Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completely out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24#include <linux/bug.h>
25#include <linux/kernel.h>
26#include <linux/types.h>
27#include <linux/smp.h>
28#include <linux/string.h>
29#include <linux/cache.h>
30
31#include <asm/cacheflush.h>
32#include <asm/cpu-type.h>
33#include <asm/pgtable.h>
34#include <asm/war.h>
35#include <asm/uasm.h>
36#include <asm/setup.h>
37
38static int mips_xpa_disabled;
39
40static int __init xpa_disable(char *s)
41{
42 mips_xpa_disabled = 1;
43
44 return 1;
45}
46
47__setup("noxpa", xpa_disable);
48
49/*
50 * TLB load/store/modify handlers.
51 *
52 * Only the fastpath gets synthesized at runtime, the slowpath for
53 * do_page_fault remains normal asm.
54 */
55extern void tlb_do_page_fault_0(void);
56extern void tlb_do_page_fault_1(void);
57
58struct work_registers {
59 int r1;
60 int r2;
61 int r3;
62};
63
64struct tlb_reg_save {
65 unsigned long a;
66 unsigned long b;
67} ____cacheline_aligned_in_smp;
68
69static struct tlb_reg_save handler_reg_save[NR_CPUS];
70
71static inline int r45k_bvahwbug(void)
72{
73 /* XXX: We should probe for the presence of this bug, but we don't. */
74 return 0;
75}
76
77static inline int r4k_250MHZhwbug(void)
78{
79 /* XXX: We should probe for the presence of this bug, but we don't. */
80 return 0;
81}
82
83static inline int __maybe_unused bcm1250_m3_war(void)
84{
85 return BCM1250_M3_WAR;
86}
87
88static inline int __maybe_unused r10000_llsc_war(void)
89{
90 return R10000_LLSC_WAR;
91}
92
93static int use_bbit_insns(void)
94{
95 switch (current_cpu_type()) {
96 case CPU_CAVIUM_OCTEON:
97 case CPU_CAVIUM_OCTEON_PLUS:
98 case CPU_CAVIUM_OCTEON2:
99 case CPU_CAVIUM_OCTEON3:
100 return 1;
101 default:
102 return 0;
103 }
104}
105
106static int use_lwx_insns(void)
107{
108 switch (current_cpu_type()) {
109 case CPU_CAVIUM_OCTEON2:
110 case CPU_CAVIUM_OCTEON3:
111 return 1;
112 default:
113 return 0;
114 }
115}
116#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
117 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
118static bool scratchpad_available(void)
119{
120 return true;
121}
122static int scratchpad_offset(int i)
123{
124 /*
125 * CVMSEG starts at address -32768 and extends for
126 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
127 */
128 i += 1; /* Kernel use starts at the top and works down. */
129 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
130}
131#else
132static bool scratchpad_available(void)
133{
134 return false;
135}
136static int scratchpad_offset(int i)
137{
138 BUG();
139 /* Really unreachable, but evidently some GCC want this. */
140 return 0;
141}
142#endif
143/*
144 * Found by experiment: At least some revisions of the 4kc throw under
145 * some circumstances a machine check exception, triggered by invalid
146 * values in the index register. Delaying the tlbp instruction until
147 * after the next branch, plus adding an additional nop in front of
148 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
149 * why; it's not an issue caused by the core RTL.
150 *
151 */
152static int m4kc_tlbp_war(void)
153{
154 return (current_cpu_data.processor_id & 0xffff00) ==
155 (PRID_COMP_MIPS | PRID_IMP_4KC);
156}
157
158/* Handle labels (which must be positive integers). */
159enum label_id {
160 label_second_part = 1,
161 label_leave,
162 label_vmalloc,
163 label_vmalloc_done,
164 label_tlbw_hazard_0,
165 label_split = label_tlbw_hazard_0 + 8,
166 label_tlbl_goaround1,
167 label_tlbl_goaround2,
168 label_nopage_tlbl,
169 label_nopage_tlbs,
170 label_nopage_tlbm,
171 label_smp_pgtable_change,
172 label_r3000_write_probe_fail,
173 label_large_segbits_fault,
174#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
175 label_tlb_huge_update,
176#endif
177};
178
179UASM_L_LA(_second_part)
180UASM_L_LA(_leave)
181UASM_L_LA(_vmalloc)
182UASM_L_LA(_vmalloc_done)
183/* _tlbw_hazard_x is handled differently. */
184UASM_L_LA(_split)
185UASM_L_LA(_tlbl_goaround1)
186UASM_L_LA(_tlbl_goaround2)
187UASM_L_LA(_nopage_tlbl)
188UASM_L_LA(_nopage_tlbs)
189UASM_L_LA(_nopage_tlbm)
190UASM_L_LA(_smp_pgtable_change)
191UASM_L_LA(_r3000_write_probe_fail)
192UASM_L_LA(_large_segbits_fault)
193#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
194UASM_L_LA(_tlb_huge_update)
195#endif
196
197static int hazard_instance;
198
199static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
200{
201 switch (instance) {
202 case 0 ... 7:
203 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
204 return;
205 default:
206 BUG();
207 }
208}
209
210static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
211{
212 switch (instance) {
213 case 0 ... 7:
214 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
215 break;
216 default:
217 BUG();
218 }
219}
220
221/*
222 * pgtable bits are assigned dynamically depending on processor feature
223 * and statically based on kernel configuration. This spits out the actual
224 * values the kernel is using. Required to make sense from disassembled
225 * TLB exception handlers.
226 */
227static void output_pgtable_bits_defines(void)
228{
229#define pr_define(fmt, ...) \
230 pr_debug("#define " fmt, ##__VA_ARGS__)
231
232 pr_debug("#include <asm/asm.h>\n");
233 pr_debug("#include <asm/regdef.h>\n");
234 pr_debug("\n");
235
236 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
237 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
238 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
239 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
240 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
241#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
242 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
243#endif
244#ifdef _PAGE_NO_EXEC_SHIFT
245 if (cpu_has_rixi)
246 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
247#endif
248 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
249 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
250 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
251 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
252 pr_debug("\n");
253}
254
255static inline void dump_handler(const char *symbol, const u32 *handler, int count)
256{
257 int i;
258
259 pr_debug("LEAF(%s)\n", symbol);
260
261 pr_debug("\t.set push\n");
262 pr_debug("\t.set noreorder\n");
263
264 for (i = 0; i < count; i++)
265 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
266
267 pr_debug("\t.set\tpop\n");
268
269 pr_debug("\tEND(%s)\n", symbol);
270}
271
272/* The only general purpose registers allowed in TLB handlers. */
273#define K0 26
274#define K1 27
275
276/* Some CP0 registers */
277#define C0_INDEX 0, 0
278#define C0_ENTRYLO0 2, 0
279#define C0_TCBIND 2, 2
280#define C0_ENTRYLO1 3, 0
281#define C0_CONTEXT 4, 0
282#define C0_PAGEMASK 5, 0
283#define C0_PWBASE 5, 5
284#define C0_PWFIELD 5, 6
285#define C0_PWSIZE 5, 7
286#define C0_PWCTL 6, 6
287#define C0_BADVADDR 8, 0
288#define C0_PGD 9, 7
289#define C0_ENTRYHI 10, 0
290#define C0_EPC 14, 0
291#define C0_XCONTEXT 20, 0
292
293#ifdef CONFIG_64BIT
294# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
295#else
296# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
297#endif
298
299/* The worst case length of the handler is around 18 instructions for
300 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
301 * Maximum space available is 32 instructions for R3000 and 64
302 * instructions for R4000.
303 *
304 * We deliberately chose a buffer size of 128, so we won't scribble
305 * over anything important on overflow before we panic.
306 */
307static u32 tlb_handler[128];
308
309/* simply assume worst case size for labels and relocs */
310static struct uasm_label labels[128];
311static struct uasm_reloc relocs[128];
312
313static int check_for_high_segbits;
314static bool fill_includes_sw_bits;
315
316static unsigned int kscratch_used_mask;
317
318static inline int __maybe_unused c0_kscratch(void)
319{
320 switch (current_cpu_type()) {
321 case CPU_XLP:
322 case CPU_XLR:
323 return 22;
324 default:
325 return 31;
326 }
327}
328
329static int allocate_kscratch(void)
330{
331 int r;
332 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
333
334 r = ffs(a);
335
336 if (r == 0)
337 return -1;
338
339 r--; /* make it zero based */
340
341 kscratch_used_mask |= (1 << r);
342
343 return r;
344}
345
346static int scratch_reg;
347static int pgd_reg;
348enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
349
350static struct work_registers build_get_work_registers(u32 **p)
351{
352 struct work_registers r;
353
354 if (scratch_reg >= 0) {
355 /* Save in CPU local C0_KScratch? */
356 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
357 r.r1 = K0;
358 r.r2 = K1;
359 r.r3 = 1;
360 return r;
361 }
362
363 if (num_possible_cpus() > 1) {
364 /* Get smp_processor_id */
365 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
366 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
367
368 /* handler_reg_save index in K0 */
369 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
370
371 UASM_i_LA(p, K1, (long)&handler_reg_save);
372 UASM_i_ADDU(p, K0, K0, K1);
373 } else {
374 UASM_i_LA(p, K0, (long)&handler_reg_save);
375 }
376 /* K0 now points to save area, save $1 and $2 */
377 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
378 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
379
380 r.r1 = K1;
381 r.r2 = 1;
382 r.r3 = 2;
383 return r;
384}
385
386static void build_restore_work_registers(u32 **p)
387{
388 if (scratch_reg >= 0) {
389 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
390 return;
391 }
392 /* K0 already points to save area, restore $1 and $2 */
393 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
394 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
395}
396
397#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
398
399/*
400 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
401 * we cannot do r3000 under these circumstances.
402 *
403 * Declare pgd_current here instead of including mmu_context.h to avoid type
404 * conflicts for tlbmiss_handler_setup_pgd
405 */
406extern unsigned long pgd_current[];
407
408/*
409 * The R3000 TLB handler is simple.
410 */
411static void build_r3000_tlb_refill_handler(void)
412{
413 long pgdc = (long)pgd_current;
414 u32 *p;
415
416 memset(tlb_handler, 0, sizeof(tlb_handler));
417 p = tlb_handler;
418
419 uasm_i_mfc0(&p, K0, C0_BADVADDR);
420 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
421 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
422 uasm_i_srl(&p, K0, K0, 22); /* load delay */
423 uasm_i_sll(&p, K0, K0, 2);
424 uasm_i_addu(&p, K1, K1, K0);
425 uasm_i_mfc0(&p, K0, C0_CONTEXT);
426 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
427 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
428 uasm_i_addu(&p, K1, K1, K0);
429 uasm_i_lw(&p, K0, 0, K1);
430 uasm_i_nop(&p); /* load delay */
431 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
432 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
433 uasm_i_tlbwr(&p); /* cp0 delay */
434 uasm_i_jr(&p, K1);
435 uasm_i_rfe(&p); /* branch delay */
436
437 if (p > tlb_handler + 32)
438 panic("TLB refill handler space exceeded");
439
440 pr_debug("Wrote TLB refill handler (%u instructions).\n",
441 (unsigned int)(p - tlb_handler));
442
443 memcpy((void *)ebase, tlb_handler, 0x80);
444 local_flush_icache_range(ebase, ebase + 0x80);
445
446 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
447}
448#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
449
450/*
451 * The R4000 TLB handler is much more complicated. We have two
452 * consecutive handler areas with 32 instructions space each.
453 * Since they aren't used at the same time, we can overflow in the
454 * other one.To keep things simple, we first assume linear space,
455 * then we relocate it to the final handler layout as needed.
456 */
457static u32 final_handler[64];
458
459/*
460 * Hazards
461 *
462 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
463 * 2. A timing hazard exists for the TLBP instruction.
464 *
465 * stalling_instruction
466 * TLBP
467 *
468 * The JTLB is being read for the TLBP throughout the stall generated by the
469 * previous instruction. This is not really correct as the stalling instruction
470 * can modify the address used to access the JTLB. The failure symptom is that
471 * the TLBP instruction will use an address created for the stalling instruction
472 * and not the address held in C0_ENHI and thus report the wrong results.
473 *
474 * The software work-around is to not allow the instruction preceding the TLBP
475 * to stall - make it an NOP or some other instruction guaranteed not to stall.
476 *
477 * Errata 2 will not be fixed. This errata is also on the R5000.
478 *
479 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
480 */
481static void __maybe_unused build_tlb_probe_entry(u32 **p)
482{
483 switch (current_cpu_type()) {
484 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
485 case CPU_R4600:
486 case CPU_R4700:
487 case CPU_R5000:
488 case CPU_NEVADA:
489 uasm_i_nop(p);
490 uasm_i_tlbp(p);
491 break;
492
493 default:
494 uasm_i_tlbp(p);
495 break;
496 }
497}
498
499/*
500 * Write random or indexed TLB entry, and care about the hazards from
501 * the preceding mtc0 and for the following eret.
502 */
503enum tlb_write_entry { tlb_random, tlb_indexed };
504
505static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
506 struct uasm_reloc **r,
507 enum tlb_write_entry wmode)
508{
509 void(*tlbw)(u32 **) = NULL;
510
511 switch (wmode) {
512 case tlb_random: tlbw = uasm_i_tlbwr; break;
513 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
514 }
515
516 if (cpu_has_mips_r2_r6) {
517 if (cpu_has_mips_r2_exec_hazard)
518 uasm_i_ehb(p);
519 tlbw(p);
520 return;
521 }
522
523 switch (current_cpu_type()) {
524 case CPU_R4000PC:
525 case CPU_R4000SC:
526 case CPU_R4000MC:
527 case CPU_R4400PC:
528 case CPU_R4400SC:
529 case CPU_R4400MC:
530 /*
531 * This branch uses up a mtc0 hazard nop slot and saves
532 * two nops after the tlbw instruction.
533 */
534 uasm_bgezl_hazard(p, r, hazard_instance);
535 tlbw(p);
536 uasm_bgezl_label(l, p, hazard_instance);
537 hazard_instance++;
538 uasm_i_nop(p);
539 break;
540
541 case CPU_R4600:
542 case CPU_R4700:
543 uasm_i_nop(p);
544 tlbw(p);
545 uasm_i_nop(p);
546 break;
547
548 case CPU_R5000:
549 case CPU_NEVADA:
550 uasm_i_nop(p); /* QED specifies 2 nops hazard */
551 uasm_i_nop(p); /* QED specifies 2 nops hazard */
552 tlbw(p);
553 break;
554
555 case CPU_R4300:
556 case CPU_5KC:
557 case CPU_TX49XX:
558 case CPU_PR4450:
559 case CPU_XLR:
560 uasm_i_nop(p);
561 tlbw(p);
562 break;
563
564 case CPU_R10000:
565 case CPU_R12000:
566 case CPU_R14000:
567 case CPU_R16000:
568 case CPU_4KC:
569 case CPU_4KEC:
570 case CPU_M14KC:
571 case CPU_M14KEC:
572 case CPU_SB1:
573 case CPU_SB1A:
574 case CPU_4KSC:
575 case CPU_20KC:
576 case CPU_25KF:
577 case CPU_BMIPS32:
578 case CPU_BMIPS3300:
579 case CPU_BMIPS4350:
580 case CPU_BMIPS4380:
581 case CPU_BMIPS5000:
582 case CPU_LOONGSON2:
583 case CPU_LOONGSON3:
584 case CPU_R5500:
585 if (m4kc_tlbp_war())
586 uasm_i_nop(p);
587 case CPU_ALCHEMY:
588 tlbw(p);
589 break;
590
591 case CPU_RM7000:
592 uasm_i_nop(p);
593 uasm_i_nop(p);
594 uasm_i_nop(p);
595 uasm_i_nop(p);
596 tlbw(p);
597 break;
598
599 case CPU_VR4111:
600 case CPU_VR4121:
601 case CPU_VR4122:
602 case CPU_VR4181:
603 case CPU_VR4181A:
604 uasm_i_nop(p);
605 uasm_i_nop(p);
606 tlbw(p);
607 uasm_i_nop(p);
608 uasm_i_nop(p);
609 break;
610
611 case CPU_VR4131:
612 case CPU_VR4133:
613 case CPU_R5432:
614 uasm_i_nop(p);
615 uasm_i_nop(p);
616 tlbw(p);
617 break;
618
619 case CPU_JZRISC:
620 tlbw(p);
621 uasm_i_nop(p);
622 break;
623
624 default:
625 panic("No TLB refill handler yet (CPU type: %d)",
626 current_cpu_type());
627 break;
628 }
629}
630
631static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
632 unsigned int reg)
633{
634 if (_PAGE_GLOBAL_SHIFT == 0) {
635 /* pte_t is already in EntryLo format */
636 return;
637 }
638
639 if (cpu_has_rixi && _PAGE_NO_EXEC) {
640 if (fill_includes_sw_bits) {
641 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
642 } else {
643 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
644 UASM_i_ROTR(p, reg, reg,
645 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
646 }
647 } else {
648#ifdef CONFIG_PHYS_ADDR_T_64BIT
649 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
650#else
651 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
652#endif
653 }
654}
655
656#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
657
658static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
659 unsigned int tmp, enum label_id lid,
660 int restore_scratch)
661{
662 if (restore_scratch) {
663 /* Reset default page size */
664 if (PM_DEFAULT_MASK >> 16) {
665 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
666 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
667 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
668 uasm_il_b(p, r, lid);
669 } else if (PM_DEFAULT_MASK) {
670 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
671 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
672 uasm_il_b(p, r, lid);
673 } else {
674 uasm_i_mtc0(p, 0, C0_PAGEMASK);
675 uasm_il_b(p, r, lid);
676 }
677 if (scratch_reg >= 0)
678 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
679 else
680 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
681 } else {
682 /* Reset default page size */
683 if (PM_DEFAULT_MASK >> 16) {
684 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
685 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
686 uasm_il_b(p, r, lid);
687 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
688 } else if (PM_DEFAULT_MASK) {
689 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
690 uasm_il_b(p, r, lid);
691 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
692 } else {
693 uasm_il_b(p, r, lid);
694 uasm_i_mtc0(p, 0, C0_PAGEMASK);
695 }
696 }
697}
698
699static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
700 struct uasm_reloc **r,
701 unsigned int tmp,
702 enum tlb_write_entry wmode,
703 int restore_scratch)
704{
705 /* Set huge page tlb entry size */
706 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
707 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
708 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
709
710 build_tlb_write_entry(p, l, r, wmode);
711
712 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
713}
714
715/*
716 * Check if Huge PTE is present, if so then jump to LABEL.
717 */
718static void
719build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
720 unsigned int pmd, int lid)
721{
722 UASM_i_LW(p, tmp, 0, pmd);
723 if (use_bbit_insns()) {
724 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
725 } else {
726 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
727 uasm_il_bnez(p, r, tmp, lid);
728 }
729}
730
731static void build_huge_update_entries(u32 **p, unsigned int pte,
732 unsigned int tmp)
733{
734 int small_sequence;
735
736 /*
737 * A huge PTE describes an area the size of the
738 * configured huge page size. This is twice the
739 * of the large TLB entry size we intend to use.
740 * A TLB entry half the size of the configured
741 * huge page size is configured into entrylo0
742 * and entrylo1 to cover the contiguous huge PTE
743 * address space.
