Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1// SPDX-License-Identifier: LGPL-2.1
   2#define _GNU_SOURCE
   3#include <assert.h>
   4#include <pthread.h>
   5#include <sched.h>
   6#include <stdint.h>
   7#include <stdio.h>
   8#include <stdlib.h>
   9#include <string.h>
  10#include <syscall.h>
  11#include <unistd.h>
  12#include <poll.h>
  13#include <sys/types.h>
  14#include <signal.h>
  15#include <errno.h>
  16#include <stddef.h>
  17
  18static inline pid_t rseq_gettid(void)
  19{
  20	return syscall(__NR_gettid);
  21}
  22
  23#define NR_INJECT	9
  24static int loop_cnt[NR_INJECT + 1];
  25
  26static int loop_cnt_1 asm("asm_loop_cnt_1") __attribute__((used));
  27static int loop_cnt_2 asm("asm_loop_cnt_2") __attribute__((used));
  28static int loop_cnt_3 asm("asm_loop_cnt_3") __attribute__((used));
  29static int loop_cnt_4 asm("asm_loop_cnt_4") __attribute__((used));
  30static int loop_cnt_5 asm("asm_loop_cnt_5") __attribute__((used));
  31static int loop_cnt_6 asm("asm_loop_cnt_6") __attribute__((used));
  32
  33static int opt_modulo, verbose;
  34
  35static int opt_yield, opt_signal, opt_sleep,
  36		opt_disable_rseq, opt_threads = 200,
  37		opt_disable_mod = 0, opt_test = 's', opt_mb = 0;
  38
  39#ifndef RSEQ_SKIP_FASTPATH
  40static long long opt_reps = 5000;
  41#else
  42static long long opt_reps = 100;
  43#endif
  44
  45static __thread __attribute__((tls_model("initial-exec")))
  46unsigned int signals_delivered;
  47
  48#ifndef BENCHMARK
  49
  50static __thread __attribute__((tls_model("initial-exec"), unused))
  51unsigned int yield_mod_cnt, nr_abort;
  52
  53#define printf_verbose(fmt, ...)			\
  54	do {						\
  55		if (verbose)				\
  56			printf(fmt, ## __VA_ARGS__);	\
  57	} while (0)
  58
  59#ifdef __i386__
  60
  61#define INJECT_ASM_REG	"eax"
  62
  63#define RSEQ_INJECT_CLOBBER \
  64	, INJECT_ASM_REG
  65
  66#define RSEQ_INJECT_ASM(n) \
  67	"mov asm_loop_cnt_" #n ", %%" INJECT_ASM_REG "\n\t" \
  68	"test %%" INJECT_ASM_REG ",%%" INJECT_ASM_REG "\n\t" \
  69	"jz 333f\n\t" \
  70	"222:\n\t" \
  71	"dec %%" INJECT_ASM_REG "\n\t" \
  72	"jnz 222b\n\t" \
  73	"333:\n\t"
  74
  75#elif defined(__x86_64__)
  76
  77#define INJECT_ASM_REG_P	"rax"
  78#define INJECT_ASM_REG		"eax"
  79
  80#define RSEQ_INJECT_CLOBBER \
  81	, INJECT_ASM_REG_P \
  82	, INJECT_ASM_REG
  83
  84#define RSEQ_INJECT_ASM(n) \
  85	"lea asm_loop_cnt_" #n "(%%rip), %%" INJECT_ASM_REG_P "\n\t" \
  86	"mov (%%" INJECT_ASM_REG_P "), %%" INJECT_ASM_REG "\n\t" \
  87	"test %%" INJECT_ASM_REG ",%%" INJECT_ASM_REG "\n\t" \
  88	"jz 333f\n\t" \
  89	"222:\n\t" \
  90	"dec %%" INJECT_ASM_REG "\n\t" \
  91	"jnz 222b\n\t" \
  92	"333:\n\t"
  93
  94#elif defined(__s390__)
  95
  96#define RSEQ_INJECT_INPUT \
  97	, [loop_cnt_1]"m"(loop_cnt[1]) \
  98	, [loop_cnt_2]"m"(loop_cnt[2]) \
  99	, [loop_cnt_3]"m"(loop_cnt[3]) \
 100	, [loop_cnt_4]"m"(loop_cnt[4]) \
 101	, [loop_cnt_5]"m"(loop_cnt[5]) \
 102	, [loop_cnt_6]"m"(loop_cnt[6])
 103
 104#define INJECT_ASM_REG	"r12"
 105
 106#define RSEQ_INJECT_CLOBBER \
 107	, INJECT_ASM_REG
 108
 109#define RSEQ_INJECT_ASM(n) \
 110	"l %%" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
 111	"ltr %%" INJECT_ASM_REG ", %%" INJECT_ASM_REG "\n\t" \
 112	"je 333f\n\t" \
 113	"222:\n\t" \
 114	"ahi %%" INJECT_ASM_REG ", -1\n\t" \
 115	"jnz 222b\n\t" \
 116	"333:\n\t"
