Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 * This program is free software; you can redistribute it and/or
  3 * modify it under the terms of the GNU General Public License
  4 * as published by the Free Software Foundation; either version 2
  5 * of the License, or (at your option) any later version.
  6 *
  7 * This program is distributed in the hope that it will be useful,
  8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 10 * GNU General Public License for more details.
 11 *
 12 * You should have received a copy of the GNU General Public License
 13 * along with this program; if not, write to the Free Software
 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 15 *
 16 * Copyright (C) 2000, 2001 Kanoj Sarcar
 17 * Copyright (C) 2000, 2001 Ralf Baechle
 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
 20 */
 21#include <linux/cache.h>
 22#include <linux/delay.h>
 23#include <linux/init.h>
 24#include <linux/interrupt.h>
 
 25#include <linux/smp.h>
 26#include <linux/spinlock.h>
 27#include <linux/threads.h>
 28#include <linux/export.h>
 29#include <linux/time.h>
 30#include <linux/timex.h>
 31#include <linux/sched.h>
 32#include <linux/cpumask.h>
 33#include <linux/cpu.h>
 34#include <linux/err.h>
 35#include <linux/ftrace.h>
 36#include <linux/irqdomain.h>
 37#include <linux/of.h>
 38#include <linux/of_irq.h>
 39
 40#include <linux/atomic.h>
 41#include <asm/cpu.h>
 
 42#include <asm/processor.h>
 43#include <asm/idle.h>
 44#include <asm/r4k-timer.h>
 45#include <asm/mips-cpc.h>
 46#include <asm/mmu_context.h>
 47#include <asm/time.h>
 48#include <asm/setup.h>
 49#include <asm/maar.h>
 50
 51cpumask_t cpu_callin_map;		/* Bitmask of started secondaries */
 52
 53int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
 54EXPORT_SYMBOL(__cpu_number_map);
 55
 56int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 57EXPORT_SYMBOL(__cpu_logical_map);
 58
 59/* Number of TCs (or siblings in Intel speak) per CPU core */
 60int smp_num_siblings = 1;
 61EXPORT_SYMBOL(smp_num_siblings);
 62
 63/* representing the TCs (or siblings in Intel speak) of each logical CPU */
 64cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 65EXPORT_SYMBOL(cpu_sibling_map);
 66
 67/* representing the core map of multi-core chips of each logical CPU */
 68cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
 69EXPORT_SYMBOL(cpu_core_map);
 70
 
 
 
 71/*
 72 * A logcal cpu mask containing only one VPE per core to
 73 * reduce the number of IPIs on large MT systems.
 74 */
 75cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
 76EXPORT_SYMBOL(cpu_foreign_map);
 77
 78/* representing cpus for which sibling maps can be computed */
 79static cpumask_t cpu_sibling_setup_map;
 80
 81/* representing cpus for which core maps can be computed */
 82static cpumask_t cpu_core_setup_map;
 83
 84cpumask_t cpu_coherent_mask;
 85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 86#ifdef CONFIG_GENERIC_IRQ_IPI
 87static struct irq_desc *call_desc;
 88static struct irq_desc *sched_desc;
 89#endif
 90
 91static inline void set_cpu_sibling_map(int cpu)
 92{
 93	int i;
 94
 95	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
 96
 97	if (smp_num_siblings > 1) {
 98		for_each_cpu(i, &cpu_sibling_setup_map) {
 99			if (cpu_data[cpu].package == cpu_data[i].package &&
100				    cpu_data[cpu].core == cpu_data[i].core) {
101				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103			}
104		}
105	} else
106		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107}
108
109static inline void set_cpu_core_map(int cpu)
110{
111	int i;
112
113	cpumask_set_cpu(cpu, &cpu_core_setup_map);
114
115	for_each_cpu(i, &cpu_core_setup_map) {
116		if (cpu_data[cpu].package == cpu_data[i].package) {
117			cpumask_set_cpu(i, &cpu_core_map[cpu]);
118			cpumask_set_cpu(cpu, &cpu_core_map[i]);
119		}
120	}
121}
122
123/*
124 * Calculate a new cpu_foreign_map mask whenever a
125 * new cpu appears or disappears.
126 */
127void calculate_cpu_foreign_map(void)
128{
129	int i, k, core_present;
130	cpumask_t temp_foreign_map;
131
132	/* Re-calculate the mask */
133	cpumask_clear(&temp_foreign_map);
134	for_each_online_cpu(i) {
135		core_present = 0;
136		for_each_cpu(k, &temp_foreign_map)
137			if (cpu_data[i].package == cpu_data[k].package &&
138			    cpu_data[i].core == cpu_data[k].core)
139				core_present = 1;
140		if (!core_present)
141			cpumask_set_cpu(i, &temp_foreign_map);
142	}
143
144	for_each_online_cpu(i)
145		cpumask_andnot(&cpu_foreign_map[i],
146			       &temp_foreign_map, &cpu_sibling_map[i]);
147}
148
149struct plat_smp_ops *mp_ops;
150EXPORT_SYMBOL(mp_ops);
151
152void register_smp_ops(struct plat_smp_ops *ops)
153{
154	if (mp_ops)
155		printk(KERN_WARNING "Overriding previously set SMP ops\n");
156
157	mp_ops = ops;
158}
159
160#ifdef CONFIG_GENERIC_IRQ_IPI
161void mips_smp_send_ipi_single(int cpu, unsigned int action)
162{
163	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
164}
165
166void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
167{
168	unsigned long flags;
169	unsigned int core;
170	int cpu;
171
172	local_irq_save(flags);
173
174	switch (action) {
175	case SMP_CALL_FUNCTION:
176		__ipi_send_mask(call_desc, mask);
177		break;
178
179	case SMP_RESCHEDULE_YOURSELF:
180		__ipi_send_mask(sched_desc, mask);
181		break;
182
183	default:
184		BUG();
185	}
186
187	if (mips_cpc_present()) {
188		for_each_cpu(cpu, mask) {
189			core = cpu_data[cpu].core;
190
191			if (core == current_cpu_data.core)
192				continue;
193
 