744 */
745 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
746
747 /* We can clobber tmp. It isn't used after this.*/
748 if (!small_sequence)
749 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
750
751 build_convert_pte_to_entrylo(p, pte);
752 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
753 /* convert to entrylo1 */
754 if (small_sequence)
755 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
756 else
757 UASM_i_ADDU(p, pte, pte, tmp);
758
759 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
760}
761
762static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
763 struct uasm_label **l,
764 unsigned int pte,
765 unsigned int ptr,
766 unsigned int flush)
767{
768#ifdef CONFIG_SMP
769 UASM_i_SC(p, pte, 0, ptr);
770 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
771 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
772#else
773 UASM_i_SW(p, pte, 0, ptr);
774#endif
775 if (cpu_has_ftlb && flush) {
776 BUG_ON(!cpu_has_tlbinv);
777
778 UASM_i_MFC0(p, ptr, C0_ENTRYHI);
779 uasm_i_ori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
780 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
781 build_tlb_write_entry(p, l, r, tlb_indexed);
782
783 uasm_i_xori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
784 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
785 build_huge_update_entries(p, pte, ptr);
786 build_huge_tlb_write_entry(p, l, r, pte, tlb_random, 0);
787
788 return;
789 }
790
791 build_huge_update_entries(p, pte, ptr);
792 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
793}
794#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
795
796#ifdef CONFIG_64BIT
797/*
798 * TMP and PTR are scratch.
799 * TMP will be clobbered, PTR will hold the pmd entry.
800 */
801static void
802build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
803 unsigned int tmp, unsigned int ptr)
804{
805#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
806 long pgdc = (long)pgd_current;
807#endif
808 /*
809 * The vmalloc handling is not in the hotpath.
810 */
811 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
812
813 if (check_for_high_segbits) {
814 /*
815 * The kernel currently implicitely assumes that the
816 * MIPS SEGBITS parameter for the processor is
817 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
818 * allocate virtual addresses outside the maximum
819 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
820 * that doesn't prevent user code from accessing the
821 * higher xuseg addresses. Here, we make sure that
822 * everything but the lower xuseg addresses goes down
823 * the module_alloc/vmalloc path.
824 */
825 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
826 uasm_il_bnez(p, r, ptr, label_vmalloc);
827 } else {
828 uasm_il_bltz(p, r, tmp, label_vmalloc);
829 }
830 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
831
832 if (pgd_reg != -1) {
833 /* pgd is in pgd_reg */
834 if (cpu_has_ldpte)
835 UASM_i_MFC0(p, ptr, C0_PWBASE);
836 else
837 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
838 } else {
839#if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
840 /*
841 * &pgd << 11 stored in CONTEXT [23..63].
842 */
843 UASM_i_MFC0(p, ptr, C0_CONTEXT);
844
845 /* Clear lower 23 bits of context. */
846 uasm_i_dins(p, ptr, 0, 0, 23);
847
848 /* 1 0 1 0 1 << 6 xkphys cached */
849 uasm_i_ori(p, ptr, ptr, 0x540);
850 uasm_i_drotr(p, ptr, ptr, 11);
851#elif defined(CONFIG_SMP)
852 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
853 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
854 UASM_i_LA_mostly(p, tmp, pgdc);
855 uasm_i_daddu(p, ptr, ptr, tmp);
856 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
857 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
858#else
859 UASM_i_LA_mostly(p, ptr, pgdc);
860 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
861#endif
862 }
863
864 uasm_l_vmalloc_done(l, *p);
865
866 /* get pgd offset in bytes */
867 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
868
869 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
870 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
871#ifndef __PAGETABLE_PMD_FOLDED
872 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
873 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
874 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
875 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
876 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
877#endif
878}
879
880/*
881 * BVADDR is the faulting address, PTR is scratch.
882 * PTR will hold the pgd for vmalloc.
883 */
884static void
885build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
886 unsigned int bvaddr, unsigned int ptr,
887 enum vmalloc64_mode mode)
888{
889 long swpd = (long)swapper_pg_dir;
890 int single_insn_swpd;
891 int did_vmalloc_branch = 0;
892
893 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
894
895 uasm_l_vmalloc(l, *p);
896
897 if (mode != not_refill && check_for_high_segbits) {
898 if (single_insn_swpd) {
899 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
900 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
901 did_vmalloc_branch = 1;
902 /* fall through */
903 } else {
904 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
905 }
906 }
907 if (!did_vmalloc_branch) {
908 if (single_insn_swpd) {
909 uasm_il_b(p, r, label_vmalloc_done);
910 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
911 } else {
912 UASM_i_LA_mostly(p, ptr, swpd);
913 uasm_il_b(p, r, label_vmalloc_done);
914 if (uasm_in_compat_space_p(swpd))
915 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
916 else
917 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
918 }
919 }
920 if (mode != not_refill && check_for_high_segbits) {
921 uasm_l_large_segbits_fault(l, *p);
922 /*
923 * We get here if we are an xsseg address, or if we are
924 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
925 *
926 * Ignoring xsseg (assume disabled so would generate
927 * (address errors?), the only remaining possibility
928 * is the upper xuseg addresses. On processors with
929 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
930 * addresses would have taken an address error. We try
931 * to mimic that here by taking a load/istream page
932 * fault.
933 */
934 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
935 uasm_i_jr(p, ptr);
936
937 if (mode == refill_scratch) {
938 if (scratch_reg >= 0)
939 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
940 else
941 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
942 } else {
943 uasm_i_nop(p);
944 }
945 }
946}
947
948#else /* !CONFIG_64BIT */
949
950/*
951 * TMP and PTR are scratch.
952 * TMP will be clobbered, PTR will hold the pgd entry.
953 */
954static void __maybe_unused
955build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
956{
957 if (pgd_reg != -1) {
958 /* pgd is in pgd_reg */
959 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
960 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
961 } else {
962 long pgdc = (long)pgd_current;
963
964 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
965#ifdef CONFIG_SMP
966 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
967 UASM_i_LA_mostly(p, tmp, pgdc);
968 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
969 uasm_i_addu(p, ptr, tmp, ptr);
970#else
971 UASM_i_LA_mostly(p, ptr, pgdc);
972#endif
973 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
974 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
975 }
976 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
977 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
978 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
979}
980
981#endif /* !CONFIG_64BIT */
982
983static void build_adjust_context(u32 **p, unsigned int ctx)
984{
985 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
986 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
987
988 switch (current_cpu_type()) {
989 case CPU_VR41XX:
990 case CPU_VR4111:
991 case CPU_VR4121:
992 case CPU_VR4122:
993 case CPU_VR4131:
994 case CPU_VR4181:
995 case CPU_VR4181A:
996 case CPU_VR4133:
997 shift += 2;
998 break;
999
1000 default:
1001 break;
1002 }
1003
1004 if (shift)
1005 UASM_i_SRL(p, ctx, ctx, shift);
1006 uasm_i_andi(p, ctx, ctx, mask);
1007}
1008
1009static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1010{
1011 /*
1012 * Bug workaround for the Nevada. It seems as if under certain
1013 * circumstances the move from cp0_context might produce a
1014 * bogus result when the mfc0 instruction and its consumer are
1015 * in a different cacheline or a load instruction, probably any
1016 * memory reference, is between them.
1017 */
1018 switch (current_cpu_type()) {
1019 case CPU_NEVADA:
1020 UASM_i_LW(p, ptr, 0, ptr);
1021 GET_CONTEXT(p, tmp); /* get context reg */
1022 break;
1023
1024 default:
1025 GET_CONTEXT(p, tmp); /* get context reg */
1026 UASM_i_LW(p, ptr, 0, ptr);
1027 break;
1028 }
1029
1030 build_adjust_context(p, tmp);
1031 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1032}
1033
1034static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1035{
1036 int pte_off_even = 0;
1037 int pte_off_odd = sizeof(pte_t);
1038
1039#if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT)
1040 /* The low 32 bits of EntryLo is stored in pte_high */
1041 pte_off_even += offsetof(pte_t, pte_high);
1042 pte_off_odd += offsetof(pte_t, pte_high);
1043#endif
1044
1045 if (IS_ENABLED(CONFIG_XPA)) {
1046 uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1047 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1048 UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1049
1050 if (cpu_has_xpa && !mips_xpa_disabled) {
1051 uasm_i_lw(p, tmp, 0, ptep);
1052 uasm_i_ext(p, tmp, tmp, 0, 24);
1053 uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1054 }
1055
1056 uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */
1057 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1058 UASM_i_MTC0(p, tmp, C0_ENTRYLO1);
1059
1060 if (cpu_has_xpa && !mips_xpa_disabled) {
1061 uasm_i_lw(p, tmp, sizeof(pte_t), ptep);
1062 uasm_i_ext(p, tmp, tmp, 0, 24);
1063 uasm_i_mthc0(p, tmp, C0_ENTRYLO1);
1064 }
1065 return;
1066 }
1067
1068 UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */
1069 UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */
1070 if (r45k_bvahwbug())
1071 build_tlb_probe_entry(p);
1072 build_convert_pte_to_entrylo(p, tmp);
1073 if (r4k_250MHZhwbug())
1074 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1075 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1076 build_convert_pte_to_entrylo(p, ptep);
1077 if (r45k_bvahwbug())
1078 uasm_i_mfc0(p, tmp, C0_INDEX);
1079 if (r4k_250MHZhwbug())
1080 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1081 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1082}
1083
1084struct mips_huge_tlb_info {
1085 int huge_pte;
1086 int restore_scratch;
1087 bool need_reload_pte;
1088};
1089
1090static struct mips_huge_tlb_info
1091build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1092 struct uasm_reloc **r, unsigned int tmp,
1093 unsigned int ptr, int c0_scratch_reg)
1094{
1095 struct mips_huge_tlb_info rv;
1096 unsigned int even, odd;
1097 int vmalloc_branch_delay_filled = 0;
1098 const int scratch = 1; /* Our extra working register */
1099
1100 rv.huge_pte = scratch;
1101 rv.restore_scratch = 0;
1102 rv.need_reload_pte = false;
1103
1104 if (check_for_high_segbits) {
1105 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1106
1107 if (pgd_reg != -1)
1108 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1109 else
1110 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1111
1112 if (c0_scratch_reg >= 0)
1113 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1114 else
1115 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1116
1117 uasm_i_dsrl_safe(p, scratch, tmp,
1118 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1119 uasm_il_bnez(p, r, scratch, label_vmalloc);
1120
1121 if (pgd_reg == -1) {
1122 vmalloc_branch_delay_filled = 1;
1123 /* Clear lower 23 bits of context. */
1124 uasm_i_dins(p, ptr, 0, 0, 23);
1125 }
1126 } else {
1127 if (pgd_reg != -1)
1128 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1129 else
1130 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1131
1132 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1133
1134 if (c0_scratch_reg >= 0)
1135 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1136 else
1137 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1138
1139 if (pgd_reg == -1)
1140 /* Clear lower 23 bits of context. */
1141 uasm_i_dins(p, ptr, 0, 0, 23);
1142
1143 uasm_il_bltz(p, r, tmp, label_vmalloc);
1144 }
1145
1146 if (pgd_reg == -1) {
1147 vmalloc_branch_delay_filled = 1;
1148 /* 1 0 1 0 1 << 6 xkphys cached */
1149 uasm_i_ori(p, ptr, ptr, 0x540);
1150 uasm_i_drotr(p, ptr, ptr, 11);
1151 }
1152
1153#ifdef __PAGETABLE_PMD_FOLDED
1154#define LOC_PTEP scratch
1155#else
1156#define LOC_PTEP ptr
1157#endif
1158
1159 if (!vmalloc_branch_delay_filled)
1160 /* get pgd offset in bytes */
1161 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1162
1163 uasm_l_vmalloc_done(l, *p);
1164
1165 /*
1166 * tmp ptr
1167 * fall-through case = badvaddr *pgd_current
1168 * vmalloc case = badvaddr swapper_pg_dir
1169 */
1170
1171 if (vmalloc_branch_delay_filled)
1172 /* get pgd offset in bytes */
1173 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1174
1175#ifdef __PAGETABLE_PMD_FOLDED
1176 GET_CONTEXT(p, tmp); /* get context reg */
1177#endif
1178 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1179
1180 if (use_lwx_insns()) {
1181 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1182 } else {
1183 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1184 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1185 }
1186
1187#ifndef __PAGETABLE_PMD_FOLDED
1188 /* get pmd offset in bytes */
1189 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1190 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1191 GET_CONTEXT(p, tmp); /* get context reg */
1192
1193 if (use_lwx_insns()) {
1194 UASM_i_LWX(p, scratch, scratch, ptr);
1195 } else {
1196 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1197 UASM_i_LW(p, scratch, 0, ptr);
1198 }
1199#endif
1200 /* Adjust the context during the load latency. */
1201 build_adjust_context(p, tmp);
1202
1203#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1204 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1205 /*
1206 * The in the LWX case we don't want to do the load in the
1207 * delay slot. It cannot issue in the same cycle and may be
1208 * speculative and unneeded.
1209 */
1210 if (use_lwx_insns())
1211 uasm_i_nop(p);
1212#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1213
1214
1215 /* build_update_entries */
1216 if (use_lwx_insns()) {
1217 even = ptr;
1218 odd = tmp;
1219 UASM_i_LWX(p, even, scratch, tmp);
1220 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1221 UASM_i_LWX(p, odd, scratch, tmp);
1222 } else {
1223 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1224 even = tmp;
1225 odd = ptr;
1226 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1227 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1228 }
1229 if (cpu_has_rixi) {
1230 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1231 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1232 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1233 } else {
1234 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1235 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1236 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1237 }
1238 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1239
1240 if (c0_scratch_reg >= 0) {
1241 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1242 build_tlb_write_entry(p, l, r, tlb_random);
1243 uasm_l_leave(l, *p);
1244 rv.restore_scratch = 1;
1245 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1246 build_tlb_write_entry(p, l, r, tlb_random);
1247 uasm_l_leave(l, *p);
1248 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1249 } else {
1250 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1251 build_tlb_write_entry(p, l, r, tlb_random);
1252 uasm_l_leave(l, *p);
1253 rv.restore_scratch = 1;
1254 }
1255
1256 uasm_i_eret(p); /* return from trap */
1257
1258 return rv;
1259}
1260
1261/*
1262 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1263 * because EXL == 0. If we wrap, we can also use the 32 instruction
1264 * slots before the XTLB refill exception handler which belong to the
1265 * unused TLB refill exception.
1266 */
1267#define MIPS64_REFILL_INSNS 32
1268
1269static void build_r4000_tlb_refill_handler(void)
1270{
1271 u32 *p = tlb_handler;
1272 struct uasm_label *l = labels;
1273 struct uasm_reloc *r = relocs;
1274 u32 *f;
1275 unsigned int final_len;
1276 struct mips_huge_tlb_info htlb_info __maybe_unused;
1277 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1278
1279 memset(tlb_handler, 0, sizeof(tlb_handler));
1280 memset(labels, 0, sizeof(labels));
1281 memset(relocs, 0, sizeof(relocs));
1282 memset(final_handler, 0, sizeof(final_handler));
1283
1284 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1285 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1286 scratch_reg);
1287 vmalloc_mode = refill_scratch;
1288 } else {
1289 htlb_info.huge_pte = K0;
1290 htlb_info.restore_scratch = 0;
1291 htlb_info.need_reload_pte = true;
1292 vmalloc_mode = refill_noscratch;
1293 /*
1294 * create the plain linear handler
1295 */
1296 if (bcm1250_m3_war()) {
1297 unsigned int segbits = 44;
1298
1299 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1300 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1301 uasm_i_xor(&p, K0, K0, K1);
1302 uasm_i_dsrl_safe(&p, K1, K0, 62);
1303 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1304 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1305 uasm_i_or(&p, K0, K0, K1);
1306 uasm_il_bnez(&p, &r, K0, label_leave);
1307 /* No need for uasm_i_nop */
1308 }
1309
1310#ifdef CONFIG_64BIT
1311 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1312#else
1313 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1314#endif
1315
1316#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1317 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1318#endif
1319
1320 build_get_ptep(&p, K0, K1);
1321 build_update_entries(&p, K0, K1);
1322 build_tlb_write_entry(&p, &l, &r, tlb_random);
1323 uasm_l_leave(&l, p);
1324 uasm_i_eret(&p); /* return from trap */
1325 }
1326#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1327 uasm_l_tlb_huge_update(&l, p);
1328 if (htlb_info.need_reload_pte)
1329 UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1330 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1331 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1332 htlb_info.restore_scratch);
1333#endif
1334
1335#ifdef CONFIG_64BIT
1336 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1337#endif
1338
1339 /*
1340 * Overflow check: For the 64bit handler, we need at least one
1341 * free instruction slot for the wrap-around branch. In worst
1342 * case, if the intended insertion point is a delay slot, we
1343 * need three, with the second nop'ed and the third being
1344 * unused.
1345 */
1346 switch (boot_cpu_type()) {
1347 default:
1348 if (sizeof(long) == 4) {
1349 case CPU_LOONGSON2:
1350 /* Loongson2 ebase is different than r4k, we have more space */
1351 if ((p - tlb_handler) > 64)
1352 panic("TLB refill handler space exceeded");
1353 /*
1354 * Now fold the handler in the TLB refill handler space.
1355 */
1356 f = final_handler;
1357 /* Simplest case, just copy the handler. */
1358 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1359 final_len = p - tlb_handler;
1360 break;
1361 } else {
1362 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1363 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1364 && uasm_insn_has_bdelay(relocs,
1365 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1366 panic("TLB refill handler space exceeded");
1367 /*
1368 * Now fold the handler in the TLB refill handler space.
1369 */
1370 f = final_handler + MIPS64_REFILL_INSNS;
1371 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1372 /* Just copy the handler. */
1373 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1374 final_len = p - tlb_handler;
1375 } else {
1376#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1377 const enum label_id ls = label_tlb_huge_update;
1378#else
1379 const enum label_id ls = label_vmalloc;
1380#endif
1381 u32 *split;
1382 int ov = 0;
1383 int i;
1384
1385 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1386 ;
1387 BUG_ON(i == ARRAY_SIZE(labels));
1388 split = labels[i].addr;
1389
1390 /*
1391 * See if we have overflown one way or the other.
1392 */
1393 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1394 split < p - MIPS64_REFILL_INSNS)
1395 ov = 1;
1396
1397 if (ov) {
1398 /*
1399 * Split two instructions before the end. One
1400 * for the branch and one for the instruction
1401 * in the delay slot.
1402 */
1403 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1404
1405 /*
1406 * If the branch would fall in a delay slot,
1407 * we must back up an additional instruction
1408 * so that it is no longer in a delay slot.