 117
 118#elif defined(__ARMEL__)
 119
 120#define RSEQ_INJECT_INPUT \
 121	, [loop_cnt_1]"m"(loop_cnt[1]) \
 122	, [loop_cnt_2]"m"(loop_cnt[2]) \
 123	, [loop_cnt_3]"m"(loop_cnt[3]) \
 124	, [loop_cnt_4]"m"(loop_cnt[4]) \
 125	, [loop_cnt_5]"m"(loop_cnt[5]) \
 126	, [loop_cnt_6]"m"(loop_cnt[6])
 127
 128#define INJECT_ASM_REG	"r4"
 129
 130#define RSEQ_INJECT_CLOBBER \
 131	, INJECT_ASM_REG
 132
 133#define RSEQ_INJECT_ASM(n) \
 134	"ldr " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
 135	"cmp " INJECT_ASM_REG ", #0\n\t" \
 136	"beq 333f\n\t" \
 137	"222:\n\t" \
 138	"subs " INJECT_ASM_REG ", #1\n\t" \
 139	"bne 222b\n\t" \
 140	"333:\n\t"
 141
 142#elif defined(__AARCH64EL__)
 143
 144#define RSEQ_INJECT_INPUT \
 145	, [loop_cnt_1] "Qo" (loop_cnt[1]) \
 146	, [loop_cnt_2] "Qo" (loop_cnt[2]) \
 147	, [loop_cnt_3] "Qo" (loop_cnt[3]) \
 148	, [loop_cnt_4] "Qo" (loop_cnt[4]) \
 149	, [loop_cnt_5] "Qo" (loop_cnt[5]) \
 150	, [loop_cnt_6] "Qo" (loop_cnt[6])
 151
 152#define INJECT_ASM_REG	RSEQ_ASM_TMP_REG32
 153
 154#define RSEQ_INJECT_ASM(n) \
 155	"	ldr	" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n"	\
 156	"	cbz	" INJECT_ASM_REG ", 333f\n"			\
 157	"222:\n"							\
 158	"	sub	" INJECT_ASM_REG ", " INJECT_ASM_REG ", #1\n"	\
 159	"	cbnz	" INJECT_ASM_REG ", 222b\n"			\
 160	"333:\n"
 161
 162#elif __PPC__
 163
 164#define RSEQ_INJECT_INPUT \
 165	, [loop_cnt_1]"m"(loop_cnt[1]) \
 166	, [loop_cnt_2]"m"(loop_cnt[2]) \
 167	, [loop_cnt_3]"m"(loop_cnt[3]) \
 168	, [loop_cnt_4]"m"(loop_cnt[4]) \
 169	, [loop_cnt_5]"m"(loop_cnt[5]) \
 170	, [loop_cnt_6]"m"(loop_cnt[6])
 171
 172#define INJECT_ASM_REG	"r18"
 173
 174#define RSEQ_INJECT_CLOBBER \
 175	, INJECT_ASM_REG
 176
 177#define RSEQ_INJECT_ASM(n) \
 178	"lwz %%" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
 179	"cmpwi %%" INJECT_ASM_REG ", 0\n\t" \
 180	"beq 333f\n\t" \
 181	"222:\n\t" \
 182	"subic. %%" INJECT_ASM_REG ", %%" INJECT_ASM_REG ", 1\n\t" \
 183	"bne 222b\n\t" \
 184	"333:\n\t"
 185
 186#elif defined(__mips__)
 187
 188#define RSEQ_INJECT_INPUT \
 189	, [loop_cnt_1]"m"(loop_cnt[1]) \
 190	, [loop_cnt_2]"m"(loop_cnt[2]) \
 191	, [loop_cnt_3]"m"(loop_cnt[3]) \
 192	, [loop_cnt_4]"m"(loop_cnt[4]) \
 193	, [loop_cnt_5]"m"(loop_cnt[5]) \
 194	, [loop_cnt_6]"m"(loop_cnt[6])
 195
 196#define INJECT_ASM_REG	"$5"
 197
 198#define RSEQ_INJECT_CLOBBER \
 199	, INJECT_ASM_REG
 200
 201#define RSEQ_INJECT_ASM(n) \
 202	"lw " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
 203	"beqz " INJECT_ASM_REG ", 333f\n\t" \
 204	"222:\n\t" \
 205	"addiu " INJECT_ASM_REG ", -1\n\t" \
 206	"bnez " INJECT_ASM_REG ", 222b\n\t" \
 207	"333:\n\t"
 208
 209#else
 210#error unsupported target
 211#endif
 212
 213#define RSEQ_INJECT_FAILED \
 214	nr_abort++;
 215
 216#define RSEQ_INJECT_C(n) \
 217{ \
 218	int loc_i, loc_nr_loops = loop_cnt[n]; \
 219	\
 220	for (loc_i = 0; loc_i < loc_nr_loops; loc_i++) { \
 221		rseq_barrier(); \
 222	} \
 223	if (loc_nr_loops == -1 && opt_modulo) { \
 224		if (yield_mod_cnt == opt_modulo - 1) { \
 225			if (opt_sleep > 0) \
 226				poll(NULL, 0, opt_sleep); \
 227			if (opt_yield) \
 228				sched_yield(); \
 229			if (opt_signal) \
 230				raise(SIGUSR1); \
 231			yield_mod_cnt = 0; \
 232		} else { \
 233			yield_mod_cnt++; \
 234		} \
 235	} \
 236}
 237
 238#else
 239
 240#define printf_verbose(fmt, ...)
