Loading...
1/*
2 * hcd.c - DesignWare HS OTG Controller host-mode routines
3 *
4 * Copyright (C) 2004-2013 Synopsys, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
18 *
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37/*
38 * This file contains the core HCD code, and implements the Linux hc_driver
39 * API
40 */
41#include <linux/kernel.h>
42#include <linux/module.h>
43#include <linux/spinlock.h>
44#include <linux/interrupt.h>
45#include <linux/dma-mapping.h>
46#include <linux/delay.h>
47#include <linux/io.h>
48#include <linux/slab.h>
49#include <linux/usb.h>
50
51#include <linux/usb/hcd.h>
52#include <linux/usb/ch11.h>
53
54#include "core.h"
55#include "hcd.h"
56
57/*
58 * =========================================================================
59 * Host Core Layer Functions
60 * =========================================================================
61 */
62
63/**
64 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
65 * used in both device and host modes
66 *
67 * @hsotg: Programming view of the DWC_otg controller
68 */
69static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
70{
71 u32 intmsk;
72
73 /* Clear any pending OTG Interrupts */
74 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
75
76 /* Clear any pending interrupts */
77 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
78
79 /* Enable the interrupts in the GINTMSK */
80 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
81
82 if (hsotg->params.host_dma <= 0)
83 intmsk |= GINTSTS_RXFLVL;
84 if (hsotg->params.external_id_pin_ctl <= 0)
85 intmsk |= GINTSTS_CONIDSTSCHNG;
86
87 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
88 GINTSTS_SESSREQINT;
89
90 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
91}
92
93/*
94 * Initializes the FSLSPClkSel field of the HCFG register depending on the
95 * PHY type
96 */
97static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
98{
99 u32 hcfg, val;
100
101 if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
102 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
103 hsotg->params.ulpi_fs_ls > 0) ||
104 hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
105 /* Full speed PHY */
106 val = HCFG_FSLSPCLKSEL_48_MHZ;
107 } else {
108 /* High speed PHY running at full speed or high speed */
109 val = HCFG_FSLSPCLKSEL_30_60_MHZ;
110 }
111
112 dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
113 hcfg = dwc2_readl(hsotg->regs + HCFG);
114 hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
115 hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
116 dwc2_writel(hcfg, hsotg->regs + HCFG);
117}
118
119static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
120{
121 u32 usbcfg, i2cctl;
122 int retval = 0;
123
124 /*
125 * core_init() is now called on every switch so only call the
126 * following for the first time through
127 */
128 if (select_phy) {
129 dev_dbg(hsotg->dev, "FS PHY selected\n");
130
131 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
132 if (!(usbcfg & GUSBCFG_PHYSEL)) {
133 usbcfg |= GUSBCFG_PHYSEL;
134 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
135
136 /* Reset after a PHY select */
137 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
138
139 if (retval) {
140 dev_err(hsotg->dev,
141 "%s: Reset failed, aborting", __func__);
142 return retval;
143 }
144 }
145 }
146
147 /*
148 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
149 * do this on HNP Dev/Host mode switches (done in dev_init and
150 * host_init).
151 */
152 if (dwc2_is_host_mode(hsotg))
153 dwc2_init_fs_ls_pclk_sel(hsotg);
154
155 if (hsotg->params.i2c_enable > 0) {
156 dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
157
158 /* Program GUSBCFG.OtgUtmiFsSel to I2C */
159 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
160 usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
161 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
162
163 /* Program GI2CCTL.I2CEn */
164 i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
165 i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
166 i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
167 i2cctl &= ~GI2CCTL_I2CEN;
168 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
169 i2cctl |= GI2CCTL_I2CEN;
170 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
171 }
172
173 return retval;
174}
175
176static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
177{
178 u32 usbcfg, usbcfg_old;
179 int retval = 0;
180
181 if (!select_phy)
182 return 0;
183
184 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
185 usbcfg_old = usbcfg;
186
187 /*
188 * HS PHY parameters. These parameters are preserved during soft reset
189 * so only program the first time. Do a soft reset immediately after
190 * setting phyif.
191 */
192 switch (hsotg->params.phy_type) {
193 case DWC2_PHY_TYPE_PARAM_ULPI:
194 /* ULPI interface */
195 dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
196 usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
197 usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
198 if (hsotg->params.phy_ulpi_ddr > 0)
199 usbcfg |= GUSBCFG_DDRSEL;
200 break;
201 case DWC2_PHY_TYPE_PARAM_UTMI:
202 /* UTMI+ interface */
203 dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
204 usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
205 if (hsotg->params.phy_utmi_width == 16)
206 usbcfg |= GUSBCFG_PHYIF16;
207 break;
208 default:
209 dev_err(hsotg->dev, "FS PHY selected at HS!\n");
210 break;
211 }
212
213 if (usbcfg != usbcfg_old) {
214 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
215
216 /* Reset after setting the PHY parameters */
217 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
218 if (retval) {
219 dev_err(hsotg->dev,
220 "%s: Reset failed, aborting", __func__);
221 return retval;
222 }
223 }
224
225 return retval;
226}
227
228static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
229{
230 u32 usbcfg;
231 int retval = 0;
232
233 if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
234 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) &&
235 hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
236 /* If FS/LS mode with FS/LS PHY */
237 retval = dwc2_fs_phy_init(hsotg, select_phy);
238 if (retval)
239 return retval;
240 } else {
241 /* High speed PHY */
242 retval = dwc2_hs_phy_init(hsotg, select_phy);
243 if (retval)
244 return retval;
245 }
246
247 if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
248 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
249 hsotg->params.ulpi_fs_ls > 0) {
250 dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
251 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
252 usbcfg |= GUSBCFG_ULPI_FS_LS;
253 usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
254 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
255 } else {
256 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
257 usbcfg &= ~GUSBCFG_ULPI_FS_LS;
258 usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
259 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
260 }
261
262 return retval;
263}
264
265static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
266{
267 u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
268
269 switch (hsotg->hw_params.arch) {
270 case GHWCFG2_EXT_DMA_ARCH:
271 dev_err(hsotg->dev, "External DMA Mode not supported\n");
272 return -EINVAL;
273
274 case GHWCFG2_INT_DMA_ARCH:
275 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
276 if (hsotg->params.ahbcfg != -1) {
277 ahbcfg &= GAHBCFG_CTRL_MASK;
278 ahbcfg |= hsotg->params.ahbcfg &
279 ~GAHBCFG_CTRL_MASK;
280 }
281 break;
282
283 case GHWCFG2_SLAVE_ONLY_ARCH:
284 default:
285 dev_dbg(hsotg->dev, "Slave Only Mode\n");
286 break;
287 }
288
289 dev_dbg(hsotg->dev, "host_dma:%d dma_desc_enable:%d\n",
290 hsotg->params.host_dma,
291 hsotg->params.dma_desc_enable);
292
293 if (hsotg->params.host_dma > 0) {
294 if (hsotg->params.dma_desc_enable > 0)
295 dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
296 else
297 dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
298 } else {
299 dev_dbg(hsotg->dev, "Using Slave mode\n");
300 hsotg->params.dma_desc_enable = 0;
301 }
302
303 if (hsotg->params.host_dma > 0)
304 ahbcfg |= GAHBCFG_DMA_EN;
305
306 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
307
308 return 0;
309}
310
311static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
312{
313 u32 usbcfg;
314
315 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
316 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
317
318 switch (hsotg->hw_params.op_mode) {
319 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
320 if (hsotg->params.otg_cap ==
321 DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
322 usbcfg |= GUSBCFG_HNPCAP;
323 if (hsotg->params.otg_cap !=
324 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
325 usbcfg |= GUSBCFG_SRPCAP;
326 break;
327
328 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
329 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
330 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
331 if (hsotg->params.otg_cap !=
332 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
333 usbcfg |= GUSBCFG_SRPCAP;
334 break;
335
336 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
337 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
338 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
339 default:
340 break;
341 }
342
343 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
344}
345
346/**
347 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
348 *
349 * @hsotg: Programming view of DWC_otg controller
350 */
351static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
352{
353 u32 intmsk;
354
355 dev_dbg(hsotg->dev, "%s()\n", __func__);
356
357 /* Disable all interrupts */
358 dwc2_writel(0, hsotg->regs + GINTMSK);
359 dwc2_writel(0, hsotg->regs + HAINTMSK);
360
361 /* Enable the common interrupts */
362 dwc2_enable_common_interrupts(hsotg);
363
364 /* Enable host mode interrupts without disturbing common interrupts */
365 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
366 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
367 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
368}
369
370/**
371 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
372 *
373 * @hsotg: Programming view of DWC_otg controller
374 */
375static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
376{
377 u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
378
379 /* Disable host mode interrupts without disturbing common interrupts */
380 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
381 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
382 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
383}
384
385/*
386 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
387 * For system that have a total fifo depth that is smaller than the default
388 * RX + TX fifo size.
389 *
390 * @hsotg: Programming view of DWC_otg controller
391 */
392static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
393{
394 struct dwc2_core_params *params = &hsotg->params;
395 struct dwc2_hw_params *hw = &hsotg->hw_params;
396 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
397
398 total_fifo_size = hw->total_fifo_size;
399 rxfsiz = params->host_rx_fifo_size;
400 nptxfsiz = params->host_nperio_tx_fifo_size;
401 ptxfsiz = params->host_perio_tx_fifo_size;
402
403 /*
404 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
405 * allocation with support for high bandwidth endpoints. Synopsys
406 * defines MPS(Max Packet size) for a periodic EP=1024, and for
407 * non-periodic as 512.
408 */
409 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
410 /*
411 * For Buffer DMA mode/Scatter Gather DMA mode
412 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
413 * with n = number of host channel.
414 * 2 * ((1024/4) + 2) = 516
415 */
416 rxfsiz = 516 + hw->host_channels;
417
418 /*
419 * min non-periodic tx fifo depth
420 * 2 * (largest non-periodic USB packet used / 4)
421 * 2 * (512/4) = 256
422 */
423 nptxfsiz = 256;
424
425 /*
426 * min periodic tx fifo depth
427 * (largest packet size*MC)/4
428 * (1024 * 3)/4 = 768
429 */
430 ptxfsiz = 768;
431
432 params->host_rx_fifo_size = rxfsiz;
433 params->host_nperio_tx_fifo_size = nptxfsiz;
434 params->host_perio_tx_fifo_size = ptxfsiz;
435 }
436
437 /*
438 * If the summation of RX, NPTX and PTX fifo sizes is still
439 * bigger than the total_fifo_size, then we have a problem.
440 *
441 * We won't be able to allocate as many endpoints. Right now,
442 * we're just printing an error message, but ideally this FIFO
443 * allocation algorithm would be improved in the future.
444 *
445 * FIXME improve this FIFO allocation algorithm.
446 */
447 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
448 dev_err(hsotg->dev, "invalid fifo sizes\n");
449}
450
451static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
452{
453 struct dwc2_core_params *params = &hsotg->params;
454 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
455
456 if (!params->enable_dynamic_fifo)
457 return;
458
459 dwc2_calculate_dynamic_fifo(hsotg);
460
461 /* Rx FIFO */
462 grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
463 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
464 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
465 grxfsiz |= params->host_rx_fifo_size <<
466 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
467 dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
468 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
469 dwc2_readl(hsotg->regs + GRXFSIZ));
470
471 /* Non-periodic Tx FIFO */
472 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
473 dwc2_readl(hsotg->regs + GNPTXFSIZ));
474 nptxfsiz = params->host_nperio_tx_fifo_size <<
475 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
476 nptxfsiz |= params->host_rx_fifo_size <<
477 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
478 dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
479 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
480 dwc2_readl(hsotg->regs + GNPTXFSIZ));
481
482 /* Periodic Tx FIFO */
483 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
484 dwc2_readl(hsotg->regs + HPTXFSIZ));
485 hptxfsiz = params->host_perio_tx_fifo_size <<
486 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
487 hptxfsiz |= (params->host_rx_fifo_size +
488 params->host_nperio_tx_fifo_size) <<
489 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
490 dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
491 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
492 dwc2_readl(hsotg->regs + HPTXFSIZ));
493
494 if (hsotg->params.en_multiple_tx_fifo > 0 &&
495 hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
496 /*
497 * Global DFIFOCFG calculation for Host mode -
498 * include RxFIFO, NPTXFIFO and HPTXFIFO
499 */
500 dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
501 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
502 dfifocfg |= (params->host_rx_fifo_size +
503 params->host_nperio_tx_fifo_size +
504 params->host_perio_tx_fifo_size) <<
505 GDFIFOCFG_EPINFOBASE_SHIFT &
506 GDFIFOCFG_EPINFOBASE_MASK;
507 dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
508 }
509}
510
511/**
512 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
513 * the HFIR register according to PHY type and speed
514 *
515 * @hsotg: Programming view of DWC_otg controller
516 *
517 * NOTE: The caller can modify the value of the HFIR register only after the
518 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
519 * has been set
520 */
521u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
522{
523 u32 usbcfg;
524 u32 hprt0;
525 int clock = 60; /* default value */
526
527 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
528 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
529
530 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
531 !(usbcfg & GUSBCFG_PHYIF16))
532 clock = 60;
533 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
534 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
535 clock = 48;
536 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
537 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
538 clock = 30;
539 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
540 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
541 clock = 60;
542 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
543 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
544 clock = 48;
545 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
546 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
547 clock = 48;
548 if ((usbcfg & GUSBCFG_PHYSEL) &&
549 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
550 clock = 48;
551
552 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
553 /* High speed case */
554 return 125 * clock - 1;
555
556 /* FS/LS case */
557 return 1000 * clock - 1;
558}
559
560/**
561 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
562 * buffer
563 *
564 * @core_if: Programming view of DWC_otg controller
565 * @dest: Destination buffer for the packet
566 * @bytes: Number of bytes to copy to the destination
567 */
568void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
569{
570 u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
571 u32 *data_buf = (u32 *)dest;
572 int word_count = (bytes + 3) / 4;
573 int i;
574
575 /*
576 * Todo: Account for the case where dest is not dword aligned. This
577 * requires reading data from the FIFO into a u32 temp buffer, then
578 * moving it into the data buffer.
579 */
580
581 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
582
583 for (i = 0; i < word_count; i++, data_buf++)
584 *data_buf = dwc2_readl(fifo);
585}
586
587/**
588 * dwc2_dump_channel_info() - Prints the state of a host channel
589 *
590 * @hsotg: Programming view of DWC_otg controller
591 * @chan: Pointer to the channel to dump
592 *
593 * Must be called with interrupt disabled and spinlock held
594 *
595 * NOTE: This function will be removed once the peripheral controller code
596 * is integrated and the driver is stable
597 */
598static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
599 struct dwc2_host_chan *chan)
600{
601#ifdef VERBOSE_DEBUG
602 int num_channels = hsotg->params.host_channels;
603 struct dwc2_qh *qh;
604 u32 hcchar;
605 u32 hcsplt;
606 u32 hctsiz;
607 u32 hc_dma;
608 int i;
609
610 if (!chan)
611 return;
612
613 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
614 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
615 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
616 hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
617
618 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan);
619 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n",
620 hcchar, hcsplt);
621 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n",
622 hctsiz, hc_dma);
623 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
624 chan->dev_addr, chan->ep_num, chan->ep_is_in);
625 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
626 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
627 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start);
628 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started);
629 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
630 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
631 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
632 (unsigned long)chan->xfer_dma);
633 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
634 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
635 dev_dbg(hsotg->dev, " NP inactive sched:\n");
636 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
637 qh_list_entry)
638 dev_dbg(hsotg->dev, " %p\n", qh);
639 dev_dbg(hsotg->dev, " NP active sched:\n");
640 list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
641 qh_list_entry)
642 dev_dbg(hsotg->dev, " %p\n", qh);
643 dev_dbg(hsotg->dev, " Channels:\n");
644 for (i = 0; i < num_channels; i++) {
645 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
646
647 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan);
648 }
649#endif /* VERBOSE_DEBUG */
650}
651
652static int _dwc2_hcd_start(struct usb_hcd *hcd);
653
654static void dwc2_host_start(struct dwc2_hsotg *hsotg)
655{
656 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
657
658 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
659 _dwc2_hcd_start(hcd);
660}
661
662static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
663{
664 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
665
666 hcd->self.is_b_host = 0;
667}
668
669static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
670 int *hub_addr, int *hub_port)
671{
672 struct urb *urb = context;
673
674 if (urb->dev->tt)
675 *hub_addr = urb->dev->tt->hub->devnum;
676 else
677 *hub_addr = 0;
678 *hub_port = urb->dev->ttport;
679}
680
681/*
682 * =========================================================================
683 * Low Level Host Channel Access Functions
684 * =========================================================================
685 */
686
687static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
688 struct dwc2_host_chan *chan)
689{
690 u32 hcintmsk = HCINTMSK_CHHLTD;
691
692 switch (chan->ep_type) {
693 case USB_ENDPOINT_XFER_CONTROL:
694 case USB_ENDPOINT_XFER_BULK:
695 dev_vdbg(hsotg->dev, "control/bulk\n");
696 hcintmsk |= HCINTMSK_XFERCOMPL;
697 hcintmsk |= HCINTMSK_STALL;
698 hcintmsk |= HCINTMSK_XACTERR;
699 hcintmsk |= HCINTMSK_DATATGLERR;
700 if (chan->ep_is_in) {
701 hcintmsk |= HCINTMSK_BBLERR;
702 } else {
703 hcintmsk |= HCINTMSK_NAK;
704 hcintmsk |= HCINTMSK_NYET;
705 if (chan->do_ping)
706 hcintmsk |= HCINTMSK_ACK;
707 }
708
709 if (chan->do_split) {
710 hcintmsk |= HCINTMSK_NAK;
711 if (chan->complete_split)
712 hcintmsk |= HCINTMSK_NYET;
713 else
714 hcintmsk |= HCINTMSK_ACK;
715 }
716
717 if (chan->error_state)
718 hcintmsk |= HCINTMSK_ACK;
719 break;
720
721 case USB_ENDPOINT_XFER_INT:
722 if (dbg_perio())
723 dev_vdbg(hsotg->dev, "intr\n");
724 hcintmsk |= HCINTMSK_XFERCOMPL;
725 hcintmsk |= HCINTMSK_NAK;
726 hcintmsk |= HCINTMSK_STALL;
727 hcintmsk |= HCINTMSK_XACTERR;
728 hcintmsk |= HCINTMSK_DATATGLERR;
729 hcintmsk |= HCINTMSK_FRMOVRUN;
730
731 if (chan->ep_is_in)
732 hcintmsk |= HCINTMSK_BBLERR;
733 if (chan->error_state)
734 hcintmsk |= HCINTMSK_ACK;
735 if (chan->do_split) {
736 if (chan->complete_split)
737 hcintmsk |= HCINTMSK_NYET;
738 else
739 hcintmsk |= HCINTMSK_ACK;
740 }
741 break;
742
743 case USB_ENDPOINT_XFER_ISOC:
744 if (dbg_perio())
745 dev_vdbg(hsotg->dev, "isoc\n");
746 hcintmsk |= HCINTMSK_XFERCOMPL;
747 hcintmsk |= HCINTMSK_FRMOVRUN;
748 hcintmsk |= HCINTMSK_ACK;
749
750 if (chan->ep_is_in) {
751 hcintmsk |= HCINTMSK_XACTERR;
752 hcintmsk |= HCINTMSK_BBLERR;
753 }
754 break;
755 default:
756 dev_err(hsotg->dev, "## Unknown EP type ##\n");
757 break;
758 }
759
760 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
761 if (dbg_hc(chan))
762 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
763}
764
765static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
766 struct dwc2_host_chan *chan)
767{
768 u32 hcintmsk = HCINTMSK_CHHLTD;
769
770 /*
771 * For Descriptor DMA mode core halts the channel on AHB error.
772 * Interrupt is not required.
773 */
774 if (hsotg->params.dma_desc_enable <= 0) {
775 if (dbg_hc(chan))
776 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
777 hcintmsk |= HCINTMSK_AHBERR;
778 } else {
779 if (dbg_hc(chan))
780 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
781 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
782 hcintmsk |= HCINTMSK_XFERCOMPL;
783 }
784
785 if (chan->error_state && !chan->do_split &&
786 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
787 if (dbg_hc(chan))
788 dev_vdbg(hsotg->dev, "setting ACK\n");
789 hcintmsk |= HCINTMSK_ACK;
790 if (chan->ep_is_in) {
791 hcintmsk |= HCINTMSK_DATATGLERR;
792 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
793 hcintmsk |= HCINTMSK_NAK;
794 }
795 }
796
797 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
798 if (dbg_hc(chan))
799 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
800}
801
802static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
803 struct dwc2_host_chan *chan)
804{
805 u32 intmsk;
806
807 if (hsotg->params.host_dma > 0) {
808 if (dbg_hc(chan))
809 dev_vdbg(hsotg->dev, "DMA enabled\n");
810 dwc2_hc_enable_dma_ints(hsotg, chan);
811 } else {
812 if (dbg_hc(chan))
813 dev_vdbg(hsotg->dev, "DMA disabled\n");
814 dwc2_hc_enable_slave_ints(hsotg, chan);
815 }
816
817 /* Enable the top level host channel interrupt */
818 intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
819 intmsk |= 1 << chan->hc_num;
820 dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
821 if (dbg_hc(chan))
822 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
823
824 /* Make sure host channel interrupts are enabled */
825 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
826 intmsk |= GINTSTS_HCHINT;
827 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
828 if (dbg_hc(chan))
829 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
830}
831
832/**
833 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
834 * a specific endpoint
835 *
836 * @hsotg: Programming view of DWC_otg controller
837 * @chan: Information needed to initialize the host channel
838 *
839 * The HCCHARn register is set up with the characteristics specified in chan.
840 * Host channel interrupts that may need to be serviced while this transfer is
841 * in progress are enabled.
842 */
843static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
844{
845 u8 hc_num = chan->hc_num;
846 u32 hcintmsk;
847 u32 hcchar;
848 u32 hcsplt = 0;
849
850 if (dbg_hc(chan))
851 dev_vdbg(hsotg->dev, "%s()\n", __func__);
852
853 /* Clear old interrupt conditions for this host channel */
854 hcintmsk = 0xffffffff;
855 hcintmsk &= ~HCINTMSK_RESERVED14_31;
856 dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
857
858 /* Enable channel interrupts required for this transfer */
859 dwc2_hc_enable_ints(hsotg, chan);
860
861 /*
862 * Program the HCCHARn register with the endpoint characteristics for
863 * the current transfer
864 */
865 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
866 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
867 if (chan->ep_is_in)
868 hcchar |= HCCHAR_EPDIR;
869 if (chan->speed == USB_SPEED_LOW)
870 hcchar |= HCCHAR_LSPDDEV;
871 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
872 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
873 dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
874 if (dbg_hc(chan)) {
875 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
876 hc_num, hcchar);
877
878 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
879 __func__, hc_num);
880 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
881 chan->dev_addr);
882 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
883 chan->ep_num);
884 dev_vdbg(hsotg->dev, " Is In: %d\n",
885 chan->ep_is_in);
886 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
887 chan->speed == USB_SPEED_LOW);
888 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
889 chan->ep_type);
890 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
891 chan->max_packet);
892 }
893
894 /* Program the HCSPLT register for SPLITs */
895 if (chan->do_split) {
896 if (dbg_hc(chan))
897 dev_vdbg(hsotg->dev,
898 "Programming HC %d with split --> %s\n",
899 hc_num,
900 chan->complete_split ? "CSPLIT" : "SSPLIT");
901 if (chan->complete_split)
902 hcsplt |= HCSPLT_COMPSPLT;
903 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
904 HCSPLT_XACTPOS_MASK;
905 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
906 HCSPLT_HUBADDR_MASK;
907 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
908 HCSPLT_PRTADDR_MASK;
909 if (dbg_hc(chan)) {
910 dev_vdbg(hsotg->dev, " comp split %d\n",
911 chan->complete_split);
912 dev_vdbg(hsotg->dev, " xact pos %d\n",
913 chan->xact_pos);
914 dev_vdbg(hsotg->dev, " hub addr %d\n",
915 chan->hub_addr);
916 dev_vdbg(hsotg->dev, " hub port %d\n",
917 chan->hub_port);
918 dev_vdbg(hsotg->dev, " is_in %d\n",
919 chan->ep_is_in);
920 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
921 chan->max_packet);
922 dev_vdbg(hsotg->dev, " xferlen %d\n",
923 chan->xfer_len);
924 }
925 }
926
927 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
928}
929
930/**
931 * dwc2_hc_halt() - Attempts to halt a host channel
932 *
933 * @hsotg: Controller register interface
934 * @chan: Host channel to halt
935 * @halt_status: Reason for halting the channel
936 *
937 * This function should only be called in Slave mode or to abort a transfer in
938 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
939 * controller halts the channel when the transfer is complete or a condition
940 * occurs that requires application intervention.
941 *
942 * In slave mode, checks for a free request queue entry, then sets the Channel
943 * Enable and Channel Disable bits of the Host Channel Characteristics
944 * register of the specified channel to intiate the halt. If there is no free
945 * request queue entry, sets only the Channel Disable bit of the HCCHARn
946 * register to flush requests for this channel. In the latter case, sets a
947 * flag to indicate that the host channel needs to be halted when a request
948 * queue slot is open.
949 *
950 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
951 * HCCHARn register. The controller ensures there is space in the request
952 * queue before submitting the halt request.
953 *
954 * Some time may elapse before the core flushes any posted requests for this
955 * host channel and halts. The Channel Halted interrupt handler completes the
956 * deactivation of the host channel.
957 */
958void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
959 enum dwc2_halt_status halt_status)
960{
961 u32 nptxsts, hptxsts, hcchar;
962
963 if (dbg_hc(chan))
964 dev_vdbg(hsotg->dev, "%s()\n", __func__);
965 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
966 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
967
968 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
969 halt_status == DWC2_HC_XFER_AHB_ERR) {
970 /*
971 * Disable all channel interrupts except Ch Halted. The QTD
972 * and QH state associated with this transfer has been cleared
973 * (in the case of URB_DEQUEUE), so the channel needs to be
974 * shut down carefully to prevent crashes.
975 */
976 u32 hcintmsk = HCINTMSK_CHHLTD;
977
978 dev_vdbg(hsotg->dev, "dequeue/error\n");
979 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
980
981 /*
982 * Make sure no other interrupts besides halt are currently
983 * pending. Handling another interrupt could cause a crash due
984 * to the QTD and QH state.
985 */
986 dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
987
988 /*
989 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
990 * even if the channel was already halted for some other
991 * reason
992 */
993 chan->halt_status = halt_status;
994
995 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
996 if (!(hcchar & HCCHAR_CHENA)) {
997 /*
998 * The channel is either already halted or it hasn't
999 * started yet. In DMA mode, the transfer may halt if
1000 * it finishes normally or a condition occurs that
1001 * requires driver intervention. Don't want to halt
1002 * the channel again. In either Slave or DMA mode,
1003 * it's possible that the transfer has been assigned
1004 * to a channel, but not started yet when an URB is
1005 * dequeued. Don't want to halt a channel that hasn't
1006 * started yet.
1007 */
1008 return;
1009 }
1010 }
1011 if (chan->halt_pending) {
1012 /*
1013 * A halt has already been issued for this channel. This might
1014 * happen when a transfer is aborted by a higher level in
1015 * the stack.
1016 */
1017 dev_vdbg(hsotg->dev,
1018 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1019 __func__, chan->hc_num);
1020 return;
1021 }
1022
1023 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1024
1025 /* No need to set the bit in DDMA for disabling the channel */
1026 /* TODO check it everywhere channel is disabled */
1027 if (hsotg->params.dma_desc_enable <= 0) {
1028 if (dbg_hc(chan))
1029 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1030 hcchar |= HCCHAR_CHENA;
1031 } else {
1032 if (dbg_hc(chan))
1033 dev_dbg(hsotg->dev, "desc DMA enabled\n");
1034 }
1035 hcchar |= HCCHAR_CHDIS;
1036
1037 if (hsotg->params.host_dma <= 0) {
1038 if (dbg_hc(chan))
1039 dev_vdbg(hsotg->dev, "DMA not enabled\n");
1040 hcchar |= HCCHAR_CHENA;
1041
1042 /* Check for space in the request queue to issue the halt */
1043 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1044 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1045 dev_vdbg(hsotg->dev, "control/bulk\n");
1046 nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1047 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1048 dev_vdbg(hsotg->dev, "Disabling channel\n");
1049 hcchar &= ~HCCHAR_CHENA;
1050 }
1051 } else {
1052 if (dbg_perio())
1053 dev_vdbg(hsotg->dev, "isoc/intr\n");
1054 hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1055 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1056 hsotg->queuing_high_bandwidth) {
1057 if (dbg_perio())
1058 dev_vdbg(hsotg->dev, "Disabling channel\n");
1059 hcchar &= ~HCCHAR_CHENA;
1060 }
1061 }
1062 } else {
1063 if (dbg_hc(chan))
1064 dev_vdbg(hsotg->dev, "DMA enabled\n");
1065 }
1066
1067 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1068 chan->halt_status = halt_status;
1069
1070 if (hcchar & HCCHAR_CHENA) {
1071 if (dbg_hc(chan))
1072 dev_vdbg(hsotg->dev, "Channel enabled\n");
1073 chan->halt_pending = 1;
1074 chan->halt_on_queue = 0;
1075 } else {
1076 if (dbg_hc(chan))
1077 dev_vdbg(hsotg->dev, "Channel disabled\n");
1078 chan->halt_on_queue = 1;
1079 }
1080
1081 if (dbg_hc(chan)) {
1082 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1083 chan->hc_num);
1084 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
1085 hcchar);
1086 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
1087 chan->halt_pending);
1088 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
1089 chan->halt_on_queue);
1090 dev_vdbg(hsotg->dev, " halt_status: %d\n",
1091 chan->halt_status);
1092 }
1093}
1094
1095/**
1096 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1097 *
1098 * @hsotg: Programming view of DWC_otg controller
1099 * @chan: Identifies the host channel to clean up
1100 *
1101 * This function is normally called after a transfer is done and the host
1102 * channel is being released
1103 */
1104void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1105{
1106 u32 hcintmsk;
1107
1108 chan->xfer_started = 0;
1109
1110 list_del_init(&chan->split_order_list_entry);
1111
1112 /*
1113 * Clear channel interrupt enables and any unhandled channel interrupt
1114 * conditions
1115 */
1116 dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1117 hcintmsk = 0xffffffff;
1118 hcintmsk &= ~HCINTMSK_RESERVED14_31;
1119 dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1120}
1121
1122/**
1123 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1124 * which frame a periodic transfer should occur
1125 *
1126 * @hsotg: Programming view of DWC_otg controller
1127 * @chan: Identifies the host channel to set up and its properties
1128 * @hcchar: Current value of the HCCHAR register for the specified host channel
1129 *
1130 * This function has no effect on non-periodic transfers
1131 */
1132static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1133 struct dwc2_host_chan *chan, u32 *hcchar)
1134{
1135 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1136 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1137 int host_speed;
1138 int xfer_ns;
1139 int xfer_us;
1140 int bytes_in_fifo;
1141 u16 fifo_space;
1142 u16 frame_number;
1143 u16 wire_frame;
1144
1145 /*
1146 * Try to figure out if we're an even or odd frame. If we set
1147 * even and the current frame number is even the the transfer
1148 * will happen immediately. Similar if both are odd. If one is
1149 * even and the other is odd then the transfer will happen when
1150 * the frame number ticks.
1151 *
1152 * There's a bit of a balancing act to get this right.
1153 * Sometimes we may want to send data in the current frame (AK
1154 * right away). We might want to do this if the frame number
1155 * _just_ ticked, but we might also want to do this in order
1156 * to continue a split transaction that happened late in a
1157 * microframe (so we didn't know to queue the next transfer
1158 * until the frame number had ticked). The problem is that we
1159 * need a lot of knowledge to know if there's actually still
1160 * time to send things or if it would be better to wait until
1161 * the next frame.
1162 *
1163 * We can look at how much time is left in the current frame
1164 * and make a guess about whether we'll have time to transfer.
1165 * We'll do that.
1166 */
1167
1168 /* Get speed host is running at */
1169 host_speed = (chan->speed != USB_SPEED_HIGH &&
1170 !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1171
1172 /* See how many bytes are in the periodic FIFO right now */
1173 fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) &
1174 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1175 bytes_in_fifo = sizeof(u32) *
1176 (hsotg->params.host_perio_tx_fifo_size -
1177 fifo_space);
1178
1179 /*
1180 * Roughly estimate bus time for everything in the periodic
1181 * queue + our new transfer. This is "rough" because we're
1182 * using a function that makes takes into account IN/OUT
1183 * and INT/ISO and we're just slamming in one value for all
1184 * transfers. This should be an over-estimate and that should
1185 * be OK, but we can probably tighten it.
1186 */
1187 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1188 chan->xfer_len + bytes_in_fifo);
1189 xfer_us = NS_TO_US(xfer_ns);
1190
1191 /* See what frame number we'll be at by the time we finish */
1192 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1193
1194 /* This is when we were scheduled to be on the wire */
1195 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1196
1197 /*
1198 * If we'd finish _after_ the frame we're scheduled in then
1199 * it's hopeless. Just schedule right away and hope for the
1200 * best. Note that it _might_ be wise to call back into the
1201 * scheduler to pick a better frame, but this is better than
1202 * nothing.
1203 */
1204 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1205 dwc2_sch_vdbg(hsotg,
1206 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1207 chan->qh, wire_frame, frame_number,
1208 dwc2_frame_num_dec(frame_number,
1209 wire_frame));
1210 wire_frame = frame_number;
1211
1212 /*
1213 * We picked a different frame number; communicate this
1214 * back to the scheduler so it doesn't try to schedule
1215 * another in the same frame.
1216 *
1217 * Remember that next_active_frame is 1 before the wire
1218 * frame.
1219 */
1220 chan->qh->next_active_frame =
1221 dwc2_frame_num_dec(frame_number, 1);
1222 }
1223
1224 if (wire_frame & 1)
1225 *hcchar |= HCCHAR_ODDFRM;
1226 else
1227 *hcchar &= ~HCCHAR_ODDFRM;
1228 }
1229}
1230
1231static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1232{
1233 /* Set up the initial PID for the transfer */
1234 if (chan->speed == USB_SPEED_HIGH) {
1235 if (chan->ep_is_in) {
1236 if (chan->multi_count == 1)
1237 chan->data_pid_start = DWC2_HC_PID_DATA0;
1238 else if (chan->multi_count == 2)
1239 chan->data_pid_start = DWC2_HC_PID_DATA1;
1240 else
1241 chan->data_pid_start = DWC2_HC_PID_DATA2;
1242 } else {
1243 if (chan->multi_count == 1)
1244 chan->data_pid_start = DWC2_HC_PID_DATA0;
1245 else
1246 chan->data_pid_start = DWC2_HC_PID_MDATA;
1247 }
1248 } else {
1249 chan->data_pid_start = DWC2_HC_PID_DATA0;
1250 }
1251}
1252
1253/**
1254 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1255 * the Host Channel
1256 *
1257 * @hsotg: Programming view of DWC_otg controller
1258 * @chan: Information needed to initialize the host channel
1259 *
1260 * This function should only be called in Slave mode. For a channel associated
1261 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1262 * associated with a periodic EP, the periodic Tx FIFO is written.
1263 *
1264 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1265 * the number of bytes written to the Tx FIFO.
1266 */
1267static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1268 struct dwc2_host_chan *chan)
1269{
1270 u32 i;
1271 u32 remaining_count;
1272 u32 byte_count;
1273 u32 dword_count;
1274 u32 __iomem *data_fifo;
1275 u32 *data_buf = (u32 *)chan->xfer_buf;
1276
1277 if (dbg_hc(chan))
1278 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1279
1280 data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1281
1282 remaining_count = chan->xfer_len - chan->xfer_count;
1283 if (remaining_count > chan->max_packet)
1284 byte_count = chan->max_packet;
1285 else
1286 byte_count = remaining_count;
1287
1288 dword_count = (byte_count + 3) / 4;
1289
1290 if (((unsigned long)data_buf & 0x3) == 0) {
1291 /* xfer_buf is DWORD aligned */
1292 for (i = 0; i < dword_count; i++, data_buf++)
1293 dwc2_writel(*data_buf, data_fifo);
1294 } else {
1295 /* xfer_buf is not DWORD aligned */
1296 for (i = 0; i < dword_count; i++, data_buf++) {
1297 u32 data = data_buf[0] | data_buf[1] << 8 |
1298 data_buf[2] << 16 | data_buf[3] << 24;
1299 dwc2_writel(data, data_fifo);
1300 }
1301 }
1302
1303 chan->xfer_count += byte_count;
1304 chan->xfer_buf += byte_count;
1305}
1306
1307/**
1308 * dwc2_hc_do_ping() - Starts a PING transfer
1309 *
1310 * @hsotg: Programming view of DWC_otg controller
1311 * @chan: Information needed to initialize the host channel
1312 *
1313 * This function should only be called in Slave mode. The Do Ping bit is set in
1314 * the HCTSIZ register, then the channel is enabled.
1315 */
1316static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1317 struct dwc2_host_chan *chan)
1318{
1319 u32 hcchar;
1320 u32 hctsiz;
1321
1322 if (dbg_hc(chan))
1323 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1324 chan->hc_num);
1325
1326 hctsiz = TSIZ_DOPNG;
1327 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1328 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1329
1330 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1331 hcchar |= HCCHAR_CHENA;
1332 hcchar &= ~HCCHAR_CHDIS;
1333 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1334}
1335
1336/**
1337 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1338 * channel and starts the transfer
1339 *
1340 * @hsotg: Programming view of DWC_otg controller
1341 * @chan: Information needed to initialize the host channel. The xfer_len value
1342 * may be reduced to accommodate the max widths of the XferSize and
1343 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1344 * changed to reflect the final xfer_len value.
1345 *
1346 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1347 * the caller must ensure that there is sufficient space in the request queue
1348 * and Tx Data FIFO.
1349 *
1350 * For an OUT transfer in Slave mode, it loads a data packet into the
1351 * appropriate FIFO. If necessary, additional data packets are loaded in the
1352 * Host ISR.
1353 *
1354 * For an IN transfer in Slave mode, a data packet is requested. The data
1355 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1356 * additional data packets are requested in the Host ISR.
1357 *
1358 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1359 * register along with a packet count of 1 and the channel is enabled. This
1360 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1361 * simply set to 0 since no data transfer occurs in this case.
1362 *
1363 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1364 * all the information required to perform the subsequent data transfer. In
1365 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1366 * controller performs the entire PING protocol, then starts the data
1367 * transfer.
1368 */
1369static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1370 struct dwc2_host_chan *chan)
1371{
1372 u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1373 u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1374 u32 hcchar;
1375 u32 hctsiz = 0;
1376 u16 num_packets;
1377 u32 ec_mc;
1378
1379 if (dbg_hc(chan))
1380 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1381
1382 if (chan->do_ping) {
1383 if (hsotg->params.host_dma <= 0) {
1384 if (dbg_hc(chan))
1385 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1386 dwc2_hc_do_ping(hsotg, chan);
1387 chan->xfer_started = 1;
1388 return;
1389 }
1390
1391 if (dbg_hc(chan))
1392 dev_vdbg(hsotg->dev, "ping, DMA\n");
1393
1394 hctsiz |= TSIZ_DOPNG;
1395 }
1396
1397 if (chan->do_split) {
1398 if (dbg_hc(chan))
1399 dev_vdbg(hsotg->dev, "split\n");
1400 num_packets = 1;
1401
1402 if (chan->complete_split && !chan->ep_is_in)
1403 /*
1404 * For CSPLIT OUT Transfer, set the size to 0 so the
1405 * core doesn't expect any data written to the FIFO
1406 */
1407 chan->xfer_len = 0;
1408 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1409 chan->xfer_len = chan->max_packet;
1410 else if (!chan->ep_is_in && chan->xfer_len > 188)
1411 chan->xfer_len = 188;
1412
1413 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1414 TSIZ_XFERSIZE_MASK;
1415
1416 /* For split set ec_mc for immediate retries */
1417 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1418 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1419 ec_mc = 3;
1420 else
1421 ec_mc = 1;
1422 } else {
1423 if (dbg_hc(chan))
1424 dev_vdbg(hsotg->dev, "no split\n");
1425 /*
1426 * Ensure that the transfer length and packet count will fit
1427 * in the widths allocated for them in the HCTSIZn register
1428 */
1429 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1430 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1431 /*
1432 * Make sure the transfer size is no larger than one
1433 * (micro)frame's worth of data. (A check was done
1434 * when the periodic transfer was accepted to ensure
1435 * that a (micro)frame's worth of data can be
1436 * programmed into a channel.)
