_PXA2xx) = {
1544	SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1545	RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL)
 
1546};
1547
1548MODULE_AUTHOR("Stephen Street");
1549MODULE_DESCRIPTION("PXA2xx SSP SPI Controller core driver");
1550MODULE_LICENSE("GPL");