 241
 242#endif /* BENCHMARK */
 243
 244#include "rseq.h"
 245
 246struct percpu_lock_entry {
 247	intptr_t v;
 248} __attribute__((aligned(128)));
 249
 250struct percpu_lock {
 251	struct percpu_lock_entry c[CPU_SETSIZE];
 252};
 253
 254struct test_data_entry {
 255	intptr_t count;
 256} __attribute__((aligned(128)));
 257
 258struct spinlock_test_data {
 259	struct percpu_lock lock;
 260	struct test_data_entry c[CPU_SETSIZE];
 261};
 262
 263struct spinlock_thread_test_data {
 264	struct spinlock_test_data *data;
 265	long long reps;
 266	int reg;
 267};
 268
 269struct inc_test_data {
 270	struct test_data_entry c[CPU_SETSIZE];
 271};
 272
 273struct inc_thread_test_data {
 274	struct inc_test_data *data;
 275	long long reps;
 276	int reg;
 277};
 278
 279struct percpu_list_node {
 280	intptr_t data;
 281	struct percpu_list_node *next;
 282};
 283
 284struct percpu_list_entry {
 285	struct percpu_list_node *head;
 286} __attribute__((aligned(128)));
 287
 288struct percpu_list {
 289	struct percpu_list_entry c[CPU_SETSIZE];
 290};
 291
 292#define BUFFER_ITEM_PER_CPU	100
 293
 294struct percpu_buffer_node {
 295	intptr_t data;
 296};
 297
 298struct percpu_buffer_entry {
 299	intptr_t offset;
 300	intptr_t buflen;
 301	struct percpu_buffer_node **array;
 302} __attribute__((aligned(128)));
 303
 304struct percpu_buffer {
 305	struct percpu_buffer_entry c[CPU_SETSIZE];
 306};
 307
 308#define MEMCPY_BUFFER_ITEM_PER_CPU	100
 309
 310struct percpu_memcpy_buffer_node {
 311	intptr_t data1;
 312	uint64_t data2;
 313};
 314
 315struct percpu_memcpy_buffer_entry {
 316	intptr_t offset;
 317	intptr_t buflen;
 318	struct percpu_memcpy_buffer_node *array;
 319} __attribute__((aligned(128)));
 320
 321struct percpu_memcpy_buffer {
 322	struct percpu_memcpy_buffer_entry c[CPU_SETSIZE];
 323};
 324
 325/* A simple percpu spinlock. Grabs lock on current cpu. */
 326static int rseq_this_cpu_lock(struct percpu_lock *lock)
 327{
 328	int cpu;
 329
 330	for (;;) {
 331		int ret;
 332
 333		cpu = rseq_cpu_start();
 334		ret = rseq_cmpeqv_storev(&lock->c[cpu].v,
 335					 0, 1, cpu);
 336		if (rseq_likely(!ret))
 337			break;
 338		/* Retry if comparison fails or rseq aborts. */
 339	}
 340	/*
 341	 * Acquire semantic when taking lock after control dependency.
 342	 * Matches rseq_smp_store_release().
 343	 */
 344	rseq_smp_acquire__after_ctrl_dep();
 345	return cpu;
 346}
 347
 348static void rseq_percpu_unlock(struct percpu_lock *lock, int cpu)
 349{
 350	assert(lock->c[cpu].v == 1);
 351	/*
 352	 * Release lock, with release semantic. Matches
 353	 * rseq_smp_acquire__after_ctrl_dep().
 354	 */
 355	rseq_smp_store_release(&lock->c[cpu].v, 0);
 356}
 357
 358void *test_percpu_spinlock_thread(void *arg)
 359{
 360	struct spinlock_thread_test_data *thread_data = arg;
 361	struct spinlock_test_data *data = thread_data->data;
 362	long long i, reps;
 363
 364	if (!opt_disable_rseq && thread_data->reg &&
 365	    rseq_register_current_thread())
 366		abort();
 367	reps = thread_data->reps;
 368	for (i = 0; i < reps; i++) {
 369		int cpu = rseq_cpu_start();
 370
 371		cpu = rseq_this_cpu_lock(&data->lock);
 372		data->c[cpu].count++;
 373		rseq_percpu_unlock(&data->lock, cpu);
 374#ifndef BENCHMARK
 375		if (i != 0 && !(i % (reps / 10)))
 376			printf_verbose("tid %d: count %lld\n",
 377				       (int) rseq_gettid(), i);
 378#endif
 379	}
 380	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
 381		       (int) rseq_gettid(), nr_abort, signals_delivered);
 382	if (!opt_disable_rseq && thread_data->reg &&
 383	    rseq_unregister_current_thread())
 384		abort();
 385	return NULL;
 386}
 387
 388/*
 389 * A simple test which implements a sharded counter using a per-cpu
 390 * lock.  Obviously real applications might prefer to simply use a
 391 * per-cpu increment; however, this is reasonable for a test and the
 392 * lock can be extended to synchronize more complicated operations.
 393 */
 394void test_percpu_spinlock(void)
 395{
 396	const int num_threads = opt_threads;
 397	int i, ret;
 398	uint64_t sum;
 399	pthread_t test_threads[num_threads];
 400	struct spinlock_test_data data;
 401	struct spinlock_thread_test_data thread_data[num_threads];
 402
 403	memset(&data, 0, sizeof(data));
 404	for (i = 0; i < num_threads; i++) {
 405		thread_data[i].reps = opt_reps;
 406		if (opt_disable_mod <= 0 || (i % opt_disable_mod))
 407			thread_data[i].reg = 1;
 408		else
 409			thread_data[i].reg = 0;
 410		thread_data[i].data = &data;
 411		ret = pthread_create(&test_threads[i], NULL,
 412				     test_percpu_spinlock_thread,
 413				     &thread_data[i]);
 414		if (ret) {
 415			errno = ret;
 416			perror("pthread_create");
 417			abort();
 418		}
 419	}
 420
 421	for (i = 0; i < num_threads; i++) {
 422		ret = pthread_join(test_threads[i], NULL);
 423		if (ret) {
 424			errno = ret;
 425			perror("pthread_join");
 426			abort();
 427		}
 428	}
 429
 430	sum = 0;
 431	for (i = 0; i < CPU_SETSIZE; i++)
 432		sum += data.c[i].count;
 433
 434	assert(sum == (uint64_t)opt_reps * num_threads);
 435}
 436
 437void *test_percpu_inc_thread(void *arg)
 438{
 439	struct inc_thread_test_data *thread_data = arg;
 440	struct inc_test_data *data = thread_data->data;
 441	long long i, reps;
 442
 443	if (!opt_disable_rseq && thread_data->reg &&
 444	    rseq_register_current_thread())
 445		abort();
 446	reps = thread_data->reps;
 447	for (i = 0; i < reps; i++) {
 448		int ret;
 449
 450		do {
 451			int cpu;
 452
 453			cpu = rseq_cpu_start();
 454			ret = rseq_addv(&data->c[cpu].count, 1, cpu);
 455		} while (rseq_unlikely(ret));
 456#ifndef BENCHMARK
 457		if (i != 0 && !(i % (reps / 10)))
 458			printf_verbose("tid %d: count %lld\n",
 459				       (int) rseq_gettid(), i);
 460#endif
 461	}
 462	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
 463		       (int) rseq_gettid(), nr_abort, signals_delivered);
