Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
   4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
   5 *
   6 * Copyright (C) 2005, Intec Automation Inc.
   7 * Copyright (C) 2014, Freescale Semiconductor, Inc.
   8 */
   9
  10#include <linux/err.h>
  11#include <linux/errno.h>
  12#include <linux/delay.h>
  13#include <linux/device.h>
  14#include <linux/math64.h>
  15#include <linux/module.h>
  16#include <linux/mtd/mtd.h>
  17#include <linux/mtd/spi-nor.h>
  18#include <linux/mutex.h>
  19#include <linux/of_platform.h>
  20#include <linux/sched/task_stack.h>
  21#include <linux/sizes.h>
  22#include <linux/slab.h>
  23#include <linux/spi/flash.h>
  24
  25#include "core.h"
  26
  27/* Define max times to check status register before we give up. */
  28
  29/*
  30 * For everything but full-chip erase; probably could be much smaller, but kept
  31 * around for safety for now
  32 */
  33#define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
  34
  35/*
  36 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
  37 * for larger flash
  38 */
  39#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
  40
  41#define SPI_NOR_MAX_ADDR_NBYTES	4
  42
  43#define SPI_NOR_SRST_SLEEP_MIN 200
  44#define SPI_NOR_SRST_SLEEP_MAX 400
  45
  46/**
  47 * spi_nor_get_cmd_ext() - Get the command opcode extension based on the
  48 *			   extension type.
  49 * @nor:		pointer to a 'struct spi_nor'
  50 * @op:			pointer to the 'struct spi_mem_op' whose properties
  51 *			need to be initialized.
  52 *
  53 * Right now, only "repeat" and "invert" are supported.
  54 *
  55 * Return: The opcode extension.
  56 */
  57static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
  58			      const struct spi_mem_op *op)
  59{
  60	switch (nor->cmd_ext_type) {
  61	case SPI_NOR_EXT_INVERT:
  62		return ~op->cmd.opcode;
  63
  64	case SPI_NOR_EXT_REPEAT:
  65		return op->cmd.opcode;
  66
  67	default:
  68		dev_err(nor->dev, "Unknown command extension type\n");
  69		return 0;
  70	}
  71}
  72
  73/**
  74 * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op.
  75 * @nor:		pointer to a 'struct spi_nor'
  76 * @op:			pointer to the 'struct spi_mem_op' whose properties
  77 *			need to be initialized.
  78 * @proto:		the protocol from which the properties need to be set.
  79 */
  80void spi_nor_spimem_setup_op(const struct spi_nor *nor,
  81			     struct spi_mem_op *op,
  82			     const enum spi_nor_protocol proto)
  83{
  84	u8 ext;
  85
  86	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
  87
  88	if (op->addr.nbytes)
  89		op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
  90
  91	if (op->dummy.nbytes)
  92		op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
  93
  94	if (op->data.nbytes)
  95		op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
  96
  97	if (spi_nor_protocol_is_dtr(proto)) {
  98		/*
  99		 * SPIMEM supports mixed DTR modes, but right now we can only
 100		 * have all phases either DTR or STR. IOW, SPIMEM can have
 101		 * something like 4S-4D-4D, but SPI NOR can't. So, set all 4
 102		 * phases to either DTR or STR.
 103		 */
 104		op->cmd.dtr = true;
 105		op->addr.dtr = true;
 106		op->dummy.dtr = true;
 107		op->data.dtr = true;
 108
 109		/* 2 bytes per clock cycle in DTR mode. */
 110		op->dummy.nbytes *= 2;
 111
 112		ext = spi_nor_get_cmd_ext(nor, op);
 113		op->cmd.opcode = (op->cmd.opcode << 8) | ext;
 114		op->cmd.nbytes = 2;
 115	}
 116
 117	if (proto == SNOR_PROTO_8_8_8_DTR && nor->flags & SNOR_F_SWAP16)
 118		op->data.swap16 = true;
 119}
 120
 121/**
 122 * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
 123 *                           transfer
 124 * @nor:        pointer to 'struct spi_nor'
 125 * @op:         pointer to 'struct spi_mem_op' template for transfer
 126 *
 127 * If we have to use the bounce buffer, the data field in @op will be updated.
 128 *
 129 * Return: true if the bounce buffer is needed, false if not
 130 */
 131static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
 132{
 133	/* op->data.buf.in occupies the same memory as op->data.buf.out */
 134	if (object_is_on_stack(op->data.buf.in) ||
 135	    !virt_addr_valid(op->data.buf.in)) {
 136		if (op->data.nbytes > nor->bouncebuf_size)
 137			op->data.nbytes = nor->bouncebuf_size;
 138		op->data.buf.in = nor->bouncebuf;
 139		return true;
 140	}
 141
 142	return false;
 143}
 144
 145/**
 146 * spi_nor_spimem_exec_op() - execute a memory operation
 147 * @nor:        pointer to 'struct spi_nor'
 148 * @op:         pointer to 'struct spi_mem_op' template for transfer
 149 *
 150 * Return: 0 on success, -error otherwise.
 151 */
 152static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
 153{
 154	int error;
 155
 156	error = spi_mem_adjust_op_size(nor->spimem, op);
 157	if (error)
 158		return error;
 159
 160	return spi_mem_exec_op(nor->spimem, op);
 161}
 162
 163int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode,
 164				    u8 *buf, size_t len)
 165{
 166	if (spi_nor_protocol_is_dtr(nor->reg_proto))
 167		return -EOPNOTSUPP;
 168
 169	return nor->controller_ops->read_reg(nor, opcode, buf, len);
 170}
 171
 172int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode,
 173				     const u8 *buf, size_t len)
 174{
 175	if (spi_nor_protocol_is_dtr(nor->reg_proto))
 176		return -EOPNOTSUPP;
 177
 178	return nor->controller_ops->write_reg(nor, opcode, buf, len);
 179}
 180
 181static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs)
 182{
 183	if (spi_nor_protocol_is_dtr(nor->reg_proto))
 184		return -EOPNOTSUPP;
 185
 186	return nor->controller_ops->erase(nor, offs);
 187}
 188
 189/**
 190 * spi_nor_spimem_read_data() - read data from flash's memory region via
 191 *                              spi-mem
 192 * @nor:        pointer to 'struct spi_nor'
 193 * @from:       offset to read from
 194 * @len:        number of bytes to read
 195 * @buf:        pointer to dst buffer
 196 *
 197 * Return: number of bytes read successfully, -errno otherwise
 198 */
 199static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
 200					size_t len, u8 *buf)
 201{
 202	struct spi_mem_op op =
 203		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
 204			   SPI_MEM_OP_ADDR(nor->addr_nbytes, from, 0),
 205			   SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
 206			   SPI_MEM_OP_DATA_IN(len, buf, 0));
 207	bool usebouncebuf;
 208	ssize_t nbytes;
 209	int error;
 210
 211	spi_nor_spimem_setup_op(nor, &op, nor->read_proto);
 212
 213	/* convert the dummy cycles to the number of bytes */
 214	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
 215	if (spi_nor_protocol_is_dtr(nor->read_proto))
 216		op.dummy.nbytes *= 2;
 217
 218	usebouncebuf = spi_nor_spimem_bounce(nor, &op);
 219
 220	if (nor->dirmap.rdesc) {
 221		nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
 222					     op.data.nbytes, op.data.buf.in);
 223	} else {
 224		error = spi_nor_spimem_exec_op(nor, &op);
 225		if (error)
 226			return error;
 227		nbytes = op.data.nbytes;
 228	}
 229
 230	if (usebouncebuf && nbytes > 0)
 231		memcpy(buf, op.data.buf.in, nbytes);
 232
 233	return nbytes;
 234}
 235
 236/**
 237 * spi_nor_read_data() - read data from flash memory
 238 * @nor:        pointer to 'struct spi_nor'
 239 * @from:       offset to read from
 240 * @len:        number of bytes to read
 241 * @buf:        pointer to dst buffer
 242 *
 243 * Return: number of bytes read successfully, -errno otherwise
 244 */
 245ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
 246{
 247	if (nor->spimem)
 248		return spi_nor_spimem_read_data(nor, from, len, buf);
 249
 250	return nor->controller_ops->read(nor, from, len, buf);
 251}
 252
 253/**
 254 * spi_nor_spimem_write_data() - write data to flash memory via
 255 *                               spi-mem
 256 * @nor:        pointer to 'struct spi_nor'
 257 * @to:         offset to write to
 258 * @len:        number of bytes to write
 259 * @buf:        pointer to src buffer
 260 *
 261 * Return: number of bytes written successfully, -errno otherwise
 262 */
 263static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
 264					 size_t len, const u8 *buf)
 265{
 266	struct spi_mem_op op =
 267		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
 268			   SPI_MEM_OP_ADDR(nor->addr_nbytes, to, 0),
 269			   SPI_MEM_OP_NO_DUMMY,
 270			   SPI_MEM_OP_DATA_OUT(len, buf, 0));
 271	ssize_t nbytes;
 272	int error;
 273
 274	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
 275		op.addr.nbytes = 0;
 276
 277	spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
 278
 279	if (spi_nor_spimem_bounce(nor, &op))
 280		memcpy(nor->bouncebuf, buf, op.data.nbytes);
 281
 282	if (nor->dirmap.wdesc) {
 283		nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
 284					      op.data.nbytes, op.data.buf.out);
 285	} else {
 286		error = spi_nor_spimem_exec_op(nor, &op);
 287		if (error)
 288			return error;
 289		nbytes = op.data.nbytes;
 290	}
 291
 292	return nbytes;
 293}
 294
 295/**
 296 * spi_nor_write_data() - write data to flash memory
 297 * @nor:        pointer to 'struct spi_nor'
 298 * @to:         offset to write to
 299 * @len:        number of bytes to write
 300 * @buf:        pointer to src buffer
 301 *
 302 * Return: number of bytes written successfully, -errno otherwise
 303 */
 304ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
 305			   const u8 *buf)
 306{
 307	if (nor->spimem)
 308		return spi_nor_spimem_write_data(nor, to, len, buf);
 309
 310	return nor->controller_ops->write(nor, to, len, buf);
 311}
 312
 313/**
 314 * spi_nor_read_any_reg() - read any register from flash memory, nonvolatile or
 315 * volatile.
 316 * @nor:        pointer to 'struct spi_nor'.
 317 * @op:		SPI memory operation. op->data.buf must be DMA-able.
 318 * @proto:	SPI protocol to use for the register operation.
 319 *
 320 * Return: zero on success, -errno otherwise
 321 */
 322int spi_nor_read_any_reg(struct spi_nor *nor, struct spi_mem_op *op,
 323			 enum spi_nor_protocol proto)
 324{
 325	if (!nor->spimem)
 326		return -EOPNOTSUPP;
 327
 328	spi_nor_spimem_setup_op(nor, op, proto);
 329	return spi_nor_spimem_exec_op(nor, op);
 330}
 331
 332/**
 333 * spi_nor_write_any_volatile_reg() - write any volatile register to flash
 334 * memory.
 335 * @nor:        pointer to 'struct spi_nor'
 336 * @op:		SPI memory operation. op->data.buf must be DMA-able.
 337 * @proto:	SPI protocol to use for the register operation.
 338 *
 339 * Writing volatile registers are instant according to some manufacturers
 340 * (Cypress, Micron) and do not need any status polling.
 341 *
 342 * Return: zero on success, -errno otherwise
 343 */
 344int spi_nor_write_any_volatile_reg(struct spi_nor *nor, struct spi_mem_op *op,
 345				   enum spi_nor_protocol proto)
 346{
 347	int ret;
 348
 349	if (!nor->spimem)
 350		return -EOPNOTSUPP;
 351
 352	ret = spi_nor_write_enable(nor);
 353	if (ret)
 354		return ret;
 355	spi_nor_spimem_setup_op(nor, op, proto);
 356	return spi_nor_spimem_exec_op(nor, op);
 357}
 358
 359/**
 360 * spi_nor_write_enable() - Set write enable latch with Write Enable command.
 361 * @nor:	pointer to 'struct spi_nor'.
 362 *
 363 * Return: 0 on success, -errno otherwise.
 364 */
 365int spi_nor_write_enable(struct spi_nor *nor)
 366{
 367	int ret;
 368
 369	if (nor->spimem) {
 370		struct spi_mem_op op = SPI_NOR_WREN_OP;
 371
 372		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
 373
 374		ret = spi_mem_exec_op(nor->spimem, &op);
 375	} else {
 376		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN,
 377						       NULL, 0);
 378	}
 379
 380	if (ret)
 381		dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
 382
 383	return ret;
 384}
 385
 386/**
 387 * spi_nor_write_disable() - Send Write Disable instruction to the chip.
 388 * @nor:	pointer to 'struct spi_nor'.
 389 *
 390 * Return: 0 on success, -errno otherwise.
 391 */
 392int spi_nor_write_disable(struct spi_nor *nor)
 393{
 394	int ret;
 395
 396	if (nor->spimem) {
 397		struct spi_mem_op op = SPI_NOR_WRDI_OP;
 398
 399		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
 400
 401		ret = spi_mem_exec_op(nor->spimem, &op);
 402	} else {
 403		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI,
 404						       NULL, 0);
 405	}
 406
 407	if (ret)
 408		dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
 409
 410	return ret;
 411}
 412
 413/**
 414 * spi_nor_read_id() - Read the JEDEC ID.
 415 * @nor:	pointer to 'struct spi_nor'.
 416 * @naddr:	number of address bytes to send. Can be zero if the operation
 417 *		does not need to send an address.
 418 * @ndummy:	number of dummy bytes to send after an opcode or address. Can
 419 *		be zero if the operation does not require dummy bytes.
 420 * @id:		pointer to a DMA-able buffer where the value of the JEDEC ID
 421 *		will be written.
 422 * @proto:	the SPI protocol for register operation.
 423 *
 424 * Return: 0 on success, -errno otherwise.
 425 */
 426int spi_nor_read_id(struct spi_nor *nor, u8 naddr, u8 ndummy, u8 *id,
 427		    enum spi_nor_protocol proto)
 428{
 429	int ret;
 430
 431	if (nor->spimem) {
 432		struct spi_mem_op op =
 433			SPI_NOR_READID_OP(naddr, ndummy, id, SPI_NOR_MAX_ID_LEN);
 434
 435		spi_nor_spimem_setup_op(nor, &op, proto);
 436		ret = spi_mem_exec_op(nor->spimem, &op);
 437	} else {
 438		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
 439						    SPI_NOR_MAX_ID_LEN);
 440	}
 441	return ret;
 442}
 443
 444/**
 445 * spi_nor_read_sr() - Read the Status Register.
 446 * @nor:	pointer to 'struct spi_nor'.
 447 * @sr:		pointer to a DMA-able buffer where the value of the
 448 *              Status Register will be written. Should be at least 2 bytes.
 449 *
 450 * Return: 0 on success, -errno otherwise.
 451 */
 452int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
 453{
 454	int ret;
 455
 456	if (nor->spimem) {
 457		struct spi_mem_op op = SPI_NOR_RDSR_OP(sr);
 458
 459		if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
 460			op.addr.nbytes = nor->params->rdsr_addr_nbytes;
 461			op.dummy.nbytes = nor->params->rdsr_dummy;
 462			/*
 463			 * We don't want to read only one byte in DTR mode. So,
 464			 * read 2 and then discard the second byte.