1437 */
1438 u32 max_periodic_len =
1439 chan->multi_count * chan->max_packet;
1440
1441 if (chan->xfer_len > max_periodic_len)
1442 chan->xfer_len = max_periodic_len;
1443 } else if (chan->xfer_len > max_hc_xfer_size) {
1444 /*
1445 * Make sure that xfer_len is a multiple of max packet
1446 * size
1447 */
1448 chan->xfer_len =
1449 max_hc_xfer_size - chan->max_packet + 1;
1450 }
1451
1452 if (chan->xfer_len > 0) {
1453 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1454 chan->max_packet;
1455 if (num_packets > max_hc_pkt_count) {
1456 num_packets = max_hc_pkt_count;
1457 chan->xfer_len = num_packets * chan->max_packet;
1458 }
1459 } else {
1460 /* Need 1 packet for transfer length of 0 */
1461 num_packets = 1;
1462 }
1463
1464 if (chan->ep_is_in)
1465 /*
1466 * Always program an integral # of max packets for IN
1467 * transfers
1468 */
1469 chan->xfer_len = num_packets * chan->max_packet;
1470
1471 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1472 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1473 /*
1474 * Make sure that the multi_count field matches the
1475 * actual transfer length
1476 */
1477 chan->multi_count = num_packets;
1478
1479 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1480 dwc2_set_pid_isoc(chan);
1481
1482 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1483 TSIZ_XFERSIZE_MASK;
1484
1485 /* The ec_mc gets the multi_count for non-split */
1486 ec_mc = chan->multi_count;
1487 }
1488
1489 chan->start_pkt_count = num_packets;
1490 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1491 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1492 TSIZ_SC_MC_PID_MASK;
1493 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1494 if (dbg_hc(chan)) {
1495 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1496 hctsiz, chan->hc_num);
1497
1498 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1499 chan->hc_num);
1500 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
1501 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1502 TSIZ_XFERSIZE_SHIFT);
1503 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
1504 (hctsiz & TSIZ_PKTCNT_MASK) >>
1505 TSIZ_PKTCNT_SHIFT);
1506 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1507 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1508 TSIZ_SC_MC_PID_SHIFT);
1509 }
1510
1511 if (hsotg->params.host_dma > 0) {
1512 dwc2_writel((u32)chan->xfer_dma,
1513 hsotg->regs + HCDMA(chan->hc_num));
1514 if (dbg_hc(chan))
1515 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1516 (unsigned long)chan->xfer_dma, chan->hc_num);
1517 }
1518
1519 /* Start the split */
1520 if (chan->do_split) {
1521 u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1522
1523 hcsplt |= HCSPLT_SPLTENA;
1524 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1525 }
1526
1527 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1528 hcchar &= ~HCCHAR_MULTICNT_MASK;
1529 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1530 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1531
1532 if (hcchar & HCCHAR_CHDIS)
1533 dev_warn(hsotg->dev,
1534 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1535 __func__, chan->hc_num, hcchar);
1536
1537 /* Set host channel enable after all other setup is complete */
1538 hcchar |= HCCHAR_CHENA;
1539 hcchar &= ~HCCHAR_CHDIS;
1540
1541 if (dbg_hc(chan))
1542 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1543 (hcchar & HCCHAR_MULTICNT_MASK) >>
1544 HCCHAR_MULTICNT_SHIFT);
1545
1546 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1547 if (dbg_hc(chan))
1548 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1549 chan->hc_num);
1550
1551 chan->xfer_started = 1;
1552 chan->requests++;
1553
1554 if (hsotg->params.host_dma <= 0 &&
1555 !chan->ep_is_in && chan->xfer_len > 0)
1556 /* Load OUT packet into the appropriate Tx FIFO */
1557 dwc2_hc_write_packet(hsotg, chan);
1558}
1559
1560/**
1561 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1562 * host channel and starts the transfer in Descriptor DMA mode
1563 *
1564 * @hsotg: Programming view of DWC_otg controller
1565 * @chan: Information needed to initialize the host channel
1566 *
1567 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1568 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1569 * with micro-frame bitmap.
1570 *
1571 * Initializes HCDMA register with descriptor list address and CTD value then
1572 * starts the transfer via enabling the channel.
1573 */
1574void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1575 struct dwc2_host_chan *chan)
1576{
1577 u32 hcchar;
1578 u32 hctsiz = 0;
1579
1580 if (chan->do_ping)
1581 hctsiz |= TSIZ_DOPNG;
1582
1583 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1584 dwc2_set_pid_isoc(chan);
1585
1586 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1587 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1588 TSIZ_SC_MC_PID_MASK;
1589
1590 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1591 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1592
1593 /* Non-zero only for high-speed interrupt endpoints */
1594 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1595
1596 if (dbg_hc(chan)) {
1597 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1598 chan->hc_num);
1599 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1600 chan->data_pid_start);
1601 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
1602 }
1603
1604 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1605
1606 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1607 chan->desc_list_sz, DMA_TO_DEVICE);
1608
1609 dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1610
1611 if (dbg_hc(chan))
1612 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1613 &chan->desc_list_addr, chan->hc_num);
1614
1615 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1616 hcchar &= ~HCCHAR_MULTICNT_MASK;
1617 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1618 HCCHAR_MULTICNT_MASK;
1619
1620 if (hcchar & HCCHAR_CHDIS)
1621 dev_warn(hsotg->dev,
1622 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1623 __func__, chan->hc_num, hcchar);
1624
1625 /* Set host channel enable after all other setup is complete */
1626 hcchar |= HCCHAR_CHENA;
1627 hcchar &= ~HCCHAR_CHDIS;
1628
1629 if (dbg_hc(chan))
1630 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1631 (hcchar & HCCHAR_MULTICNT_MASK) >>
1632 HCCHAR_MULTICNT_SHIFT);
1633
1634 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1635 if (dbg_hc(chan))
1636 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1637 chan->hc_num);
1638
1639 chan->xfer_started = 1;
1640 chan->requests++;
1641}
1642
1643/**
1644 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1645 * a previous call to dwc2_hc_start_transfer()
1646 *
1647 * @hsotg: Programming view of DWC_otg controller
1648 * @chan: Information needed to initialize the host channel
1649 *
1650 * The caller must ensure there is sufficient space in the request queue and Tx
1651 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1652 * the controller acts autonomously to complete transfers programmed to a host
1653 * channel.
1654 *
1655 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1656 * if there is any data remaining to be queued. For an IN transfer, another
1657 * data packet is always requested. For the SETUP phase of a control transfer,
1658 * this function does nothing.
1659 *
1660 * Return: 1 if a new request is queued, 0 if no more requests are required
1661 * for this transfer
1662 */
1663static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1664 struct dwc2_host_chan *chan)
1665{
1666 if (dbg_hc(chan))
1667 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1668 chan->hc_num);
1669
1670 if (chan->do_split)
1671 /* SPLITs always queue just once per channel */
1672 return 0;
1673
1674 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1675 /* SETUPs are queued only once since they can't be NAK'd */
1676 return 0;
1677
1678 if (chan->ep_is_in) {
1679 /*
1680 * Always queue another request for other IN transfers. If
1681 * back-to-back INs are issued and NAKs are received for both,
1682 * the driver may still be processing the first NAK when the
1683 * second NAK is received. When the interrupt handler clears
1684 * the NAK interrupt for the first NAK, the second NAK will
1685 * not be seen. So we can't depend on the NAK interrupt
1686 * handler to requeue a NAK'd request. Instead, IN requests
1687 * are issued each time this function is called. When the
1688 * transfer completes, the extra requests for the channel will
1689 * be flushed.
1690 */
1691 u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1692
1693 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1694 hcchar |= HCCHAR_CHENA;
1695 hcchar &= ~HCCHAR_CHDIS;
1696 if (dbg_hc(chan))
1697 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
1698 hcchar);
1699 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1700 chan->requests++;
1701 return 1;
1702 }
1703
1704 /* OUT transfers */
1705
1706 if (chan->xfer_count < chan->xfer_len) {
1707 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1708 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1709 u32 hcchar = dwc2_readl(hsotg->regs +
1710 HCCHAR(chan->hc_num));
1711
1712 dwc2_hc_set_even_odd_frame(hsotg, chan,
1713 &hcchar);
1714 }
1715
1716 /* Load OUT packet into the appropriate Tx FIFO */
1717 dwc2_hc_write_packet(hsotg, chan);
1718 chan->requests++;
1719 return 1;
1720 }
1721
1722 return 0;
1723}
1724
1725/*
1726 * =========================================================================
1727 * HCD
1728 * =========================================================================
1729 */
1730
1731/*
1732 * Processes all the URBs in a single list of QHs. Completes them with
1733 * -ETIMEDOUT and frees the QTD.
1734 *
1735 * Must be called with interrupt disabled and spinlock held
1736 */
1737static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1738 struct list_head *qh_list)
1739{
1740 struct dwc2_qh *qh, *qh_tmp;
1741 struct dwc2_qtd *qtd, *qtd_tmp;
1742
1743 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1744 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1745 qtd_list_entry) {
1746 dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1747 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1748 }
1749 }
1750}
1751
1752static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1753 struct list_head *qh_list)
1754{
1755 struct dwc2_qtd *qtd, *qtd_tmp;
1756 struct dwc2_qh *qh, *qh_tmp;
1757 unsigned long flags;
1758
1759 if (!qh_list->next)
1760 /* The list hasn't been initialized yet */
1761 return;
1762
1763 spin_lock_irqsave(&hsotg->lock, flags);
1764
1765 /* Ensure there are no QTDs or URBs left */
1766 dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1767
1768 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1769 dwc2_hcd_qh_unlink(hsotg, qh);
1770
1771 /* Free each QTD in the QH's QTD list */
1772 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1773 qtd_list_entry)
1774 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1775
1776 if (qh->channel && qh->channel->qh == qh)
1777 qh->channel->qh = NULL;
1778
1779 spin_unlock_irqrestore(&hsotg->lock, flags);
1780 dwc2_hcd_qh_free(hsotg, qh);
1781 spin_lock_irqsave(&hsotg->lock, flags);
1782 }
1783
1784 spin_unlock_irqrestore(&hsotg->lock, flags);
1785}
1786
1787/*
1788 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1789 * and periodic schedules. The QTD associated with each URB is removed from
1790 * the schedule and freed. This function may be called when a disconnect is
1791 * detected or when the HCD is being stopped.
1792 *
1793 * Must be called with interrupt disabled and spinlock held
1794 */
1795static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1796{
1797 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1798 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1799 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1800 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1801 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1802 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1803}
1804
1805/**
1806 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1807 *
1808 * @hsotg: Pointer to struct dwc2_hsotg
1809 */
1810void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1811{
1812 u32 hprt0;
1813
1814 if (hsotg->op_state == OTG_STATE_B_HOST) {
1815 /*
1816 * Reset the port. During a HNP mode switch the reset
1817 * needs to occur within 1ms and have a duration of at
1818 * least 50ms.
1819 */
1820 hprt0 = dwc2_read_hprt0(hsotg);
1821 hprt0 |= HPRT0_RST;
1822 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1823 }
1824
1825 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1826 msecs_to_jiffies(50));
1827}
1828
1829/* Must be called with interrupt disabled and spinlock held */
1830static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1831{
1832 int num_channels = hsotg->params.host_channels;
1833 struct dwc2_host_chan *channel;
1834 u32 hcchar;
1835 int i;
1836
1837 if (hsotg->params.host_dma <= 0) {
1838 /* Flush out any channel requests in slave mode */
1839 for (i = 0; i < num_channels; i++) {
1840 channel = hsotg->hc_ptr_array[i];
1841 if (!list_empty(&channel->hc_list_entry))
1842 continue;
1843 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1844 if (hcchar & HCCHAR_CHENA) {
1845 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1846 hcchar |= HCCHAR_CHDIS;
1847 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1848 }
1849 }
1850 }
1851
1852 for (i = 0; i < num_channels; i++) {
1853 channel = hsotg->hc_ptr_array[i];
1854 if (!list_empty(&channel->hc_list_entry))
1855 continue;
1856 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1857 if (hcchar & HCCHAR_CHENA) {
1858 /* Halt the channel */
1859 hcchar |= HCCHAR_CHDIS;
1860 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1861 }
1862
1863 dwc2_hc_cleanup(hsotg, channel);
1864 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1865 /*
1866 * Added for Descriptor DMA to prevent channel double cleanup in
1867 * release_channel_ddma(), which is called from ep_disable when
1868 * device disconnects
1869 */
1870 channel->qh = NULL;
1871 }
1872 /* All channels have been freed, mark them available */
1873 if (hsotg->params.uframe_sched > 0) {
1874 hsotg->available_host_channels =
1875 hsotg->params.host_channels;
1876 } else {
1877 hsotg->non_periodic_channels = 0;
1878 hsotg->periodic_channels = 0;
1879 }
1880}
1881
1882/**
1883 * dwc2_hcd_connect() - Handles connect of the HCD
1884 *
1885 * @hsotg: Pointer to struct dwc2_hsotg
1886 *
1887 * Must be called with interrupt disabled and spinlock held
1888 */
1889void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1890{
1891 if (hsotg->lx_state != DWC2_L0)
1892 usb_hcd_resume_root_hub(hsotg->priv);
1893
1894 hsotg->flags.b.port_connect_status_change = 1;
1895 hsotg->flags.b.port_connect_status = 1;
1896}
1897
1898/**
1899 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1900 *
1901 * @hsotg: Pointer to struct dwc2_hsotg
1902 * @force: If true, we won't try to reconnect even if we see device connected.
1903 *
1904 * Must be called with interrupt disabled and spinlock held
1905 */
1906void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1907{
1908 u32 intr;
1909 u32 hprt0;
1910
1911 /* Set status flags for the hub driver */
1912 hsotg->flags.b.port_connect_status_change = 1;
1913 hsotg->flags.b.port_connect_status = 0;
1914
1915 /*
1916 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1917 * interrupt mask and status bits and disabling subsequent host
1918 * channel interrupts.
1919 */
1920 intr = dwc2_readl(hsotg->regs + GINTMSK);
1921 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1922 dwc2_writel(intr, hsotg->regs + GINTMSK);
1923 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1924 dwc2_writel(intr, hsotg->regs + GINTSTS);
1925
1926 /*
1927 * Turn off the vbus power only if the core has transitioned to device
1928 * mode. If still in host mode, need to keep power on to detect a
1929 * reconnection.
1930 */
1931 if (dwc2_is_device_mode(hsotg)) {
1932 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1933 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1934 dwc2_writel(0, hsotg->regs + HPRT0);
1935 }
1936
1937 dwc2_disable_host_interrupts(hsotg);
1938 }
1939
1940 /* Respond with an error status to all URBs in the schedule */
1941 dwc2_kill_all_urbs(hsotg);
1942
1943 if (dwc2_is_host_mode(hsotg))
1944 /* Clean up any host channels that were in use */
1945 dwc2_hcd_cleanup_channels(hsotg);
1946
1947 dwc2_host_disconnect(hsotg);
1948
1949 /*
1950 * Add an extra check here to see if we're actually connected but
1951 * we don't have a detection interrupt pending. This can happen if:
1952 * 1. hardware sees connect
1953 * 2. hardware sees disconnect
1954 * 3. hardware sees connect
1955 * 4. dwc2_port_intr() - clears connect interrupt
1956 * 5. dwc2_handle_common_intr() - calls here
1957 *
1958 * Without the extra check here we will end calling disconnect
1959 * and won't get any future interrupts to handle the connect.
1960 */
1961 if (!force) {
1962 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
1963 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1964 dwc2_hcd_connect(hsotg);
1965 }
1966}
1967
1968/**
1969 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1970 *
1971 * @hsotg: Pointer to struct dwc2_hsotg
1972 */
1973static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1974{
1975 if (hsotg->bus_suspended) {
1976 hsotg->flags.b.port_suspend_change = 1;
1977 usb_hcd_resume_root_hub(hsotg->priv);
1978 }
1979
1980 if (hsotg->lx_state == DWC2_L1)
1981 hsotg->flags.b.port_l1_change = 1;
1982}
1983
1984/**
1985 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1986 *
1987 * @hsotg: Pointer to struct dwc2_hsotg
1988 *
1989 * Must be called with interrupt disabled and spinlock held
1990 */
1991void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1992{
1993 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1994
1995 /*
1996 * The root hub should be disconnected before this function is called.
1997 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1998 * and the QH lists (via ..._hcd_endpoint_disable).
1999 */
2000
2001 /* Turn off all host-specific interrupts */
2002 dwc2_disable_host_interrupts(hsotg);
2003
2004 /* Turn off the vbus power */
2005 dev_dbg(hsotg->dev, "PortPower off\n");
2006 dwc2_writel(0, hsotg->regs + HPRT0);
2007}
2008
2009/* Caller must hold driver lock */
2010static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
2011 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
2012 struct dwc2_qtd *qtd)
2013{
2014 u32 intr_mask;
2015 int retval;
2016 int dev_speed;
2017
2018 if (!hsotg->flags.b.port_connect_status) {
2019 /* No longer connected */
2020 dev_err(hsotg->dev, "Not connected\n");
2021 return -ENODEV;
2022 }
2023
2024 dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
2025
2026 /* Some configurations cannot support LS traffic on a FS root port */
2027 if ((dev_speed == USB_SPEED_LOW) &&
2028 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
2029 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2030 u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2031 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2032
2033 if (prtspd == HPRT0_SPD_FULL_SPEED)
2034 return -ENODEV;
2035 }
2036
2037 if (!qtd)
2038 return -EINVAL;
2039
2040 dwc2_hcd_qtd_init(qtd, urb);
2041 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2042 if (retval) {
2043 dev_err(hsotg->dev,
2044 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2045 retval);
2046 return retval;
2047 }
2048
2049 intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
2050 if (!(intr_mask & GINTSTS_SOF)) {
2051 enum dwc2_transaction_type tr_type;
2052
2053 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2054 !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2055 /*
2056 * Do not schedule SG transactions until qtd has
2057 * URB_GIVEBACK_ASAP set
2058 */
2059 return 0;
2060
2061 tr_type = dwc2_hcd_select_transactions(hsotg);
2062 if (tr_type != DWC2_TRANSACTION_NONE)
2063 dwc2_hcd_queue_transactions(hsotg, tr_type);
2064 }
2065
2066 return 0;
2067}
2068
2069/* Must be called with interrupt disabled and spinlock held */
2070static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2071 struct dwc2_hcd_urb *urb)
2072{
2073 struct dwc2_qh *qh;
2074 struct dwc2_qtd *urb_qtd;
2075
2076 urb_qtd = urb->qtd;
2077 if (!urb_qtd) {
2078 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2079 return -EINVAL;
2080 }
2081
2082 qh = urb_qtd->qh;
2083 if (!qh) {
2084 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2085 return -EINVAL;
2086 }
2087
2088 urb->priv = NULL;
2089
2090 if (urb_qtd->in_process && qh->channel) {
2091 dwc2_dump_channel_info(hsotg, qh->channel);
2092
2093 /* The QTD is in process (it has been assigned to a channel) */
2094 if (hsotg->flags.b.port_connect_status)
2095 /*
2096 * If still connected (i.e. in host mode), halt the
2097 * channel so it can be used for other transfers. If
2098 * no longer connected, the host registers can't be
2099 * written to halt the channel since the core is in
2100 * device mode.
2101 */
2102 dwc2_hc_halt(hsotg, qh->channel,
2103 DWC2_HC_XFER_URB_DEQUEUE);
2104 }
2105
2106 /*
2107 * Free the QTD and clean up the associated QH. Leave the QH in the
2108 * schedule if it has any remaining QTDs.
2109 */
2110 if (hsotg->params.dma_desc_enable <= 0) {
2111 u8 in_process = urb_qtd->in_process;
2112
2113 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2114 if (in_process) {
2115 dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2116 qh->channel = NULL;
2117 } else if (list_empty(&qh->qtd_list)) {
2118 dwc2_hcd_qh_unlink(hsotg, qh);
2119 }
2120 } else {
2121 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2122 }
2123
2124 return 0;
2125}
2126
2127/* Must NOT be called with interrupt disabled or spinlock held */
2128static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2129 struct usb_host_endpoint *ep, int retry)
2130{
2131 struct dwc2_qtd *qtd, *qtd_tmp;
2132 struct dwc2_qh *qh;
2133 unsigned long flags;
2134 int rc;
2135
2136 spin_lock_irqsave(&hsotg->lock, flags);
2137
2138 qh = ep->hcpriv;
2139 if (!qh) {
2140 rc = -EINVAL;
2141 goto err;
2142 }
2143
2144 while (!list_empty(&qh->qtd_list) && retry--) {
2145 if (retry == 0) {
2146 dev_err(hsotg->dev,
2147 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2148 rc = -EBUSY;
2149 goto err;
2150 }
2151
2152 spin_unlock_irqrestore(&hsotg->lock, flags);
2153 usleep_range(20000, 40000);
2154 spin_lock_irqsave(&hsotg->lock, flags);
2155 qh = ep->hcpriv;
2156 if (!qh) {
2157 rc = -EINVAL;
2158 goto err;
2159 }
2160 }
2161
2162 dwc2_hcd_qh_unlink(hsotg, qh);
2163
2164 /* Free each QTD in the QH's QTD list */
2165 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2166 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2167
2168 ep->hcpriv = NULL;
2169
2170 if (qh->channel && qh->channel->qh == qh)
2171 qh->channel->qh = NULL;
2172
2173 spin_unlock_irqrestore(&hsotg->lock, flags);
2174
2175 dwc2_hcd_qh_free(hsotg, qh);
2176
2177 return 0;
2178
2179err:
2180 ep->hcpriv = NULL;
2181 spin_unlock_irqrestore(&hsotg->lock, flags);
2182
2183 return rc;
2184}
2185
2186/* Must be called with interrupt disabled and spinlock held */
2187static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2188 struct usb_host_endpoint *ep)
2189{
2190 struct dwc2_qh *qh = ep->hcpriv;
2191
2192 if (!qh)
2193 return -EINVAL;
2194
2195 qh->data_toggle = DWC2_HC_PID_DATA0;
2196
2197 return 0;
2198}
2199
2200/**
2201 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2202 * prepares the core for device mode or host mode operation
2203 *
2204 * @hsotg: Programming view of the DWC_otg controller
2205 * @initial_setup: If true then this is the first init for this instance.
2206 */
2207static int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2208{
2209 u32 usbcfg, otgctl;
2210 int retval;
2211
2212 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2213
2214 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2215
2216 /* Set ULPI External VBUS bit if needed */
2217 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2218 if (hsotg->params.phy_ulpi_ext_vbus ==
2219 DWC2_PHY_ULPI_EXTERNAL_VBUS)
2220 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2221
2222 /* Set external TS Dline pulsing bit if needed */
2223 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2224 if (hsotg->params.ts_dline > 0)
2225 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2226
2227 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2228
2229 /*
2230 * Reset the Controller
2231 *
2232 * We only need to reset the controller if this is a re-init.
2233 * For the first init we know for sure that earlier code reset us (it
2234 * needed to in order to properly detect various parameters).
2235 */
2236 if (!initial_setup) {
2237 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
2238 if (retval) {
2239 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2240 __func__);
2241 return retval;
2242 }
2243 }
2244
2245 /*
2246 * This needs to happen in FS mode before any other programming occurs
2247 */
2248 retval = dwc2_phy_init(hsotg, initial_setup);
2249 if (retval)
2250 return retval;
2251
2252 /* Program the GAHBCFG Register */
2253 retval = dwc2_gahbcfg_init(hsotg);
2254 if (retval)
2255 return retval;
2256
2257 /* Program the GUSBCFG register */
2258 dwc2_gusbcfg_init(hsotg);
2259
2260 /* Program the GOTGCTL register */
2261 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2262 otgctl &= ~GOTGCTL_OTGVER;
2263 if (hsotg->params.otg_ver > 0)
2264 otgctl |= GOTGCTL_OTGVER;
2265 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2266 dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->params.otg_ver);
2267
2268 /* Clear the SRP success bit for FS-I2c */
2269 hsotg->srp_success = 0;
2270
2271 /* Enable common interrupts */
2272 dwc2_enable_common_interrupts(hsotg);
2273
2274 /*
2275 * Do device or host initialization based on mode during PCD and
2276 * HCD initialization
2277 */
2278 if (dwc2_is_host_mode(hsotg)) {
2279 dev_dbg(hsotg->dev, "Host Mode\n");
2280 hsotg->op_state = OTG_STATE_A_HOST;
2281 } else {
2282 dev_dbg(hsotg->dev, "Device Mode\n");
2283 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2284 }
2285
2286 return 0;
2287}
2288
2289/**
2290 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2291 * Host mode
2292 *
2293 * @hsotg: Programming view of DWC_otg controller
2294 *
2295 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2296 * request queues. Host channels are reset to ensure that they are ready for
2297 * performing transfers.
2298 */
2299static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2300{
2301 u32 hcfg, hfir, otgctl;
2302
2303 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2304
2305 /* Restart the Phy Clock */
2306 dwc2_writel(0, hsotg->regs + PCGCTL);
2307
2308 /* Initialize Host Configuration Register */
2309 dwc2_init_fs_ls_pclk_sel(hsotg);
2310 if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2311 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2312 hcfg = dwc2_readl(hsotg->regs + HCFG);
2313 hcfg |= HCFG_FSLSSUPP;
2314 dwc2_writel(hcfg, hsotg->regs + HCFG);
2315 }
2316
2317 /*
2318 * This bit allows dynamic reloading of the HFIR register during
2319 * runtime. This bit needs to be programmed during initial configuration
2320 * and its value must not be changed during runtime.
2321 */
2322 if (hsotg->params.reload_ctl > 0) {
2323 hfir = dwc2_readl(hsotg->regs + HFIR);
2324 hfir |= HFIR_RLDCTRL;
2325 dwc2_writel(hfir, hsotg->regs + HFIR);
2326 }
2327
2328 if (hsotg->params.dma_desc_enable > 0) {
2329 u32 op_mode = hsotg->hw_params.op_mode;
2330
2331 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2332 !hsotg->hw_params.dma_desc_enable ||
2333 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2334 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2335 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2336 dev_err(hsotg->dev,
2337 "Hardware does not support descriptor DMA mode -\n");
2338 dev_err(hsotg->dev,
2339 "falling back to buffer DMA mode.\n");
2340 hsotg->params.dma_desc_enable = 0;
2341 } else {
2342 hcfg = dwc2_readl(hsotg->regs + HCFG);
2343 hcfg |= HCFG_DESCDMA;
2344 dwc2_writel(hcfg, hsotg->regs + HCFG);
2345 }
2346 }
2347
2348 /* Configure data FIFO sizes */
2349 dwc2_config_fifos(hsotg);
2350
2351 /* TODO - check this */
2352 /* Clear Host Set HNP Enable in the OTG Control Register */
2353 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2354 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2355 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2356
2357 /* Make sure the FIFOs are flushed */
2358 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2359 dwc2_flush_rx_fifo(hsotg);
2360
2361 /* Clear Host Set HNP Enable in the OTG Control Register */
2362 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2363 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2364 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2365
2366 if (hsotg->params.dma_desc_enable <= 0) {
2367 int num_channels, i;
2368 u32 hcchar;
2369
2370 /* Flush out any leftover queued requests */
2371 num_channels = hsotg->params.host_channels;
2372 for (i = 0; i < num_channels; i++) {
2373 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2374 hcchar &= ~HCCHAR_CHENA;
2375 hcchar |= HCCHAR_CHDIS;
2376 hcchar &= ~HCCHAR_EPDIR;
2377 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2378 }
2379
2380 /* Halt all channels to put them into a known state */
2381 for (i = 0; i < num_channels; i++) {
2382 int count = 0;
2383
2384 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2385 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2386 hcchar &= ~HCCHAR_EPDIR;
2387 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2388 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2389 __func__, i);
2390 do {
2391 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2392 if (++count > 1000) {
2393 dev_err(hsotg->dev,
2394 "Unable to clear enable on channel %d\n",
2395 i);
2396 break;
2397 }
2398 udelay(1);
2399 } while (hcchar & HCCHAR_CHENA);
2400 }
2401 }
2402
2403 /* Turn on the vbus power */
2404 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2405 if (hsotg->op_state == OTG_STATE_A_HOST) {
2406 u32 hprt0 = dwc2_read_hprt0(hsotg);
2407
2408 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2409 !!(hprt0 & HPRT0_PWR));
2410 if (!(hprt0 & HPRT0_PWR)) {
2411 hprt0 |= HPRT0_PWR;
2412 dwc2_writel(hprt0, hsotg->regs + HPRT0);
2413 }
2414 }
2415
2416 dwc2_enable_host_interrupts(hsotg);
2417}
2418
2419/*
2420 * Initializes dynamic portions of the DWC_otg HCD state
2421 *
2422 * Must be called with interrupt disabled and spinlock held
2423 */
2424static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2425{
2426 struct dwc2_host_chan *chan, *chan_tmp;
2427 int num_channels;
2428 int i;
2429
2430 hsotg->flags.d32 = 0;
2431 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2432
2433 if (hsotg->params.uframe_sched > 0) {
2434 hsotg->available_host_channels =
2435 hsotg->params.host_channels;
2436 } else {
2437 hsotg->non_periodic_channels = 0;
2438 hsotg->periodic_channels = 0;
2439 }
2440
2441 /*
2442 * Put all channels in the free channel list and clean up channel
2443 * states
2444 */
2445 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2446 hc_list_entry)
2447 list_del_init(&chan->hc_list_entry);
2448
2449 num_channels = hsotg->params.host_channels;
2450 for (i = 0; i < num_channels; i++) {
2451 chan = hsotg->hc_ptr_array[i];
2452 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2453 dwc2_hc_cleanup(hsotg, chan);
2454 }
2455
2456 /* Initialize the DWC core for host mode operation */
2457 dwc2_core_host_init(hsotg);
2458}
2459
2460static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2461 struct dwc2_host_chan *chan,
2462 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2463{
2464 int hub_addr, hub_port;
2465
2466 chan->do_split = 1;
2467 chan->xact_pos = qtd->isoc_split_pos;
2468 chan->complete_split = qtd->complete_split;
2469 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2470 chan->hub_addr = (u8)hub_addr;
2471 chan->hub_port = (u8)hub_port;
2472}
2473
2474static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2475 struct dwc2_host_chan *chan,
2476 struct dwc2_qtd *qtd)
2477{
2478 struct dwc2_hcd_urb *urb = qtd->urb;
2479 struct dwc2_hcd_iso_packet_desc *frame_desc;
2480
2481 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2482 case USB_ENDPOINT_XFER_CONTROL:
2483 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2484
2485 switch (qtd->control_phase) {
2486 case DWC2_CONTROL_SETUP:
2487 dev_vdbg(hsotg->dev, " Control setup transaction\n");
2488 chan->do_ping = 0;
2489 chan->ep_is_in = 0;
2490 chan->data_pid_start = DWC2_HC_PID_SETUP;
2491 if (hsotg->params.host_dma > 0)
2492 chan->xfer_dma = urb->setup_dma;
2493 else
2494 chan->xfer_buf = urb->setup_packet;
2495 chan->xfer_len = 8;
2496 break;
2497
2498 case DWC2_CONTROL_DATA:
2499 dev_vdbg(hsotg->dev, " Control data transaction\n");
2500 chan->data_pid_start = qtd->data_toggle;
2501 break;
2502
2503 case DWC2_CONTROL_STATUS:
2504 /*
2505 * Direction is opposite of data direction or IN if no
2506 * data
2507 */
2508 dev_vdbg(hsotg->dev, " Control status transaction\n");
2509 if (urb->length == 0)
2510 chan->ep_is_in = 1;
2511 else
2512 chan->ep_is_in =
2513 dwc2_hcd_is_pipe_out(&urb->pipe_info);
2514 if (chan->ep_is_in)
2515 chan->do_ping = 0;
2516 chan->data_pid_start = DWC2_HC_PID_DATA1;
2517 chan->xfer_len = 0;
2518 if (hsotg->params.host_dma > 0)
2519 chan->xfer_dma = hsotg->status_buf_dma;
2520 else
2521 chan->xfer_buf = hsotg->status_buf;
2522 break;
2523 }
2524 break;
2525
2526 case USB_ENDPOINT_XFER_BULK:
2527 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2528 break;
2529
2530 case USB_ENDPOINT_XFER_INT:
2531 chan->ep_type = USB_ENDPOINT_XFER_INT;
2532 break;
2533
2534 case USB_ENDPOINT_XFER_ISOC:
2535 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2536 if (hsotg->params.dma_desc_enable > 0)
2537 break;
2538
2539 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2540 frame_desc->status = 0;
2541
2542 if (hsotg->params.host_dma > 0) {
2543 chan->xfer_dma = urb->dma;
2544 chan->xfer_dma += frame_desc->offset +
2545 qtd->isoc_split_offset;
2546 } else {
2547 chan->xfer_buf = urb->buf;
2548 chan->xfer_buf += frame_desc->offset +
2549 qtd->isoc_split_offset;
2550 }
2551
2552 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2553
2554 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2555 if (chan->xfer_len <= 188)
2556 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2557 else
2558 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2559 }
2560 break;
2561 }
2562}
2563
2564#define DWC2_USB_DMA_ALIGN 4
2565
2566struct dma_aligned_buffer {
2567 void *kmalloc_ptr;
2568 void *old_xfer_buffer;
2569 u8 data[0];
2570};
2571
2572static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2573{
2574 struct dma_aligned_buffer *temp;
2575
2576 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2577 return;
2578
2579 temp = container_of(urb->transfer_buffer,
2580 struct dma_aligned_buffer, data);
2581
2582 if (usb_urb_dir_in(urb))
2583 memcpy(temp->old_xfer_buffer, temp->data,
2584 urb->transfer_buffer_length);
2585 urb->transfer_buffer = temp->old_xfer_buffer;
2586 kfree(temp->kmalloc_ptr);
2587
2588 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2589}
2590
2591static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2592{
2593 struct dma_aligned_buffer *temp, *kmalloc_ptr;
2594 size_t kmalloc_size;
2595
2596 if (urb->num_sgs || urb->sg ||
2597 urb->transfer_buffer_length == 0 ||
2598 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2599 return 0;
2600
2601 /* Allocate a buffer with enough padding for alignment */
2602 kmalloc_size = urb->transfer_buffer_length +
2603 sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1;
2604
2605 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2606 if (!kmalloc_ptr)
2607 return -ENOMEM;
2608
2609 /* Position our struct dma_aligned_buffer such that data is aligned */
2610 temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1;
2611 temp->kmalloc_ptr = kmalloc_ptr;
2612 temp->old_xfer_buffer = urb->transfer_buffer;
2613 if (usb_urb_dir_out(urb))
2614 memcpy(temp->data, urb->transfer_buffer,
2615 urb->transfer_buffer_length);
2616 urb->transfer_buffer = temp->data;
2617
2618 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2619
2620 return 0;
2621}
2622
2623static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2624 gfp_t mem_flags)
2625{
2626 int ret;
2627
2628 /* We assume setup_dma is always aligned; warn if not */
2629 WARN_ON_ONCE(urb->setup_dma &&
2630 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2631
2632 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2633 if (ret)
2634 return ret;
2635
2636 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2637 if (ret)
2638 dwc2_free_dma_aligned_buffer(urb);
2639
2640 return ret;
2641}
2642
2643static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2644{
2645 usb_hcd_unmap_urb_for_dma(hcd, urb);
2646 dwc2_free_dma_aligned_buffer(urb);
2647}
2648
2649/**
2650 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2651 * channel and initializes the host channel to perform the transactions. The
2652 * host channel is removed from the free list.
2653 *
2654 * @hsotg: The HCD state structure
2655 * @qh: Transactions from the first QTD for this QH are selected and assigned
2656 * to a free host channel
2657 */
2658static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2659{
2660 struct dwc2_host_chan *chan;
2661 struct dwc2_hcd_urb *urb;
2662 struct dwc2_qtd *qtd;
2663
2664 if (dbg_qh(qh))
2665 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2666
2667 if (list_empty(&qh->qtd_list)) {
2668 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2669 return -ENOMEM;
2670 }
2671
2672 if (list_empty(&hsotg->free_hc_list)) {
2673 dev_dbg(hsotg->dev, "No free channel to assign\n");
2674 return -ENOMEM;
2675 }
2676
2677 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2678 hc_list_entry);
2679
2680 /* Remove host channel from free list */
2681 list_del_init(&chan->hc_list_entry);
2682
2683 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2684 urb = qtd->urb;
2685 qh->channel = chan;
2686 qtd->in_process = 1;
2687
2688 /*
2689 * Use usb_pipedevice to determine device address. This address is
2690 * 0 before the SET_ADDRESS command and the correct address afterward.
2691 */
2692 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2693 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2694 chan->speed = qh->dev_speed;
2695 chan->max_packet = dwc2_max_packet(qh->maxp);
2696
2697 chan->xfer_started = 0;
2698 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2699 chan->error_state = (qtd->error_count > 0);
2700 chan->halt_on_queue = 0;
2701 chan->halt_pending = 0;
2702 chan->requests = 0;
2703
2704 /*
2705 * The following values may be modified in the transfer type section
2706 * below. The xfer_len value may be reduced when the transfer is
2707 * started to accommodate the max widths of the XferSize and PktCnt
2708 * fields in the HCTSIZn register.
2709 */
2710
2711 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2712 if (chan->ep_is_in)
2713 chan->do_ping = 0;
2714 else
2715 chan->do_ping = qh->ping_state;
2716
2717 chan->data_pid_start = qh->data_toggle;
2718 chan->multi_count = 1;
2719
2720 if (urb->actual_length > urb->length &&
2721 !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2722 urb->actual_length = urb->length;
2723
2724 if (hsotg->params.host_dma > 0)
2725 chan->xfer_dma = urb->dma + urb->actual_length;
2726 else
2727 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2728
2729 chan->xfer_len = urb->length - urb->actual_length;
2730 chan->xfer_count = 0;
2731
2732 /* Set the split attributes if required */
2733 if (qh->do_split)
2734 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2735 else
2736 chan->do_split = 0;
2737
2738 /* Set the transfer attributes */
2739 dwc2_hc_init_xfer(hsotg, chan, qtd);
2740
2741 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2742 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2743 /*
2744 * This value may be modified when the transfer is started
2745 * to reflect the actual transfer length
2746 */
2747 chan->multi_count = dwc2_hb_mult(qh->maxp);
2748
2749 if (hsotg->params.dma_desc_enable > 0) {
2750 chan->desc_list_addr = qh->desc_list_dma;
2751 chan->desc_list_sz = qh->desc_list_sz;
2752 }
2753
2754 dwc2_hc_init(hsotg, chan);
2755 chan->qh = qh;
2756
2757 return 0;
2758}
2759
2760/**
2761 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2762 * schedule and assigns them to available host channels. Called from the HCD
2763 * interrupt handler functions.
2764 *
2765 * @hsotg: The HCD state structure
2766 *
2767 * Return: The types of new transactions that were assigned to host channels
2768 */
2769enum dwc2_transaction_type dwc2_hcd_select_transactions(
2770 struct dwc2_hsotg *hsotg)
2771{
2772 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2773 struct list_head *qh_ptr;
2774 struct dwc2_qh *qh;
2775 int num_channels;
2776
2777#ifdef DWC2_DEBUG_SOF
2778 dev_vdbg(hsotg->dev, " Select Transactions\n");
2779#endif
2780
2781 /* Process entries in the periodic ready list */
2782 qh_ptr = hsotg->periodic_sched_ready.next;
2783 while (qh_ptr != &hsotg->periodic_sched_ready) {
2784 if (list_empty(&hsotg->free_hc_list))
2785 break;
2786 if (hsotg->params.uframe_sched > 0) {
2787 if (hsotg->available_host_channels <= 1)
2788 break;
2789 hsotg->available_host_channels--;
2790 }
2791 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2792 if (dwc2_assign_and_init_hc(hsotg, qh))
2793 break;
2794
2795 /*
2796 * Move the QH from the periodic ready schedule to the
2797 * periodic assigned schedule
2798 */
2799 qh_ptr = qh_ptr->next;
2800 list_move_tail(&qh->qh_list_entry,
2801 &hsotg->periodic_sched_assigned);
2802 ret_val = DWC2_TRANSACTION_PERIODIC;
2803 }
2804
2805 /*
2806 * Process entries in the inactive portion of the non-periodic
2807 * schedule. Some free host channels may not be used if they are
2808 * reserved for periodic transfers.
2809 */
2810 num_channels = hsotg->params.host_channels;
2811 qh_ptr = hsotg->non_periodic_sched_inactive.next;
2812 while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2813 if (hsotg->params.uframe_sched <= 0 &&
2814 hsotg->non_periodic_channels >= num_channels -
2815 hsotg->periodic_channels)
2816 break;
2817 if (list_empty(&hsotg->free_hc_list))
2818 break;
2819 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2820 if (hsotg->params.uframe_sched > 0) {
2821 if (hsotg->available_host_channels < 1)
2822 break;
2823 hsotg->available_host_channels--;
2824 }
2825
2826 if (dwc2_assign_and_init_hc(hsotg, qh))
2827 break;
2828
2829 /*
2830 * Move the QH from the non-periodic inactive schedule to the
2831 * non-periodic active schedule
2832 */
2833 qh_ptr = qh_ptr->next;
2834 list_move_tail(&qh->qh_list_entry,
2835 &hsotg->non_periodic_sched_active);
2836
2837 if (ret_val == DWC2_TRANSACTION_NONE)
2838 ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2839 else
2840 ret_val = DWC2_TRANSACTION_ALL;
2841
2842 if (hsotg->params.uframe_sched <= 0)
2843 hsotg->non_periodic_channels++;
2844 }
2845
2846 return ret_val;
2847}
2848
2849/**
2850 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2851 * a host channel associated with either a periodic or non-periodic transfer
2852 *
2853 * @hsotg: The HCD state structure
2854 * @chan: Host channel descriptor associated with either a periodic or
2855 * non-periodic transfer
2856 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2857 * for periodic transfers or the non-periodic Tx FIFO
2858 * for non-periodic transfers
2859 *
2860 * Return: 1 if a request is queued and more requests may be needed to
2861 * complete the transfer, 0 if no more requests are required for this
2862 * transfer, -1 if there is insufficient space in the Tx FIFO
2863 *
2864 * This function assumes that there is space available in the appropriate
2865 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2866 * it checks whether space is available in the appropriate Tx FIFO.
2867 *
2868 * Must be called with interrupt disabled and spinlock held
2869 */
2870static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2871 struct dwc2_host_chan *chan,
2872 u16 fifo_dwords_avail)
2873{
2874 int retval = 0;
2875
2876 if (chan->do_split)
2877 /* Put ourselves on the list to keep order straight */
2878 list_move_tail(&chan->split_order_list_entry,
2879 &hsotg->split_order);
2880
2881 if (hsotg->params.host_dma > 0) {
2882 if (hsotg->params.dma_desc_enable > 0) {
2883 if (!chan->xfer_started ||
2884 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2885 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2886 chan->qh->ping_state = 0;
2887 }
2888 } else if (!chan->xfer_started) {
2889 dwc2_hc_start_transfer(hsotg, chan);
2890 chan->qh->ping_state = 0;
2891 }
2892 } else if (chan->halt_pending) {
2893 /* Don't queue a request if the channel has been halted */
2894 } else if (chan->halt_on_queue) {
2895 dwc2_hc_halt(hsotg, chan, chan->halt_status);
2896 } else if (chan->do_ping) {
2897 if (!chan->xfer_started)
2898 dwc2_hc_start_transfer(hsotg, chan);
2899 } else if (!chan->ep_is_in ||
2900 chan->data_pid_start == DWC2_HC_PID_SETUP) {
2901 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2902 if (!chan->xfer_started) {
2903 dwc2_hc_start_transfer(hsotg, chan);
2904 retval = 1;
2905 } else {
2906 retval = dwc2_hc_continue_transfer(hsotg, chan);
2907 }
2908 } else {
2909 retval = -1;
2910 }
2911 } else {
2912 if (!chan->xfer_started) {
2913 dwc2_hc_start_transfer(hsotg, chan);
2914 retval = 1;
2915 } else {
2916 retval = dwc2_hc_continue_transfer(hsotg, chan);
2917 }
2918 }
2919
2920 return retval;
2921}
2922
2923/*
2924 * Processes periodic channels for the next frame and queues transactions for
2925 * these channels to the DWC_otg controller. After queueing transactions, the
2926 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2927 * to queue as Periodic Tx FIFO or request queue space becomes available.