 464	if (!opt_disable_rseq && thread_data->reg &&
 465	    rseq_unregister_current_thread())
 466		abort();
 467	return NULL;
 468}
 469
 470void test_percpu_inc(void)
 471{
 472	const int num_threads = opt_threads;
 473	int i, ret;
 474	uint64_t sum;
 475	pthread_t test_threads[num_threads];
 476	struct inc_test_data data;
 477	struct inc_thread_test_data thread_data[num_threads];
 478
 479	memset(&data, 0, sizeof(data));
 480	for (i = 0; i < num_threads; i++) {
 481		thread_data[i].reps = opt_reps;
 482		if (opt_disable_mod <= 0 || (i % opt_disable_mod))
 483			thread_data[i].reg = 1;
 484		else
 485			thread_data[i].reg = 0;
 486		thread_data[i].data = &data;
 487		ret = pthread_create(&test_threads[i], NULL,
 488				     test_percpu_inc_thread,
 489				     &thread_data[i]);
 490		if (ret) {
 491			errno = ret;
 492			perror("pthread_create");
 493			abort();
 494		}
 495	}
 496
 497	for (i = 0; i < num_threads; i++) {
 498		ret = pthread_join(test_threads[i], NULL);
 499		if (ret) {
 500			errno = ret;
 501			perror("pthread_join");
 502			abort();
 503		}
 504	}
 505
 506	sum = 0;
 507	for (i = 0; i < CPU_SETSIZE; i++)
 508		sum += data.c[i].count;
 509
 510	assert(sum == (uint64_t)opt_reps * num_threads);
 511}
 512
 513void this_cpu_list_push(struct percpu_list *list,
 514			struct percpu_list_node *node,
 515			int *_cpu)
 516{
 517	int cpu;
 518
 519	for (;;) {
 520		intptr_t *targetptr, newval, expect;
 521		int ret;
 522
 523		cpu = rseq_cpu_start();
 524		/* Load list->c[cpu].head with single-copy atomicity. */
 525		expect = (intptr_t)RSEQ_READ_ONCE(list->c[cpu].head);
 526		newval = (intptr_t)node;
 527		targetptr = (intptr_t *)&list->c[cpu].head;
 528		node->next = (struct percpu_list_node *)expect;
 529		ret = rseq_cmpeqv_storev(targetptr, expect, newval, cpu);
 530		if (rseq_likely(!ret))
 531			break;
 532		/* Retry if comparison fails or rseq aborts. */
 533	}
 534	if (_cpu)
 535		*_cpu = cpu;
 536}
 537
 538/*
 539 * Unlike a traditional lock-less linked list; the availability of a
 540 * rseq primitive allows us to implement pop without concerns over
 541 * ABA-type races.
 542 */
 543struct percpu_list_node *this_cpu_list_pop(struct percpu_list *list,
 544					   int *_cpu)
 545{
 546	struct percpu_list_node *node = NULL;
 547	int cpu;
 548
 549	for (;;) {
 550		struct percpu_list_node *head;
 551		intptr_t *targetptr, expectnot, *load;
 552		off_t offset;
 553		int ret;
 554
 555		cpu = rseq_cpu_start();
 556		targetptr = (intptr_t *)&list->c[cpu].head;
 557		expectnot = (intptr_t)NULL;
 558		offset = offsetof(struct percpu_list_node, next);
 559		load = (intptr_t *)&head;
 560		ret = rseq_cmpnev_storeoffp_load(targetptr, expectnot,
 561						   offset, load, cpu);
 562		if (rseq_likely(!ret)) {
 563			node = head;
 564			break;
 565		}
 566		if (ret > 0)
 567			break;
 568		/* Retry if rseq aborts. */
 569	}
 570	if (_cpu)
 571		*_cpu = cpu;
 572	return node;
 573}
 574
 575/*
 576 * __percpu_list_pop is not safe against concurrent accesses. Should
 577 * only be used on lists that are not concurrently modified.
 578 */
 579struct percpu_list_node *__percpu_list_pop(struct percpu_list *list, int cpu)
 580{
 581	struct percpu_list_node *node;
 582
 583	node = list->c[cpu].head;
 584	if (!node)
 585		return NULL;
 586	list->c[cpu].head = node->next;
 587	return node;
 588}
 589
 590void *test_percpu_list_thread(void *arg)
 591{
 592	long long i, reps;
 593	struct percpu_list *list = (struct percpu_list *)arg;
 594
 595	if (!opt_disable_rseq && rseq_register_current_thread())
 596		abort();
 597
 598	reps = opt_reps;
 599	for (i = 0; i < reps; i++) {
 600		struct percpu_list_node *node;
 601
 602		node = this_cpu_list_pop(list, NULL);
 603		if (opt_yield)
 604			sched_yield();  /* encourage shuffling */
 605		if (node)
 606			this_cpu_list_push(list, node, NULL);
 607	}
 608
 609	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
 610		       (int) rseq_gettid(), nr_abort, signals_delivered);
 611	if (!opt_disable_rseq && rseq_unregister_current_thread())
 612		abort();
 613
 614	return NULL;
 615}
 616
 617/* Simultaneous modification to a per-cpu linked list from many threads.  */
 618void test_percpu_list(void)
 619{
 620	const int num_threads = opt_threads;
 621	int i, j, ret;
 622	uint64_t sum = 0, expected_sum = 0;
 623	struct percpu_list list;
 624	pthread_t test_threads[num_threads];
 625	cpu_set_t allowed_cpus;
 626
 627	memset(&list, 0, sizeof(list));
 628
 629	/* Generate list entries for every usable cpu. */
 630	sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
 631	for (i = 0; i < CPU_SETSIZE; i++) {
 632		if (!CPU_ISSET(i, &allowed_cpus))
 633			continue;
 634		for (j = 1; j <= 100; j++) {
 635			struct percpu_list_node *node;
 636
 637			expected_sum += j;
 638
 639			node = malloc(sizeof(*node));
 640			assert(node);
 641			node->data = j;
 642			node->next = list.c[i].head;
 643			list.c[i].head = node;
 644		}
 645	}
 646
 647	for (i = 0; i < num_threads; i++) {
 648		ret = pthread_create(&test_threads[i], NULL,
 649				     test_percpu_list_thread, &list);
 650		if (ret) {
 651			errno = ret;
 652			perror("pthread_create");
 653			abort();
 654		}
 655	}
 656
 657	for (i = 0; i < num_threads; i++) {
 658		ret = pthread_join(test_threads[i], NULL);
 659		if (ret) {
 660			errno = ret;
 661			perror("pthread_join");
 662			abort();
 663		}
 664	}
 665
 666	for (i = 0; i < CPU_SETSIZE; i++) {
 667		struct percpu_list_node *node;
 668
 669		if (!CPU_ISSET(i, &allowed_cpus))
 670			continue;
 671
 672		while ((node = __percpu_list_pop(&list, i))) {
 673			sum += node->data;
 674			free(node);
 675		}
 676	}
 677
 678	/*
 679	 * All entries should now be accounted for (unless some external
 680	 * actor is interfering with our allowed affinity while this
 681	 * test is running).