 
194			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
195				mips_cm_lock_other(core, 0);
196				mips_cpc_lock_other(core);
197				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
198				mips_cpc_unlock_other();
199				mips_cm_unlock_other();
200			}
201		}
202	}
203
204	local_irq_restore(flags);
205}
206
207
208static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
209{
210	scheduler_ipi();
211
212	return IRQ_HANDLED;
213}
214
215static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
216{
217	generic_smp_call_function_interrupt();
218
219	return IRQ_HANDLED;
220}
221
222static struct irqaction irq_resched = {
223	.handler	= ipi_resched_interrupt,
224	.flags		= IRQF_PERCPU,
225	.name		= "IPI resched"
226};
227
228static struct irqaction irq_call = {
229	.handler	= ipi_call_interrupt,
230	.flags		= IRQF_PERCPU,
231	.name		= "IPI call"
232};
233
234static void smp_ipi_init_one(unsigned int virq,
235				    struct irqaction *action)
236{
237	int ret;
238
239	irq_set_handler(virq, handle_percpu_irq);
240	ret = setup_irq(virq, action);
241	BUG_ON(ret);
242}
243
244static unsigned int call_virq, sched_virq;
245
246int mips_smp_ipi_allocate(const struct cpumask *mask)
247{
248	int virq;
249	struct irq_domain *ipidomain;
250	struct device_node *node;
251
252	node = of_irq_find_parent(of_root);
253	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
254
255	/*
256	 * Some platforms have half DT setup. So if we found irq node but
257	 * didn't find an ipidomain, try to search for one that is not in the
258	 * DT.
259	 */
260	if (node && !ipidomain)
261		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
262
263	/*
264	 * There are systems which only use IPI domains some of the time,
265	 * depending upon configuration we don't know until runtime. An
266	 * example is Malta where we may compile in support for GIC & the
267	 * MT ASE, but run on a system which has multiple VPEs in a single
268	 * core and doesn't include a GIC. Until all IPI implementations
269	 * have been converted to use IPI domains the best we can do here
270	 * is to return & hope some other code sets up the IPIs.
 
 
271	 */
272	if (!ipidomain)
 
273		return 0;
 
274
275	virq = irq_reserve_ipi(ipidomain, mask);
276	BUG_ON(!virq);
277	if (!call_virq)
278		call_virq = virq;
279
280	virq = irq_reserve_ipi(ipidomain, mask);
281	BUG_ON(!virq);
282	if (!sched_virq)
283		sched_virq = virq;
284
285	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
286		int cpu;
287
288		for_each_cpu(cpu, mask) {
289			smp_ipi_init_one(call_virq + cpu, &irq_call);
290			smp_ipi_init_one(sched_virq + cpu, &irq_resched);
 
 
291		}
292	} else {
293		smp_ipi_init_one(call_virq, &irq_call);
294		smp_ipi_init_one(sched_virq, &irq_resched);
 
295	}
296
297	return 0;
298}
299
300int mips_smp_ipi_free(const struct cpumask *mask)
301{
302	struct irq_domain *ipidomain;
303	struct device_node *node;
304
305	node = of_irq_find_parent(of_root);
306	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
307
308	/*
309	 * Some platforms have half DT setup. So if we found irq node but
310	 * didn't find an ipidomain, try to search for one that is not in the
311	 * DT.
312	 */
313	if (node && !ipidomain)
314		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
315
316	BUG_ON(!ipidomain);
317
318	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
319		int cpu;
320
321		for_each_cpu(cpu, mask) {
322			remove_irq(call_virq + cpu, &irq_call);
323			remove_irq(sched_virq + cpu, &irq_resched);
324		}
325	}
326	irq_destroy_ipi(call_virq, mask);
327	irq_destroy_ipi(sched_virq, mask);
328	return 0;
329}
330
331
332static int __init mips_smp_ipi_init(void)
333{
 
 
 
334	mips_smp_ipi_allocate(cpu_possible_mask);
335
336	call_desc = irq_to_desc(call_virq);
337	sched_desc = irq_to_desc(sched_virq);
338
339	return 0;
340}
341early_initcall(mips_smp_ipi_init);
342#endif
343
344/*
345 * First C code run on the secondary CPUs after being started up by
346 * the master.
347 */
348asmlinkage void start_secondary(void)
349{
350	unsigned int cpu;
351
352	cpu_probe();
353	per_cpu_trap_init(false);
 