2928 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2929 *
2930 * Must be called with interrupt disabled and spinlock held
2931 */
2932static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2933{
2934 struct list_head *qh_ptr;
2935 struct dwc2_qh *qh;
2936 u32 tx_status;
2937 u32 fspcavail;
2938 u32 gintmsk;
2939 int status;
2940 bool no_queue_space = false;
2941 bool no_fifo_space = false;
2942 u32 qspcavail;
2943
2944 /* If empty list then just adjust interrupt enables */
2945 if (list_empty(&hsotg->periodic_sched_assigned))
2946 goto exit;
2947
2948 if (dbg_perio())
2949 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2950
2951 tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2952 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2953 TXSTS_QSPCAVAIL_SHIFT;
2954 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2955 TXSTS_FSPCAVAIL_SHIFT;
2956
2957 if (dbg_perio()) {
2958 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n",
2959 qspcavail);
2960 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n",
2961 fspcavail);
2962 }
2963
2964 qh_ptr = hsotg->periodic_sched_assigned.next;
2965 while (qh_ptr != &hsotg->periodic_sched_assigned) {
2966 tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2967 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2968 TXSTS_QSPCAVAIL_SHIFT;
2969 if (qspcavail == 0) {
2970 no_queue_space = 1;
2971 break;
2972 }
2973
2974 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2975 if (!qh->channel) {
2976 qh_ptr = qh_ptr->next;
2977 continue;
2978 }
2979
2980 /* Make sure EP's TT buffer is clean before queueing qtds */
2981 if (qh->tt_buffer_dirty) {
2982 qh_ptr = qh_ptr->next;
2983 continue;
2984 }
2985
2986 /*
2987 * Set a flag if we're queuing high-bandwidth in slave mode.
2988 * The flag prevents any halts to get into the request queue in
2989 * the middle of multiple high-bandwidth packets getting queued.
2990 */
2991 if (hsotg->params.host_dma <= 0 &&
2992 qh->channel->multi_count > 1)
2993 hsotg->queuing_high_bandwidth = 1;
2994
2995 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2996 TXSTS_FSPCAVAIL_SHIFT;
2997 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2998 if (status < 0) {
2999 no_fifo_space = 1;
3000 break;
3001 }
3002
3003 /*
3004 * In Slave mode, stay on the current transfer until there is
3005 * nothing more to do or the high-bandwidth request count is
3006 * reached. In DMA mode, only need to queue one request. The
3007 * controller automatically handles multiple packets for
3008 * high-bandwidth transfers.
3009 */
3010 if (hsotg->params.host_dma > 0 || status == 0 ||
3011 qh->channel->requests == qh->channel->multi_count) {
3012 qh_ptr = qh_ptr->next;
3013 /*
3014 * Move the QH from the periodic assigned schedule to
3015 * the periodic queued schedule
3016 */
3017 list_move_tail(&qh->qh_list_entry,
3018 &hsotg->periodic_sched_queued);
3019
3020 /* done queuing high bandwidth */
3021 hsotg->queuing_high_bandwidth = 0;
3022 }
3023 }
3024
3025exit:
3026 if (no_queue_space || no_fifo_space ||
3027 (hsotg->params.host_dma <= 0 &&
3028 !list_empty(&hsotg->periodic_sched_assigned))) {
3029 /*
3030 * May need to queue more transactions as the request
3031 * queue or Tx FIFO empties. Enable the periodic Tx
3032 * FIFO empty interrupt. (Always use the half-empty
3033 * level to ensure that new requests are loaded as
3034 * soon as possible.)
3035 */
3036 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3037 if (!(gintmsk & GINTSTS_PTXFEMP)) {
3038 gintmsk |= GINTSTS_PTXFEMP;
3039 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3040 }
3041 } else {
3042 /*
3043 * Disable the Tx FIFO empty interrupt since there are
3044 * no more transactions that need to be queued right
3045 * now. This function is called from interrupt
3046 * handlers to queue more transactions as transfer
3047 * states change.
3048 */
3049 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3050 if (gintmsk & GINTSTS_PTXFEMP) {
3051 gintmsk &= ~GINTSTS_PTXFEMP;
3052 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3053 }
3054 }
3055}
3056
3057/*
3058 * Processes active non-periodic channels and queues transactions for these
3059 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3060 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3061 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3062 * FIFO Empty interrupt is disabled.
3063 *
3064 * Must be called with interrupt disabled and spinlock held
3065 */
3066static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3067{
3068 struct list_head *orig_qh_ptr;
3069 struct dwc2_qh *qh;
3070 u32 tx_status;
3071 u32 qspcavail;
3072 u32 fspcavail;
3073 u32 gintmsk;
3074 int status;
3075 int no_queue_space = 0;
3076 int no_fifo_space = 0;
3077 int more_to_do = 0;
3078
3079 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3080
3081 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3082 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3083 TXSTS_QSPCAVAIL_SHIFT;
3084 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3085 TXSTS_FSPCAVAIL_SHIFT;
3086 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n",
3087 qspcavail);
3088 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n",
3089 fspcavail);
3090
3091 /*
3092 * Keep track of the starting point. Skip over the start-of-list
3093 * entry.
3094 */
3095 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3096 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3097 orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3098
3099 /*
3100 * Process once through the active list or until no more space is
3101 * available in the request queue or the Tx FIFO
3102 */
3103 do {
3104 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3105 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3106 TXSTS_QSPCAVAIL_SHIFT;
3107 if (hsotg->params.host_dma <= 0 && qspcavail == 0) {
3108 no_queue_space = 1;
3109 break;
3110 }
3111
3112 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3113 qh_list_entry);
3114 if (!qh->channel)
3115 goto next;
3116
3117 /* Make sure EP's TT buffer is clean before queueing qtds */
3118 if (qh->tt_buffer_dirty)
3119 goto next;
3120
3121 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3122 TXSTS_FSPCAVAIL_SHIFT;
3123 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3124
3125 if (status > 0) {
3126 more_to_do = 1;
3127 } else if (status < 0) {
3128 no_fifo_space = 1;
3129 break;
3130 }
3131next:
3132 /* Advance to next QH, skipping start-of-list entry */
3133 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3134 if (hsotg->non_periodic_qh_ptr ==
3135 &hsotg->non_periodic_sched_active)
3136 hsotg->non_periodic_qh_ptr =
3137 hsotg->non_periodic_qh_ptr->next;
3138 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3139
3140 if (hsotg->params.host_dma <= 0) {
3141 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3142 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3143 TXSTS_QSPCAVAIL_SHIFT;
3144 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3145 TXSTS_FSPCAVAIL_SHIFT;
3146 dev_vdbg(hsotg->dev,
3147 " NP Tx Req Queue Space Avail (after queue): %d\n",
3148 qspcavail);
3149 dev_vdbg(hsotg->dev,
3150 " NP Tx FIFO Space Avail (after queue): %d\n",
3151 fspcavail);
3152
3153 if (more_to_do || no_queue_space || no_fifo_space) {
3154 /*
3155 * May need to queue more transactions as the request
3156 * queue or Tx FIFO empties. Enable the non-periodic
3157 * Tx FIFO empty interrupt. (Always use the half-empty
3158 * level to ensure that new requests are loaded as
3159 * soon as possible.)
3160 */
3161 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3162 gintmsk |= GINTSTS_NPTXFEMP;
3163 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3164 } else {
3165 /*
3166 * Disable the Tx FIFO empty interrupt since there are
3167 * no more transactions that need to be queued right
3168 * now. This function is called from interrupt
3169 * handlers to queue more transactions as transfer
3170 * states change.
3171 */
3172 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3173 gintmsk &= ~GINTSTS_NPTXFEMP;
3174 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3175 }
3176 }
3177}
3178
3179/**
3180 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3181 * and queues transactions for these channels to the DWC_otg controller. Called
3182 * from the HCD interrupt handler functions.
3183 *
3184 * @hsotg: The HCD state structure
3185 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3186 * or both)
3187 *
3188 * Must be called with interrupt disabled and spinlock held
3189 */
3190void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3191 enum dwc2_transaction_type tr_type)
3192{
3193#ifdef DWC2_DEBUG_SOF
3194 dev_vdbg(hsotg->dev, "Queue Transactions\n");
3195#endif
3196 /* Process host channels associated with periodic transfers */
3197 if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3198 tr_type == DWC2_TRANSACTION_ALL)
3199 dwc2_process_periodic_channels(hsotg);
3200
3201 /* Process host channels associated with non-periodic transfers */
3202 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3203 tr_type == DWC2_TRANSACTION_ALL) {
3204 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3205 dwc2_process_non_periodic_channels(hsotg);
3206 } else {
3207 /*
3208 * Ensure NP Tx FIFO empty interrupt is disabled when
3209 * there are no non-periodic transfers to process
3210 */
3211 u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3212
3213 gintmsk &= ~GINTSTS_NPTXFEMP;
3214 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3215 }
3216 }
3217}
3218
3219static void dwc2_conn_id_status_change(struct work_struct *work)
3220{
3221 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3222 wf_otg);
3223 u32 count = 0;
3224 u32 gotgctl;
3225 unsigned long flags;
3226
3227 dev_dbg(hsotg->dev, "%s()\n", __func__);
3228
3229 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3230 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3231 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3232 !!(gotgctl & GOTGCTL_CONID_B));
3233
3234 /* B-Device connector (Device Mode) */
3235 if (gotgctl & GOTGCTL_CONID_B) {
3236 /* Wait for switch to device mode */
3237 dev_dbg(hsotg->dev, "connId B\n");
3238 while (!dwc2_is_device_mode(hsotg)) {
3239 dev_info(hsotg->dev,
3240 "Waiting for Peripheral Mode, Mode=%s\n",
3241 dwc2_is_host_mode(hsotg) ? "Host" :
3242 "Peripheral");
3243 usleep_range(20000, 40000);
3244 if (++count > 250)
3245 break;
3246 }
3247 if (count > 250)
3248 dev_err(hsotg->dev,
3249 "Connection id status change timed out\n");
3250 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3251 dwc2_core_init(hsotg, false);
3252 dwc2_enable_global_interrupts(hsotg);
3253 spin_lock_irqsave(&hsotg->lock, flags);
3254 dwc2_hsotg_core_init_disconnected(hsotg, false);
3255 spin_unlock_irqrestore(&hsotg->lock, flags);
3256 dwc2_hsotg_core_connect(hsotg);
3257 } else {
3258 /* A-Device connector (Host Mode) */
3259 dev_dbg(hsotg->dev, "connId A\n");
3260 while (!dwc2_is_host_mode(hsotg)) {
3261 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3262 dwc2_is_host_mode(hsotg) ?
3263 "Host" : "Peripheral");
3264 usleep_range(20000, 40000);
3265 if (++count > 250)
3266 break;
3267 }
3268 if (count > 250)
3269 dev_err(hsotg->dev,
3270 "Connection id status change timed out\n");
3271 hsotg->op_state = OTG_STATE_A_HOST;
3272
3273 /* Initialize the Core for Host mode */
3274 dwc2_core_init(hsotg, false);
3275 dwc2_enable_global_interrupts(hsotg);
3276 dwc2_hcd_start(hsotg);
3277 }
3278}
3279
3280static void dwc2_wakeup_detected(unsigned long data)
3281{
3282 struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data;
3283 u32 hprt0;
3284
3285 dev_dbg(hsotg->dev, "%s()\n", __func__);
3286
3287 /*
3288 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3289 * so that OPT tests pass with all PHYs.)
3290 */
3291 hprt0 = dwc2_read_hprt0(hsotg);
3292 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3293 hprt0 &= ~HPRT0_RES;
3294 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3295 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3296 dwc2_readl(hsotg->regs + HPRT0));
3297
3298 dwc2_hcd_rem_wakeup(hsotg);
3299 hsotg->bus_suspended = 0;
3300
3301 /* Change to L0 state */
3302 hsotg->lx_state = DWC2_L0;
3303}
3304
3305static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3306{
3307 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3308
3309 return hcd->self.b_hnp_enable;
3310}
3311
3312/* Must NOT be called with interrupt disabled or spinlock held */
3313static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3314{
3315 unsigned long flags;
3316 u32 hprt0;
3317 u32 pcgctl;
3318 u32 gotgctl;
3319
3320 dev_dbg(hsotg->dev, "%s()\n", __func__);
3321
3322 spin_lock_irqsave(&hsotg->lock, flags);
3323
3324 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3325 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3326 gotgctl |= GOTGCTL_HSTSETHNPEN;
3327 dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
3328 hsotg->op_state = OTG_STATE_A_SUSPEND;
3329 }
3330
3331 hprt0 = dwc2_read_hprt0(hsotg);
3332 hprt0 |= HPRT0_SUSP;
3333 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3334
3335 hsotg->bus_suspended = 1;
3336
3337 /*
3338 * If hibernation is supported, Phy clock will be suspended
3339 * after registers are backuped.
3340 */
3341 if (!hsotg->params.hibernation) {
3342 /* Suspend the Phy Clock */
3343 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3344 pcgctl |= PCGCTL_STOPPCLK;
3345 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3346 udelay(10);
3347 }
3348
3349 /* For HNP the bus must be suspended for at least 200ms */
3350 if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3351 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3352 pcgctl &= ~PCGCTL_STOPPCLK;
3353 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3354
3355 spin_unlock_irqrestore(&hsotg->lock, flags);
3356
3357 usleep_range(200000, 250000);
3358 } else {
3359 spin_unlock_irqrestore(&hsotg->lock, flags);
3360 }
3361}
3362
3363/* Must NOT be called with interrupt disabled or spinlock held */
3364static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3365{
3366 unsigned long flags;
3367 u32 hprt0;
3368 u32 pcgctl;
3369
3370 spin_lock_irqsave(&hsotg->lock, flags);
3371
3372 /*
3373 * If hibernation is supported, Phy clock is already resumed
3374 * after registers restore.
3375 */
3376 if (!hsotg->params.hibernation) {
3377 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3378 pcgctl &= ~PCGCTL_STOPPCLK;
3379 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3380 spin_unlock_irqrestore(&hsotg->lock, flags);
3381 usleep_range(20000, 40000);
3382 spin_lock_irqsave(&hsotg->lock, flags);
3383 }
3384
3385 hprt0 = dwc2_read_hprt0(hsotg);
3386 hprt0 |= HPRT0_RES;
3387 hprt0 &= ~HPRT0_SUSP;
3388 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3389 spin_unlock_irqrestore(&hsotg->lock, flags);
3390
3391 msleep(USB_RESUME_TIMEOUT);
3392
3393 spin_lock_irqsave(&hsotg->lock, flags);
3394 hprt0 = dwc2_read_hprt0(hsotg);
3395 hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3396 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3397 hsotg->bus_suspended = 0;
3398 spin_unlock_irqrestore(&hsotg->lock, flags);
3399}
3400
3401/* Handles hub class-specific requests */
3402static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3403 u16 wvalue, u16 windex, char *buf, u16 wlength)
3404{
3405 struct usb_hub_descriptor *hub_desc;
3406 int retval = 0;
3407 u32 hprt0;
3408 u32 port_status;
3409 u32 speed;
3410 u32 pcgctl;
3411
3412 switch (typereq) {
3413 case ClearHubFeature:
3414 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3415
3416 switch (wvalue) {
3417 case C_HUB_LOCAL_POWER:
3418 case C_HUB_OVER_CURRENT:
3419 /* Nothing required here */
3420 break;
3421
3422 default:
3423 retval = -EINVAL;
3424 dev_err(hsotg->dev,
3425 "ClearHubFeature request %1xh unknown\n",
3426 wvalue);
3427 }
3428 break;
3429
3430 case ClearPortFeature:
3431 if (wvalue != USB_PORT_FEAT_L1)
3432 if (!windex || windex > 1)
3433 goto error;
3434 switch (wvalue) {
3435 case USB_PORT_FEAT_ENABLE:
3436 dev_dbg(hsotg->dev,
3437 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3438 hprt0 = dwc2_read_hprt0(hsotg);
3439 hprt0 |= HPRT0_ENA;
3440 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3441 break;
3442
3443 case USB_PORT_FEAT_SUSPEND:
3444 dev_dbg(hsotg->dev,
3445 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3446
3447 if (hsotg->bus_suspended)
3448 dwc2_port_resume(hsotg);
3449 break;
3450
3451 case USB_PORT_FEAT_POWER:
3452 dev_dbg(hsotg->dev,
3453 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3454 hprt0 = dwc2_read_hprt0(hsotg);
3455 hprt0 &= ~HPRT0_PWR;
3456 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3457 break;
3458
3459 case USB_PORT_FEAT_INDICATOR:
3460 dev_dbg(hsotg->dev,
3461 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3462 /* Port indicator not supported */
3463 break;
3464
3465 case USB_PORT_FEAT_C_CONNECTION:
3466 /*
3467 * Clears driver's internal Connect Status Change flag
3468 */
3469 dev_dbg(hsotg->dev,
3470 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3471 hsotg->flags.b.port_connect_status_change = 0;
3472 break;
3473
3474 case USB_PORT_FEAT_C_RESET:
3475 /* Clears driver's internal Port Reset Change flag */
3476 dev_dbg(hsotg->dev,
3477 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3478 hsotg->flags.b.port_reset_change = 0;
3479 break;
3480
3481 case USB_PORT_FEAT_C_ENABLE:
3482 /*
3483 * Clears the driver's internal Port Enable/Disable
3484 * Change flag
3485 */
3486 dev_dbg(hsotg->dev,
3487 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3488 hsotg->flags.b.port_enable_change = 0;
3489 break;
3490
3491 case USB_PORT_FEAT_C_SUSPEND:
3492 /*
3493 * Clears the driver's internal Port Suspend Change
3494 * flag, which is set when resume signaling on the host
3495 * port is complete
3496 */
3497 dev_dbg(hsotg->dev,
3498 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3499 hsotg->flags.b.port_suspend_change = 0;
3500 break;
3501
3502 case USB_PORT_FEAT_C_PORT_L1:
3503 dev_dbg(hsotg->dev,
3504 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3505 hsotg->flags.b.port_l1_change = 0;
3506 break;
3507
3508 case USB_PORT_FEAT_C_OVER_CURRENT:
3509 dev_dbg(hsotg->dev,
3510 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3511 hsotg->flags.b.port_over_current_change = 0;
3512 break;
3513
3514 default:
3515 retval = -EINVAL;
3516 dev_err(hsotg->dev,
3517 "ClearPortFeature request %1xh unknown or unsupported\n",
3518 wvalue);
3519 }
3520 break;
3521
3522 case GetHubDescriptor:
3523 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3524 hub_desc = (struct usb_hub_descriptor *)buf;
3525 hub_desc->bDescLength = 9;
3526 hub_desc->bDescriptorType = USB_DT_HUB;
3527 hub_desc->bNbrPorts = 1;
3528 hub_desc->wHubCharacteristics =
3529 cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3530 HUB_CHAR_INDV_PORT_OCPM);
3531 hub_desc->bPwrOn2PwrGood = 1;
3532 hub_desc->bHubContrCurrent = 0;
3533 hub_desc->u.hs.DeviceRemovable[0] = 0;
3534 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3535 break;
3536
3537 case GetHubStatus:
3538 dev_dbg(hsotg->dev, "GetHubStatus\n");
3539 memset(buf, 0, 4);
3540 break;
3541
3542 case GetPortStatus:
3543 dev_vdbg(hsotg->dev,
3544 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3545 hsotg->flags.d32);
3546 if (!windex || windex > 1)
3547 goto error;
3548
3549 port_status = 0;
3550 if (hsotg->flags.b.port_connect_status_change)
3551 port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3552 if (hsotg->flags.b.port_enable_change)
3553 port_status |= USB_PORT_STAT_C_ENABLE << 16;
3554 if (hsotg->flags.b.port_suspend_change)
3555 port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3556 if (hsotg->flags.b.port_l1_change)
3557 port_status |= USB_PORT_STAT_C_L1 << 16;
3558 if (hsotg->flags.b.port_reset_change)
3559 port_status |= USB_PORT_STAT_C_RESET << 16;
3560 if (hsotg->flags.b.port_over_current_change) {
3561 dev_warn(hsotg->dev, "Overcurrent change detected\n");
3562 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3563 }
3564
3565 if (!hsotg->flags.b.port_connect_status) {
3566 /*
3567 * The port is disconnected, which means the core is
3568 * either in device mode or it soon will be. Just
3569 * return 0's for the remainder of the port status
3570 * since the port register can't be read if the core
3571 * is in device mode.
3572 */
3573 *(__le32 *)buf = cpu_to_le32(port_status);
3574 break;
3575 }
3576
3577 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
3578 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0);
3579
3580 if (hprt0 & HPRT0_CONNSTS)
3581 port_status |= USB_PORT_STAT_CONNECTION;
3582 if (hprt0 & HPRT0_ENA)
3583 port_status |= USB_PORT_STAT_ENABLE;
3584 if (hprt0 & HPRT0_SUSP)
3585 port_status |= USB_PORT_STAT_SUSPEND;
3586 if (hprt0 & HPRT0_OVRCURRACT)
3587 port_status |= USB_PORT_STAT_OVERCURRENT;
3588 if (hprt0 & HPRT0_RST)
3589 port_status |= USB_PORT_STAT_RESET;
3590 if (hprt0 & HPRT0_PWR)
3591 port_status |= USB_PORT_STAT_POWER;
3592
3593 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3594 if (speed == HPRT0_SPD_HIGH_SPEED)
3595 port_status |= USB_PORT_STAT_HIGH_SPEED;
3596 else if (speed == HPRT0_SPD_LOW_SPEED)
3597 port_status |= USB_PORT_STAT_LOW_SPEED;
3598
3599 if (hprt0 & HPRT0_TSTCTL_MASK)
3600 port_status |= USB_PORT_STAT_TEST;
3601 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3602
3603 if (hsotg->params.dma_desc_fs_enable) {
3604 /*
3605 * Enable descriptor DMA only if a full speed
3606 * device is connected.
3607 */
3608 if (hsotg->new_connection &&
3609 ((port_status &
3610 (USB_PORT_STAT_CONNECTION |
3611 USB_PORT_STAT_HIGH_SPEED |
3612 USB_PORT_STAT_LOW_SPEED)) ==
3613 USB_PORT_STAT_CONNECTION)) {
3614 u32 hcfg;
3615
3616 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3617 hsotg->params.dma_desc_enable = 1;
3618 hcfg = dwc2_readl(hsotg->regs + HCFG);
3619 hcfg |= HCFG_DESCDMA;
3620 dwc2_writel(hcfg, hsotg->regs + HCFG);
3621 hsotg->new_connection = false;
3622 }
3623 }
3624
3625 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3626 *(__le32 *)buf = cpu_to_le32(port_status);
3627 break;
3628
3629 case SetHubFeature:
3630 dev_dbg(hsotg->dev, "SetHubFeature\n");
3631 /* No HUB features supported */
3632 break;
3633
3634 case SetPortFeature:
3635 dev_dbg(hsotg->dev, "SetPortFeature\n");
3636 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3637 goto error;
3638
3639 if (!hsotg->flags.b.port_connect_status) {
3640 /*
3641 * The port is disconnected, which means the core is
3642 * either in device mode or it soon will be. Just
3643 * return without doing anything since the port
3644 * register can't be written if the core is in device
3645 * mode.
3646 */
3647 break;
3648 }
3649
3650 switch (wvalue) {
3651 case USB_PORT_FEAT_SUSPEND:
3652 dev_dbg(hsotg->dev,
3653 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3654 if (windex != hsotg->otg_port)
3655 goto error;
3656 dwc2_port_suspend(hsotg, windex);
3657 break;
3658
3659 case USB_PORT_FEAT_POWER:
3660 dev_dbg(hsotg->dev,
3661 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3662 hprt0 = dwc2_read_hprt0(hsotg);
3663 hprt0 |= HPRT0_PWR;
3664 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3665 break;
3666
3667 case USB_PORT_FEAT_RESET:
3668 hprt0 = dwc2_read_hprt0(hsotg);
3669 dev_dbg(hsotg->dev,
3670 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3671 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3672 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3673 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3674 /* ??? Original driver does this */
3675 dwc2_writel(0, hsotg->regs + PCGCTL);
3676
3677 hprt0 = dwc2_read_hprt0(hsotg);
3678 /* Clear suspend bit if resetting from suspend state */
3679 hprt0 &= ~HPRT0_SUSP;
3680
3681 /*
3682 * When B-Host the Port reset bit is set in the Start
3683 * HCD Callback function, so that the reset is started
3684 * within 1ms of the HNP success interrupt
3685 */
3686 if (!dwc2_hcd_is_b_host(hsotg)) {
3687 hprt0 |= HPRT0_PWR | HPRT0_RST;
3688 dev_dbg(hsotg->dev,
3689 "In host mode, hprt0=%08x\n", hprt0);
3690 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3691 }
3692
3693 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3694 usleep_range(50000, 70000);
3695 hprt0 &= ~HPRT0_RST;
3696 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3697 hsotg->lx_state = DWC2_L0; /* Now back to On state */
3698 break;
3699
3700 case USB_PORT_FEAT_INDICATOR:
3701 dev_dbg(hsotg->dev,
3702 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3703 /* Not supported */
3704 break;
3705
3706 case USB_PORT_FEAT_TEST:
3707 hprt0 = dwc2_read_hprt0(hsotg);
3708 dev_dbg(hsotg->dev,
3709 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3710 hprt0 &= ~HPRT0_TSTCTL_MASK;
3711 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3712 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3713 break;
3714
3715 default:
3716 retval = -EINVAL;
3717 dev_err(hsotg->dev,
3718 "SetPortFeature %1xh unknown or unsupported\n",
3719 wvalue);
3720 break;
3721 }
3722 break;
3723
3724 default:
3725error:
3726 retval = -EINVAL;
3727 dev_dbg(hsotg->dev,
3728 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3729 typereq, windex, wvalue);
3730 break;
3731 }
3732
3733 return retval;
3734}
3735
3736static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3737{
3738 int retval;
3739
3740 if (port != 1)
3741 return -EINVAL;
3742
3743 retval = (hsotg->flags.b.port_connect_status_change ||
3744 hsotg->flags.b.port_reset_change ||
3745 hsotg->flags.b.port_enable_change ||
3746 hsotg->flags.b.port_suspend_change ||
3747 hsotg->flags.b.port_over_current_change);
3748
3749 if (retval) {
3750 dev_dbg(hsotg->dev,
3751 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3752 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n",
3753 hsotg->flags.b.port_connect_status_change);
3754 dev_dbg(hsotg->dev, " port_reset_change: %d\n",
3755 hsotg->flags.b.port_reset_change);
3756 dev_dbg(hsotg->dev, " port_enable_change: %d\n",
3757 hsotg->flags.b.port_enable_change);
3758 dev_dbg(hsotg->dev, " port_suspend_change: %d\n",
3759 hsotg->flags.b.port_suspend_change);
3760 dev_dbg(hsotg->dev, " port_over_current_change: %d\n",
3761 hsotg->flags.b.port_over_current_change);
3762 }
3763
3764 return retval;
3765}
3766
3767int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3768{
3769 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3770
3771#ifdef DWC2_DEBUG_SOF
3772 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3773 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3774#endif
3775 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3776}
3777
3778int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3779{
3780 u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
3781 u32 hfir = dwc2_readl(hsotg->regs + HFIR);
3782 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3783 unsigned int us_per_frame;
3784 unsigned int frame_number;
3785 unsigned int remaining;
3786 unsigned int interval;
3787 unsigned int phy_clks;
3788
3789 /* High speed has 125 us per (micro) frame; others are 1 ms per */
3790 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3791
3792 /* Extract fields */
3793 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3794 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3795 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3796
3797 /*
3798 * Number of phy clocks since the last tick of the frame number after
3799 * "us" has passed.
3800 */
3801 phy_clks = (interval - remaining) +
3802 DIV_ROUND_UP(interval * us, us_per_frame);
3803
3804 return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3805}
3806
3807int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3808{
3809 return hsotg->op_state == OTG_STATE_B_HOST;
3810}
3811
3812static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3813 int iso_desc_count,
3814 gfp_t mem_flags)
3815{
3816 struct dwc2_hcd_urb *urb;
3817 u32 size = sizeof(*urb) + iso_desc_count *
3818 sizeof(struct dwc2_hcd_iso_packet_desc);
3819
3820 urb = kzalloc(size, mem_flags);
3821 if (urb)
3822 urb->packet_count = iso_desc_count;
3823 return urb;
3824}
3825
3826static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3827 struct dwc2_hcd_urb *urb, u8 dev_addr,
3828 u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3829{
3830 if (dbg_perio() ||
3831 ep_type == USB_ENDPOINT_XFER_BULK ||
3832 ep_type == USB_ENDPOINT_XFER_CONTROL)
3833 dev_vdbg(hsotg->dev,
3834 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
3835 dev_addr, ep_num, ep_dir, ep_type, mps);
3836 urb->pipe_info.dev_addr = dev_addr;
3837 urb->pipe_info.ep_num = ep_num;
3838 urb->pipe_info.pipe_type = ep_type;
3839 urb->pipe_info.pipe_dir = ep_dir;
3840 urb->pipe_info.mps = mps;
3841}
3842
3843/*
3844 * NOTE: This function will be removed once the peripheral controller code
3845 * is integrated and the driver is stable
3846 */
3847void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3848{
3849#ifdef DEBUG
3850 struct dwc2_host_chan *chan;
3851 struct dwc2_hcd_urb *urb;
3852 struct dwc2_qtd *qtd;
3853 int num_channels;
3854 u32 np_tx_status;
3855 u32 p_tx_status;
3856 int i;
3857
3858 num_channels = hsotg->params.host_channels;
3859 dev_dbg(hsotg->dev, "\n");
3860 dev_dbg(hsotg->dev,
3861 "************************************************************\n");
3862 dev_dbg(hsotg->dev, "HCD State:\n");
3863 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels);
3864
3865 for (i = 0; i < num_channels; i++) {
3866 chan = hsotg->hc_ptr_array[i];
3867 dev_dbg(hsotg->dev, " Channel %d:\n", i);
3868 dev_dbg(hsotg->dev,
3869 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3870 chan->dev_addr, chan->ep_num, chan->ep_is_in);
3871 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed);
3872 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
3873 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
3874 dev_dbg(hsotg->dev, " data_pid_start: %d\n",
3875 chan->data_pid_start);
3876 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count);
3877 dev_dbg(hsotg->dev, " xfer_started: %d\n",
3878 chan->xfer_started);
3879 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
3880 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
3881 (unsigned long)chan->xfer_dma);
3882 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
3883 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count);
3884 dev_dbg(hsotg->dev, " halt_on_queue: %d\n",
3885 chan->halt_on_queue);
3886 dev_dbg(hsotg->dev, " halt_pending: %d\n",
3887 chan->halt_pending);
3888 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
3889 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split);
3890 dev_dbg(hsotg->dev, " complete_split: %d\n",
3891 chan->complete_split);
3892 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr);
3893 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port);
3894 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos);
3895 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests);
3896 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
3897
3898 if (chan->xfer_started) {
3899 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3900
3901 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3902 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
3903 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
3904 hcint = dwc2_readl(hsotg->regs + HCINT(i));
3905 hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
3906 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum);
3907 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
3908 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz);
3909 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint);
3910 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk);
3911 }
3912
3913 if (!(chan->xfer_started && chan->qh))
3914 continue;
3915
3916 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3917 if (!qtd->in_process)
3918 break;
3919 urb = qtd->urb;
3920 dev_dbg(hsotg->dev, " URB Info:\n");
3921 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n",
3922 qtd, urb);
3923 if (urb) {
3924 dev_dbg(hsotg->dev,
3925 " Dev: %d, EP: %d %s\n",
3926 dwc2_hcd_get_dev_addr(&urb->pipe_info),
3927 dwc2_hcd_get_ep_num(&urb->pipe_info),
3928 dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3929 "IN" : "OUT");
3930 dev_dbg(hsotg->dev,
3931 " Max packet size: %d\n",
3932 dwc2_hcd_get_mps(&urb->pipe_info));
3933 dev_dbg(hsotg->dev,
3934 " transfer_buffer: %p\n",
3935 urb->buf);
3936 dev_dbg(hsotg->dev,
3937 " transfer_dma: %08lx\n",
3938 (unsigned long)urb->dma);
3939 dev_dbg(hsotg->dev,
3940 " transfer_buffer_length: %d\n",
3941 urb->length);
3942 dev_dbg(hsotg->dev, " actual_length: %d\n",
3943 urb->actual_length);
3944 }
3945 }
3946 }
3947
3948 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n",
3949 hsotg->non_periodic_channels);
3950 dev_dbg(hsotg->dev, " periodic_channels: %d\n",
3951 hsotg->periodic_channels);
3952 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs);
3953 np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3954 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n",
3955 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3956 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n",
3957 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3958 p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3959 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n",
3960 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3961 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n",
3962 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3963 dwc2_hcd_dump_frrem(hsotg);
3964 dwc2_dump_global_registers(hsotg);
3965 dwc2_dump_host_registers(hsotg);
3966 dev_dbg(hsotg->dev,
3967 "************************************************************\n");
3968 dev_dbg(hsotg->dev, "\n");
3969#endif
3970}
3971
3972/*
3973 * NOTE: This function will be removed once the peripheral controller code
3974 * is integrated and the driver is stable
3975 */
3976void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg)
3977{
3978#ifdef DWC2_DUMP_FRREM
3979 dev_dbg(hsotg->dev, "Frame remaining at SOF:\n");
3980 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3981 hsotg->frrem_samples, hsotg->frrem_accum,
3982 hsotg->frrem_samples > 0 ?
3983 hsotg->frrem_accum / hsotg->frrem_samples : 0);
3984 dev_dbg(hsotg->dev, "\n");
3985 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n");
3986 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3987 hsotg->hfnum_7_samples,
3988 hsotg->hfnum_7_frrem_accum,
3989 hsotg->hfnum_7_samples > 0 ?
3990 hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0);
3991 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n");
3992 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3993 hsotg->hfnum_0_samples,
3994 hsotg->hfnum_0_frrem_accum,
3995 hsotg->hfnum_0_samples > 0 ?
3996 hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0);
3997 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n");
3998 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3999 hsotg->hfnum_other_samples,
4000 hsotg->hfnum_other_frrem_accum,
4001 hsotg->hfnum_other_samples > 0 ?
4002 hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples :
4003 0);
4004 dev_dbg(hsotg->dev, "\n");
4005 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n");
4006 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4007 hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a,
4008 hsotg->hfnum_7_samples_a > 0 ?
4009 hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0);
4010 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n");
4011 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4012 hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a,
4013 hsotg->hfnum_0_samples_a > 0 ?
4014 hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0);
4015 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n");
4016 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4017 hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a,
4018 hsotg->hfnum_other_samples_a > 0 ?
4019 hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a
4020 : 0);
4021 dev_dbg(hsotg->dev, "\n");
4022 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n");
4023 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4024 hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b,
4025 hsotg->hfnum_7_samples_b > 0 ?
4026 hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0);
4027 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n");
4028 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4029 hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b,
4030 (hsotg->hfnum_0_samples_b > 0) ?
4031 hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0);
4032 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n");
4033 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4034 hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b,
4035 (hsotg->hfnum_other_samples_b > 0) ?
4036 hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b
4037 : 0);
4038#endif
4039}
4040
4041struct wrapper_priv_data {
4042 struct dwc2_hsotg *hsotg;
4043};
4044
4045/* Gets the dwc2_hsotg from a usb_hcd */
4046static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4047{
4048 struct wrapper_priv_data *p;
4049
4050 p = (struct wrapper_priv_data *) &hcd->hcd_priv;
4051 return p->hsotg;
4052}
4053
4054/**
4055 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4056 *
4057 * This will get the dwc2_tt structure (and ttport) associated with the given
4058 * context (which is really just a struct urb pointer).
4059 *
4060 * The first time this is called for a given TT we allocate memory for our
4061 * structure. When everyone is done and has called dwc2_host_put_tt_info()
4062 * then the refcount for the structure will go to 0 and we'll free it.
4063 *
4064 * @hsotg: The HCD state structure for the DWC OTG controller.
4065 * @qh: The QH structure.
4066 * @context: The priv pointer from a struct dwc2_hcd_urb.
4067 * @mem_flags: Flags for allocating memory.
4068 * @ttport: We'll return this device's port number here. That's used to
4069 * reference into the bitmap if we're on a multi_tt hub.
4070 *
4071 * Return: a pointer to a struct dwc2_tt. Don't forget to call
4072 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
4073 */
4074
4075struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4076 gfp_t mem_flags, int *ttport)
4077{
4078 struct urb *urb = context;
4079 struct dwc2_tt *dwc_tt = NULL;
4080
4081 if (urb->dev->tt) {
4082 *ttport = urb->dev->ttport;
4083
4084 dwc_tt = urb->dev->tt->hcpriv;
4085 if (dwc_tt == NULL) {
4086 size_t bitmap_size;
4087
4088 /*
4089 * For single_tt we need one schedule. For multi_tt
4090 * we need one per port.
4091 */
4092 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4093 sizeof(dwc_tt->periodic_bitmaps[0]);
4094 if (urb->dev->tt->multi)
4095 bitmap_size *= urb->dev->tt->hub->maxchild;
4096
4097 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4098 mem_flags);
4099 if (dwc_tt == NULL)
4100 return NULL;
4101
4102 dwc_tt->usb_tt = urb->dev->tt;
4103 dwc_tt->usb_tt->hcpriv = dwc_tt;
4104 }
4105
4106 dwc_tt->refcount++;
4107 }
4108
4109 return dwc_tt;
4110}
4111
4112/**
4113 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4114 *
4115 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4116 * of the structure are done.
4117 *
4118 * It's OK to call this with NULL.
4119 *
4120 * @hsotg: The HCD state structure for the DWC OTG controller.
4121 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
4122 */
4123void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4124{
4125 /* Model kfree and make put of NULL a no-op */
4126 if (dwc_tt == NULL)
4127 return;
4128
4129 WARN_ON(dwc_tt->refcount < 1);
4130
4131 dwc_tt->refcount--;
4132 if (!dwc_tt->refcount) {
4133 dwc_tt->usb_tt->hcpriv = NULL;
4134 kfree(dwc_tt);
4135 }
4136}
4137
4138int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4139{
4140 struct urb *urb = context;
4141
4142 return urb->dev->speed;
4143}
4144
4145static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4146 struct urb *urb)
4147{
4148 struct usb_bus *bus = hcd_to_bus(hcd);
4149
4150 if (urb->interval)
4151 bus->bandwidth_allocated += bw / urb->interval;
4152 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4153 bus->bandwidth_isoc_reqs++;
4154 else
4155 bus->bandwidth_int_reqs++;
4156}
4157
4158static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4159 struct urb *urb)
4160{
4161 struct usb_bus *bus = hcd_to_bus(hcd);
4162
4163 if (urb->interval)
4164 bus->bandwidth_allocated -= bw / urb->interval;
4165 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4166 bus->bandwidth_isoc_reqs--;
4167 else
4168 bus->bandwidth_int_reqs--;
4169}
4170
4171/*
4172 * Sets the final status of an URB and returns it to the upper layer. Any
4173 * required cleanup of the URB is performed.
4174 *
4175 * Must be called with interrupt disabled and spinlock held
4176 */
4177void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4178 int status)
4179{
4180 struct urb *urb;
4181 int i;
4182
4183 if (!qtd) {
4184 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4185 return;
4186 }
4187
4188 if (!qtd->urb) {
4189 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4190 return;
4191 }
4192
4193 urb = qtd->urb->priv;
4194 if (!urb) {
4195 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4196 return;
4197 }
4198
4199 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4200
4201 if (dbg_urb(urb))
4202 dev_vdbg(hsotg->dev,
4203 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4204 __func__, urb, usb_pipedevice(urb->pipe),
4205 usb_pipeendpoint(urb->pipe),
4206 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4207 urb->actual_length);
4208
4209
4210 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4211 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4212 for (i = 0; i < urb->number_of_packets; ++i) {
4213 urb->iso_frame_desc[i].actual_length =
4214 dwc2_hcd_urb_get_iso_desc_actual_length(
4215 qtd->urb, i);
4216 urb->iso_frame_desc[i].status =
4217 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4218 }
4219 }
4220
4221 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4222 for (i = 0; i < urb->number_of_packets; i++)
4223 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4224 i, urb->iso_frame_desc[i].status);
4225 }
4226
4227 urb->status = status;
4228 if (!status) {
4229 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4230 urb->actual_length < urb->transfer_buffer_length)
4231 urb->status = -EREMOTEIO;
4232 }
4233
4234 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4235 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4236 struct usb_host_endpoint *ep = urb->ep;
4237
4238 if (ep)
4239 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4240 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4241 urb);
4242 }
4243
4244 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4245 urb->hcpriv = NULL;
4246 kfree(qtd->urb);
4247 qtd->urb = NULL;
4248
4249 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4250}
4251
4252/*
4253 * Work queue function for starting the HCD when A-Cable is connected
4254 */
4255static void dwc2_hcd_start_func(struct work_struct *work)
4256{
4257 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4258 start_work.work);
4259
4260 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4261 dwc2_host_start(hsotg);
4262}
4263
4264/*
4265 * Reset work queue function
4266 */
4267static void dwc2_hcd_reset_func(struct work_struct *work)
4268{
4269 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4270 reset_work.work);
4271 unsigned long flags;
4272 u32 hprt0;
4273
4274 dev_dbg(hsotg->dev, "USB RESET function called\n");
4275
4276 spin_lock_irqsave(&hsotg->lock, flags);
4277
4278 hprt0 = dwc2_read_hprt0(hsotg);
4279 hprt0 &= ~HPRT0_RST;
4280 dwc2_writel(hprt0, hsotg->regs + HPRT0);
4281 hsotg->flags.b.port_reset_change = 1;
4282
4283 spin_unlock_irqrestore(&hsotg->lock, flags);
4284}
4285
4286/*
4287 * =========================================================================
4288 * Linux HC Driver Functions
4289 * =========================================================================
4290 */
4291
4292/*
4293 * Initializes the DWC_otg controller and its root hub and prepares it for host
4294 * mode operation. Activates the root port. Returns 0 on success and a negative
4295 * error code on failure.