 465			 */
 466			op.data.nbytes = 2;
 467		}
 468
 469		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
 470
 471		ret = spi_mem_exec_op(nor->spimem, &op);
 472	} else {
 473		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr,
 474						      1);
 475	}
 476
 477	if (ret)
 478		dev_dbg(nor->dev, "error %d reading SR\n", ret);
 479
 480	return ret;
 481}
 482
 483/**
 484 * spi_nor_read_cr() - Read the Configuration Register using the
 485 * SPINOR_OP_RDCR (35h) command.
 486 * @nor:	pointer to 'struct spi_nor'
 487 * @cr:		pointer to a DMA-able buffer where the value of the
 488 *              Configuration Register will be written.
 489 *
 490 * Return: 0 on success, -errno otherwise.
 491 */
 492int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
 493{
 494	int ret;
 495
 496	if (nor->spimem) {
 497		struct spi_mem_op op = SPI_NOR_RDCR_OP(cr);
 498
 499		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
 500
 501		ret = spi_mem_exec_op(nor->spimem, &op);
 502	} else {
 503		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr,
 504						      1);
 505	}
 506
 507	if (ret)
 508		dev_dbg(nor->dev, "error %d reading CR\n", ret);
 509
 510	return ret;
 511}
 512
 513/**
 514 * spi_nor_set_4byte_addr_mode_en4b_ex4b() - Enter/Exit 4-byte address mode
 515 *			using SPINOR_OP_EN4B/SPINOR_OP_EX4B. Typically used by
 516 *			Winbond and Macronix.
 517 * @nor:	pointer to 'struct spi_nor'.
 518 * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
 519 *		address mode.
 520 *
 521 * Return: 0 on success, -errno otherwise.
 522 */
 523int spi_nor_set_4byte_addr_mode_en4b_ex4b(struct spi_nor *nor, bool enable)
 524{
 525	int ret;
 526
 527	if (nor->spimem) {
 528		struct spi_mem_op op = SPI_NOR_EN4B_EX4B_OP(enable);
 529
 530		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
 531
 532		ret = spi_mem_exec_op(nor->spimem, &op);
 533	} else {
 534		ret = spi_nor_controller_ops_write_reg(nor,
 535						       enable ? SPINOR_OP_EN4B :
 536								SPINOR_OP_EX4B,
 537						       NULL, 0);
 538	}
 539
 540	if (ret)
 541		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
 542
 543	return ret;
 544}
 545
 546/**
 547 * spi_nor_set_4byte_addr_mode_wren_en4b_ex4b() - Set 4-byte address mode using
 548 * SPINOR_OP_WREN followed by SPINOR_OP_EN4B or SPINOR_OP_EX4B. Typically used
 549 * by ST and Micron flashes.
 550 * @nor:	pointer to 'struct spi_nor'.
 551 * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
 552 *		address mode.
 553 *
 554 * Return: 0 on success, -errno otherwise.
 555 */
 556int spi_nor_set_4byte_addr_mode_wren_en4b_ex4b(struct spi_nor *nor, bool enable)
 557{
 558	int ret;
 559
 560	ret = spi_nor_write_enable(nor);
 561	if (ret)
 562		return ret;
 563
 564	ret = spi_nor_set_4byte_addr_mode_en4b_ex4b(nor, enable);
 565	if (ret)
 566		return ret;
 567
 568	return spi_nor_write_disable(nor);
 569}
 570
 571/**
 572 * spi_nor_set_4byte_addr_mode_brwr() - Set 4-byte address mode using
 573 *			SPINOR_OP_BRWR. Typically used by Spansion flashes.
 574 * @nor:	pointer to 'struct spi_nor'.
 575 * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
 576 *		address mode.
 577 *
 578 * 8-bit volatile bank register used to define A[30:A24] bits. MSB (bit[7]) is
 579 * used to enable/disable 4-byte address mode. When MSB is set to ‘1’, 4-byte
 580 * address mode is active and A[30:24] bits are don’t care. Write instruction is
 581 * SPINOR_OP_BRWR(17h) with 1 byte of data.
 582 *
 583 * Return: 0 on success, -errno otherwise.
 584 */
 585int spi_nor_set_4byte_addr_mode_brwr(struct spi_nor *nor, bool enable)
 586{
 587	int ret;
 588
 589	nor->bouncebuf[0] = enable << 7;
 590
 591	if (nor->spimem) {
 592		struct spi_mem_op op = SPI_NOR_BRWR_OP(nor->bouncebuf);
 593
 594		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
 595
 596		ret = spi_mem_exec_op(nor->spimem, &op);
 597	} else {
 598		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR,
 599						       nor->bouncebuf, 1);
 600	}
 601
 602	if (ret)
 603		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
 604
 605	return ret;
 606}
 607
 608/**
 609 * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
 610 * for new commands.
 611 * @nor:	pointer to 'struct spi_nor'.
 612 *
 613 * Return: 1 if ready, 0 if not ready, -errno on errors.
 614 */
 615int spi_nor_sr_ready(struct spi_nor *nor)
 616{
 617	int ret;
 618
 619	ret = spi_nor_read_sr(nor, nor->bouncebuf);
 620	if (ret)
 621		return ret;
 622
 623	return !(nor->bouncebuf[0] & SR_WIP);
 624}
 625
 626/**
 627 * spi_nor_use_parallel_locking() - Checks if RWW locking scheme shall be used
 628 * @nor:	pointer to 'struct spi_nor'.
 629 *
 630 * Return: true if parallel locking is enabled, false otherwise.
 631 */
 632static bool spi_nor_use_parallel_locking(struct spi_nor *nor)
 633{
 634	return nor->flags & SNOR_F_RWW;
 635}
 636
 637/* Locking helpers for status read operations */
 638static int spi_nor_rww_start_rdst(struct spi_nor *nor)
 639{
 640	struct spi_nor_rww *rww = &nor->rww;
 641	int ret = -EAGAIN;
 642
 643	mutex_lock(&nor->lock);
 644
 645	if (rww->ongoing_io || rww->ongoing_rd)
 646		goto busy;
 647
 648	rww->ongoing_io = true;
 649	rww->ongoing_rd = true;
 650	ret = 0;
 651
 652busy:
 653	mutex_unlock(&nor->lock);
 654	return ret;
 655}
 656
 657static void spi_nor_rww_end_rdst(struct spi_nor *nor)
 658{
 659	struct spi_nor_rww *rww = &nor->rww;
 660
 661	mutex_lock(&nor->lock);
 662
 663	rww->ongoing_io = false;
 664	rww->ongoing_rd = false;
 665
 666	mutex_unlock(&nor->lock);
 667}
 668
 669static int spi_nor_lock_rdst(struct spi_nor *nor)
 670{
 671	if (spi_nor_use_parallel_locking(nor))
 672		return spi_nor_rww_start_rdst(nor);
 673
 674	return 0;
 675}
 676
 677static void spi_nor_unlock_rdst(struct spi_nor *nor)
 678{
 679	if (spi_nor_use_parallel_locking(nor)) {
 680		spi_nor_rww_end_rdst(nor);
 681		wake_up(&nor->rww.wait);
 682	}
 683}
 684
 685/**
 686 * spi_nor_ready() - Query the flash to see if it is ready for new commands.
 687 * @nor:	pointer to 'struct spi_nor'.
 688 *
 689 * Return: 1 if ready, 0 if not ready, -errno on errors.
 690 */
 691static int spi_nor_ready(struct spi_nor *nor)
 692{
 693	int ret;
 694
 695	ret = spi_nor_lock_rdst(nor);
 696	if (ret)
 697		return 0;
 698
 699	/* Flashes might override the standard routine. */
 700	if (nor->params->ready)
 701		ret = nor->params->ready(nor);
 702	else
 703		ret = spi_nor_sr_ready(nor);
 704
 705	spi_nor_unlock_rdst(nor);
 706
 707	return ret;
 708}
 709
 710/**
 711 * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
 712 * Status Register until ready, or timeout occurs.
 713 * @nor:		pointer to "struct spi_nor".
 714 * @timeout_jiffies:	jiffies to wait until timeout.
 715 *
 716 * Return: 0 on success, -errno otherwise.
 717 */
 718static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
 719						unsigned long timeout_jiffies)
 720{
 721	unsigned long deadline;
 722	int timeout = 0, ret;
 723
 724	deadline = jiffies + timeout_jiffies;
 725
 726	while (!timeout) {
 727		if (time_after_eq(jiffies, deadline))
 728			timeout = 1;
 729
 730		ret = spi_nor_ready(nor);
 731		if (ret < 0)
 732			return ret;
 733		if (ret)
 734			return 0;
 735
 736		cond_resched();
 737	}
 738
 739	dev_dbg(nor->dev, "flash operation timed out\n");
 740
 741	return -ETIMEDOUT;
 742}
 743
 744/**
 745 * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
 746 * flash to be ready, or timeout occurs.
 747 * @nor:	pointer to "struct spi_nor".
 748 *
 749 * Return: 0 on success, -errno otherwise.
 750 */
 751int spi_nor_wait_till_ready(struct spi_nor *nor)
 752{
 753	return spi_nor_wait_till_ready_with_timeout(nor,
 754						    DEFAULT_READY_WAIT_JIFFIES);
 755}
 756
 757/**
 758 * spi_nor_global_block_unlock() - Unlock Global Block Protection.
 759 * @nor:	pointer to 'struct spi_nor'.
 760 *
 761 * Return: 0 on success, -errno otherwise.
 762 */
 763int spi_nor_global_block_unlock(struct spi_nor *nor)
 764{
 765	int ret;
 766
 767	ret = spi_nor_write_enable(nor);
 768	if (ret)
 769		return ret;
 770
 771	if (nor->spimem) {
 772		struct spi_mem_op op = SPI_NOR_GBULK_OP;
 773
 774		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
 775
 776		ret = spi_mem_exec_op(nor->spimem, &op);
 777	} else {
 778		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK,
 779						       NULL, 0);
 780	}
 781
 782	if (ret) {
 783		dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret);
 784		return ret;
 785	}
 786
 787	return spi_nor_wait_till_ready(nor);
 788}
 789
 790/**
 791 * spi_nor_write_sr() - Write the Status Register.
 792 * @nor:	pointer to 'struct spi_nor'.
 793 * @sr:		pointer to DMA-able buffer to write to the Status Register.
 794 * @len:	number of bytes to write to the Status Register.
 795 *
 796 * Return: 0 on success, -errno otherwise.
 797 */
 798int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
 799{
 800	int ret;
 801
 802	ret = spi_nor_write_enable(nor);
 803	if (ret)
 804		return ret;
 805
 806	if (nor->spimem) {
 807		struct spi_mem_op op = SPI_NOR_WRSR_OP(sr, len);
 808
 809		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
 810
 811		ret = spi_mem_exec_op(nor->spimem, &op);
 812	} else {
 813		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr,
 814						       len);
 815	}
 816
 817	if (ret) {
 818		dev_dbg(nor->dev, "error %d writing SR\n", ret);
 819		return ret;
 820	}
 821
 822	return spi_nor_wait_till_ready(nor);
 823}
 824
 825/**
 826 * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
 827 * ensure that the byte written match the received value.
 828 * @nor:	pointer to a 'struct spi_nor'.
 829 * @sr1:	byte value to be written to the Status Register.
 830 *
 831 * Return: 0 on success, -errno otherwise.
 832 */
 833static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
 834{
 835	int ret;
 836
 837	nor->bouncebuf[0] = sr1;
 838
 839	ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
 840	if (ret)
 841		return ret;
 842
 843	ret = spi_nor_read_sr(nor, nor->bouncebuf);
 844	if (ret)
 845		return ret;
 846
 847	if (nor->bouncebuf[0] != sr1) {
 848		dev_dbg(nor->dev, "SR1: read back test failed\n");
 849		return -EIO;
 850	}
 851
 852	return 0;
 853}
 854
 855/**
 856 * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
 857 * Status Register 2 in one shot. Ensure that the byte written in the Status
 858 * Register 1 match the received value, and that the 16-bit Write did not
 859 * affect what was already in the Status Register 2.
 860 * @nor:	pointer to a 'struct spi_nor'.
 861 * @sr1:	byte value to be written to the Status Register 1.
 862 *
 863 * Return: 0 on success, -errno otherwise.
 864 */
 865static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
 866{
 867	int ret;
 868	u8 *sr_cr = nor->bouncebuf;
 869	u8 cr_written;
 870
 871	/* Make sure we don't overwrite the contents of Status Register 2. */
 872	if (!(nor->flags & SNOR_F_NO_READ_CR)) {
 873		ret = spi_nor_read_cr(nor, &sr_cr[1]);
 874		if (ret)
 875			return ret;
 876	} else if (spi_nor_get_protocol_width(nor->read_proto) == 4 &&
 877		   spi_nor_get_protocol_width(nor->write_proto) == 4 &&
 878		   nor->params->quad_enable) {
 879		/*
 880		 * If the Status Register 2 Read command (35h) is not
 881		 * supported, we should at least be sure we don't
 882		 * change the value of the SR2 Quad Enable bit.
 883		 *
 884		 * When the Quad Enable method is set and the buswidth is 4, we
 885		 * can safely assume that the value of the QE bit is one, as a
 886		 * consequence of the nor->params->quad_enable() call.
 887		 *
 888		 * According to the JESD216 revB standard, BFPT DWORDS[15],
 889		 * bits 22:20, the 16-bit Write Status (01h) command is
 890		 * available just for the cases in which the QE bit is
 891		 * described in SR2 at BIT(1).
 892		 */
 893		sr_cr[1] = SR2_QUAD_EN_BIT1;
 894	} else {
 895		sr_cr[1] = 0;
 896	}
 897
 898	sr_cr[0] = sr1;
 899
 900	ret = spi_nor_write_sr(nor, sr_cr, 2);
 901	if (ret)
 902		return ret;
 903
 904	ret = spi_nor_read_sr(nor, sr_cr);
 905	if (ret)
 906		return ret;
 907
 908	if (sr1 != sr_cr[0]) {
 909		dev_dbg(nor->dev, "SR: Read back test failed\n");
 910		return -EIO;
 911	}
 912
 913	if (nor->flags & SNOR_F_NO_READ_CR)
 914		return 0;
 915
 916	cr_written = sr_cr[1];
 917
 918	ret = spi_nor_read_cr(nor, &sr_cr[1]);
 919	if (ret)
 920		return ret;
 921
 922	if (cr_written != sr_cr[1]) {
 923		dev_dbg(nor->dev, "CR: read back test failed\n");
 924		return -EIO;
 925	}
 926
 927	return 0;
 928}
 929
 930/**
 931 * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
 932 * Configuration Register in one shot. Ensure that the byte written in the
 933 * Configuration Register match the received value, and that the 16-bit Write
 934 * did not affect what was already in the Status Register 1.
 935 * @nor:	pointer to a 'struct spi_nor'.
 936 * @cr:		byte value to be written to the Configuration Register.
 937 *
 938 * Return: 0 on success, -errno otherwise.