354	mips_clockevent_init();
355	mp_ops->init_secondary();
356	cpu_report();
357	maar_init();
358
359	/*
360	 * XXX parity protection should be folded in here when it's converted
361	 * to an option instead of something based on .cputype
362	 */
363
364	calibrate_delay();
365	preempt_disable();
366	cpu = smp_processor_id();
367	cpu_data[cpu].udelay_val = loops_per_jiffy;
368
 
 
 
369	cpumask_set_cpu(cpu, &cpu_coherent_mask);
370	notify_cpu_starting(cpu);
371
372	cpumask_set_cpu(cpu, &cpu_callin_map);
 
 
373	synchronise_count_slave(cpu);
374
 
375	set_cpu_online(cpu, true);
376
377	set_cpu_sibling_map(cpu);
378	set_cpu_core_map(cpu);
379
380	calculate_cpu_foreign_map();
381
382	/*
 
 
 
 
 
 
383	 * irq will be enabled in ->smp_finish(), enabling it too early
384	 * is dangerous.
385	 */
386	WARN_ON_ONCE(!irqs_disabled());
387	mp_ops->smp_finish();
388
389	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
390}
391
392static void stop_this_cpu(void *dummy)
393{
394	/*
395	 * Remove this CPU:
396	 */
397
398	set_cpu_online(smp_processor_id(), false);
399	calculate_cpu_foreign_map();
400	local_irq_disable();
401	while (1);
402}
403
404void smp_send_stop(void)
405{
406	smp_call_function(stop_this_cpu, NULL, 0);
407}
408
409void __init smp_cpus_done(unsigned int max_cpus)
410{
411}
412
413/* called from main before smp_init() */
414void __init smp_prepare_cpus(unsigned int max_cpus)
415{
416	init_new_context(current, &init_mm);
417	current_thread_info()->cpu = 0;
418	mp_ops->prepare_cpus(max_cpus);
419	set_cpu_sibling_map(0);
420	set_cpu_core_map(0);
421	calculate_cpu_foreign_map();
422#ifndef CONFIG_HOTPLUG_CPU
423	init_cpu_present(cpu_possible_mask);
424#endif
425	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
426}
427
428/* preload SMP state for boot cpu */
429void smp_prepare_boot_cpu(void)
430{
 
 
431	set_cpu_possible(0, true);
432	set_cpu_online(0, true);
433	cpumask_set_cpu(0, &cpu_callin_map);
434}
435
436int __cpu_up(unsigned int cpu, struct task_struct *tidle)
437{
438	mp_ops->boot_secondary(cpu, tidle);
439
440	/*
441	 * Trust is futile.  We should really have timeouts ...
442	 */
443	while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
444		udelay(100);
445		schedule();
 
 
 
446	}
447
448	synchronise_count_master(cpu);
 
449	return 0;
450}
451
 
452/* Not really SMP stuff ... */
453int setup_profiling_timer(unsigned int multiplier)
454{
455	return 0;
456}
 
457
458static void flush_tlb_all_ipi(void *info)
459{
460	local_flush_tlb_all();
461}
462
463void flush_tlb_all(void)
464{
 
 
 
 
 
 
 
 
 
465	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
466}
467
468static void flush_tlb_mm_ipi(void *mm)
469{
470	local_flush_tlb_mm((struct mm_struct *)mm);
471}
472
473/*
474 * Special Variant of smp_call_function for use by TLB functions:
475 *
476 *  o No return value
477 *  o collapses to normal function call on UP kernels
478 *  o collapses to normal function call on systems with a single shared
479 *    primary cache.
480 */
481static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
482{
483	smp_call_function(func, info, 1);
484}
485
486static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
487{
488	preempt_disable();
489
490	smp_on_other_tlbs(func, info);
491	func(info);
492
493	preempt_enable();
494}
495
496/*
497 * The following tlb flush calls are invoked when old translations are
498 * being torn down, or pte attributes are changing. For single threaded
499 * address spaces, a new context is obtained on the current cpu, and tlb
500 * context on other cpus are invalidated to force a new context allocation
501 * at switch_mm time, should the mm ever be used on other cpus. For
502 * multithreaded address spaces, intercpu interrupts have to be sent.
503 * Another case where intercpu interrupts are required is when the target
504 * mm might be active on another cpu (eg debuggers doing the flushes on
505 * behalf of debugees, kswapd stealing pages from another process etc).
506 * Kanoj 07/00.
507 */
508
509void flush_tlb_mm(struct mm_struct *mm)
510{
 
 
 
 
 
 
511	preempt_disable();
512
513	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 
 
 
 