4296 */
4297static int _dwc2_hcd_start(struct usb_hcd *hcd)
4298{
4299 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4300 struct usb_bus *bus = hcd_to_bus(hcd);
4301 unsigned long flags;
4302
4303 dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4304
4305 spin_lock_irqsave(&hsotg->lock, flags);
4306 hsotg->lx_state = DWC2_L0;
4307 hcd->state = HC_STATE_RUNNING;
4308 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4309
4310 if (dwc2_is_device_mode(hsotg)) {
4311 spin_unlock_irqrestore(&hsotg->lock, flags);
4312 return 0; /* why 0 ?? */
4313 }
4314
4315 dwc2_hcd_reinit(hsotg);
4316
4317 /* Initialize and connect root hub if one is not already attached */
4318 if (bus->root_hub) {
4319 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4320 /* Inform the HUB driver to resume */
4321 usb_hcd_resume_root_hub(hcd);
4322 }
4323
4324 spin_unlock_irqrestore(&hsotg->lock, flags);
4325 return 0;
4326}
4327
4328/*
4329 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4330 * stopped.
4331 */
4332static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4333{
4334 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4335 unsigned long flags;
4336
4337 /* Turn off all host-specific interrupts */
4338 dwc2_disable_host_interrupts(hsotg);
4339
4340 /* Wait for interrupt processing to finish */
4341 synchronize_irq(hcd->irq);
4342
4343 spin_lock_irqsave(&hsotg->lock, flags);
4344 /* Ensure hcd is disconnected */
4345 dwc2_hcd_disconnect(hsotg, true);
4346 dwc2_hcd_stop(hsotg);
4347 hsotg->lx_state = DWC2_L3;
4348 hcd->state = HC_STATE_HALT;
4349 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4350 spin_unlock_irqrestore(&hsotg->lock, flags);
4351
4352 usleep_range(1000, 3000);
4353}
4354
4355static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4356{
4357 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4358 unsigned long flags;
4359 int ret = 0;
4360 u32 hprt0;
4361
4362 spin_lock_irqsave(&hsotg->lock, flags);
4363
4364 if (hsotg->lx_state != DWC2_L0)
4365 goto unlock;
4366
4367 if (!HCD_HW_ACCESSIBLE(hcd))
4368 goto unlock;
4369
4370 if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4371 goto unlock;
4372
4373 if (!hsotg->params.hibernation)
4374 goto skip_power_saving;
4375
4376 /*
4377 * Drive USB suspend and disable port Power
4378 * if usb bus is not suspended.
4379 */
4380 if (!hsotg->bus_suspended) {
4381 hprt0 = dwc2_read_hprt0(hsotg);
4382 hprt0 |= HPRT0_SUSP;
4383 hprt0 &= ~HPRT0_PWR;
4384 dwc2_writel(hprt0, hsotg->regs + HPRT0);
4385 }
4386
4387 /* Enter hibernation */
4388 ret = dwc2_enter_hibernation(hsotg);
4389 if (ret) {
4390 if (ret != -ENOTSUPP)
4391 dev_err(hsotg->dev,
4392 "enter hibernation failed\n");
4393 goto skip_power_saving;
4394 }
4395
4396 /* Ask phy to be suspended */
4397 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4398 spin_unlock_irqrestore(&hsotg->lock, flags);
4399 usb_phy_set_suspend(hsotg->uphy, true);
4400 spin_lock_irqsave(&hsotg->lock, flags);
4401 }
4402
4403 /* After entering hibernation, hardware is no more accessible */
4404 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4405
4406skip_power_saving:
4407 hsotg->lx_state = DWC2_L2;
4408unlock:
4409 spin_unlock_irqrestore(&hsotg->lock, flags);
4410
4411 return ret;
4412}
4413
4414static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4415{
4416 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4417 unsigned long flags;
4418 int ret = 0;
4419
4420 spin_lock_irqsave(&hsotg->lock, flags);
4421
4422 if (hsotg->lx_state != DWC2_L2)
4423 goto unlock;
4424
4425 if (!hsotg->params.hibernation) {
4426 hsotg->lx_state = DWC2_L0;
4427 goto unlock;
4428 }
4429
4430 /*
4431 * Set HW accessible bit before powering on the controller
4432 * since an interrupt may rise.
4433 */
4434 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4435
4436 /*
4437 * Enable power if not already done.
4438 * This must not be spinlocked since duration
4439 * of this call is unknown.
4440 */
4441 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4442 spin_unlock_irqrestore(&hsotg->lock, flags);
4443 usb_phy_set_suspend(hsotg->uphy, false);
4444 spin_lock_irqsave(&hsotg->lock, flags);
4445 }
4446
4447 /* Exit hibernation */
4448 ret = dwc2_exit_hibernation(hsotg, true);
4449 if (ret && (ret != -ENOTSUPP))
4450 dev_err(hsotg->dev, "exit hibernation failed\n");
4451
4452 hsotg->lx_state = DWC2_L0;
4453
4454 spin_unlock_irqrestore(&hsotg->lock, flags);
4455
4456 if (hsotg->bus_suspended) {
4457 spin_lock_irqsave(&hsotg->lock, flags);
4458 hsotg->flags.b.port_suspend_change = 1;
4459 spin_unlock_irqrestore(&hsotg->lock, flags);
4460 dwc2_port_resume(hsotg);
4461 } else {
4462 /* Wait for controller to correctly update D+/D- level */
4463 usleep_range(3000, 5000);
4464
4465 /*
4466 * Clear Port Enable and Port Status changes.
4467 * Enable Port Power.
4468 */
4469 dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
4470 HPRT0_ENACHG, hsotg->regs + HPRT0);
4471 /* Wait for controller to detect Port Connect */
4472 usleep_range(5000, 7000);
4473 }
4474
4475 return ret;
4476unlock:
4477 spin_unlock_irqrestore(&hsotg->lock, flags);
4478
4479 return ret;
4480}
4481
4482/* Returns the current frame number */
4483static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4484{
4485 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4486
4487 return dwc2_hcd_get_frame_number(hsotg);
4488}
4489
4490static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4491 char *fn_name)
4492{
4493#ifdef VERBOSE_DEBUG
4494 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4495 char *pipetype = NULL;
4496 char *speed = NULL;
4497
4498 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4499 dev_vdbg(hsotg->dev, " Device address: %d\n",
4500 usb_pipedevice(urb->pipe));
4501 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n",
4502 usb_pipeendpoint(urb->pipe),
4503 usb_pipein(urb->pipe) ? "IN" : "OUT");
4504
4505 switch (usb_pipetype(urb->pipe)) {
4506 case PIPE_CONTROL:
4507 pipetype = "CONTROL";
4508 break;
4509 case PIPE_BULK:
4510 pipetype = "BULK";
4511 break;
4512 case PIPE_INTERRUPT:
4513 pipetype = "INTERRUPT";
4514 break;
4515 case PIPE_ISOCHRONOUS:
4516 pipetype = "ISOCHRONOUS";
4517 break;
4518 }
4519
4520 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype,
4521 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4522 "IN" : "OUT");
4523
4524 switch (urb->dev->speed) {
4525 case USB_SPEED_HIGH:
4526 speed = "HIGH";
4527 break;
4528 case USB_SPEED_FULL:
4529 speed = "FULL";
4530 break;
4531 case USB_SPEED_LOW:
4532 speed = "LOW";
4533 break;
4534 default:
4535 speed = "UNKNOWN";
4536 break;
4537 }
4538
4539 dev_vdbg(hsotg->dev, " Speed: %s\n", speed);
4540 dev_vdbg(hsotg->dev, " Max packet size: %d\n",
4541 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4542 dev_vdbg(hsotg->dev, " Data buffer length: %d\n",
4543 urb->transfer_buffer_length);
4544 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n",
4545 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4546 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n",
4547 urb->setup_packet, (unsigned long)urb->setup_dma);
4548 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval);
4549
4550 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4551 int i;
4552
4553 for (i = 0; i < urb->number_of_packets; i++) {
4554 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i);
4555 dev_vdbg(hsotg->dev, " offset: %d, length %d\n",
4556 urb->iso_frame_desc[i].offset,
4557 urb->iso_frame_desc[i].length);
4558 }
4559 }
4560#endif
4561}
4562
4563/*
4564 * Starts processing a USB transfer request specified by a USB Request Block
4565 * (URB). mem_flags indicates the type of memory allocation to use while
4566 * processing this URB.
4567 */
4568static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4569 gfp_t mem_flags)
4570{
4571 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4572 struct usb_host_endpoint *ep = urb->ep;
4573 struct dwc2_hcd_urb *dwc2_urb;
4574 int i;
4575 int retval;
4576 int alloc_bandwidth = 0;
4577 u8 ep_type = 0;
4578 u32 tflags = 0;
4579 void *buf;
4580 unsigned long flags;
4581 struct dwc2_qh *qh;
4582 bool qh_allocated = false;
4583 struct dwc2_qtd *qtd;
4584
4585 if (dbg_urb(urb)) {
4586 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4587 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4588 }
4589
4590 if (ep == NULL)
4591 return -EINVAL;
4592
4593 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4594 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4595 spin_lock_irqsave(&hsotg->lock, flags);
4596 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4597 alloc_bandwidth = 1;
4598 spin_unlock_irqrestore(&hsotg->lock, flags);
4599 }
4600
4601 switch (usb_pipetype(urb->pipe)) {
4602 case PIPE_CONTROL:
4603 ep_type = USB_ENDPOINT_XFER_CONTROL;
4604 break;
4605 case PIPE_ISOCHRONOUS:
4606 ep_type = USB_ENDPOINT_XFER_ISOC;
4607 break;
4608 case PIPE_BULK:
4609 ep_type = USB_ENDPOINT_XFER_BULK;
4610 break;
4611 case PIPE_INTERRUPT:
4612 ep_type = USB_ENDPOINT_XFER_INT;
4613 break;
4614 }
4615
4616 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4617 mem_flags);
4618 if (!dwc2_urb)
4619 return -ENOMEM;
4620
4621 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4622 usb_pipeendpoint(urb->pipe), ep_type,
4623 usb_pipein(urb->pipe),
4624 usb_maxpacket(urb->dev, urb->pipe,
4625 !(usb_pipein(urb->pipe))));
4626
4627 buf = urb->transfer_buffer;
4628
4629 if (hcd->self.uses_dma) {
4630 if (!buf && (urb->transfer_dma & 3)) {
4631 dev_err(hsotg->dev,
4632 "%s: unaligned transfer with no transfer_buffer",
4633 __func__);
4634 retval = -EINVAL;
4635 goto fail0;
4636 }
4637 }
4638
4639 if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4640 tflags |= URB_GIVEBACK_ASAP;
4641 if (urb->transfer_flags & URB_ZERO_PACKET)
4642 tflags |= URB_SEND_ZERO_PACKET;
4643
4644 dwc2_urb->priv = urb;
4645 dwc2_urb->buf = buf;
4646 dwc2_urb->dma = urb->transfer_dma;
4647 dwc2_urb->length = urb->transfer_buffer_length;
4648 dwc2_urb->setup_packet = urb->setup_packet;
4649 dwc2_urb->setup_dma = urb->setup_dma;
4650 dwc2_urb->flags = tflags;
4651 dwc2_urb->interval = urb->interval;
4652 dwc2_urb->status = -EINPROGRESS;
4653
4654 for (i = 0; i < urb->number_of_packets; ++i)
4655 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4656 urb->iso_frame_desc[i].offset,
4657 urb->iso_frame_desc[i].length);
4658
4659 urb->hcpriv = dwc2_urb;
4660 qh = (struct dwc2_qh *) ep->hcpriv;
4661 /* Create QH for the endpoint if it doesn't exist */
4662 if (!qh) {
4663 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4664 if (!qh) {
4665 retval = -ENOMEM;
4666 goto fail0;
4667 }
4668 ep->hcpriv = qh;
4669 qh_allocated = true;
4670 }
4671
4672 qtd = kzalloc(sizeof(*qtd), mem_flags);
4673 if (!qtd) {
4674 retval = -ENOMEM;
4675 goto fail1;
4676 }
4677
4678 spin_lock_irqsave(&hsotg->lock, flags);
4679 retval = usb_hcd_link_urb_to_ep(hcd, urb);
4680 if (retval)
4681 goto fail2;
4682
4683 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4684 if (retval)
4685 goto fail3;
4686
4687 if (alloc_bandwidth) {
4688 dwc2_allocate_bus_bandwidth(hcd,
4689 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4690 urb);
4691 }
4692
4693 spin_unlock_irqrestore(&hsotg->lock, flags);
4694
4695 return 0;
4696
4697fail3:
4698 dwc2_urb->priv = NULL;
4699 usb_hcd_unlink_urb_from_ep(hcd, urb);
4700 if (qh_allocated && qh->channel && qh->channel->qh == qh)
4701 qh->channel->qh = NULL;
4702fail2:
4703 spin_unlock_irqrestore(&hsotg->lock, flags);
4704 urb->hcpriv = NULL;
4705 kfree(qtd);
4706 qtd = NULL;
4707fail1:
4708 if (qh_allocated) {
4709 struct dwc2_qtd *qtd2, *qtd2_tmp;
4710
4711 ep->hcpriv = NULL;
4712 dwc2_hcd_qh_unlink(hsotg, qh);
4713 /* Free each QTD in the QH's QTD list */
4714 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4715 qtd_list_entry)
4716 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4717 dwc2_hcd_qh_free(hsotg, qh);
4718 }
4719fail0:
4720 kfree(dwc2_urb);
4721
4722 return retval;
4723}
4724
4725/*
4726 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4727 */
4728static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4729 int status)
4730{
4731 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4732 int rc;
4733 unsigned long flags;
4734
4735 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4736 dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4737
4738 spin_lock_irqsave(&hsotg->lock, flags);
4739
4740 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4741 if (rc)
4742 goto out;
4743
4744 if (!urb->hcpriv) {
4745 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4746 goto out;
4747 }
4748
4749 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4750
4751 usb_hcd_unlink_urb_from_ep(hcd, urb);
4752
4753 kfree(urb->hcpriv);
4754 urb->hcpriv = NULL;
4755
4756 /* Higher layer software sets URB status */
4757 spin_unlock(&hsotg->lock);
4758 usb_hcd_giveback_urb(hcd, urb, status);
4759 spin_lock(&hsotg->lock);
4760
4761 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4762 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status);
4763out:
4764 spin_unlock_irqrestore(&hsotg->lock, flags);
4765
4766 return rc;
4767}
4768
4769/*
4770 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4771 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4772 * must already be dequeued.
4773 */
4774static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4775 struct usb_host_endpoint *ep)
4776{
4777 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4778
4779 dev_dbg(hsotg->dev,
4780 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4781 ep->desc.bEndpointAddress, ep->hcpriv);
4782 dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4783}
4784
4785/*
4786 * Resets endpoint specific parameter values, in current version used to reset
4787 * the data toggle (as a WA). This function can be called from usb_clear_halt
4788 * routine.
4789 */
4790static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4791 struct usb_host_endpoint *ep)
4792{
4793 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4794 unsigned long flags;
4795
4796 dev_dbg(hsotg->dev,
4797 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4798 ep->desc.bEndpointAddress);
4799
4800 spin_lock_irqsave(&hsotg->lock, flags);
4801 dwc2_hcd_endpoint_reset(hsotg, ep);
4802 spin_unlock_irqrestore(&hsotg->lock, flags);
4803}
4804
4805/*
4806 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4807 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4808 * interrupt.
4809 *
4810 * This function is called by the USB core when an interrupt occurs
4811 */
4812static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4813{
4814 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4815
4816 return dwc2_handle_hcd_intr(hsotg);
4817}
4818
4819/*
4820 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4821 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4822 * is the status change indicator for the single root port. Returns 1 if either
4823 * change indicator is 1, otherwise returns 0.
4824 */
4825static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4826{
4827 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4828
4829 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4830 return buf[0] != 0;
4831}
4832
4833/* Handles hub class-specific requests */
4834static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4835 u16 windex, char *buf, u16 wlength)
4836{
4837 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4838 wvalue, windex, buf, wlength);
4839 return retval;
4840}
4841
4842/* Handles hub TT buffer clear completions */
4843static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4844 struct usb_host_endpoint *ep)
4845{
4846 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4847 struct dwc2_qh *qh;
4848 unsigned long flags;
4849
4850 qh = ep->hcpriv;
4851 if (!qh)
4852 return;
4853
4854 spin_lock_irqsave(&hsotg->lock, flags);
4855 qh->tt_buffer_dirty = 0;
4856
4857 if (hsotg->flags.b.port_connect_status)
4858 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4859
4860 spin_unlock_irqrestore(&hsotg->lock, flags);
4861}
4862
4863static struct hc_driver dwc2_hc_driver = {
4864 .description = "dwc2_hsotg",
4865 .product_desc = "DWC OTG Controller",
4866 .hcd_priv_size = sizeof(struct wrapper_priv_data),
4867
4868 .irq = _dwc2_hcd_irq,
4869 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4870
4871 .start = _dwc2_hcd_start,
4872 .stop = _dwc2_hcd_stop,
4873 .urb_enqueue = _dwc2_hcd_urb_enqueue,
4874 .urb_dequeue = _dwc2_hcd_urb_dequeue,
4875 .endpoint_disable = _dwc2_hcd_endpoint_disable,
4876 .endpoint_reset = _dwc2_hcd_endpoint_reset,
4877 .get_frame_number = _dwc2_hcd_get_frame_number,
4878
4879 .hub_status_data = _dwc2_hcd_hub_status_data,
4880 .hub_control = _dwc2_hcd_hub_control,
4881 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4882
4883 .bus_suspend = _dwc2_hcd_suspend,
4884 .bus_resume = _dwc2_hcd_resume,
4885
4886 .map_urb_for_dma = dwc2_map_urb_for_dma,
4887 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma,
4888};
4889
4890/*
4891 * Frees secondary storage associated with the dwc2_hsotg structure contained
4892 * in the struct usb_hcd field
4893 */
4894static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4895{
4896 u32 ahbcfg;
4897 u32 dctl;
4898 int i;
4899
4900 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4901
4902 /* Free memory for QH/QTD lists */
4903 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4904 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4905 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4906 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4907 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4908 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4909
4910 /* Free memory for the host channels */
4911 for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4912 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4913
4914 if (chan != NULL) {
4915 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4916 i, chan);
4917 hsotg->hc_ptr_array[i] = NULL;
4918 kfree(chan);
4919 }
4920 }
4921
4922 if (hsotg->params.host_dma > 0) {
4923 if (hsotg->status_buf) {
4924 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
4925 hsotg->status_buf,
4926 hsotg->status_buf_dma);
4927 hsotg->status_buf = NULL;
4928 }
4929 } else {
4930 kfree(hsotg->status_buf);
4931 hsotg->status_buf = NULL;
4932 }
4933
4934 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
4935
4936 /* Disable all interrupts */
4937 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
4938 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
4939 dwc2_writel(0, hsotg->regs + GINTMSK);
4940
4941 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
4942 dctl = dwc2_readl(hsotg->regs + DCTL);
4943 dctl |= DCTL_SFTDISCON;
4944 dwc2_writel(dctl, hsotg->regs + DCTL);
4945 }
4946
4947 if (hsotg->wq_otg) {
4948 if (!cancel_work_sync(&hsotg->wf_otg))
4949 flush_workqueue(hsotg->wq_otg);
4950 destroy_workqueue(hsotg->wq_otg);
4951 }
4952
4953 del_timer(&hsotg->wkp_timer);
4954}
4955
4956static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
4957{
4958 /* Turn off all host-specific interrupts */
4959 dwc2_disable_host_interrupts(hsotg);
4960
4961 dwc2_hcd_free(hsotg);
4962}
4963
4964/*
4965 * Initializes the HCD. This function allocates memory for and initializes the
4966 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
4967 * USB bus with the core and calls the hc_driver->start() function. It returns
4968 * a negative error on failure.
4969 */
4970int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
4971{
4972 struct usb_hcd *hcd;
4973 struct dwc2_host_chan *channel;
4974 u32 hcfg;
4975 int i, num_channels;
4976 int retval;
4977
4978 if (usb_disabled())
4979 return -ENODEV;
4980
4981 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
4982
4983 retval = -ENOMEM;
4984
4985 hcfg = dwc2_readl(hsotg->regs + HCFG);
4986 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
4987
4988#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
4989 hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
4990 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
4991 if (!hsotg->frame_num_array)
4992 goto error1;
4993 hsotg->last_frame_num_array = kzalloc(
4994 sizeof(*hsotg->last_frame_num_array) *
4995 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
4996 if (!hsotg->last_frame_num_array)
4997 goto error1;
4998#endif
4999 hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5000
5001 /* Check if the bus driver or platform code has setup a dma_mask */
5002 if (hsotg->params.host_dma > 0 &&
5003 hsotg->dev->dma_mask == NULL) {
5004 dev_warn(hsotg->dev,
5005 "dma_mask not set, disabling DMA\n");
5006 hsotg->params.host_dma = 0;
5007 hsotg->params.dma_desc_enable = 0;
5008 }
5009
5010 /* Set device flags indicating whether the HCD supports DMA */
5011 if (hsotg->params.host_dma > 0) {
5012 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5013 dev_warn(hsotg->dev, "can't set DMA mask\n");
5014 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5015 dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5016 }
5017
5018 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5019 if (!hcd)
5020 goto error1;
5021
5022 if (hsotg->params.host_dma <= 0)
5023 hcd->self.uses_dma = 0;
5024
5025 hcd->has_tt = 1;
5026
5027 ((struct wrapper_priv_data *) &hcd->hcd_priv)->hsotg = hsotg;
5028 hsotg->priv = hcd;
5029
5030 /*
5031 * Disable the global interrupt until all the interrupt handlers are
5032 * installed
5033 */
5034 dwc2_disable_global_interrupts(hsotg);
5035
5036 /* Initialize the DWC_otg core, and select the Phy type */
5037 retval = dwc2_core_init(hsotg, true);
5038 if (retval)
5039 goto error2;
5040
5041 /* Create new workqueue and init work */
5042 retval = -ENOMEM;
5043 hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5044 if (!hsotg->wq_otg) {
5045 dev_err(hsotg->dev, "Failed to create workqueue\n");
5046 goto error2;
5047 }
5048 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5049
5050 setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected,
5051 (unsigned long)hsotg);
5052
5053 /* Initialize the non-periodic schedule */
5054 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5055 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5056
5057 /* Initialize the periodic schedule */
5058 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5059 INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5060 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5061 INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5062
5063 INIT_LIST_HEAD(&hsotg->split_order);
5064
5065 /*
5066 * Create a host channel descriptor for each host channel implemented
5067 * in the controller. Initialize the channel descriptor array.
5068 */
5069 INIT_LIST_HEAD(&hsotg->free_hc_list);
5070 num_channels = hsotg->params.host_channels;
5071 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5072
5073 for (i = 0; i < num_channels; i++) {
5074 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5075 if (channel == NULL)
5076 goto error3;
5077 channel->hc_num = i;
5078 INIT_LIST_HEAD(&channel->split_order_list_entry);
5079 hsotg->hc_ptr_array[i] = channel;
5080 }
5081
5082 /* Initialize hsotg start work */
5083 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5084
5085 /* Initialize port reset work */
5086 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5087
5088 /*
5089 * Allocate space for storing data on status transactions. Normally no
5090 * data is sent, but this space acts as a bit bucket. This must be
5091 * done after usb_add_hcd since that function allocates the DMA buffer
5092 * pool.
5093 */
5094 if (hsotg->params.host_dma > 0)
5095 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5096 DWC2_HCD_STATUS_BUF_SIZE,
5097 &hsotg->status_buf_dma, GFP_KERNEL);
5098 else
5099 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5100 GFP_KERNEL);
5101
5102 if (!hsotg->status_buf)
5103 goto error3;
5104
5105 /*
5106 * Create kmem caches to handle descriptor buffers in descriptor
5107 * DMA mode.
5108 * Alignment must be set to 512 bytes.
5109 */
5110 if (hsotg->params.dma_desc_enable ||
5111 hsotg->params.dma_desc_fs_enable) {
5112 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5113 sizeof(struct dwc2_dma_desc) *
5114 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5115 NULL);
5116 if (!hsotg->desc_gen_cache) {
5117 dev_err(hsotg->dev,
5118 "unable to create dwc2 generic desc cache\n");
5119
5120 /*
5121 * Disable descriptor dma mode since it will not be
5122 * usable.
5123 */
5124 hsotg->params.dma_desc_enable = 0;
5125 hsotg->params.dma_desc_fs_enable = 0;
5126 }
5127
5128 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5129 sizeof(struct dwc2_dma_desc) *
5130 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5131 if (!hsotg->desc_hsisoc_cache) {
5132 dev_err(hsotg->dev,
5133 "unable to create dwc2 hs isoc desc cache\n");
5134
5135 kmem_cache_destroy(hsotg->desc_gen_cache);
5136
5137 /*
5138 * Disable descriptor dma mode since it will not be
5139 * usable.
5140 */
5141 hsotg->params.dma_desc_enable = 0;
5142 hsotg->params.dma_desc_fs_enable = 0;
5143 }
5144 }
5145
5146 hsotg->otg_port = 1;
5147 hsotg->frame_list = NULL;
5148 hsotg->frame_list_dma = 0;
5149 hsotg->periodic_qh_count = 0;
5150
5151 /* Initiate lx_state to L3 disconnected state */
5152 hsotg->lx_state = DWC2_L3;
5153
5154 hcd->self.otg_port = hsotg->otg_port;
5155
5156 /* Don't support SG list at this point */
5157 hcd->self.sg_tablesize = 0;
5158
5159 if (!IS_ERR_OR_NULL(hsotg->uphy))
5160 otg_set_host(hsotg->uphy->otg, &hcd->self);
5161
5162 /*
5163 * Finish generic HCD initialization and start the HCD. This function
5164 * allocates the DMA buffer pool, registers the USB bus, requests the
5165 * IRQ line, and calls hcd_start method.
5166 */
5167 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5168 if (retval < 0)
5169 goto error4;
5170
5171 device_wakeup_enable(hcd->self.controller);
5172
5173 dwc2_hcd_dump_state(hsotg);
5174
5175 dwc2_enable_global_interrupts(hsotg);
5176
5177 return 0;
5178
5179error4:
5180 kmem_cache_destroy(hsotg->desc_gen_cache);
5181 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5182error3:
5183 dwc2_hcd_release(hsotg);
5184error2:
5185 usb_put_hcd(hcd);
5186error1:
5187
5188#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5189 kfree(hsotg->last_frame_num_array);
5190 kfree(hsotg->frame_num_array);
5191#endif
5192
5193 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5194 return retval;
5195}
5196
5197/*
5198 * Removes the HCD.
5199 * Frees memory and resources associated with the HCD and deregisters the bus.
5200 */
5201void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5202{
5203 struct usb_hcd *hcd;
5204
5205 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5206
5207 hcd = dwc2_hsotg_to_hcd(hsotg);
5208 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5209
5210 if (!hcd) {
5211 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5212 __func__);
5213 return;
5214 }
5215
5216 if (!IS_ERR_OR_NULL(hsotg->uphy))
5217 otg_set_host(hsotg->uphy->otg, NULL);
5218
5219 usb_remove_hcd(hcd);
5220 hsotg->priv = NULL;
5221
5222 kmem_cache_destroy(hsotg->desc_gen_cache);
5223 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5224
5225 dwc2_hcd_release(hsotg);
5226 usb_put_hcd(hcd);
5227
5228#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5229 kfree(hsotg->last_frame_num_array);
5230 kfree(hsotg->frame_num_array);
5231#endif
5232}
5233
5234/**
5235 * dwc2_backup_host_registers() - Backup controller host registers.
5236 * When suspending usb bus, registers needs to be backuped
5237 * if controller power is disabled once suspended.
5238 *
5239 * @hsotg: Programming view of the DWC_otg controller
5240 */
5241int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5242{
5243 struct dwc2_hregs_backup *hr;
5244 int i;
5245
5246 dev_dbg(hsotg->dev, "%s\n", __func__);
5247
5248 /* Backup Host regs */
5249 hr = &hsotg->hr_backup;
5250 hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
5251 hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
5252 for (i = 0; i < hsotg->params.host_channels; ++i)
5253 hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
5254
5255 hr->hprt0 = dwc2_read_hprt0(hsotg);
5256 hr->hfir = dwc2_readl(hsotg->regs + HFIR);
5257 hr->valid = true;
5258
5259 return 0;
5260}
5261
5262/**
5263 * dwc2_restore_host_registers() - Restore controller host registers.
5264 * When resuming usb bus, device registers needs to be restored
5265 * if controller power were disabled.
5266 *
5267 * @hsotg: Programming view of the DWC_otg controller
5268 */
5269int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5270{
5271 struct dwc2_hregs_backup *hr;
5272 int i;
5273
5274 dev_dbg(hsotg->dev, "%s\n", __func__);
5275
5276 /* Restore host regs */
5277 hr = &hsotg->hr_backup;
5278 if (!hr->valid) {
5279 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5280 __func__);
5281 return -EINVAL;
5282 }
5283 hr->valid = false;
5284
5285 dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5286 dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
5287
5288 for (i = 0; i < hsotg->params.host_channels; ++i)
5289 dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
5290
5291 dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
5292 dwc2_writel(hr->hfir, hsotg->regs + HFIR);
5293 hsotg->frame_number = 0;
5294
5295 return 0;
5296}
1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2/*
3 * hcd.c - DesignWare HS OTG Controller host-mode routines
4 *
5 * Copyright (C) 2004-2013 Synopsys, Inc.
6 */
7
8/*
9 * This file contains the core HCD code, and implements the Linux hc_driver
10 * API
11 */
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/platform_device.h>
17#include <linux/dma-mapping.h>
18#include <linux/delay.h>
19#include <linux/io.h>
20#include <linux/slab.h>
21#include <linux/usb.h>
22
23#include <linux/usb/hcd.h>
24#include <linux/usb/ch11.h>
25#include <linux/usb/of.h>
26
27#include "core.h"
28#include "hcd.h"
29
30/*
31 * =========================================================================
32 * Host Core Layer Functions
33 * =========================================================================
34 */
35
36/**
37 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
38 * used in both device and host modes
39 *
40 * @hsotg: Programming view of the DWC_otg controller
41 */
42static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
43{
44 u32 intmsk;
45
46 /* Clear any pending OTG Interrupts */
47 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
48
49 /* Clear any pending interrupts */
50 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
51
52 /* Enable the interrupts in the GINTMSK */
53 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
54
55 if (!hsotg->params.host_dma)
56 intmsk |= GINTSTS_RXFLVL;
57 if (!hsotg->params.external_id_pin_ctl)
58 intmsk |= GINTSTS_CONIDSTSCHNG;
59
60 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
61 GINTSTS_SESSREQINT;
62
63 if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
64 intmsk |= GINTSTS_LPMTRANRCVD;
65
66 dwc2_writel(hsotg, intmsk, GINTMSK);
67}
68
69static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
70{
71 u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
72
73 switch (hsotg->hw_params.arch) {
74 case GHWCFG2_EXT_DMA_ARCH:
75 dev_err(hsotg->dev, "External DMA Mode not supported\n");
76 return -EINVAL;
77
78 case GHWCFG2_INT_DMA_ARCH:
79 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
80 if (hsotg->params.ahbcfg != -1) {
81 ahbcfg &= GAHBCFG_CTRL_MASK;
82 ahbcfg |= hsotg->params.ahbcfg &
83 ~GAHBCFG_CTRL_MASK;
84 }
85 break;
86
87 case GHWCFG2_SLAVE_ONLY_ARCH:
88 default:
89 dev_dbg(hsotg->dev, "Slave Only Mode\n");
90 break;
91 }
92
93 if (hsotg->params.host_dma)
94 ahbcfg |= GAHBCFG_DMA_EN;
95 else
96 hsotg->params.dma_desc_enable = false;
97
98 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
99
100 return 0;
101}
102
103static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
104{
105 u32 usbcfg;
106
107 usbcfg = dwc2_readl(hsotg, GUSBCFG);
108 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
109
110 switch (hsotg->hw_params.op_mode) {
111 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
112 if (hsotg->params.otg_caps.hnp_support &&
113 hsotg->params.otg_caps.srp_support)
114 usbcfg |= GUSBCFG_HNPCAP;
115 fallthrough;
116
117 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
118 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
119 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
120 if (hsotg->params.otg_caps.srp_support)
121 usbcfg |= GUSBCFG_SRPCAP;
122 break;
123
124 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
125 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
126 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
127 default:
128 break;
129 }
130
131 dwc2_writel(hsotg, usbcfg, GUSBCFG);
132}
133
134static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
135{
136 if (hsotg->vbus_supply)
137 return regulator_enable(hsotg->vbus_supply);
138
139 return 0;
140}
141
142static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
143{
144 if (hsotg->vbus_supply)
145 return regulator_disable(hsotg->vbus_supply);
146
147 return 0;
148}
149
150/**
151 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
152 *
153 * @hsotg: Programming view of DWC_otg controller
154 */
155static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
156{
157 u32 intmsk;
158
159 dev_dbg(hsotg->dev, "%s()\n", __func__);
160
161 /* Disable all interrupts */
162 dwc2_writel(hsotg, 0, GINTMSK);
163 dwc2_writel(hsotg, 0, HAINTMSK);
164
165 /* Enable the common interrupts */
166 dwc2_enable_common_interrupts(hsotg);
167
168 /* Enable host mode interrupts without disturbing common interrupts */
169 intmsk = dwc2_readl(hsotg, GINTMSK);
170 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
171 dwc2_writel(hsotg, intmsk, GINTMSK);
172}
173
174/**
175 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
176 *
177 * @hsotg: Programming view of DWC_otg controller
178 */
179static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
180{
181 u32 intmsk = dwc2_readl(hsotg, GINTMSK);
182
183 /* Disable host mode interrupts without disturbing common interrupts */
184 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
185 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
186 dwc2_writel(hsotg, intmsk, GINTMSK);
187}
188
189/*
190 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
191 * For system that have a total fifo depth that is smaller than the default
192 * RX + TX fifo size.
193 *
194 * @hsotg: Programming view of DWC_otg controller
195 */
196static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
197{
198 struct dwc2_core_params *params = &hsotg->params;
199 struct dwc2_hw_params *hw = &hsotg->hw_params;
200 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
201
202 total_fifo_size = hw->total_fifo_size;
203 rxfsiz = params->host_rx_fifo_size;
204 nptxfsiz = params->host_nperio_tx_fifo_size;
205 ptxfsiz = params->host_perio_tx_fifo_size;
206
207 /*
208 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
209 * allocation with support for high bandwidth endpoints. Synopsys
210 * defines MPS(Max Packet size) for a periodic EP=1024, and for
211 * non-periodic as 512.
212 */
213 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
214 /*
215 * For Buffer DMA mode/Scatter Gather DMA mode
216 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
217 * with n = number of host channel.
218 * 2 * ((1024/4) + 2) = 516
219 */
220 rxfsiz = 516 + hw->host_channels;
221
222 /*
223 * min non-periodic tx fifo depth
224 * 2 * (largest non-periodic USB packet used / 4)
225 * 2 * (512/4) = 256
226 */
227 nptxfsiz = 256;
228
229 /*
230 * min periodic tx fifo depth
231 * (largest packet size*MC)/4
232 * (1024 * 3)/4 = 768
233 */
234 ptxfsiz = 768;
235
236 params->host_rx_fifo_size = rxfsiz;
237 params->host_nperio_tx_fifo_size = nptxfsiz;
238 params->host_perio_tx_fifo_size = ptxfsiz;
239 }
240
241 /*
242 * If the summation of RX, NPTX and PTX fifo sizes is still
243 * bigger than the total_fifo_size, then we have a problem.
244 *
245 * We won't be able to allocate as many endpoints. Right now,
246 * we're just printing an error message, but ideally this FIFO
247 * allocation algorithm would be improved in the future.
248 *
249 * FIXME improve this FIFO allocation algorithm.
250 */
251 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
252 dev_err(hsotg->dev, "invalid fifo sizes\n");
253}
254
255static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
256{
257 struct dwc2_core_params *params = &hsotg->params;
258 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
259
260 if (!params->enable_dynamic_fifo)
261 return;
262
263 dwc2_calculate_dynamic_fifo(hsotg);
264
265 /* Rx FIFO */
266 grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
267 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
268 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
269 grxfsiz |= params->host_rx_fifo_size <<
270 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
271 dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
272 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
273 dwc2_readl(hsotg, GRXFSIZ));
274
275 /* Non-periodic Tx FIFO */
276 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
277 dwc2_readl(hsotg, GNPTXFSIZ));
278 nptxfsiz = params->host_nperio_tx_fifo_size <<
279 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
280 nptxfsiz |= params->host_rx_fifo_size <<
281 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
282 dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
283 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
284 dwc2_readl(hsotg, GNPTXFSIZ));
285
286 /* Periodic Tx FIFO */
287 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
288 dwc2_readl(hsotg, HPTXFSIZ));
289 hptxfsiz = params->host_perio_tx_fifo_size <<
290 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
291 hptxfsiz |= (params->host_rx_fifo_size +
292 params->host_nperio_tx_fifo_size) <<
293 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
294 dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
295 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
296 dwc2_readl(hsotg, HPTXFSIZ));
297
298 if (hsotg->params.en_multiple_tx_fifo &&
299 hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
300 /*
301 * This feature was implemented in 2.91a version
302 * Global DFIFOCFG calculation for Host mode -
303 * include RxFIFO, NPTXFIFO and HPTXFIFO
304 */
305 dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
306 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
307 dfifocfg |= (params->host_rx_fifo_size +
308 params->host_nperio_tx_fifo_size +
309 params->host_perio_tx_fifo_size) <<
310 GDFIFOCFG_EPINFOBASE_SHIFT &
311 GDFIFOCFG_EPINFOBASE_MASK;
312 dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
313 }
314}
315
316/**
317 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
318 * the HFIR register according to PHY type and speed
319 *
320 * @hsotg: Programming view of DWC_otg controller
321 *
322 * NOTE: The caller can modify the value of the HFIR register only after the
323 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
324 * has been set
325 */
326u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
327{
328 u32 usbcfg;
329 u32 hprt0;
330 int clock = 60; /* default value */
331
332 usbcfg = dwc2_readl(hsotg, GUSBCFG);
333 hprt0 = dwc2_readl(hsotg, HPRT0);
334
335 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
336 !(usbcfg & GUSBCFG_PHYIF16))
337 clock = 60;
338 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
339 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
340 clock = 48;
341 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
342 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
343 clock = 30;
344 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
345 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
346 clock = 60;
347 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
348 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
349 clock = 48;
350 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
351 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
352 clock = 48;
353 if ((usbcfg & GUSBCFG_PHYSEL) &&
354 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
355 clock = 48;
356
357 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
358 /* High speed case */
359 return 125 * clock - 1;
360
361 /* FS/LS case */
362 return 1000 * clock - 1;
363}
364
365/**
366 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
367 * buffer
368 *
369 * @hsotg: Programming view of DWC_otg controller
370 * @dest: Destination buffer for the packet
371 * @bytes: Number of bytes to copy to the destination
372 */
373void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
374{
375 u32 *data_buf = (u32 *)dest;
376 int word_count = (bytes + 3) / 4;
377 int i;
378
379 /*
380 * Todo: Account for the case where dest is not dword aligned. This
381 * requires reading data from the FIFO into a u32 temp buffer, then
382 * moving it into the data buffer.
383 */
384
385 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
386
387 for (i = 0; i < word_count; i++, data_buf++)
388 *data_buf = dwc2_readl(hsotg, HCFIFO(0));
389}
390
391/**
392 * dwc2_dump_channel_info() - Prints the state of a host channel
393 *
394 * @hsotg: Programming view of DWC_otg controller
395 * @chan: Pointer to the channel to dump
396 *
397 * Must be called with interrupt disabled and spinlock held
398 *
399 * NOTE: This function will be removed once the peripheral controller code
400 * is integrated and the driver is stable
401 */
402static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
403 struct dwc2_host_chan *chan)
404{
405#ifdef VERBOSE_DEBUG
406 int num_channels = hsotg->params.host_channels;
407 struct dwc2_qh *qh;
408 u32 hcchar;
409 u32 hcsplt;
410 u32 hctsiz;
411 u32 hc_dma;
412 int i;
413
414 if (!chan)
415 return;
416
417 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
418 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
419 hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
420 hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
421
422 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan);
423 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n",
424 hcchar, hcsplt);
425 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n",
426 hctsiz, hc_dma);
427 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
428 chan->dev_addr, chan->ep_num, chan->ep_is_in);
429 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
430 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
431 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start);
432 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started);
433 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
434 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
435 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
436 (unsigned long)chan->xfer_dma);
437 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
438 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
439 dev_dbg(hsotg->dev, " NP inactive sched:\n");
440 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
441 qh_list_entry)
442 dev_dbg(hsotg->dev, " %p\n", qh);
443 dev_dbg(hsotg->dev, " NP waiting sched:\n");
444 list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
445 qh_list_entry)
446 dev_dbg(hsotg->dev, " %p\n", qh);
447 dev_dbg(hsotg->dev, " NP active sched:\n");
448 list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
449 qh_list_entry)
450 dev_dbg(hsotg->dev, " %p\n", qh);
451 dev_dbg(hsotg->dev, " Channels:\n");
452 for (i = 0; i < num_channels; i++) {
453 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
454
455 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan);
456 }
457#endif /* VERBOSE_DEBUG */
458}
459
460static int _dwc2_hcd_start(struct usb_hcd *hcd);
461
462static void dwc2_host_start(struct dwc2_hsotg *hsotg)
463{
464 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
465
466 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
467 _dwc2_hcd_start(hcd);
468}
469
470static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
471{
472 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
473
474 hcd->self.is_b_host = 0;
475}
476
477static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
478 int *hub_addr, int *hub_port)
479{
480 struct urb *urb = context;
481
482 if (urb->dev->tt)
483 *hub_addr = urb->dev->tt->hub->devnum;
484 else
485 *hub_addr = 0;
486 *hub_port = urb->dev->ttport;
487}
488
489/*
490 * =========================================================================
491 * Low Level Host Channel Access Functions
492 * =========================================================================
493 */
494
495static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
496 struct dwc2_host_chan *chan)
497{
498 u32 hcintmsk = HCINTMSK_CHHLTD;
499
500 switch (chan->ep_type) {
501 case USB_ENDPOINT_XFER_CONTROL:
502 case USB_ENDPOINT_XFER_BULK:
503 dev_vdbg(hsotg->dev, "control/bulk\n");
504 hcintmsk |= HCINTMSK_XFERCOMPL;
505 hcintmsk |= HCINTMSK_STALL;
506 hcintmsk |= HCINTMSK_XACTERR;
507 hcintmsk |= HCINTMSK_DATATGLERR;
508 if (chan->ep_is_in) {
509 hcintmsk |= HCINTMSK_BBLERR;
510 } else {
511 hcintmsk |= HCINTMSK_NAK;
512 hcintmsk |= HCINTMSK_NYET;
513 if (chan->do_ping)
514 hcintmsk |= HCINTMSK_ACK;
515 }
516
517 if (chan->do_split) {
518 hcintmsk |= HCINTMSK_NAK;
519 if (chan->complete_split)
520 hcintmsk |= HCINTMSK_NYET;
521 else
522 hcintmsk |= HCINTMSK_ACK;
523 }
524
525 if (chan->error_state)
526 hcintmsk |= HCINTMSK_ACK;
527 break;
528
529 case USB_ENDPOINT_XFER_INT:
530 if (dbg_perio())
531 dev_vdbg(hsotg->dev, "intr\n");
532 hcintmsk |= HCINTMSK_XFERCOMPL;
533 hcintmsk |= HCINTMSK_NAK;
534 hcintmsk |= HCINTMSK_STALL;
535 hcintmsk |= HCINTMSK_XACTERR;
536 hcintmsk |= HCINTMSK_DATATGLERR;
537 hcintmsk |= HCINTMSK_FRMOVRUN;
538
539 if (chan->ep_is_in)
540 hcintmsk |= HCINTMSK_BBLERR;
541 if (chan->error_state)
542 hcintmsk |= HCINTMSK_ACK;
543 if (chan->do_split) {
544 if (chan->complete_split)
545 hcintmsk |= HCINTMSK_NYET;
546 else
547 hcintmsk |= HCINTMSK_ACK;
548 }
549 break;
550
551 case USB_ENDPOINT_XFER_ISOC:
552 if (dbg_perio())
553 dev_vdbg(hsotg->dev, "isoc\n");
554 hcintmsk |= HCINTMSK_XFERCOMPL;
555 hcintmsk |= HCINTMSK_FRMOVRUN;
556 hcintmsk |= HCINTMSK_ACK;
557
558 if (chan->ep_is_in) {
559 hcintmsk |= HCINTMSK_XACTERR;
560 hcintmsk |= HCINTMSK_BBLERR;
561 }
562 break;
563 default:
564 dev_err(hsotg->dev, "## Unknown EP type ##\n");
565 break;
566 }
567
568 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
569 if (dbg_hc(chan))
570 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
571}
572
573static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
574 struct dwc2_host_chan *chan)
575{
576 u32 hcintmsk = HCINTMSK_CHHLTD;
577
578 /*
579 * For Descriptor DMA mode core halts the channel on AHB error.