 939 */
 940int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
 941{
 942	int ret;
 943	u8 *sr_cr = nor->bouncebuf;
 944	u8 sr_written;
 945
 946	/* Keep the current value of the Status Register 1. */
 947	ret = spi_nor_read_sr(nor, sr_cr);
 948	if (ret)
 949		return ret;
 950
 951	sr_cr[1] = cr;
 952
 953	ret = spi_nor_write_sr(nor, sr_cr, 2);
 954	if (ret)
 955		return ret;
 956
 957	sr_written = sr_cr[0];
 958
 959	ret = spi_nor_read_sr(nor, sr_cr);
 960	if (ret)
 961		return ret;
 962
 963	if (sr_written != sr_cr[0]) {
 964		dev_dbg(nor->dev, "SR: Read back test failed\n");
 965		return -EIO;
 966	}
 967
 968	if (nor->flags & SNOR_F_NO_READ_CR)
 969		return 0;
 970
 971	ret = spi_nor_read_cr(nor, &sr_cr[1]);
 972	if (ret)
 973		return ret;
 974
 975	if (cr != sr_cr[1]) {
 976		dev_dbg(nor->dev, "CR: read back test failed\n");
 977		return -EIO;
 978	}
 979
 980	return 0;
 981}
 982
 983/**
 984 * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
 985 * the byte written match the received value without affecting other bits in the
 986 * Status Register 1 and 2.
 987 * @nor:	pointer to a 'struct spi_nor'.
 988 * @sr1:	byte value to be written to the Status Register.
 989 *
 990 * Return: 0 on success, -errno otherwise.
 991 */
 992int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
 993{
 994	if (nor->flags & SNOR_F_HAS_16BIT_SR)
 995		return spi_nor_write_16bit_sr_and_check(nor, sr1);
 996
 997	return spi_nor_write_sr1_and_check(nor, sr1);
 998}
 999
1000/**
1001 * spi_nor_write_sr2() - Write the Status Register 2 using the
1002 * SPINOR_OP_WRSR2 (3eh) command.
1003 * @nor:	pointer to 'struct spi_nor'.
1004 * @sr2:	pointer to DMA-able buffer to write to the Status Register 2.
1005 *
1006 * Return: 0 on success, -errno otherwise.
1007 */
1008static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
1009{
1010	int ret;
1011
1012	ret = spi_nor_write_enable(nor);
1013	if (ret)
1014		return ret;
1015
1016	if (nor->spimem) {
1017		struct spi_mem_op op = SPI_NOR_WRSR2_OP(sr2);
1018
1019		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1020
1021		ret = spi_mem_exec_op(nor->spimem, &op);
1022	} else {
1023		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2,
1024						       sr2, 1);
1025	}
1026
1027	if (ret) {
1028		dev_dbg(nor->dev, "error %d writing SR2\n", ret);
1029		return ret;
1030	}
1031
1032	return spi_nor_wait_till_ready(nor);
1033}
1034
1035/**
1036 * spi_nor_read_sr2() - Read the Status Register 2 using the
1037 * SPINOR_OP_RDSR2 (3fh) command.
1038 * @nor:	pointer to 'struct spi_nor'.
1039 * @sr2:	pointer to DMA-able buffer where the value of the
1040 *		Status Register 2 will be written.
1041 *
1042 * Return: 0 on success, -errno otherwise.
1043 */
1044static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
1045{
1046	int ret;
1047
1048	if (nor->spimem) {
1049		struct spi_mem_op op = SPI_NOR_RDSR2_OP(sr2);
1050
1051		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1052
1053		ret = spi_mem_exec_op(nor->spimem, &op);
1054	} else {
1055		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2,
1056						      1);
1057	}
1058
1059	if (ret)
1060		dev_dbg(nor->dev, "error %d reading SR2\n", ret);
1061
1062	return ret;
1063}
1064
1065/**
1066 * spi_nor_erase_die() - Erase the entire die.
1067 * @nor:	pointer to 'struct spi_nor'.
1068 * @addr:	address of the die.
1069 * @die_size:	size of the die.
1070 *
1071 * Return: 0 on success, -errno otherwise.
1072 */
1073static int spi_nor_erase_die(struct spi_nor *nor, loff_t addr, size_t die_size)
1074{
1075	bool multi_die = nor->mtd.size != die_size;
1076	int ret;
1077
1078	dev_dbg(nor->dev, " %lldKiB\n", (long long)(die_size >> 10));
1079
1080	if (nor->spimem) {
1081		struct spi_mem_op op =
1082			SPI_NOR_DIE_ERASE_OP(nor->params->die_erase_opcode,
1083					     nor->addr_nbytes, addr, multi_die);
1084
1085		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1086
1087		ret = spi_mem_exec_op(nor->spimem, &op);
1088	} else {
1089		if (multi_die)
1090			return -EOPNOTSUPP;
1091
1092		ret = spi_nor_controller_ops_write_reg(nor,
1093						       SPINOR_OP_CHIP_ERASE,
1094						       NULL, 0);
1095	}
1096
1097	if (ret)
1098		dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1099
1100	return ret;
1101}
1102
1103static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1104{
1105	size_t i;
1106
1107	for (i = 0; i < size; i++)
1108		if (table[i][0] == opcode)
1109			return table[i][1];
1110
1111	/* No conversion found, keep input op code. */
1112	return opcode;
1113}
1114
1115u8 spi_nor_convert_3to4_read(u8 opcode)
1116{
1117	static const u8 spi_nor_3to4_read[][2] = {
1118		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
1119		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
1120		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
1121		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
1122		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
1123		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
1124		{ SPINOR_OP_READ_1_1_8,	SPINOR_OP_READ_1_1_8_4B },
1125		{ SPINOR_OP_READ_1_8_8,	SPINOR_OP_READ_1_8_8_4B },
1126
1127		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
1128		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
1129		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
1130	};
1131
1132	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1133				      ARRAY_SIZE(spi_nor_3to4_read));
1134}
1135
1136static u8 spi_nor_convert_3to4_program(u8 opcode)
1137{
1138	static const u8 spi_nor_3to4_program[][2] = {
1139		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
1140		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
1141		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
1142		{ SPINOR_OP_PP_1_1_8,	SPINOR_OP_PP_1_1_8_4B },
1143		{ SPINOR_OP_PP_1_8_8,	SPINOR_OP_PP_1_8_8_4B },
1144	};
1145
1146	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1147				      ARRAY_SIZE(spi_nor_3to4_program));
1148}
1149
1150static u8 spi_nor_convert_3to4_erase(u8 opcode)
1151{
1152	static const u8 spi_nor_3to4_erase[][2] = {
1153		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
1154		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
1155		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
1156	};
1157
1158	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1159				      ARRAY_SIZE(spi_nor_3to4_erase));
1160}
1161
1162static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1163{
1164	return !!nor->params->erase_map.uniform_region.erase_mask;
1165}
1166
1167static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1168{
1169	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1170	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1171	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1172
1173	if (!spi_nor_has_uniform_erase(nor)) {
1174		struct spi_nor_erase_map *map = &nor->params->erase_map;
1175		struct spi_nor_erase_type *erase;
1176		int i;
1177
1178		for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1179			erase = &map->erase_type[i];
1180			erase->opcode =
1181				spi_nor_convert_3to4_erase(erase->opcode);
1182		}
1183	}
1184}
1185
1186static int spi_nor_prep(struct spi_nor *nor)
1187{
1188	int ret = 0;
1189
1190	if (nor->controller_ops && nor->controller_ops->prepare)
1191		ret = nor->controller_ops->prepare(nor);
1192
1193	return ret;
1194}
1195
1196static void spi_nor_unprep(struct spi_nor *nor)
1197{
1198	if (nor->controller_ops && nor->controller_ops->unprepare)
1199		nor->controller_ops->unprepare(nor);
1200}
1201
1202static void spi_nor_offset_to_banks(u64 bank_size, loff_t start, size_t len,
1203				    u8 *first, u8 *last)
1204{
1205	/* This is currently safe, the number of banks being very small */
1206	*first = DIV_ROUND_DOWN_ULL(start, bank_size);
1207	*last = DIV_ROUND_DOWN_ULL(start + len - 1, bank_size);
1208}
1209
1210/* Generic helpers for internal locking and serialization */
1211static bool spi_nor_rww_start_io(struct spi_nor *nor)
1212{
1213	struct spi_nor_rww *rww = &nor->rww;
1214	bool start = false;
1215
1216	mutex_lock(&nor->lock);
1217
1218	if (rww->ongoing_io)
1219		goto busy;
1220
1221	rww->ongoing_io = true;
1222	start = true;
1223
1224busy:
1225	mutex_unlock(&nor->lock);
1226	return start;
1227}
1228
1229static void spi_nor_rww_end_io(struct spi_nor *nor)
1230{
1231	mutex_lock(&nor->lock);
1232	nor->rww.ongoing_io = false;
1233	mutex_unlock(&nor->lock);
1234}
1235
1236static int spi_nor_lock_device(struct spi_nor *nor)
1237{
1238	if (!spi_nor_use_parallel_locking(nor))
1239		return 0;
1240
1241	return wait_event_killable(nor->rww.wait, spi_nor_rww_start_io(nor));
1242}
1243
1244static void spi_nor_unlock_device(struct spi_nor *nor)
1245{
1246	if (spi_nor_use_parallel_locking(nor)) {
1247		spi_nor_rww_end_io(nor);
1248		wake_up(&nor->rww.wait);
1249	}
1250}
1251
1252/* Generic helpers for internal locking and serialization */
1253static bool spi_nor_rww_start_exclusive(struct spi_nor *nor)
1254{
1255	struct spi_nor_rww *rww = &nor->rww;
1256	bool start = false;
1257
1258	mutex_lock(&nor->lock);
1259
1260	if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe)
1261		goto busy;
1262
1263	rww->ongoing_io = true;
1264	rww->ongoing_rd = true;
1265	rww->ongoing_pe = true;
1266	start = true;
1267
1268busy:
1269	mutex_unlock(&nor->lock);
1270	return start;
1271}
1272
1273static void spi_nor_rww_end_exclusive(struct spi_nor *nor)
1274{
1275	struct spi_nor_rww *rww = &nor->rww;
1276
1277	mutex_lock(&nor->lock);
1278	rww->ongoing_io = false;
1279	rww->ongoing_rd = false;
1280	rww->ongoing_pe = false;
1281	mutex_unlock(&nor->lock);
1282}
1283
1284int spi_nor_prep_and_lock(struct spi_nor *nor)
1285{
1286	int ret;
1287
1288	ret = spi_nor_prep(nor);
1289	if (ret)
1290		return ret;
1291
1292	if (!spi_nor_use_parallel_locking(nor))
1293		mutex_lock(&nor->lock);
1294	else
1295		ret = wait_event_killable(nor->rww.wait,
1296					  spi_nor_rww_start_exclusive(nor));
1297
1298	return ret;
1299}
1300
1301void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1302{
1303	if (!spi_nor_use_parallel_locking(nor)) {
1304		mutex_unlock(&nor->lock);
1305	} else {
1306		spi_nor_rww_end_exclusive(nor);
1307		wake_up(&nor->rww.wait);
1308	}
1309
1310	spi_nor_unprep(nor);
1311}
1312
1313/* Internal locking helpers for program and erase operations */
1314static bool spi_nor_rww_start_pe(struct spi_nor *nor, loff_t start, size_t len)
1315{
1316	struct spi_nor_rww *rww = &nor->rww;
1317	unsigned int used_banks = 0;
1318	bool started = false;
1319	u8 first, last;
1320	int bank;
1321
1322	mutex_lock(&nor->lock);
1323
1324	if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe)
1325		goto busy;
1326
1327	spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1328	for (bank = first; bank <= last; bank++) {
1329		if (rww->used_banks & BIT(bank))
1330			goto busy;
1331
1332		used_banks |= BIT(bank);
1333	}
1334
1335	rww->used_banks |= used_banks;
1336	rww->ongoing_pe = true;
1337	started = true;
1338
1339busy:
1340	mutex_unlock(&nor->lock);
1341	return started;
1342}
1343
1344static void spi_nor_rww_end_pe(struct spi_nor *nor, loff_t start, size_t len)
1345{
1346	struct spi_nor_rww *rww = &nor->rww;
1347	u8 first, last;
1348	int bank;
1349
1350	mutex_lock(&nor->lock);
1351
1352	spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1353	for (bank = first; bank <= last; bank++)
1354		rww->used_banks &= ~BIT(bank);
1355
1356	rww->ongoing_pe = false;
1357
1358	mutex_unlock(&nor->lock);
1359}
1360
1361static int spi_nor_prep_and_lock_pe(struct spi_nor *nor, loff_t start, size_t len)
1362{
1363	int ret;
1364
1365	ret = spi_nor_prep(nor);
1366	if (ret)
1367		return ret;
1368
1369	if (!spi_nor_use_parallel_locking(nor))
1370		mutex_lock(&nor->lock);
1371	else
1372		ret = wait_event_killable(nor->rww.wait,
1373					  spi_nor_rww_start_pe(nor, start, len));
1374
1375	return ret;
1376}
1377
1378static void spi_nor_unlock_and_unprep_pe(struct spi_nor *nor, loff_t start, size_t len)
1379{
1380	if (!spi_nor_use_parallel_locking(nor)) {
1381		mutex_unlock(&nor->lock);
1382	} else {
1383		spi_nor_rww_end_pe(nor, start, len);
1384		wake_up(&nor->rww.wait);
1385	}
1386
1387	spi_nor_unprep(nor);
1388}
1389
1390/* Internal locking helpers for read operations */
1391static bool spi_nor_rww_start_rd(struct spi_nor *nor, loff_t start, size_t len)
1392{
1393	struct spi_nor_rww *rww = &nor->rww;
1394	unsigned int used_banks = 0;
1395	bool started = false;
1396	u8 first, last;
1397	int bank;
1398
1399	mutex_lock(&nor->lock);
1400
1401	if (rww->ongoing_io || rww->ongoing_rd)
1402		goto busy;
1403
1404	spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1405	for (bank = first; bank <= last; bank++) {
1406		if (rww->used_banks & BIT(bank))
1407			goto busy;
1408
1409		used_banks |= BIT(bank);
1410	}
1411
1412	rww->used_banks |= used_banks;
1413	rww->ongoing_io = true;
1414	rww->ongoing_rd = true;
1415	started = true;
1416
1417busy:
1418	mutex_unlock(&nor->lock);
1419	return started;
1420}
1421
1422static void spi_nor_rww_end_rd(struct spi_nor *nor, loff_t start, size_t len)
1423{
1424	struct spi_nor_rww *rww = &nor->rww;
1425	u8 first, last;
1426	int bank;
1427
1428	mutex_lock(&nor->lock);
1429
1430	spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1431	for (bank = first; bank <= last; bank++)
1432		nor->rww.used_banks &= ~BIT(bank);
1433
1434	rww->ongoing_io = false;
1435	rww->ongoing_rd = false;
1436
1437	mutex_unlock(&nor->lock);
1438}
1439
1440static int spi_nor_prep_and_lock_rd(struct spi_nor *nor, loff_t start, size_t len)
1441{
1442	int ret;
1443
1444	ret = spi_nor_prep(nor);
1445	if (ret)
1446		return ret;
1447
1448	if (!spi_nor_use_parallel_locking(nor))
1449		mutex_lock(&nor->lock);
1450	else
1451		ret = wait_event_killable(nor->rww.wait,
1452					  spi_nor_rww_start_rd(nor, start, len));
1453
1454	return ret;
1455}
1456
1457static void spi_nor_unlock_and_unprep_rd(struct spi_nor *nor, loff_t start, size_t len)
1458{
1459	if (!spi_nor_use_parallel_locking(nor)) {
1460		mutex_unlock(&nor->lock);
1461	} else {
1462		spi_nor_rww_end_rd(nor, start, len);
1463		wake_up(&nor->rww.wait);
1464	}
1465
1466	spi_nor_unprep(nor);
1467}
1468
1469/*
1470 * Initiate the erasure of a single sector
1471 */
1472int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1473{
1474	int i;
1475
1476	if (nor->spimem) {
1477		struct spi_mem_op op =
1478			SPI_NOR_SECTOR_ERASE_OP(nor->erase_opcode,
1479						nor->addr_nbytes, addr);
1480
1481		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1482
1483		return spi_mem_exec_op(nor->spimem, &op);
1484	} else if (nor->controller_ops->erase) {
1485		return spi_nor_controller_ops_erase(nor, addr);
1486	}
1487
1488	/*
1489	 * Default implementation, if driver doesn't have a specialized HW
1490	 * control
1491	 */
1492	for (i = nor->addr_nbytes - 1; i >= 0; i--) {
1493		nor->bouncebuf[i] = addr & 0xff;
1494		addr >>= 8;
1495	}
1496
1497	return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode,
1498						nor->bouncebuf, nor->addr_nbytes);
1499}
1500
1501/**
1502 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1503 * @erase:	pointer to a structure that describes a SPI NOR erase type
1504 * @dividend:	dividend value
1505 * @remainder:	pointer to u32 remainder (will be updated)
1506 *
1507 * Return: the result of the division
1508 */
1509static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1510				     u64 dividend, u32 *remainder)
1511{
1512	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1513	*remainder = (u32)dividend & erase->size_mask;
1514	return dividend >> erase->size_shift;
1515}
1516
1517/**
1518 * spi_nor_find_best_erase_type() - find the best erase type for the given
1519 *				    offset in the serial flash memory and the
1520 *				    number of bytes to erase. The region in
1521 *				    which the address fits is expected to be
1522 *				    provided.