 
514		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
515	} else {
516		unsigned int cpu;
517
518		for_each_online_cpu(cpu) {
519			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
520				cpu_context(cpu, mm) = 0;
521		}
522	}
523	local_flush_tlb_mm(mm);
524
525	preempt_enable();
526}
527
528struct flush_tlb_data {
529	struct vm_area_struct *vma;
530	unsigned long addr1;
531	unsigned long addr2;
532};
533
534static void flush_tlb_range_ipi(void *info)
535{
536	struct flush_tlb_data *fd = info;
537
538	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
539}
540
541void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
542{
543	struct mm_struct *mm = vma->vm_mm;
 
 
544
545	preempt_disable();
546	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
547		struct flush_tlb_data fd = {
548			.vma = vma,
549			.addr1 = start,
550			.addr2 = end,
551		};
552
553		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
 
554	} else {
555		unsigned int cpu;
556		int exec = vma->vm_flags & VM_EXEC;
557
558		for_each_online_cpu(cpu) {
559			/*
560			 * flush_cache_range() will only fully flush icache if
561			 * the VMA is executable, otherwise we must invalidate
562			 * ASID without it appearing to has_valid_asid() as if
563			 * mm has been completely unused by that CPU.
564			 */
565			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
566				cpu_context(cpu, mm) = !exec;
567		}
 
568	}
569	local_flush_tlb_range(vma, start, end);
570	preempt_enable();
571}
572
573static void flush_tlb_kernel_range_ipi(void *info)
574{
575	struct flush_tlb_data *fd = info;
576
577	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
578}
579
580void flush_tlb_kernel_range(unsigned long start, unsigned long end)
581{
582	struct flush_tlb_data fd = {
583		.addr1 = start,
584		.addr2 = end,
585	};
586
587	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
588}
589
590static void flush_tlb_page_ipi(void *info)
591{
592	struct flush_tlb_data *fd = info;
593
594	local_flush_tlb_page(fd->vma, fd->addr1);
595}
596
597void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
598{
 
 
599	preempt_disable();
600	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
 
 
 
 
 
 
 
 
 
 
 
601		struct flush_tlb_data fd = {
602			.vma = vma,
603			.addr1 = page,
604		};
605
606		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
 
607	} else {
608		unsigned int cpu;
609
610		for_each_online_cpu(cpu) {
611			/*
612			 * flush_cache_page() only does partial flushes, so
613			 * invalidate ASID without it appearing to
614			 * has_valid_asid() as if mm has been completely unused
615			 * by that CPU.
616			 */
617			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
618				cpu_context(cpu, vma->vm_mm) = 1;
619		}
 
620	}
621	local_flush_tlb_page(vma, page);
622	preempt_enable();
623}
624
625static void flush_tlb_one_ipi(void *info)
626{
627	unsigned long vaddr = (unsigned long) info;
628
629	local_flush_tlb_one(vaddr);
630}
631
632void flush_tlb_one(unsigned long vaddr)
633{
634	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
635}
636
637EXPORT_SYMBOL(flush_tlb_page);
638EXPORT_SYMBOL(flush_tlb_one);
639
640#if defined(CONFIG_KEXEC)
641void (*dump_ipi_function_ptr)(void *) = NULL;
642void dump_send_ipi(void (*dump_ipi_callback)(void *))
643{
644	int i;
645	int cpu = smp_processor_id();
646
647	dump_ipi_function_ptr = dump_ipi_callback;
648	smp_mb();
649	for_each_online_cpu(i)
650		if (i != cpu)
651			mp_ops->send_ipi_single(i, SMP_DUMP);
652
653}
654EXPORT_SYMBOL(dump_send_ipi);
655#endif
656
657#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
658
659static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
660static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
661
662void tick_broadcast(const struct cpumask *mask)
663{
664	atomic_t *count;
665	struct call_single_data *csd;
666	int cpu;
667
668	for_each_cpu(cpu, mask) {
669		count = &per_cpu(tick_broadcast_count, cpu);
670		csd = &per_cpu(tick_broadcast_csd, cpu);
671
672		if (atomic_inc_return(count) == 1)
673			smp_call_function_single_async(cpu, csd);
674	}
675}
676
677static void tick_broadcast_callee(void *info)
678{
679	int cpu = smp_processor_id();
680	tick_receive_broadcast();
681	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
682}
683
684static int __init tick_broadcast_init(void)
 
 
 
685{
686	struct call_single_data *csd;
687	int cpu;
688
689	for (cpu = 0; cpu < NR_CPUS; cpu++) {
690		csd = &per_cpu(tick_broadcast_csd, cpu);
691		csd->func = tick_broadcast_callee;
692	}
693
694	return 0;
695}
696early_initcall(tick_broadcast_init);
697
698#endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
 
 
 
 
 
 
 
 
 
 
 
 
 