580 * Interrupt is not required.
581 */
582 if (!hsotg->params.dma_desc_enable) {
583 if (dbg_hc(chan))
584 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
585 hcintmsk |= HCINTMSK_AHBERR;
586 } else {
587 if (dbg_hc(chan))
588 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
589 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
590 hcintmsk |= HCINTMSK_XFERCOMPL;
591 }
592
593 if (chan->error_state && !chan->do_split &&
594 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
595 if (dbg_hc(chan))
596 dev_vdbg(hsotg->dev, "setting ACK\n");
597 hcintmsk |= HCINTMSK_ACK;
598 if (chan->ep_is_in) {
599 hcintmsk |= HCINTMSK_DATATGLERR;
600 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
601 hcintmsk |= HCINTMSK_NAK;
602 }
603 }
604
605 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
606 if (dbg_hc(chan))
607 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
608}
609
610static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
611 struct dwc2_host_chan *chan)
612{
613 u32 intmsk;
614
615 if (hsotg->params.host_dma) {
616 if (dbg_hc(chan))
617 dev_vdbg(hsotg->dev, "DMA enabled\n");
618 dwc2_hc_enable_dma_ints(hsotg, chan);
619 } else {
620 if (dbg_hc(chan))
621 dev_vdbg(hsotg->dev, "DMA disabled\n");
622 dwc2_hc_enable_slave_ints(hsotg, chan);
623 }
624
625 /* Enable the top level host channel interrupt */
626 intmsk = dwc2_readl(hsotg, HAINTMSK);
627 intmsk |= 1 << chan->hc_num;
628 dwc2_writel(hsotg, intmsk, HAINTMSK);
629 if (dbg_hc(chan))
630 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
631
632 /* Make sure host channel interrupts are enabled */
633 intmsk = dwc2_readl(hsotg, GINTMSK);
634 intmsk |= GINTSTS_HCHINT;
635 dwc2_writel(hsotg, intmsk, GINTMSK);
636 if (dbg_hc(chan))
637 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
638}
639
640/**
641 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
642 * a specific endpoint
643 *
644 * @hsotg: Programming view of DWC_otg controller
645 * @chan: Information needed to initialize the host channel
646 *
647 * The HCCHARn register is set up with the characteristics specified in chan.
648 * Host channel interrupts that may need to be serviced while this transfer is
649 * in progress are enabled.
650 */
651static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
652{
653 u8 hc_num = chan->hc_num;
654 u32 hcintmsk;
655 u32 hcchar;
656 u32 hcsplt = 0;
657
658 if (dbg_hc(chan))
659 dev_vdbg(hsotg->dev, "%s()\n", __func__);
660
661 /* Clear old interrupt conditions for this host channel */
662 hcintmsk = 0xffffffff;
663 hcintmsk &= ~HCINTMSK_RESERVED14_31;
664 dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
665
666 /* Enable channel interrupts required for this transfer */
667 dwc2_hc_enable_ints(hsotg, chan);
668
669 /*
670 * Program the HCCHARn register with the endpoint characteristics for
671 * the current transfer
672 */
673 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
674 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
675 if (chan->ep_is_in)
676 hcchar |= HCCHAR_EPDIR;
677 if (chan->speed == USB_SPEED_LOW)
678 hcchar |= HCCHAR_LSPDDEV;
679 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
680 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
681 dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
682 if (dbg_hc(chan)) {
683 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
684 hc_num, hcchar);
685
686 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
687 __func__, hc_num);
688 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
689 chan->dev_addr);
690 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
691 chan->ep_num);
692 dev_vdbg(hsotg->dev, " Is In: %d\n",
693 chan->ep_is_in);
694 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
695 chan->speed == USB_SPEED_LOW);
696 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
697 chan->ep_type);
698 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
699 chan->max_packet);
700 }
701
702 /* Program the HCSPLT register for SPLITs */
703 if (chan->do_split) {
704 if (dbg_hc(chan))
705 dev_vdbg(hsotg->dev,
706 "Programming HC %d with split --> %s\n",
707 hc_num,
708 chan->complete_split ? "CSPLIT" : "SSPLIT");
709 if (chan->complete_split)
710 hcsplt |= HCSPLT_COMPSPLT;
711 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
712 HCSPLT_XACTPOS_MASK;
713 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
714 HCSPLT_HUBADDR_MASK;
715 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
716 HCSPLT_PRTADDR_MASK;
717 if (dbg_hc(chan)) {
718 dev_vdbg(hsotg->dev, " comp split %d\n",
719 chan->complete_split);
720 dev_vdbg(hsotg->dev, " xact pos %d\n",
721 chan->xact_pos);
722 dev_vdbg(hsotg->dev, " hub addr %d\n",
723 chan->hub_addr);
724 dev_vdbg(hsotg->dev, " hub port %d\n",
725 chan->hub_port);
726 dev_vdbg(hsotg->dev, " is_in %d\n",
727 chan->ep_is_in);
728 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
729 chan->max_packet);
730 dev_vdbg(hsotg->dev, " xferlen %d\n",
731 chan->xfer_len);
732 }
733 }
734
735 dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
736}
737
738/**
739 * dwc2_hc_halt() - Attempts to halt a host channel
740 *
741 * @hsotg: Controller register interface
742 * @chan: Host channel to halt
743 * @halt_status: Reason for halting the channel
744 *
745 * This function should only be called in Slave mode or to abort a transfer in
746 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
747 * controller halts the channel when the transfer is complete or a condition
748 * occurs that requires application intervention.
749 *
750 * In slave mode, checks for a free request queue entry, then sets the Channel
751 * Enable and Channel Disable bits of the Host Channel Characteristics
752 * register of the specified channel to intiate the halt. If there is no free
753 * request queue entry, sets only the Channel Disable bit of the HCCHARn
754 * register to flush requests for this channel. In the latter case, sets a
755 * flag to indicate that the host channel needs to be halted when a request
756 * queue slot is open.
757 *
758 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
759 * HCCHARn register. The controller ensures there is space in the request
760 * queue before submitting the halt request.
761 *
762 * Some time may elapse before the core flushes any posted requests for this
763 * host channel and halts. The Channel Halted interrupt handler completes the
764 * deactivation of the host channel.
765 */
766void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
767 enum dwc2_halt_status halt_status)
768{
769 u32 nptxsts, hptxsts, hcchar;
770
771 if (dbg_hc(chan))
772 dev_vdbg(hsotg->dev, "%s()\n", __func__);
773
774 /*
775 * In buffer DMA or external DMA mode channel can't be halted
776 * for non-split periodic channels. At the end of the next
777 * uframe/frame (in the worst case), the core generates a channel
778 * halted and disables the channel automatically.
779 */
780 if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
781 hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
782 if (!chan->do_split &&
783 (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
784 chan->ep_type == USB_ENDPOINT_XFER_INT)) {
785 dev_err(hsotg->dev, "%s() Channel can't be halted\n",
786 __func__);
787 return;
788 }
789 }
790
791 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
792 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
793
794 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
795 halt_status == DWC2_HC_XFER_AHB_ERR) {
796 /*
797 * Disable all channel interrupts except Ch Halted. The QTD
798 * and QH state associated with this transfer has been cleared
799 * (in the case of URB_DEQUEUE), so the channel needs to be
800 * shut down carefully to prevent crashes.
801 */
802 u32 hcintmsk = HCINTMSK_CHHLTD;
803
804 dev_vdbg(hsotg->dev, "dequeue/error\n");
805 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
806
807 /*
808 * Make sure no other interrupts besides halt are currently
809 * pending. Handling another interrupt could cause a crash due
810 * to the QTD and QH state.
811 */
812 dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
813
814 /*
815 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
816 * even if the channel was already halted for some other
817 * reason
818 */
819 chan->halt_status = halt_status;
820
821 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
822 if (!(hcchar & HCCHAR_CHENA)) {
823 /*
824 * The channel is either already halted or it hasn't
825 * started yet. In DMA mode, the transfer may halt if
826 * it finishes normally or a condition occurs that
827 * requires driver intervention. Don't want to halt
828 * the channel again. In either Slave or DMA mode,
829 * it's possible that the transfer has been assigned
830 * to a channel, but not started yet when an URB is
831 * dequeued. Don't want to halt a channel that hasn't
832 * started yet.
833 */
834 return;
835 }
836 }
837 if (chan->halt_pending) {
838 /*
839 * A halt has already been issued for this channel. This might
840 * happen when a transfer is aborted by a higher level in
841 * the stack.
842 */
843 dev_vdbg(hsotg->dev,
844 "*** %s: Channel %d, chan->halt_pending already set ***\n",
845 __func__, chan->hc_num);
846 return;
847 }
848
849 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
850
851 /* No need to set the bit in DDMA for disabling the channel */
852 /* TODO check it everywhere channel is disabled */
853 if (!hsotg->params.dma_desc_enable) {
854 if (dbg_hc(chan))
855 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
856 hcchar |= HCCHAR_CHENA;
857 } else {
858 if (dbg_hc(chan))
859 dev_dbg(hsotg->dev, "desc DMA enabled\n");
860 }
861 hcchar |= HCCHAR_CHDIS;
862
863 if (!hsotg->params.host_dma) {
864 if (dbg_hc(chan))
865 dev_vdbg(hsotg->dev, "DMA not enabled\n");
866 hcchar |= HCCHAR_CHENA;
867
868 /* Check for space in the request queue to issue the halt */
869 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
870 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
871 dev_vdbg(hsotg->dev, "control/bulk\n");
872 nptxsts = dwc2_readl(hsotg, GNPTXSTS);
873 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
874 dev_vdbg(hsotg->dev, "Disabling channel\n");
875 hcchar &= ~HCCHAR_CHENA;
876 }
877 } else {
878 if (dbg_perio())
879 dev_vdbg(hsotg->dev, "isoc/intr\n");
880 hptxsts = dwc2_readl(hsotg, HPTXSTS);
881 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
882 hsotg->queuing_high_bandwidth) {
883 if (dbg_perio())
884 dev_vdbg(hsotg->dev, "Disabling channel\n");
885 hcchar &= ~HCCHAR_CHENA;
886 }
887 }
888 } else {
889 if (dbg_hc(chan))
890 dev_vdbg(hsotg->dev, "DMA enabled\n");
891 }
892
893 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
894 chan->halt_status = halt_status;
895
896 if (hcchar & HCCHAR_CHENA) {
897 if (dbg_hc(chan))
898 dev_vdbg(hsotg->dev, "Channel enabled\n");
899 chan->halt_pending = 1;
900 chan->halt_on_queue = 0;
901 } else {
902 if (dbg_hc(chan))
903 dev_vdbg(hsotg->dev, "Channel disabled\n");
904 chan->halt_on_queue = 1;
905 }
906
907 if (dbg_hc(chan)) {
908 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
909 chan->hc_num);
910 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
911 hcchar);
912 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
913 chan->halt_pending);
914 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
915 chan->halt_on_queue);
916 dev_vdbg(hsotg->dev, " halt_status: %d\n",
917 chan->halt_status);
918 }
919}
920
921/**
922 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
923 *
924 * @hsotg: Programming view of DWC_otg controller
925 * @chan: Identifies the host channel to clean up
926 *
927 * This function is normally called after a transfer is done and the host
928 * channel is being released
929 */
930void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
931{
932 u32 hcintmsk;
933
934 chan->xfer_started = 0;
935
936 list_del_init(&chan->split_order_list_entry);
937
938 /*
939 * Clear channel interrupt enables and any unhandled channel interrupt
940 * conditions
941 */
942 dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
943 hcintmsk = 0xffffffff;
944 hcintmsk &= ~HCINTMSK_RESERVED14_31;
945 dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
946}
947
948/**
949 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
950 * which frame a periodic transfer should occur
951 *
952 * @hsotg: Programming view of DWC_otg controller
953 * @chan: Identifies the host channel to set up and its properties
954 * @hcchar: Current value of the HCCHAR register for the specified host channel
955 *
956 * This function has no effect on non-periodic transfers
957 */
958static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
959 struct dwc2_host_chan *chan, u32 *hcchar)
960{
961 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
962 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
963 int host_speed;
964 int xfer_ns;
965 int xfer_us;
966 int bytes_in_fifo;
967 u16 fifo_space;
968 u16 frame_number;
969 u16 wire_frame;
970
971 /*
972 * Try to figure out if we're an even or odd frame. If we set
973 * even and the current frame number is even the transfer
974 * will happen immediately. Similar if both are odd. If one is
975 * even and the other is odd then the transfer will happen when
976 * the frame number ticks.
977 *
978 * There's a bit of a balancing act to get this right.
979 * Sometimes we may want to send data in the current frame (AK
980 * right away). We might want to do this if the frame number
981 * _just_ ticked, but we might also want to do this in order
982 * to continue a split transaction that happened late in a
983 * microframe (so we didn't know to queue the next transfer
984 * until the frame number had ticked). The problem is that we
985 * need a lot of knowledge to know if there's actually still
986 * time to send things or if it would be better to wait until
987 * the next frame.
988 *
989 * We can look at how much time is left in the current frame
990 * and make a guess about whether we'll have time to transfer.
991 * We'll do that.
992 */
993
994 /* Get speed host is running at */
995 host_speed = (chan->speed != USB_SPEED_HIGH &&
996 !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
997
998 /* See how many bytes are in the periodic FIFO right now */
999 fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1000 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1001 bytes_in_fifo = sizeof(u32) *
1002 (hsotg->params.host_perio_tx_fifo_size -
1003 fifo_space);
1004
1005 /*
1006 * Roughly estimate bus time for everything in the periodic
1007 * queue + our new transfer. This is "rough" because we're
1008 * using a function that makes takes into account IN/OUT
1009 * and INT/ISO and we're just slamming in one value for all
1010 * transfers. This should be an over-estimate and that should
1011 * be OK, but we can probably tighten it.
1012 */
1013 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1014 chan->xfer_len + bytes_in_fifo);
1015 xfer_us = NS_TO_US(xfer_ns);
1016
1017 /* See what frame number we'll be at by the time we finish */
1018 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1019
1020 /* This is when we were scheduled to be on the wire */
1021 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1022
1023 /*
1024 * If we'd finish _after_ the frame we're scheduled in then
1025 * it's hopeless. Just schedule right away and hope for the
1026 * best. Note that it _might_ be wise to call back into the
1027 * scheduler to pick a better frame, but this is better than
1028 * nothing.
1029 */
1030 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1031 dwc2_sch_vdbg(hsotg,
1032 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1033 chan->qh, wire_frame, frame_number,
1034 dwc2_frame_num_dec(frame_number,
1035 wire_frame));
1036 wire_frame = frame_number;
1037
1038 /*
1039 * We picked a different frame number; communicate this
1040 * back to the scheduler so it doesn't try to schedule
1041 * another in the same frame.
1042 *
1043 * Remember that next_active_frame is 1 before the wire
1044 * frame.
1045 */
1046 chan->qh->next_active_frame =
1047 dwc2_frame_num_dec(frame_number, 1);
1048 }
1049
1050 if (wire_frame & 1)
1051 *hcchar |= HCCHAR_ODDFRM;
1052 else
1053 *hcchar &= ~HCCHAR_ODDFRM;
1054 }
1055}
1056
1057static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1058{
1059 /* Set up the initial PID for the transfer */
1060 if (chan->speed == USB_SPEED_HIGH) {
1061 if (chan->ep_is_in) {
1062 if (chan->multi_count == 1)
1063 chan->data_pid_start = DWC2_HC_PID_DATA0;
1064 else if (chan->multi_count == 2)
1065 chan->data_pid_start = DWC2_HC_PID_DATA1;
1066 else
1067 chan->data_pid_start = DWC2_HC_PID_DATA2;
1068 } else {
1069 if (chan->multi_count == 1)
1070 chan->data_pid_start = DWC2_HC_PID_DATA0;
1071 else
1072 chan->data_pid_start = DWC2_HC_PID_MDATA;
1073 }
1074 } else {
1075 chan->data_pid_start = DWC2_HC_PID_DATA0;
1076 }
1077}
1078
1079/**
1080 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1081 * the Host Channel
1082 *
1083 * @hsotg: Programming view of DWC_otg controller
1084 * @chan: Information needed to initialize the host channel
1085 *
1086 * This function should only be called in Slave mode. For a channel associated
1087 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1088 * associated with a periodic EP, the periodic Tx FIFO is written.
1089 *
1090 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1091 * the number of bytes written to the Tx FIFO.
1092 */
1093static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1094 struct dwc2_host_chan *chan)
1095{
1096 u32 i;
1097 u32 remaining_count;
1098 u32 byte_count;
1099 u32 dword_count;
1100 u32 *data_buf = (u32 *)chan->xfer_buf;
1101
1102 if (dbg_hc(chan))
1103 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1104
1105 remaining_count = chan->xfer_len - chan->xfer_count;
1106 if (remaining_count > chan->max_packet)
1107 byte_count = chan->max_packet;
1108 else
1109 byte_count = remaining_count;
1110
1111 dword_count = (byte_count + 3) / 4;
1112
1113 if (((unsigned long)data_buf & 0x3) == 0) {
1114 /* xfer_buf is DWORD aligned */
1115 for (i = 0; i < dword_count; i++, data_buf++)
1116 dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1117 } else {
1118 /* xfer_buf is not DWORD aligned */
1119 for (i = 0; i < dword_count; i++, data_buf++) {
1120 u32 data = data_buf[0] | data_buf[1] << 8 |
1121 data_buf[2] << 16 | data_buf[3] << 24;
1122 dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1123 }
1124 }
1125
1126 chan->xfer_count += byte_count;
1127 chan->xfer_buf += byte_count;
1128}
1129
1130/**
1131 * dwc2_hc_do_ping() - Starts a PING transfer
1132 *
1133 * @hsotg: Programming view of DWC_otg controller
1134 * @chan: Information needed to initialize the host channel
1135 *
1136 * This function should only be called in Slave mode. The Do Ping bit is set in
1137 * the HCTSIZ register, then the channel is enabled.
1138 */
1139static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1140 struct dwc2_host_chan *chan)
1141{
1142 u32 hcchar;
1143 u32 hctsiz;
1144
1145 if (dbg_hc(chan))
1146 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1147 chan->hc_num);
1148
1149 hctsiz = TSIZ_DOPNG;
1150 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1151 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1152
1153 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1154 hcchar |= HCCHAR_CHENA;
1155 hcchar &= ~HCCHAR_CHDIS;
1156 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1157}
1158
1159/**
1160 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1161 * channel and starts the transfer
1162 *
1163 * @hsotg: Programming view of DWC_otg controller
1164 * @chan: Information needed to initialize the host channel. The xfer_len value
1165 * may be reduced to accommodate the max widths of the XferSize and
1166 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1167 * changed to reflect the final xfer_len value.
1168 *
1169 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1170 * the caller must ensure that there is sufficient space in the request queue
1171 * and Tx Data FIFO.
1172 *
1173 * For an OUT transfer in Slave mode, it loads a data packet into the
1174 * appropriate FIFO. If necessary, additional data packets are loaded in the
1175 * Host ISR.
1176 *
1177 * For an IN transfer in Slave mode, a data packet is requested. The data
1178 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1179 * additional data packets are requested in the Host ISR.
1180 *
1181 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1182 * register along with a packet count of 1 and the channel is enabled. This
1183 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1184 * simply set to 0 since no data transfer occurs in this case.
1185 *
1186 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1187 * all the information required to perform the subsequent data transfer. In
1188 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1189 * controller performs the entire PING protocol, then starts the data
1190 * transfer.
1191 */
1192static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1193 struct dwc2_host_chan *chan)
1194{
1195 u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1196 u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1197 u32 hcchar;
1198 u32 hctsiz = 0;
1199 u16 num_packets;
1200 u32 ec_mc;
1201
1202 if (dbg_hc(chan))
1203 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1204
1205 if (chan->do_ping) {
1206 if (!hsotg->params.host_dma) {
1207 if (dbg_hc(chan))
1208 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1209 dwc2_hc_do_ping(hsotg, chan);
1210 chan->xfer_started = 1;
1211 return;
1212 }
1213
1214 if (dbg_hc(chan))
1215 dev_vdbg(hsotg->dev, "ping, DMA\n");
1216
1217 hctsiz |= TSIZ_DOPNG;
1218 }
1219
1220 if (chan->do_split) {
1221 if (dbg_hc(chan))
1222 dev_vdbg(hsotg->dev, "split\n");
1223 num_packets = 1;
1224
1225 if (chan->complete_split && !chan->ep_is_in)
1226 /*
1227 * For CSPLIT OUT Transfer, set the size to 0 so the
1228 * core doesn't expect any data written to the FIFO
1229 */
1230 chan->xfer_len = 0;
1231 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1232 chan->xfer_len = chan->max_packet;
1233 else if (!chan->ep_is_in && chan->xfer_len > 188)
1234 chan->xfer_len = 188;
1235
1236 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1237 TSIZ_XFERSIZE_MASK;
1238
1239 /* For split set ec_mc for immediate retries */
1240 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1241 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1242 ec_mc = 3;
1243 else
1244 ec_mc = 1;
1245 } else {
1246 if (dbg_hc(chan))
1247 dev_vdbg(hsotg->dev, "no split\n");
1248 /*
1249 * Ensure that the transfer length and packet count will fit
1250 * in the widths allocated for them in the HCTSIZn register
1251 */
1252 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1253 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1254 /*
1255 * Make sure the transfer size is no larger than one
1256 * (micro)frame's worth of data. (A check was done
1257 * when the periodic transfer was accepted to ensure
1258 * that a (micro)frame's worth of data can be
1259 * programmed into a channel.)
1260 */
1261 u32 max_periodic_len =
1262 chan->multi_count * chan->max_packet;
1263
1264 if (chan->xfer_len > max_periodic_len)
1265 chan->xfer_len = max_periodic_len;
1266 } else if (chan->xfer_len > max_hc_xfer_size) {
1267 /*
1268 * Make sure that xfer_len is a multiple of max packet
1269 * size
1270 */
1271 chan->xfer_len =
1272 max_hc_xfer_size - chan->max_packet + 1;
1273 }
1274
1275 if (chan->xfer_len > 0) {
1276 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1277 chan->max_packet;
1278 if (num_packets > max_hc_pkt_count) {
1279 num_packets = max_hc_pkt_count;
1280 chan->xfer_len = num_packets * chan->max_packet;
1281 } else if (chan->ep_is_in) {
1282 /*
1283 * Always program an integral # of max packets
1284 * for IN transfers.
1285 * Note: This assumes that the input buffer is
1286 * aligned and sized accordingly.
1287 */
1288 chan->xfer_len = num_packets * chan->max_packet;
1289 }
1290 } else {
1291 /* Need 1 packet for transfer length of 0 */
1292 num_packets = 1;
1293 }
1294
1295 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1296 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1297 /*
1298 * Make sure that the multi_count field matches the
1299 * actual transfer length
1300 */
1301 chan->multi_count = num_packets;
1302
1303 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1304 dwc2_set_pid_isoc(chan);
1305
1306 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1307 TSIZ_XFERSIZE_MASK;
1308
1309 /* The ec_mc gets the multi_count for non-split */
1310 ec_mc = chan->multi_count;
1311 }
1312
1313 chan->start_pkt_count = num_packets;
1314 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1315 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1316 TSIZ_SC_MC_PID_MASK;
1317 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1318 if (dbg_hc(chan)) {
1319 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1320 hctsiz, chan->hc_num);
1321
1322 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1323 chan->hc_num);
1324 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
1325 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1326 TSIZ_XFERSIZE_SHIFT);
1327 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
1328 (hctsiz & TSIZ_PKTCNT_MASK) >>
1329 TSIZ_PKTCNT_SHIFT);
1330 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1331 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1332 TSIZ_SC_MC_PID_SHIFT);
1333 }
1334
1335 if (hsotg->params.host_dma) {
1336 dma_addr_t dma_addr;
1337
1338 if (chan->align_buf) {
1339 if (dbg_hc(chan))
1340 dev_vdbg(hsotg->dev, "align_buf\n");
1341 dma_addr = chan->align_buf;
1342 } else {
1343 dma_addr = chan->xfer_dma;
1344 }
1345 dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1346
1347 if (dbg_hc(chan))
1348 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1349 (unsigned long)dma_addr, chan->hc_num);
1350 }
1351
1352 /* Start the split */
1353 if (chan->do_split) {
1354 u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1355
1356 hcsplt |= HCSPLT_SPLTENA;
1357 dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1358 }
1359
1360 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1361 hcchar &= ~HCCHAR_MULTICNT_MASK;
1362 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1363 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1364
1365 if (hcchar & HCCHAR_CHDIS)
1366 dev_warn(hsotg->dev,
1367 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1368 __func__, chan->hc_num, hcchar);
1369
1370 /* Set host channel enable after all other setup is complete */
1371 hcchar |= HCCHAR_CHENA;
1372 hcchar &= ~HCCHAR_CHDIS;
1373
1374 if (dbg_hc(chan))
1375 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1376 (hcchar & HCCHAR_MULTICNT_MASK) >>
1377 HCCHAR_MULTICNT_SHIFT);
1378
1379 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1380 if (dbg_hc(chan))
1381 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1382 chan->hc_num);
1383
1384 chan->xfer_started = 1;
1385 chan->requests++;
1386
1387 if (!hsotg->params.host_dma &&
1388 !chan->ep_is_in && chan->xfer_len > 0)
1389 /* Load OUT packet into the appropriate Tx FIFO */
1390 dwc2_hc_write_packet(hsotg, chan);
1391}
1392
1393/**
1394 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1395 * host channel and starts the transfer in Descriptor DMA mode
1396 *
1397 * @hsotg: Programming view of DWC_otg controller
1398 * @chan: Information needed to initialize the host channel
1399 *
1400 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1401 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1402 * with micro-frame bitmap.
1403 *
1404 * Initializes HCDMA register with descriptor list address and CTD value then
1405 * starts the transfer via enabling the channel.
1406 */
1407void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1408 struct dwc2_host_chan *chan)
1409{
1410 u32 hcchar;
1411 u32 hctsiz = 0;
1412
1413 if (chan->do_ping)
1414 hctsiz |= TSIZ_DOPNG;
1415
1416 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1417 dwc2_set_pid_isoc(chan);
1418
1419 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1420 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1421 TSIZ_SC_MC_PID_MASK;
1422
1423 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1424 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1425
1426 /* Non-zero only for high-speed interrupt endpoints */
1427 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1428
1429 if (dbg_hc(chan)) {
1430 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1431 chan->hc_num);
1432 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1433 chan->data_pid_start);
1434 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
1435 }
1436
1437 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1438
1439 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1440 chan->desc_list_sz, DMA_TO_DEVICE);
1441
1442 dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1443
1444 if (dbg_hc(chan))
1445 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1446 &chan->desc_list_addr, chan->hc_num);
1447
1448 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1449 hcchar &= ~HCCHAR_MULTICNT_MASK;
1450 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1451 HCCHAR_MULTICNT_MASK;
1452
1453 if (hcchar & HCCHAR_CHDIS)
1454 dev_warn(hsotg->dev,
1455 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1456 __func__, chan->hc_num, hcchar);
1457
1458 /* Set host channel enable after all other setup is complete */
1459 hcchar |= HCCHAR_CHENA;
1460 hcchar &= ~HCCHAR_CHDIS;
1461
1462 if (dbg_hc(chan))
1463 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1464 (hcchar & HCCHAR_MULTICNT_MASK) >>
1465 HCCHAR_MULTICNT_SHIFT);
1466
1467 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1468 if (dbg_hc(chan))
1469 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1470 chan->hc_num);
1471
1472 chan->xfer_started = 1;
1473 chan->requests++;
1474}
1475
1476/**
1477 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1478 * a previous call to dwc2_hc_start_transfer()
1479 *
1480 * @hsotg: Programming view of DWC_otg controller
1481 * @chan: Information needed to initialize the host channel
1482 *
1483 * The caller must ensure there is sufficient space in the request queue and Tx
1484 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1485 * the controller acts autonomously to complete transfers programmed to a host
1486 * channel.
1487 *
1488 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1489 * if there is any data remaining to be queued. For an IN transfer, another
1490 * data packet is always requested. For the SETUP phase of a control transfer,
1491 * this function does nothing.
1492 *
1493 * Return: 1 if a new request is queued, 0 if no more requests are required
1494 * for this transfer
1495 */
1496static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1497 struct dwc2_host_chan *chan)
1498{
1499 if (dbg_hc(chan))
1500 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1501 chan->hc_num);
1502
1503 if (chan->do_split)
1504 /* SPLITs always queue just once per channel */
1505 return 0;
1506
1507 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1508 /* SETUPs are queued only once since they can't be NAK'd */
1509 return 0;
1510
1511 if (chan->ep_is_in) {
1512 /*
1513 * Always queue another request for other IN transfers. If
1514 * back-to-back INs are issued and NAKs are received for both,
1515 * the driver may still be processing the first NAK when the
1516 * second NAK is received. When the interrupt handler clears
1517 * the NAK interrupt for the first NAK, the second NAK will
1518 * not be seen. So we can't depend on the NAK interrupt
1519 * handler to requeue a NAK'd request. Instead, IN requests
1520 * are issued each time this function is called. When the
1521 * transfer completes, the extra requests for the channel will
1522 * be flushed.
1523 */
1524 u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1525
1526 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1527 hcchar |= HCCHAR_CHENA;
1528 hcchar &= ~HCCHAR_CHDIS;
1529 if (dbg_hc(chan))
1530 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
1531 hcchar);
1532 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1533 chan->requests++;
1534 return 1;
1535 }
1536
1537 /* OUT transfers */
1538
1539 if (chan->xfer_count < chan->xfer_len) {
1540 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1541 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1542 u32 hcchar = dwc2_readl(hsotg,
1543 HCCHAR(chan->hc_num));
1544
1545 dwc2_hc_set_even_odd_frame(hsotg, chan,
1546 &hcchar);
1547 }
1548
1549 /* Load OUT packet into the appropriate Tx FIFO */
1550 dwc2_hc_write_packet(hsotg, chan);
1551 chan->requests++;
1552 return 1;
1553 }
1554
1555 return 0;
1556}
1557
1558/*
1559 * =========================================================================
1560 * HCD
1561 * =========================================================================
1562 */
1563
1564/*
1565 * Processes all the URBs in a single list of QHs. Completes them with
1566 * -ETIMEDOUT and frees the QTD.
1567 *
1568 * Must be called with interrupt disabled and spinlock held
1569 */
1570static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1571 struct list_head *qh_list)
1572{
1573 struct dwc2_qh *qh, *qh_tmp;
1574 struct dwc2_qtd *qtd, *qtd_tmp;
1575
1576 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1577 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1578 qtd_list_entry) {
1579 dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1580 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1581 }
1582 }
1583}
1584
1585static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1586 struct list_head *qh_list)
1587{
1588 struct dwc2_qtd *qtd, *qtd_tmp;
1589 struct dwc2_qh *qh, *qh_tmp;
1590 unsigned long flags;
1591
1592 if (!qh_list->next)
1593 /* The list hasn't been initialized yet */
1594 return;
1595
1596 spin_lock_irqsave(&hsotg->lock, flags);
1597
1598 /* Ensure there are no QTDs or URBs left */
1599 dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1600
1601 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1602 dwc2_hcd_qh_unlink(hsotg, qh);
1603
1604 /* Free each QTD in the QH's QTD list */
1605 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1606 qtd_list_entry)
1607 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1608
1609 if (qh->channel && qh->channel->qh == qh)
1610 qh->channel->qh = NULL;
1611
1612 spin_unlock_irqrestore(&hsotg->lock, flags);
1613 dwc2_hcd_qh_free(hsotg, qh);
1614 spin_lock_irqsave(&hsotg->lock, flags);
1615 }
1616
1617 spin_unlock_irqrestore(&hsotg->lock, flags);
1618}
1619
1620/*
1621 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1622 * and periodic schedules. The QTD associated with each URB is removed from
1623 * the schedule and freed. This function may be called when a disconnect is
1624 * detected or when the HCD is being stopped.
1625 *
1626 * Must be called with interrupt disabled and spinlock held
1627 */
1628static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1629{
1630 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1631 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1632 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1633 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1634 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1635 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1636 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1637}
1638
1639/**
1640 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1641 *
1642 * @hsotg: Pointer to struct dwc2_hsotg
1643 */
1644void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1645{
1646 u32 hprt0;
1647
1648 if (hsotg->op_state == OTG_STATE_B_HOST) {
1649 /*
1650 * Reset the port. During a HNP mode switch the reset
1651 * needs to occur within 1ms and have a duration of at
1652 * least 50ms.
1653 */
1654 hprt0 = dwc2_read_hprt0(hsotg);
1655 hprt0 |= HPRT0_RST;
1656 dwc2_writel(hsotg, hprt0, HPRT0);
1657 }
1658
1659 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1660 msecs_to_jiffies(50));
1661}
1662
1663/* Must be called with interrupt disabled and spinlock held */
1664static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1665{
1666 int num_channels = hsotg->params.host_channels;
1667 struct dwc2_host_chan *channel;
1668 u32 hcchar;
1669 int i;
1670
1671 if (!hsotg->params.host_dma) {
1672 /* Flush out any channel requests in slave mode */
1673 for (i = 0; i < num_channels; i++) {
1674 channel = hsotg->hc_ptr_array[i];
1675 if (!list_empty(&channel->hc_list_entry))
1676 continue;
1677 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1678 if (hcchar & HCCHAR_CHENA) {
1679 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1680 hcchar |= HCCHAR_CHDIS;
1681 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1682 }
1683 }
1684 }
1685
1686 for (i = 0; i < num_channels; i++) {
1687 channel = hsotg->hc_ptr_array[i];
1688 if (!list_empty(&channel->hc_list_entry))
1689 continue;
1690 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1691 if (hcchar & HCCHAR_CHENA) {
1692 /* Halt the channel */
1693 hcchar |= HCCHAR_CHDIS;
1694 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1695 }
1696
1697 dwc2_hc_cleanup(hsotg, channel);
1698 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1699 /*
1700 * Added for Descriptor DMA to prevent channel double cleanup in
1701 * release_channel_ddma(), which is called from ep_disable when
1702 * device disconnects
1703 */
1704 channel->qh = NULL;
1705 }
1706 /* All channels have been freed, mark them available */
1707 if (hsotg->params.uframe_sched) {
1708 hsotg->available_host_channels =
1709 hsotg->params.host_channels;
1710 } else {
1711 hsotg->non_periodic_channels = 0;
1712 hsotg->periodic_channels = 0;
1713 }
1714}
1715
1716/**
1717 * dwc2_hcd_connect() - Handles connect of the HCD
1718 *
1719 * @hsotg: Pointer to struct dwc2_hsotg
1720 *
1721 * Must be called with interrupt disabled and spinlock held
1722 */
1723void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1724{
1725 if (hsotg->lx_state != DWC2_L0)
1726 usb_hcd_resume_root_hub(hsotg->priv);
1727
1728 hsotg->flags.b.port_connect_status_change = 1;
1729 hsotg->flags.b.port_connect_status = 1;
1730}
1731
1732/**
1733 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1734 *
1735 * @hsotg: Pointer to struct dwc2_hsotg
1736 * @force: If true, we won't try to reconnect even if we see device connected.
1737 *
1738 * Must be called with interrupt disabled and spinlock held
1739 */
1740void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1741{
1742 u32 intr;
1743 u32 hprt0;
1744
1745 /* Set status flags for the hub driver */
1746 hsotg->flags.b.port_connect_status_change = 1;
1747 hsotg->flags.b.port_connect_status = 0;
1748
1749 /*
1750 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1751 * interrupt mask and status bits and disabling subsequent host
1752 * channel interrupts.
1753 */
1754 intr = dwc2_readl(hsotg, GINTMSK);
1755 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1756 dwc2_writel(hsotg, intr, GINTMSK);
1757 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1758 dwc2_writel(hsotg, intr, GINTSTS);
1759
1760 /*
1761 * Turn off the vbus power only if the core has transitioned to device
1762 * mode. If still in host mode, need to keep power on to detect a
1763 * reconnection.
1764 */
1765 if (dwc2_is_device_mode(hsotg)) {
1766 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1767 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1768 dwc2_writel(hsotg, 0, HPRT0);
1769 }
1770
1771 dwc2_disable_host_interrupts(hsotg);
1772 }
1773
1774 /* Respond with an error status to all URBs in the schedule */
1775 dwc2_kill_all_urbs(hsotg);
1776
1777 if (dwc2_is_host_mode(hsotg))
1778 /* Clean up any host channels that were in use */
1779 dwc2_hcd_cleanup_channels(hsotg);
1780
1781 dwc2_host_disconnect(hsotg);
1782
1783 /*
1784 * Add an extra check here to see if we're actually connected but
1785 * we don't have a detection interrupt pending. This can happen if:
1786 * 1. hardware sees connect
1787 * 2. hardware sees disconnect
1788 * 3. hardware sees connect
1789 * 4. dwc2_port_intr() - clears connect interrupt
1790 * 5. dwc2_handle_common_intr() - calls here
1791 *
1792 * Without the extra check here we will end calling disconnect
1793 * and won't get any future interrupts to handle the connect.
1794 */
1795 if (!force) {
1796 hprt0 = dwc2_readl(hsotg, HPRT0);
1797 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1798 dwc2_hcd_connect(hsotg);
1799 }
1800}
1801
1802/**
1803 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1804 *
1805 * @hsotg: Pointer to struct dwc2_hsotg
1806 */
1807static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1808{
1809 if (hsotg->bus_suspended) {
1810 hsotg->flags.b.port_suspend_change = 1;
1811 usb_hcd_resume_root_hub(hsotg->priv);
1812 }
1813
1814 if (hsotg->lx_state == DWC2_L1)
1815 hsotg->flags.b.port_l1_change = 1;
1816}
1817
1818/**
1819 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1820 *
1821 * @hsotg: Pointer to struct dwc2_hsotg
1822 *
1823 * Must be called with interrupt disabled and spinlock held
1824 */
1825void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1826{
1827 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1828
1829 /*
1830 * The root hub should be disconnected before this function is called.
1831 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1832 * and the QH lists (via ..._hcd_endpoint_disable).
1833 */
1834
1835 /* Turn off all host-specific interrupts */
1836 dwc2_disable_host_interrupts(hsotg);
1837
1838 /* Turn off the vbus power */
1839 dev_dbg(hsotg->dev, "PortPower off\n");
1840 dwc2_writel(hsotg, 0, HPRT0);
1841}
1842
1843/* Caller must hold driver lock */
1844static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1845 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1846 struct dwc2_qtd *qtd)
1847{
1848 u32 intr_mask;
1849 int retval;
1850 int dev_speed;
1851
1852 if (!hsotg->flags.b.port_connect_status) {
1853 /* No longer connected */
1854 dev_err(hsotg->dev, "Not connected\n");
1855 return -ENODEV;
1856 }
1857
1858 dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1859
1860 /* Some configurations cannot support LS traffic on a FS root port */
1861 if ((dev_speed == USB_SPEED_LOW) &&
1862 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1863 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1864 u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1865 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1866
1867 if (prtspd == HPRT0_SPD_FULL_SPEED)
1868 return -ENODEV;
1869 }
1870
1871 if (!qtd)
1872 return -EINVAL;
1873
1874 dwc2_hcd_qtd_init(qtd, urb);
1875 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1876 if (retval) {
1877 dev_err(hsotg->dev,
1878 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1879 retval);
1880 return retval;
1881 }
1882
1883 intr_mask = dwc2_readl(hsotg, GINTMSK);
1884 if (!(intr_mask & GINTSTS_SOF)) {
1885 enum dwc2_transaction_type tr_type;
1886
1887 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1888 !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1889 /*
1890 * Do not schedule SG transactions until qtd has
1891 * URB_GIVEBACK_ASAP set
1892 */
1893 return 0;
1894
1895 tr_type = dwc2_hcd_select_transactions(hsotg);
1896 if (tr_type != DWC2_TRANSACTION_NONE)
1897 dwc2_hcd_queue_transactions(hsotg, tr_type);
1898 }
1899
1900 return 0;
1901}
1902
1903/* Must be called with interrupt disabled and spinlock held */
1904static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1905 struct dwc2_hcd_urb *urb)
1906{
1907 struct dwc2_qh *qh;
1908 struct dwc2_qtd *urb_qtd;
1909
1910 urb_qtd = urb->qtd;
1911 if (!urb_qtd) {
1912 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1913 return -EINVAL;
1914 }
1915
1916 qh = urb_qtd->qh;
1917 if (!qh) {
1918 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1919 return -EINVAL;
1920 }
1921
1922 urb->priv = NULL;
1923
1924 if (urb_qtd->in_process && qh->channel) {
1925 dwc2_dump_channel_info(hsotg, qh->channel);
1926
1927 /* The QTD is in process (it has been assigned to a channel) */
1928 if (hsotg->flags.b.port_connect_status)
1929 /*
1930 * If still connected (i.e. in host mode), halt the
1931 * channel so it can be used for other transfers. If
1932 * no longer connected, the host registers can't be
1933 * written to halt the channel since the core is in
1934 * device mode.