1523 * @map:	the erase map of the SPI NOR
1524 * @region:	pointer to a structure that describes a SPI NOR erase region
1525 * @addr:	offset in the serial flash memory
1526 * @len:	number of bytes to erase
1527 *
1528 * Return: a pointer to the best fitted erase type, NULL otherwise.
1529 */
1530static const struct spi_nor_erase_type *
1531spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1532			     const struct spi_nor_erase_region *region,
1533			     u64 addr, u32 len)
1534{
1535	const struct spi_nor_erase_type *erase;
1536	u32 rem;
1537	int i;
1538
1539	/*
1540	 * Erase types are ordered by size, with the smallest erase type at
1541	 * index 0.
1542	 */
1543	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1544		/* Does the erase region support the tested erase type? */
1545		if (!(region->erase_mask & BIT(i)))
1546			continue;
1547
1548		erase = &map->erase_type[i];
1549		if (!erase->size)
1550			continue;
1551
1552		/* Alignment is not mandatory for overlaid regions */
1553		if (region->overlaid && region->size <= len)
1554			return erase;
1555
1556		/* Don't erase more than what the user has asked for. */
1557		if (erase->size > len)
1558			continue;
1559
1560		spi_nor_div_by_erase_size(erase, addr, &rem);
1561		if (!rem)
1562			return erase;
1563	}
1564
1565	return NULL;
1566}
1567
1568/**
1569 * spi_nor_init_erase_cmd() - initialize an erase command
1570 * @region:	pointer to a structure that describes a SPI NOR erase region
1571 * @erase:	pointer to a structure that describes a SPI NOR erase type
1572 *
1573 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1574 *	   otherwise.
1575 */
1576static struct spi_nor_erase_command *
1577spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1578		       const struct spi_nor_erase_type *erase)
1579{
1580	struct spi_nor_erase_command *cmd;
1581
1582	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1583	if (!cmd)
1584		return ERR_PTR(-ENOMEM);
1585
1586	INIT_LIST_HEAD(&cmd->list);
1587	cmd->opcode = erase->opcode;
1588	cmd->count = 1;
1589
1590	if (region->overlaid)
1591		cmd->size = region->size;
1592	else
1593		cmd->size = erase->size;
1594
1595	return cmd;
1596}
1597
1598/**
1599 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1600 * @erase_list:	list of erase commands
1601 */
1602static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1603{
1604	struct spi_nor_erase_command *cmd, *next;
1605
1606	list_for_each_entry_safe(cmd, next, erase_list, list) {
1607		list_del(&cmd->list);
1608		kfree(cmd);
1609	}
1610}
1611
1612/**
1613 * spi_nor_init_erase_cmd_list() - initialize erase command list
1614 * @nor:	pointer to a 'struct spi_nor'
1615 * @erase_list:	list of erase commands to be executed once we validate that the
1616 *		erase can be performed
1617 * @addr:	offset in the serial flash memory
1618 * @len:	number of bytes to erase
1619 *
1620 * Builds the list of best fitted erase commands and verifies if the erase can
1621 * be performed.
1622 *
1623 * Return: 0 on success, -errno otherwise.
1624 */
1625static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1626				       struct list_head *erase_list,
1627				       u64 addr, u32 len)
1628{
1629	const struct spi_nor_erase_map *map = &nor->params->erase_map;
1630	const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1631	struct spi_nor_erase_region *region;
1632	struct spi_nor_erase_command *cmd = NULL;
1633	u64 region_end;
1634	unsigned int i;
1635	int ret = -EINVAL;
1636
1637	for (i = 0; i < map->n_regions && len; i++) {
1638		region = &map->regions[i];
1639		region_end = region->offset + region->size;
1640
1641		while (len && addr >= region->offset && addr < region_end) {
1642			erase = spi_nor_find_best_erase_type(map, region, addr,
1643							     len);
1644			if (!erase)
1645				goto destroy_erase_cmd_list;
1646
1647			if (prev_erase != erase || erase->size != cmd->size ||
1648			    region->overlaid) {
1649				cmd = spi_nor_init_erase_cmd(region, erase);
1650				if (IS_ERR(cmd)) {
1651					ret = PTR_ERR(cmd);
1652					goto destroy_erase_cmd_list;
1653				}
1654
1655				list_add_tail(&cmd->list, erase_list);
1656			} else {
1657				cmd->count++;
1658			}
1659
1660			len -= cmd->size;
1661			addr += cmd->size;
1662			prev_erase = erase;
1663		}
1664	}
1665
1666	return 0;
1667
1668destroy_erase_cmd_list:
1669	spi_nor_destroy_erase_cmd_list(erase_list);
1670	return ret;
1671}
1672
1673/**
1674 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1675 * @nor:	pointer to a 'struct spi_nor'
1676 * @addr:	offset in the serial flash memory
1677 * @len:	number of bytes to erase
1678 *
1679 * Build a list of best fitted erase commands and execute it once we validate
1680 * that the erase can be performed.
1681 *
1682 * Return: 0 on success, -errno otherwise.
1683 */
1684static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1685{
1686	LIST_HEAD(erase_list);
1687	struct spi_nor_erase_command *cmd, *next;
1688	int ret;
1689
1690	ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1691	if (ret)
1692		return ret;
1693
1694	list_for_each_entry_safe(cmd, next, &erase_list, list) {
1695		nor->erase_opcode = cmd->opcode;
1696		while (cmd->count) {
1697			dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n",
1698				 cmd->size, cmd->opcode, cmd->count);
1699
1700			ret = spi_nor_lock_device(nor);
1701			if (ret)
1702				goto destroy_erase_cmd_list;
1703
1704			ret = spi_nor_write_enable(nor);
1705			if (ret) {
1706				spi_nor_unlock_device(nor);
1707				goto destroy_erase_cmd_list;
1708			}
1709
1710			ret = spi_nor_erase_sector(nor, addr);
1711			spi_nor_unlock_device(nor);
1712			if (ret)
1713				goto destroy_erase_cmd_list;
1714
1715			ret = spi_nor_wait_till_ready(nor);
1716			if (ret)
1717				goto destroy_erase_cmd_list;
1718
1719			addr += cmd->size;
1720			cmd->count--;
1721		}
1722		list_del(&cmd->list);
1723		kfree(cmd);
1724	}
1725
1726	return 0;
1727
1728destroy_erase_cmd_list:
1729	spi_nor_destroy_erase_cmd_list(&erase_list);
1730	return ret;
1731}
1732
1733static int spi_nor_erase_dice(struct spi_nor *nor, loff_t addr,
1734			      size_t len, size_t die_size)
1735{
1736	unsigned long timeout;
1737	int ret;
1738
1739	/*
1740	 * Scale the timeout linearly with the size of the flash, with
1741	 * a minimum calibrated to an old 2MB flash. We could try to
1742	 * pull these from CFI/SFDP, but these values should be good
1743	 * enough for now.
1744	 */
1745	timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1746		      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1747		      (unsigned long)(nor->mtd.size / SZ_2M));
1748
1749	do {
1750		ret = spi_nor_lock_device(nor);
1751		if (ret)
1752			return ret;
1753
1754		ret = spi_nor_write_enable(nor);
1755		if (ret) {
1756			spi_nor_unlock_device(nor);
1757			return ret;
1758		}
1759
1760		ret = spi_nor_erase_die(nor, addr, die_size);
1761
1762		spi_nor_unlock_device(nor);
1763		if (ret)
1764			return ret;
1765
1766		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1767		if (ret)
1768			return ret;
1769
1770		addr += die_size;
1771		len -= die_size;
1772
1773	} while (len);
1774
1775	return 0;
1776}
1777
1778/*
1779 * Erase an address range on the nor chip.  The address range may extend
1780 * one or more erase sectors. Return an error if there is a problem erasing.
1781 */
1782static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1783{
1784	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1785	u8 n_dice = nor->params->n_dice;
1786	bool multi_die_erase = false;
1787	u32 addr, len, rem;
1788	size_t die_size;
1789	int ret;
1790
1791	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1792			(long long)instr->len);
1793
1794	if (spi_nor_has_uniform_erase(nor)) {
1795		div_u64_rem(instr->len, mtd->erasesize, &rem);
1796		if (rem)
1797			return -EINVAL;
1798	}
1799
1800	addr = instr->addr;
1801	len = instr->len;
1802
1803	if (n_dice) {
1804		die_size = div_u64(mtd->size, n_dice);
1805		if (!(len & (die_size - 1)) && !(addr & (die_size - 1)))
1806			multi_die_erase = true;
1807	} else {
1808		die_size = mtd->size;
1809	}
1810
1811	ret = spi_nor_prep_and_lock_pe(nor, instr->addr, instr->len);
1812	if (ret)
1813		return ret;
1814
1815	/* chip (die) erase? */
1816	if ((len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) ||
1817	    multi_die_erase) {
1818		ret = spi_nor_erase_dice(nor, addr, len, die_size);
1819		if (ret)
1820			goto erase_err;
1821
1822	/* REVISIT in some cases we could speed up erasing large regions
1823	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
1824	 * to use "small sector erase", but that's not always optimal.
1825	 */
1826
1827	/* "sector"-at-a-time erase */
1828	} else if (spi_nor_has_uniform_erase(nor)) {
1829		while (len) {
1830			ret = spi_nor_lock_device(nor);
1831			if (ret)
1832				goto erase_err;
1833
1834			ret = spi_nor_write_enable(nor);
1835			if (ret) {
1836				spi_nor_unlock_device(nor);
1837				goto erase_err;
1838			}
1839
1840			ret = spi_nor_erase_sector(nor, addr);
1841			spi_nor_unlock_device(nor);
1842			if (ret)
1843				goto erase_err;
1844
1845			ret = spi_nor_wait_till_ready(nor);
1846			if (ret)
1847				goto erase_err;
1848
1849			addr += mtd->erasesize;
1850			len -= mtd->erasesize;
1851		}
1852
1853	/* erase multiple sectors */
1854	} else {
1855		ret = spi_nor_erase_multi_sectors(nor, addr, len);
1856		if (ret)
1857			goto erase_err;
1858	}
1859
1860	ret = spi_nor_write_disable(nor);
1861
1862erase_err:
1863	spi_nor_unlock_and_unprep_pe(nor, instr->addr, instr->len);
1864
1865	return ret;
1866}
1867
1868/**
1869 * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1870 * Register 1.
1871 * @nor:	pointer to a 'struct spi_nor'
1872 *
1873 * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1874 *
1875 * Return: 0 on success, -errno otherwise.
1876 */
1877int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1878{
1879	int ret;
1880
1881	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1882	if (ret)
1883		return ret;
1884
1885	if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1886		return 0;
1887
1888	nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1889
1890	return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1891}
1892
1893/**
1894 * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1895 * Register 2.
1896 * @nor:       pointer to a 'struct spi_nor'.
1897 *
1898 * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1899 *
1900 * Return: 0 on success, -errno otherwise.
1901 */
1902int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1903{
1904	int ret;
1905
1906	if (nor->flags & SNOR_F_NO_READ_CR)
1907		return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1908
1909	ret = spi_nor_read_cr(nor, nor->bouncebuf);
1910	if (ret)
1911		return ret;
1912
1913	if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1914		return 0;
1915
1916	nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1917
1918	return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1919}
1920
1921/**
1922 * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1923 * @nor:	pointer to a 'struct spi_nor'
1924 *
1925 * Set the Quad Enable (QE) bit in the Status Register 2.
1926 *
1927 * This is one of the procedures to set the QE bit described in the SFDP
1928 * (JESD216 rev B) specification but no manufacturer using this procedure has
1929 * been identified yet, hence the name of the function.
1930 *
1931 * Return: 0 on success, -errno otherwise.