  3 *
  4 * Copyright (C) 2000, 2001 Kanoj Sarcar
  5 * Copyright (C) 2000, 2001 Ralf Baechle
  6 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
  7 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
  8 */
  9#include <linux/cache.h>
 10#include <linux/delay.h>
 11#include <linux/init.h>
 12#include <linux/interrupt.h>
 13#include <linux/profile.h>
 14#include <linux/smp.h>
 15#include <linux/spinlock.h>
 16#include <linux/threads.h>
 17#include <linux/export.h>
 18#include <linux/time.h>
 19#include <linux/timex.h>
 20#include <linux/sched/mm.h>
 21#include <linux/cpumask.h>
 22#include <linux/cpu.h>
 23#include <linux/err.h>
 24#include <linux/ftrace.h>
 25#include <linux/irqdomain.h>
 26#include <linux/of.h>
 27#include <linux/of_irq.h>
 28
 29#include <linux/atomic.h>
 30#include <asm/cpu.h>
 31#include <asm/ginvt.h>
 32#include <asm/processor.h>
 33#include <asm/idle.h>
 34#include <asm/r4k-timer.h>
 35#include <asm/mips-cps.h>
 36#include <asm/mmu_context.h>
 37#include <asm/time.h>
 38#include <asm/setup.h>
 39#include <asm/maar.h>
 40
 41int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
 
 
 42EXPORT_SYMBOL(__cpu_number_map);
 43
 44int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 45EXPORT_SYMBOL(__cpu_logical_map);
 46
 47/* Number of TCs (or siblings in Intel speak) per CPU core */
 48int smp_num_siblings = 1;
 49EXPORT_SYMBOL(smp_num_siblings);
 50
 51/* representing the TCs (or siblings in Intel speak) of each logical CPU */
 52cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 53EXPORT_SYMBOL(cpu_sibling_map);
 54
 55/* representing the core map of multi-core chips of each logical CPU */
 56cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
 57EXPORT_SYMBOL(cpu_core_map);
 58
 59static DECLARE_COMPLETION(cpu_starting);
 60static DECLARE_COMPLETION(cpu_running);
 61
 62/*
 63 * A logical cpu mask containing only one VPE per core to
 64 * reduce the number of IPIs on large MT systems.
 65 */
 66cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
 67EXPORT_SYMBOL(cpu_foreign_map);
 68
 69/* representing cpus for which sibling maps can be computed */
 70static cpumask_t cpu_sibling_setup_map;
 71
 72/* representing cpus for which core maps can be computed */
 73static cpumask_t cpu_core_setup_map;
 74
 75cpumask_t cpu_coherent_mask;
 76
 77unsigned int smp_max_threads __initdata = UINT_MAX;
 78
 79static int __init early_nosmt(char *s)
 80{
 81	smp_max_threads = 1;
 82	return 0;
 83}
 84early_param("nosmt", early_nosmt);
 85
 86static int __init early_smt(char *s)
 87{
 88	get_option(&s, &smp_max_threads);
 89	/* Ensure at least one thread is available */
 90	smp_max_threads = clamp_val(smp_max_threads, 1U, UINT_MAX);
 91	return 0;
 92}
 93early_param("smt", early_smt);
 94
 95#ifdef CONFIG_GENERIC_IRQ_IPI
 96static struct irq_desc *call_desc;
 97static struct irq_desc *sched_desc;
 98#endif
 99
100static inline void set_cpu_sibling_map(int cpu)
101{
102	int i;
103
104	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
105
106	if (smp_num_siblings > 1) {
107		for_each_cpu(i, &cpu_sibling_setup_map) {
108			if (cpus_are_siblings(cpu, i)) {
 
109				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
110				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
111			}
112		}
113	} else
114		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
115}
116
117static inline void set_cpu_core_map(int cpu)
118{
119	int i;
120
121	cpumask_set_cpu(cpu, &cpu_core_setup_map);
122
123	for_each_cpu(i, &cpu_core_setup_map) {
124		if (cpu_data[cpu].package == cpu_data[i].package) {
125			cpumask_set_cpu(i, &cpu_core_map[cpu]);
126			cpumask_set_cpu(cpu, &cpu_core_map[i]);
127		}
128	}
129}
130
131/*
132 * Calculate a new cpu_foreign_map mask whenever a
133 * new cpu appears or disappears.
134 */
135void calculate_cpu_foreign_map(void)
136{
137	int i, k, core_present;
138	cpumask_t temp_foreign_map;
139
140	/* Re-calculate the mask */
141	cpumask_clear(&temp_foreign_map);
142	for_each_online_cpu(i) {
143		core_present = 0;
144		for_each_cpu(k, &temp_foreign_map)
145			if (cpus_are_siblings(i, k))
 
146				core_present = 1;
147		if (!core_present)
148			cpumask_set_cpu(i, &temp_foreign_map);
149	}
150
151	for_each_online_cpu(i)
152		cpumask_andnot(&cpu_foreign_map[i],
153			       &temp_foreign_map, &cpu_sibling_map[i]);
154}
155
156const struct plat_smp_ops *mp_ops;
157EXPORT_SYMBOL(mp_ops);
158
159void register_smp_ops(const struct plat_smp_ops *ops)
160{
161	if (mp_ops)
162		printk(KERN_WARNING "Overriding previously set SMP ops\n");
163
164	mp_ops = ops;
165}
166
167#ifdef CONFIG_GENERIC_IRQ_IPI
168void mips_smp_send_ipi_single(int cpu, unsigned int action)
169{
170	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
171}
172
173void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
174{
175	unsigned long flags;
176	unsigned int core;
177	int cpu;
178
179	local_irq_save(flags);
180
181	switch (action) {
182	case SMP_CALL_FUNCTION:
183		__ipi_send_mask(call_desc, mask);
184		break;
185
186	case SMP_RESCHEDULE_YOURSELF:
187		__ipi_send_mask(sched_desc, mask);
188		break;
189
190	default:
191		BUG();
192	}
193
194	if (mips_cpc_present()) {
195		for_each_cpu(cpu, mask) {
196			if (cpus_are_siblings(cpu, smp_processor_id()))
 