1935 */
1936 dwc2_hc_halt(hsotg, qh->channel,
1937 DWC2_HC_XFER_URB_DEQUEUE);
1938 }
1939
1940 /*
1941 * Free the QTD and clean up the associated QH. Leave the QH in the
1942 * schedule if it has any remaining QTDs.
1943 */
1944 if (!hsotg->params.dma_desc_enable) {
1945 u8 in_process = urb_qtd->in_process;
1946
1947 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1948 if (in_process) {
1949 dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1950 qh->channel = NULL;
1951 } else if (list_empty(&qh->qtd_list)) {
1952 dwc2_hcd_qh_unlink(hsotg, qh);
1953 }
1954 } else {
1955 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1956 }
1957
1958 return 0;
1959}
1960
1961/* Must NOT be called with interrupt disabled or spinlock held */
1962static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1963 struct usb_host_endpoint *ep, int retry)
1964{
1965 struct dwc2_qtd *qtd, *qtd_tmp;
1966 struct dwc2_qh *qh;
1967 unsigned long flags;
1968 int rc;
1969
1970 spin_lock_irqsave(&hsotg->lock, flags);
1971
1972 qh = ep->hcpriv;
1973 if (!qh) {
1974 rc = -EINVAL;
1975 goto err;
1976 }
1977
1978 while (!list_empty(&qh->qtd_list) && retry--) {
1979 if (retry == 0) {
1980 dev_err(hsotg->dev,
1981 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
1982 rc = -EBUSY;
1983 goto err;
1984 }
1985
1986 spin_unlock_irqrestore(&hsotg->lock, flags);
1987 msleep(20);
1988 spin_lock_irqsave(&hsotg->lock, flags);
1989 qh = ep->hcpriv;
1990 if (!qh) {
1991 rc = -EINVAL;
1992 goto err;
1993 }
1994 }
1995
1996 dwc2_hcd_qh_unlink(hsotg, qh);
1997
1998 /* Free each QTD in the QH's QTD list */
1999 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2000 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2001
2002 ep->hcpriv = NULL;
2003
2004 if (qh->channel && qh->channel->qh == qh)
2005 qh->channel->qh = NULL;
2006
2007 spin_unlock_irqrestore(&hsotg->lock, flags);
2008
2009 dwc2_hcd_qh_free(hsotg, qh);
2010
2011 return 0;
2012
2013err:
2014 ep->hcpriv = NULL;
2015 spin_unlock_irqrestore(&hsotg->lock, flags);
2016
2017 return rc;
2018}
2019
2020/* Must be called with interrupt disabled and spinlock held */
2021static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2022 struct usb_host_endpoint *ep)
2023{
2024 struct dwc2_qh *qh = ep->hcpriv;
2025
2026 if (!qh)
2027 return -EINVAL;
2028
2029 qh->data_toggle = DWC2_HC_PID_DATA0;
2030
2031 return 0;
2032}
2033
2034/**
2035 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2036 * prepares the core for device mode or host mode operation
2037 *
2038 * @hsotg: Programming view of the DWC_otg controller
2039 * @initial_setup: If true then this is the first init for this instance.
2040 */
2041int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2042{
2043 u32 usbcfg, otgctl;
2044 int retval;
2045
2046 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2047
2048 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2049
2050 /* Set ULPI External VBUS bit if needed */
2051 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2052 if (hsotg->params.phy_ulpi_ext_vbus)
2053 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2054
2055 /* Set external TS Dline pulsing bit if needed */
2056 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2057 if (hsotg->params.ts_dline)
2058 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2059
2060 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2061
2062 /*
2063 * Reset the Controller
2064 *
2065 * We only need to reset the controller if this is a re-init.
2066 * For the first init we know for sure that earlier code reset us (it
2067 * needed to in order to properly detect various parameters).
2068 */
2069 if (!initial_setup) {
2070 retval = dwc2_core_reset(hsotg, false);
2071 if (retval) {
2072 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2073 __func__);
2074 return retval;
2075 }
2076 }
2077
2078 /*
2079 * This needs to happen in FS mode before any other programming occurs
2080 */
2081 retval = dwc2_phy_init(hsotg, initial_setup);
2082 if (retval)
2083 return retval;
2084
2085 /* Program the GAHBCFG Register */
2086 retval = dwc2_gahbcfg_init(hsotg);
2087 if (retval)
2088 return retval;
2089
2090 /* Program the GUSBCFG register */
2091 dwc2_gusbcfg_init(hsotg);
2092
2093 /* Program the GOTGCTL register */
2094 otgctl = dwc2_readl(hsotg, GOTGCTL);
2095 otgctl &= ~GOTGCTL_OTGVER;
2096 dwc2_writel(hsotg, otgctl, GOTGCTL);
2097
2098 /* Clear the SRP success bit for FS-I2c */
2099 hsotg->srp_success = 0;
2100
2101 /* Enable common interrupts */
2102 dwc2_enable_common_interrupts(hsotg);
2103
2104 /*
2105 * Do device or host initialization based on mode during PCD and
2106 * HCD initialization
2107 */
2108 if (dwc2_is_host_mode(hsotg)) {
2109 dev_dbg(hsotg->dev, "Host Mode\n");
2110 hsotg->op_state = OTG_STATE_A_HOST;
2111 } else {
2112 dev_dbg(hsotg->dev, "Device Mode\n");
2113 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2114 }
2115
2116 return 0;
2117}
2118
2119/**
2120 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2121 * Host mode
2122 *
2123 * @hsotg: Programming view of DWC_otg controller
2124 *
2125 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2126 * request queues. Host channels are reset to ensure that they are ready for
2127 * performing transfers.
2128 */
2129static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2130{
2131 u32 hcfg, hfir, otgctl, usbcfg;
2132
2133 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2134
2135 /* Set HS/FS Timeout Calibration to 7 (max available value).
2136 * The number of PHY clocks that the application programs in
2137 * this field is added to the high/full speed interpacket timeout
2138 * duration in the core to account for any additional delays
2139 * introduced by the PHY. This can be required, because the delay
2140 * introduced by the PHY in generating the linestate condition
2141 * can vary from one PHY to another.
2142 */
2143 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2144 usbcfg |= GUSBCFG_TOUTCAL(7);
2145 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2146
2147 /* Restart the Phy Clock */
2148 dwc2_writel(hsotg, 0, PCGCTL);
2149
2150 /* Initialize Host Configuration Register */
2151 dwc2_init_fs_ls_pclk_sel(hsotg);
2152 if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2153 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2154 hcfg = dwc2_readl(hsotg, HCFG);
2155 hcfg |= HCFG_FSLSSUPP;
2156 dwc2_writel(hsotg, hcfg, HCFG);
2157 }
2158
2159 /*
2160 * This bit allows dynamic reloading of the HFIR register during
2161 * runtime. This bit needs to be programmed during initial configuration
2162 * and its value must not be changed during runtime.
2163 */
2164 if (hsotg->params.reload_ctl) {
2165 hfir = dwc2_readl(hsotg, HFIR);
2166 hfir |= HFIR_RLDCTRL;
2167 dwc2_writel(hsotg, hfir, HFIR);
2168 }
2169
2170 if (hsotg->params.dma_desc_enable) {
2171 u32 op_mode = hsotg->hw_params.op_mode;
2172
2173 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2174 !hsotg->hw_params.dma_desc_enable ||
2175 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2176 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2177 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2178 dev_err(hsotg->dev,
2179 "Hardware does not support descriptor DMA mode -\n");
2180 dev_err(hsotg->dev,
2181 "falling back to buffer DMA mode.\n");
2182 hsotg->params.dma_desc_enable = false;
2183 } else {
2184 hcfg = dwc2_readl(hsotg, HCFG);
2185 hcfg |= HCFG_DESCDMA;
2186 dwc2_writel(hsotg, hcfg, HCFG);
2187 }
2188 }
2189
2190 /* Configure data FIFO sizes */
2191 dwc2_config_fifos(hsotg);
2192
2193 /* TODO - check this */
2194 /* Clear Host Set HNP Enable in the OTG Control Register */
2195 otgctl = dwc2_readl(hsotg, GOTGCTL);
2196 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2197 dwc2_writel(hsotg, otgctl, GOTGCTL);
2198
2199 /* Make sure the FIFOs are flushed */
2200 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2201 dwc2_flush_rx_fifo(hsotg);
2202
2203 /* Clear Host Set HNP Enable in the OTG Control Register */
2204 otgctl = dwc2_readl(hsotg, GOTGCTL);
2205 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2206 dwc2_writel(hsotg, otgctl, GOTGCTL);
2207
2208 if (!hsotg->params.dma_desc_enable) {
2209 int num_channels, i;
2210 u32 hcchar;
2211
2212 /* Flush out any leftover queued requests */
2213 num_channels = hsotg->params.host_channels;
2214 for (i = 0; i < num_channels; i++) {
2215 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2216 if (hcchar & HCCHAR_CHENA) {
2217 hcchar &= ~HCCHAR_CHENA;
2218 hcchar |= HCCHAR_CHDIS;
2219 hcchar &= ~HCCHAR_EPDIR;
2220 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2221 }
2222 }
2223
2224 /* Halt all channels to put them into a known state */
2225 for (i = 0; i < num_channels; i++) {
2226 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2227 if (hcchar & HCCHAR_CHENA) {
2228 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2229 hcchar &= ~HCCHAR_EPDIR;
2230 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2231 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2232 __func__, i);
2233
2234 if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2235 HCCHAR_CHENA,
2236 1000)) {
2237 dev_warn(hsotg->dev,
2238 "Unable to clear enable on channel %d\n",
2239 i);
2240 }
2241 }
2242 }
2243 }
2244
2245 /* Enable ACG feature in host mode, if supported */
2246 dwc2_enable_acg(hsotg);
2247
2248 /* Turn on the vbus power */
2249 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2250 if (hsotg->op_state == OTG_STATE_A_HOST) {
2251 u32 hprt0 = dwc2_read_hprt0(hsotg);
2252
2253 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2254 !!(hprt0 & HPRT0_PWR));
2255 if (!(hprt0 & HPRT0_PWR)) {
2256 hprt0 |= HPRT0_PWR;
2257 dwc2_writel(hsotg, hprt0, HPRT0);
2258 }
2259 }
2260
2261 dwc2_enable_host_interrupts(hsotg);
2262}
2263
2264/*
2265 * Initializes dynamic portions of the DWC_otg HCD state
2266 *
2267 * Must be called with interrupt disabled and spinlock held
2268 */
2269static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2270{
2271 struct dwc2_host_chan *chan, *chan_tmp;
2272 int num_channels;
2273 int i;
2274
2275 hsotg->flags.d32 = 0;
2276 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2277
2278 if (hsotg->params.uframe_sched) {
2279 hsotg->available_host_channels =
2280 hsotg->params.host_channels;
2281 } else {
2282 hsotg->non_periodic_channels = 0;
2283 hsotg->periodic_channels = 0;
2284 }
2285
2286 /*
2287 * Put all channels in the free channel list and clean up channel
2288 * states
2289 */
2290 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2291 hc_list_entry)
2292 list_del_init(&chan->hc_list_entry);
2293
2294 num_channels = hsotg->params.host_channels;
2295 for (i = 0; i < num_channels; i++) {
2296 chan = hsotg->hc_ptr_array[i];
2297 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2298 dwc2_hc_cleanup(hsotg, chan);
2299 }
2300
2301 /* Initialize the DWC core for host mode operation */
2302 dwc2_core_host_init(hsotg);
2303}
2304
2305static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2306 struct dwc2_host_chan *chan,
2307 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2308{
2309 int hub_addr, hub_port;
2310
2311 chan->do_split = 1;
2312 chan->xact_pos = qtd->isoc_split_pos;
2313 chan->complete_split = qtd->complete_split;
2314 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2315 chan->hub_addr = (u8)hub_addr;
2316 chan->hub_port = (u8)hub_port;
2317}
2318
2319static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2320 struct dwc2_host_chan *chan,
2321 struct dwc2_qtd *qtd)
2322{
2323 struct dwc2_hcd_urb *urb = qtd->urb;
2324 struct dwc2_hcd_iso_packet_desc *frame_desc;
2325
2326 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2327 case USB_ENDPOINT_XFER_CONTROL:
2328 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2329
2330 switch (qtd->control_phase) {
2331 case DWC2_CONTROL_SETUP:
2332 dev_vdbg(hsotg->dev, " Control setup transaction\n");
2333 chan->do_ping = 0;
2334 chan->ep_is_in = 0;
2335 chan->data_pid_start = DWC2_HC_PID_SETUP;
2336 if (hsotg->params.host_dma)
2337 chan->xfer_dma = urb->setup_dma;
2338 else
2339 chan->xfer_buf = urb->setup_packet;
2340 chan->xfer_len = 8;
2341 break;
2342
2343 case DWC2_CONTROL_DATA:
2344 dev_vdbg(hsotg->dev, " Control data transaction\n");
2345 chan->data_pid_start = qtd->data_toggle;
2346 break;
2347
2348 case DWC2_CONTROL_STATUS:
2349 /*
2350 * Direction is opposite of data direction or IN if no
2351 * data
2352 */
2353 dev_vdbg(hsotg->dev, " Control status transaction\n");
2354 if (urb->length == 0)
2355 chan->ep_is_in = 1;
2356 else
2357 chan->ep_is_in =
2358 dwc2_hcd_is_pipe_out(&urb->pipe_info);
2359 if (chan->ep_is_in)
2360 chan->do_ping = 0;
2361 chan->data_pid_start = DWC2_HC_PID_DATA1;
2362 chan->xfer_len = 0;
2363 if (hsotg->params.host_dma)
2364 chan->xfer_dma = hsotg->status_buf_dma;
2365 else
2366 chan->xfer_buf = hsotg->status_buf;
2367 break;
2368 }
2369 break;
2370
2371 case USB_ENDPOINT_XFER_BULK:
2372 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2373 break;
2374
2375 case USB_ENDPOINT_XFER_INT:
2376 chan->ep_type = USB_ENDPOINT_XFER_INT;
2377 break;
2378
2379 case USB_ENDPOINT_XFER_ISOC:
2380 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2381 if (hsotg->params.dma_desc_enable)
2382 break;
2383
2384 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2385 frame_desc->status = 0;
2386
2387 if (hsotg->params.host_dma) {
2388 chan->xfer_dma = urb->dma;
2389 chan->xfer_dma += frame_desc->offset +
2390 qtd->isoc_split_offset;
2391 } else {
2392 chan->xfer_buf = urb->buf;
2393 chan->xfer_buf += frame_desc->offset +
2394 qtd->isoc_split_offset;
2395 }
2396
2397 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2398
2399 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2400 if (chan->xfer_len <= 188)
2401 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2402 else
2403 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2404 }
2405 break;
2406 }
2407}
2408
2409static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2410 struct dwc2_qh *qh,
2411 struct dwc2_host_chan *chan)
2412{
2413 if (!hsotg->unaligned_cache ||
2414 chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2415 return -ENOMEM;
2416
2417 if (!qh->dw_align_buf) {
2418 qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2419 GFP_ATOMIC | GFP_DMA);
2420 if (!qh->dw_align_buf)
2421 return -ENOMEM;
2422 }
2423
2424 qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2425 DWC2_KMEM_UNALIGNED_BUF_SIZE,
2426 DMA_FROM_DEVICE);
2427
2428 if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2429 dev_err(hsotg->dev, "can't map align_buf\n");
2430 chan->align_buf = 0;
2431 return -EINVAL;
2432 }
2433
2434 chan->align_buf = qh->dw_align_buf_dma;
2435 return 0;
2436}
2437
2438#define DWC2_USB_DMA_ALIGN 4
2439
2440static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2441{
2442 void *stored_xfer_buffer;
2443 size_t length;
2444
2445 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2446 return;
2447
2448 /* Restore urb->transfer_buffer from the end of the allocated area */
2449 memcpy(&stored_xfer_buffer,
2450 PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2451 dma_get_cache_alignment()),
2452 sizeof(urb->transfer_buffer));
2453
2454 if (usb_urb_dir_in(urb)) {
2455 if (usb_pipeisoc(urb->pipe))
2456 length = urb->transfer_buffer_length;
2457 else
2458 length = urb->actual_length;
2459
2460 memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2461 }
2462 kfree(urb->transfer_buffer);
2463 urb->transfer_buffer = stored_xfer_buffer;
2464
2465 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2466}
2467
2468static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2469{
2470 void *kmalloc_ptr;
2471 size_t kmalloc_size;
2472
2473 if (urb->num_sgs || urb->sg ||
2474 urb->transfer_buffer_length == 0 ||
2475 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2476 return 0;
2477
2478 /*
2479 * Allocate a buffer with enough padding for original transfer_buffer
2480 * pointer. This allocation is guaranteed to be aligned properly for
2481 * DMA
2482 */
2483 kmalloc_size = urb->transfer_buffer_length +
2484 (dma_get_cache_alignment() - 1) +
2485 sizeof(urb->transfer_buffer);
2486
2487 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2488 if (!kmalloc_ptr)
2489 return -ENOMEM;
2490
2491 /*
2492 * Position value of original urb->transfer_buffer pointer to the end
2493 * of allocation for later referencing
2494 */
2495 memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2496 dma_get_cache_alignment()),
2497 &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2498
2499 if (usb_urb_dir_out(urb))
2500 memcpy(kmalloc_ptr, urb->transfer_buffer,
2501 urb->transfer_buffer_length);
2502 urb->transfer_buffer = kmalloc_ptr;
2503
2504 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2505
2506 return 0;
2507}
2508
2509static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2510 gfp_t mem_flags)
2511{
2512 int ret;
2513
2514 /* We assume setup_dma is always aligned; warn if not */
2515 WARN_ON_ONCE(urb->setup_dma &&
2516 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2517
2518 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2519 if (ret)
2520 return ret;
2521
2522 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2523 if (ret)
2524 dwc2_free_dma_aligned_buffer(urb);
2525
2526 return ret;
2527}
2528
2529static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2530{
2531 usb_hcd_unmap_urb_for_dma(hcd, urb);
2532 dwc2_free_dma_aligned_buffer(urb);
2533}
2534
2535/**
2536 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2537 * channel and initializes the host channel to perform the transactions. The
2538 * host channel is removed from the free list.
2539 *
2540 * @hsotg: The HCD state structure
2541 * @qh: Transactions from the first QTD for this QH are selected and assigned
2542 * to a free host channel
2543 */
2544static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2545{
2546 struct dwc2_host_chan *chan;
2547 struct dwc2_hcd_urb *urb;
2548 struct dwc2_qtd *qtd;
2549
2550 if (dbg_qh(qh))
2551 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2552
2553 if (list_empty(&qh->qtd_list)) {
2554 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2555 return -ENOMEM;
2556 }
2557
2558 if (list_empty(&hsotg->free_hc_list)) {
2559 dev_dbg(hsotg->dev, "No free channel to assign\n");
2560 return -ENOMEM;
2561 }
2562
2563 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2564 hc_list_entry);
2565
2566 /* Remove host channel from free list */
2567 list_del_init(&chan->hc_list_entry);
2568
2569 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2570 urb = qtd->urb;
2571 qh->channel = chan;
2572 qtd->in_process = 1;
2573
2574 /*
2575 * Use usb_pipedevice to determine device address. This address is
2576 * 0 before the SET_ADDRESS command and the correct address afterward.
2577 */
2578 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2579 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2580 chan->speed = qh->dev_speed;
2581 chan->max_packet = qh->maxp;
2582
2583 chan->xfer_started = 0;
2584 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2585 chan->error_state = (qtd->error_count > 0);
2586 chan->halt_on_queue = 0;
2587 chan->halt_pending = 0;
2588 chan->requests = 0;
2589
2590 /*
2591 * The following values may be modified in the transfer type section
2592 * below. The xfer_len value may be reduced when the transfer is
2593 * started to accommodate the max widths of the XferSize and PktCnt
2594 * fields in the HCTSIZn register.
2595 */
2596
2597 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2598 if (chan->ep_is_in)
2599 chan->do_ping = 0;
2600 else
2601 chan->do_ping = qh->ping_state;
2602
2603 chan->data_pid_start = qh->data_toggle;
2604 chan->multi_count = 1;
2605
2606 if (urb->actual_length > urb->length &&
2607 !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2608 urb->actual_length = urb->length;
2609
2610 if (hsotg->params.host_dma)
2611 chan->xfer_dma = urb->dma + urb->actual_length;
2612 else
2613 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2614
2615 chan->xfer_len = urb->length - urb->actual_length;
2616 chan->xfer_count = 0;
2617
2618 /* Set the split attributes if required */
2619 if (qh->do_split)
2620 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2621 else
2622 chan->do_split = 0;
2623
2624 /* Set the transfer attributes */
2625 dwc2_hc_init_xfer(hsotg, chan, qtd);
2626
2627 /* For non-dword aligned buffers */
2628 if (hsotg->params.host_dma && qh->do_split &&
2629 chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2630 dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2631 if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2632 dev_err(hsotg->dev,
2633 "Failed to allocate memory to handle non-aligned buffer\n");
2634 /* Add channel back to free list */
2635 chan->align_buf = 0;
2636 chan->multi_count = 0;
2637 list_add_tail(&chan->hc_list_entry,
2638 &hsotg->free_hc_list);
2639 qtd->in_process = 0;
2640 qh->channel = NULL;
2641 return -ENOMEM;
2642 }
2643 } else {
2644 /*
2645 * We assume that DMA is always aligned in non-split
2646 * case or split out case. Warn if not.
2647 */
2648 WARN_ON_ONCE(hsotg->params.host_dma &&
2649 (chan->xfer_dma & 0x3));
2650 chan->align_buf = 0;
2651 }
2652
2653 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2654 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2655 /*
2656 * This value may be modified when the transfer is started
2657 * to reflect the actual transfer length
2658 */
2659 chan->multi_count = qh->maxp_mult;
2660
2661 if (hsotg->params.dma_desc_enable) {
2662 chan->desc_list_addr = qh->desc_list_dma;
2663 chan->desc_list_sz = qh->desc_list_sz;
2664 }
2665
2666 dwc2_hc_init(hsotg, chan);
2667 chan->qh = qh;
2668
2669 return 0;
2670}
2671
2672/**
2673 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2674 * schedule and assigns them to available host channels. Called from the HCD
2675 * interrupt handler functions.
2676 *
2677 * @hsotg: The HCD state structure
2678 *
2679 * Return: The types of new transactions that were assigned to host channels
2680 */
2681enum dwc2_transaction_type dwc2_hcd_select_transactions(
2682 struct dwc2_hsotg *hsotg)
2683{
2684 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2685 struct list_head *qh_ptr;
2686 struct dwc2_qh *qh;
2687 int num_channels;
2688
2689#ifdef DWC2_DEBUG_SOF
2690 dev_vdbg(hsotg->dev, " Select Transactions\n");
2691#endif
2692
2693 /* Process entries in the periodic ready list */
2694 qh_ptr = hsotg->periodic_sched_ready.next;
2695 while (qh_ptr != &hsotg->periodic_sched_ready) {
2696 if (list_empty(&hsotg->free_hc_list))
2697 break;
2698 if (hsotg->params.uframe_sched) {
2699 if (hsotg->available_host_channels <= 1)
2700 break;
2701 hsotg->available_host_channels--;
2702 }
2703 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2704 if (dwc2_assign_and_init_hc(hsotg, qh)) {
2705 if (hsotg->params.uframe_sched)
2706 hsotg->available_host_channels++;
2707 break;
2708 }
2709
2710 /*
2711 * Move the QH from the periodic ready schedule to the
2712 * periodic assigned schedule
2713 */
2714 qh_ptr = qh_ptr->next;
2715 list_move_tail(&qh->qh_list_entry,
2716 &hsotg->periodic_sched_assigned);
2717 ret_val = DWC2_TRANSACTION_PERIODIC;
2718 }
2719
2720 /*
2721 * Process entries in the inactive portion of the non-periodic
2722 * schedule. Some free host channels may not be used if they are
2723 * reserved for periodic transfers.
2724 */
2725 num_channels = hsotg->params.host_channels;
2726 qh_ptr = hsotg->non_periodic_sched_inactive.next;
2727 while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2728 if (!hsotg->params.uframe_sched &&
2729 hsotg->non_periodic_channels >= num_channels -
2730 hsotg->periodic_channels)
2731 break;
2732 if (list_empty(&hsotg->free_hc_list))
2733 break;
2734 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2735 if (hsotg->params.uframe_sched) {
2736 if (hsotg->available_host_channels < 1)
2737 break;
2738 hsotg->available_host_channels--;
2739 }
2740
2741 if (dwc2_assign_and_init_hc(hsotg, qh)) {
2742 if (hsotg->params.uframe_sched)
2743 hsotg->available_host_channels++;
2744 break;
2745 }
2746
2747 /*
2748 * Move the QH from the non-periodic inactive schedule to the
2749 * non-periodic active schedule
2750 */
2751 qh_ptr = qh_ptr->next;
2752 list_move_tail(&qh->qh_list_entry,
2753 &hsotg->non_periodic_sched_active);
2754
2755 if (ret_val == DWC2_TRANSACTION_NONE)
2756 ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2757 else
2758 ret_val = DWC2_TRANSACTION_ALL;
2759
2760 if (!hsotg->params.uframe_sched)
2761 hsotg->non_periodic_channels++;
2762 }
2763
2764 return ret_val;
2765}
2766
2767/**
2768 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2769 * a host channel associated with either a periodic or non-periodic transfer
2770 *
2771 * @hsotg: The HCD state structure
2772 * @chan: Host channel descriptor associated with either a periodic or
2773 * non-periodic transfer
2774 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2775 * for periodic transfers or the non-periodic Tx FIFO
2776 * for non-periodic transfers
2777 *
2778 * Return: 1 if a request is queued and more requests may be needed to
2779 * complete the transfer, 0 if no more requests are required for this
2780 * transfer, -1 if there is insufficient space in the Tx FIFO
2781 *
2782 * This function assumes that there is space available in the appropriate
2783 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2784 * it checks whether space is available in the appropriate Tx FIFO.
2785 *
2786 * Must be called with interrupt disabled and spinlock held
2787 */
2788static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2789 struct dwc2_host_chan *chan,
2790 u16 fifo_dwords_avail)
2791{
2792 int retval = 0;
2793
2794 if (chan->do_split)
2795 /* Put ourselves on the list to keep order straight */
2796 list_move_tail(&chan->split_order_list_entry,
2797 &hsotg->split_order);
2798
2799 if (hsotg->params.host_dma && chan->qh) {
2800 if (hsotg->params.dma_desc_enable) {
2801 if (!chan->xfer_started ||
2802 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2803 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2804 chan->qh->ping_state = 0;
2805 }
2806 } else if (!chan->xfer_started) {
2807 dwc2_hc_start_transfer(hsotg, chan);
2808 chan->qh->ping_state = 0;
2809 }
2810 } else if (chan->halt_pending) {
2811 /* Don't queue a request if the channel has been halted */
2812 } else if (chan->halt_on_queue) {
2813 dwc2_hc_halt(hsotg, chan, chan->halt_status);
2814 } else if (chan->do_ping) {
2815 if (!chan->xfer_started)
2816 dwc2_hc_start_transfer(hsotg, chan);
2817 } else if (!chan->ep_is_in ||
2818 chan->data_pid_start == DWC2_HC_PID_SETUP) {
2819 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2820 if (!chan->xfer_started) {
2821 dwc2_hc_start_transfer(hsotg, chan);
2822 retval = 1;
2823 } else {
2824 retval = dwc2_hc_continue_transfer(hsotg, chan);
2825 }
2826 } else {
2827 retval = -1;
2828 }
2829 } else {
2830 if (!chan->xfer_started) {
2831 dwc2_hc_start_transfer(hsotg, chan);
2832 retval = 1;
2833 } else {
2834 retval = dwc2_hc_continue_transfer(hsotg, chan);
2835 }
2836 }
2837
2838 return retval;
2839}
2840
2841/*
2842 * Processes periodic channels for the next frame and queues transactions for
2843 * these channels to the DWC_otg controller. After queueing transactions, the
2844 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2845 * to queue as Periodic Tx FIFO or request queue space becomes available.
2846 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2847 *
2848 * Must be called with interrupt disabled and spinlock held
2849 */
2850static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2851{
2852 struct list_head *qh_ptr;
2853 struct dwc2_qh *qh;
2854 u32 tx_status;
2855 u32 fspcavail;
2856 u32 gintmsk;
2857 int status;
2858 bool no_queue_space = false;
2859 bool no_fifo_space = false;
2860 u32 qspcavail;
2861
2862 /* If empty list then just adjust interrupt enables */
2863 if (list_empty(&hsotg->periodic_sched_assigned))
2864 goto exit;
2865
2866 if (dbg_perio())
2867 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2868
2869 tx_status = dwc2_readl(hsotg, HPTXSTS);
2870 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2871 TXSTS_QSPCAVAIL_SHIFT;
2872 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2873 TXSTS_FSPCAVAIL_SHIFT;
2874
2875 if (dbg_perio()) {
2876 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n",
2877 qspcavail);
2878 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n",
2879 fspcavail);
2880 }
2881
2882 qh_ptr = hsotg->periodic_sched_assigned.next;
2883 while (qh_ptr != &hsotg->periodic_sched_assigned) {
2884 tx_status = dwc2_readl(hsotg, HPTXSTS);
2885 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2886 TXSTS_QSPCAVAIL_SHIFT;
2887 if (qspcavail == 0) {
2888 no_queue_space = true;
2889 break;
2890 }
2891
2892 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2893 if (!qh->channel) {
2894 qh_ptr = qh_ptr->next;
2895 continue;
2896 }
2897
2898 /* Make sure EP's TT buffer is clean before queueing qtds */
2899 if (qh->tt_buffer_dirty) {
2900 qh_ptr = qh_ptr->next;
2901 continue;
2902 }
2903
2904 /*
2905 * Set a flag if we're queuing high-bandwidth in slave mode.
2906 * The flag prevents any halts to get into the request queue in
2907 * the middle of multiple high-bandwidth packets getting queued.
2908 */
2909 if (!hsotg->params.host_dma &&
2910 qh->channel->multi_count > 1)
2911 hsotg->queuing_high_bandwidth = 1;
2912
2913 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2914 TXSTS_FSPCAVAIL_SHIFT;
2915 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2916 if (status < 0) {
2917 no_fifo_space = true;
2918 break;
2919 }
2920
2921 /*
2922 * In Slave mode, stay on the current transfer until there is
2923 * nothing more to do or the high-bandwidth request count is
2924 * reached. In DMA mode, only need to queue one request. The
2925 * controller automatically handles multiple packets for
2926 * high-bandwidth transfers.
2927 */
2928 if (hsotg->params.host_dma || status == 0 ||
2929 qh->channel->requests == qh->channel->multi_count) {
2930 qh_ptr = qh_ptr->next;
2931 /*
2932 * Move the QH from the periodic assigned schedule to
2933 * the periodic queued schedule
2934 */
2935 list_move_tail(&qh->qh_list_entry,
2936 &hsotg->periodic_sched_queued);
2937
2938 /* done queuing high bandwidth */
2939 hsotg->queuing_high_bandwidth = 0;
2940 }
2941 }
2942
2943exit:
2944 if (no_queue_space || no_fifo_space ||
2945 (!hsotg->params.host_dma &&
2946 !list_empty(&hsotg->periodic_sched_assigned))) {
2947 /*
2948 * May need to queue more transactions as the request
2949 * queue or Tx FIFO empties. Enable the periodic Tx
2950 * FIFO empty interrupt. (Always use the half-empty
2951 * level to ensure that new requests are loaded as
2952 * soon as possible.)
2953 */
2954 gintmsk = dwc2_readl(hsotg, GINTMSK);
2955 if (!(gintmsk & GINTSTS_PTXFEMP)) {
2956 gintmsk |= GINTSTS_PTXFEMP;
2957 dwc2_writel(hsotg, gintmsk, GINTMSK);
2958 }
2959 } else {
2960 /*
2961 * Disable the Tx FIFO empty interrupt since there are
2962 * no more transactions that need to be queued right
2963 * now. This function is called from interrupt
2964 * handlers to queue more transactions as transfer
2965 * states change.
2966 */
2967 gintmsk = dwc2_readl(hsotg, GINTMSK);
2968 if (gintmsk & GINTSTS_PTXFEMP) {
2969 gintmsk &= ~GINTSTS_PTXFEMP;
2970 dwc2_writel(hsotg, gintmsk, GINTMSK);
2971 }
2972 }
2973}
2974
2975/*
2976 * Processes active non-periodic channels and queues transactions for these
2977 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
2978 * FIFO Empty interrupt is enabled if there are more transactions to queue as
2979 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
2980 * FIFO Empty interrupt is disabled.
2981 *
2982 * Must be called with interrupt disabled and spinlock held
2983 */
2984static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
2985{
2986 struct list_head *orig_qh_ptr;
2987 struct dwc2_qh *qh;
2988 u32 tx_status;
2989 u32 qspcavail;
2990 u32 fspcavail;
2991 u32 gintmsk;
2992 int status;
2993 int no_queue_space = 0;
2994 int no_fifo_space = 0;
2995 int more_to_do = 0;
2996
2997 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
2998
2999 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3000 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3001 TXSTS_QSPCAVAIL_SHIFT;
3002 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3003 TXSTS_FSPCAVAIL_SHIFT;
3004 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n",
3005 qspcavail);
3006 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n",
3007 fspcavail);
3008
3009 /*
3010 * Keep track of the starting point. Skip over the start-of-list
3011 * entry.
3012 */
3013 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3014 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3015 orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3016
3017 /*
3018 * Process once through the active list or until no more space is
3019 * available in the request queue or the Tx FIFO
3020 */
3021 do {
3022 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3023 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3024 TXSTS_QSPCAVAIL_SHIFT;
3025 if (!hsotg->params.host_dma && qspcavail == 0) {
3026 no_queue_space = 1;
3027 break;
3028 }
3029
3030 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3031 qh_list_entry);
3032 if (!qh->channel)
3033 goto next;
3034
3035 /* Make sure EP's TT buffer is clean before queueing qtds */
3036 if (qh->tt_buffer_dirty)
3037 goto next;
3038
3039 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3040 TXSTS_FSPCAVAIL_SHIFT;
3041 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3042
3043 if (status > 0) {
3044 more_to_do = 1;
3045 } else if (status < 0) {
3046 no_fifo_space = 1;
3047 break;
3048 }
3049next:
3050 /* Advance to next QH, skipping start-of-list entry */
3051 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3052 if (hsotg->non_periodic_qh_ptr ==
3053 &hsotg->non_periodic_sched_active)
3054 hsotg->non_periodic_qh_ptr =
3055 hsotg->non_periodic_qh_ptr->next;
3056 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3057
3058 if (!hsotg->params.host_dma) {
3059 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3060 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3061 TXSTS_QSPCAVAIL_SHIFT;
3062 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3063 TXSTS_FSPCAVAIL_SHIFT;
3064 dev_vdbg(hsotg->dev,
3065 " NP Tx Req Queue Space Avail (after queue): %d\n",
3066 qspcavail);
3067 dev_vdbg(hsotg->dev,
3068 " NP Tx FIFO Space Avail (after queue): %d\n",
3069 fspcavail);
3070
3071 if (more_to_do || no_queue_space || no_fifo_space) {
3072 /*
3073 * May need to queue more transactions as the request
3074 * queue or Tx FIFO empties. Enable the non-periodic
3075 * Tx FIFO empty interrupt. (Always use the half-empty
3076 * level to ensure that new requests are loaded as
3077 * soon as possible.)
3078 */
3079 gintmsk = dwc2_readl(hsotg, GINTMSK);
3080 gintmsk |= GINTSTS_NPTXFEMP;
3081 dwc2_writel(hsotg, gintmsk, GINTMSK);
3082 } else {
3083 /*
3084 * Disable the Tx FIFO empty interrupt since there are
3085 * no more transactions that need to be queued right
3086 * now. This function is called from interrupt
3087 * handlers to queue more transactions as transfer
3088 * states change.
3089 */
3090 gintmsk = dwc2_readl(hsotg, GINTMSK);
3091 gintmsk &= ~GINTSTS_NPTXFEMP;
3092 dwc2_writel(hsotg, gintmsk, GINTMSK);
3093 }
3094 }
3095}
3096
3097/**
3098 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3099 * and queues transactions for these channels to the DWC_otg controller. Called
3100 * from the HCD interrupt handler functions.
3101 *
3102 * @hsotg: The HCD state structure
3103 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3104 * or both)
3105 *
3106 * Must be called with interrupt disabled and spinlock held
3107 */
3108void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3109 enum dwc2_transaction_type tr_type)
3110{
3111#ifdef DWC2_DEBUG_SOF
3112 dev_vdbg(hsotg->dev, "Queue Transactions\n");
3113#endif
3114 /* Process host channels associated with periodic transfers */
3115 if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3116 tr_type == DWC2_TRANSACTION_ALL)
3117 dwc2_process_periodic_channels(hsotg);
3118
3119 /* Process host channels associated with non-periodic transfers */
3120 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3121 tr_type == DWC2_TRANSACTION_ALL) {
3122 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3123 dwc2_process_non_periodic_channels(hsotg);
3124 } else {
3125 /*
3126 * Ensure NP Tx FIFO empty interrupt is disabled when
3127 * there are no non-periodic transfers to process
3128 */
3129 u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3130
3131 gintmsk &= ~GINTSTS_NPTXFEMP;
3132 dwc2_writel(hsotg, gintmsk, GINTMSK);
3133 }
3134 }
3135}
3136
3137static void dwc2_conn_id_status_change(struct work_struct *work)
3138{
3139 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3140 wf_otg);
3141 u32 count = 0;
3142 u32 gotgctl;
3143 unsigned long flags;
3144
3145 dev_dbg(hsotg->dev, "%s()\n", __func__);
3146
3147 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3148 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3149 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3150 !!(gotgctl & GOTGCTL_CONID_B));
3151
3152 /* B-Device connector (Device Mode) */
3153 if (gotgctl & GOTGCTL_CONID_B) {
3154 dwc2_vbus_supply_exit(hsotg);
3155 /* Wait for switch to device mode */
3156 dev_dbg(hsotg->dev, "connId B\n");
3157 if (hsotg->bus_suspended) {
3158 dev_info(hsotg->dev,
3159 "Do port resume before switching to device mode\n");
3160 dwc2_port_resume(hsotg);
3161 }
3162 while (!dwc2_is_device_mode(hsotg)) {
3163 dev_info(hsotg->dev,
3164 "Waiting for Peripheral Mode, Mode=%s\n",
3165 dwc2_is_host_mode(hsotg) ? "Host" :
3166 "Peripheral");
3167 msleep(20);
3168 /*
3169 * Sometimes the initial GOTGCTRL read is wrong, so
3170 * check it again and jump to host mode if that was
3171 * the case.
3172 */
3173 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3174 if (!(gotgctl & GOTGCTL_CONID_B))
3175 goto host;
3176 if (++count > 250)
3177 break;
3178 }
3179 if (count > 250)
3180 dev_err(hsotg->dev,
3181 "Connection id status change timed out\n");
3182
3183 /*
3184 * Exit Partial Power Down without restoring registers.
3185 * No need to check the return value as registers
3186 * are not being restored.
3187 */
3188 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3189 dwc2_exit_partial_power_down(hsotg, 0, false);
3190
3191 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3192 dwc2_core_init(hsotg, false);
3193 dwc2_enable_global_interrupts(hsotg);
3194 spin_lock_irqsave(&hsotg->lock, flags);
3195 dwc2_hsotg_core_init_disconnected(hsotg, false);
3196 spin_unlock_irqrestore(&hsotg->lock, flags);
3197 /* Enable ACG feature in device mode,if supported */
3198 dwc2_enable_acg(hsotg);
3199 dwc2_hsotg_core_connect(hsotg);
3200 } else {
3201host:
3202 /* A-Device connector (Host Mode) */
3203 dev_dbg(hsotg->dev, "connId A\n");
3204 while (!dwc2_is_host_mode(hsotg)) {
3205 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3206 dwc2_is_host_mode(hsotg) ?
3207 "Host" : "Peripheral");
3208 msleep(20);
3209 if (++count > 250)
3210 break;
3211 }
3212 if (count > 250)
3213 dev_err(hsotg->dev,
3214 "Connection id status change timed out\n");
3215
3216 spin_lock_irqsave(&hsotg->lock, flags);
3217 dwc2_hsotg_disconnect(hsotg);
3218 spin_unlock_irqrestore(&hsotg->lock, flags);
3219
3220 hsotg->op_state = OTG_STATE_A_HOST;
3221 /* Initialize the Core for Host mode */
3222 dwc2_core_init(hsotg, false);
3223 dwc2_enable_global_interrupts(hsotg);
3224 dwc2_hcd_start(hsotg);
3225 }
3226}
3227
3228static void dwc2_wakeup_detected(struct timer_list *t)
3229{
3230 struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3231 u32 hprt0;
3232
3233 dev_dbg(hsotg->dev, "%s()\n", __func__);
3234
3235 /*
3236 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3237 * so that OPT tests pass with all PHYs.)
3238 */
3239 hprt0 = dwc2_read_hprt0(hsotg);
3240 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3241 hprt0 &= ~HPRT0_RES;
3242 dwc2_writel(hsotg, hprt0, HPRT0);
3243 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3244 dwc2_readl(hsotg, HPRT0));
3245
3246 dwc2_hcd_rem_wakeup(hsotg);
3247 hsotg->bus_suspended = false;
3248
3249 /* Change to L0 state */
3250 hsotg->lx_state = DWC2_L0;
3251}
3252
3253static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3254{
3255 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3256
3257 return hcd->self.b_hnp_enable;
3258}
3259
3260/**
3261 * dwc2_port_suspend() - Put controller in suspend mode for host.
3262 *
3263 * @hsotg: Programming view of the DWC_otg controller
3264 * @windex: The control request wIndex field
3265 *
3266 * Return: non-zero if failed to enter suspend mode for host.
3267 *
3268 * This function is for entering Host mode suspend.
3269 * Must NOT be called with interrupt disabled or spinlock held.