1932 */
1933int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1934{
1935	u8 *sr2 = nor->bouncebuf;
1936	int ret;
1937	u8 sr2_written;
1938
1939	/* Check current Quad Enable bit value. */
1940	ret = spi_nor_read_sr2(nor, sr2);
1941	if (ret)
1942		return ret;
1943	if (*sr2 & SR2_QUAD_EN_BIT7)
1944		return 0;
1945
1946	/* Update the Quad Enable bit. */
1947	*sr2 |= SR2_QUAD_EN_BIT7;
1948
1949	ret = spi_nor_write_sr2(nor, sr2);
1950	if (ret)
1951		return ret;
1952
1953	sr2_written = *sr2;
1954
1955	/* Read back and check it. */
1956	ret = spi_nor_read_sr2(nor, sr2);
1957	if (ret)
1958		return ret;
1959
1960	if (*sr2 != sr2_written) {
1961		dev_dbg(nor->dev, "SR2: Read back test failed\n");
1962		return -EIO;
1963	}
1964
1965	return 0;
1966}
1967
1968static const struct spi_nor_manufacturer *manufacturers[] = {
1969	&spi_nor_atmel,
1970	&spi_nor_eon,
1971	&spi_nor_esmt,
1972	&spi_nor_everspin,
1973	&spi_nor_gigadevice,
1974	&spi_nor_intel,
1975	&spi_nor_issi,
1976	&spi_nor_macronix,
1977	&spi_nor_micron,
1978	&spi_nor_st,
1979	&spi_nor_spansion,
1980	&spi_nor_sst,
1981	&spi_nor_winbond,
1982	&spi_nor_xmc,
1983};
1984
1985static const struct flash_info spi_nor_generic_flash = {
1986	.name = "spi-nor-generic",
1987};
1988
1989static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
1990						 const u8 *id)
1991{
1992	const struct flash_info *part;
1993	unsigned int i, j;
1994
1995	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
1996		for (j = 0; j < manufacturers[i]->nparts; j++) {
1997			part = &manufacturers[i]->parts[j];
1998			if (part->id &&
1999			    !memcmp(part->id->bytes, id, part->id->len)) {
2000				nor->manufacturer = manufacturers[i];
2001				return part;
2002			}
2003		}
2004	}
2005
2006	return NULL;
2007}
2008
2009static const struct flash_info *spi_nor_detect(struct spi_nor *nor)
2010{
2011	const struct flash_info *info;
2012	u8 *id = nor->bouncebuf;
2013	int ret;
2014
2015	ret = spi_nor_read_id(nor, 0, 0, id, nor->reg_proto);
2016	if (ret) {
2017		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
2018		return ERR_PTR(ret);
2019	}
2020
2021	/* Cache the complete flash ID. */
2022	nor->id = devm_kmemdup(nor->dev, id, SPI_NOR_MAX_ID_LEN, GFP_KERNEL);
2023	if (!nor->id)
2024		return ERR_PTR(-ENOMEM);
2025
2026	info = spi_nor_match_id(nor, id);
2027
2028	/* Fallback to a generic flash described only by its SFDP data. */
2029	if (!info) {
2030		ret = spi_nor_check_sfdp_signature(nor);
2031		if (!ret)
2032			info = &spi_nor_generic_flash;
2033	}
2034
2035	if (!info) {
2036		dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
2037			SPI_NOR_MAX_ID_LEN, id);
2038		return ERR_PTR(-ENODEV);
2039	}
2040	return info;
2041}
2042
2043static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
2044			size_t *retlen, u_char *buf)
2045{
2046	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2047	loff_t from_lock = from;
2048	size_t len_lock = len;
2049	ssize_t ret;
2050
2051	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
2052
2053	ret = spi_nor_prep_and_lock_rd(nor, from_lock, len_lock);
2054	if (ret)
2055		return ret;
2056
2057	while (len) {
2058		loff_t addr = from;
2059
2060		ret = spi_nor_read_data(nor, addr, len, buf);
2061		if (ret == 0) {
2062			/* We shouldn't see 0-length reads */
2063			ret = -EIO;
2064			goto read_err;
2065		}
2066		if (ret < 0)
2067			goto read_err;
2068
2069		WARN_ON(ret > len);
2070		*retlen += ret;
2071		buf += ret;
2072		from += ret;
2073		len -= ret;
2074	}
2075	ret = 0;
2076
2077read_err:
2078	spi_nor_unlock_and_unprep_rd(nor, from_lock, len_lock);
2079
2080	return ret;
2081}
2082
2083/*
2084 * Write an address range to the nor chip.  Data must be written in
2085 * FLASH_PAGESIZE chunks.  The address range may be any size provided
2086 * it is within the physical boundaries.
2087 */
2088static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
2089	size_t *retlen, const u_char *buf)
2090{
2091	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2092	size_t i;
2093	ssize_t ret;
2094	u32 page_size = nor->params->page_size;
2095
2096	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2097
2098	ret = spi_nor_prep_and_lock_pe(nor, to, len);
2099	if (ret)
2100		return ret;
2101
2102	for (i = 0; i < len; ) {
2103		ssize_t written;
2104		loff_t addr = to + i;
2105		size_t page_offset = addr & (page_size - 1);
2106		/* the size of data remaining on the first page */
2107		size_t page_remain = min_t(size_t, page_size - page_offset, len - i);
2108
2109		ret = spi_nor_lock_device(nor);
2110		if (ret)
2111			goto write_err;
2112
2113		ret = spi_nor_write_enable(nor);
2114		if (ret) {
2115			spi_nor_unlock_device(nor);
2116			goto write_err;
2117		}
2118
2119		ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2120		spi_nor_unlock_device(nor);
2121		if (ret < 0)
2122			goto write_err;
2123		written = ret;
2124
2125		ret = spi_nor_wait_till_ready(nor);
2126		if (ret)
2127			goto write_err;
2128		*retlen += written;
2129		i += written;
2130	}
2131
2132write_err:
2133	spi_nor_unlock_and_unprep_pe(nor, to, len);
2134
2135	return ret;
2136}
2137
2138static int spi_nor_check(struct spi_nor *nor)
2139{
2140	if (!nor->dev ||
2141	    (!nor->spimem && !nor->controller_ops) ||
2142	    (!nor->spimem && nor->controller_ops &&
2143	    (!nor->controller_ops->read ||
2144	     !nor->controller_ops->write ||
2145	     !nor->controller_ops->read_reg ||
2146	     !nor->controller_ops->write_reg))) {
2147		pr_err("spi-nor: please fill all the necessary fields!\n");
2148		return -EINVAL;
2149	}
2150
2151	if (nor->spimem && nor->controller_ops) {
2152		dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2153		return -EINVAL;
2154	}
2155
2156	return 0;
2157}
2158
2159void
2160spi_nor_set_read_settings(struct spi_nor_read_command *read,
2161			  u8 num_mode_clocks,
2162			  u8 num_wait_states,
2163			  u8 opcode,
2164			  enum spi_nor_protocol proto)
2165{
2166	read->num_mode_clocks = num_mode_clocks;
2167	read->num_wait_states = num_wait_states;
2168	read->opcode = opcode;
2169	read->proto = proto;
2170}
2171
2172void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2173			     enum spi_nor_protocol proto)
2174{
2175	pp->opcode = opcode;
2176	pp->proto = proto;
2177}
2178
2179static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2180{
2181	size_t i;
2182
2183	for (i = 0; i < size; i++)
2184		if (table[i][0] == (int)hwcaps)
2185			return table[i][1];
2186
2187	return -EINVAL;
2188}
2189
2190int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2191{
2192	static const int hwcaps_read2cmd[][2] = {
2193		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
2194		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
2195		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
2196		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
2197		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
2198		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
2199		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
2200		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
2201		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
2202		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
2203		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
2204		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
2205		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
2206		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
2207		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
2208		{ SNOR_HWCAPS_READ_8_8_8_DTR,	SNOR_CMD_READ_8_8_8_DTR },
2209	};
2210
2211	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2212				  ARRAY_SIZE(hwcaps_read2cmd));
2213}
2214
2215int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2216{
2217	static const int hwcaps_pp2cmd[][2] = {
2218		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
2219		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
2220		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
2221		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
2222		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
2223		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
2224		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
2225		{ SNOR_HWCAPS_PP_8_8_8_DTR,	SNOR_CMD_PP_8_8_8_DTR },
2226	};
2227
2228	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2229				  ARRAY_SIZE(hwcaps_pp2cmd));
2230}
2231
2232/**
2233 * spi_nor_spimem_check_op - check if the operation is supported
2234 *                           by controller
2235 *@nor:        pointer to a 'struct spi_nor'
2236 *@op:         pointer to op template to be checked
2237 *
2238 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2239 */
2240static int spi_nor_spimem_check_op(struct spi_nor *nor,
2241				   struct spi_mem_op *op)
2242{
2243	/*
2244	 * First test with 4 address bytes. The opcode itself might
2245	 * be a 3B addressing opcode but we don't care, because
2246	 * SPI controller implementation should not check the opcode,
2247	 * but just the sequence.
2248	 */
2249	op->addr.nbytes = 4;
2250	if (!spi_mem_supports_op(nor->spimem, op)) {
2251		if (nor->params->size > SZ_16M)
2252			return -EOPNOTSUPP;
2253
2254		/* If flash size <= 16MB, 3 address bytes are sufficient */
2255		op->addr.nbytes = 3;
2256		if (!spi_mem_supports_op(nor->spimem, op))
2257			return -EOPNOTSUPP;
2258	}
2259
2260	return 0;
2261}
2262
2263/**
2264 * spi_nor_spimem_check_readop - check if the read op is supported
2265 *                               by controller
2266 *@nor:         pointer to a 'struct spi_nor'
2267 *@read:        pointer to op template to be checked
2268 *
2269 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2270 */
2271static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2272				       const struct spi_nor_read_command *read)
2273{
2274	struct spi_mem_op op = SPI_NOR_READ_OP(read->opcode);
2275
2276	spi_nor_spimem_setup_op(nor, &op, read->proto);
2277
2278	/* convert the dummy cycles to the number of bytes */
2279	op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
2280			  op.dummy.buswidth / 8;
2281	if (spi_nor_protocol_is_dtr(nor->read_proto))
2282		op.dummy.nbytes *= 2;
2283
2284	return spi_nor_spimem_check_op(nor, &op);
2285}
2286
2287/**
2288 * spi_nor_spimem_check_pp - check if the page program op is supported
2289 *                           by controller
2290 *@nor:         pointer to a 'struct spi_nor'
2291 *@pp:          pointer to op template to be checked
2292 *
2293 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2294 */
2295static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2296				   const struct spi_nor_pp_command *pp)
2297{
2298	struct spi_mem_op op = SPI_NOR_PP_OP(pp->opcode);
2299
2300	spi_nor_spimem_setup_op(nor, &op, pp->proto);
2301
2302	return spi_nor_spimem_check_op(nor, &op);
2303}
2304
2305/**
2306 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2307 *                                based on SPI controller capabilities
2308 * @nor:        pointer to a 'struct spi_nor'
2309 * @hwcaps:     pointer to resulting capabilities after adjusting
2310 *              according to controller and flash's capability
2311 */
2312static void
2313spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2314{
2315	struct spi_nor_flash_parameter *params = nor->params;
2316	unsigned int cap;
2317
2318	/* X-X-X modes are not supported yet, mask them all. */
2319	*hwcaps &= ~SNOR_HWCAPS_X_X_X;
2320
2321	/*
2322	 * If the reset line is broken, we do not want to enter a stateful
2323	 * mode.
2324	 */
2325	if (nor->flags & SNOR_F_BROKEN_RESET)
2326		*hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
2327
2328	for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2329		int rdidx, ppidx;
2330
2331		if (!(*hwcaps & BIT(cap)))
2332			continue;
2333
2334		rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2335		if (rdidx >= 0 &&
2336		    spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
2337			*hwcaps &= ~BIT(cap);
2338
2339		ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2340		if (ppidx < 0)
2341			continue;
2342
2343		if (spi_nor_spimem_check_pp(nor,
2344					    &params->page_programs[ppidx]))
2345			*hwcaps &= ~BIT(cap);
2346	}
2347}
2348
2349/**
2350 * spi_nor_set_erase_type() - set a SPI NOR erase type
2351 * @erase:	pointer to a structure that describes a SPI NOR erase type
2352 * @size:	the size of the sector/block erased by the erase type
2353 * @opcode:	the SPI command op code to erase the sector/block
2354 */
2355void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2356			    u8 opcode)
2357{
2358	erase->size = size;
2359	erase->opcode = opcode;
2360	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2361	erase->size_shift = ffs(erase->size) - 1;
2362	erase->size_mask = (1 << erase->size_shift) - 1;
2363}
2364
2365/**
2366 * spi_nor_mask_erase_type() - mask out a SPI NOR erase type
2367 * @erase:	pointer to a structure that describes a SPI NOR erase type
2368 */
2369void spi_nor_mask_erase_type(struct spi_nor_erase_type *erase)
2370{
2371	erase->size = 0;
2372}
2373
2374/**
2375 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2376 * @map:		the erase map of the SPI NOR
2377 * @erase_mask:		bitmask encoding erase types that can erase the entire
2378 *			flash memory
2379 * @flash_size:		the spi nor flash memory size
2380 */
2381void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2382				    u8 erase_mask, u64 flash_size)
2383{
2384	map->uniform_region.offset = 0;
2385	map->uniform_region.size = flash_size;
2386	map->uniform_region.erase_mask = erase_mask;
2387	map->regions = &map->uniform_region;
2388	map->n_regions = 1;
2389}
2390
2391int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2392			     const struct sfdp_parameter_header *bfpt_header,
2393			     const struct sfdp_bfpt *bfpt)
2394{
2395	int ret;
2396
2397	if (nor->manufacturer && nor->manufacturer->fixups &&
2398	    nor->manufacturer->fixups->post_bfpt) {
2399		ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2400							   bfpt);
2401		if (ret)
2402			return ret;
2403	}
2404
2405	if (nor->info->fixups && nor->info->fixups->post_bfpt)
2406		return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt);
2407
2408	return 0;
2409}
2410
2411static int spi_nor_select_read(struct spi_nor *nor,
2412			       u32 shared_hwcaps)
2413{
2414	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2415	const struct spi_nor_read_command *read;
2416
2417	if (best_match < 0)
2418		return -EINVAL;
2419
2420	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2421	if (cmd < 0)
2422		return -EINVAL;
2423
2424	read = &nor->params->reads[cmd];
2425	nor->read_opcode = read->opcode;
2426	nor->read_proto = read->proto;
2427
2428	/*
2429	 * In the SPI NOR framework, we don't need to make the difference
2430	 * between mode clock cycles and wait state clock cycles.
2431	 * Indeed, the value of the mode clock cycles is used by a QSPI
2432	 * flash memory to know whether it should enter or leave its 0-4-4
2433	 * (Continuous Read / XIP) mode.
2434	 * eXecution In Place is out of the scope of the mtd sub-system.
2435	 * Hence we choose to merge both mode and wait state clock cycles
2436	 * into the so called dummy clock cycles.
2437	 */
2438	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2439	return 0;
2440}
2441
2442static int spi_nor_select_pp(struct spi_nor *nor,
2443			     u32 shared_hwcaps)
2444{
2445	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2446	const struct spi_nor_pp_command *pp;
2447
2448	if (best_match < 0)
2449		return -EINVAL;
2450
2451	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2452	if (cmd < 0)
2453		return -EINVAL;
2454
2455	pp = &nor->params->page_programs[cmd];
2456	nor->program_opcode = pp->opcode;
2457	nor->write_proto = pp->proto;
2458	return 0;
2459}
2460
2461/**
2462 * spi_nor_select_uniform_erase() - select optimum uniform erase type
2463 * @map:		the erase map of the SPI NOR
2464 *
2465 * Once the optimum uniform sector erase command is found, disable all the
2466 * other.
2467 *
2468 * Return: pointer to erase type on success, NULL otherwise.
2469 */
2470static const struct spi_nor_erase_type *
2471spi_nor_select_uniform_erase(struct spi_nor_erase_map *map)
2472{
2473	const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2474	int i;
2475	u8 uniform_erase_type = map->uniform_region.erase_mask;
2476
2477	/*
2478	 * Search for the biggest erase size, except for when compiled
2479	 * to use 4k erases.
2480	 */
2481	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2482		if (!(uniform_erase_type & BIT(i)))
2483			continue;
2484
2485		tested_erase = &map->erase_type[i];
2486
2487		/* Skip masked erase types. */
2488		if (!tested_erase->size)
2489			continue;
2490
2491		/*
2492		 * If the current erase size is the 4k one, stop here,
2493		 * we have found the right uniform Sector Erase command.