 
197				continue;
198
199			core = cpu_core(&cpu_data[cpu]);
200
201			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
202				mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
203				mips_cpc_lock_other(core);
204				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
205				mips_cpc_unlock_other();
206				mips_cm_unlock_other();
207			}
208		}
209	}
210
211	local_irq_restore(flags);
212}
213
214
215static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
216{
217	scheduler_ipi();
218
219	return IRQ_HANDLED;
220}
221
222static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
223{
224	generic_smp_call_function_interrupt();
225
226	return IRQ_HANDLED;
227}
228
229static void smp_ipi_init_one(unsigned int virq, const char *name,
230			     irq_handler_t handler)
 
 
 
 
 
 
 
 
 
 
 
 
231{
232	int ret;
233
234	irq_set_handler(virq, handle_percpu_irq);
235	ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL);
236	BUG_ON(ret);
237}
238
239static unsigned int call_virq, sched_virq;
240
241int mips_smp_ipi_allocate(const struct cpumask *mask)
242{
243	int virq;
244	struct irq_domain *ipidomain;
245	struct device_node *node;
246
247	node = of_irq_find_parent(of_root);
248	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
249
250	/*
251	 * Some platforms have half DT setup. So if we found irq node but
252	 * didn't find an ipidomain, try to search for one that is not in the
253	 * DT.
254	 */
255	if (node && !ipidomain)
256		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
257
258	/*
259	 * There are systems which use IPI IRQ domains, but only have one
260	 * registered when some runtime condition is met. For example a Malta
261	 * kernel may include support for GIC & CPU interrupt controller IPI
262	 * IRQ domains, but if run on a system with no GIC & no MT ASE then
263	 * neither will be supported or registered.
264	 *
265	 * We only have a problem if we're actually using multiple CPUs so fail
266	 * loudly if that is the case. Otherwise simply return, skipping IPI
267	 * setup, if we're running with only a single CPU.
268	 */
269	if (!ipidomain) {
270		BUG_ON(num_present_cpus() > 1);
271		return 0;
272	}
273
274	virq = irq_reserve_ipi(ipidomain, mask);
275	BUG_ON(!virq);
276	if (!call_virq)
277		call_virq = virq;
278
279	virq = irq_reserve_ipi(ipidomain, mask);
280	BUG_ON(!virq);
281	if (!sched_virq)
282		sched_virq = virq;
283
284	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
285		int cpu;
286
287		for_each_cpu(cpu, mask) {
288			smp_ipi_init_one(call_virq + cpu, "IPI call",
289					 ipi_call_interrupt);
290			smp_ipi_init_one(sched_virq + cpu, "IPI resched",
291					 ipi_resched_interrupt);
292		}
293	} else {
294		smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt);
295		smp_ipi_init_one(sched_virq, "IPI resched",
296				 ipi_resched_interrupt);
297	}
298
299	return 0;
300}
301
302int mips_smp_ipi_free(const struct cpumask *mask)
303{
304	struct irq_domain *ipidomain;
305	struct device_node *node;
306
307	node = of_irq_find_parent(of_root);
308	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
309
310	/*
311	 * Some platforms have half DT setup. So if we found irq node but
312	 * didn't find an ipidomain, try to search for one that is not in the
313	 * DT.
314	 */
315	if (node && !ipidomain)
316		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
317
318	BUG_ON(!ipidomain);
319
320	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
321		int cpu;
322
323		for_each_cpu(cpu, mask) {
324			free_irq(call_virq + cpu, NULL);
325			free_irq(sched_virq + cpu, NULL);
326		}
327	}
328	irq_destroy_ipi(call_virq, mask);
329	irq_destroy_ipi(sched_virq, mask);
330	return 0;
331}
332
333
334static int __init mips_smp_ipi_init(void)
335{
336	if (num_possible_cpus() == 1)
337		return 0;
338
339	mips_smp_ipi_allocate(cpu_possible_mask);
340
341	call_desc = irq_to_desc(call_virq);
342	sched_desc = irq_to_desc(sched_virq);
343
344	return 0;
345}
346early_initcall(mips_smp_ipi_init);
347#endif
348
349/*
350 * First C code run on the secondary CPUs after being started up by
351 * the master.
352 */
353asmlinkage void start_secondary(void)
354{
355	unsigned int cpu = raw_smp_processor_id();
356
357	cpu_probe();
358	per_cpu_trap_init(false);
359	rcutree_report_cpu_starting(cpu);
360	mips_clockevent_init();
361	mp_ops->init_secondary();
362	cpu_report();
363	maar_init();
364
365	/*
366	 * XXX parity protection should be folded in here when it's converted
367	 * to an option instead of something based on .cputype
368	 */
369
370	calibrate_delay();
 