3270 */
3271int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3272{
3273 unsigned long flags;
3274 u32 pcgctl;
3275 u32 gotgctl;
3276 int ret = 0;
3277
3278 dev_dbg(hsotg->dev, "%s()\n", __func__);
3279
3280 spin_lock_irqsave(&hsotg->lock, flags);
3281
3282 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3283 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3284 gotgctl |= GOTGCTL_HSTSETHNPEN;
3285 dwc2_writel(hsotg, gotgctl, GOTGCTL);
3286 hsotg->op_state = OTG_STATE_A_SUSPEND;
3287 }
3288
3289 switch (hsotg->params.power_down) {
3290 case DWC2_POWER_DOWN_PARAM_PARTIAL:
3291 ret = dwc2_enter_partial_power_down(hsotg);
3292 if (ret)
3293 dev_err(hsotg->dev,
3294 "enter partial_power_down failed.\n");
3295 break;
3296 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3297 /*
3298 * Perform spin unlock and lock because in
3299 * "dwc2_host_enter_hibernation()" function there is a spinlock
3300 * logic which prevents servicing of any IRQ during entering
3301 * hibernation.
3302 */
3303 spin_unlock_irqrestore(&hsotg->lock, flags);
3304 ret = dwc2_enter_hibernation(hsotg, 1);
3305 if (ret)
3306 dev_err(hsotg->dev, "enter hibernation failed.\n");
3307 spin_lock_irqsave(&hsotg->lock, flags);
3308 break;
3309 case DWC2_POWER_DOWN_PARAM_NONE:
3310 /*
3311 * If not hibernation nor partial power down are supported,
3312 * clock gating is used to save power.
3313 */
3314 if (!hsotg->params.no_clock_gating)
3315 dwc2_host_enter_clock_gating(hsotg);
3316 break;
3317 }
3318
3319 /* For HNP the bus must be suspended for at least 200ms */
3320 if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3321 pcgctl = dwc2_readl(hsotg, PCGCTL);
3322 pcgctl &= ~PCGCTL_STOPPCLK;
3323 dwc2_writel(hsotg, pcgctl, PCGCTL);
3324
3325 spin_unlock_irqrestore(&hsotg->lock, flags);
3326
3327 msleep(200);
3328 } else {
3329 spin_unlock_irqrestore(&hsotg->lock, flags);
3330 }
3331
3332 return ret;
3333}
3334
3335/**
3336 * dwc2_port_resume() - Exit controller from suspend mode for host.
3337 *
3338 * @hsotg: Programming view of the DWC_otg controller
3339 *
3340 * Return: non-zero if failed to exit suspend mode for host.
3341 *
3342 * This function is for exiting Host mode suspend.
3343 * Must NOT be called with interrupt disabled or spinlock held.
3344 */
3345int dwc2_port_resume(struct dwc2_hsotg *hsotg)
3346{
3347 unsigned long flags;
3348 int ret = 0;
3349
3350 spin_lock_irqsave(&hsotg->lock, flags);
3351
3352 switch (hsotg->params.power_down) {
3353 case DWC2_POWER_DOWN_PARAM_PARTIAL:
3354 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
3355 if (ret)
3356 dev_err(hsotg->dev,
3357 "exit partial_power_down failed.\n");
3358 break;
3359 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3360 /* Exit host hibernation. */
3361 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
3362 if (ret)
3363 dev_err(hsotg->dev, "exit hibernation failed.\n");
3364 break;
3365 case DWC2_POWER_DOWN_PARAM_NONE:
3366 /*
3367 * If not hibernation nor partial power down are supported,
3368 * port resume is done using the clock gating programming flow.
3369 */
3370 spin_unlock_irqrestore(&hsotg->lock, flags);
3371 dwc2_host_exit_clock_gating(hsotg, 0);
3372 spin_lock_irqsave(&hsotg->lock, flags);
3373 break;
3374 }
3375
3376 spin_unlock_irqrestore(&hsotg->lock, flags);
3377
3378 return ret;
3379}
3380
3381/* Handles hub class-specific requests */
3382static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3383 u16 wvalue, u16 windex, char *buf, u16 wlength)
3384{
3385 struct usb_hub_descriptor *hub_desc;
3386 int retval = 0;
3387 u32 hprt0;
3388 u32 port_status;
3389 u32 speed;
3390 u32 pcgctl;
3391 u32 pwr;
3392
3393 switch (typereq) {
3394 case ClearHubFeature:
3395 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3396
3397 switch (wvalue) {
3398 case C_HUB_LOCAL_POWER:
3399 case C_HUB_OVER_CURRENT:
3400 /* Nothing required here */
3401 break;
3402
3403 default:
3404 retval = -EINVAL;
3405 dev_err(hsotg->dev,
3406 "ClearHubFeature request %1xh unknown\n",
3407 wvalue);
3408 }
3409 break;
3410
3411 case ClearPortFeature:
3412 if (wvalue != USB_PORT_FEAT_L1)
3413 if (!windex || windex > 1)
3414 goto error;
3415 switch (wvalue) {
3416 case USB_PORT_FEAT_ENABLE:
3417 dev_dbg(hsotg->dev,
3418 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3419 hprt0 = dwc2_read_hprt0(hsotg);
3420 hprt0 |= HPRT0_ENA;
3421 dwc2_writel(hsotg, hprt0, HPRT0);
3422 break;
3423
3424 case USB_PORT_FEAT_SUSPEND:
3425 dev_dbg(hsotg->dev,
3426 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3427
3428 if (hsotg->bus_suspended)
3429 retval = dwc2_port_resume(hsotg);
3430 break;
3431
3432 case USB_PORT_FEAT_POWER:
3433 dev_dbg(hsotg->dev,
3434 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3435 hprt0 = dwc2_read_hprt0(hsotg);
3436 pwr = hprt0 & HPRT0_PWR;
3437 hprt0 &= ~HPRT0_PWR;
3438 dwc2_writel(hsotg, hprt0, HPRT0);
3439 if (pwr)
3440 dwc2_vbus_supply_exit(hsotg);
3441 break;
3442
3443 case USB_PORT_FEAT_INDICATOR:
3444 dev_dbg(hsotg->dev,
3445 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3446 /* Port indicator not supported */
3447 break;
3448
3449 case USB_PORT_FEAT_C_CONNECTION:
3450 /*
3451 * Clears driver's internal Connect Status Change flag
3452 */
3453 dev_dbg(hsotg->dev,
3454 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3455 hsotg->flags.b.port_connect_status_change = 0;
3456 break;
3457
3458 case USB_PORT_FEAT_C_RESET:
3459 /* Clears driver's internal Port Reset Change flag */
3460 dev_dbg(hsotg->dev,
3461 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3462 hsotg->flags.b.port_reset_change = 0;
3463 break;
3464
3465 case USB_PORT_FEAT_C_ENABLE:
3466 /*
3467 * Clears the driver's internal Port Enable/Disable
3468 * Change flag
3469 */
3470 dev_dbg(hsotg->dev,
3471 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3472 hsotg->flags.b.port_enable_change = 0;
3473 break;
3474
3475 case USB_PORT_FEAT_C_SUSPEND:
3476 /*
3477 * Clears the driver's internal Port Suspend Change
3478 * flag, which is set when resume signaling on the host
3479 * port is complete
3480 */
3481 dev_dbg(hsotg->dev,
3482 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3483 hsotg->flags.b.port_suspend_change = 0;
3484 break;
3485
3486 case USB_PORT_FEAT_C_PORT_L1:
3487 dev_dbg(hsotg->dev,
3488 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3489 hsotg->flags.b.port_l1_change = 0;
3490 break;
3491
3492 case USB_PORT_FEAT_C_OVER_CURRENT:
3493 dev_dbg(hsotg->dev,
3494 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3495 hsotg->flags.b.port_over_current_change = 0;
3496 break;
3497
3498 default:
3499 retval = -EINVAL;
3500 dev_err(hsotg->dev,
3501 "ClearPortFeature request %1xh unknown or unsupported\n",
3502 wvalue);
3503 }
3504 break;
3505
3506 case GetHubDescriptor:
3507 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3508 hub_desc = (struct usb_hub_descriptor *)buf;
3509 hub_desc->bDescLength = 9;
3510 hub_desc->bDescriptorType = USB_DT_HUB;
3511 hub_desc->bNbrPorts = 1;
3512 hub_desc->wHubCharacteristics =
3513 cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3514 HUB_CHAR_INDV_PORT_OCPM);
3515 hub_desc->bPwrOn2PwrGood = 1;
3516 hub_desc->bHubContrCurrent = 0;
3517 hub_desc->u.hs.DeviceRemovable[0] = 0;
3518 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3519 break;
3520
3521 case GetHubStatus:
3522 dev_dbg(hsotg->dev, "GetHubStatus\n");
3523 memset(buf, 0, 4);
3524 break;
3525
3526 case GetPortStatus:
3527 dev_vdbg(hsotg->dev,
3528 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3529 hsotg->flags.d32);
3530 if (!windex || windex > 1)
3531 goto error;
3532
3533 port_status = 0;
3534 if (hsotg->flags.b.port_connect_status_change)
3535 port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3536 if (hsotg->flags.b.port_enable_change)
3537 port_status |= USB_PORT_STAT_C_ENABLE << 16;
3538 if (hsotg->flags.b.port_suspend_change)
3539 port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3540 if (hsotg->flags.b.port_l1_change)
3541 port_status |= USB_PORT_STAT_C_L1 << 16;
3542 if (hsotg->flags.b.port_reset_change)
3543 port_status |= USB_PORT_STAT_C_RESET << 16;
3544 if (hsotg->flags.b.port_over_current_change) {
3545 dev_warn(hsotg->dev, "Overcurrent change detected\n");
3546 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3547 }
3548
3549 if (dwc2_is_device_mode(hsotg)) {
3550 /*
3551 * Just return 0's for the remainder of the port status
3552 * since the port register can't be read if the core
3553 * is in device mode.
3554 */
3555 *(__le32 *)buf = cpu_to_le32(port_status);
3556 break;
3557 }
3558
3559 hprt0 = dwc2_readl(hsotg, HPRT0);
3560 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0);
3561
3562 if (hprt0 & HPRT0_CONNSTS)
3563 port_status |= USB_PORT_STAT_CONNECTION;
3564 if (hprt0 & HPRT0_ENA)
3565 port_status |= USB_PORT_STAT_ENABLE;
3566 if (hprt0 & HPRT0_SUSP)
3567 port_status |= USB_PORT_STAT_SUSPEND;
3568 if (hprt0 & HPRT0_OVRCURRACT)
3569 port_status |= USB_PORT_STAT_OVERCURRENT;
3570 if (hprt0 & HPRT0_RST)
3571 port_status |= USB_PORT_STAT_RESET;
3572 if (hprt0 & HPRT0_PWR)
3573 port_status |= USB_PORT_STAT_POWER;
3574
3575 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3576 if (speed == HPRT0_SPD_HIGH_SPEED)
3577 port_status |= USB_PORT_STAT_HIGH_SPEED;
3578 else if (speed == HPRT0_SPD_LOW_SPEED)
3579 port_status |= USB_PORT_STAT_LOW_SPEED;
3580
3581 if (hprt0 & HPRT0_TSTCTL_MASK)
3582 port_status |= USB_PORT_STAT_TEST;
3583 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3584
3585 if (hsotg->params.dma_desc_fs_enable) {
3586 /*
3587 * Enable descriptor DMA only if a full speed
3588 * device is connected.
3589 */
3590 if (hsotg->new_connection &&
3591 ((port_status &
3592 (USB_PORT_STAT_CONNECTION |
3593 USB_PORT_STAT_HIGH_SPEED |
3594 USB_PORT_STAT_LOW_SPEED)) ==
3595 USB_PORT_STAT_CONNECTION)) {
3596 u32 hcfg;
3597
3598 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3599 hsotg->params.dma_desc_enable = true;
3600 hcfg = dwc2_readl(hsotg, HCFG);
3601 hcfg |= HCFG_DESCDMA;
3602 dwc2_writel(hsotg, hcfg, HCFG);
3603 hsotg->new_connection = false;
3604 }
3605 }
3606
3607 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3608 *(__le32 *)buf = cpu_to_le32(port_status);
3609 break;
3610
3611 case SetHubFeature:
3612 dev_dbg(hsotg->dev, "SetHubFeature\n");
3613 /* No HUB features supported */
3614 break;
3615
3616 case SetPortFeature:
3617 dev_dbg(hsotg->dev, "SetPortFeature\n");
3618 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3619 goto error;
3620
3621 if (dwc2_is_device_mode(hsotg)) {
3622 /*
3623 * Just return 0's for the remainder of the port status
3624 * since the port register can't be read if the core
3625 * is in device mode.
3626 */
3627 break;
3628 }
3629
3630 switch (wvalue) {
3631 case USB_PORT_FEAT_SUSPEND:
3632 dev_dbg(hsotg->dev,
3633 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3634 if (windex != hsotg->otg_port)
3635 goto error;
3636 if (!hsotg->bus_suspended)
3637 retval = dwc2_port_suspend(hsotg, windex);
3638 break;
3639
3640 case USB_PORT_FEAT_POWER:
3641 dev_dbg(hsotg->dev,
3642 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3643 hprt0 = dwc2_read_hprt0(hsotg);
3644 pwr = hprt0 & HPRT0_PWR;
3645 hprt0 |= HPRT0_PWR;
3646 dwc2_writel(hsotg, hprt0, HPRT0);
3647 if (!pwr)
3648 dwc2_vbus_supply_init(hsotg);
3649 break;
3650
3651 case USB_PORT_FEAT_RESET:
3652 dev_dbg(hsotg->dev,
3653 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3654
3655 hprt0 = dwc2_read_hprt0(hsotg);
3656
3657 if (hsotg->hibernated) {
3658 retval = dwc2_exit_hibernation(hsotg, 0, 1, 1);
3659 if (retval)
3660 dev_err(hsotg->dev,
3661 "exit hibernation failed\n");
3662 }
3663
3664 if (hsotg->in_ppd) {
3665 retval = dwc2_exit_partial_power_down(hsotg, 1,
3666 true);
3667 if (retval)
3668 dev_err(hsotg->dev,
3669 "exit partial_power_down failed\n");
3670 }
3671
3672 if (hsotg->params.power_down ==
3673 DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended)
3674 dwc2_host_exit_clock_gating(hsotg, 0);
3675
3676 pcgctl = dwc2_readl(hsotg, PCGCTL);
3677 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3678 dwc2_writel(hsotg, pcgctl, PCGCTL);
3679 /* ??? Original driver does this */
3680 dwc2_writel(hsotg, 0, PCGCTL);
3681
3682 hprt0 = dwc2_read_hprt0(hsotg);
3683 pwr = hprt0 & HPRT0_PWR;
3684 /* Clear suspend bit if resetting from suspend state */
3685 hprt0 &= ~HPRT0_SUSP;
3686
3687 /*
3688 * When B-Host the Port reset bit is set in the Start
3689 * HCD Callback function, so that the reset is started
3690 * within 1ms of the HNP success interrupt
3691 */
3692 if (!dwc2_hcd_is_b_host(hsotg)) {
3693 hprt0 |= HPRT0_PWR | HPRT0_RST;
3694 dev_dbg(hsotg->dev,
3695 "In host mode, hprt0=%08x\n", hprt0);
3696 dwc2_writel(hsotg, hprt0, HPRT0);
3697 if (!pwr)
3698 dwc2_vbus_supply_init(hsotg);
3699 }
3700
3701 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3702 msleep(50);
3703 hprt0 &= ~HPRT0_RST;
3704 dwc2_writel(hsotg, hprt0, HPRT0);
3705 hsotg->lx_state = DWC2_L0; /* Now back to On state */
3706 break;
3707
3708 case USB_PORT_FEAT_INDICATOR:
3709 dev_dbg(hsotg->dev,
3710 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3711 /* Not supported */
3712 break;
3713
3714 case USB_PORT_FEAT_TEST:
3715 hprt0 = dwc2_read_hprt0(hsotg);
3716 dev_dbg(hsotg->dev,
3717 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3718 hprt0 &= ~HPRT0_TSTCTL_MASK;
3719 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3720 dwc2_writel(hsotg, hprt0, HPRT0);
3721 break;
3722
3723 default:
3724 retval = -EINVAL;
3725 dev_err(hsotg->dev,
3726 "SetPortFeature %1xh unknown or unsupported\n",
3727 wvalue);
3728 break;
3729 }
3730 break;
3731
3732 default:
3733error:
3734 retval = -EINVAL;
3735 dev_dbg(hsotg->dev,
3736 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3737 typereq, windex, wvalue);
3738 break;
3739 }
3740
3741 return retval;
3742}
3743
3744static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3745{
3746 int retval;
3747
3748 if (port != 1)
3749 return -EINVAL;
3750
3751 retval = (hsotg->flags.b.port_connect_status_change ||
3752 hsotg->flags.b.port_reset_change ||
3753 hsotg->flags.b.port_enable_change ||
3754 hsotg->flags.b.port_suspend_change ||
3755 hsotg->flags.b.port_over_current_change);
3756
3757 if (retval) {
3758 dev_dbg(hsotg->dev,
3759 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3760 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n",
3761 hsotg->flags.b.port_connect_status_change);
3762 dev_dbg(hsotg->dev, " port_reset_change: %d\n",
3763 hsotg->flags.b.port_reset_change);
3764 dev_dbg(hsotg->dev, " port_enable_change: %d\n",
3765 hsotg->flags.b.port_enable_change);
3766 dev_dbg(hsotg->dev, " port_suspend_change: %d\n",
3767 hsotg->flags.b.port_suspend_change);
3768 dev_dbg(hsotg->dev, " port_over_current_change: %d\n",
3769 hsotg->flags.b.port_over_current_change);
3770 }
3771
3772 return retval;
3773}
3774
3775int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3776{
3777 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3778
3779#ifdef DWC2_DEBUG_SOF
3780 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3781 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3782#endif
3783 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3784}
3785
3786int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3787{
3788 u32 hprt = dwc2_readl(hsotg, HPRT0);
3789 u32 hfir = dwc2_readl(hsotg, HFIR);
3790 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3791 unsigned int us_per_frame;
3792 unsigned int frame_number;
3793 unsigned int remaining;
3794 unsigned int interval;
3795 unsigned int phy_clks;
3796
3797 /* High speed has 125 us per (micro) frame; others are 1 ms per */
3798 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3799
3800 /* Extract fields */
3801 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3802 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3803 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3804
3805 /*
3806 * Number of phy clocks since the last tick of the frame number after
3807 * "us" has passed.
3808 */
3809 phy_clks = (interval - remaining) +
3810 DIV_ROUND_UP(interval * us, us_per_frame);
3811
3812 return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3813}
3814
3815int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3816{
3817 return hsotg->op_state == OTG_STATE_B_HOST;
3818}
3819
3820static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3821 int iso_desc_count,
3822 gfp_t mem_flags)
3823{
3824 struct dwc2_hcd_urb *urb;
3825
3826 urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3827 if (urb)
3828 urb->packet_count = iso_desc_count;
3829 return urb;
3830}
3831
3832static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3833 struct dwc2_hcd_urb *urb, u8 dev_addr,
3834 u8 ep_num, u8 ep_type, u8 ep_dir,
3835 u16 maxp, u16 maxp_mult)
3836{
3837 if (dbg_perio() ||
3838 ep_type == USB_ENDPOINT_XFER_BULK ||
3839 ep_type == USB_ENDPOINT_XFER_CONTROL)
3840 dev_vdbg(hsotg->dev,
3841 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3842 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3843 urb->pipe_info.dev_addr = dev_addr;
3844 urb->pipe_info.ep_num = ep_num;
3845 urb->pipe_info.pipe_type = ep_type;
3846 urb->pipe_info.pipe_dir = ep_dir;
3847 urb->pipe_info.maxp = maxp;
3848 urb->pipe_info.maxp_mult = maxp_mult;
3849}
3850
3851/*
3852 * NOTE: This function will be removed once the peripheral controller code
3853 * is integrated and the driver is stable
3854 */
3855void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3856{
3857#ifdef DEBUG
3858 struct dwc2_host_chan *chan;
3859 struct dwc2_hcd_urb *urb;
3860 struct dwc2_qtd *qtd;
3861 int num_channels;
3862 u32 np_tx_status;
3863 u32 p_tx_status;
3864 int i;
3865
3866 num_channels = hsotg->params.host_channels;
3867 dev_dbg(hsotg->dev, "\n");
3868 dev_dbg(hsotg->dev,
3869 "************************************************************\n");
3870 dev_dbg(hsotg->dev, "HCD State:\n");
3871 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels);
3872
3873 for (i = 0; i < num_channels; i++) {
3874 chan = hsotg->hc_ptr_array[i];
3875 dev_dbg(hsotg->dev, " Channel %d:\n", i);
3876 dev_dbg(hsotg->dev,
3877 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3878 chan->dev_addr, chan->ep_num, chan->ep_is_in);
3879 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed);
3880 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
3881 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
3882 dev_dbg(hsotg->dev, " data_pid_start: %d\n",
3883 chan->data_pid_start);
3884 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count);
3885 dev_dbg(hsotg->dev, " xfer_started: %d\n",
3886 chan->xfer_started);
3887 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
3888 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
3889 (unsigned long)chan->xfer_dma);
3890 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
3891 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count);
3892 dev_dbg(hsotg->dev, " halt_on_queue: %d\n",
3893 chan->halt_on_queue);
3894 dev_dbg(hsotg->dev, " halt_pending: %d\n",
3895 chan->halt_pending);
3896 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
3897 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split);
3898 dev_dbg(hsotg->dev, " complete_split: %d\n",
3899 chan->complete_split);
3900 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr);
3901 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port);
3902 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos);
3903 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests);
3904 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
3905
3906 if (chan->xfer_started) {
3907 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3908
3909 hfnum = dwc2_readl(hsotg, HFNUM);
3910 hcchar = dwc2_readl(hsotg, HCCHAR(i));
3911 hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3912 hcint = dwc2_readl(hsotg, HCINT(i));
3913 hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3914 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum);
3915 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
3916 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz);
3917 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint);
3918 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk);
3919 }
3920
3921 if (!(chan->xfer_started && chan->qh))
3922 continue;
3923
3924 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3925 if (!qtd->in_process)
3926 break;
3927 urb = qtd->urb;
3928 dev_dbg(hsotg->dev, " URB Info:\n");
3929 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n",
3930 qtd, urb);
3931 if (urb) {
3932 dev_dbg(hsotg->dev,
3933 " Dev: %d, EP: %d %s\n",
3934 dwc2_hcd_get_dev_addr(&urb->pipe_info),
3935 dwc2_hcd_get_ep_num(&urb->pipe_info),
3936 dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3937 "IN" : "OUT");
3938 dev_dbg(hsotg->dev,
3939 " Max packet size: %d (%d mult)\n",
3940 dwc2_hcd_get_maxp(&urb->pipe_info),
3941 dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3942 dev_dbg(hsotg->dev,
3943 " transfer_buffer: %p\n",
3944 urb->buf);
3945 dev_dbg(hsotg->dev,
3946 " transfer_dma: %08lx\n",
3947 (unsigned long)urb->dma);
3948 dev_dbg(hsotg->dev,
3949 " transfer_buffer_length: %d\n",
3950 urb->length);
3951 dev_dbg(hsotg->dev, " actual_length: %d\n",
3952 urb->actual_length);
3953 }
3954 }
3955 }
3956
3957 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n",
3958 hsotg->non_periodic_channels);
3959 dev_dbg(hsotg->dev, " periodic_channels: %d\n",
3960 hsotg->periodic_channels);
3961 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs);
3962 np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3963 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n",
3964 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3965 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n",
3966 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3967 p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3968 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n",
3969 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3970 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n",
3971 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3972 dwc2_dump_global_registers(hsotg);
3973 dwc2_dump_host_registers(hsotg);
3974 dev_dbg(hsotg->dev,
3975 "************************************************************\n");
3976 dev_dbg(hsotg->dev, "\n");
3977#endif
3978}
3979
3980struct wrapper_priv_data {
3981 struct dwc2_hsotg *hsotg;
3982};
3983
3984/* Gets the dwc2_hsotg from a usb_hcd */
3985static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
3986{
3987 struct wrapper_priv_data *p;
3988
3989 p = (struct wrapper_priv_data *)&hcd->hcd_priv;
3990 return p->hsotg;
3991}
3992
3993/**
3994 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
3995 *
3996 * This will get the dwc2_tt structure (and ttport) associated with the given
3997 * context (which is really just a struct urb pointer).
3998 *
3999 * The first time this is called for a given TT we allocate memory for our
4000 * structure. When everyone is done and has called dwc2_host_put_tt_info()
4001 * then the refcount for the structure will go to 0 and we'll free it.
4002 *
4003 * @hsotg: The HCD state structure for the DWC OTG controller.
4004 * @context: The priv pointer from a struct dwc2_hcd_urb.
4005 * @mem_flags: Flags for allocating memory.
4006 * @ttport: We'll return this device's port number here. That's used to
4007 * reference into the bitmap if we're on a multi_tt hub.
4008 *
4009 * Return: a pointer to a struct dwc2_tt. Don't forget to call
4010 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
4011 */
4012
4013struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4014 gfp_t mem_flags, int *ttport)
4015{
4016 struct urb *urb = context;
4017 struct dwc2_tt *dwc_tt = NULL;
4018
4019 if (urb->dev->tt) {
4020 *ttport = urb->dev->ttport;
4021
4022 dwc_tt = urb->dev->tt->hcpriv;
4023 if (!dwc_tt) {
4024 size_t bitmap_size;
4025
4026 /*
4027 * For single_tt we need one schedule. For multi_tt
4028 * we need one per port.
4029 */
4030 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4031 sizeof(dwc_tt->periodic_bitmaps[0]);
4032 if (urb->dev->tt->multi)
4033 bitmap_size *= urb->dev->tt->hub->maxchild;
4034
4035 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4036 mem_flags);
4037 if (!dwc_tt)
4038 return NULL;
4039
4040 dwc_tt->usb_tt = urb->dev->tt;
4041 dwc_tt->usb_tt->hcpriv = dwc_tt;
4042 }
4043
4044 dwc_tt->refcount++;
4045 }
4046
4047 return dwc_tt;
4048}
4049
4050/**
4051 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4052 *
4053 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4054 * of the structure are done.
4055 *
4056 * It's OK to call this with NULL.
4057 *
4058 * @hsotg: The HCD state structure for the DWC OTG controller.
4059 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
4060 */
4061void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4062{
4063 /* Model kfree and make put of NULL a no-op */
4064 if (!dwc_tt)
4065 return;
4066
4067 WARN_ON(dwc_tt->refcount < 1);
4068
4069 dwc_tt->refcount--;
4070 if (!dwc_tt->refcount) {
4071 dwc_tt->usb_tt->hcpriv = NULL;
4072 kfree(dwc_tt);
4073 }
4074}
4075
4076int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4077{
4078 struct urb *urb = context;
4079
4080 return urb->dev->speed;
4081}
4082
4083static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4084 struct urb *urb)
4085{
4086 struct usb_bus *bus = hcd_to_bus(hcd);
4087
4088 if (urb->interval)
4089 bus->bandwidth_allocated += bw / urb->interval;
4090 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4091 bus->bandwidth_isoc_reqs++;
4092 else
4093 bus->bandwidth_int_reqs++;
4094}
4095
4096static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4097 struct urb *urb)
4098{
4099 struct usb_bus *bus = hcd_to_bus(hcd);
4100
4101 if (urb->interval)
4102 bus->bandwidth_allocated -= bw / urb->interval;
4103 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4104 bus->bandwidth_isoc_reqs--;
4105 else
4106 bus->bandwidth_int_reqs--;
4107}
4108
4109/*
4110 * Sets the final status of an URB and returns it to the upper layer. Any
4111 * required cleanup of the URB is performed.
4112 *
4113 * Must be called with interrupt disabled and spinlock held
4114 */
4115void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4116 int status)
4117{
4118 struct urb *urb;
4119 int i;
4120
4121 if (!qtd) {
4122 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4123 return;
4124 }
4125
4126 if (!qtd->urb) {
4127 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4128 return;
4129 }
4130
4131 urb = qtd->urb->priv;
4132 if (!urb) {
4133 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4134 return;
4135 }
4136
4137 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4138
4139 if (dbg_urb(urb))
4140 dev_vdbg(hsotg->dev,
4141 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4142 __func__, urb, usb_pipedevice(urb->pipe),
4143 usb_pipeendpoint(urb->pipe),
4144 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4145 urb->actual_length);
4146
4147 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4148 if (!hsotg->params.dma_desc_enable)
4149 urb->start_frame = qtd->qh->start_active_frame;
4150 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4151 for (i = 0; i < urb->number_of_packets; ++i) {
4152 urb->iso_frame_desc[i].actual_length =
4153 dwc2_hcd_urb_get_iso_desc_actual_length(
4154 qtd->urb, i);
4155 urb->iso_frame_desc[i].status =
4156 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4157 }
4158 }
4159
4160 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4161 for (i = 0; i < urb->number_of_packets; i++)
4162 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4163 i, urb->iso_frame_desc[i].status);
4164 }
4165
4166 urb->status = status;
4167 if (!status) {
4168 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4169 urb->actual_length < urb->transfer_buffer_length)
4170 urb->status = -EREMOTEIO;
4171 }
4172
4173 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4174 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4175 struct usb_host_endpoint *ep = urb->ep;
4176
4177 if (ep)
4178 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4179 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4180 urb);
4181 }
4182
4183 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4184 urb->hcpriv = NULL;
4185 kfree(qtd->urb);
4186 qtd->urb = NULL;
4187
4188 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4189}
4190
4191/*
4192 * Work queue function for starting the HCD when A-Cable is connected
4193 */
4194static void dwc2_hcd_start_func(struct work_struct *work)
4195{
4196 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4197 start_work.work);
4198
4199 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4200 dwc2_host_start(hsotg);
4201}
4202
4203/*
4204 * Reset work queue function
4205 */
4206static void dwc2_hcd_reset_func(struct work_struct *work)
4207{
4208 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4209 reset_work.work);
4210 unsigned long flags;
4211 u32 hprt0;
4212
4213 dev_dbg(hsotg->dev, "USB RESET function called\n");
4214
4215 spin_lock_irqsave(&hsotg->lock, flags);
4216
4217 hprt0 = dwc2_read_hprt0(hsotg);
4218 hprt0 &= ~HPRT0_RST;
4219 dwc2_writel(hsotg, hprt0, HPRT0);
4220 hsotg->flags.b.port_reset_change = 1;
4221
4222 spin_unlock_irqrestore(&hsotg->lock, flags);
4223}
4224
4225static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4226{
4227 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4228 phy_reset_work);
4229 int ret;
4230
4231 ret = phy_reset(hsotg->phy);
4232 if (ret)
4233 dev_warn(hsotg->dev, "PHY reset failed\n");
4234}
4235
4236/*
4237 * =========================================================================
4238 * Linux HC Driver Functions
4239 * =========================================================================
4240 */
4241
4242/*
4243 * Initializes the DWC_otg controller and its root hub and prepares it for host
4244 * mode operation. Activates the root port. Returns 0 on success and a negative
4245 * error code on failure.
4246 */
4247static int _dwc2_hcd_start(struct usb_hcd *hcd)
4248{
4249 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4250 struct usb_bus *bus = hcd_to_bus(hcd);
4251 unsigned long flags;
4252 u32 hprt0;
4253 int ret;
4254
4255 dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4256
4257 spin_lock_irqsave(&hsotg->lock, flags);
4258 hsotg->lx_state = DWC2_L0;
4259 hcd->state = HC_STATE_RUNNING;
4260 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4261
4262 if (dwc2_is_device_mode(hsotg)) {
4263 spin_unlock_irqrestore(&hsotg->lock, flags);
4264 return 0; /* why 0 ?? */
4265 }
4266
4267 dwc2_hcd_reinit(hsotg);
4268
4269 hprt0 = dwc2_read_hprt0(hsotg);
4270 /* Has vbus power been turned on in dwc2_core_host_init ? */
4271 if (hprt0 & HPRT0_PWR) {
4272 /* Enable external vbus supply before resuming root hub */
4273 spin_unlock_irqrestore(&hsotg->lock, flags);
4274 ret = dwc2_vbus_supply_init(hsotg);
4275 if (ret)
4276 return ret;
4277 spin_lock_irqsave(&hsotg->lock, flags);
4278 }
4279
4280 /* Initialize and connect root hub if one is not already attached */
4281 if (bus->root_hub) {
4282 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4283 /* Inform the HUB driver to resume */
4284 usb_hcd_resume_root_hub(hcd);
4285 }
4286
4287 spin_unlock_irqrestore(&hsotg->lock, flags);
4288
4289 return 0;
4290}
4291
4292/*
4293 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4294 * stopped.
4295 */
4296static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4297{
4298 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4299 unsigned long flags;
4300 u32 hprt0;
4301
4302 /* Turn off all host-specific interrupts */
4303 dwc2_disable_host_interrupts(hsotg);
4304
4305 /* Wait for interrupt processing to finish */
4306 synchronize_irq(hcd->irq);
4307
4308 spin_lock_irqsave(&hsotg->lock, flags);
4309 hprt0 = dwc2_read_hprt0(hsotg);
4310 /* Ensure hcd is disconnected */
4311 dwc2_hcd_disconnect(hsotg, true);
4312 dwc2_hcd_stop(hsotg);
4313 hsotg->lx_state = DWC2_L3;
4314 hcd->state = HC_STATE_HALT;
4315 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4316 spin_unlock_irqrestore(&hsotg->lock, flags);
4317
4318 /* keep balanced supply init/exit by checking HPRT0_PWR */
4319 if (hprt0 & HPRT0_PWR)
4320 dwc2_vbus_supply_exit(hsotg);
4321
4322 usleep_range(1000, 3000);
4323}
4324
4325static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4326{
4327 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4328 unsigned long flags;
4329 int ret = 0;
4330
4331 spin_lock_irqsave(&hsotg->lock, flags);
4332
4333 if (dwc2_is_device_mode(hsotg))
4334 goto unlock;
4335
4336 if (hsotg->lx_state != DWC2_L0)
4337 goto unlock;
4338
4339 if (!HCD_HW_ACCESSIBLE(hcd))
4340 goto unlock;
4341
4342 if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4343 goto unlock;
4344
4345 if (hsotg->bus_suspended)
4346 goto skip_power_saving;
4347
4348 if (!(dwc2_read_hprt0(hsotg) & HPRT0_CONNSTS))
4349 goto skip_power_saving;
4350
4351 switch (hsotg->params.power_down) {
4352 case DWC2_POWER_DOWN_PARAM_PARTIAL:
4353 /* Enter partial_power_down */
4354 ret = dwc2_enter_partial_power_down(hsotg);
4355 if (ret)
4356 dev_err(hsotg->dev,
4357 "enter partial_power_down failed\n");
4358 /* After entering suspend, hardware is not accessible */
4359 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4360 break;
4361 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4362 /* Enter hibernation */
4363 spin_unlock_irqrestore(&hsotg->lock, flags);
4364 ret = dwc2_enter_hibernation(hsotg, 1);
4365 if (ret)
4366 dev_err(hsotg->dev, "enter hibernation failed\n");
4367 spin_lock_irqsave(&hsotg->lock, flags);
4368
4369 /* After entering suspend, hardware is not accessible */
4370 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4371 break;
4372 case DWC2_POWER_DOWN_PARAM_NONE:
4373 /*
4374 * If not hibernation nor partial power down are supported,
4375 * clock gating is used to save power.
4376 */
4377 if (!hsotg->params.no_clock_gating) {
4378 dwc2_host_enter_clock_gating(hsotg);
4379
4380 /* After entering suspend, hardware is not accessible */
4381 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4382 }
4383 break;
4384 default:
4385 goto skip_power_saving;
4386 }
4387
4388 spin_unlock_irqrestore(&hsotg->lock, flags);
4389 dwc2_vbus_supply_exit(hsotg);
4390 spin_lock_irqsave(&hsotg->lock, flags);
4391
4392 /* Ask phy to be suspended */
4393 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4394 spin_unlock_irqrestore(&hsotg->lock, flags);
4395 usb_phy_set_suspend(hsotg->uphy, true);
4396 spin_lock_irqsave(&hsotg->lock, flags);
4397 }
4398
4399skip_power_saving:
4400 hsotg->lx_state = DWC2_L2;
4401unlock:
4402 spin_unlock_irqrestore(&hsotg->lock, flags);
4403
4404 return ret;
4405}
4406
4407static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4408{
4409 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4410 unsigned long flags;
4411 u32 hprt0;
4412 int ret = 0;
4413
4414 spin_lock_irqsave(&hsotg->lock, flags);
4415
4416 if (dwc2_is_device_mode(hsotg))
4417 goto unlock;
4418
4419 if (hsotg->lx_state != DWC2_L2)
4420 goto unlock;
4421
4422 hprt0 = dwc2_read_hprt0(hsotg);
4423
4424 /*
4425 * Added port connection status checking which prevents exiting from
4426 * Partial Power Down mode from _dwc2_hcd_resume() if not in Partial
4427 * Power Down mode.
4428 */
4429 if (hprt0 & HPRT0_CONNSTS) {
4430 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4431 hsotg->lx_state = DWC2_L0;
4432 goto unlock;
4433 }
4434
4435 switch (hsotg->params.power_down) {
4436 case DWC2_POWER_DOWN_PARAM_PARTIAL:
4437 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
4438 if (ret)
4439 dev_err(hsotg->dev,
4440 "exit partial_power_down failed\n");
4441 /*
4442 * Set HW accessible bit before powering on the controller
4443 * since an interrupt may rise.
4444 */
4445 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4446 break;
4447 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4448 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4449 if (ret)
4450 dev_err(hsotg->dev, "exit hibernation failed.\n");
4451
4452 /*
4453 * Set HW accessible bit before powering on the controller
4454 * since an interrupt may rise.
4455 */
4456 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4457 break;
4458 case DWC2_POWER_DOWN_PARAM_NONE:
4459 /*
4460 * If not hibernation nor partial power down are supported,
4461 * port resume is done using the clock gating programming flow.
4462 */
4463 spin_unlock_irqrestore(&hsotg->lock, flags);
4464 dwc2_host_exit_clock_gating(hsotg, 0);
4465
4466 /*
4467 * Initialize the Core for Host mode, as after system resume
4468 * the global interrupts are disabled.
4469 */
4470 dwc2_core_init(hsotg, false);
4471 dwc2_enable_global_interrupts(hsotg);
4472 dwc2_hcd_reinit(hsotg);
4473 spin_lock_irqsave(&hsotg->lock, flags);
4474
4475 /*
4476 * Set HW accessible bit before powering on the controller
4477 * since an interrupt may rise.
4478 */
4479 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4480 break;
4481 default:
4482 hsotg->lx_state = DWC2_L0;
4483 goto unlock;
4484 }
4485
4486 /* Change Root port status, as port status change occurred after resume.*/
4487 hsotg->flags.b.port_suspend_change = 1;
4488
4489 /*
4490 * Enable power if not already done.
4491 * This must not be spinlocked since duration
4492 * of this call is unknown.
4493 */
4494 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4495 spin_unlock_irqrestore(&hsotg->lock, flags);
4496 usb_phy_set_suspend(hsotg->uphy, false);
4497 spin_lock_irqsave(&hsotg->lock, flags);
4498 }
4499
4500 /* Enable external vbus supply after resuming the port. */
4501 spin_unlock_irqrestore(&hsotg->lock, flags);
4502 dwc2_vbus_supply_init(hsotg);
4503
4504 /* Wait for controller to correctly update D+/D- level */
4505 usleep_range(3000, 5000);
4506 spin_lock_irqsave(&hsotg->lock, flags);
4507
4508 /*
4509 * Clear Port Enable and Port Status changes.
4510 * Enable Port Power.
4511 */
4512 dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4513 HPRT0_ENACHG, HPRT0);
4514
4515 /* Wait for controller to detect Port Connect */
4516 spin_unlock_irqrestore(&hsotg->lock, flags);
4517 usleep_range(5000, 7000);
4518 spin_lock_irqsave(&hsotg->lock, flags);
4519unlock:
4520 spin_unlock_irqrestore(&hsotg->lock, flags);
4521
4522 return ret;
4523}
4524
4525/* Returns the current frame number */
4526static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4527{
4528 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4529
4530 return dwc2_hcd_get_frame_number(hsotg);
4531}
4532
4533static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4534 char *fn_name)
4535{
4536#ifdef VERBOSE_DEBUG
4537 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4538 char *pipetype = NULL;
4539 char *speed = NULL;
4540
4541 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4542 dev_vdbg(hsotg->dev, " Device address: %d\n",
4543 usb_pipedevice(urb->pipe));
4544 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n",
4545 usb_pipeendpoint(urb->pipe),
4546 usb_pipein(urb->pipe) ? "IN" : "OUT");
4547
4548 switch (usb_pipetype(urb->pipe)) {
4549 case PIPE_CONTROL:
4550 pipetype = "CONTROL";
4551 break;
4552 case PIPE_BULK:
4553 pipetype = "BULK";
4554 break;
4555 case PIPE_INTERRUPT:
4556 pipetype = "INTERRUPT";
4557 break;
4558 case PIPE_ISOCHRONOUS:
4559 pipetype = "ISOCHRONOUS";
4560 break;
4561 }
4562
4563 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype,
4564 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4565 "IN" : "OUT");
4566
4567 switch (urb->dev->speed) {
4568 case USB_SPEED_HIGH:
4569 speed = "HIGH";
4570 break;
4571 case USB_SPEED_FULL:
4572 speed = "FULL";
4573 break;
4574 case USB_SPEED_LOW:
4575 speed = "LOW";
4576 break;
4577 default:
4578 speed = "UNKNOWN";
4579 break;
4580 }
4581
4582 dev_vdbg(hsotg->dev, " Speed: %s\n", speed);
4583 dev_vdbg(hsotg->dev, " Max packet size: %d (%d mult)\n",
4584 usb_endpoint_maxp(&urb->ep->desc),
4585 usb_endpoint_maxp_mult(&urb->ep->desc));
4586
4587 dev_vdbg(hsotg->dev, " Data buffer length: %d\n",
4588 urb->transfer_buffer_length);
4589 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n",
4590 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4591 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n",
4592 urb->setup_packet, (unsigned long)urb->setup_dma);
4593 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval);
4594
4595 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4596 int i;
4597
4598 for (i = 0; i < urb->number_of_packets; i++) {
4599 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i);
4600 dev_vdbg(hsotg->dev, " offset: %d, length %d\n",
4601 urb->iso_frame_desc[i].offset,
4602 urb->iso_frame_desc[i].length);
4603 }
4604 }
4605#endif
4606}
4607
4608/*
4609 * Starts processing a USB transfer request specified by a USB Request Block
4610 * (URB). mem_flags indicates the type of memory allocation to use while
4611 * processing this URB.