2494		 */
2495		if (IS_ENABLED(CONFIG_MTD_SPI_NOR_USE_4K_SECTORS) &&
2496		    tested_erase->size == SZ_4K) {
2497			erase = tested_erase;
2498			break;
2499		}
2500
2501		/*
2502		 * Otherwise, the current erase size is still a valid candidate.
2503		 * Select the biggest valid candidate.
2504		 */
2505		if (!erase && tested_erase->size)
2506			erase = tested_erase;
2507			/* keep iterating to find the wanted_size */
2508	}
2509
2510	if (!erase)
2511		return NULL;
2512
2513	/* Disable all other Sector Erase commands. */
2514	map->uniform_region.erase_mask = BIT(erase - map->erase_type);
2515	return erase;
2516}
2517
2518static int spi_nor_select_erase(struct spi_nor *nor)
2519{
2520	struct spi_nor_erase_map *map = &nor->params->erase_map;
2521	const struct spi_nor_erase_type *erase = NULL;
2522	struct mtd_info *mtd = &nor->mtd;
2523	int i;
2524
2525	/*
2526	 * The previous implementation handling Sector Erase commands assumed
2527	 * that the SPI flash memory has an uniform layout then used only one
2528	 * of the supported erase sizes for all Sector Erase commands.
2529	 * So to be backward compatible, the new implementation also tries to
2530	 * manage the SPI flash memory as uniform with a single erase sector
2531	 * size, when possible.
2532	 */
2533	if (spi_nor_has_uniform_erase(nor)) {
2534		erase = spi_nor_select_uniform_erase(map);
2535		if (!erase)
2536			return -EINVAL;
2537		nor->erase_opcode = erase->opcode;
2538		mtd->erasesize = erase->size;
2539		return 0;
2540	}
2541
2542	/*
2543	 * For non-uniform SPI flash memory, set mtd->erasesize to the
2544	 * maximum erase sector size. No need to set nor->erase_opcode.
2545	 */
2546	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2547		if (map->erase_type[i].size) {
2548			erase = &map->erase_type[i];
2549			break;
2550		}
2551	}
2552
2553	if (!erase)
2554		return -EINVAL;
2555
2556	mtd->erasesize = erase->size;
2557	return 0;
2558}
2559
2560static int spi_nor_set_addr_nbytes(struct spi_nor *nor)
2561{
2562	if (nor->params->addr_nbytes) {
2563		nor->addr_nbytes = nor->params->addr_nbytes;
2564	} else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) {
2565		/*
2566		 * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So
2567		 * in this protocol an odd addr_nbytes cannot be used because
2568		 * then the address phase would only span a cycle and a half.
2569		 * Half a cycle would be left over. We would then have to start
2570		 * the dummy phase in the middle of a cycle and so too the data
2571		 * phase, and we will end the transaction with half a cycle left
2572		 * over.
2573		 *
2574		 * Force all 8D-8D-8D flashes to use an addr_nbytes of 4 to
2575		 * avoid this situation.
2576		 */
2577		nor->addr_nbytes = 4;
2578	} else if (nor->info->addr_nbytes) {
2579		nor->addr_nbytes = nor->info->addr_nbytes;
2580	} else {
2581		nor->addr_nbytes = 3;
2582	}
2583
2584	if (nor->addr_nbytes == 3 && nor->params->size > 0x1000000) {
2585		/* enable 4-byte addressing if the device exceeds 16MiB */
2586		nor->addr_nbytes = 4;
2587	}
2588
2589	if (nor->addr_nbytes > SPI_NOR_MAX_ADDR_NBYTES) {
2590		dev_dbg(nor->dev, "The number of address bytes is too large: %u\n",
2591			nor->addr_nbytes);
2592		return -EINVAL;
2593	}
2594
2595	/* Set 4byte opcodes when possible. */
2596	if (nor->addr_nbytes == 4 && nor->flags & SNOR_F_4B_OPCODES &&
2597	    !(nor->flags & SNOR_F_HAS_4BAIT))
2598		spi_nor_set_4byte_opcodes(nor);
2599
2600	return 0;
2601}
2602
2603static int spi_nor_setup(struct spi_nor *nor,
2604			 const struct spi_nor_hwcaps *hwcaps)
2605{
2606	struct spi_nor_flash_parameter *params = nor->params;
2607	u32 ignored_mask, shared_mask;
2608	int err;
2609
2610	/*
2611	 * Keep only the hardware capabilities supported by both the SPI
2612	 * controller and the SPI flash memory.
2613	 */
2614	shared_mask = hwcaps->mask & params->hwcaps.mask;
2615
2616	if (nor->spimem) {
2617		/*
2618		 * When called from spi_nor_probe(), all caps are set and we
2619		 * need to discard some of them based on what the SPI
2620		 * controller actually supports (using spi_mem_supports_op()).
2621		 */
2622		spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2623	} else {
2624		/*
2625		 * SPI n-n-n protocols are not supported when the SPI
2626		 * controller directly implements the spi_nor interface.
2627		 * Yet another reason to switch to spi-mem.
2628		 */
2629		ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR;
2630		if (shared_mask & ignored_mask) {
2631			dev_dbg(nor->dev,
2632				"SPI n-n-n protocols are not supported.\n");
2633			shared_mask &= ~ignored_mask;
2634		}
2635	}
2636
2637	/* Select the (Fast) Read command. */
2638	err = spi_nor_select_read(nor, shared_mask);
2639	if (err) {
2640		dev_dbg(nor->dev,
2641			"can't select read settings supported by both the SPI controller and memory.\n");
2642		return err;
2643	}
2644
2645	/* Select the Page Program command. */
2646	err = spi_nor_select_pp(nor, shared_mask);
2647	if (err) {
2648		dev_dbg(nor->dev,
2649			"can't select write settings supported by both the SPI controller and memory.\n");
2650		return err;
2651	}
2652
2653	/* Select the Sector Erase command. */
2654	err = spi_nor_select_erase(nor);
2655	if (err) {
2656		dev_dbg(nor->dev,
2657			"can't select erase settings supported by both the SPI controller and memory.\n");
2658		return err;
2659	}
2660
2661	return spi_nor_set_addr_nbytes(nor);
2662}
2663
2664/**
2665 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2666 * settings based on MFR register and ->default_init() hook.
2667 * @nor:	pointer to a 'struct spi_nor'.
2668 */
2669static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2670{
2671	if (nor->manufacturer && nor->manufacturer->fixups &&
2672	    nor->manufacturer->fixups->default_init)
2673		nor->manufacturer->fixups->default_init(nor);
2674
2675	if (nor->info->fixups && nor->info->fixups->default_init)
2676		nor->info->fixups->default_init(nor);
2677}
2678
2679/**
2680 * spi_nor_no_sfdp_init_params() - Initialize the flash's parameters and
2681 * settings based on nor->info->sfdp_flags. This method should be called only by
2682 * flashes that do not define SFDP tables. If the flash supports SFDP but the
2683 * information is wrong and the settings from this function can not be retrieved
2684 * by parsing SFDP, one should instead use the fixup hooks and update the wrong
2685 * bits.
2686 * @nor:	pointer to a 'struct spi_nor'.
2687 */
2688static void spi_nor_no_sfdp_init_params(struct spi_nor *nor)
2689{
2690	struct spi_nor_flash_parameter *params = nor->params;
2691	struct spi_nor_erase_map *map = &params->erase_map;
2692	const struct flash_info *info = nor->info;
2693	const u8 no_sfdp_flags = info->no_sfdp_flags;
2694	u8 i, erase_mask;
2695
2696	if (no_sfdp_flags & SPI_NOR_DUAL_READ) {
2697		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2698		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
2699					  0, 8, SPINOR_OP_READ_1_1_2,
2700					  SNOR_PROTO_1_1_2);
2701	}
2702
2703	if (no_sfdp_flags & SPI_NOR_QUAD_READ) {
2704		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2705		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
2706					  0, 8, SPINOR_OP_READ_1_1_4,
2707					  SNOR_PROTO_1_1_4);
2708	}
2709
2710	if (no_sfdp_flags & SPI_NOR_OCTAL_READ) {
2711		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2712		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
2713					  0, 8, SPINOR_OP_READ_1_1_8,
2714					  SNOR_PROTO_1_1_8);
2715	}
2716
2717	if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_READ) {
2718		params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
2719		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_8_8_8_DTR],
2720					  0, 20, SPINOR_OP_READ_FAST,
2721					  SNOR_PROTO_8_8_8_DTR);
2722	}
2723
2724	if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_PP) {
2725		params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
2726		/*
2727		 * Since xSPI Page Program opcode is backward compatible with
2728		 * Legacy SPI, use Legacy SPI opcode there as well.
2729		 */
2730		spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
2731					SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
2732	}
2733
2734	/*
2735	 * Sector Erase settings. Sort Erase Types in ascending order, with the
2736	 * smallest erase size starting at BIT(0).
2737	 */
2738	erase_mask = 0;
2739	i = 0;
2740	if (no_sfdp_flags & SECT_4K) {
2741		erase_mask |= BIT(i);
2742		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2743				       SPINOR_OP_BE_4K);
2744		i++;
2745	}
2746	erase_mask |= BIT(i);
2747	spi_nor_set_erase_type(&map->erase_type[i],
2748			       info->sector_size ?: SPI_NOR_DEFAULT_SECTOR_SIZE,
2749			       SPINOR_OP_SE);
2750	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2751}
2752
2753/**
2754 * spi_nor_init_flags() - Initialize NOR flags for settings that are not defined
2755 * in the JESD216 SFDP standard, thus can not be retrieved when parsing SFDP.
2756 * @nor:	pointer to a 'struct spi_nor'
2757 */
2758static void spi_nor_init_flags(struct spi_nor *nor)
2759{
2760	struct device_node *np = spi_nor_get_flash_node(nor);
2761	const u16 flags = nor->info->flags;
2762
2763	if (of_property_read_bool(np, "broken-flash-reset"))
2764		nor->flags |= SNOR_F_BROKEN_RESET;
2765
2766	if (of_property_read_bool(np, "no-wp"))
2767		nor->flags |= SNOR_F_NO_WP;
2768
2769	if (flags & SPI_NOR_SWP_IS_VOLATILE)
2770		nor->flags |= SNOR_F_SWP_IS_VOLATILE;
2771
2772	if (flags & SPI_NOR_HAS_LOCK)
2773		nor->flags |= SNOR_F_HAS_LOCK;
2774
2775	if (flags & SPI_NOR_HAS_TB) {
2776		nor->flags |= SNOR_F_HAS_SR_TB;
2777		if (flags & SPI_NOR_TB_SR_BIT6)
2778			nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
2779	}
2780
2781	if (flags & SPI_NOR_4BIT_BP) {
2782		nor->flags |= SNOR_F_HAS_4BIT_BP;
2783		if (flags & SPI_NOR_BP3_SR_BIT6)
2784			nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
2785	}
2786
2787	if (flags & SPI_NOR_RWW && nor->params->n_banks > 1 &&
2788	    !nor->controller_ops)
2789		nor->flags |= SNOR_F_RWW;
2790}
2791
2792/**
2793 * spi_nor_init_fixup_flags() - Initialize NOR flags for settings that can not
2794 * be discovered by SFDP for this particular flash because the SFDP table that
2795 * indicates this support is not defined in the flash. In case the table for
2796 * this support is defined but has wrong values, one should instead use a
2797 * post_sfdp() hook to set the SNOR_F equivalent flag.
2798 * @nor:       pointer to a 'struct spi_nor'
2799 */
2800static void spi_nor_init_fixup_flags(struct spi_nor *nor)
2801{
2802	const u8 fixup_flags = nor->info->fixup_flags;
2803
2804	if (fixup_flags & SPI_NOR_4B_OPCODES)
2805		nor->flags |= SNOR_F_4B_OPCODES;
2806
2807	if (fixup_flags & SPI_NOR_IO_MODE_EN_VOLATILE)
2808		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
2809}
2810
2811/**
2812 * spi_nor_late_init_params() - Late initialization of default flash parameters.
2813 * @nor:	pointer to a 'struct spi_nor'
2814 *
2815 * Used to initialize flash parameters that are not declared in the JESD216
2816 * SFDP standard, or where SFDP tables are not defined at all.
2817 * Will replace the spi_nor_manufacturer_init_params() method.
2818 */
2819static int spi_nor_late_init_params(struct spi_nor *nor)
2820{
2821	struct spi_nor_flash_parameter *params = nor->params;
2822	int ret;
2823
2824	if (nor->manufacturer && nor->manufacturer->fixups &&
2825	    nor->manufacturer->fixups->late_init) {
2826		ret = nor->manufacturer->fixups->late_init(nor);
2827		if (ret)
2828			return ret;
2829	}
2830
2831	/* Needed by some flashes late_init hooks. */
2832	spi_nor_init_flags(nor);
2833
2834	if (nor->info->fixups && nor->info->fixups->late_init) {
2835		ret = nor->info->fixups->late_init(nor);
2836		if (ret)
2837			return ret;
2838	}
2839
2840	if (!nor->params->die_erase_opcode)
2841		nor->params->die_erase_opcode = SPINOR_OP_CHIP_ERASE;
2842
2843	/* Default method kept for backward compatibility. */
2844	if (!params->set_4byte_addr_mode)
2845		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr;
2846
2847	spi_nor_init_fixup_flags(nor);
2848
2849	/*
2850	 * NOR protection support. When locking_ops are not provided, we pick
2851	 * the default ones.
2852	 */
2853	if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2854		spi_nor_init_default_locking_ops(nor);
2855
2856	if (params->n_banks > 1)
2857		params->bank_size = div_u64(params->size, params->n_banks);
2858
2859	return 0;
2860}
2861
2862/**
2863 * spi_nor_sfdp_init_params_deprecated() - Deprecated way of initializing flash
2864 * parameters and settings based on JESD216 SFDP standard.
2865 * @nor:	pointer to a 'struct spi_nor'.
2866 *
2867 * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2868 * legacy flash parameters and settings will be restored.
2869 */
2870static void spi_nor_sfdp_init_params_deprecated(struct spi_nor *nor)
2871{
2872	struct spi_nor_flash_parameter sfdp_params;
2873
2874	memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2875
2876	if (spi_nor_parse_sfdp(nor)) {
2877		memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2878		nor->flags &= ~SNOR_F_4B_OPCODES;
2879	}
2880}
2881
2882/**
2883 * spi_nor_init_params_deprecated() - Deprecated way of initializing flash
2884 * parameters and settings.
2885 * @nor:	pointer to a 'struct spi_nor'.
2886 *
2887 * The method assumes that flash doesn't support SFDP so it initializes flash
2888 * parameters in spi_nor_no_sfdp_init_params() which later on can be overwritten
2889 * when parsing SFDP, if supported.
2890 */
2891static void spi_nor_init_params_deprecated(struct spi_nor *nor)
2892{
2893	spi_nor_no_sfdp_init_params(nor);
2894
2895	spi_nor_manufacturer_init_params(nor);
2896
2897	if (nor->info->no_sfdp_flags & (SPI_NOR_DUAL_READ |
2898					SPI_NOR_QUAD_READ |
2899					SPI_NOR_OCTAL_READ |
2900					SPI_NOR_OCTAL_DTR_READ))
2901		spi_nor_sfdp_init_params_deprecated(nor);
2902}
2903
2904/**
2905 * spi_nor_init_default_params() - Default initialization of flash parameters
2906 * and settings. Done for all flashes, regardless is they define SFDP tables
2907 * or not.