 
371	cpu_data[cpu].udelay_val = loops_per_jiffy;
372
373	set_cpu_sibling_map(cpu);
374	set_cpu_core_map(cpu);
375
376	cpumask_set_cpu(cpu, &cpu_coherent_mask);
377	notify_cpu_starting(cpu);
378
379	/* Notify boot CPU that we're starting & ready to sync counters */
380	complete(&cpu_starting);
381
382	synchronise_count_slave(cpu);
383
384	/* The CPU is running and counters synchronised, now mark it online */
385	set_cpu_online(cpu, true);
386
 
 
 
387	calculate_cpu_foreign_map();
388
389	/*
390	 * Notify boot CPU that we're up & online and it can safely return
391	 * from __cpu_up
392	 */
393	complete(&cpu_running);
394
395	/*
396	 * irq will be enabled in ->smp_finish(), enabling it too early
397	 * is dangerous.
398	 */
399	WARN_ON_ONCE(!irqs_disabled());
400	mp_ops->smp_finish();
401
402	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
403}
404
405static void stop_this_cpu(void *dummy)
406{
407	/*
408	 * Remove this CPU:
409	 */
410
411	set_cpu_online(smp_processor_id(), false);
412	calculate_cpu_foreign_map();
413	local_irq_disable();
414	while (1);
415}
416
417void smp_send_stop(void)
418{
419	smp_call_function(stop_this_cpu, NULL, 0);
420}
421
422void __init smp_cpus_done(unsigned int max_cpus)
423{
424}
425
426/* called from main before smp_init() */
427void __init smp_prepare_cpus(unsigned int max_cpus)
428{
429	init_new_context(current, &init_mm);
430	current_thread_info()->cpu = 0;
431	mp_ops->prepare_cpus(max_cpus);
432	set_cpu_sibling_map(0);
433	set_cpu_core_map(0);
434	calculate_cpu_foreign_map();
435#ifndef CONFIG_HOTPLUG_CPU
436	init_cpu_present(cpu_possible_mask);
437#endif
438	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
439}
440
441/* preload SMP state for boot cpu */
442void __init smp_prepare_boot_cpu(void)
443{
444	if (mp_ops->prepare_boot_cpu)
445		mp_ops->prepare_boot_cpu();
446	set_cpu_possible(0, true);
447	set_cpu_online(0, true);
 
448}
449
450int __cpu_up(unsigned int cpu, struct task_struct *tidle)
451{
452	int err;
453
454	err = mp_ops->boot_secondary(cpu, tidle);
455	if (err)
456		return err;
457
458	/* Wait for CPU to start and be ready to sync counters */
459	if (!wait_for_completion_timeout(&cpu_starting,
460					 msecs_to_jiffies(1000))) {
461		pr_crit("CPU%u: failed to start\n", cpu);
462		return -EIO;
463	}
464
465	/* Wait for CPU to finish startup & mark itself online before return */
466	wait_for_completion(&cpu_running);
467	return 0;
468}
469
470#ifdef CONFIG_PROFILING
471/* Not really SMP stuff ... */
472int setup_profiling_timer(unsigned int multiplier)
473{
474	return 0;
475}
476#endif
477
478static void flush_tlb_all_ipi(void *info)
479{
480	local_flush_tlb_all();
481}
482
483void flush_tlb_all(void)
484{
485	if (cpu_has_mmid) {
486		htw_stop();
487		ginvt_full();
488		sync_ginv();
489		instruction_hazard();
490		htw_start();
491		return;
492	}
493
494	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
495}
496
497static void flush_tlb_mm_ipi(void *mm)
498{
499	drop_mmu_context((struct mm_struct *)mm);
500}
501
502/*
503 * Special Variant of smp_call_function for use by TLB functions:
504 *
505 *  o No return value
506 *  o collapses to normal function call on UP kernels
507 *  o collapses to normal function call on systems with a single shared
508 *    primary cache.
509 */
510static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
511{
512	smp_call_function(func, info, 1);
513}
514
515static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
516{
517	preempt_disable();
518
519	smp_on_other_tlbs(func, info);
520	func(info);
521
522	preempt_enable();
523}
524
525/*
526 * The following tlb flush calls are invoked when old translations are
527 * being torn down, or pte attributes are changing. For single threaded
528 * address spaces, a new context is obtained on the current cpu, and tlb
529 * context on other cpus are invalidated to force a new context allocation
530 * at switch_mm time, should the mm ever be used on other cpus. For
531 * multithreaded address spaces, inter-CPU interrupts have to be sent.
532 * Another case where inter-CPU interrupts are required is when the target
533 * mm might be active on another cpu (eg debuggers doing the flushes on
534 * behalf of debugees, kswapd stealing pages from another process etc).
535 * Kanoj 07/00.
536 */
537
538void flush_tlb_mm(struct mm_struct *mm)
539{
540	if (!mm)
541		return;
542
543	if (atomic_read(&mm->mm_users) == 0)
544		return;		/* happens as a result of exit_mmap() */
545
546	preempt_disable();
547
548	if (cpu_has_mmid) {
549		/*
550		 * No need to worry about other CPUs - the ginvt in
551		 * drop_mmu_context() will be globalized.
552		 */
553	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
554		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
555	} else {
556		unsigned int cpu;
557
558		for_each_online_cpu(cpu) {
559			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
560				set_cpu_context(cpu, mm, 0);
561		}
562	}
563	drop_mmu_context(mm);
564
565	preempt_enable();
566}
567
568struct flush_tlb_data {
569	struct vm_area_struct *vma;
570	unsigned long addr1;
571	unsigned long addr2;
572};
573
574static void flush_tlb_range_ipi(void *info)
575{
576	struct flush_tlb_data *fd = info;
577
578	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
579}
580
581void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
582{
583	struct mm_struct *mm = vma->vm_mm;
584	unsigned long addr;
585	u32 old_mmid;
586
587	preempt_disable();
588	if (cpu_has_mmid) {
589		htw_stop();
590		old_mmid = read_c0_memorymapid();
591		write_c0_memorymapid(cpu_asid(0, mm));
592		mtc0_tlbw_hazard();
593		addr = round_down(start, PAGE_SIZE * 2);
594		end = round_up(end, PAGE_SIZE * 2);
595		do {
596			ginvt_va_mmid(addr);
597			sync_ginv();
598			addr += PAGE_SIZE * 2;
599		} while (addr < end);
600		write_c0_memorymapid(old_mmid);
601		instruction_hazard();
602		htw_start();
603	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
604		struct flush_tlb_data fd = {
605			.vma = vma,
606			.addr1 = start,
607			.addr2 = end,
608		};
609
610		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
611		local_flush_tlb_range(vma, start, end);
612	} else {
613		unsigned int cpu;
614		int exec = vma->vm_flags & VM_EXEC;
615
616		for_each_online_cpu(cpu) {
617			/*
618			 * flush_cache_range() will only fully flush icache if
619			 * the VMA is executable, otherwise we must invalidate
620			 * ASID without it appearing to has_valid_asid() as if
621			 * mm has been completely unused by that CPU.
622			 */
623			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
624				set_cpu_context(cpu, mm, !exec);
625		}
626		local_flush_tlb_range(vma, start, end);
627	}
 