4612 */
4613static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4614 gfp_t mem_flags)
4615{
4616 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4617 struct usb_host_endpoint *ep = urb->ep;
4618 struct dwc2_hcd_urb *dwc2_urb;
4619 int i;
4620 int retval;
4621 int alloc_bandwidth = 0;
4622 u8 ep_type = 0;
4623 u32 tflags = 0;
4624 void *buf;
4625 unsigned long flags;
4626 struct dwc2_qh *qh;
4627 bool qh_allocated = false;
4628 struct dwc2_qtd *qtd;
4629 struct dwc2_gregs_backup *gr;
4630
4631 gr = &hsotg->gr_backup;
4632
4633 if (dbg_urb(urb)) {
4634 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4635 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4636 }
4637
4638 if (hsotg->hibernated) {
4639 if (gr->gotgctl & GOTGCTL_CURMODE_HOST)
4640 retval = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4641 else
4642 retval = dwc2_exit_hibernation(hsotg, 0, 0, 0);
4643
4644 if (retval)
4645 dev_err(hsotg->dev,
4646 "exit hibernation failed.\n");
4647 }
4648
4649 if (hsotg->in_ppd) {
4650 retval = dwc2_exit_partial_power_down(hsotg, 0, true);
4651 if (retval)
4652 dev_err(hsotg->dev,
4653 "exit partial_power_down failed\n");
4654 }
4655
4656 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE &&
4657 hsotg->bus_suspended && !hsotg->params.no_clock_gating) {
4658 if (dwc2_is_device_mode(hsotg))
4659 dwc2_gadget_exit_clock_gating(hsotg, 0);
4660 else
4661 dwc2_host_exit_clock_gating(hsotg, 0);
4662 }
4663
4664 if (!ep)
4665 return -EINVAL;
4666
4667 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4668 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4669 spin_lock_irqsave(&hsotg->lock, flags);
4670 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4671 alloc_bandwidth = 1;
4672 spin_unlock_irqrestore(&hsotg->lock, flags);
4673 }
4674
4675 switch (usb_pipetype(urb->pipe)) {
4676 case PIPE_CONTROL:
4677 ep_type = USB_ENDPOINT_XFER_CONTROL;
4678 break;
4679 case PIPE_ISOCHRONOUS:
4680 ep_type = USB_ENDPOINT_XFER_ISOC;
4681 break;
4682 case PIPE_BULK:
4683 ep_type = USB_ENDPOINT_XFER_BULK;
4684 break;
4685 case PIPE_INTERRUPT:
4686 ep_type = USB_ENDPOINT_XFER_INT;
4687 break;
4688 }
4689
4690 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4691 mem_flags);
4692 if (!dwc2_urb)
4693 return -ENOMEM;
4694
4695 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4696 usb_pipeendpoint(urb->pipe), ep_type,
4697 usb_pipein(urb->pipe),
4698 usb_endpoint_maxp(&ep->desc),
4699 usb_endpoint_maxp_mult(&ep->desc));
4700
4701 buf = urb->transfer_buffer;
4702
4703 if (hcd_uses_dma(hcd)) {
4704 if (!buf && (urb->transfer_dma & 3)) {
4705 dev_err(hsotg->dev,
4706 "%s: unaligned transfer with no transfer_buffer",
4707 __func__);
4708 retval = -EINVAL;
4709 goto fail0;
4710 }
4711 }
4712
4713 if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4714 tflags |= URB_GIVEBACK_ASAP;
4715 if (urb->transfer_flags & URB_ZERO_PACKET)
4716 tflags |= URB_SEND_ZERO_PACKET;
4717
4718 dwc2_urb->priv = urb;
4719 dwc2_urb->buf = buf;
4720 dwc2_urb->dma = urb->transfer_dma;
4721 dwc2_urb->length = urb->transfer_buffer_length;
4722 dwc2_urb->setup_packet = urb->setup_packet;
4723 dwc2_urb->setup_dma = urb->setup_dma;
4724 dwc2_urb->flags = tflags;
4725 dwc2_urb->interval = urb->interval;
4726 dwc2_urb->status = -EINPROGRESS;
4727
4728 for (i = 0; i < urb->number_of_packets; ++i)
4729 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4730 urb->iso_frame_desc[i].offset,
4731 urb->iso_frame_desc[i].length);
4732
4733 urb->hcpriv = dwc2_urb;
4734 qh = (struct dwc2_qh *)ep->hcpriv;
4735 /* Create QH for the endpoint if it doesn't exist */
4736 if (!qh) {
4737 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4738 if (!qh) {
4739 retval = -ENOMEM;
4740 goto fail0;
4741 }
4742 ep->hcpriv = qh;
4743 qh_allocated = true;
4744 }
4745
4746 qtd = kzalloc(sizeof(*qtd), mem_flags);
4747 if (!qtd) {
4748 retval = -ENOMEM;
4749 goto fail1;
4750 }
4751
4752 spin_lock_irqsave(&hsotg->lock, flags);
4753 retval = usb_hcd_link_urb_to_ep(hcd, urb);
4754 if (retval)
4755 goto fail2;
4756
4757 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4758 if (retval)
4759 goto fail3;
4760
4761 if (alloc_bandwidth) {
4762 dwc2_allocate_bus_bandwidth(hcd,
4763 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4764 urb);
4765 }
4766
4767 spin_unlock_irqrestore(&hsotg->lock, flags);
4768
4769 return 0;
4770
4771fail3:
4772 dwc2_urb->priv = NULL;
4773 usb_hcd_unlink_urb_from_ep(hcd, urb);
4774 if (qh_allocated && qh->channel && qh->channel->qh == qh)
4775 qh->channel->qh = NULL;
4776fail2:
4777 urb->hcpriv = NULL;
4778 spin_unlock_irqrestore(&hsotg->lock, flags);
4779 kfree(qtd);
4780fail1:
4781 if (qh_allocated) {
4782 struct dwc2_qtd *qtd2, *qtd2_tmp;
4783
4784 ep->hcpriv = NULL;
4785 dwc2_hcd_qh_unlink(hsotg, qh);
4786 /* Free each QTD in the QH's QTD list */
4787 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4788 qtd_list_entry)
4789 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4790 dwc2_hcd_qh_free(hsotg, qh);
4791 }
4792fail0:
4793 kfree(dwc2_urb);
4794
4795 return retval;
4796}
4797
4798/*
4799 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4800 */
4801static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4802 int status)
4803{
4804 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4805 int rc;
4806 unsigned long flags;
4807
4808 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4809 dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4810
4811 spin_lock_irqsave(&hsotg->lock, flags);
4812
4813 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4814 if (rc)
4815 goto out;
4816
4817 if (!urb->hcpriv) {
4818 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4819 goto out;
4820 }
4821
4822 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4823
4824 usb_hcd_unlink_urb_from_ep(hcd, urb);
4825
4826 kfree(urb->hcpriv);
4827 urb->hcpriv = NULL;
4828
4829 /* Higher layer software sets URB status */
4830 spin_unlock(&hsotg->lock);
4831 usb_hcd_giveback_urb(hcd, urb, status);
4832 spin_lock(&hsotg->lock);
4833
4834 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4835 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status);
4836out:
4837 spin_unlock_irqrestore(&hsotg->lock, flags);
4838
4839 return rc;
4840}
4841
4842/*
4843 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4844 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4845 * must already be dequeued.
4846 */
4847static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4848 struct usb_host_endpoint *ep)
4849{
4850 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4851
4852 dev_dbg(hsotg->dev,
4853 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4854 ep->desc.bEndpointAddress, ep->hcpriv);
4855 dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4856}
4857
4858/*
4859 * Resets endpoint specific parameter values, in current version used to reset
4860 * the data toggle (as a WA). This function can be called from usb_clear_halt
4861 * routine.
4862 */
4863static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4864 struct usb_host_endpoint *ep)
4865{
4866 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4867 unsigned long flags;
4868
4869 dev_dbg(hsotg->dev,
4870 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4871 ep->desc.bEndpointAddress);
4872
4873 spin_lock_irqsave(&hsotg->lock, flags);
4874 dwc2_hcd_endpoint_reset(hsotg, ep);
4875 spin_unlock_irqrestore(&hsotg->lock, flags);
4876}
4877
4878/*
4879 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4880 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4881 * interrupt.
4882 *
4883 * This function is called by the USB core when an interrupt occurs
4884 */
4885static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4886{
4887 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4888
4889 return dwc2_handle_hcd_intr(hsotg);
4890}
4891
4892/*
4893 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4894 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4895 * is the status change indicator for the single root port. Returns 1 if either
4896 * change indicator is 1, otherwise returns 0.
4897 */
4898static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4899{
4900 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4901
4902 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4903 return buf[0] != 0;
4904}
4905
4906/* Handles hub class-specific requests */
4907static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4908 u16 windex, char *buf, u16 wlength)
4909{
4910 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4911 wvalue, windex, buf, wlength);
4912 return retval;
4913}
4914
4915/* Handles hub TT buffer clear completions */
4916static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4917 struct usb_host_endpoint *ep)
4918{
4919 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4920 struct dwc2_qh *qh;
4921 unsigned long flags;
4922
4923 qh = ep->hcpriv;
4924 if (!qh)
4925 return;
4926
4927 spin_lock_irqsave(&hsotg->lock, flags);
4928 qh->tt_buffer_dirty = 0;
4929
4930 if (hsotg->flags.b.port_connect_status)
4931 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4932
4933 spin_unlock_irqrestore(&hsotg->lock, flags);
4934}
4935
4936/*
4937 * HPRT0_SPD_HIGH_SPEED: high speed
4938 * HPRT0_SPD_FULL_SPEED: full speed
4939 */
4940static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4941{
4942 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4943
4944 if (hsotg->params.speed == speed)
4945 return;
4946
4947 hsotg->params.speed = speed;
4948 queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4949}
4950
4951static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4952{
4953 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4954
4955 if (!hsotg->params.change_speed_quirk)
4956 return;
4957
4958 /*
4959 * On removal, set speed to default high-speed.
4960 */
4961 if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4962 udev->parent->speed < USB_SPEED_HIGH) {
4963 dev_info(hsotg->dev, "Set speed to default high-speed\n");
4964 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4965 }
4966}
4967
4968static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4969{
4970 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4971
4972 if (!hsotg->params.change_speed_quirk)
4973 return 0;
4974
4975 if (udev->speed == USB_SPEED_HIGH) {
4976 dev_info(hsotg->dev, "Set speed to high-speed\n");
4977 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4978 } else if ((udev->speed == USB_SPEED_FULL ||
4979 udev->speed == USB_SPEED_LOW)) {
4980 /*
4981 * Change speed setting to full-speed if there's
4982 * a full-speed or low-speed device plugged in.
4983 */
4984 dev_info(hsotg->dev, "Set speed to full-speed\n");
4985 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4986 }
4987
4988 return 0;
4989}
4990
4991static struct hc_driver dwc2_hc_driver = {
4992 .description = "dwc2_hsotg",
4993 .product_desc = "DWC OTG Controller",
4994 .hcd_priv_size = sizeof(struct wrapper_priv_data),
4995
4996 .irq = _dwc2_hcd_irq,
4997 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4998
4999 .start = _dwc2_hcd_start,
5000 .stop = _dwc2_hcd_stop,
5001 .urb_enqueue = _dwc2_hcd_urb_enqueue,
5002 .urb_dequeue = _dwc2_hcd_urb_dequeue,
5003 .endpoint_disable = _dwc2_hcd_endpoint_disable,
5004 .endpoint_reset = _dwc2_hcd_endpoint_reset,
5005 .get_frame_number = _dwc2_hcd_get_frame_number,
5006
5007 .hub_status_data = _dwc2_hcd_hub_status_data,
5008 .hub_control = _dwc2_hcd_hub_control,
5009 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5010
5011 .bus_suspend = _dwc2_hcd_suspend,
5012 .bus_resume = _dwc2_hcd_resume,
5013
5014 .map_urb_for_dma = dwc2_map_urb_for_dma,
5015 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma,
5016};
5017
5018/*
5019 * Frees secondary storage associated with the dwc2_hsotg structure contained
5020 * in the struct usb_hcd field
5021 */
5022static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5023{
5024 u32 ahbcfg;
5025 u32 dctl;
5026 int i;
5027
5028 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5029
5030 /* Free memory for QH/QTD lists */
5031 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5032 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5033 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5034 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5035 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5036 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5037 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5038
5039 /* Free memory for the host channels */
5040 for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5041 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5042
5043 if (chan) {
5044 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5045 i, chan);
5046 hsotg->hc_ptr_array[i] = NULL;
5047 kfree(chan);
5048 }
5049 }
5050
5051 if (hsotg->params.host_dma) {
5052 if (hsotg->status_buf) {
5053 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5054 hsotg->status_buf,
5055 hsotg->status_buf_dma);
5056 hsotg->status_buf = NULL;
5057 }
5058 } else {
5059 kfree(hsotg->status_buf);
5060 hsotg->status_buf = NULL;
5061 }
5062
5063 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5064
5065 /* Disable all interrupts */
5066 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5067 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5068 dwc2_writel(hsotg, 0, GINTMSK);
5069
5070 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5071 dctl = dwc2_readl(hsotg, DCTL);
5072 dctl |= DCTL_SFTDISCON;
5073 dwc2_writel(hsotg, dctl, DCTL);
5074 }
5075
5076 if (hsotg->wq_otg) {
5077 if (!cancel_work_sync(&hsotg->wf_otg))
5078 flush_workqueue(hsotg->wq_otg);
5079 destroy_workqueue(hsotg->wq_otg);
5080 }
5081
5082 cancel_work_sync(&hsotg->phy_reset_work);
5083
5084 del_timer(&hsotg->wkp_timer);
5085}
5086
5087static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5088{
5089 /* Turn off all host-specific interrupts */
5090 dwc2_disable_host_interrupts(hsotg);
5091
5092 dwc2_hcd_free(hsotg);
5093}
5094
5095/*
5096 * Initializes the HCD. This function allocates memory for and initializes the
5097 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5098 * USB bus with the core and calls the hc_driver->start() function. It returns
5099 * a negative error on failure.
5100 */
5101int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5102{
5103 struct platform_device *pdev = to_platform_device(hsotg->dev);
5104 struct resource *res;
5105 struct usb_hcd *hcd;
5106 struct dwc2_host_chan *channel;
5107 u32 hcfg;
5108 int i, num_channels;
5109 int retval;
5110
5111 if (usb_disabled())
5112 return -ENODEV;
5113
5114 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5115
5116 retval = -ENOMEM;
5117
5118 hcfg = dwc2_readl(hsotg, HCFG);
5119 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5120
5121#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5122 hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5123 sizeof(*hsotg->frame_num_array),
5124 GFP_KERNEL);
5125 if (!hsotg->frame_num_array)
5126 goto error1;
5127 hsotg->last_frame_num_array =
5128 kcalloc(FRAME_NUM_ARRAY_SIZE,
5129 sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5130 if (!hsotg->last_frame_num_array)
5131 goto error1;
5132#endif
5133 hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5134
5135 /* Check if the bus driver or platform code has setup a dma_mask */
5136 if (hsotg->params.host_dma &&
5137 !hsotg->dev->dma_mask) {
5138 dev_warn(hsotg->dev,
5139 "dma_mask not set, disabling DMA\n");
5140 hsotg->params.host_dma = false;
5141 hsotg->params.dma_desc_enable = false;
5142 }
5143
5144 /* Set device flags indicating whether the HCD supports DMA */
5145 if (hsotg->params.host_dma) {
5146 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5147 dev_warn(hsotg->dev, "can't set DMA mask\n");
5148 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5149 dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5150 }
5151
5152 if (hsotg->params.change_speed_quirk) {
5153 dwc2_hc_driver.free_dev = dwc2_free_dev;
5154 dwc2_hc_driver.reset_device = dwc2_reset_device;
5155 }
5156
5157 if (hsotg->params.host_dma)
5158 dwc2_hc_driver.flags |= HCD_DMA;
5159
5160 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5161 if (!hcd)
5162 goto error1;
5163
5164 hcd->has_tt = 1;
5165
5166 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5167 if (!res) {
5168 retval = -EINVAL;
5169 goto error2;
5170 }
5171 hcd->rsrc_start = res->start;
5172 hcd->rsrc_len = resource_size(res);
5173
5174 ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5175 hsotg->priv = hcd;
5176
5177 /*
5178 * Disable the global interrupt until all the interrupt handlers are
5179 * installed
5180 */
5181 dwc2_disable_global_interrupts(hsotg);
5182
5183 /* Initialize the DWC_otg core, and select the Phy type */
5184 retval = dwc2_core_init(hsotg, true);
5185 if (retval)
5186 goto error2;
5187
5188 /* Create new workqueue and init work */
5189 retval = -ENOMEM;
5190 hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5191 if (!hsotg->wq_otg) {
5192 dev_err(hsotg->dev, "Failed to create workqueue\n");
5193 goto error2;
5194 }
5195 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5196
5197 timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5198
5199 /* Initialize the non-periodic schedule */
5200 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5201 INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5202 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5203
5204 /* Initialize the periodic schedule */
5205 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5206 INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5207 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5208 INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5209
5210 INIT_LIST_HEAD(&hsotg->split_order);
5211
5212 /*
5213 * Create a host channel descriptor for each host channel implemented
5214 * in the controller. Initialize the channel descriptor array.
5215 */
5216 INIT_LIST_HEAD(&hsotg->free_hc_list);
5217 num_channels = hsotg->params.host_channels;
5218 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5219
5220 for (i = 0; i < num_channels; i++) {
5221 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5222 if (!channel)
5223 goto error3;
5224 channel->hc_num = i;
5225 INIT_LIST_HEAD(&channel->split_order_list_entry);
5226 hsotg->hc_ptr_array[i] = channel;
5227 }
5228
5229 /* Initialize work */
5230 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5231 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5232 INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5233
5234 /*
5235 * Allocate space for storing data on status transactions. Normally no
5236 * data is sent, but this space acts as a bit bucket. This must be
5237 * done after usb_add_hcd since that function allocates the DMA buffer
5238 * pool.
5239 */
5240 if (hsotg->params.host_dma)
5241 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5242 DWC2_HCD_STATUS_BUF_SIZE,
5243 &hsotg->status_buf_dma, GFP_KERNEL);
5244 else
5245 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5246 GFP_KERNEL);
5247
5248 if (!hsotg->status_buf)
5249 goto error3;
5250
5251 /*
5252 * Create kmem caches to handle descriptor buffers in descriptor
5253 * DMA mode.
5254 * Alignment must be set to 512 bytes.
5255 */
5256 if (hsotg->params.dma_desc_enable ||
5257 hsotg->params.dma_desc_fs_enable) {
5258 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5259 sizeof(struct dwc2_dma_desc) *
5260 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5261 NULL);
5262 if (!hsotg->desc_gen_cache) {
5263 dev_err(hsotg->dev,
5264 "unable to create dwc2 generic desc cache\n");
5265
5266 /*
5267 * Disable descriptor dma mode since it will not be
5268 * usable.
5269 */
5270 hsotg->params.dma_desc_enable = false;
5271 hsotg->params.dma_desc_fs_enable = false;
5272 }
5273
5274 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5275 sizeof(struct dwc2_dma_desc) *
5276 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5277 if (!hsotg->desc_hsisoc_cache) {
5278 dev_err(hsotg->dev,
5279 "unable to create dwc2 hs isoc desc cache\n");
5280
5281 kmem_cache_destroy(hsotg->desc_gen_cache);
5282
5283 /*
5284 * Disable descriptor dma mode since it will not be
5285 * usable.
5286 */
5287 hsotg->params.dma_desc_enable = false;
5288 hsotg->params.dma_desc_fs_enable = false;
5289 }
5290 }
5291
5292 if (hsotg->params.host_dma) {
5293 /*
5294 * Create kmem caches to handle non-aligned buffer
5295 * in Buffer DMA mode.
5296 */
5297 hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5298 DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5299 SLAB_CACHE_DMA, NULL);
5300 if (!hsotg->unaligned_cache)
5301 dev_err(hsotg->dev,
5302 "unable to create dwc2 unaligned cache\n");
5303 }
5304
5305 hsotg->otg_port = 1;
5306 hsotg->frame_list = NULL;
5307 hsotg->frame_list_dma = 0;
5308 hsotg->periodic_qh_count = 0;
5309
5310 /* Initiate lx_state to L3 disconnected state */
5311 hsotg->lx_state = DWC2_L3;
5312
5313 hcd->self.otg_port = hsotg->otg_port;
5314
5315 /* Don't support SG list at this point */
5316 hcd->self.sg_tablesize = 0;
5317
5318 hcd->tpl_support = of_usb_host_tpl_support(hsotg->dev->of_node);
5319
5320 if (!IS_ERR_OR_NULL(hsotg->uphy))
5321 otg_set_host(hsotg->uphy->otg, &hcd->self);
5322
5323 /*
5324 * Finish generic HCD initialization and start the HCD. This function
5325 * allocates the DMA buffer pool, registers the USB bus, requests the
5326 * IRQ line, and calls hcd_start method.
5327 */
5328 retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5329 if (retval < 0)
5330 goto error4;
5331
5332 device_wakeup_enable(hcd->self.controller);
5333
5334 dwc2_hcd_dump_state(hsotg);
5335
5336 dwc2_enable_global_interrupts(hsotg);
5337
5338 return 0;
5339
5340error4:
5341 kmem_cache_destroy(hsotg->unaligned_cache);
5342 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5343 kmem_cache_destroy(hsotg->desc_gen_cache);
5344error3:
5345 dwc2_hcd_release(hsotg);
5346error2:
5347 usb_put_hcd(hcd);
5348error1:
5349
5350#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5351 kfree(hsotg->last_frame_num_array);
5352 kfree(hsotg->frame_num_array);
5353#endif
5354
5355 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5356 return retval;
5357}
5358
5359/*
5360 * Removes the HCD.
5361 * Frees memory and resources associated with the HCD and deregisters the bus.
5362 */
5363void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5364{
5365 struct usb_hcd *hcd;
5366
5367 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5368
5369 hcd = dwc2_hsotg_to_hcd(hsotg);
5370 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5371
5372 if (!hcd) {
5373 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5374 __func__);
5375 return;
5376 }
5377
5378 if (!IS_ERR_OR_NULL(hsotg->uphy))
5379 otg_set_host(hsotg->uphy->otg, NULL);
5380
5381 usb_remove_hcd(hcd);
5382 hsotg->priv = NULL;
5383
5384 kmem_cache_destroy(hsotg->unaligned_cache);
5385 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5386 kmem_cache_destroy(hsotg->desc_gen_cache);
5387
5388 dwc2_hcd_release(hsotg);
5389 usb_put_hcd(hcd);
5390
5391#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5392 kfree(hsotg->last_frame_num_array);
5393 kfree(hsotg->frame_num_array);
5394#endif
5395}
5396
5397/**
5398 * dwc2_backup_host_registers() - Backup controller host registers.
5399 * When suspending usb bus, registers needs to be backuped
5400 * if controller power is disabled once suspended.
5401 *
5402 * @hsotg: Programming view of the DWC_otg controller
5403 */
5404int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5405{
5406 struct dwc2_hregs_backup *hr;
5407 int i;
5408
5409 dev_dbg(hsotg->dev, "%s\n", __func__);
5410
5411 /* Backup Host regs */
5412 hr = &hsotg->hr_backup;
5413 hr->hcfg = dwc2_readl(hsotg, HCFG);
5414 hr->hflbaddr = dwc2_readl(hsotg, HFLBADDR);
5415 hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5416 for (i = 0; i < hsotg->params.host_channels; ++i) {
5417 hr->hcchar[i] = dwc2_readl(hsotg, HCCHAR(i));
5418 hr->hcsplt[i] = dwc2_readl(hsotg, HCSPLT(i));
5419 hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5420 hr->hctsiz[i] = dwc2_readl(hsotg, HCTSIZ(i));
5421 hr->hcidma[i] = dwc2_readl(hsotg, HCDMA(i));
5422 hr->hcidmab[i] = dwc2_readl(hsotg, HCDMAB(i));
5423 }
5424
5425 hr->hprt0 = dwc2_read_hprt0(hsotg);
5426 hr->hfir = dwc2_readl(hsotg, HFIR);
5427 hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5428 hr->valid = true;
5429
5430 return 0;
5431}
5432
5433/**
5434 * dwc2_restore_host_registers() - Restore controller host registers.
5435 * When resuming usb bus, device registers needs to be restored
5436 * if controller power were disabled.
5437 *
5438 * @hsotg: Programming view of the DWC_otg controller
5439 */
5440int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5441{
5442 struct dwc2_hregs_backup *hr;
5443 int i;
5444
5445 dev_dbg(hsotg->dev, "%s\n", __func__);
5446
5447 /* Restore host regs */
5448 hr = &hsotg->hr_backup;
5449 if (!hr->valid) {
5450 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5451 __func__);
5452 return -EINVAL;
5453 }
5454 hr->valid = false;
5455
5456 dwc2_writel(hsotg, hr->hcfg, HCFG);
5457 dwc2_writel(hsotg, hr->hflbaddr, HFLBADDR);
5458 dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5459
5460 for (i = 0; i < hsotg->params.host_channels; ++i) {
5461 dwc2_writel(hsotg, hr->hcchar[i], HCCHAR(i));
5462 dwc2_writel(hsotg, hr->hcsplt[i], HCSPLT(i));
5463 dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5464 dwc2_writel(hsotg, hr->hctsiz[i], HCTSIZ(i));
5465 dwc2_writel(hsotg, hr->hcidma[i], HCDMA(i));
5466 dwc2_writel(hsotg, hr->hcidmab[i], HCDMAB(i));
5467 }
5468
5469 dwc2_writel(hsotg, hr->hprt0, HPRT0);
5470 dwc2_writel(hsotg, hr->hfir, HFIR);
5471 dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5472 hsotg->frame_number = 0;
5473
5474 return 0;
5475}
5476
5477/**
5478 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5479 *
5480 * @hsotg: Programming view of the DWC_otg controller
5481 */
5482int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5483{
5484 unsigned long flags;
5485 int ret = 0;
5486 u32 hprt0;
5487 u32 pcgcctl;
5488 u32 gusbcfg;
5489 u32 gpwrdn;
5490
5491 dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5492 ret = dwc2_backup_global_registers(hsotg);
5493 if (ret) {
5494 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5495 __func__);
5496 return ret;
5497 }
5498 ret = dwc2_backup_host_registers(hsotg);
5499 if (ret) {
5500 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5501 __func__);
5502 return ret;
5503 }
5504
5505 /* Enter USB Suspend Mode */
5506 hprt0 = dwc2_readl(hsotg, HPRT0);
5507 hprt0 |= HPRT0_SUSP;
5508 hprt0 &= ~HPRT0_ENA;
5509 dwc2_writel(hsotg, hprt0, HPRT0);
5510
5511 /* Wait for the HPRT0.PrtSusp register field to be set */
5512 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000))
5513 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5514
5515 /*
5516 * We need to disable interrupts to prevent servicing of any IRQ
5517 * during going to hibernation
5518 */
5519 spin_lock_irqsave(&hsotg->lock, flags);
5520 hsotg->lx_state = DWC2_L2;
5521
5522 gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5523 if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5524 /* ULPI interface */
5525 udelay(10);
5526 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5527 gpwrdn |= GPWRDN_ULPI_LATCH_EN_DURING_HIB_ENTRY;
5528 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5529 udelay(10);
5530 /* Suspend the Phy Clock */
5531 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5532 pcgcctl |= PCGCTL_STOPPCLK;
5533 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5534 udelay(10);
5535
5536 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5537 gpwrdn |= GPWRDN_PMUACTV;
5538 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5539 udelay(10);
5540 } else {
5541 /* UTMI+ Interface */
5542 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5543 gpwrdn |= GPWRDN_PMUACTV;
5544 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5545 udelay(10);
5546
5547 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5548 pcgcctl |= PCGCTL_STOPPCLK;
5549 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5550 udelay(10);
5551 }
5552
5553 /* Enable interrupts from wake up logic */
5554 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5555 gpwrdn |= GPWRDN_PMUINTSEL;
5556 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5557 udelay(10);
5558
5559 /* Unmask host mode interrupts in GPWRDN */
5560 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5561 gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5562 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5563 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5564 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5565 udelay(10);
5566
5567 /* Enable Power Down Clamp */
5568 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5569 gpwrdn |= GPWRDN_PWRDNCLMP;
5570 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5571 udelay(10);
5572
5573 /* Switch off VDD */
5574 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5575 gpwrdn |= GPWRDN_PWRDNSWTCH;
5576 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5577
5578 hsotg->hibernated = 1;
5579 hsotg->bus_suspended = 1;
5580 dev_dbg(hsotg->dev, "Host hibernation completed\n");
5581 spin_unlock_irqrestore(&hsotg->lock, flags);
5582 return ret;
5583}
5584
5585/*
5586 * dwc2_host_exit_hibernation()
5587 *
5588 * @hsotg: Programming view of the DWC_otg controller
5589 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5590 * @param reset: indicates whether resume is initiated by Reset.
5591 *
5592 * Return: non-zero if failed to enter to hibernation.
5593 *
5594 * This function is for exiting from Host mode hibernation by
5595 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5596 */
5597int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5598 int reset)
5599{
5600 u32 gpwrdn;
5601 u32 hprt0;
5602 int ret = 0;
5603 struct dwc2_gregs_backup *gr;
5604 struct dwc2_hregs_backup *hr;
5605
5606 gr = &hsotg->gr_backup;
5607 hr = &hsotg->hr_backup;
5608
5609 dev_dbg(hsotg->dev,
5610 "%s: called with rem_wakeup = %d reset = %d\n",
5611 __func__, rem_wakeup, reset);
5612
5613 dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5614 hsotg->hibernated = 0;
5615
5616 /*
5617 * This step is not described in functional spec but if not wait for
5618 * this delay, mismatch interrupts occurred because just after restore
5619 * core is in Device mode(gintsts.curmode == 0)
5620 */
5621 mdelay(100);
5622
5623 /* Clear all pending interupts */
5624 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5625
5626 /* De-assert Restore */
5627 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5628 gpwrdn &= ~GPWRDN_RESTORE;
5629 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5630 udelay(10);
5631
5632 /* Restore GUSBCFG, HCFG */
5633 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5634 dwc2_writel(hsotg, hr->hcfg, HCFG);
5635
5636 /* Reset ULPI latch */
5637 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5638 gpwrdn &= ~GPWRDN_ULPI_LATCH_EN_DURING_HIB_ENTRY;
5639 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5640
5641 /* De-assert Wakeup Logic */
5642 if (!(rem_wakeup && hsotg->hw_params.snpsid >= DWC2_CORE_REV_4_30a)) {
5643 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5644 gpwrdn &= ~GPWRDN_PMUACTV;
5645 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5646 udelay(10);
5647 }
5648
5649 hprt0 = hr->hprt0;
5650 hprt0 |= HPRT0_PWR;
5651 hprt0 &= ~HPRT0_ENA;
5652 hprt0 &= ~HPRT0_SUSP;
5653 dwc2_writel(hsotg, hprt0, HPRT0);
5654
5655 hprt0 = hr->hprt0;
5656 hprt0 |= HPRT0_PWR;
5657 hprt0 &= ~HPRT0_ENA;
5658 hprt0 &= ~HPRT0_SUSP;
5659
5660 if (reset) {
5661 hprt0 |= HPRT0_RST;
5662 dwc2_writel(hsotg, hprt0, HPRT0);
5663
5664 /* Wait for Resume time and then program HPRT again */
5665 mdelay(60);
5666 hprt0 &= ~HPRT0_RST;
5667 dwc2_writel(hsotg, hprt0, HPRT0);
5668 } else {
5669 hprt0 |= HPRT0_RES;
5670 dwc2_writel(hsotg, hprt0, HPRT0);
5671
5672 /* De-assert Wakeup Logic */
5673 if ((rem_wakeup && hsotg->hw_params.snpsid >= DWC2_CORE_REV_4_30a)) {
5674 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5675 gpwrdn &= ~GPWRDN_PMUACTV;
5676 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5677 udelay(10);
5678 }
5679 /* Wait for Resume time and then program HPRT again */
5680 mdelay(100);
5681 hprt0 &= ~HPRT0_RES;
5682 dwc2_writel(hsotg, hprt0, HPRT0);
5683 }
5684 /* Clear all interrupt status */
5685 hprt0 = dwc2_readl(hsotg, HPRT0);
5686 hprt0 |= HPRT0_CONNDET;
5687 hprt0 |= HPRT0_ENACHG;
5688 hprt0 &= ~HPRT0_ENA;
5689 dwc2_writel(hsotg, hprt0, HPRT0);
5690
5691 hprt0 = dwc2_readl(hsotg, HPRT0);
5692
5693 /* Clear all pending interupts */
5694 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5695
5696 /* Restore global registers */
5697 ret = dwc2_restore_global_registers(hsotg);
5698 if (ret) {
5699 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5700 __func__);
5701 return ret;
5702 }
5703
5704 /* Restore host registers */
5705 ret = dwc2_restore_host_registers(hsotg);
5706 if (ret) {
5707 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5708 __func__);
5709 return ret;
5710 }
5711
5712 if (rem_wakeup) {
5713 dwc2_hcd_rem_wakeup(hsotg);
5714 /*
5715 * Change "port_connect_status_change" flag to re-enumerate,
5716 * because after exit from hibernation port connection status
5717 * is not detected.
5718 */
5719 hsotg->flags.b.port_connect_status_change = 1;
5720 }
5721
5722 hsotg->hibernated = 0;
5723 hsotg->bus_suspended = 0;
5724 hsotg->lx_state = DWC2_L0;
5725 dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5726 return ret;
5727}
5728
5729bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5730{
5731 struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5732
5733 /* If the controller isn't allowed to wakeup then we can power off. */
5734 if (!device_may_wakeup(dwc2->dev))
5735 return true;
5736
5737 /*
5738 * We don't want to power off the PHY if something under the
5739 * root hub has wakeup enabled.
5740 */
5741 if (usb_wakeup_enabled_descendants(root_hub))
5742 return false;
5743
5744 /* No reason to keep the PHY powered, so allow poweroff */
5745 return true;
5746}
5747
5748/**
5749 * dwc2_host_enter_partial_power_down() - Put controller in partial
5750 * power down.
5751 *
5752 * @hsotg: Programming view of the DWC_otg controller
5753 *
5754 * Return: non-zero if failed to enter host partial power down.
5755 *
5756 * This function is for entering Host mode partial power down.
5757 */
5758int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5759{
5760 u32 pcgcctl;
5761 u32 hprt0;
5762 int ret = 0;
5763
5764 dev_dbg(hsotg->dev, "Entering host partial power down started.\n");
5765
5766 /* Put this port in suspend mode. */
5767 hprt0 = dwc2_read_hprt0(hsotg);
5768 hprt0 |= HPRT0_SUSP;
5769 dwc2_writel(hsotg, hprt0, HPRT0);
5770 udelay(5);
5771
5772 /* Wait for the HPRT0.PrtSusp register field to be set */
5773 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5774 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5775
5776 /* Backup all registers */
5777 ret = dwc2_backup_global_registers(hsotg);
5778 if (ret) {
5779 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5780 __func__);
5781 return ret;
5782 }
5783
5784 ret = dwc2_backup_host_registers(hsotg);
5785 if (ret) {
5786 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5787 __func__);
5788 return ret;
5789 }
5790
5791 /*
5792 * Clear any pending interrupts since dwc2 will not be able to
5793 * clear them after entering partial_power_down.
5794 */
5795 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5796
5797 /* Put the controller in low power state */
5798 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5799
5800 pcgcctl |= PCGCTL_PWRCLMP;
5801 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5802 udelay(5);
5803
5804 pcgcctl |= PCGCTL_RSTPDWNMODULE;
5805 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5806 udelay(5);
5807
5808 pcgcctl |= PCGCTL_STOPPCLK;
5809 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5810
5811 /* Set in_ppd flag to 1 as here core enters suspend. */
5812 hsotg->in_ppd = 1;
5813 hsotg->lx_state = DWC2_L2;
5814 hsotg->bus_suspended = true;
5815
5816 dev_dbg(hsotg->dev, "Entering host partial power down completed.\n");
5817
5818 return ret;
5819}
5820
5821/*
5822 * dwc2_host_exit_partial_power_down() - Exit controller from host partial
5823 * power down.
5824 *
5825 * @hsotg: Programming view of the DWC_otg controller
5826 * @rem_wakeup: indicates whether resume is initiated by Reset.
5827 * @restore: indicates whether need to restore the registers or not.
5828 *
5829 * Return: non-zero if failed to exit host partial power down.
5830 *
5831 * This function is for exiting from Host mode partial power down.
5832 */
5833int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5834 int rem_wakeup, bool restore)
5835{
5836 u32 pcgcctl;
5837 int ret = 0;
5838 u32 hprt0;
5839
5840 dev_dbg(hsotg->dev, "Exiting host partial power down started.\n");
5841
5842 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5843 pcgcctl &= ~PCGCTL_STOPPCLK;
5844 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5845 udelay(5);
5846
5847 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5848 pcgcctl &= ~PCGCTL_PWRCLMP;
5849 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5850 udelay(5);
5851
5852 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5853 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5854 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5855
5856 udelay(100);
5857 if (restore) {
5858 ret = dwc2_restore_global_registers(hsotg);
5859 if (ret) {
5860 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5861 __func__);
5862 return ret;
5863 }
5864
5865 ret = dwc2_restore_host_registers(hsotg);
5866 if (ret) {
5867 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5868 __func__);
5869 return ret;
5870 }
5871 }
5872
5873 /* Drive resume signaling and exit suspend mode on the port. */
5874 hprt0 = dwc2_read_hprt0(hsotg);
5875 hprt0 |= HPRT0_RES;
5876 hprt0 &= ~HPRT0_SUSP;
5877 dwc2_writel(hsotg, hprt0, HPRT0);
5878 udelay(5);
5879
5880 if (!rem_wakeup) {
5881 /* Stop driveing resume signaling on the port. */
5882 hprt0 = dwc2_read_hprt0(hsotg);
5883 hprt0 &= ~HPRT0_RES;
5884 dwc2_writel(hsotg, hprt0, HPRT0);
5885
5886 hsotg->bus_suspended = false;
5887 } else {
5888 /* Turn on the port power bit. */
5889 hprt0 = dwc2_read_hprt0(hsotg);
5890 hprt0 |= HPRT0_PWR;
5891 dwc2_writel(hsotg, hprt0, HPRT0);
5892
5893 /* Connect hcd. */
5894 dwc2_hcd_connect(hsotg);
5895
5896 mod_timer(&hsotg->wkp_timer,
5897 jiffies + msecs_to_jiffies(71));
5898 }
5899
5900 /* Set lx_state to and in_ppd to 0 as here core exits from suspend. */
5901 hsotg->in_ppd = 0;
5902 hsotg->lx_state = DWC2_L0;
5903
5904 dev_dbg(hsotg->dev, "Exiting host partial power down completed.\n");
5905 return ret;
5906}
5907
5908/**
5909 * dwc2_host_enter_clock_gating() - Put controller in clock gating.
5910 *
5911 * @hsotg: Programming view of the DWC_otg controller
5912 *
5913 * This function is for entering Host mode clock gating.
5914 */
5915void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg)
5916{
5917 u32 hprt0;
5918 u32 pcgctl;
5919
5920 dev_dbg(hsotg->dev, "Entering host clock gating.\n");
5921
5922 /* Put this port in suspend mode. */
5923 hprt0 = dwc2_read_hprt0(hsotg);
5924 hprt0 |= HPRT0_SUSP;
5925 dwc2_writel(hsotg, hprt0, HPRT0);
5926
5927 /* Set the Phy Clock bit as suspend is received. */
5928 pcgctl = dwc2_readl(hsotg, PCGCTL);
5929 pcgctl |= PCGCTL_STOPPCLK;
5930 dwc2_writel(hsotg, pcgctl, PCGCTL);
5931 udelay(5);
5932
5933 /* Set the Gate hclk as suspend is received. */
5934 pcgctl = dwc2_readl(hsotg, PCGCTL);
5935 pcgctl |= PCGCTL_GATEHCLK;
5936 dwc2_writel(hsotg, pcgctl, PCGCTL);
5937 udelay(5);
5938
5939 hsotg->bus_suspended = true;
5940 hsotg->lx_state = DWC2_L2;
5941}
5942
5943/**
5944 * dwc2_host_exit_clock_gating() - Exit controller from clock gating.
5945 *
5946 * @hsotg: Programming view of the DWC_otg controller
5947 * @rem_wakeup: indicates whether resume is initiated by remote wakeup
5948 *
5949 * This function is for exiting Host mode clock gating.
5950 */
5951void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5952{
5953 u32 hprt0;
5954 u32 pcgctl;
5955
5956 dev_dbg(hsotg->dev, "Exiting host clock gating.\n");
5957
5958 /* Clear the Gate hclk. */
5959 pcgctl = dwc2_readl(hsotg, PCGCTL);
5960 pcgctl &= ~PCGCTL_GATEHCLK;
5961 dwc2_writel(hsotg, pcgctl, PCGCTL);
5962 udelay(5);
5963
5964 /* Phy Clock bit. */
5965 pcgctl = dwc2_readl(hsotg, PCGCTL);
5966 pcgctl &= ~PCGCTL_STOPPCLK;
5967 dwc2_writel(hsotg, pcgctl, PCGCTL);
5968 udelay(5);
5969
5970 /* Drive resume signaling and exit suspend mode on the port. */
5971 hprt0 = dwc2_read_hprt0(hsotg);
5972 hprt0 |= HPRT0_RES;
5973 hprt0 &= ~HPRT0_SUSP;
5974 dwc2_writel(hsotg, hprt0, HPRT0);
5975 udelay(5);
5976
5977 if (!rem_wakeup) {
5978 /* In case of port resume need to wait for 40 ms */
5979 msleep(USB_RESUME_TIMEOUT);
5980
5981 /* Stop driveing resume signaling on the port. */
5982 hprt0 = dwc2_read_hprt0(hsotg);
5983 hprt0 &= ~HPRT0_RES;
5984 dwc2_writel(hsotg, hprt0, HPRT0);
5985
5986 hsotg->bus_suspended = false;
5987 hsotg->lx_state = DWC2_L0;
5988 } else {
5989 mod_timer(&hsotg->wkp_timer,
5990 jiffies + msecs_to_jiffies(71));
5991 }
5992}