 682	 */
 683	assert(sum == expected_sum);
 684}
 685
 686bool this_cpu_buffer_push(struct percpu_buffer *buffer,
 687			  struct percpu_buffer_node *node,
 688			  int *_cpu)
 689{
 690	bool result = false;
 691	int cpu;
 692
 693	for (;;) {
 694		intptr_t *targetptr_spec, newval_spec;
 695		intptr_t *targetptr_final, newval_final;
 696		intptr_t offset;
 697		int ret;
 698
 699		cpu = rseq_cpu_start();
 700		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
 701		if (offset == buffer->c[cpu].buflen)
 702			break;
 703		newval_spec = (intptr_t)node;
 704		targetptr_spec = (intptr_t *)&buffer->c[cpu].array[offset];
 705		newval_final = offset + 1;
 706		targetptr_final = &buffer->c[cpu].offset;
 707		if (opt_mb)
 708			ret = rseq_cmpeqv_trystorev_storev_release(
 709				targetptr_final, offset, targetptr_spec,
 710				newval_spec, newval_final, cpu);
 711		else
 712			ret = rseq_cmpeqv_trystorev_storev(targetptr_final,
 713				offset, targetptr_spec, newval_spec,
 714				newval_final, cpu);
 715		if (rseq_likely(!ret)) {
 716			result = true;
 717			break;
 718		}
 719		/* Retry if comparison fails or rseq aborts. */
 720	}
 721	if (_cpu)
 722		*_cpu = cpu;
 723	return result;
 724}
 725
 726struct percpu_buffer_node *this_cpu_buffer_pop(struct percpu_buffer *buffer,
 727					       int *_cpu)
 728{
 729	struct percpu_buffer_node *head;
 730	int cpu;
 731
 732	for (;;) {
 733		intptr_t *targetptr, newval;
 734		intptr_t offset;
 735		int ret;
 736
 737		cpu = rseq_cpu_start();
 738		/* Load offset with single-copy atomicity. */
 739		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
 740		if (offset == 0) {
 741			head = NULL;
 742			break;
 743		}
 744		head = RSEQ_READ_ONCE(buffer->c[cpu].array[offset - 1]);
 745		newval = offset - 1;
 746		targetptr = (intptr_t *)&buffer->c[cpu].offset;
 747		ret = rseq_cmpeqv_cmpeqv_storev(targetptr, offset,
 748			(intptr_t *)&buffer->c[cpu].array[offset - 1],
 749			(intptr_t)head, newval, cpu);
 750		if (rseq_likely(!ret))
 751			break;
 752		/* Retry if comparison fails or rseq aborts. */
 753	}
 754	if (_cpu)
 755		*_cpu = cpu;
 756	return head;
 757}
 758
 759/*
 760 * __percpu_buffer_pop is not safe against concurrent accesses. Should
 761 * only be used on buffers that are not concurrently modified.
 762 */
 763struct percpu_buffer_node *__percpu_buffer_pop(struct percpu_buffer *buffer,
 764					       int cpu)
 765{
 766	struct percpu_buffer_node *head;
 767	intptr_t offset;
 768
 769	offset = buffer->c[cpu].offset;
 770	if (offset == 0)
 771		return NULL;
 772	head = buffer->c[cpu].array[offset - 1];
 773	buffer->c[cpu].offset = offset - 1;
 774	return head;
 775}
 776
 777void *test_percpu_buffer_thread(void *arg)
 778{
 779	long long i, reps;
 780	struct percpu_buffer *buffer = (struct percpu_buffer *)arg;
 781
 782	if (!opt_disable_rseq && rseq_register_current_thread())
 783		abort();
 784
 785	reps = opt_reps;
 786	for (i = 0; i < reps; i++) {
 787		struct percpu_buffer_node *node;
 788
 789		node = this_cpu_buffer_pop(buffer, NULL);
 790		if (opt_yield)
 791			sched_yield();  /* encourage shuffling */
 792		if (node) {
 793			if (!this_cpu_buffer_push(buffer, node, NULL)) {
 794				/* Should increase buffer size. */
 795				abort();
 796			}
 797		}
 798	}
 799
 800	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
 801		       (int) rseq_gettid(), nr_abort, signals_delivered);
 802	if (!opt_disable_rseq && rseq_unregister_current_thread())
 803		abort();
 804
 805	return NULL;
 806}
 807
 808/* Simultaneous modification to a per-cpu buffer from many threads.  */
 809void test_percpu_buffer(void)
 810{
 811	const int num_threads = opt_threads;
 812	int i, j, ret;
 813	uint64_t sum = 0, expected_sum = 0;
 814	struct percpu_buffer buffer;
 815	pthread_t test_threads[num_threads];
 816	cpu_set_t allowed_cpus;
 817
 818	memset(&buffer, 0, sizeof(buffer));
 819
 820	/* Generate list entries for every usable cpu. */
 821	sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
 822	for (i = 0; i < CPU_SETSIZE; i++) {
 823		if (!CPU_ISSET(i, &allowed_cpus))
 824			continue;
 825		/* Worse-case is every item in same CPU. */
 826		buffer.c[i].array =
 827			malloc(sizeof(*buffer.c[i].array) * CPU_SETSIZE *
 828			       BUFFER_ITEM_PER_CPU);
 829		assert(buffer.c[i].array);
 830		buffer.c[i].buflen = CPU_SETSIZE * BUFFER_ITEM_PER_CPU;
 831		for (j = 1; j <= BUFFER_ITEM_PER_CPU; j++) {
 832			struct percpu_buffer_node *node;
 833
 834			expected_sum += j;
 835
 836			/*
 837			 * We could theoretically put the word-sized
 838			 * "data" directly in the buffer. However, we
 839			 * want to model objects that would not fit
 840			 * within a single word, so allocate an object
 841			 * for each node.