1409 */
1410 if (uasm_insn_has_bdelay(relocs, split - 1))
1411 split--;
1412 }
1413 /* Copy first part of the handler. */
1414 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1415 f += split - tlb_handler;
1416
1417 if (ov) {
1418 /* Insert branch. */
1419 uasm_l_split(&l, final_handler);
1420 uasm_il_b(&f, &r, label_split);
1421 if (uasm_insn_has_bdelay(relocs, split))
1422 uasm_i_nop(&f);
1423 else {
1424 uasm_copy_handler(relocs, labels,
1425 split, split + 1, f);
1426 uasm_move_labels(labels, f, f + 1, -1);
1427 f++;
1428 split++;
1429 }
1430 }
1431
1432 /* Copy the rest of the handler. */
1433 uasm_copy_handler(relocs, labels, split, p, final_handler);
1434 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1435 (p - split);
1436 }
1437 }
1438 break;
1439 }
1440
1441 uasm_resolve_relocs(relocs, labels);
1442 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1443 final_len);
1444
1445 memcpy((void *)ebase, final_handler, 0x100);
1446 local_flush_icache_range(ebase, ebase + 0x100);
1447
1448 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1449}
1450
1451static void setup_pw(void)
1452{
1453 unsigned long pgd_i, pgd_w;
1454#ifndef __PAGETABLE_PMD_FOLDED
1455 unsigned long pmd_i, pmd_w;
1456#endif
1457 unsigned long pt_i, pt_w;
1458 unsigned long pte_i, pte_w;
1459#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1460 unsigned long psn;
1461
1462 psn = ilog2(_PAGE_HUGE); /* bit used to indicate huge page */
1463#endif
1464 pgd_i = PGDIR_SHIFT; /* 1st level PGD */
1465#ifndef __PAGETABLE_PMD_FOLDED
1466 pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_ORDER;
1467
1468 pmd_i = PMD_SHIFT; /* 2nd level PMD */
1469 pmd_w = PMD_SHIFT - PAGE_SHIFT;
1470#else
1471 pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_ORDER;
1472#endif
1473
1474 pt_i = PAGE_SHIFT; /* 3rd level PTE */
1475 pt_w = PAGE_SHIFT - 3;
1476
1477 pte_i = ilog2(_PAGE_GLOBAL);
1478 pte_w = 0;
1479
1480#ifndef __PAGETABLE_PMD_FOLDED
1481 write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i);
1482 write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w);
1483#else
1484 write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i);
1485 write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w);
1486#endif
1487
1488#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1489 write_c0_pwctl(1 << 6 | psn);
1490#endif
1491 write_c0_kpgd(swapper_pg_dir);
1492 kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */
1493}
1494
1495static void build_loongson3_tlb_refill_handler(void)
1496{
1497 u32 *p = tlb_handler;
1498 struct uasm_label *l = labels;
1499 struct uasm_reloc *r = relocs;
1500
1501 memset(labels, 0, sizeof(labels));
1502 memset(relocs, 0, sizeof(relocs));
1503 memset(tlb_handler, 0, sizeof(tlb_handler));
1504
1505 if (check_for_high_segbits) {
1506 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1507 uasm_i_dsrl_safe(&p, K1, K0, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1508 uasm_il_beqz(&p, &r, K1, label_vmalloc);
1509 uasm_i_nop(&p);
1510
1511 uasm_il_bgez(&p, &r, K0, label_large_segbits_fault);
1512 uasm_i_nop(&p);
1513 uasm_l_vmalloc(&l, p);
1514 }
1515
1516 uasm_i_dmfc0(&p, K1, C0_PGD);
1517
1518 uasm_i_lddir(&p, K0, K1, 3); /* global page dir */
1519#ifndef __PAGETABLE_PMD_FOLDED
1520 uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */
1521#endif
1522 uasm_i_ldpte(&p, K1, 0); /* even */
1523 uasm_i_ldpte(&p, K1, 1); /* odd */
1524 uasm_i_tlbwr(&p);
1525
1526 /* restore page mask */
1527 if (PM_DEFAULT_MASK >> 16) {
1528 uasm_i_lui(&p, K0, PM_DEFAULT_MASK >> 16);
1529 uasm_i_ori(&p, K0, K0, PM_DEFAULT_MASK & 0xffff);
1530 uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1531 } else if (PM_DEFAULT_MASK) {
1532 uasm_i_ori(&p, K0, 0, PM_DEFAULT_MASK);
1533 uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1534 } else {
1535 uasm_i_mtc0(&p, 0, C0_PAGEMASK);
1536 }
1537
1538 uasm_i_eret(&p);
1539
1540 if (check_for_high_segbits) {
1541 uasm_l_large_segbits_fault(&l, p);
1542 UASM_i_LA(&p, K1, (unsigned long)tlb_do_page_fault_0);
1543 uasm_i_jr(&p, K1);
1544 uasm_i_nop(&p);
1545 }
1546
1547 uasm_resolve_relocs(relocs, labels);
1548 memcpy((void *)(ebase + 0x80), tlb_handler, 0x80);
1549 local_flush_icache_range(ebase + 0x80, ebase + 0x100);
1550 dump_handler("loongson3_tlb_refill", (u32 *)(ebase + 0x80), 32);
1551}
1552
1553extern u32 handle_tlbl[], handle_tlbl_end[];
1554extern u32 handle_tlbs[], handle_tlbs_end[];
1555extern u32 handle_tlbm[], handle_tlbm_end[];
1556extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
1557extern u32 tlbmiss_handler_setup_pgd_end[];
1558
1559static void build_setup_pgd(void)
1560{
1561 const int a0 = 4;
1562 const int __maybe_unused a1 = 5;
1563 const int __maybe_unused a2 = 6;
1564 u32 *p = tlbmiss_handler_setup_pgd_start;
1565 const int tlbmiss_handler_setup_pgd_size =
1566 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
1567#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1568 long pgdc = (long)pgd_current;
1569#endif
1570
1571 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1572 sizeof(tlbmiss_handler_setup_pgd[0]));
1573 memset(labels, 0, sizeof(labels));
1574 memset(relocs, 0, sizeof(relocs));
1575 pgd_reg = allocate_kscratch();
1576#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1577 if (pgd_reg == -1) {
1578 struct uasm_label *l = labels;
1579 struct uasm_reloc *r = relocs;
1580
1581 /* PGD << 11 in c0_Context */
1582 /*
1583 * If it is a ckseg0 address, convert to a physical
1584 * address. Shifting right by 29 and adding 4 will
1585 * result in zero for these addresses.
1586 *
1587 */
1588 UASM_i_SRA(&p, a1, a0, 29);
1589 UASM_i_ADDIU(&p, a1, a1, 4);
1590 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1591 uasm_i_nop(&p);
1592 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1593 uasm_l_tlbl_goaround1(&l, p);
1594 UASM_i_SLL(&p, a0, a0, 11);
1595 uasm_i_jr(&p, 31);
1596 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1597 } else {
1598 /* PGD in c0_KScratch */
1599 uasm_i_jr(&p, 31);
1600 if (cpu_has_ldpte)
1601 UASM_i_MTC0(&p, a0, C0_PWBASE);
1602 else
1603 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1604 }
1605#else
1606#ifdef CONFIG_SMP
1607 /* Save PGD to pgd_current[smp_processor_id()] */
1608 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1609 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1610 UASM_i_LA_mostly(&p, a2, pgdc);
1611 UASM_i_ADDU(&p, a2, a2, a1);
1612 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1613#else
1614 UASM_i_LA_mostly(&p, a2, pgdc);
1615 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1616#endif /* SMP */
1617 uasm_i_jr(&p, 31);
1618
1619 /* if pgd_reg is allocated, save PGD also to scratch register */
1620 if (pgd_reg != -1)
1621 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1622 else
1623 uasm_i_nop(&p);
1624#endif
1625 if (p >= tlbmiss_handler_setup_pgd_end)
1626 panic("tlbmiss_handler_setup_pgd space exceeded");
1627
1628 uasm_resolve_relocs(relocs, labels);
1629 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1630 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1631
1632 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1633 tlbmiss_handler_setup_pgd_size);
1634}
1635
1636static void
1637iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1638{
1639#ifdef CONFIG_SMP
1640# ifdef CONFIG_PHYS_ADDR_T_64BIT
1641 if (cpu_has_64bits)
1642 uasm_i_lld(p, pte, 0, ptr);
1643 else
1644# endif
1645 UASM_i_LL(p, pte, 0, ptr);
1646#else
1647# ifdef CONFIG_PHYS_ADDR_T_64BIT
1648 if (cpu_has_64bits)
1649 uasm_i_ld(p, pte, 0, ptr);
1650 else
1651# endif
1652 UASM_i_LW(p, pte, 0, ptr);
1653#endif
1654}
1655
1656static void
1657iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1658 unsigned int mode, unsigned int scratch)
1659{
1660 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1661 unsigned int swmode = mode & ~hwmode;
1662
1663 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_64bits) {
1664 uasm_i_lui(p, scratch, swmode >> 16);
1665 uasm_i_or(p, pte, pte, scratch);
1666 BUG_ON(swmode & 0xffff);
1667 } else {
1668 uasm_i_ori(p, pte, pte, mode);
1669 }
1670
1671#ifdef CONFIG_SMP
1672# ifdef CONFIG_PHYS_ADDR_T_64BIT
1673 if (cpu_has_64bits)
1674 uasm_i_scd(p, pte, 0, ptr);
1675 else
1676# endif
1677 UASM_i_SC(p, pte, 0, ptr);
1678
1679 if (r10000_llsc_war())
1680 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1681 else
1682 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1683
1684# ifdef CONFIG_PHYS_ADDR_T_64BIT
1685 if (!cpu_has_64bits) {
1686 /* no uasm_i_nop needed */
1687 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1688 uasm_i_ori(p, pte, pte, hwmode);
1689 BUG_ON(hwmode & ~0xffff);
1690 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1691 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1692 /* no uasm_i_nop needed */
1693 uasm_i_lw(p, pte, 0, ptr);
1694 } else
1695 uasm_i_nop(p);
1696# else
1697 uasm_i_nop(p);
1698# endif
1699#else
1700# ifdef CONFIG_PHYS_ADDR_T_64BIT
1701 if (cpu_has_64bits)
1702 uasm_i_sd(p, pte, 0, ptr);
1703 else
1704# endif
1705 UASM_i_SW(p, pte, 0, ptr);
1706
1707# ifdef CONFIG_PHYS_ADDR_T_64BIT
1708 if (!cpu_has_64bits) {
1709 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1710 uasm_i_ori(p, pte, pte, hwmode);
1711 BUG_ON(hwmode & ~0xffff);
1712 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1713 uasm_i_lw(p, pte, 0, ptr);
1714 }
1715# endif
1716#endif
1717}
1718
1719/*
1720 * Check if PTE is present, if not then jump to LABEL. PTR points to
1721 * the page table where this PTE is located, PTE will be re-loaded
1722 * with it's original value.
1723 */
1724static void
1725build_pte_present(u32 **p, struct uasm_reloc **r,
1726 int pte, int ptr, int scratch, enum label_id lid)
1727{
1728 int t = scratch >= 0 ? scratch : pte;
1729 int cur = pte;
1730
1731 if (cpu_has_rixi) {
1732 if (use_bbit_insns()) {
1733 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1734 uasm_i_nop(p);
1735 } else {
1736 if (_PAGE_PRESENT_SHIFT) {
1737 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1738 cur = t;
1739 }
1740 uasm_i_andi(p, t, cur, 1);
1741 uasm_il_beqz(p, r, t, lid);
1742 if (pte == t)
1743 /* You lose the SMP race :-(*/
1744 iPTE_LW(p, pte, ptr);
1745 }
1746 } else {
1747 if (_PAGE_PRESENT_SHIFT) {
1748 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1749 cur = t;
1750 }
1751 uasm_i_andi(p, t, cur,
1752 (_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT);
1753 uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT);
1754 uasm_il_bnez(p, r, t, lid);
1755 if (pte == t)
1756 /* You lose the SMP race :-(*/
1757 iPTE_LW(p, pte, ptr);
1758 }
1759}
1760
1761/* Make PTE valid, store result in PTR. */
1762static void
1763build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1764 unsigned int ptr, unsigned int scratch)
1765{
1766 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1767
1768 iPTE_SW(p, r, pte, ptr, mode, scratch);
1769}
1770
1771/*
1772 * Check if PTE can be written to, if not branch to LABEL. Regardless
1773 * restore PTE with value from PTR when done.
1774 */
1775static void
1776build_pte_writable(u32 **p, struct uasm_reloc **r,
1777 unsigned int pte, unsigned int ptr, int scratch,
1778 enum label_id lid)
1779{
1780 int t = scratch >= 0 ? scratch : pte;
1781 int cur = pte;
1782
1783 if (_PAGE_PRESENT_SHIFT) {
1784 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1785 cur = t;
1786 }
1787 uasm_i_andi(p, t, cur,
1788 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1789 uasm_i_xori(p, t, t,
1790 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1791 uasm_il_bnez(p, r, t, lid);
1792 if (pte == t)
1793 /* You lose the SMP race :-(*/
1794 iPTE_LW(p, pte, ptr);
1795 else
1796 uasm_i_nop(p);
1797}
1798
1799/* Make PTE writable, update software status bits as well, then store
1800 * at PTR.
1801 */
1802static void
1803build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1804 unsigned int ptr, unsigned int scratch)
1805{
1806 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1807 | _PAGE_DIRTY);
1808
1809 iPTE_SW(p, r, pte, ptr, mode, scratch);
1810}
1811
1812/*
1813 * Check if PTE can be modified, if not branch to LABEL. Regardless
1814 * restore PTE with value from PTR when done.
1815 */
1816static void
1817build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1818 unsigned int pte, unsigned int ptr, int scratch,
1819 enum label_id lid)
1820{
1821 if (use_bbit_insns()) {
1822 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1823 uasm_i_nop(p);
1824 } else {
1825 int t = scratch >= 0 ? scratch : pte;
1826 uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1827 uasm_i_andi(p, t, t, 1);
1828 uasm_il_beqz(p, r, t, lid);
1829 if (pte == t)
1830 /* You lose the SMP race :-(*/
1831 iPTE_LW(p, pte, ptr);
1832 }
1833}
1834
1835#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1836
1837
1838/*
1839 * R3000 style TLB load/store/modify handlers.
1840 */
1841
1842/*
1843 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1844 * Then it returns.
1845 */
1846static void
1847build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1848{
1849 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1850 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1851 uasm_i_tlbwi(p);
1852 uasm_i_jr(p, tmp);
1853 uasm_i_rfe(p); /* branch delay */
1854}
1855
1856/*
1857 * This places the pte into ENTRYLO0 and writes it with tlbwi
1858 * or tlbwr as appropriate. This is because the index register
1859 * may have the probe fail bit set as a result of a trap on a
1860 * kseg2 access, i.e. without refill. Then it returns.
1861 */
1862static void
1863build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1864 struct uasm_reloc **r, unsigned int pte,
1865 unsigned int tmp)
1866{
1867 uasm_i_mfc0(p, tmp, C0_INDEX);
1868 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1869 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1870 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1871 uasm_i_tlbwi(p); /* cp0 delay */
1872 uasm_i_jr(p, tmp);
1873 uasm_i_rfe(p); /* branch delay */
1874 uasm_l_r3000_write_probe_fail(l, *p);
1875 uasm_i_tlbwr(p); /* cp0 delay */
1876 uasm_i_jr(p, tmp);
1877 uasm_i_rfe(p); /* branch delay */
1878}
1879
1880static void
1881build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1882 unsigned int ptr)
1883{
1884 long pgdc = (long)pgd_current;
1885
1886 uasm_i_mfc0(p, pte, C0_BADVADDR);
1887 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1888 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1889 uasm_i_srl(p, pte, pte, 22); /* load delay */
1890 uasm_i_sll(p, pte, pte, 2);
1891 uasm_i_addu(p, ptr, ptr, pte);
1892 uasm_i_mfc0(p, pte, C0_CONTEXT);
1893 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1894 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1895 uasm_i_addu(p, ptr, ptr, pte);
1896 uasm_i_lw(p, pte, 0, ptr);
1897 uasm_i_tlbp(p); /* load delay */
1898}
1899
1900static void build_r3000_tlb_load_handler(void)
1901{
1902 u32 *p = handle_tlbl;
1903 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1904 struct uasm_label *l = labels;
1905 struct uasm_reloc *r = relocs;
1906
1907 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1908 memset(labels, 0, sizeof(labels));
1909 memset(relocs, 0, sizeof(relocs));
1910
1911 build_r3000_tlbchange_handler_head(&p, K0, K1);
1912 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1913 uasm_i_nop(&p); /* load delay */
1914 build_make_valid(&p, &r, K0, K1, -1);
1915 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1916
1917 uasm_l_nopage_tlbl(&l, p);
1918 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1919 uasm_i_nop(&p);
1920
1921 if (p >= handle_tlbl_end)
1922 panic("TLB load handler fastpath space exceeded");
1923
1924 uasm_resolve_relocs(relocs, labels);
1925 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1926 (unsigned int)(p - handle_tlbl));
1927
1928 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1929}
1930
1931static void build_r3000_tlb_store_handler(void)
1932{
1933 u32 *p = handle_tlbs;
1934 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1935 struct uasm_label *l = labels;
1936 struct uasm_reloc *r = relocs;
1937
1938 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1939 memset(labels, 0, sizeof(labels));
1940 memset(relocs, 0, sizeof(relocs));
1941
1942 build_r3000_tlbchange_handler_head(&p, K0, K1);
1943 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1944 uasm_i_nop(&p); /* load delay */
1945 build_make_write(&p, &r, K0, K1, -1);
1946 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1947
1948 uasm_l_nopage_tlbs(&l, p);
1949 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1950 uasm_i_nop(&p);
1951
1952 if (p >= handle_tlbs_end)
1953 panic("TLB store handler fastpath space exceeded");
1954
1955 uasm_resolve_relocs(relocs, labels);
1956 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1957 (unsigned int)(p - handle_tlbs));
1958
1959 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1960}
1961
1962static void build_r3000_tlb_modify_handler(void)
1963{
1964 u32 *p = handle_tlbm;
1965 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1966 struct uasm_label *l = labels;
1967 struct uasm_reloc *r = relocs;
1968
1969 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1970 memset(labels, 0, sizeof(labels));
1971 memset(relocs, 0, sizeof(relocs));
1972
1973 build_r3000_tlbchange_handler_head(&p, K0, K1);
1974 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1975 uasm_i_nop(&p); /* load delay */
1976 build_make_write(&p, &r, K0, K1, -1);
1977 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1978
1979 uasm_l_nopage_tlbm(&l, p);
1980 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1981 uasm_i_nop(&p);
1982
1983 if (p >= handle_tlbm_end)
1984 panic("TLB modify handler fastpath space exceeded");
1985
1986 uasm_resolve_relocs(relocs, labels);
1987 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1988 (unsigned int)(p - handle_tlbm));
1989
1990 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1991}
1992#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1993
1994/*
1995 * R4000 style TLB load/store/modify handlers.
1996 */
1997static struct work_registers
1998build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1999 struct uasm_reloc **r)
2000{
2001 struct work_registers wr = build_get_work_registers(p);
2002
2003#ifdef CONFIG_64BIT
2004 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
2005#else
2006 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
2007#endif
2008
2009#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2010 /*
2011 * For huge tlb entries, pmd doesn't contain an address but
2012 * instead contains the tlb pte. Check the PAGE_HUGE bit and
2013 * see if we need to jump to huge tlb processing.