2908 * @nor:	pointer to a 'struct spi_nor'.
2909 */
2910static void spi_nor_init_default_params(struct spi_nor *nor)
2911{
2912	struct spi_nor_flash_parameter *params = nor->params;
2913	const struct flash_info *info = nor->info;
2914	struct device_node *np = spi_nor_get_flash_node(nor);
2915
2916	params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2917	params->otp.org = info->otp;
2918
2919	/* Default to 16-bit Write Status (01h) Command */
2920	nor->flags |= SNOR_F_HAS_16BIT_SR;
2921
2922	/* Set SPI NOR sizes. */
2923	params->writesize = 1;
2924	params->size = info->size;
2925	params->bank_size = params->size;
2926	params->page_size = info->page_size ?: SPI_NOR_DEFAULT_PAGE_SIZE;
2927	params->n_banks = info->n_banks ?: SPI_NOR_DEFAULT_N_BANKS;
2928
2929	/* Default to Fast Read for non-DT and enable it if requested by DT. */
2930	if (!np || of_property_read_bool(np, "m25p,fast-read"))
2931		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2932
2933	/* (Fast) Read settings. */
2934	params->hwcaps.mask |= SNOR_HWCAPS_READ;
2935	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
2936				  0, 0, SPINOR_OP_READ,
2937				  SNOR_PROTO_1_1_1);
2938
2939	if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2940		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
2941					  0, 8, SPINOR_OP_READ_FAST,
2942					  SNOR_PROTO_1_1_1);
2943	/* Page Program settings. */
2944	params->hwcaps.mask |= SNOR_HWCAPS_PP;
2945	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
2946				SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2947
2948	if (info->flags & SPI_NOR_QUAD_PP) {
2949		params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
2950		spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
2951					SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
2952	}
2953}
2954
2955/**
2956 * spi_nor_init_params() - Initialize the flash's parameters and settings.
2957 * @nor:	pointer to a 'struct spi_nor'.
2958 *
2959 * The flash parameters and settings are initialized based on a sequence of
2960 * calls that are ordered by priority:
2961 *
2962 * 1/ Default flash parameters initialization. The initializations are done
2963 *    based on nor->info data:
2964 *		spi_nor_info_init_params()
2965 *
2966 * which can be overwritten by:
2967 * 2/ Manufacturer flash parameters initialization. The initializations are
2968 *    done based on MFR register, or when the decisions can not be done solely
2969 *    based on MFR, by using specific flash_info tweeks, ->default_init():
2970 *		spi_nor_manufacturer_init_params()
2971 *
2972 * which can be overwritten by:
2973 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
2974 *    should be more accurate that the above.
2975 *		spi_nor_parse_sfdp() or spi_nor_no_sfdp_init_params()
2976 *
2977 *    Please note that there is a ->post_bfpt() fixup hook that can overwrite
2978 *    the flash parameters and settings immediately after parsing the Basic
2979 *    Flash Parameter Table.
2980 *    spi_nor_post_sfdp_fixups() is called after the SFDP tables are parsed.
2981 *    It is used to tweak various flash parameters when information provided
2982 *    by the SFDP tables are wrong.
2983 *
2984 * which can be overwritten by:
2985 * 4/ Late flash parameters initialization, used to initialize flash
2986 * parameters that are not declared in the JESD216 SFDP standard, or where SFDP
2987 * tables are not defined at all.
2988 *		spi_nor_late_init_params()
2989 *
2990 * Return: 0 on success, -errno otherwise.
2991 */
2992static int spi_nor_init_params(struct spi_nor *nor)
2993{
2994	int ret;
2995
2996	nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
2997	if (!nor->params)
2998		return -ENOMEM;
2999
3000	spi_nor_init_default_params(nor);
3001
3002	if (spi_nor_needs_sfdp(nor)) {
3003		ret = spi_nor_parse_sfdp(nor);
3004		if (ret) {
3005			dev_err(nor->dev, "BFPT parsing failed. Please consider using SPI_NOR_SKIP_SFDP when declaring the flash\n");
3006			return ret;
3007		}
3008	} else if (nor->info->no_sfdp_flags & SPI_NOR_SKIP_SFDP) {
3009		spi_nor_no_sfdp_init_params(nor);
3010	} else {
3011		spi_nor_init_params_deprecated(nor);
3012	}
3013
3014	ret = spi_nor_late_init_params(nor);
3015	if (ret)
3016		return ret;
3017
3018	if (WARN_ON(!is_power_of_2(nor->params->page_size)))
3019		return -EINVAL;
3020
3021	return 0;
3022}
3023
3024/** spi_nor_set_octal_dtr() - enable or disable Octal DTR I/O.
3025 * @nor:                 pointer to a 'struct spi_nor'
3026 * @enable:              whether to enable or disable Octal DTR
3027 *
3028 * Return: 0 on success, -errno otherwise.
3029 */
3030static int spi_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
3031{
3032	int ret;
3033
3034	if (!nor->params->set_octal_dtr)
3035		return 0;
3036
3037	if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
3038	      nor->write_proto == SNOR_PROTO_8_8_8_DTR))
3039		return 0;
3040
3041	if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE))
3042		return 0;
3043
3044	ret = nor->params->set_octal_dtr(nor, enable);
3045	if (ret)
3046		return ret;
3047
3048	if (enable)
3049		nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
3050	else
3051		nor->reg_proto = SNOR_PROTO_1_1_1;
3052
3053	return 0;
3054}
3055
3056/**
3057 * spi_nor_quad_enable() - enable Quad I/O if needed.
3058 * @nor:                pointer to a 'struct spi_nor'
3059 *
3060 * Return: 0 on success, -errno otherwise.
3061 */
3062static int spi_nor_quad_enable(struct spi_nor *nor)
3063{
3064	if (!nor->params->quad_enable)
3065		return 0;
3066
3067	if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
3068	      spi_nor_get_protocol_width(nor->write_proto) == 4))
3069		return 0;
3070
3071	return nor->params->quad_enable(nor);
3072}
3073
3074/**
3075 * spi_nor_set_4byte_addr_mode() - Set address mode.
3076 * @nor:                pointer to a 'struct spi_nor'.
3077 * @enable:             enable/disable 4 byte address mode.
3078 *
3079 * Return: 0 on success, -errno otherwise.
3080 */
3081int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
3082{
3083	struct spi_nor_flash_parameter *params = nor->params;
3084	int ret;
3085
3086	if (enable) {
3087		/*
3088		 * If the RESET# pin isn't hooked up properly, or the system
3089		 * otherwise doesn't perform a reset command in the boot
3090		 * sequence, it's impossible to 100% protect against unexpected
3091		 * reboots (e.g., crashes). Warn the user (or hopefully, system
3092		 * designer) that this is bad.
3093		 */
3094		WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
3095			  "enabling reset hack; may not recover from unexpected reboots\n");
3096	}
3097
3098	ret = params->set_4byte_addr_mode(nor, enable);
3099	if (ret && ret != -EOPNOTSUPP)
3100		return ret;
3101
3102	if (enable) {
3103		params->addr_nbytes = 4;
3104		params->addr_mode_nbytes = 4;
3105	} else {
3106		params->addr_nbytes = 3;
3107		params->addr_mode_nbytes = 3;
3108	}
3109
3110	return 0;
3111}
3112
3113static int spi_nor_init(struct spi_nor *nor)
3114{
3115	int err;
3116
3117	err = spi_nor_set_octal_dtr(nor, true);
3118	if (err) {
3119		dev_dbg(nor->dev, "octal mode not supported\n");
3120		return err;
3121	}
3122
3123	err = spi_nor_quad_enable(nor);
3124	if (err) {
3125		dev_dbg(nor->dev, "quad mode not supported\n");
3126		return err;
3127	}
3128
3129	/*
3130	 * Some SPI NOR flashes are write protected by default after a power-on
3131	 * reset cycle, in order to avoid inadvertent writes during power-up.
3132	 * Backward compatibility imposes to unlock the entire flash memory
3133	 * array at power-up by default. Depending on the kernel configuration
3134	 * (1) do nothing, (2) always unlock the entire flash array or (3)
3135	 * unlock the entire flash array only when the software write
3136	 * protection bits are volatile. The latter is indicated by
3137	 * SNOR_F_SWP_IS_VOLATILE.
3138	 */
3139	if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) ||
3140	    (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) &&
3141	     nor->flags & SNOR_F_SWP_IS_VOLATILE))
3142		spi_nor_try_unlock_all(nor);
3143
3144	if (nor->addr_nbytes == 4 &&
3145	    nor->read_proto != SNOR_PROTO_8_8_8_DTR &&
3146	    !(nor->flags & SNOR_F_4B_OPCODES))
3147		return spi_nor_set_4byte_addr_mode(nor, true);
3148
3149	return 0;
3150}
3151
3152/**
3153 * spi_nor_soft_reset() - Perform a software reset
3154 * @nor:	pointer to 'struct spi_nor'
3155 *
3156 * Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets
3157 * the device to its power-on-reset state. This is useful when the software has
3158 * made some changes to device (volatile) registers and needs to reset it before
3159 * shutting down, for example.
3160 *
3161 * Not every flash supports this sequence. The same set of opcodes might be used
3162 * for some other operation on a flash that does not support this. Support for
3163 * this sequence can be discovered via SFDP in the BFPT table.
3164 *
3165 * Return: 0 on success, -errno otherwise.
3166 */
3167static void spi_nor_soft_reset(struct spi_nor *nor)
3168{
3169	struct spi_mem_op op;
3170	int ret;
3171
3172	op = (struct spi_mem_op)SPINOR_SRSTEN_OP;
3173
3174	spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3175
3176	ret = spi_mem_exec_op(nor->spimem, &op);
3177	if (ret) {
3178		if (ret != -EOPNOTSUPP)
3179			dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3180		return;
3181	}
3182
3183	op = (struct spi_mem_op)SPINOR_SRST_OP;
3184
3185	spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3186
3187	ret = spi_mem_exec_op(nor->spimem, &op);
3188	if (ret) {
3189		dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3190		return;
3191	}
3192
3193	/*
3194	 * Software Reset is not instant, and the delay varies from flash to
3195	 * flash. Looking at a few flashes, most range somewhere below 100
3196	 * microseconds. So, sleep for a range of 200-400 us.
3197	 */
3198	usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX);
3199}
3200
3201/* mtd suspend handler */
3202static int spi_nor_suspend(struct mtd_info *mtd)
3203{
3204	struct spi_nor *nor = mtd_to_spi_nor(mtd);
3205	int ret;
3206
3207	/* Disable octal DTR mode if we enabled it. */
3208	ret = spi_nor_set_octal_dtr(nor, false);
3209	if (ret)
3210		dev_err(nor->dev, "suspend() failed\n");
3211
3212	return ret;
3213}
3214
3215/* mtd resume handler */
3216static void spi_nor_resume(struct mtd_info *mtd)
3217{
3218	struct spi_nor *nor = mtd_to_spi_nor(mtd);
3219	struct device *dev = nor->dev;
3220	int ret;
3221
3222	/* re-initialize the nor chip */
3223	ret = spi_nor_init(nor);
3224	if (ret)
3225		dev_err(dev, "resume() failed\n");
3226}
3227
3228static int spi_nor_get_device(struct mtd_info *mtd)
3229{
3230	struct mtd_info *master = mtd_get_master(mtd);
3231	struct spi_nor *nor = mtd_to_spi_nor(master);
3232	struct device *dev;
3233
3234	if (nor->spimem)
3235		dev = nor->spimem->spi->controller->dev.parent;
3236	else
3237		dev = nor->dev;
3238
3239	if (!try_module_get(dev->driver->owner))
3240		return -ENODEV;
3241
3242	return 0;
3243}
3244
3245static void spi_nor_put_device(struct mtd_info *mtd)
3246{
3247	struct mtd_info *master = mtd_get_master(mtd);
3248	struct spi_nor *nor = mtd_to_spi_nor(master);
3249	struct device *dev;
3250
3251	if (nor->spimem)
3252		dev = nor->spimem->spi->controller->dev.parent;
3253	else
3254		dev = nor->dev;
3255
3256	module_put(dev->driver->owner);
3257}
3258
3259static void spi_nor_restore(struct spi_nor *nor)
3260{
3261	int ret;
3262
3263	/* restore the addressing mode */
3264	if (nor->addr_nbytes == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
3265	    nor->flags & SNOR_F_BROKEN_RESET) {
3266		ret = spi_nor_set_4byte_addr_mode(nor, false);
3267		if (ret)
3268			/*
3269			 * Do not stop the execution in the hope that the flash
3270			 * will default to the 3-byte address mode after the
3271			 * software reset.
3272			 */
3273			dev_err(nor->dev, "Failed to exit 4-byte address mode, err = %d\n", ret);
3274	}
3275
3276	if (nor->flags & SNOR_F_SOFT_RESET)
3277		spi_nor_soft_reset(nor);
3278}
3279
3280static const struct flash_info *spi_nor_match_name(struct spi_nor *nor,
3281						   const char *name)
3282{
3283	unsigned int i, j;
3284
3285	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
3286		for (j = 0; j < manufacturers[i]->nparts; j++) {
3287			if (manufacturers[i]->parts[j].name &&
3288			    !strcmp(name, manufacturers[i]->parts[j].name)) {
3289				nor->manufacturer = manufacturers[i];
3290				return &manufacturers[i]->parts[j];
3291			}
3292		}
3293	}
3294
3295	return NULL;
3296}
3297
3298static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3299						       const char *name)
3300{
3301	const struct flash_info *info = NULL;
3302
3303	if (name)
3304		info = spi_nor_match_name(nor, name);
3305	/*
3306	 * Auto-detect if chip name wasn't specified or not found, or the chip
3307	 * has an ID. If the chip supposedly has an ID, we also do an
3308	 * auto-detection to compare it later.
3309	 */
3310	if (!info || info->id) {
3311		const struct flash_info *jinfo;
3312
3313		jinfo = spi_nor_detect(nor);
3314		if (IS_ERR(jinfo))
3315			return jinfo;
3316
3317		/*
3318		 * If caller has specified name of flash model that can normally
3319		 * be detected using JEDEC, let's verify it.