 842			 */
 843			node = malloc(sizeof(*node));
 844			assert(node);
 845			node->data = j;
 846			buffer.c[i].array[j - 1] = node;
 847			buffer.c[i].offset++;
 848		}
 849	}
 850
 851	for (i = 0; i < num_threads; i++) {
 852		ret = pthread_create(&test_threads[i], NULL,
 853				     test_percpu_buffer_thread, &buffer);
 854		if (ret) {
 855			errno = ret;
 856			perror("pthread_create");
 857			abort();
 858		}
 859	}
 860
 861	for (i = 0; i < num_threads; i++) {
 862		ret = pthread_join(test_threads[i], NULL);
 863		if (ret) {
 864			errno = ret;
 865			perror("pthread_join");
 866			abort();
 867		}
 868	}
 869
 870	for (i = 0; i < CPU_SETSIZE; i++) {
 871		struct percpu_buffer_node *node;
 872
 873		if (!CPU_ISSET(i, &allowed_cpus))
 874			continue;
 875
 876		while ((node = __percpu_buffer_pop(&buffer, i))) {
 877			sum += node->data;
 878			free(node);
 879		}
 880		free(buffer.c[i].array);
 881	}
 882
 883	/*
 884	 * All entries should now be accounted for (unless some external
 885	 * actor is interfering with our allowed affinity while this
 886	 * test is running).
 887	 */
 888	assert(sum == expected_sum);
 889}
 890
 891bool this_cpu_memcpy_buffer_push(struct percpu_memcpy_buffer *buffer,
 892				 struct percpu_memcpy_buffer_node item,
 893				 int *_cpu)
 894{
 895	bool result = false;
 896	int cpu;
 897
 898	for (;;) {
 899		intptr_t *targetptr_final, newval_final, offset;
 900		char *destptr, *srcptr;
 901		size_t copylen;
 902		int ret;
 903
 904		cpu = rseq_cpu_start();
 905		/* Load offset with single-copy atomicity. */
 906		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
 907		if (offset == buffer->c[cpu].buflen)
 908			break;
 909		destptr = (char *)&buffer->c[cpu].array[offset];
 910		srcptr = (char *)&item;
 911		/* copylen must be <= 4kB. */
 912		copylen = sizeof(item);
 913		newval_final = offset + 1;
 914		targetptr_final = &buffer->c[cpu].offset;
 915		if (opt_mb)
 916			ret = rseq_cmpeqv_trymemcpy_storev_release(
 917				targetptr_final, offset,
 918				destptr, srcptr, copylen,
 919				newval_final, cpu);
 920		else
 921			ret = rseq_cmpeqv_trymemcpy_storev(targetptr_final,
 922				offset, destptr, srcptr, copylen,
 923				newval_final, cpu);
 924		if (rseq_likely(!ret)) {
 925			result = true;
 926			break;
 927		}
 928		/* Retry if comparison fails or rseq aborts. */
 929	}
 930	if (_cpu)
 931		*_cpu = cpu;
 932	return result;
 933}
 934
 935bool this_cpu_memcpy_buffer_pop(struct percpu_memcpy_buffer *buffer,
 936				struct percpu_memcpy_buffer_node *item,
 937				int *_cpu)
 938{
 939	bool result = false;
 940	int cpu;
 941
 942	for (;;) {
 943		intptr_t *targetptr_final, newval_final, offset;
 944		char *destptr, *srcptr;
 945		size_t copylen;
 946		int ret;
 947
 948		cpu = rseq_cpu_start();
 949		/* Load offset with single-copy atomicity. */
 950		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
 951		if (offset == 0)
 952			break;
 953		destptr = (char *)item;
 954		srcptr = (char *)&buffer->c[cpu].array[offset - 1];
 955		/* copylen must be <= 4kB. */
 956		copylen = sizeof(*item);
 957		newval_final = offset - 1;
 958		targetptr_final = &buffer->c[cpu].offset;
 959		ret = rseq_cmpeqv_trymemcpy_storev(targetptr_final,
 960			offset, destptr, srcptr, copylen,
 961			newval_final, cpu);
 962		if (rseq_likely(!ret)) {
 963			result = true;
 964			break;
 965		}
 966		/* Retry if comparison fails or rseq aborts. */
 967	}
 968	if (_cpu)
 969		*_cpu = cpu;
 970	return result;
 971}
 972
 973/*
 974 * __percpu_memcpy_buffer_pop is not safe against concurrent accesses. Should
 975 * only be used on buffers that are not concurrently modified.
 976 */
 977bool __percpu_memcpy_buffer_pop(struct percpu_memcpy_buffer *buffer,
 978				struct percpu_memcpy_buffer_node *item,
 979				int cpu)
 980{
 981	intptr_t offset;
 982
 983	offset = buffer->c[cpu].offset;
 984	if (offset == 0)
 985		return false;
 986	memcpy(item, &buffer->c[cpu].array[offset - 1], sizeof(*item));
 987	buffer->c[cpu].offset = offset - 1;
 988	return true;
 989}
 990
 991void *test_percpu_memcpy_buffer_thread(void *arg)
 992{
 993	long long i, reps;
 994	struct percpu_memcpy_buffer *buffer = (struct percpu_memcpy_buffer *)arg;
 995
 996	if (!opt_disable_rseq && rseq_register_current_thread())
 997		abort();
 998
 999	reps = opt_reps;
1000	for (i = 0; i < reps; i++) {
1001		struct percpu_memcpy_buffer_node item;
1002		bool result;
1003
1004		result = this_cpu_memcpy_buffer_pop(buffer, &item, NULL);
1005		if (opt_yield)
1006			sched_yield();  /* encourage shuffling */
1007		if (result) {
1008			if (!this_cpu_memcpy_buffer_push(buffer, item, NULL)) {
1009				/* Should increase buffer size. */
1010				abort();
1011			}
1012		}
1013	}
1014
1015	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
1016		       (int) rseq_gettid(), nr_abort, signals_delivered);
1017	if (!opt_disable_rseq && rseq_unregister_current_thread())
1018		abort();
1019
1020	return NULL;
1021}
1022
1023/* Simultaneous modification to a per-cpu buffer from many threads.  */
1024void test_percpu_memcpy_buffer(void)
1025{
1026	const int num_threads = opt_threads;
1027	int i, j, ret;
1028	uint64_t sum = 0, expected_sum = 0;
1029	struct percpu_memcpy_buffer buffer;
1030	pthread_t test_threads[num_threads];
1031	cpu_set_t allowed_cpus;
1032
1033	memset(&buffer, 0, sizeof(buffer));
1034
1035	/* Generate list entries for every usable cpu. */
1036	sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
1037	for (i = 0; i < CPU_SETSIZE; i++) {
1038		if (!CPU_ISSET(i, &allowed_cpus))
1039			continue;
1040		/* Worse-case is every item in same CPU. */
1041		buffer.c[i].array =
1042			malloc(sizeof(*buffer.c[i].array) * CPU_SETSIZE *
1043			       MEMCPY_BUFFER_ITEM_PER_CPU);
1044		assert(buffer.c[i].array);
1045		buffer.c[i].buflen = CPU_SETSIZE * MEMCPY_BUFFER_ITEM_PER_CPU;
1046		for (j = 1; j <= MEMCPY_BUFFER_ITEM_PER_CPU; j++) {
1047			expected_sum += 2 * j + 1;
1048
1049			/*
1050			 * We could theoretically put the word-sized
1051			 * "data" directly in the buffer. However, we
1052			 * want to model objects that would not fit
1053			 * within a single word, so allocate an object
1054			 * for each node.
1055			 */
1056			buffer.c[i].array[j - 1].data1 = j;
1057			buffer.c[i].array[j - 1].data2 = j + 1;
1058			buffer.c[i].offset++;
1059		}
1060	}
1061
1062	for (i = 0; i < num_threads; i++) {
1063		ret = pthread_create(&test_threads[i], NULL,
1064				     test_percpu_memcpy_buffer_thread,
1065				     &buffer);
1066		if (ret) {
1067			errno = ret;
1068			perror("pthread_create");
1069			abort();
1070		}
1071	}
1072
1073	for (i = 0; i < num_threads; i++) {
1074		ret = pthread_join(test_threads[i], NULL);
1075		if (ret) {
1076			errno = ret;
1077			perror("pthread_join");
1078			abort();
1079		}
1080	}
1081
1082	for (i = 0; i < CPU_SETSIZE; i++) {
1083		struct percpu_memcpy_buffer_node item;
1084
1085		if (!CPU_ISSET(i, &allowed_cpus))
1086			continue;
1087
1088		while (__percpu_memcpy_buffer_pop(&buffer, &item, i)) {
1089			sum += item.data1;
1090			sum += item.data2;
1091		}
1092		free(buffer.c[i].array);
1093	}
1094
1095	/*
1096	 * All entries should now be accounted for (unless some external
1097	 * actor is interfering with our allowed affinity while this
1098	 * test is running).
1099	 */
1100	assert(sum == expected_sum);
1101}
1102
1103static void test_signal_interrupt_handler(int signo)
1104{
1105	signals_delivered++;
1106}
1107
1108static int set_signal_handler(void)
1109{
1110	int ret = 0;
1111	struct sigaction sa;
1112	sigset_t sigset;
1113
1114	ret = sigemptyset(&sigset);
1115	if (ret < 0) {
1116		perror("sigemptyset");
1117		return ret;
1118	}
1119
1120	sa.sa_handler = test_signal_interrupt_handler;
1121	sa.sa_mask = sigset;
1122	sa.sa_flags = 0;
1123	ret = sigaction(SIGUSR1, &sa, NULL);
1124	if (ret < 0) {
1125		perror("sigaction");
1126		return ret;
1127	}
1128
1129	printf_verbose("Signal handler set for SIGUSR1\n");
1130
1131	return ret;
1132}
1133
1134static void show_usage(int argc, char **argv)
1135{
1136	printf("Usage : %s <OPTIONS>\n",
1137		argv[0]);
1138	printf("OPTIONS:\n");
1139	printf("	[-1 loops] Number of loops for delay injection 1\n");
1140	printf("	[-2 loops] Number of loops for delay injection 2\n");
1141	printf("	[-3 loops] Number of loops for delay injection 3\n");
1142	printf("	[-4 loops] Number of loops for delay injection 4\n");
1143	printf("	[-5 loops] Number of loops for delay injection 5\n");
1144	printf("	[-6 loops] Number of loops for delay injection 6\n");
1145	printf("	[-7 loops] Number of loops for delay injection 7 (-1 to enable -m)\n");
1146	printf("	[-8 loops] Number of loops for delay injection 8 (-1 to enable -m)\n");
1147	printf("	[-9 loops] Number of loops for delay injection 9 (-1 to enable -m)\n");
1148	printf("	[-m N] Yield/sleep/kill every modulo N (default 0: disabled) (>= 0)\n");
1149	printf("	[-y] Yield\n");
1150	printf("	[-k] Kill thread with signal\n");
1151	printf("	[-s S] S: =0: disabled (default), >0: sleep time (ms)\n");
1152	printf("	[-t N] Number of threads (default 200)\n");
1153	printf("	[-r N] Number of repetitions per thread (default 5000)\n");
1154	printf("	[-d] Disable rseq system call (no initialization)\n");
1155	printf("	[-D M] Disable rseq for each M threads\n");
1156	printf("	[-T test] Choose test: (s)pinlock, (l)ist, (b)uffer, (m)emcpy, (i)ncrement\n");
1157	printf("	[-M] Push into buffer and memcpy buffer with memory barriers.\n");
1158	printf("	[-v] Verbose output.\n");
1159	printf("	[-h] Show this help.\n");
1160	printf("\n");
1161}
1162
1163int main(int argc, char **argv)
1164{
1165	int i;
1166
1167	for (i = 1; i < argc; i++) {
1168		if (argv[i][0] != '-')
1169			continue;
1170		switch (argv[i][1]) {
1171		case '1':
1172		case '2':
1173		case '3':
1174		case '4':
1175		case '5':
1176		case '6':
1177		case '7':
1178		case '8':
1179		case '9':
1180			if (argc < i + 2) {
1181				show_usage(argc, argv);
1182				goto error;
1183			}
1184			loop_cnt[argv[i][1] - '0'] = atol(argv[i + 1]);
1185			i++;
1186			break;
1187		case 'm':
1188			if (argc < i + 2) {
1189				show_usage(argc, argv);
1190				goto error;
1191			}
1192			opt_modulo = atol(argv[i + 1]);
1193			if (opt_modulo < 0) {
1194				show_usage(argc, argv);
1195				goto error;
1196			}
1197			i++;
1198			break;
1199		case 's':
1200			if (argc < i + 2) {
1201				show_usage(argc, argv);
1202				goto error;
1203			}
1204			opt_sleep = atol(argv[i + 1]);
1205			if (opt_sleep < 0) {
1206				show_usage(argc, argv);
1207				goto error;
1208			}
1209			i++;
1210			break;
1211		case 'y':
1212			opt_yield = 1;
1213			break;
1214		case 'k':
1215			opt_signal = 1;
1216			break;
1217		case 'd':
1218			opt_disable_rseq = 1;
1219			break;
1220		case 'D':
1221			if (argc < i + 2) {
1222				show_usage(argc, argv);
1223				goto error;
1224			}
1225			opt_disable_mod = atol(argv[i + 1]);
1226			if (opt_disable_mod < 0) {
1227				show_usage(argc, argv);
1228				goto error;
1229			}
1230			i++;
1231			break;
1232		case 't':
1233			if (argc < i + 2) {
1234				show_usage(argc, argv);
1235				goto error;
1236			}
1237			opt_threads = atol(argv[i + 1]);
1238			if (opt_threads < 0) {
1239				show_usage(argc, argv);
1240				goto error;
1241			}
1242			i++;
1243			break;
1244		case 'r':
1245			if (argc < i + 2) {
1246				show_usage(argc, argv);
1247				goto error;
1248			}
1249			opt_reps = atoll(argv[i + 1]);
1250			if (opt_reps < 0) {
1251				show_usage(argc, argv);
1252				goto error;
1253			}
1254			i++;
1255			break;
1256		case 'h':
1257			show_usage(argc, argv);
1258			goto end;
1259		case 'T':
1260			if (argc < i + 2) {
1261				show_usage(argc, argv);
1262				goto error;
1263			}
1264			opt_test = *argv[i + 1];
1265			switch (opt_test) {
1266			case 's':
1267			case 'l':
1268			case 'i':
1269			case 'b':
1270			case 'm':
1271				break;
1272			default:
1273				show_usage(argc, argv);
1274				goto error;
1275			}
1276			i++;
1277			break;
1278		case 'v':
1279			verbose = 1;
1280			break;
1281		case 'M':
1282			opt_mb = 1;
1283			break;
1284		default:
1285			show_usage(argc, argv);
1286			goto error;
1287		}
1288	}
1289
1290	loop_cnt_1 = loop_cnt[1];
1291	loop_cnt_2 = loop_cnt[2];
1292	loop_cnt_3 = loop_cnt[3];
1293	loop_cnt_4 = loop_cnt[4];
1294	loop_cnt_5 = loop_cnt[5];
1295	loop_cnt_6 = loop_cnt[6];
1296
1297	if (set_signal_handler())
1298		goto error;
1299
1300	if (!opt_disable_rseq && rseq_register_current_thread())
1301		goto error;
1302	switch (opt_test) {
1303	case 's':
1304		printf_verbose("spinlock\n");
1305		test_percpu_spinlock();
1306		break;
1307	case 'l':
1308		printf_verbose("linked list\n");
1309		test_percpu_list();
1310		break;
1311	case 'b':
1312		printf_verbose("buffer\n");
1313		test_percpu_buffer();
1314		break;
1315	case 'm':
1316		printf_verbose("memcpy buffer\n");
1317		test_percpu_memcpy_buffer();
1318		break;
1319	case 'i':
1320		printf_verbose("counter increment\n");
1321		test_percpu_inc();
1322		break;
1323	}
1324	if (!opt_disable_rseq && rseq_unregister_current_thread())
1325		abort();
1326end:
1327	return 0;
1328
1329error:
1330	return -1;
1331}