2014 */
2015 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
2016#endif
2017
2018 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
2019 UASM_i_LW(p, wr.r2, 0, wr.r2);
2020 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
2021 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
2022 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
2023
2024#ifdef CONFIG_SMP
2025 uasm_l_smp_pgtable_change(l, *p);
2026#endif
2027 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
2028 if (!m4kc_tlbp_war()) {
2029 build_tlb_probe_entry(p);
2030 if (cpu_has_htw) {
2031 /* race condition happens, leaving */
2032 uasm_i_ehb(p);
2033 uasm_i_mfc0(p, wr.r3, C0_INDEX);
2034 uasm_il_bltz(p, r, wr.r3, label_leave);
2035 uasm_i_nop(p);
2036 }
2037 }
2038 return wr;
2039}
2040
2041static void
2042build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
2043 struct uasm_reloc **r, unsigned int tmp,
2044 unsigned int ptr)
2045{
2046 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
2047 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
2048 build_update_entries(p, tmp, ptr);
2049 build_tlb_write_entry(p, l, r, tlb_indexed);
2050 uasm_l_leave(l, *p);
2051 build_restore_work_registers(p);
2052 uasm_i_eret(p); /* return from trap */
2053
2054#ifdef CONFIG_64BIT
2055 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
2056#endif
2057}
2058
2059static void build_r4000_tlb_load_handler(void)
2060{
2061 u32 *p = handle_tlbl;
2062 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
2063 struct uasm_label *l = labels;
2064 struct uasm_reloc *r = relocs;
2065 struct work_registers wr;
2066
2067 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
2068 memset(labels, 0, sizeof(labels));
2069 memset(relocs, 0, sizeof(relocs));
2070
2071 if (bcm1250_m3_war()) {
2072 unsigned int segbits = 44;
2073
2074 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
2075 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
2076 uasm_i_xor(&p, K0, K0, K1);
2077 uasm_i_dsrl_safe(&p, K1, K0, 62);
2078 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
2079 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
2080 uasm_i_or(&p, K0, K0, K1);
2081 uasm_il_bnez(&p, &r, K0, label_leave);
2082 /* No need for uasm_i_nop */
2083 }
2084
2085 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2086 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2087 if (m4kc_tlbp_war())
2088 build_tlb_probe_entry(&p);
2089
2090 if (cpu_has_rixi && !cpu_has_rixiex) {
2091 /*
2092 * If the page is not _PAGE_VALID, RI or XI could not
2093 * have triggered it. Skip the expensive test..
2094 */
2095 if (use_bbit_insns()) {
2096 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2097 label_tlbl_goaround1);
2098 } else {
2099 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2100 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
2101 }
2102 uasm_i_nop(&p);
2103
2104 uasm_i_tlbr(&p);
2105
2106 switch (current_cpu_type()) {
2107 default:
2108 if (cpu_has_mips_r2_exec_hazard) {
2109 uasm_i_ehb(&p);
2110
2111 case CPU_CAVIUM_OCTEON:
2112 case CPU_CAVIUM_OCTEON_PLUS:
2113 case CPU_CAVIUM_OCTEON2:
2114 break;
2115 }
2116 }
2117
2118 /* Examine entrylo 0 or 1 based on ptr. */
2119 if (use_bbit_insns()) {
2120 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2121 } else {
2122 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2123 uasm_i_beqz(&p, wr.r3, 8);
2124 }
2125 /* load it in the delay slot*/
2126 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2127 /* load it if ptr is odd */
2128 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2129 /*
2130 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2131 * XI must have triggered it.
2132 */
2133 if (use_bbit_insns()) {
2134 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2135 uasm_i_nop(&p);
2136 uasm_l_tlbl_goaround1(&l, p);
2137 } else {
2138 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2139 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2140 uasm_i_nop(&p);
2141 }
2142 uasm_l_tlbl_goaround1(&l, p);
2143 }
2144 build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3);
2145 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2146
2147#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2148 /*
2149 * This is the entry point when build_r4000_tlbchange_handler_head
2150 * spots a huge page.
2151 */
2152 uasm_l_tlb_huge_update(&l, p);
2153 iPTE_LW(&p, wr.r1, wr.r2);
2154 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2155 build_tlb_probe_entry(&p);
2156
2157 if (cpu_has_rixi && !cpu_has_rixiex) {
2158 /*
2159 * If the page is not _PAGE_VALID, RI or XI could not
2160 * have triggered it. Skip the expensive test..
2161 */
2162 if (use_bbit_insns()) {
2163 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2164 label_tlbl_goaround2);
2165 } else {
2166 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2167 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2168 }
2169 uasm_i_nop(&p);
2170
2171 uasm_i_tlbr(&p);
2172
2173 switch (current_cpu_type()) {
2174 default:
2175 if (cpu_has_mips_r2_exec_hazard) {
2176 uasm_i_ehb(&p);
2177
2178 case CPU_CAVIUM_OCTEON:
2179 case CPU_CAVIUM_OCTEON_PLUS:
2180 case CPU_CAVIUM_OCTEON2:
2181 break;
2182 }
2183 }
2184
2185 /* Examine entrylo 0 or 1 based on ptr. */
2186 if (use_bbit_insns()) {
2187 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2188 } else {
2189 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2190 uasm_i_beqz(&p, wr.r3, 8);
2191 }
2192 /* load it in the delay slot*/
2193 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2194 /* load it if ptr is odd */
2195 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2196 /*
2197 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2198 * XI must have triggered it.
2199 */
2200 if (use_bbit_insns()) {
2201 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2202 } else {
2203 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2204 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2205 }
2206 if (PM_DEFAULT_MASK == 0)
2207 uasm_i_nop(&p);
2208 /*
2209 * We clobbered C0_PAGEMASK, restore it. On the other branch
2210 * it is restored in build_huge_tlb_write_entry.
2211 */
2212 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2213
2214 uasm_l_tlbl_goaround2(&l, p);
2215 }
2216 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2217 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2218#endif
2219
2220 uasm_l_nopage_tlbl(&l, p);
2221 build_restore_work_registers(&p);
2222#ifdef CONFIG_CPU_MICROMIPS
2223 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2224 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2225 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2226 uasm_i_jr(&p, K0);
2227 } else
2228#endif
2229 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2230 uasm_i_nop(&p);
2231
2232 if (p >= handle_tlbl_end)
2233 panic("TLB load handler fastpath space exceeded");
2234
2235 uasm_resolve_relocs(relocs, labels);
2236 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2237 (unsigned int)(p - handle_tlbl));
2238
2239 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2240}
2241
2242static void build_r4000_tlb_store_handler(void)
2243{
2244 u32 *p = handle_tlbs;
2245 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2246 struct uasm_label *l = labels;
2247 struct uasm_reloc *r = relocs;
2248 struct work_registers wr;
2249
2250 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2251 memset(labels, 0, sizeof(labels));
2252 memset(relocs, 0, sizeof(relocs));
2253
2254 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2255 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2256 if (m4kc_tlbp_war())
2257 build_tlb_probe_entry(&p);
2258 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2259 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2260
2261#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2262 /*
2263 * This is the entry point when
2264 * build_r4000_tlbchange_handler_head spots a huge page.
2265 */
2266 uasm_l_tlb_huge_update(&l, p);
2267 iPTE_LW(&p, wr.r1, wr.r2);
2268 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2269 build_tlb_probe_entry(&p);
2270 uasm_i_ori(&p, wr.r1, wr.r1,
2271 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2272 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2273#endif
2274
2275 uasm_l_nopage_tlbs(&l, p);
2276 build_restore_work_registers(&p);
2277#ifdef CONFIG_CPU_MICROMIPS
2278 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2279 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2280 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2281 uasm_i_jr(&p, K0);
2282 } else
2283#endif
2284 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2285 uasm_i_nop(&p);
2286
2287 if (p >= handle_tlbs_end)
2288 panic("TLB store handler fastpath space exceeded");
2289
2290 uasm_resolve_relocs(relocs, labels);
2291 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2292 (unsigned int)(p - handle_tlbs));
2293
2294 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2295}
2296
2297static void build_r4000_tlb_modify_handler(void)
2298{
2299 u32 *p = handle_tlbm;
2300 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2301 struct uasm_label *l = labels;
2302 struct uasm_reloc *r = relocs;
2303 struct work_registers wr;
2304
2305 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2306 memset(labels, 0, sizeof(labels));
2307 memset(relocs, 0, sizeof(relocs));
2308
2309 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2310 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2311 if (m4kc_tlbp_war())
2312 build_tlb_probe_entry(&p);
2313 /* Present and writable bits set, set accessed and dirty bits. */
2314 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2315 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2316
2317#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2318 /*
2319 * This is the entry point when
2320 * build_r4000_tlbchange_handler_head spots a huge page.
2321 */
2322 uasm_l_tlb_huge_update(&l, p);
2323 iPTE_LW(&p, wr.r1, wr.r2);
2324 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2325 build_tlb_probe_entry(&p);
2326 uasm_i_ori(&p, wr.r1, wr.r1,
2327 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2328 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 0);
2329#endif
2330
2331 uasm_l_nopage_tlbm(&l, p);
2332 build_restore_work_registers(&p);
2333#ifdef CONFIG_CPU_MICROMIPS
2334 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2335 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2336 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2337 uasm_i_jr(&p, K0);
2338 } else
2339#endif
2340 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2341 uasm_i_nop(&p);
2342
2343 if (p >= handle_tlbm_end)
2344 panic("TLB modify handler fastpath space exceeded");
2345
2346 uasm_resolve_relocs(relocs, labels);
2347 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2348 (unsigned int)(p - handle_tlbm));
2349
2350 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2351}
2352
2353static void flush_tlb_handlers(void)
2354{
2355 local_flush_icache_range((unsigned long)handle_tlbl,
2356 (unsigned long)handle_tlbl_end);
2357 local_flush_icache_range((unsigned long)handle_tlbs,
2358 (unsigned long)handle_tlbs_end);
2359 local_flush_icache_range((unsigned long)handle_tlbm,
2360 (unsigned long)handle_tlbm_end);
2361 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2362 (unsigned long)tlbmiss_handler_setup_pgd_end);
2363}
2364
2365static void print_htw_config(void)
2366{
2367 unsigned long config;
2368 unsigned int pwctl;
2369 const int field = 2 * sizeof(unsigned long);
2370
2371 config = read_c0_pwfield();
2372 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
2373 field, config,
2374 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2375 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2376 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2377 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2378 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2379
2380 config = read_c0_pwsize();
2381 pr_debug("PWSize (0x%0*lx): PS: 0x%lx GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
2382 field, config,
2383 (config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT,
2384 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2385 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2386 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2387 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2388 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2389
2390 pwctl = read_c0_pwctl();
2391 pr_debug("PWCtl (0x%x): PWEn: 0x%x XK: 0x%x XS: 0x%x XU: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
2392 pwctl,
2393 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2394 (pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT,
2395 (pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT,
2396 (pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT,
2397 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2398 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2399 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2400}
2401
2402static void config_htw_params(void)
2403{
2404 unsigned long pwfield, pwsize, ptei;
2405 unsigned int config;
2406
2407 /*
2408 * We are using 2-level page tables, so we only need to
2409 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2410 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2411 * write values less than 0xc in these fields because the entire
2412 * write will be dropped. As a result of which, we must preserve
2413 * the original reset values and overwrite only what we really want.
2414 */
2415
2416 pwfield = read_c0_pwfield();
2417 /* re-initialize the GDI field */
2418 pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2419 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2420 /* re-initialize the PTI field including the even/odd bit */
2421 pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2422 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2423 if (CONFIG_PGTABLE_LEVELS >= 3) {
2424 pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2425 pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2426 }
2427 /* Set the PTEI right shift */
2428 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2429 pwfield |= ptei;
2430 write_c0_pwfield(pwfield);
2431 /* Check whether the PTEI value is supported */
2432 back_to_back_c0_hazard();
2433 pwfield = read_c0_pwfield();
2434 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2435 != ptei) {
2436 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2437 ptei);
2438 /*
2439 * Drop option to avoid HTW being enabled via another path
2440 * (eg htw_reset())
2441 */
2442 current_cpu_data.options &= ~MIPS_CPU_HTW;
2443 return;
2444 }
2445
2446 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2447 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2448 if (CONFIG_PGTABLE_LEVELS >= 3)
2449 pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2450
2451 /* Set pointer size to size of directory pointers */
2452 if (IS_ENABLED(CONFIG_64BIT))
2453 pwsize |= MIPS_PWSIZE_PS_MASK;
2454 /* PTEs may be multiple pointers long (e.g. with XPA) */
2455 pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT)
2456 & MIPS_PWSIZE_PTEW_MASK;
2457
2458 write_c0_pwsize(pwsize);
2459
2460 /* Make sure everything is set before we enable the HTW */
2461 back_to_back_c0_hazard();
2462
2463 /*
2464 * Enable HTW (and only for XUSeg on 64-bit), and disable the rest of
2465 * the pwctl fields.
2466 */
2467 config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2468 if (IS_ENABLED(CONFIG_64BIT))
2469 config |= MIPS_PWCTL_XU_MASK;
2470 write_c0_pwctl(config);
2471 pr_info("Hardware Page Table Walker enabled\n");
2472
2473 print_htw_config();
2474}
2475
2476static void config_xpa_params(void)
2477{
2478#ifdef CONFIG_XPA
2479 unsigned int pagegrain;
2480
2481 if (mips_xpa_disabled) {
2482 pr_info("Extended Physical Addressing (XPA) disabled\n");
2483 return;
2484 }
2485
2486 pagegrain = read_c0_pagegrain();
2487 write_c0_pagegrain(pagegrain | PG_ELPA);
2488 back_to_back_c0_hazard();
2489 pagegrain = read_c0_pagegrain();
2490
2491 if (pagegrain & PG_ELPA)
2492 pr_info("Extended Physical Addressing (XPA) enabled\n");
2493 else
2494 panic("Extended Physical Addressing (XPA) disabled");
2495#endif
2496}
2497
2498static void check_pabits(void)
2499{
2500 unsigned long entry;
2501 unsigned pabits, fillbits;
2502
2503 if (!cpu_has_rixi || !_PAGE_NO_EXEC) {
2504 /*
2505 * We'll only be making use of the fact that we can rotate bits
2506 * into the fill if the CPU supports RIXI, so don't bother
2507 * probing this for CPUs which don't.
2508 */
2509 return;
2510 }
2511
2512 write_c0_entrylo0(~0ul);
2513 back_to_back_c0_hazard();
2514 entry = read_c0_entrylo0();
2515
2516 /* clear all non-PFN bits */
2517 entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2518 entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2519
2520 /* find a lower bound on PABITS, and upper bound on fill bits */
2521 pabits = fls_long(entry) + 6;
2522 fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2523
2524 /* minus the RI & XI bits */
2525 fillbits -= min_t(unsigned, fillbits, 2);
2526
2527 if (fillbits >= ilog2(_PAGE_NO_EXEC))
2528 fill_includes_sw_bits = true;
2529
2530 pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2531}
2532
2533void build_tlb_refill_handler(void)
2534{
2535 /*
2536 * The refill handler is generated per-CPU, multi-node systems
2537 * may have local storage for it. The other handlers are only
2538 * needed once.
2539 */
2540 static int run_once = 0;
2541
2542 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_rixi)
2543 panic("Kernels supporting XPA currently require CPUs with RIXI");
2544
2545 output_pgtable_bits_defines();
2546 check_pabits();
2547
2548#ifdef CONFIG_64BIT
2549 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2550#endif
2551
2552 switch (current_cpu_type()) {
2553 case CPU_R2000:
2554 case CPU_R3000:
2555 case CPU_R3000A:
2556 case CPU_R3081E:
2557 case CPU_TX3912:
2558 case CPU_TX3922:
2559 case CPU_TX3927:
2560#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2561 if (cpu_has_local_ebase)
2562 build_r3000_tlb_refill_handler();
2563 if (!run_once) {
2564 if (!cpu_has_local_ebase)
2565 build_r3000_tlb_refill_handler();
2566 build_setup_pgd();
2567 build_r3000_tlb_load_handler();
2568 build_r3000_tlb_store_handler();
2569 build_r3000_tlb_modify_handler();
2570 flush_tlb_handlers();
2571 run_once++;
2572 }
2573#else
2574 panic("No R3000 TLB refill handler");
2575#endif
2576 break;
2577
2578 case CPU_R6000:
2579 case CPU_R6000A:
2580 panic("No R6000 TLB refill handler yet");
2581 break;
2582
2583 case CPU_R8000:
2584 panic("No R8000 TLB refill handler yet");
2585 break;
2586
2587 default:
2588 if (cpu_has_ldpte)
2589 setup_pw();
2590
2591 if (!run_once) {
2592 scratch_reg = allocate_kscratch();
2593 build_setup_pgd();
2594 build_r4000_tlb_load_handler();
2595 build_r4000_tlb_store_handler();
2596 build_r4000_tlb_modify_handler();
2597 if (cpu_has_ldpte)
2598 build_loongson3_tlb_refill_handler();
2599 else if (!cpu_has_local_ebase)
2600 build_r4000_tlb_refill_handler();
2601 flush_tlb_handlers();
2602 run_once++;
2603 }
2604 if (cpu_has_local_ebase)
2605 build_r4000_tlb_refill_handler();
2606 if (cpu_has_xpa)
2607 config_xpa_params();
2608 if (cpu_has_htw)
2609 config_htw_params();
2610 }
2611}
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completely out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24#include <linux/bug.h>
25#include <linux/export.h>
26#include <linux/kernel.h>
27#include <linux/types.h>
28#include <linux/smp.h>
29#include <linux/string.h>
30#include <linux/cache.h>
31#include <linux/pgtable.h>
32
33#include <asm/cacheflush.h>
34#include <asm/cpu-type.h>
35#include <asm/mipsregs.h>
36#include <asm/mmu_context.h>
37#include <asm/regdef.h>
38#include <asm/uasm.h>
39#include <asm/setup.h>
40#include <asm/tlbex.h>
41
42static int mips_xpa_disabled;
43
44static int __init xpa_disable(char *s)
45{
46 mips_xpa_disabled = 1;
47
48 return 1;
49}
50
51__setup("noxpa", xpa_disable);
52
53/*
54 * TLB load/store/modify handlers.
55 *
56 * Only the fastpath gets synthesized at runtime, the slowpath for
57 * do_page_fault remains normal asm.
58 */
59extern void tlb_do_page_fault_0(void);
60extern void tlb_do_page_fault_1(void);
61
62struct work_registers {
63 int r1;
64 int r2;
65 int r3;
66};
67
68struct tlb_reg_save {
69 unsigned long a;
70 unsigned long b;
71} ____cacheline_aligned_in_smp;
72
73static struct tlb_reg_save handler_reg_save[NR_CPUS];
74
75static inline int r45k_bvahwbug(void)
76{
77 /* XXX: We should probe for the presence of this bug, but we don't. */
78 return 0;
79}
80
81static inline int r4k_250MHZhwbug(void)
82{
83 /* XXX: We should probe for the presence of this bug, but we don't. */
84 return 0;
85}
86
87extern int sb1250_m3_workaround_needed(void);
88
89static inline int __maybe_unused bcm1250_m3_war(void)
90{
91 if (IS_ENABLED(CONFIG_SB1_PASS_2_WORKAROUNDS))
92 return sb1250_m3_workaround_needed();
93 return 0;
94}
95
96static inline int __maybe_unused r10000_llsc_war(void)
97{
98 return IS_ENABLED(CONFIG_WAR_R10000_LLSC);
99}
100
101static int use_bbit_insns(void)
102{
103 switch (current_cpu_type()) {
104 case CPU_CAVIUM_OCTEON:
105 case CPU_CAVIUM_OCTEON_PLUS:
106 case CPU_CAVIUM_OCTEON2:
107 case CPU_CAVIUM_OCTEON3:
108 return 1;
109 default:
110 return 0;
111 }
112}
113
114static int use_lwx_insns(void)
115{
116 switch (current_cpu_type()) {
117 case CPU_CAVIUM_OCTEON2:
118 case CPU_CAVIUM_OCTEON3:
119 return 1;
120 default:
121 return 0;
122 }
123}
124#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
125 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
126static bool scratchpad_available(void)
127{
128 return true;
129}
130static int scratchpad_offset(int i)
131{
132 /*
133 * CVMSEG starts at address -32768 and extends for
134 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
135 */
136 i += 1; /* Kernel use starts at the top and works down. */
137 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
138}
139#else
140static bool scratchpad_available(void)
141{
142 return false;
143}
144static int scratchpad_offset(int i)
145{
146 BUG();
147 /* Really unreachable, but evidently some GCC want this. */
148 return 0;
149}
150#endif
151/*
152 * Found by experiment: At least some revisions of the 4kc throw under
153 * some circumstances a machine check exception, triggered by invalid
154 * values in the index register. Delaying the tlbp instruction until
155 * after the next branch, plus adding an additional nop in front of
156 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
157 * why; it's not an issue caused by the core RTL.