628	preempt_enable();
629}
630
631static void flush_tlb_kernel_range_ipi(void *info)
632{
633	struct flush_tlb_data *fd = info;
634
635	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
636}
637
638void flush_tlb_kernel_range(unsigned long start, unsigned long end)
639{
640	struct flush_tlb_data fd = {
641		.addr1 = start,
642		.addr2 = end,
643	};
644
645	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
646}
647
648static void flush_tlb_page_ipi(void *info)
649{
650	struct flush_tlb_data *fd = info;
651
652	local_flush_tlb_page(fd->vma, fd->addr1);
653}
654
655void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
656{
657	u32 old_mmid;
658
659	preempt_disable();
660	if (cpu_has_mmid) {
661		htw_stop();
662		old_mmid = read_c0_memorymapid();
663		write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
664		mtc0_tlbw_hazard();
665		ginvt_va_mmid(page);
666		sync_ginv();
667		write_c0_memorymapid(old_mmid);
668		instruction_hazard();
669		htw_start();
670	} else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
671		   (current->mm != vma->vm_mm)) {
672		struct flush_tlb_data fd = {
673			.vma = vma,
674			.addr1 = page,
675		};
676
677		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
678		local_flush_tlb_page(vma, page);
679	} else {
680		unsigned int cpu;
681
682		for_each_online_cpu(cpu) {
683			/*
684			 * flush_cache_page() only does partial flushes, so
685			 * invalidate ASID without it appearing to
686			 * has_valid_asid() as if mm has been completely unused
687			 * by that CPU.
688			 */
689			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
690				set_cpu_context(cpu, vma->vm_mm, 1);
691		}
692		local_flush_tlb_page(vma, page);
693	}
 
694	preempt_enable();
695}
696
697static void flush_tlb_one_ipi(void *info)
698{
699	unsigned long vaddr = (unsigned long) info;
700
701	local_flush_tlb_one(vaddr);
702}
703
704void flush_tlb_one(unsigned long vaddr)
705{
706	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
707}
708
709EXPORT_SYMBOL(flush_tlb_page);
710EXPORT_SYMBOL(flush_tlb_one);
711
712#ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
713void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
 
714{
715	if (mp_ops->cleanup_dead_cpu)
716		mp_ops->cleanup_dead_cpu(cpu);
 
 
 
 
 
 
 
717}
 
718#endif
719
720#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
722static void tick_broadcast_callee(void *info)
723{
 
724	tick_receive_broadcast();
 
725}
726
727static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) =
728	CSD_INIT(tick_broadcast_callee, NULL);
729
730void tick_broadcast(const struct cpumask *mask)
731{
732	call_single_data_t *csd;
733	int cpu;
734
735	for_each_cpu(cpu, mask) {
736		csd = &per_cpu(tick_broadcast_csd, cpu);
737		smp_call_function_single_async(cpu, csd);
738	}
 
 
739}
 
740
741#endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */