Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 *  linux/kernel/profile.c
  3 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
  4 *  with configurable resolution, support for restricting the cpus on
  5 *  which profiling is done, and switching between cpu time and
  6 *  schedule() calls via kernel command line parameters passed at boot.
  7 *
  8 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
  9 *	Red Hat, July 2004
 10 *  Consolidation of architecture support code for profiling,
 11 *	Nadia Yvette Chambers, Oracle, July 2004
 12 *  Amortized hit count accounting via per-cpu open-addressed hashtables
 13 *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
 14 *	Oracle, 2004
 15 */
 16
 17#include <linux/export.h>
 18#include <linux/profile.h>
 19#include <linux/bootmem.h>
 20#include <linux/notifier.h>
 21#include <linux/mm.h>
 22#include <linux/cpumask.h>
 23#include <linux/cpu.h>
 24#include <linux/highmem.h>
 25#include <linux/mutex.h>
 26#include <linux/slab.h>
 27#include <linux/vmalloc.h>
 
 
 28#include <asm/sections.h>
 29#include <asm/irq_regs.h>
 30#include <asm/ptrace.h>
 31
 32struct profile_hit {
 33	u32 pc, hits;
 34};
 35#define PROFILE_GRPSHIFT	3
 36#define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
 37#define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
 38#define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
 39
 40static atomic_t *prof_buffer;
 41static unsigned long prof_len, prof_shift;
 
 42
 43int prof_on __read_mostly;
 44EXPORT_SYMBOL_GPL(prof_on);
 45
 46static cpumask_var_t prof_cpu_mask;
 47#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
 48static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
 49static DEFINE_PER_CPU(int, cpu_profile_flip);
 50static DEFINE_MUTEX(profile_flip_mutex);
 51#endif /* CONFIG_SMP */
 52
 53int profile_setup(char *str)
 54{
 55	static const char schedstr[] = "schedule";
 56	static const char sleepstr[] = "sleep";
 57	static const char kvmstr[] = "kvm";
 
 58	int par;
 59
 60	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
 61#ifdef CONFIG_SCHEDSTATS
 62		force_schedstat_enabled();
 63		prof_on = SLEEP_PROFILING;
 64		if (str[strlen(sleepstr)] == ',')
 65			str += strlen(sleepstr) + 1;
 66		if (get_option(&str, &par))
 67			prof_shift = par;
 68		pr_info("kernel sleep profiling enabled (shift: %ld)\n",
 69			prof_shift);
 70#else
 71		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
 72#endif /* CONFIG_SCHEDSTATS */
 73	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
 74		prof_on = SCHED_PROFILING;
 75		if (str[strlen(schedstr)] == ',')
 76			str += strlen(schedstr) + 1;
 77		if (get_option(&str, &par))
 78			prof_shift = par;
 79		pr_info("kernel schedule profiling enabled (shift: %ld)\n",
 80			prof_shift);
 81	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
 82		prof_on = KVM_PROFILING;
 83		if (str[strlen(kvmstr)] == ',')
 84			str += strlen(kvmstr) + 1;
 85		if (get_option(&str, &par))
 86			prof_shift = par;
 87		pr_info("kernel KVM profiling enabled (shift: %ld)\n",
 88			prof_shift);
 89	} else if (get_option(&str, &par)) {
 90		prof_shift = par;
 91		prof_on = CPU_PROFILING;
 92		pr_info("kernel profiling enabled (shift: %ld)\n",
 93			prof_shift);
 94	}
 
 
 
 
 
 
 
 
 
 
 95	return 1;
 96}
 97__setup("profile=", profile_setup);
 98
 99
100int __ref profile_init(void)
101{
102	int buffer_bytes;
103	if (!prof_on)
104		return 0;
105
106	/* only text is profiled */
107	prof_len = (_etext - _stext) >> prof_shift;
108	buffer_bytes = prof_len*sizeof(atomic_t);
109
110	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
111		return -ENOMEM;
 
 
 
112
113	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
114
115	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
116	if (prof_buffer)
117		return 0;
118
119	prof_buffer = alloc_pages_exact(buffer_bytes,
120					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
121	if (prof_buffer)
122		return 0;
123
124	prof_buffer = vzalloc(buffer_bytes);
125	if (prof_buffer)
126		return 0;
127
128	free_cpumask_var(prof_cpu_mask);
129	return -ENOMEM;
130}
131
132/* Profile event notifications */
133
134static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
135static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
136static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
137
138void profile_task_exit(struct task_struct *task)
139{
140	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
141}
142
143int profile_handoff_task(struct task_struct *task)
144{
145	int ret;
146	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
147	return (ret == NOTIFY_OK) ? 1 : 0;
148}
149
150void profile_munmap(unsigned long addr)
151{
152	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
153}
154
155int task_handoff_register(struct notifier_block *n)
156{
157	return atomic_notifier_chain_register(&task_free_notifier, n);
158}
159EXPORT_SYMBOL_GPL(task_handoff_register);
160
161int task_handoff_unregister(struct notifier_block *n)
162{
163	return atomic_notifier_chain_unregister(&task_free_notifier, n);
164}
165EXPORT_SYMBOL_GPL(task_handoff_unregister);
166
167int profile_event_register(enum profile_type type, struct notifier_block *n)
168{
169	int err = -EINVAL;
170
171	switch (type) {
172	case PROFILE_TASK_EXIT:
173		err = blocking_notifier_chain_register(
174				&task_exit_notifier, n);
175		break;
176	case PROFILE_MUNMAP:
177		err = blocking_notifier_chain_register(
178				&munmap_notifier, n);
179		break;
180	}
181
182	return err;
183}
184EXPORT_SYMBOL_GPL(profile_event_register);
185
186int profile_event_unregister(enum profile_type type, struct notifier_block *n)
187{
188	int err = -EINVAL;
189
190	switch (type) {
191	case PROFILE_TASK_EXIT:
192		err = blocking_notifier_chain_unregister(
193				&task_exit_notifier, n);
194		break;
195	case PROFILE_MUNMAP:
196		err = blocking_notifier_chain_unregister(
197				&munmap_notifier, n);
198		break;
199	}
200
201	return err;
202}
203EXPORT_SYMBOL_GPL(profile_event_unregister);
204
205#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
206/*
207 * Each cpu has a pair of open-addressed hashtables for pending
208 * profile hits. read_profile() IPI's all cpus to request them
209 * to flip buffers and flushes their contents to prof_buffer itself.
210 * Flip requests are serialized by the profile_flip_mutex. The sole
211 * use of having a second hashtable is for avoiding cacheline
212 * contention that would otherwise happen during flushes of pending
213 * profile hits required for the accuracy of reported profile hits
214 * and so resurrect the interrupt livelock issue.
215 *
216 * The open-addressed hashtables are indexed by profile buffer slot
217 * and hold the number of pending hits to that profile buffer slot on
218 * a cpu in an entry. When the hashtable overflows, all pending hits
219 * are accounted to their corresponding profile buffer slots with
220 * atomic_add() and the hashtable emptied. As numerous pending hits
221 * may be accounted to a profile buffer slot in a hashtable entry,
222 * this amortizes a number of atomic profile buffer increments likely
223 * to be far larger than the number of entries in the hashtable,
224 * particularly given that the number of distinct profile buffer
225 * positions to which hits are accounted during short intervals (e.g.
226 * several seconds) is usually very small. Exclusion from buffer
227 * flipping is provided by interrupt disablement (note that for
228 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
229 * process context).
230 * The hash function is meant to be lightweight as opposed to strong,
231 * and was vaguely inspired by ppc64 firmware-supported inverted
232 * pagetable hash functions, but uses a full hashtable full of finite
233 * collision chains, not just pairs of them.
234 *
235 * -- nyc
236 */
237static void __profile_flip_buffers(void *unused)
238{
239	int cpu = smp_processor_id();
240
241	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
242}
243
244static void profile_flip_buffers(void)
245{
246	int i, j, cpu;
247
248	mutex_lock(&profile_flip_mutex);
249	j = per_cpu(cpu_profile_flip, get_cpu());
250	put_cpu();
251	on_each_cpu(__profile_flip_buffers, NULL, 1);
252	for_each_online_cpu(cpu) {
253		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
254		for (i = 0; i < NR_PROFILE_HIT; ++i) {
255			if (!hits[i].hits) {
256				if (hits[i].pc)
257					hits[i].pc = 0;
258				continue;
259			}
260			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
261			hits[i].hits = hits[i].pc = 0;
262		}
263	}
264	mutex_unlock(&profile_flip_mutex);
265}
266
267static void profile_discard_flip_buffers(void)
268{
269	int i, cpu;
270
271	mutex_lock(&profile_flip_mutex);
272	i = per_cpu(cpu_profile_flip, get_cpu());
273	put_cpu();
274	on_each_cpu(__profile_flip_buffers, NULL, 1);
275	for_each_online_cpu(cpu) {
276		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
277		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
278	}
279	mutex_unlock(&profile_flip_mutex);
280}
281
282static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
283{
284	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
285	int i, j, cpu;
286	struct profile_hit *hits;
287
288	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
289	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
290	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
291	cpu = get_cpu();
292	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
293	if (!hits) {
294		put_cpu();
295		return;
296	}
297	/*
298	 * We buffer the global profiler buffer into a per-CPU
299	 * queue and thus reduce the number of global (and possibly
300	 * NUMA-alien) accesses. The write-queue is self-coalescing:
301	 */
302	local_irq_save(flags);
303	do {
304		for (j = 0; j < PROFILE_GRPSZ; ++j) {
305			if (hits[i + j].pc == pc) {
306				hits[i + j].hits += nr_hits;
307				goto out;
308			} else if (!hits[i + j].hits) {
309				hits[i + j].pc = pc;
310				hits[i + j].hits = nr_hits;
311				goto out;
312			}
313		}
314		i = (i + secondary) & (NR_PROFILE_HIT - 1);
315	} while (i != primary);
316
317	/*
318	 * Add the current hit(s) and flush the write-queue out
319	 * to the global buffer:
320	 */
321	atomic_add(nr_hits, &prof_buffer[pc]);
322	for (i = 0; i < NR_PROFILE_HIT; ++i) {
323		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
324		hits[i].pc = hits[i].hits = 0;
325	}
326out:
327	local_irq_restore(flags);
328	put_cpu();
329}
330
331static int profile_dead_cpu(unsigned int cpu)
332{
333	struct page *page;
334	int i;
335
336	if (prof_cpu_mask != NULL)
337		cpumask_clear_cpu(cpu, prof_cpu_mask);
338
339	for (i = 0; i < 2; i++) {
340		if (per_cpu(cpu_profile_hits, cpu)[i]) {
341			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
342			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
343			__free_page(page);
344		}
345	}
346	return 0;
347}
348
349static int profile_prepare_cpu(unsigned int cpu)
350{
351	int i, node = cpu_to_mem(cpu);
352	struct page *page;
353
354	per_cpu(cpu_profile_flip, cpu) = 0;
355
356	for (i = 0; i < 2; i++) {
357		if (per_cpu(cpu_profile_hits, cpu)[i])
358			continue;
359
360		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
361		if (!page) {
362			profile_dead_cpu(cpu);
363			return -ENOMEM;
364		}
365		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
366
367	}
368	return 0;
369}
370
371static int profile_online_cpu(unsigned int cpu)
372{
373	if (prof_cpu_mask != NULL)
374		cpumask_set_cpu(cpu, prof_cpu_mask);
375
376	return 0;
377}
378
379#else /* !CONFIG_SMP */
380#define profile_flip_buffers()		do { } while (0)
381#define profile_discard_flip_buffers()	do { } while (0)
382
383static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
384{
385	unsigned long pc;
386	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
387	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
 
388}
389#endif /* !CONFIG_SMP */
390
391void profile_hits(int type, void *__pc, unsigned int nr_hits)
392{
393	if (prof_on != type || !prof_buffer)
394		return;
395	do_profile_hits(type, __pc, nr_hits);
396}
397EXPORT_SYMBOL_GPL(profile_hits);
398
399void profile_tick(int type)
400{
401	struct pt_regs *regs = get_irq_regs();
402
403	if (!user_mode(regs) && prof_cpu_mask != NULL &&
404	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
405		profile_hit(type, (void *)profile_pc(regs));
406}
407
408#ifdef CONFIG_PROC_FS
409#include <linux/proc_fs.h>
410#include <linux/seq_file.h>
411#include <linux/uaccess.h>
412
413static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
414{
415	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
416	return 0;
417}
418
419static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
420{
421	return single_open(file, prof_cpu_mask_proc_show, NULL);
422}
423
424static ssize_t prof_cpu_mask_proc_write(struct file *file,
425	const char __user *buffer, size_t count, loff_t *pos)
426{
427	cpumask_var_t new_value;
428	int err;
429
430	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
431		return -ENOMEM;
432
433	err = cpumask_parse_user(buffer, count, new_value);
434	if (!err) {
435		cpumask_copy(prof_cpu_mask, new_value);
436		err = count;
437	}
438	free_cpumask_var(new_value);
439	return err;
440}
441
442static const struct file_operations prof_cpu_mask_proc_fops = {
443	.open		= prof_cpu_mask_proc_open,
444	.read		= seq_read,
445	.llseek		= seq_lseek,
446	.release	= single_release,
447	.write		= prof_cpu_mask_proc_write,
448};
449
450void create_prof_cpu_mask(void)
451{
452	/* create /proc/irq/prof_cpu_mask */
453	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
454}
455
456/*
457 * This function accesses profiling information. The returned data is
458 * binary: the sampling step and the actual contents of the profile
459 * buffer. Use of the program readprofile is recommended in order to
460 * get meaningful info out of these data.
461 */
462static ssize_t
463read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
464{
465	unsigned long p = *ppos;
466	ssize_t read;
467	char *pnt;
468	unsigned int sample_step = 1 << prof_shift;
469
470	profile_flip_buffers();
471	if (p >= (prof_len+1)*sizeof(unsigned int))
472		return 0;
473	if (count > (prof_len+1)*sizeof(unsigned int) - p)
474		count = (prof_len+1)*sizeof(unsigned int) - p;
475	read = 0;
476
477	while (p < sizeof(unsigned int) && count > 0) {
478		if (put_user(*((char *)(&sample_step)+p), buf))
479			return -EFAULT;
480		buf++; p++; count--; read++;
481	}
482	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
483	if (copy_to_user(buf, (void *)pnt, count))
484		return -EFAULT;
485	read += count;
486	*ppos += read;
487	return read;
488}
489
 
 
 
 
 
 
490/*
491 * Writing to /proc/profile resets the counters
492 *
493 * Writing a 'profiling multiplier' value into it also re-sets the profiling
494 * interrupt frequency, on architectures that support this.
495 */
496static ssize_t write_profile(struct file *file, const char __user *buf,
497			     size_t count, loff_t *ppos)
498{
499#ifdef CONFIG_SMP
500	extern int setup_profiling_timer(unsigned int multiplier);
501
502	if (count == sizeof(int)) {
503		unsigned int multiplier;
504
505		if (copy_from_user(&multiplier, buf, sizeof(int)))
506			return -EFAULT;
507
508		if (setup_profiling_timer(multiplier))
509			return -EINVAL;
510	}
511#endif
512	profile_discard_flip_buffers();
513	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
514	return count;
515}
516
517static const struct file_operations proc_profile_operations = {
518	.read		= read_profile,
519	.write		= write_profile,
520	.llseek		= default_llseek,
521};
522
523int __ref create_proc_profile(void)
524{
525	struct proc_dir_entry *entry;
526#ifdef CONFIG_SMP
527	enum cpuhp_state online_state;
528#endif
529
530	int err = 0;
531
532	if (!prof_on)
533		return 0;
534#ifdef CONFIG_SMP
535	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
536				profile_prepare_cpu, profile_dead_cpu);
537	if (err)
538		return err;
539
540	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
541				profile_online_cpu, NULL);
542	if (err < 0)
543		goto err_state_prep;
544	online_state = err;
545	err = 0;
546#endif
547	entry = proc_create("profile", S_IWUSR | S_IRUGO,
548			    NULL, &proc_profile_operations);
549	if (!entry)
550		goto err_state_onl;
551	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
552
553	return err;
554err_state_onl:
555#ifdef CONFIG_SMP
556	cpuhp_remove_state(online_state);
557err_state_prep:
558	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
559#endif
560	return err;
561}
562subsys_initcall(create_proc_profile);
563#endif /* CONFIG_PROC_FS */
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/kernel/profile.c
  4 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
  5 *  with configurable resolution, support for restricting the cpus on
  6 *  which profiling is done, and switching between cpu time and
  7 *  schedule() calls via kernel command line parameters passed at boot.
  8 *
  9 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
 10 *	Red Hat, July 2004
 11 *  Consolidation of architecture support code for profiling,
 12 *	Nadia Yvette Chambers, Oracle, July 2004
 13 *  Amortized hit count accounting via per-cpu open-addressed hashtables
 14 *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
 15 *	Oracle, 2004
 16 */
 17
 18#include <linux/export.h>
 19#include <linux/profile.h>
 20#include <linux/memblock.h>
 21#include <linux/notifier.h>
 22#include <linux/mm.h>
 23#include <linux/cpumask.h>
 24#include <linux/cpu.h>
 25#include <linux/highmem.h>
 26#include <linux/mutex.h>
 27#include <linux/slab.h>
 28#include <linux/vmalloc.h>
 29#include <linux/sched/stat.h>
 30
 31#include <asm/sections.h>
 32#include <asm/irq_regs.h>
 33#include <asm/ptrace.h>
 34
 35struct profile_hit {
 36	u32 pc, hits;
 37};
 38#define PROFILE_GRPSHIFT	3
 39#define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
 40#define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
 41#define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
 42
 43static atomic_t *prof_buffer;
 44static unsigned long prof_len;
 45static unsigned short int prof_shift;
 46
 47int prof_on __read_mostly;
 48EXPORT_SYMBOL_GPL(prof_on);
 49
 
 
 
 
 
 
 
 50int profile_setup(char *str)
 51{
 52	static const char schedstr[] = "schedule";
 
 53	static const char kvmstr[] = "kvm";
 54	const char *select = NULL;
 55	int par;
 56
 57	if (!strncmp(str, schedstr, strlen(schedstr))) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 58		prof_on = SCHED_PROFILING;
 59		select = schedstr;
 
 
 
 
 
 60	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
 61		prof_on = KVM_PROFILING;
 62		select = kvmstr;
 
 
 
 
 
 63	} else if (get_option(&str, &par)) {
 64		prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 65		prof_on = CPU_PROFILING;
 66		pr_info("kernel profiling enabled (shift: %u)\n",
 67			prof_shift);
 68	}
 69
 70	if (select) {
 71		if (str[strlen(select)] == ',')
 72			str += strlen(select) + 1;
 73		if (get_option(&str, &par))
 74			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 75		pr_info("kernel %s profiling enabled (shift: %u)\n",
 76			select, prof_shift);
 77	}
 78
 79	return 1;
 80}
 81__setup("profile=", profile_setup);
 82
 83
 84int __ref profile_init(void)
 85{
 86	int buffer_bytes;
 87	if (!prof_on)
 88		return 0;
 89
 90	/* only text is profiled */
 91	prof_len = (_etext - _stext) >> prof_shift;
 
 92
 93	if (!prof_len) {
 94		pr_warn("profiling shift: %u too large\n", prof_shift);
 95		prof_on = 0;
 96		return -EINVAL;
 97	}
 98
 99	buffer_bytes = prof_len*sizeof(atomic_t);
100
101	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
102	if (prof_buffer)
103		return 0;
104
105	prof_buffer = alloc_pages_exact(buffer_bytes,
106					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
107	if (prof_buffer)
108		return 0;
109
110	prof_buffer = vzalloc(buffer_bytes);
111	if (prof_buffer)
112		return 0;
113
 
114	return -ENOMEM;
115}
116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
118{
119	unsigned long pc;
120	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
121	if (pc < prof_len)
122		atomic_add(nr_hits, &prof_buffer[pc]);
123}
 
124
125void profile_hits(int type, void *__pc, unsigned int nr_hits)
126{
127	if (prof_on != type || !prof_buffer)
128		return;
129	do_profile_hits(type, __pc, nr_hits);
130}
131EXPORT_SYMBOL_GPL(profile_hits);
132
133void profile_tick(int type)
134{
135	struct pt_regs *regs = get_irq_regs();
136
137	/* This is the old kernel-only legacy profiling */
138	if (!user_mode(regs))
139		profile_hit(type, (void *)profile_pc(regs));
140}
141
142#ifdef CONFIG_PROC_FS
143#include <linux/proc_fs.h>
144#include <linux/seq_file.h>
145#include <linux/uaccess.h>
146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147/*
148 * This function accesses profiling information. The returned data is
149 * binary: the sampling step and the actual contents of the profile
150 * buffer. Use of the program readprofile is recommended in order to
151 * get meaningful info out of these data.
152 */
153static ssize_t
154read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
155{
156	unsigned long p = *ppos;
157	ssize_t read;
158	char *pnt;
159	unsigned long sample_step = 1UL << prof_shift;
160
 
161	if (p >= (prof_len+1)*sizeof(unsigned int))
162		return 0;
163	if (count > (prof_len+1)*sizeof(unsigned int) - p)
164		count = (prof_len+1)*sizeof(unsigned int) - p;
165	read = 0;
166
167	while (p < sizeof(unsigned int) && count > 0) {
168		if (put_user(*((char *)(&sample_step)+p), buf))
169			return -EFAULT;
170		buf++; p++; count--; read++;
171	}
172	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
173	if (copy_to_user(buf, (void *)pnt, count))
174		return -EFAULT;
175	read += count;
176	*ppos += read;
177	return read;
178}
179
180/* default is to not implement this call */
181int __weak setup_profiling_timer(unsigned mult)
182{
183	return -EINVAL;
184}
185
186/*
187 * Writing to /proc/profile resets the counters
188 *
189 * Writing a 'profiling multiplier' value into it also re-sets the profiling
190 * interrupt frequency, on architectures that support this.
191 */
192static ssize_t write_profile(struct file *file, const char __user *buf,
193			     size_t count, loff_t *ppos)
194{
195#ifdef CONFIG_SMP
 
 
196	if (count == sizeof(int)) {
197		unsigned int multiplier;
198
199		if (copy_from_user(&multiplier, buf, sizeof(int)))
200			return -EFAULT;
201
202		if (setup_profiling_timer(multiplier))
203			return -EINVAL;
204	}
205#endif
 
206	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
207	return count;
208}
209
210static const struct proc_ops profile_proc_ops = {
211	.proc_read	= read_profile,
212	.proc_write	= write_profile,
213	.proc_lseek	= default_llseek,
214};
215
216int __ref create_proc_profile(void)
217{
218	struct proc_dir_entry *entry;
 
 
 
 
219	int err = 0;
220
221	if (!prof_on)
222		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
223	entry = proc_create("profile", S_IWUSR | S_IRUGO,
224			    NULL, &profile_proc_ops);
225	if (entry)
226		proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
 
 
 
 
 
 
 
 
 
227	return err;
228}
229subsys_initcall(create_proc_profile);
230#endif /* CONFIG_PROC_FS */