158 *
159 */
160static int m4kc_tlbp_war(void)
161{
162 return current_cpu_type() == CPU_4KC;
163}
164
165/* Handle labels (which must be positive integers). */
166enum label_id {
167 label_second_part = 1,
168 label_leave,
169 label_vmalloc,
170 label_vmalloc_done,
171 label_tlbw_hazard_0,
172 label_split = label_tlbw_hazard_0 + 8,
173 label_tlbl_goaround1,
174 label_tlbl_goaround2,
175 label_nopage_tlbl,
176 label_nopage_tlbs,
177 label_nopage_tlbm,
178 label_smp_pgtable_change,
179 label_r3000_write_probe_fail,
180 label_large_segbits_fault,
181#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
182 label_tlb_huge_update,
183#endif
184};
185
186UASM_L_LA(_second_part)
187UASM_L_LA(_leave)
188UASM_L_LA(_vmalloc)
189UASM_L_LA(_vmalloc_done)
190/* _tlbw_hazard_x is handled differently. */
191UASM_L_LA(_split)
192UASM_L_LA(_tlbl_goaround1)
193UASM_L_LA(_tlbl_goaround2)
194UASM_L_LA(_nopage_tlbl)
195UASM_L_LA(_nopage_tlbs)
196UASM_L_LA(_nopage_tlbm)
197UASM_L_LA(_smp_pgtable_change)
198UASM_L_LA(_r3000_write_probe_fail)
199UASM_L_LA(_large_segbits_fault)
200#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
201UASM_L_LA(_tlb_huge_update)
202#endif
203
204static int hazard_instance;
205
206static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
207{
208 switch (instance) {
209 case 0 ... 7:
210 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
211 return;
212 default:
213 BUG();
214 }
215}
216
217static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
218{
219 switch (instance) {
220 case 0 ... 7:
221 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
222 break;
223 default:
224 BUG();
225 }
226}
227
228/*
229 * pgtable bits are assigned dynamically depending on processor feature
230 * and statically based on kernel configuration. This spits out the actual
231 * values the kernel is using. Required to make sense from disassembled
232 * TLB exception handlers.
233 */
234static void output_pgtable_bits_defines(void)
235{
236#define pr_define(fmt, ...) \
237 pr_debug("#define " fmt, ##__VA_ARGS__)
238
239 pr_debug("#include <asm/asm.h>\n");
240 pr_debug("#include <asm/regdef.h>\n");
241 pr_debug("\n");
242
243 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
244 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
245 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
246 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
247 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
248#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
249 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
250#endif
251#ifdef _PAGE_NO_EXEC_SHIFT
252 if (cpu_has_rixi)
253 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
254#endif
255 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
256 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
257 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
258 pr_define("PFN_PTE_SHIFT %d\n", PFN_PTE_SHIFT);
259 pr_debug("\n");
260}
261
262static inline void dump_handler(const char *symbol, const void *start, const void *end)
263{
264 unsigned int count = (end - start) / sizeof(u32);
265 const u32 *handler = start;
266 int i;
267
268 pr_debug("LEAF(%s)\n", symbol);
269
270 pr_debug("\t.set push\n");
271 pr_debug("\t.set noreorder\n");
272
273 for (i = 0; i < count; i++)
274 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
275
276 pr_debug("\t.set\tpop\n");
277
278 pr_debug("\tEND(%s)\n", symbol);
279}
280
281#ifdef CONFIG_64BIT
282# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
283#else
284# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
285#endif
286
287/* The worst case length of the handler is around 18 instructions for
288 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
289 * Maximum space available is 32 instructions for R3000 and 64
290 * instructions for R4000.
291 *
292 * We deliberately chose a buffer size of 128, so we won't scribble
293 * over anything important on overflow before we panic.
294 */
295static u32 tlb_handler[128];
296
297/* simply assume worst case size for labels and relocs */
298static struct uasm_label labels[128];
299static struct uasm_reloc relocs[128];
300
301static int check_for_high_segbits;
302static bool fill_includes_sw_bits;
303
304static unsigned int kscratch_used_mask;
305
306static inline int __maybe_unused c0_kscratch(void)
307{
308 return 31;
309}
310
311static int allocate_kscratch(void)
312{
313 int r;
314 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
315
316 r = ffs(a);
317
318 if (r == 0)
319 return -1;
320
321 r--; /* make it zero based */
322
323 kscratch_used_mask |= (1 << r);
324
325 return r;
326}
327
328static int scratch_reg;
329int pgd_reg;
330EXPORT_SYMBOL_GPL(pgd_reg);
331enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
332
333static struct work_registers build_get_work_registers(u32 **p)
334{
335 struct work_registers r;
336
337 if (scratch_reg >= 0) {
338 /* Save in CPU local C0_KScratch? */
339 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
340 r.r1 = GPR_K0;
341 r.r2 = GPR_K1;
342 r.r3 = GPR_AT;
343 return r;
344 }
345
346 if (num_possible_cpus() > 1) {
347 /* Get smp_processor_id */
348 UASM_i_CPUID_MFC0(p, GPR_K0, SMP_CPUID_REG);
349 UASM_i_SRL_SAFE(p, GPR_K0, GPR_K0, SMP_CPUID_REGSHIFT);
350
351 /* handler_reg_save index in GPR_K0 */
352 UASM_i_SLL(p, GPR_K0, GPR_K0, ilog2(sizeof(struct tlb_reg_save)));
353
354 UASM_i_LA(p, GPR_K1, (long)&handler_reg_save);
355 UASM_i_ADDU(p, GPR_K0, GPR_K0, GPR_K1);
356 } else {
357 UASM_i_LA(p, GPR_K0, (long)&handler_reg_save);
358 }
359 /* GPR_K0 now points to save area, save $1 and $2 */
360 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), GPR_K0);
361 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), GPR_K0);
362
363 r.r1 = GPR_K1;
364 r.r2 = 1;
365 r.r3 = 2;
366 return r;
367}
368
369static void build_restore_work_registers(u32 **p)
370{
371 if (scratch_reg >= 0) {
372 uasm_i_ehb(p);
373 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
374 return;
375 }
376 /* GPR_K0 already points to save area, restore $1 and $2 */
377 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), GPR_K0);
378 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), GPR_K0);
379}
380
381#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
382
383/*
384 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
385 * we cannot do r3000 under these circumstances.
386 *
387 * The R3000 TLB handler is simple.
388 */
389static void build_r3000_tlb_refill_handler(void)
390{
391 long pgdc = (long)pgd_current;
392 u32 *p;
393
394 memset(tlb_handler, 0, sizeof(tlb_handler));
395 p = tlb_handler;
396
397 uasm_i_mfc0(&p, GPR_K0, C0_BADVADDR);
398 uasm_i_lui(&p, GPR_K1, uasm_rel_hi(pgdc)); /* cp0 delay */
399 uasm_i_lw(&p, GPR_K1, uasm_rel_lo(pgdc), GPR_K1);
400 uasm_i_srl(&p, GPR_K0, GPR_K0, 22); /* load delay */
401 uasm_i_sll(&p, GPR_K0, GPR_K0, 2);
402 uasm_i_addu(&p, GPR_K1, GPR_K1, GPR_K0);
403 uasm_i_mfc0(&p, GPR_K0, C0_CONTEXT);
404 uasm_i_lw(&p, GPR_K1, 0, GPR_K1); /* cp0 delay */
405 uasm_i_andi(&p, GPR_K0, GPR_K0, 0xffc); /* load delay */
406 uasm_i_addu(&p, GPR_K1, GPR_K1, GPR_K0);
407 uasm_i_lw(&p, GPR_K0, 0, GPR_K1);
408 uasm_i_nop(&p); /* load delay */
409 uasm_i_mtc0(&p, GPR_K0, C0_ENTRYLO0);
410 uasm_i_mfc0(&p, GPR_K1, C0_EPC); /* cp0 delay */
411 uasm_i_tlbwr(&p); /* cp0 delay */
412 uasm_i_jr(&p, GPR_K1);
413 uasm_i_rfe(&p); /* branch delay */
414
415 if (p > tlb_handler + 32)
416 panic("TLB refill handler space exceeded");
417
418 pr_debug("Wrote TLB refill handler (%u instructions).\n",
419 (unsigned int)(p - tlb_handler));
420
421 memcpy((void *)ebase, tlb_handler, 0x80);
422 local_flush_icache_range(ebase, ebase + 0x80);
423 dump_handler("r3000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x80));
424}
425#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
426
427/*
428 * The R4000 TLB handler is much more complicated. We have two
429 * consecutive handler areas with 32 instructions space each.
430 * Since they aren't used at the same time, we can overflow in the
431 * other one.To keep things simple, we first assume linear space,
432 * then we relocate it to the final handler layout as needed.
433 */
434static u32 final_handler[64];
435
436/*
437 * Hazards
438 *
439 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
440 * 2. A timing hazard exists for the TLBP instruction.
441 *
442 * stalling_instruction
443 * TLBP
444 *
445 * The JTLB is being read for the TLBP throughout the stall generated by the
446 * previous instruction. This is not really correct as the stalling instruction
447 * can modify the address used to access the JTLB. The failure symptom is that
448 * the TLBP instruction will use an address created for the stalling instruction
449 * and not the address held in C0_ENHI and thus report the wrong results.
450 *
451 * The software work-around is to not allow the instruction preceding the TLBP
452 * to stall - make it an NOP or some other instruction guaranteed not to stall.
453 *
454 * Errata 2 will not be fixed. This errata is also on the R5000.
455 *
456 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
457 */
458static void __maybe_unused build_tlb_probe_entry(u32 **p)
459{
460 switch (current_cpu_type()) {
461 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
462 case CPU_R4600:
463 case CPU_R4700:
464 case CPU_R5000:
465 case CPU_NEVADA:
466 uasm_i_nop(p);
467 uasm_i_tlbp(p);
468 break;
469
470 default:
471 uasm_i_tlbp(p);
472 break;
473 }
474}
475
476void build_tlb_write_entry(u32 **p, struct uasm_label **l,
477 struct uasm_reloc **r,
478 enum tlb_write_entry wmode)
479{
480 void(*tlbw)(u32 **) = NULL;
481
482 switch (wmode) {
483 case tlb_random: tlbw = uasm_i_tlbwr; break;
484 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
485 }
486
487 if (cpu_has_mips_r2_r6) {
488 if (cpu_has_mips_r2_exec_hazard)
489 uasm_i_ehb(p);
490 tlbw(p);
491 return;
492 }
493
494 switch (current_cpu_type()) {
495 case CPU_R4000PC:
496 case CPU_R4000SC:
497 case CPU_R4000MC:
498 case CPU_R4400PC:
499 case CPU_R4400SC:
500 case CPU_R4400MC:
501 /*
502 * This branch uses up a mtc0 hazard nop slot and saves
503 * two nops after the tlbw instruction.
504 */
505 uasm_bgezl_hazard(p, r, hazard_instance);
506 tlbw(p);
507 uasm_bgezl_label(l, p, hazard_instance);
508 hazard_instance++;
509 uasm_i_nop(p);
510 break;
511
512 case CPU_R4600:
513 case CPU_R4700:
514 uasm_i_nop(p);
515 tlbw(p);
516 uasm_i_nop(p);
517 break;
518
519 case CPU_R5000:
520 case CPU_NEVADA:
521 uasm_i_nop(p); /* QED specifies 2 nops hazard */
522 uasm_i_nop(p); /* QED specifies 2 nops hazard */
523 tlbw(p);
524 break;
525
526 case CPU_R4300:
527 case CPU_5KC:
528 case CPU_TX49XX:
529 case CPU_PR4450:
530 uasm_i_nop(p);
531 tlbw(p);
532 break;
533
534 case CPU_R10000:
535 case CPU_R12000:
536 case CPU_R14000:
537 case CPU_R16000:
538 case CPU_4KC:
539 case CPU_4KEC:
540 case CPU_M14KC:
541 case CPU_M14KEC:
542 case CPU_SB1:
543 case CPU_SB1A:
544 case CPU_4KSC:
545 case CPU_20KC:
546 case CPU_25KF:
547 case CPU_BMIPS32:
548 case CPU_BMIPS3300:
549 case CPU_BMIPS4350:
550 case CPU_BMIPS4380:
551 case CPU_BMIPS5000:
552 case CPU_LOONGSON2EF:
553 case CPU_LOONGSON64:
554 case CPU_R5500:
555 if (m4kc_tlbp_war())
556 uasm_i_nop(p);
557 fallthrough;
558 case CPU_ALCHEMY:
559 tlbw(p);
560 break;
561
562 case CPU_RM7000:
563 uasm_i_nop(p);
564 uasm_i_nop(p);
565 uasm_i_nop(p);
566 uasm_i_nop(p);
567 tlbw(p);
568 break;
569
570 case CPU_XBURST:
571 tlbw(p);
572 uasm_i_nop(p);
573 break;
574
575 default:
576 panic("No TLB refill handler yet (CPU type: %d)",
577 current_cpu_type());
578 break;
579 }
580}
581EXPORT_SYMBOL_GPL(build_tlb_write_entry);
582
583static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
584 unsigned int reg)
585{
586 if (_PAGE_GLOBAL_SHIFT == 0) {
587 /* pte_t is already in EntryLo format */
588 return;
589 }
590
591 if (cpu_has_rixi && _PAGE_NO_EXEC != 0) {
592 if (fill_includes_sw_bits) {
593 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
594 } else {
595 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
596 UASM_i_ROTR(p, reg, reg,
597 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
598 }
599 } else {
600#ifdef CONFIG_PHYS_ADDR_T_64BIT
601 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
602#else
603 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
604#endif
605 }
606}
607
608#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
609
610static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
611 unsigned int tmp, enum label_id lid,
612 int restore_scratch)
613{
614 if (restore_scratch) {
615 /*
616 * Ensure the MFC0 below observes the value written to the
617 * KScratch register by the prior MTC0.
618 */
619 if (scratch_reg >= 0)
620 uasm_i_ehb(p);
621
622 /* Reset default page size */
623 if (PM_DEFAULT_MASK >> 16) {
624 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
625 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
626 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
627 uasm_il_b(p, r, lid);
628 } else if (PM_DEFAULT_MASK) {
629 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
630 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
631 uasm_il_b(p, r, lid);
632 } else {
633 uasm_i_mtc0(p, 0, C0_PAGEMASK);
634 uasm_il_b(p, r, lid);
635 }
636 if (scratch_reg >= 0)
637 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
638 else
639 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
640 } else {
641 /* Reset default page size */
642 if (PM_DEFAULT_MASK >> 16) {
643 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
644 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
645 uasm_il_b(p, r, lid);
646 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
647 } else if (PM_DEFAULT_MASK) {
648 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
649 uasm_il_b(p, r, lid);
650 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
651 } else {
652 uasm_il_b(p, r, lid);
653 uasm_i_mtc0(p, 0, C0_PAGEMASK);
654 }
655 }
656}
657
658static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
659 struct uasm_reloc **r,
660 unsigned int tmp,
661 enum tlb_write_entry wmode,
662 int restore_scratch)
663{
664 /* Set huge page tlb entry size */
665 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
666 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
667 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
668
669 build_tlb_write_entry(p, l, r, wmode);
670
671 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
672}
673
674/*
675 * Check if Huge PTE is present, if so then jump to LABEL.
676 */
677static void
678build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
679 unsigned int pmd, int lid)
680{
681 UASM_i_LW(p, tmp, 0, pmd);
682 if (use_bbit_insns()) {
683 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
684 } else {
685 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
686 uasm_il_bnez(p, r, tmp, lid);
687 }
688}
689
690static void build_huge_update_entries(u32 **p, unsigned int pte,
691 unsigned int tmp)
692{
693 int small_sequence;
694
695 /*
696 * A huge PTE describes an area the size of the
697 * configured huge page size. This is twice the
698 * of the large TLB entry size we intend to use.
699 * A TLB entry half the size of the configured
700 * huge page size is configured into entrylo0
701 * and entrylo1 to cover the contiguous huge PTE
702 * address space.
703 */
704 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
705
706 /* We can clobber tmp. It isn't used after this.*/
707 if (!small_sequence)
708 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
709
710 build_convert_pte_to_entrylo(p, pte);
711 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
712 /* convert to entrylo1 */
713 if (small_sequence)
714 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
715 else
716 UASM_i_ADDU(p, pte, pte, tmp);
717
718 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
719}
720
721static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
722 struct uasm_label **l,
723 unsigned int pte,
724 unsigned int ptr,
725 unsigned int flush)
726{
727#ifdef CONFIG_SMP
728 UASM_i_SC(p, pte, 0, ptr);
729 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
730 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
731#else
732 UASM_i_SW(p, pte, 0, ptr);
733#endif
734 if (cpu_has_ftlb && flush) {
735 BUG_ON(!cpu_has_tlbinv);
736
737 UASM_i_MFC0(p, ptr, C0_ENTRYHI);
738 uasm_i_ori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
739 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
740 build_tlb_write_entry(p, l, r, tlb_indexed);
741
742 uasm_i_xori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
743 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
744 build_huge_update_entries(p, pte, ptr);
745 build_huge_tlb_write_entry(p, l, r, pte, tlb_random, 0);
746
747 return;
748 }
749
750 build_huge_update_entries(p, pte, ptr);
751 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
752}
753#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
754
755#ifdef CONFIG_64BIT
756/*
757 * TMP and PTR are scratch.
758 * TMP will be clobbered, PTR will hold the pmd entry.
759 */
760void build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
761 unsigned int tmp, unsigned int ptr)
762{
763#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
764 long pgdc = (long)pgd_current;
765#endif
766 /*
767 * The vmalloc handling is not in the hotpath.
768 */
769 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
770
771 if (check_for_high_segbits) {
772 /*
773 * The kernel currently implicitly assumes that the
774 * MIPS SEGBITS parameter for the processor is
775 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
776 * allocate virtual addresses outside the maximum
777 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
778 * that doesn't prevent user code from accessing the
779 * higher xuseg addresses. Here, we make sure that
780 * everything but the lower xuseg addresses goes down
781 * the module_alloc/vmalloc path.
782 */
783 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
784 uasm_il_bnez(p, r, ptr, label_vmalloc);
785 } else {
786 uasm_il_bltz(p, r, tmp, label_vmalloc);
787 }
788 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
789
790 if (pgd_reg != -1) {
791 /* pgd is in pgd_reg */
792 if (cpu_has_ldpte)
793 UASM_i_MFC0(p, ptr, C0_PWBASE);
794 else
795 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
796 } else {
797#if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
798 /*
799 * &pgd << 11 stored in CONTEXT [23..63].