3320		 */
3321		if (info && jinfo != info)
3322			dev_warn(nor->dev, "found %s, expected %s\n",
3323				 jinfo->name, info->name);
3324
3325		/* If info was set before, JEDEC knows better. */
3326		info = jinfo;
3327	}
3328
3329	return info;
3330}
3331
3332static u32
3333spi_nor_get_region_erasesize(const struct spi_nor_erase_region *region,
3334			     const struct spi_nor_erase_type *erase_type)
3335{
3336	int i;
3337
3338	if (region->overlaid)
3339		return region->size;
3340
3341	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
3342		if (region->erase_mask & BIT(i))
3343			return erase_type[i].size;
3344	}
3345
3346	return 0;
3347}
3348
3349static int spi_nor_set_mtd_eraseregions(struct spi_nor *nor)
3350{
3351	const struct spi_nor_erase_map *map = &nor->params->erase_map;
3352	const struct spi_nor_erase_region *region = map->regions;
3353	struct mtd_erase_region_info *mtd_region;
3354	struct mtd_info *mtd = &nor->mtd;
3355	u32 erasesize, i;
3356
3357	mtd_region = devm_kcalloc(nor->dev, map->n_regions, sizeof(*mtd_region),
3358				  GFP_KERNEL);
3359	if (!mtd_region)
3360		return -ENOMEM;
3361
3362	for (i = 0; i < map->n_regions; i++) {
3363		erasesize = spi_nor_get_region_erasesize(&region[i],
3364							 map->erase_type);
3365		if (!erasesize)
3366			return -EINVAL;
3367
3368		mtd_region[i].erasesize = erasesize;
3369		mtd_region[i].numblocks = div_u64(region[i].size, erasesize);
3370		mtd_region[i].offset = region[i].offset;
3371	}
3372
3373	mtd->numeraseregions = map->n_regions;
3374	mtd->eraseregions = mtd_region;
3375
3376	return 0;
3377}
3378
3379static int spi_nor_set_mtd_info(struct spi_nor *nor)
3380{
3381	struct mtd_info *mtd = &nor->mtd;
3382	struct device *dev = nor->dev;
3383
3384	spi_nor_set_mtd_locking_ops(nor);
3385	spi_nor_set_mtd_otp_ops(nor);
3386
3387	mtd->dev.parent = dev;
3388	if (!mtd->name)
3389		mtd->name = dev_name(dev);
3390	mtd->type = MTD_NORFLASH;
3391	mtd->flags = MTD_CAP_NORFLASH;
3392	/* Unset BIT_WRITEABLE to enable JFFS2 write buffer for ECC'd NOR */
3393	if (nor->flags & SNOR_F_ECC)
3394		mtd->flags &= ~MTD_BIT_WRITEABLE;
3395	if (nor->info->flags & SPI_NOR_NO_ERASE)
3396		mtd->flags |= MTD_NO_ERASE;
3397	else
3398		mtd->_erase = spi_nor_erase;
3399	mtd->writesize = nor->params->writesize;
3400	mtd->writebufsize = nor->params->page_size;
3401	mtd->size = nor->params->size;
3402	mtd->_read = spi_nor_read;
3403	/* Might be already set by some SST flashes. */
3404	if (!mtd->_write)
3405		mtd->_write = spi_nor_write;
3406	mtd->_suspend = spi_nor_suspend;
3407	mtd->_resume = spi_nor_resume;
3408	mtd->_get_device = spi_nor_get_device;
3409	mtd->_put_device = spi_nor_put_device;
3410
3411	if (!spi_nor_has_uniform_erase(nor))
3412		return spi_nor_set_mtd_eraseregions(nor);
3413
3414	return 0;
3415}
3416
3417static int spi_nor_hw_reset(struct spi_nor *nor)
3418{
3419	struct gpio_desc *reset;
3420
3421	reset = devm_gpiod_get_optional(nor->dev, "reset", GPIOD_OUT_LOW);
3422	if (IS_ERR_OR_NULL(reset))
3423		return PTR_ERR_OR_ZERO(reset);
3424
3425	/*
3426	 * Experimental delay values by looking at different flash device
3427	 * vendors datasheets.
3428	 */
3429	usleep_range(1, 5);
3430	gpiod_set_value_cansleep(reset, 1);
3431	usleep_range(100, 150);
3432	gpiod_set_value_cansleep(reset, 0);
3433	usleep_range(1000, 1200);
3434
3435	return 0;
3436}
3437
3438int spi_nor_scan(struct spi_nor *nor, const char *name,
3439		 const struct spi_nor_hwcaps *hwcaps)
3440{
3441	const struct flash_info *info;
3442	struct device *dev = nor->dev;
3443	int ret;
3444
3445	ret = spi_nor_check(nor);
3446	if (ret)
3447		return ret;
3448
3449	/* Reset SPI protocol for all commands. */
3450	nor->reg_proto = SNOR_PROTO_1_1_1;
3451	nor->read_proto = SNOR_PROTO_1_1_1;
3452	nor->write_proto = SNOR_PROTO_1_1_1;
3453
3454	/*
3455	 * We need the bounce buffer early to read/write registers when going
3456	 * through the spi-mem layer (buffers have to be DMA-able).
3457	 * For spi-mem drivers, we'll reallocate a new buffer if
3458	 * nor->params->page_size turns out to be greater than PAGE_SIZE (which
3459	 * shouldn't happen before long since NOR pages are usually less
3460	 * than 1KB) after spi_nor_scan() returns.
3461	 */
3462	nor->bouncebuf_size = PAGE_SIZE;
3463	nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3464				      GFP_KERNEL);
3465	if (!nor->bouncebuf)
3466		return -ENOMEM;
3467
3468	ret = spi_nor_hw_reset(nor);
3469	if (ret)
3470		return ret;
3471
3472	info = spi_nor_get_flash_info(nor, name);
3473	if (IS_ERR(info))
3474		return PTR_ERR(info);
3475
3476	nor->info = info;
3477
3478	mutex_init(&nor->lock);
3479
3480	/* Init flash parameters based on flash_info struct and SFDP */
3481	ret = spi_nor_init_params(nor);
3482	if (ret)
3483		return ret;
3484
3485	if (spi_nor_use_parallel_locking(nor))
3486		init_waitqueue_head(&nor->rww.wait);
3487
3488	/*
3489	 * Configure the SPI memory:
3490	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3491	 * - set the number of dummy cycles (mode cycles + wait states).
3492	 * - set the SPI protocols for register and memory accesses.
3493	 * - set the number of address bytes.
3494	 */
3495	ret = spi_nor_setup(nor, hwcaps);
3496	if (ret)
3497		return ret;
3498
3499	/* Send all the required SPI flash commands to initialize device */
3500	ret = spi_nor_init(nor);
3501	if (ret)
3502		return ret;
3503
3504	/* No mtd_info fields should be used up to this point. */
3505	ret = spi_nor_set_mtd_info(nor);
3506	if (ret)
3507		return ret;
3508
3509	dev_dbg(dev, "Manufacturer and device ID: %*phN\n",
3510		SPI_NOR_MAX_ID_LEN, nor->id);
3511
3512	return 0;
3513}
3514EXPORT_SYMBOL_GPL(spi_nor_scan);
3515
3516static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3517{
3518	struct spi_mem_dirmap_info info = {
3519		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
3520				      SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
3521				      SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
3522				      SPI_MEM_OP_DATA_IN(0, NULL, 0)),
3523		.offset = 0,
3524		.length = nor->params->size,
3525	};
3526	struct spi_mem_op *op = &info.op_tmpl;
3527
3528	spi_nor_spimem_setup_op(nor, op, nor->read_proto);
3529
3530	/* convert the dummy cycles to the number of bytes */
3531	op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3532	if (spi_nor_protocol_is_dtr(nor->read_proto))
3533		op->dummy.nbytes *= 2;
3534
3535	/*
3536	 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3537	 * of data bytes is non-zero, the data buswidth won't be set here. So,
3538	 * do it explicitly.
3539	 */
3540	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3541
3542	nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3543						       &info);
3544	return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3545}
3546
3547static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3548{
3549	struct spi_mem_dirmap_info info = {
3550		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
3551				      SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
3552				      SPI_MEM_OP_NO_DUMMY,
3553				      SPI_MEM_OP_DATA_OUT(0, NULL, 0)),
3554		.offset = 0,
3555		.length = nor->params->size,
3556	};
3557	struct spi_mem_op *op = &info.op_tmpl;
3558
3559	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3560		op->addr.nbytes = 0;
3561
3562	spi_nor_spimem_setup_op(nor, op, nor->write_proto);
3563
3564	/*
3565	 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3566	 * of data bytes is non-zero, the data buswidth won't be set here. So,
3567	 * do it explicitly.
3568	 */
3569	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3570
3571	nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3572						       &info);
3573	return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3574}
3575
3576static int spi_nor_probe(struct spi_mem *spimem)
3577{
3578	struct spi_device *spi = spimem->spi;
3579	struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3580	struct spi_nor *nor;
3581	/*
3582	 * Enable all caps by default. The core will mask them after
3583	 * checking what's really supported using spi_mem_supports_op().
3584	 */
3585	const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3586	char *flash_name;
3587	int ret;
3588
3589	nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3590	if (!nor)
3591		return -ENOMEM;
3592
3593	nor->spimem = spimem;
3594	nor->dev = &spi->dev;
3595	spi_nor_set_flash_node(nor, spi->dev.of_node);
3596
3597	spi_mem_set_drvdata(spimem, nor);
3598
3599	if (data && data->name)
3600		nor->mtd.name = data->name;
3601
3602	if (!nor->mtd.name)
3603		nor->mtd.name = spi_mem_get_name(spimem);
3604
3605	/*
3606	 * For some (historical?) reason many platforms provide two different
3607	 * names in flash_platform_data: "name" and "type". Quite often name is
3608	 * set to "m25p80" and then "type" provides a real chip name.
3609	 * If that's the case, respect "type" and ignore a "name".
3610	 */
3611	if (data && data->type)
3612		flash_name = data->type;
3613	else if (!strcmp(spi->modalias, "spi-nor"))
3614		flash_name = NULL; /* auto-detect */
3615	else
3616		flash_name = spi->modalias;
3617
3618	ret = spi_nor_scan(nor, flash_name, &hwcaps);
3619	if (ret)
3620		return ret;
3621
3622	spi_nor_debugfs_register(nor);
3623
3624	/*
3625	 * None of the existing parts have > 512B pages, but let's play safe
3626	 * and add this logic so that if anyone ever adds support for such
3627	 * a NOR we don't end up with buffer overflows.
3628	 */
3629	if (nor->params->page_size > PAGE_SIZE) {
3630		nor->bouncebuf_size = nor->params->page_size;
3631		devm_kfree(nor->dev, nor->bouncebuf);
3632		nor->bouncebuf = devm_kmalloc(nor->dev,
3633					      nor->bouncebuf_size,
3634					      GFP_KERNEL);
3635		if (!nor->bouncebuf)
3636			return -ENOMEM;
3637	}
3638
3639	ret = spi_nor_create_read_dirmap(nor);
3640	if (ret)
3641		return ret;
3642
3643	ret = spi_nor_create_write_dirmap(nor);
3644	if (ret)
3645		return ret;
3646
3647	return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3648				   data ? data->nr_parts : 0);
3649}
3650
3651static int spi_nor_remove(struct spi_mem *spimem)
3652{
3653	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3654
3655	spi_nor_restore(nor);
3656
3657	/* Clean up MTD stuff. */
3658	return mtd_device_unregister(&nor->mtd);
3659}
3660
3661static void spi_nor_shutdown(struct spi_mem *spimem)
3662{
3663	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3664
3665	spi_nor_restore(nor);
3666}
3667
3668/*
3669 * Do NOT add to this array without reading the following:
3670 *
3671 * Historically, many flash devices are bound to this driver by their name. But
3672 * since most of these flash are compatible to some extent, and their
3673 * differences can often be differentiated by the JEDEC read-ID command, we
3674 * encourage new users to add support to the spi-nor library, and simply bind
3675 * against a generic string here (e.g., "jedec,spi-nor").
3676 *
3677 * Many flash names are kept here in this list to keep them available
3678 * as module aliases for existing platforms.
3679 */
3680static const struct spi_device_id spi_nor_dev_ids[] = {
3681	/*
3682	 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3683	 * hack around the fact that the SPI core does not provide uevent
3684	 * matching for .of_match_table
3685	 */
3686	{"spi-nor"},
3687
3688	/*
3689	 * Entries not used in DTs that should be safe to drop after replacing
3690	 * them with "spi-nor" in platform data.
3691	 */
3692	{"s25sl064a"},	{"w25x16"},	{"m25p10"},	{"m25px64"},
3693
3694	/*
3695	 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3696	 * should be kept for backward compatibility.
3697	 */
3698	{"at25df321a"},	{"at25df641"},	{"at26df081a"},
3699	{"mx25l4005a"},	{"mx25l1606e"},	{"mx25l6405d"},	{"mx25l12805d"},
3700	{"mx25l25635e"},{"mx66l51235l"},
3701	{"n25q064"},	{"n25q128a11"},	{"n25q128a13"},	{"n25q512a"},
3702	{"s25fl256s1"},	{"s25fl512s"},	{"s25sl12801"},	{"s25fl008k"},
3703	{"s25fl064k"},
3704	{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3705	{"m25p40"},	{"m25p80"},	{"m25p16"},	{"m25p32"},
3706	{"m25p64"},	{"m25p128"},
3707	{"w25x80"},	{"w25x32"},	{"w25q32"},	{"w25q32dw"},
3708	{"w25q80bl"},	{"w25q128"},	{"w25q256"},
3709
3710	/* Flashes that can't be detected using JEDEC */
3711	{"m25p05-nonjedec"},	{"m25p10-nonjedec"},	{"m25p20-nonjedec"},
3712	{"m25p40-nonjedec"},	{"m25p80-nonjedec"},	{"m25p16-nonjedec"},
3713	{"m25p32-nonjedec"},	{"m25p64-nonjedec"},	{"m25p128-nonjedec"},
3714
3715	/* Everspin MRAMs (non-JEDEC) */
3716	{ "mr25h128" }, /* 128 Kib, 40 MHz */
3717	{ "mr25h256" }, /* 256 Kib, 40 MHz */
3718	{ "mr25h10" },  /*   1 Mib, 40 MHz */
3719	{ "mr25h40" },  /*   4 Mib, 40 MHz */
3720
3721	{ },
3722};
3723MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3724
3725static const struct of_device_id spi_nor_of_table[] = {
3726	/*
3727	 * Generic compatibility for SPI NOR that can be identified by the
3728	 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3729	 */
3730	{ .compatible = "jedec,spi-nor" },
3731	{ /* sentinel */ },
3732};
3733MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3734
3735/*
3736 * REVISIT: many of these chips have deep power-down modes, which
3737 * should clearly be entered on suspend() to minimize power use.
3738 * And also when they're otherwise idle...
3739 */
3740static struct spi_mem_driver spi_nor_driver = {
3741	.spidrv = {
3742		.driver = {
3743			.name = "spi-nor",
3744			.of_match_table = spi_nor_of_table,
3745			.dev_groups = spi_nor_sysfs_groups,
3746		},
3747		.id_table = spi_nor_dev_ids,
3748	},
3749	.probe = spi_nor_probe,
3750	.remove = spi_nor_remove,
3751	.shutdown = spi_nor_shutdown,
3752};
3753
3754static int __init spi_nor_module_init(void)
3755{
3756	return spi_mem_driver_register(&spi_nor_driver);
3757}
3758module_init(spi_nor_module_init);
3759
3760static void __exit spi_nor_module_exit(void)
3761{
3762	spi_mem_driver_unregister(&spi_nor_driver);
3763	spi_nor_debugfs_shutdown();
3764}
3765module_exit(spi_nor_module_exit);
3766
3767MODULE_LICENSE("GPL v2");
3768MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3769MODULE_AUTHOR("Mike Lavender");
3770MODULE_DESCRIPTION("framework for SPI NOR");