800 */
801 UASM_i_MFC0(p, ptr, C0_CONTEXT);
802
803 /* Clear lower 23 bits of context. */
804 uasm_i_dins(p, ptr, 0, 0, 23);
805
806 /* insert bit[63:59] of CAC_BASE into bit[11:6] of ptr */
807 uasm_i_ori(p, ptr, ptr, ((u64)(CAC_BASE) >> 53));
808 uasm_i_drotr(p, ptr, ptr, 11);
809#elif defined(CONFIG_SMP)
810 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
811 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
812 UASM_i_LA_mostly(p, tmp, pgdc);
813 uasm_i_daddu(p, ptr, ptr, tmp);
814 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
815 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
816#else
817 UASM_i_LA_mostly(p, ptr, pgdc);
818 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
819#endif
820 }
821
822 uasm_l_vmalloc_done(l, *p);
823
824 /* get pgd offset in bytes */
825 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
826
827 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
828 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
829#ifndef __PAGETABLE_PUD_FOLDED
830 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
831 uasm_i_ld(p, ptr, 0, ptr); /* get pud pointer */
832 uasm_i_dsrl_safe(p, tmp, tmp, PUD_SHIFT - 3); /* get pud offset in bytes */
833 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PUD - 1) << 3);
834 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pud offset */
835#endif
836#ifndef __PAGETABLE_PMD_FOLDED
837 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
838 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
839 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
840 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
841 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
842#endif
843}
844EXPORT_SYMBOL_GPL(build_get_pmde64);
845
846/*
847 * BVADDR is the faulting address, PTR is scratch.
848 * PTR will hold the pgd for vmalloc.
849 */
850static void
851build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
852 unsigned int bvaddr, unsigned int ptr,
853 enum vmalloc64_mode mode)
854{
855 long swpd = (long)swapper_pg_dir;
856 int single_insn_swpd;
857 int did_vmalloc_branch = 0;
858
859 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
860
861 uasm_l_vmalloc(l, *p);
862
863 if (mode != not_refill && check_for_high_segbits) {
864 if (single_insn_swpd) {
865 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
866 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
867 did_vmalloc_branch = 1;
868 /* fall through */
869 } else {
870 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
871 }
872 }
873 if (!did_vmalloc_branch) {
874 if (single_insn_swpd) {
875 uasm_il_b(p, r, label_vmalloc_done);
876 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
877 } else {
878 UASM_i_LA_mostly(p, ptr, swpd);
879 uasm_il_b(p, r, label_vmalloc_done);
880 if (uasm_in_compat_space_p(swpd))
881 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
882 else
883 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
884 }
885 }
886 if (mode != not_refill && check_for_high_segbits) {
887 uasm_l_large_segbits_fault(l, *p);
888
889 if (mode == refill_scratch && scratch_reg >= 0)
890 uasm_i_ehb(p);
891
892 /*
893 * We get here if we are an xsseg address, or if we are
894 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
895 *
896 * Ignoring xsseg (assume disabled so would generate
897 * (address errors?), the only remaining possibility
898 * is the upper xuseg addresses. On processors with
899 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
900 * addresses would have taken an address error. We try
901 * to mimic that here by taking a load/istream page
902 * fault.
903 */
904 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
905 uasm_i_sync(p, 0);
906 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
907 uasm_i_jr(p, ptr);
908
909 if (mode == refill_scratch) {
910 if (scratch_reg >= 0)
911 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
912 else
913 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
914 } else {
915 uasm_i_nop(p);
916 }
917 }
918}
919
920#else /* !CONFIG_64BIT */
921
922/*
923 * TMP and PTR are scratch.
924 * TMP will be clobbered, PTR will hold the pgd entry.
925 */
926void build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
927{
928 if (pgd_reg != -1) {
929 /* pgd is in pgd_reg */
930 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
931 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
932 } else {
933 long pgdc = (long)pgd_current;
934
935 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
936#ifdef CONFIG_SMP
937 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
938 UASM_i_LA_mostly(p, tmp, pgdc);
939 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
940 uasm_i_addu(p, ptr, tmp, ptr);
941#else
942 UASM_i_LA_mostly(p, ptr, pgdc);
943#endif
944 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
945 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
946 }
947 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
948 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
949 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
950}
951EXPORT_SYMBOL_GPL(build_get_pgde32);
952
953#endif /* !CONFIG_64BIT */
954
955static void build_adjust_context(u32 **p, unsigned int ctx)
956{
957 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
958 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
959
960 if (shift)
961 UASM_i_SRL(p, ctx, ctx, shift);
962 uasm_i_andi(p, ctx, ctx, mask);
963}
964
965void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
966{
967 /*
968 * Bug workaround for the Nevada. It seems as if under certain
969 * circumstances the move from cp0_context might produce a
970 * bogus result when the mfc0 instruction and its consumer are
971 * in a different cacheline or a load instruction, probably any
972 * memory reference, is between them.
973 */
974 switch (current_cpu_type()) {
975 case CPU_NEVADA:
976 UASM_i_LW(p, ptr, 0, ptr);
977 GET_CONTEXT(p, tmp); /* get context reg */
978 break;
979
980 default:
981 GET_CONTEXT(p, tmp); /* get context reg */
982 UASM_i_LW(p, ptr, 0, ptr);
983 break;
984 }
985
986 build_adjust_context(p, tmp);
987 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
988}
989EXPORT_SYMBOL_GPL(build_get_ptep);
990
991void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
992{
993 int pte_off_even = 0;
994 int pte_off_odd = sizeof(pte_t);
995
996#if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT)
997 /* The low 32 bits of EntryLo is stored in pte_high */
998 pte_off_even += offsetof(pte_t, pte_high);
999 pte_off_odd += offsetof(pte_t, pte_high);
1000#endif
1001
1002 if (IS_ENABLED(CONFIG_XPA)) {
1003 uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1004 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1005 UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1006
1007 if (cpu_has_xpa && !mips_xpa_disabled) {
1008 uasm_i_lw(p, tmp, 0, ptep);
1009 uasm_i_ext(p, tmp, tmp, 0, 24);
1010 uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1011 }
1012
1013 uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */
1014 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1015 UASM_i_MTC0(p, tmp, C0_ENTRYLO1);
1016
1017 if (cpu_has_xpa && !mips_xpa_disabled) {
1018 uasm_i_lw(p, tmp, sizeof(pte_t), ptep);
1019 uasm_i_ext(p, tmp, tmp, 0, 24);
1020 uasm_i_mthc0(p, tmp, C0_ENTRYLO1);
1021 }
1022 return;
1023 }
1024
1025 UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */
1026 UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */
1027 if (r45k_bvahwbug())
1028 build_tlb_probe_entry(p);
1029 build_convert_pte_to_entrylo(p, tmp);
1030 if (r4k_250MHZhwbug())
1031 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1032 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1033 build_convert_pte_to_entrylo(p, ptep);
1034 if (r45k_bvahwbug())
1035 uasm_i_mfc0(p, tmp, C0_INDEX);
1036 if (r4k_250MHZhwbug())
1037 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1038 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1039}
1040EXPORT_SYMBOL_GPL(build_update_entries);
1041
1042struct mips_huge_tlb_info {
1043 int huge_pte;
1044 int restore_scratch;
1045 bool need_reload_pte;
1046};
1047
1048static struct mips_huge_tlb_info
1049build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1050 struct uasm_reloc **r, unsigned int tmp,
1051 unsigned int ptr, int c0_scratch_reg)
1052{
1053 struct mips_huge_tlb_info rv;
1054 unsigned int even, odd;
1055 int vmalloc_branch_delay_filled = 0;
1056 const int scratch = 1; /* Our extra working register */
1057
1058 rv.huge_pte = scratch;
1059 rv.restore_scratch = 0;
1060 rv.need_reload_pte = false;
1061
1062 if (check_for_high_segbits) {
1063 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1064
1065 if (pgd_reg != -1)
1066 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1067 else
1068 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1069
1070 if (c0_scratch_reg >= 0)
1071 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1072 else
1073 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1074
1075 uasm_i_dsrl_safe(p, scratch, tmp,
1076 PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
1077 uasm_il_bnez(p, r, scratch, label_vmalloc);
1078
1079 if (pgd_reg == -1) {
1080 vmalloc_branch_delay_filled = 1;
1081 /* Clear lower 23 bits of context. */
1082 uasm_i_dins(p, ptr, 0, 0, 23);
1083 }
1084 } else {
1085 if (pgd_reg != -1)
1086 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1087 else
1088 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1089
1090 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1091
1092 if (c0_scratch_reg >= 0)
1093 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1094 else
1095 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1096
1097 if (pgd_reg == -1)
1098 /* Clear lower 23 bits of context. */
1099 uasm_i_dins(p, ptr, 0, 0, 23);
1100
1101 uasm_il_bltz(p, r, tmp, label_vmalloc);
1102 }
1103
1104 if (pgd_reg == -1) {
1105 vmalloc_branch_delay_filled = 1;
1106 /* insert bit[63:59] of CAC_BASE into bit[11:6] of ptr */
1107 uasm_i_ori(p, ptr, ptr, ((u64)(CAC_BASE) >> 53));
1108
1109 uasm_i_drotr(p, ptr, ptr, 11);
1110 }
1111
1112#ifdef __PAGETABLE_PMD_FOLDED
1113#define LOC_PTEP scratch
1114#else
1115#define LOC_PTEP ptr
1116#endif
1117
1118 if (!vmalloc_branch_delay_filled)
1119 /* get pgd offset in bytes */
1120 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1121
1122 uasm_l_vmalloc_done(l, *p);
1123
1124 /*
1125 * tmp ptr
1126 * fall-through case = badvaddr *pgd_current
1127 * vmalloc case = badvaddr swapper_pg_dir
1128 */
1129
1130 if (vmalloc_branch_delay_filled)
1131 /* get pgd offset in bytes */
1132 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1133
1134#ifdef __PAGETABLE_PMD_FOLDED
1135 GET_CONTEXT(p, tmp); /* get context reg */
1136#endif
1137 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1138
1139 if (use_lwx_insns()) {
1140 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1141 } else {
1142 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1143 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1144 }
1145
1146#ifndef __PAGETABLE_PUD_FOLDED
1147 /* get pud offset in bytes */
1148 uasm_i_dsrl_safe(p, scratch, tmp, PUD_SHIFT - 3);
1149 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PUD - 1) << 3);
1150
1151 if (use_lwx_insns()) {
1152 UASM_i_LWX(p, ptr, scratch, ptr);
1153 } else {
1154 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1155 UASM_i_LW(p, ptr, 0, ptr);
1156 }
1157 /* ptr contains a pointer to PMD entry */
1158 /* tmp contains the address */
1159#endif
1160
1161#ifndef __PAGETABLE_PMD_FOLDED
1162 /* get pmd offset in bytes */
1163 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1164 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1165 GET_CONTEXT(p, tmp); /* get context reg */
1166
1167 if (use_lwx_insns()) {
1168 UASM_i_LWX(p, scratch, scratch, ptr);
1169 } else {
1170 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1171 UASM_i_LW(p, scratch, 0, ptr);
1172 }
1173#endif
1174 /* Adjust the context during the load latency. */
1175 build_adjust_context(p, tmp);
1176
1177#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1178 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1179 /*
1180 * The in the LWX case we don't want to do the load in the
1181 * delay slot. It cannot issue in the same cycle and may be
1182 * speculative and unneeded.
1183 */
1184 if (use_lwx_insns())
1185 uasm_i_nop(p);
1186#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1187
1188
1189 /* build_update_entries */
1190 if (use_lwx_insns()) {
1191 even = ptr;
1192 odd = tmp;
1193 UASM_i_LWX(p, even, scratch, tmp);
1194 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1195 UASM_i_LWX(p, odd, scratch, tmp);
1196 } else {
1197 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1198 even = tmp;
1199 odd = ptr;
1200 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1201 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1202 }
1203 if (cpu_has_rixi) {
1204 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1205 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1206 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1207 } else {
1208 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1209 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1210 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1211 }
1212 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1213
1214 if (c0_scratch_reg >= 0) {
1215 uasm_i_ehb(p);
1216 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1217 build_tlb_write_entry(p, l, r, tlb_random);
1218 uasm_l_leave(l, *p);
1219 rv.restore_scratch = 1;
1220 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1221 build_tlb_write_entry(p, l, r, tlb_random);
1222 uasm_l_leave(l, *p);
1223 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1224 } else {
1225 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1226 build_tlb_write_entry(p, l, r, tlb_random);
1227 uasm_l_leave(l, *p);
1228 rv.restore_scratch = 1;
1229 }
1230
1231 uasm_i_eret(p); /* return from trap */
1232
1233 return rv;
1234}
1235
1236/*
1237 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1238 * because EXL == 0. If we wrap, we can also use the 32 instruction
1239 * slots before the XTLB refill exception handler which belong to the
1240 * unused TLB refill exception.
1241 */
1242#define MIPS64_REFILL_INSNS 32
1243
1244static void build_r4000_tlb_refill_handler(void)
1245{
1246 u32 *p = tlb_handler;
1247 struct uasm_label *l = labels;
1248 struct uasm_reloc *r = relocs;
1249 u32 *f;
1250 unsigned int final_len;
1251 struct mips_huge_tlb_info htlb_info __maybe_unused;
1252 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1253
1254 memset(tlb_handler, 0, sizeof(tlb_handler));
1255 memset(labels, 0, sizeof(labels));
1256 memset(relocs, 0, sizeof(relocs));
1257 memset(final_handler, 0, sizeof(final_handler));
1258
1259 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1260 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, GPR_K0, GPR_K1,
1261 scratch_reg);
1262 vmalloc_mode = refill_scratch;
1263 } else {
1264 htlb_info.huge_pte = GPR_K0;
1265 htlb_info.restore_scratch = 0;
1266 htlb_info.need_reload_pte = true;
1267 vmalloc_mode = refill_noscratch;
1268 /*
1269 * create the plain linear handler
1270 */
1271 if (bcm1250_m3_war()) {
1272 unsigned int segbits = 44;
1273
1274 uasm_i_dmfc0(&p, GPR_K0, C0_BADVADDR);
1275 uasm_i_dmfc0(&p, GPR_K1, C0_ENTRYHI);
1276 uasm_i_xor(&p, GPR_K0, GPR_K0, GPR_K1);
1277 uasm_i_dsrl_safe(&p, GPR_K1, GPR_K0, 62);
1278 uasm_i_dsrl_safe(&p, GPR_K0, GPR_K0, 12 + 1);
1279 uasm_i_dsll_safe(&p, GPR_K0, GPR_K0, 64 + 12 + 1 - segbits);
1280 uasm_i_or(&p, GPR_K0, GPR_K0, GPR_K1);
1281 uasm_il_bnez(&p, &r, GPR_K0, label_leave);
1282 /* No need for uasm_i_nop */
1283 }
1284
1285#ifdef CONFIG_64BIT
1286 build_get_pmde64(&p, &l, &r, GPR_K0, GPR_K1); /* get pmd in GPR_K1 */
1287#else
1288 build_get_pgde32(&p, GPR_K0, GPR_K1); /* get pgd in GPR_K1 */
1289#endif
1290
1291#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1292 build_is_huge_pte(&p, &r, GPR_K0, GPR_K1, label_tlb_huge_update);
1293#endif
1294
1295 build_get_ptep(&p, GPR_K0, GPR_K1);
1296 build_update_entries(&p, GPR_K0, GPR_K1);
1297 build_tlb_write_entry(&p, &l, &r, tlb_random);
1298 uasm_l_leave(&l, p);
1299 uasm_i_eret(&p); /* return from trap */
1300 }
1301#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1302 uasm_l_tlb_huge_update(&l, p);
1303 if (htlb_info.need_reload_pte)
1304 UASM_i_LW(&p, htlb_info.huge_pte, 0, GPR_K1);
1305 build_huge_update_entries(&p, htlb_info.huge_pte, GPR_K1);
1306 build_huge_tlb_write_entry(&p, &l, &r, GPR_K0, tlb_random,
1307 htlb_info.restore_scratch);
1308#endif
1309
1310#ifdef CONFIG_64BIT
1311 build_get_pgd_vmalloc64(&p, &l, &r, GPR_K0, GPR_K1, vmalloc_mode);
1312#endif
1313
1314 /*
1315 * Overflow check: For the 64bit handler, we need at least one
1316 * free instruction slot for the wrap-around branch. In worst
1317 * case, if the intended insertion point is a delay slot, we
1318 * need three, with the second nop'ed and the third being
1319 * unused.
1320 */
1321 switch (boot_cpu_type()) {
1322 default:
1323 if (sizeof(long) == 4) {
1324 fallthrough;
1325 case CPU_LOONGSON2EF:
1326 /* Loongson2 ebase is different than r4k, we have more space */
1327 if ((p - tlb_handler) > 64)
1328 panic("TLB refill handler space exceeded");
1329 /*
1330 * Now fold the handler in the TLB refill handler space.
1331 */
1332 f = final_handler;
1333 /* Simplest case, just copy the handler. */
1334 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1335 final_len = p - tlb_handler;
1336 break;
1337 } else {
1338 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1339 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1340 && uasm_insn_has_bdelay(relocs,
1341 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1342 panic("TLB refill handler space exceeded");
1343 /*
1344 * Now fold the handler in the TLB refill handler space.
1345 */
1346 f = final_handler + MIPS64_REFILL_INSNS;
1347 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1348 /* Just copy the handler. */
1349 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1350 final_len = p - tlb_handler;
1351 } else {
1352#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1353 const enum label_id ls = label_tlb_huge_update;
1354#else
1355 const enum label_id ls = label_vmalloc;
1356#endif
1357 u32 *split;
1358 int ov = 0;
1359 int i;
1360
1361 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1362 ;
1363 BUG_ON(i == ARRAY_SIZE(labels));
1364 split = labels[i].addr;
1365
1366 /*
1367 * See if we have overflown one way or the other.
1368 */
1369 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1370 split < p - MIPS64_REFILL_INSNS)
1371 ov = 1;
1372
1373 if (ov) {
1374 /*
1375 * Split two instructions before the end. One
1376 * for the branch and one for the instruction
1377 * in the delay slot.
1378 */
1379 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1380
1381 /*
1382 * If the branch would fall in a delay slot,
1383 * we must back up an additional instruction
1384 * so that it is no longer in a delay slot.
1385 */
1386 if (uasm_insn_has_bdelay(relocs, split - 1))
1387 split--;
1388 }
1389 /* Copy first part of the handler. */
1390 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1391 f += split - tlb_handler;
1392
1393 if (ov) {
1394 /* Insert branch. */
1395 uasm_l_split(&l, final_handler);
1396 uasm_il_b(&f, &r, label_split);
1397 if (uasm_insn_has_bdelay(relocs, split))
1398 uasm_i_nop(&f);
1399 else {
1400 uasm_copy_handler(relocs, labels,
1401 split, split + 1, f);
1402 uasm_move_labels(labels, f, f + 1, -1);
1403 f++;
1404 split++;
1405 }
1406 }
1407
1408 /* Copy the rest of the handler. */
1409 uasm_copy_handler(relocs, labels, split, p, final_handler);
1410 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1411 (p - split);
1412 }
1413 }
1414 break;
1415 }
1416
1417 uasm_resolve_relocs(relocs, labels);
1418 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1419 final_len);
1420
1421 memcpy((void *)ebase, final_handler, 0x100);
1422 local_flush_icache_range(ebase, ebase + 0x100);
1423 dump_handler("r4000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x100));
1424}
1425
1426static void setup_pw(void)
1427{
1428 unsigned int pwctl;
1429 unsigned long pgd_i, pgd_w;
1430#ifndef __PAGETABLE_PMD_FOLDED
1431 unsigned long pmd_i, pmd_w;
1432#endif
1433 unsigned long pt_i, pt_w;
1434 unsigned long pte_i, pte_w;
1435#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1436 unsigned long psn;
1437
1438 psn = ilog2(_PAGE_HUGE); /* bit used to indicate huge page */
1439#endif
1440 pgd_i = PGDIR_SHIFT; /* 1st level PGD */
1441#ifndef __PAGETABLE_PMD_FOLDED
1442 pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_TABLE_ORDER;
1443
1444 pmd_i = PMD_SHIFT; /* 2nd level PMD */
1445 pmd_w = PMD_SHIFT - PAGE_SHIFT;
1446#else
1447 pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_TABLE_ORDER;
1448#endif
1449
1450 pt_i = PAGE_SHIFT; /* 3rd level PTE */
1451 pt_w = PAGE_SHIFT - 3;
1452
1453 pte_i = ilog2(_PAGE_GLOBAL);
1454 pte_w = 0;
1455 pwctl = 1 << 30; /* Set PWDirExt */
1456
1457#ifndef __PAGETABLE_PMD_FOLDED
1458 write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i);
1459 write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w);
1460#else
1461 write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i);
1462 write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w);
1463#endif
1464
1465#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1466 pwctl |= (1 << 6 | psn);
1467#endif
1468 write_c0_pwctl(pwctl);
1469 write_c0_kpgd((long)swapper_pg_dir);
1470 kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */
1471}
1472
1473static void build_loongson3_tlb_refill_handler(void)
1474{
1475 u32 *p = tlb_handler;
1476 struct uasm_label *l = labels;
1477 struct uasm_reloc *r = relocs;
1478
1479 memset(labels, 0, sizeof(labels));
1480 memset(relocs, 0, sizeof(relocs));
1481 memset(tlb_handler, 0, sizeof(tlb_handler));
1482
1483 if (check_for_high_segbits) {
1484 uasm_i_dmfc0(&p, GPR_K0, C0_BADVADDR);
1485 uasm_i_dsrl_safe(&p, GPR_K1, GPR_K0,
1486 PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
1487 uasm_il_beqz(&p, &r, GPR_K1, label_vmalloc);
1488 uasm_i_nop(&p);
1489
1490 uasm_il_bgez(&p, &r, GPR_K0, label_large_segbits_fault);
1491 uasm_i_nop(&p);
1492 uasm_l_vmalloc(&l, p);
1493 }
1494
1495 uasm_i_dmfc0(&p, GPR_K1, C0_PGD);
1496
1497 uasm_i_lddir(&p, GPR_K0, GPR_K1, 3); /* global page dir */
1498#ifndef __PAGETABLE_PMD_FOLDED
1499 uasm_i_lddir(&p, GPR_K1, GPR_K0, 1); /* middle page dir */
1500#endif
1501 uasm_i_ldpte(&p, GPR_K1, 0); /* even */
1502 uasm_i_ldpte(&p, GPR_K1, 1); /* odd */
1503 uasm_i_tlbwr(&p);
1504
1505 /* restore page mask */
1506 if (PM_DEFAULT_MASK >> 16) {
1507 uasm_i_lui(&p, GPR_K0, PM_DEFAULT_MASK >> 16);
1508 uasm_i_ori(&p, GPR_K0, GPR_K0, PM_DEFAULT_MASK & 0xffff);
1509 uasm_i_mtc0(&p, GPR_K0, C0_PAGEMASK);
1510 } else if (PM_DEFAULT_MASK) {
1511 uasm_i_ori(&p, GPR_K0, 0, PM_DEFAULT_MASK);
1512 uasm_i_mtc0(&p, GPR_K0, C0_PAGEMASK);
1513 } else {
1514 uasm_i_mtc0(&p, 0, C0_PAGEMASK);
1515 }
1516
1517 uasm_i_eret(&p);
1518
1519 if (check_for_high_segbits) {
1520 uasm_l_large_segbits_fault(&l, p);
1521 UASM_i_LA(&p, GPR_K1, (unsigned long)tlb_do_page_fault_0);
1522 uasm_i_jr(&p, GPR_K1);
1523 uasm_i_nop(&p);
1524 }
1525
1526 uasm_resolve_relocs(relocs, labels);
1527 memcpy((void *)(ebase + 0x80), tlb_handler, 0x80);
1528 local_flush_icache_range(ebase + 0x80, ebase + 0x100);
1529 dump_handler("loongson3_tlb_refill",
1530 (u32 *)(ebase + 0x80), (u32 *)(ebase + 0x100));
1531}
1532
1533static void build_setup_pgd(void)
1534{
1535 const int a0 = 4;
1536 const int __maybe_unused a1 = 5;
1537 const int __maybe_unused a2 = 6;
1538 u32 *p = (u32 *)msk_isa16_mode((ulong)tlbmiss_handler_setup_pgd);
1539#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1540 long pgdc = (long)pgd_current;
1541#endif
1542
1543 memset(p, 0, tlbmiss_handler_setup_pgd_end - (char *)p);
1544 memset(labels, 0, sizeof(labels));
1545 memset(relocs, 0, sizeof(relocs));
1546 pgd_reg = allocate_kscratch();
1547#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1548 if (pgd_reg == -1) {
1549 struct uasm_label *l = labels;
1550 struct uasm_reloc *r = relocs;
1551
1552 /* PGD << 11 in c0_Context */
1553 /*
1554 * If it is a ckseg0 address, convert to a physical
1555 * address. Shifting right by 29 and adding 4 will
1556 * result in zero for these addresses.
1557 *
1558 */
1559 UASM_i_SRA(&p, a1, a0, 29);
1560 UASM_i_ADDIU(&p, a1, a1, 4);
1561 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1562 uasm_i_nop(&p);
1563 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1564 uasm_l_tlbl_goaround1(&l, p);
1565 UASM_i_SLL(&p, a0, a0, 11);
1566 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1567 uasm_i_jr(&p, 31);
1568 uasm_i_ehb(&p);
1569 } else {
1570 /* PGD in c0_KScratch */
1571 if (cpu_has_ldpte)
1572 UASM_i_MTC0(&p, a0, C0_PWBASE);
1573 else
1574 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1575 uasm_i_jr(&p, 31);
1576 uasm_i_ehb(&p);
1577 }
1578#else
1579#ifdef CONFIG_SMP
1580 /* Save PGD to pgd_current[smp_processor_id()] */
1581 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1582 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1583 UASM_i_LA_mostly(&p, a2, pgdc);
1584 UASM_i_ADDU(&p, a2, a2, a1);
1585 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1586#else
1587 UASM_i_LA_mostly(&p, a2, pgdc);
1588 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1589#endif /* SMP */
1590
1591 /* if pgd_reg is allocated, save PGD also to scratch register */
1592 if (pgd_reg != -1) {
1593 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1594 uasm_i_jr(&p, 31);
1595 uasm_i_ehb(&p);
1596 } else {
1597 uasm_i_jr(&p, 31);
1598 uasm_i_nop(&p);
1599 }
1600#endif
1601 if (p >= (u32 *)tlbmiss_handler_setup_pgd_end)
1602 panic("tlbmiss_handler_setup_pgd space exceeded");
1603
1604 uasm_resolve_relocs(relocs, labels);
1605 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1606 (unsigned int)(p - (u32 *)tlbmiss_handler_setup_pgd));
1607
1608 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1609 tlbmiss_handler_setup_pgd_end);
1610}
1611
1612static void
1613iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1614{
1615#ifdef CONFIG_SMP
1616 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
1617 uasm_i_sync(p, 0);
1618# ifdef CONFIG_PHYS_ADDR_T_64BIT
1619 if (cpu_has_64bits)
1620 uasm_i_lld(p, pte, 0, ptr);
1621 else
1622# endif
1623 UASM_i_LL(p, pte, 0, ptr);
1624#else
1625# ifdef CONFIG_PHYS_ADDR_T_64BIT
1626 if (cpu_has_64bits)
1627 uasm_i_ld(p, pte, 0, ptr);
1628 else
1629# endif
1630 UASM_i_LW(p, pte, 0, ptr);
1631#endif
1632}
1633
1634static void
1635iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1636 unsigned int mode, unsigned int scratch)
1637{
1638 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1639 unsigned int swmode = mode & ~hwmode;
1640
1641 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_64bits) {
1642 uasm_i_lui(p, scratch, swmode >> 16);
1643 uasm_i_or(p, pte, pte, scratch);
1644 BUG_ON(swmode & 0xffff);
1645 } else {
1646 uasm_i_ori(p, pte, pte, mode);
1647 }
1648
1649#ifdef CONFIG_SMP
1650# ifdef CONFIG_PHYS_ADDR_T_64BIT
1651 if (cpu_has_64bits)
1652 uasm_i_scd(p, pte, 0, ptr);
1653 else
1654# endif
1655 UASM_i_SC(p, pte, 0, ptr);
1656
1657 if (r10000_llsc_war())
1658 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1659 else
1660 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1661
1662# ifdef CONFIG_PHYS_ADDR_T_64BIT
1663 if (!cpu_has_64bits) {
1664 /* no uasm_i_nop needed */
1665 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1666 uasm_i_ori(p, pte, pte, hwmode);
1667 BUG_ON(hwmode & ~0xffff);
1668 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1669 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1670 /* no uasm_i_nop needed */
1671 uasm_i_lw(p, pte, 0, ptr);
1672 } else
1673 uasm_i_nop(p);
1674# else
1675 uasm_i_nop(p);
1676# endif
1677#else
1678# ifdef CONFIG_PHYS_ADDR_T_64BIT
1679 if (cpu_has_64bits)
1680 uasm_i_sd(p, pte, 0, ptr);
1681 else
1682# endif
1683 UASM_i_SW(p, pte, 0, ptr);
1684
1685# ifdef CONFIG_PHYS_ADDR_T_64BIT
1686 if (!cpu_has_64bits) {
1687 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1688 uasm_i_ori(p, pte, pte, hwmode);
1689 BUG_ON(hwmode & ~0xffff);
1690 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1691 uasm_i_lw(p, pte, 0, ptr);
1692 }
1693# endif
1694#endif
1695}
1696
1697/*
1698 * Check if PTE is present, if not then jump to LABEL. PTR points to
1699 * the page table where this PTE is located, PTE will be re-loaded
1700 * with its original value.
1701 */
1702static void
1703build_pte_present(u32 **p, struct uasm_reloc **r,
1704 int pte, int ptr, int scratch, enum label_id lid)
1705{
1706 int t = scratch >= 0 ? scratch : pte;
1707 int cur = pte;
1708
1709 if (cpu_has_rixi) {
1710 if (use_bbit_insns()) {
1711 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1712 uasm_i_nop(p);
1713 } else {
1714 if (_PAGE_PRESENT_SHIFT) {
1715 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1716 cur = t;
1717 }
1718 uasm_i_andi(p, t, cur, 1);
1719 uasm_il_beqz(p, r, t, lid);
1720 if (pte == t)
1721 /* You lose the SMP race :-(*/
1722 iPTE_LW(p, pte, ptr);
1723 }
1724 } else {
1725 if (_PAGE_PRESENT_SHIFT) {
1726 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1727 cur = t;
1728 }
1729 uasm_i_andi(p, t, cur,
1730 (_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT);
1731 uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT);
1732 uasm_il_bnez(p, r, t, lid);
1733 if (pte == t)
1734 /* You lose the SMP race :-(*/
1735 iPTE_LW(p, pte, ptr);
1736 }
1737}
1738
1739/* Make PTE valid, store result in PTR. */
1740static void
1741build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1742 unsigned int ptr, unsigned int scratch)
1743{
1744 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1745
1746 iPTE_SW(p, r, pte, ptr, mode, scratch);
1747}
1748
1749/*
1750 * Check if PTE can be written to, if not branch to LABEL. Regardless
1751 * restore PTE with value from PTR when done.
1752 */
1753static void
1754build_pte_writable(u32 **p, struct uasm_reloc **r,
1755 unsigned int pte, unsigned int ptr, int scratch,
1756 enum label_id lid)
1757{
1758 int t = scratch >= 0 ? scratch : pte;
1759 int cur = pte;
1760
1761 if (_PAGE_PRESENT_SHIFT) {
1762 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1763 cur = t;
1764 }
1765 uasm_i_andi(p, t, cur,
1766 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1767 uasm_i_xori(p, t, t,
1768 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1769 uasm_il_bnez(p, r, t, lid);
1770 if (pte == t)
1771 /* You lose the SMP race :-(*/
1772 iPTE_LW(p, pte, ptr);
1773 else
1774 uasm_i_nop(p);
1775}
1776
1777/* Make PTE writable, update software status bits as well, then store
1778 * at PTR.
1779 */
1780static void
1781build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1782 unsigned int ptr, unsigned int scratch)
1783{
1784 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1785 | _PAGE_DIRTY);
1786
1787 iPTE_SW(p, r, pte, ptr, mode, scratch);
1788}
1789
1790/*
1791 * Check if PTE can be modified, if not branch to LABEL. Regardless
1792 * restore PTE with value from PTR when done.
1793 */
1794static void
1795build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1796 unsigned int pte, unsigned int ptr, int scratch,
1797 enum label_id lid)
1798{
1799 if (use_bbit_insns()) {
1800 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1801 uasm_i_nop(p);
1802 } else {
1803 int t = scratch >= 0 ? scratch : pte;
1804 uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1805 uasm_i_andi(p, t, t, 1);
1806 uasm_il_beqz(p, r, t, lid);
1807 if (pte == t)
1808 /* You lose the SMP race :-(*/
1809 iPTE_LW(p, pte, ptr);
1810 }
1811}
1812
1813#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1814
1815
1816/*
1817 * R3000 style TLB load/store/modify handlers.
1818 */
1819
1820/*
1821 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1822 * Then it returns.
1823 */
1824static void
1825build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1826{
1827 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1828 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1829 uasm_i_tlbwi(p);
1830 uasm_i_jr(p, tmp);
1831 uasm_i_rfe(p); /* branch delay */
1832}
1833
1834/*
1835 * This places the pte into ENTRYLO0 and writes it with tlbwi
1836 * or tlbwr as appropriate. This is because the index register
1837 * may have the probe fail bit set as a result of a trap on a
1838 * kseg2 access, i.e. without refill. Then it returns.
1839 */
1840static void
1841build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1842 struct uasm_reloc **r, unsigned int pte,
1843 unsigned int tmp)
1844{
1845 uasm_i_mfc0(p, tmp, C0_INDEX);
1846 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1847 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1848 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1849 uasm_i_tlbwi(p); /* cp0 delay */
1850 uasm_i_jr(p, tmp);
1851 uasm_i_rfe(p); /* branch delay */
1852 uasm_l_r3000_write_probe_fail(l, *p);
1853 uasm_i_tlbwr(p); /* cp0 delay */
1854 uasm_i_jr(p, tmp);
1855 uasm_i_rfe(p); /* branch delay */
1856}
1857
1858static void
1859build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1860 unsigned int ptr)
1861{
1862 long pgdc = (long)pgd_current;
1863
1864 uasm_i_mfc0(p, pte, C0_BADVADDR);
1865 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1866 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1867 uasm_i_srl(p, pte, pte, 22); /* load delay */
1868 uasm_i_sll(p, pte, pte, 2);
1869 uasm_i_addu(p, ptr, ptr, pte);
1870 uasm_i_mfc0(p, pte, C0_CONTEXT);
1871 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1872 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1873 uasm_i_addu(p, ptr, ptr, pte);
1874 uasm_i_lw(p, pte, 0, ptr);
1875 uasm_i_tlbp(p); /* load delay */
1876}
1877
1878static void build_r3000_tlb_load_handler(void)
1879{
1880 u32 *p = (u32 *)handle_tlbl;
1881 struct uasm_label *l = labels;
1882 struct uasm_reloc *r = relocs;
1883
1884 memset(p, 0, handle_tlbl_end - (char *)p);
1885 memset(labels, 0, sizeof(labels));
1886 memset(relocs, 0, sizeof(relocs));
1887
1888 build_r3000_tlbchange_handler_head(&p, GPR_K0, GPR_K1);
1889 build_pte_present(&p, &r, GPR_K0, GPR_K1, -1, label_nopage_tlbl);
1890 uasm_i_nop(&p); /* load delay */
1891 build_make_valid(&p, &r, GPR_K0, GPR_K1, -1);
1892 build_r3000_tlb_reload_write(&p, &l, &r, GPR_K0, GPR_K1);
1893
1894 uasm_l_nopage_tlbl(&l, p);
1895 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1896 uasm_i_nop(&p);
1897
1898 if (p >= (u32 *)handle_tlbl_end)
1899 panic("TLB load handler fastpath space exceeded");
1900
1901 uasm_resolve_relocs(relocs, labels);
1902 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1903 (unsigned int)(p - (u32 *)handle_tlbl));
1904
1905 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_end);
1906}
1907
1908static void build_r3000_tlb_store_handler(void)
1909{
1910 u32 *p = (u32 *)handle_tlbs;
1911 struct uasm_label *l = labels;
1912 struct uasm_reloc *r = relocs;
1913
1914 memset(p, 0, handle_tlbs_end - (char *)p);
1915 memset(labels, 0, sizeof(labels));
1916 memset(relocs, 0, sizeof(relocs));
1917
1918 build_r3000_tlbchange_handler_head(&p, GPR_K0, GPR_K1);
1919 build_pte_writable(&p, &r, GPR_K0, GPR_K1, -1, label_nopage_tlbs);
1920 uasm_i_nop(&p); /* load delay */
1921 build_make_write(&p, &r, GPR_K0, GPR_K1, -1);
1922 build_r3000_tlb_reload_write(&p, &l, &r, GPR_K0, GPR_K1);
1923
1924 uasm_l_nopage_tlbs(&l, p);
1925 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1926 uasm_i_nop(&p);
1927
1928 if (p >= (u32 *)handle_tlbs_end)
1929 panic("TLB store handler fastpath space exceeded");
1930
1931 uasm_resolve_relocs(relocs, labels);
1932 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1933 (unsigned int)(p - (u32 *)handle_tlbs));
1934
1935 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_end);
1936}
1937
1938static void build_r3000_tlb_modify_handler(void)
1939{
1940 u32 *p = (u32 *)handle_tlbm;
1941 struct uasm_label *l = labels;
1942 struct uasm_reloc *r = relocs;
1943
1944 memset(p, 0, handle_tlbm_end - (char *)p);
1945 memset(labels, 0, sizeof(labels));
1946 memset(relocs, 0, sizeof(relocs));
1947
1948 build_r3000_tlbchange_handler_head(&p, GPR_K0, GPR_K1);
1949 build_pte_modifiable(&p, &r, GPR_K0, GPR_K1, -1, label_nopage_tlbm);
1950 uasm_i_nop(&p); /* load delay */
1951 build_make_write(&p, &r, GPR_K0, GPR_K1, -1);
1952 build_r3000_pte_reload_tlbwi(&p, GPR_K0, GPR_K1);
1953
1954 uasm_l_nopage_tlbm(&l, p);
1955 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1956 uasm_i_nop(&p);
1957
1958 if (p >= (u32 *)handle_tlbm_end)
1959 panic("TLB modify handler fastpath space exceeded");
1960
1961 uasm_resolve_relocs(relocs, labels);
1962 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1963 (unsigned int)(p - (u32 *)handle_tlbm));
1964
1965 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_end);
1966}
1967#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1968
1969static bool cpu_has_tlbex_tlbp_race(void)
1970{
1971 /*
1972 * When a Hardware Table Walker is running it can replace TLB entries
1973 * at any time, leading to a race between it & the CPU.
1974 */
1975 if (cpu_has_htw)
1976 return true;
1977
1978 /*
1979 * If the CPU shares FTLB RAM with its siblings then our entry may be
1980 * replaced at any time by a sibling performing a write to the FTLB.
1981 */
1982 if (cpu_has_shared_ftlb_ram)
1983 return true;
1984
1985 /* In all other cases there ought to be no race condition to handle */
1986 return false;
1987}
1988
1989/*
1990 * R4000 style TLB load/store/modify handlers.
1991 */
1992static struct work_registers
1993build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1994 struct uasm_reloc **r)
1995{
1996 struct work_registers wr = build_get_work_registers(p);
1997
1998#ifdef CONFIG_64BIT
1999 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
2000#else
2001 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
2002#endif
2003
2004#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2005 /*
2006 * For huge tlb entries, pmd doesn't contain an address but
2007 * instead contains the tlb pte. Check the PAGE_HUGE bit and
2008 * see if we need to jump to huge tlb processing.
2009 */
2010 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
2011#endif
2012
2013 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
2014 UASM_i_LW(p, wr.r2, 0, wr.r2);
2015 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT - PTE_T_LOG2);
2016 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
2017 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
2018
2019#ifdef CONFIG_SMP
2020 uasm_l_smp_pgtable_change(l, *p);
2021#endif
2022 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
2023 if (!m4kc_tlbp_war()) {
2024 build_tlb_probe_entry(p);
2025 if (cpu_has_tlbex_tlbp_race()) {
2026 /* race condition happens, leaving */
2027 uasm_i_ehb(p);
2028 uasm_i_mfc0(p, wr.r3, C0_INDEX);
2029 uasm_il_bltz(p, r, wr.r3, label_leave);
2030 uasm_i_nop(p);
2031 }
2032 }
2033 return wr;
2034}
2035
2036static void
2037build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
2038 struct uasm_reloc **r, unsigned int tmp,
2039 unsigned int ptr)
2040{
2041 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
2042 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
2043 build_update_entries(p, tmp, ptr);
2044 build_tlb_write_entry(p, l, r, tlb_indexed);
2045 uasm_l_leave(l, *p);
2046 build_restore_work_registers(p);
2047 uasm_i_eret(p); /* return from trap */
2048
2049#ifdef CONFIG_64BIT
2050 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
2051#endif
2052}
2053
2054static void build_r4000_tlb_load_handler(void)
2055{
2056 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbl);
2057 struct uasm_label *l = labels;
2058 struct uasm_reloc *r = relocs;
2059 struct work_registers wr;
2060
2061 memset(p, 0, handle_tlbl_end - (char *)p);
2062 memset(labels, 0, sizeof(labels));
2063 memset(relocs, 0, sizeof(relocs));
2064
2065 if (bcm1250_m3_war()) {
2066 unsigned int segbits = 44;
2067
2068 uasm_i_dmfc0(&p, GPR_K0, C0_BADVADDR);
2069 uasm_i_dmfc0(&p, GPR_K1, C0_ENTRYHI);
2070 uasm_i_xor(&p, GPR_K0, GPR_K0, GPR_K1);
2071 uasm_i_dsrl_safe(&p, GPR_K1, GPR_K0, 62);
2072 uasm_i_dsrl_safe(&p, GPR_K0, GPR_K0, 12 + 1);
2073 uasm_i_dsll_safe(&p, GPR_K0, GPR_K0, 64 + 12 + 1 - segbits);
2074 uasm_i_or(&p, GPR_K0, GPR_K0, GPR_K1);
2075 uasm_il_bnez(&p, &r, GPR_K0, label_leave);
2076 /* No need for uasm_i_nop */
2077 }
2078
2079 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2080 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2081 if (m4kc_tlbp_war())
2082 build_tlb_probe_entry(&p);
2083
2084 if (cpu_has_rixi && !cpu_has_rixiex) {
2085 /*
2086 * If the page is not _PAGE_VALID, RI or XI could not
2087 * have triggered it. Skip the expensive test..
2088 */
2089 if (use_bbit_insns()) {
2090 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2091 label_tlbl_goaround1);
2092 } else {
2093 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2094 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
2095 }
2096 uasm_i_nop(&p);
2097
2098 /*
2099 * Warn if something may race with us & replace the TLB entry
2100 * before we read it here. Everything with such races should
2101 * also have dedicated RiXi exception handlers, so this
2102 * shouldn't be hit.
2103 */
2104 WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2105
2106 uasm_i_tlbr(&p);
2107
2108 if (cpu_has_mips_r2_exec_hazard)
2109 uasm_i_ehb(&p);
2110
2111 /* Examine entrylo 0 or 1 based on ptr. */
2112 if (use_bbit_insns()) {
2113 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2114 } else {
2115 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2116 uasm_i_beqz(&p, wr.r3, 8);
2117 }
2118 /* load it in the delay slot*/
2119 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2120 /* load it if ptr is odd */
2121 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2122 /*
2123 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2124 * XI must have triggered it.
2125 */
2126 if (use_bbit_insns()) {
2127 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2128 uasm_i_nop(&p);
2129 uasm_l_tlbl_goaround1(&l, p);
2130 } else {
2131 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2132 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2133 uasm_i_nop(&p);
2134 }
2135 uasm_l_tlbl_goaround1(&l, p);
2136 }
2137 build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3);
2138 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2139
2140#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2141 /*
2142 * This is the entry point when build_r4000_tlbchange_handler_head
2143 * spots a huge page.
2144 */
2145 uasm_l_tlb_huge_update(&l, p);
2146 iPTE_LW(&p, wr.r1, wr.r2);
2147 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2148 build_tlb_probe_entry(&p);
2149
2150 if (cpu_has_rixi && !cpu_has_rixiex) {
2151 /*
2152 * If the page is not _PAGE_VALID, RI or XI could not
2153 * have triggered it. Skip the expensive test..
2154 */
2155 if (use_bbit_insns()) {
2156 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2157 label_tlbl_goaround2);
2158 } else {
2159 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2160 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2161 }
2162 uasm_i_nop(&p);
2163
2164 /*
2165 * Warn if something may race with us & replace the TLB entry
2166 * before we read it here. Everything with such races should
2167 * also have dedicated RiXi exception handlers, so this
2168 * shouldn't be hit.
2169 */
2170 WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2171
2172 uasm_i_tlbr(&p);
2173
2174 if (cpu_has_mips_r2_exec_hazard)
2175 uasm_i_ehb(&p);
2176
2177 /* Examine entrylo 0 or 1 based on ptr. */
2178 if (use_bbit_insns()) {
2179 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2180 } else {
2181 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2182 uasm_i_beqz(&p, wr.r3, 8);
2183 }
2184 /* load it in the delay slot*/
2185 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2186 /* load it if ptr is odd */
2187 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2188 /*
2189 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2190 * XI must have triggered it.
2191 */
2192 if (use_bbit_insns()) {
2193 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2194 } else {
2195 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2196 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2197 }
2198 if (PM_DEFAULT_MASK == 0)
2199 uasm_i_nop(&p);
2200 /*
2201 * We clobbered C0_PAGEMASK, restore it. On the other branch
2202 * it is restored in build_huge_tlb_write_entry.
2203 */
2204 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2205
2206 uasm_l_tlbl_goaround2(&l, p);
2207 }
2208 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2209 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2210#endif
2211
2212 uasm_l_nopage_tlbl(&l, p);
2213 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2214 uasm_i_sync(&p, 0);
2215 build_restore_work_registers(&p);
2216#ifdef CONFIG_CPU_MICROMIPS
2217 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2218 uasm_i_lui(&p, GPR_K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2219 uasm_i_addiu(&p, GPR_K0, GPR_K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2220 uasm_i_jr(&p, GPR_K0);
2221 } else
2222#endif
2223 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2224 uasm_i_nop(&p);
2225
2226 if (p >= (u32 *)handle_tlbl_end)
2227 panic("TLB load handler fastpath space exceeded");
2228
2229 uasm_resolve_relocs(relocs, labels);
2230 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2231 (unsigned int)(p - (u32 *)handle_tlbl));
2232
2233 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_end);
2234}
2235
2236static void build_r4000_tlb_store_handler(void)
2237{
2238 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbs);
2239 struct uasm_label *l = labels;
2240 struct uasm_reloc *r = relocs;
2241 struct work_registers wr;
2242
2243 memset(p, 0, handle_tlbs_end - (char *)p);
2244 memset(labels, 0, sizeof(labels));
2245 memset(relocs, 0, sizeof(relocs));
2246
2247 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2248 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2249 if (m4kc_tlbp_war())
2250 build_tlb_probe_entry(&p);
2251 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2252 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2253
2254#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2255 /*
2256 * This is the entry point when
2257 * build_r4000_tlbchange_handler_head spots a huge page.
2258 */
2259 uasm_l_tlb_huge_update(&l, p);
2260 iPTE_LW(&p, wr.r1, wr.r2);
2261 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2262 build_tlb_probe_entry(&p);
2263 uasm_i_ori(&p, wr.r1, wr.r1,
2264 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2265 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2266#endif
2267
2268 uasm_l_nopage_tlbs(&l, p);
2269 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2270 uasm_i_sync(&p, 0);
2271 build_restore_work_registers(&p);
2272#ifdef CONFIG_CPU_MICROMIPS
2273 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2274 uasm_i_lui(&p, GPR_K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2275 uasm_i_addiu(&p, GPR_K0, GPR_K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2276 uasm_i_jr(&p, GPR_K0);
2277 } else
2278#endif
2279 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2280 uasm_i_nop(&p);
2281
2282 if (p >= (u32 *)handle_tlbs_end)
2283 panic("TLB store handler fastpath space exceeded");
2284
2285 uasm_resolve_relocs(relocs, labels);
2286 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2287 (unsigned int)(p - (u32 *)handle_tlbs));
2288
2289 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_end);
2290}
2291
2292static void build_r4000_tlb_modify_handler(void)
2293{
2294 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbm);
2295 struct uasm_label *l = labels;
2296 struct uasm_reloc *r = relocs;
2297 struct work_registers wr;
2298
2299 memset(p, 0, handle_tlbm_end - (char *)p);
2300 memset(labels, 0, sizeof(labels));
2301 memset(relocs, 0, sizeof(relocs));
2302
2303 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2304 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2305 if (m4kc_tlbp_war())
2306 build_tlb_probe_entry(&p);
2307 /* Present and writable bits set, set accessed and dirty bits. */
2308 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2309 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2310
2311#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2312 /*
2313 * This is the entry point when
2314 * build_r4000_tlbchange_handler_head spots a huge page.
2315 */
2316 uasm_l_tlb_huge_update(&l, p);
2317 iPTE_LW(&p, wr.r1, wr.r2);
2318 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2319 build_tlb_probe_entry(&p);
2320 uasm_i_ori(&p, wr.r1, wr.r1,
2321 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2322 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 0);
2323#endif
2324
2325 uasm_l_nopage_tlbm(&l, p);
2326 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2327 uasm_i_sync(&p, 0);
2328 build_restore_work_registers(&p);
2329#ifdef CONFIG_CPU_MICROMIPS
2330 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2331 uasm_i_lui(&p, GPR_K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2332 uasm_i_addiu(&p, GPR_K0, GPR_K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2333 uasm_i_jr(&p, GPR_K0);
2334 } else
2335#endif
2336 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2337 uasm_i_nop(&p);
2338
2339 if (p >= (u32 *)handle_tlbm_end)
2340 panic("TLB modify handler fastpath space exceeded");
2341
2342 uasm_resolve_relocs(relocs, labels);
2343 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2344 (unsigned int)(p - (u32 *)handle_tlbm));
2345
2346 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_end);
2347}
2348
2349static void flush_tlb_handlers(void)
2350{
2351 local_flush_icache_range((unsigned long)handle_tlbl,
2352 (unsigned long)handle_tlbl_end);
2353 local_flush_icache_range((unsigned long)handle_tlbs,
2354 (unsigned long)handle_tlbs_end);
2355 local_flush_icache_range((unsigned long)handle_tlbm,
2356 (unsigned long)handle_tlbm_end);
2357 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2358 (unsigned long)tlbmiss_handler_setup_pgd_end);
2359}
2360
2361static void print_htw_config(void)
2362{
2363 unsigned long config;
2364 unsigned int pwctl;
2365 const int field = 2 * sizeof(unsigned long);
2366
2367 config = read_c0_pwfield();
2368 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
2369 field, config,
2370 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2371 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2372 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2373 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2374 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2375
2376 config = read_c0_pwsize();
2377 pr_debug("PWSize (0x%0*lx): PS: 0x%lx GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
2378 field, config,
2379 (config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT,
2380 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2381 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2382 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2383 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2384 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2385
2386 pwctl = read_c0_pwctl();
2387 pr_debug("PWCtl (0x%x): PWEn: 0x%x XK: 0x%x XS: 0x%x XU: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
2388 pwctl,
2389 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2390 (pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT,
2391 (pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT,
2392 (pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT,
2393 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2394 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2395 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2396}
2397
2398static void config_htw_params(void)
2399{
2400 unsigned long pwfield, pwsize, ptei;
2401 unsigned int config;
2402
2403 /*
2404 * We are using 2-level page tables, so we only need to
2405 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2406 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2407 * write values less than 0xc in these fields because the entire
2408 * write will be dropped. As a result of which, we must preserve
2409 * the original reset values and overwrite only what we really want.
2410 */
2411
2412 pwfield = read_c0_pwfield();
2413 /* re-initialize the GDI field */
2414 pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2415 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2416 /* re-initialize the PTI field including the even/odd bit */
2417 pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2418 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2419 if (CONFIG_PGTABLE_LEVELS >= 3) {
2420 pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2421 pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2422 }
2423 /* Set the PTEI right shift */
2424 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2425 pwfield |= ptei;
2426 write_c0_pwfield(pwfield);
2427 /* Check whether the PTEI value is supported */
2428 back_to_back_c0_hazard();
2429 pwfield = read_c0_pwfield();
2430 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2431 != ptei) {
2432 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2433 ptei);
2434 /*
2435 * Drop option to avoid HTW being enabled via another path
2436 * (eg htw_reset())
2437 */
2438 current_cpu_data.options &= ~MIPS_CPU_HTW;
2439 return;
2440 }
2441
2442 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2443 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2444 if (CONFIG_PGTABLE_LEVELS >= 3)
2445 pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2446
2447 /* Set pointer size to size of directory pointers */
2448 if (IS_ENABLED(CONFIG_64BIT))
2449 pwsize |= MIPS_PWSIZE_PS_MASK;
2450 /* PTEs may be multiple pointers long (e.g. with XPA) */
2451 pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT)
2452 & MIPS_PWSIZE_PTEW_MASK;
2453
2454 write_c0_pwsize(pwsize);
2455
2456 /* Make sure everything is set before we enable the HTW */
2457 back_to_back_c0_hazard();
2458
2459 /*
2460 * Enable HTW (and only for XUSeg on 64-bit), and disable the rest of
2461 * the pwctl fields.
2462 */
2463 config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2464 if (IS_ENABLED(CONFIG_64BIT))
2465 config |= MIPS_PWCTL_XU_MASK;
2466 write_c0_pwctl(config);
2467 pr_info("Hardware Page Table Walker enabled\n");
2468
2469 print_htw_config();
2470}
2471
2472static void config_xpa_params(void)
2473{
2474#ifdef CONFIG_XPA
2475 unsigned int pagegrain;
2476
2477 if (mips_xpa_disabled) {
2478 pr_info("Extended Physical Addressing (XPA) disabled\n");
2479 return;
2480 }
2481
2482 pagegrain = read_c0_pagegrain();
2483 write_c0_pagegrain(pagegrain | PG_ELPA);
2484 back_to_back_c0_hazard();
2485 pagegrain = read_c0_pagegrain();
2486
2487 if (pagegrain & PG_ELPA)
2488 pr_info("Extended Physical Addressing (XPA) enabled\n");
2489 else
2490 panic("Extended Physical Addressing (XPA) disabled");
2491#endif
2492}
2493
2494static void check_pabits(void)
2495{
2496 unsigned long entry;
2497 unsigned pabits, fillbits;
2498
2499 if (!cpu_has_rixi || _PAGE_NO_EXEC == 0) {
2500 /*
2501 * We'll only be making use of the fact that we can rotate bits
2502 * into the fill if the CPU supports RIXI, so don't bother
2503 * probing this for CPUs which don't.
2504 */
2505 return;
2506 }
2507
2508 write_c0_entrylo0(~0ul);
2509 back_to_back_c0_hazard();
2510 entry = read_c0_entrylo0();
2511
2512 /* clear all non-PFN bits */
2513 entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2514 entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2515
2516 /* find a lower bound on PABITS, and upper bound on fill bits */
2517 pabits = fls_long(entry) + 6;
2518 fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2519
2520 /* minus the RI & XI bits */
2521 fillbits -= min_t(unsigned, fillbits, 2);
2522
2523 if (fillbits >= ilog2(_PAGE_NO_EXEC))
2524 fill_includes_sw_bits = true;
2525
2526 pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2527}
2528
2529void build_tlb_refill_handler(void)
2530{
2531 /*
2532 * The refill handler is generated per-CPU, multi-node systems
2533 * may have local storage for it. The other handlers are only
2534 * needed once.
2535 */
2536 static int run_once = 0;
2537
2538 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_rixi)
2539 panic("Kernels supporting XPA currently require CPUs with RIXI");
2540
2541 output_pgtable_bits_defines();
2542 check_pabits();
2543
2544#ifdef CONFIG_64BIT
2545 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
2546#endif
2547
2548 if (cpu_has_3kex) {
2549#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2550 if (!run_once) {
2551 build_setup_pgd();
2552 build_r3000_tlb_refill_handler();
2553 build_r3000_tlb_load_handler();
2554 build_r3000_tlb_store_handler();
2555 build_r3000_tlb_modify_handler();
2556 flush_tlb_handlers();
2557 run_once++;
2558 }
2559#else
2560 panic("No R3000 TLB refill handler");
2561#endif
2562 return;
2563 }
2564
2565 if (cpu_has_ldpte)
2566 setup_pw();
2567
2568 if (!run_once) {
2569 scratch_reg = allocate_kscratch();
2570 build_setup_pgd();
2571 build_r4000_tlb_load_handler();
2572 build_r4000_tlb_store_handler();
2573 build_r4000_tlb_modify_handler();
2574 if (cpu_has_ldpte)
2575 build_loongson3_tlb_refill_handler();
2576 else
2577 build_r4000_tlb_refill_handler();
2578 flush_tlb_handlers();
2579 run_once++;
2580 }
2581 if (cpu_has_xpa)
2582 config_xpa_params();
2583 if (cpu_has_htw)
2584 config_htw_params();
2585}