Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.10.11
 
   1/*
   2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
   3 *
   4 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   5 *
   6 *  Interactivity improvements by Mike Galbraith
   7 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   8 *
   9 *  Various enhancements by Dmitry Adamushko.
  10 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11 *
  12 *  Group scheduling enhancements by Srivatsa Vaddagiri
  13 *  Copyright IBM Corporation, 2007
  14 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15 *
  16 *  Scaled math optimizations by Thomas Gleixner
  17 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18 *
  19 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  21 */
  22
  23#include <linux/sched.h>
  24#include <linux/latencytop.h>
  25#include <linux/cpumask.h>
  26#include <linux/cpuidle.h>
  27#include <linux/slab.h>
  28#include <linux/profile.h>
  29#include <linux/interrupt.h>
  30#include <linux/mempolicy.h>
  31#include <linux/migrate.h>
  32#include <linux/task_work.h>
  33
  34#include <trace/events/sched.h>
  35
  36#include "sched.h"
  37
  38/*
  39 * Targeted preemption latency for CPU-bound tasks:
  40 *
  41 * NOTE: this latency value is not the same as the concept of
  42 * 'timeslice length' - timeslices in CFS are of variable length
  43 * and have no persistent notion like in traditional, time-slice
  44 * based scheduling concepts.
  45 *
  46 * (to see the precise effective timeslice length of your workload,
  47 *  run vmstat and monitor the context-switches (cs) field)
  48 *
  49 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  50 */
  51unsigned int sysctl_sched_latency			= 6000000ULL;
  52unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
  53
  54/*
  55 * The initial- and re-scaling of tunables is configurable
  56 *
  57 * Options are:
  58 *
  59 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
  60 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  61 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  62 *
  63 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  64 */
  65enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
  66
  67/*
  68 * Minimal preemption granularity for CPU-bound tasks:
  69 *
  70 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  71 */
  72unsigned int sysctl_sched_min_granularity		= 750000ULL;
  73unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
  74
  75/*
  76 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
  77 */
  78static unsigned int sched_nr_latency = 8;
  79
  80/*
  81 * After fork, child runs first. If set to 0 (default) then
  82 * parent will (try to) run first.
  83 */
  84unsigned int sysctl_sched_child_runs_first __read_mostly;
  85
  86/*
  87 * SCHED_OTHER wake-up granularity.
  88 *
  89 * This option delays the preemption effects of decoupled workloads
  90 * and reduces their over-scheduling. Synchronous workloads will still
  91 * have immediate wakeup/sleep latencies.
  92 *
  93 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  94 */
  95unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
  96unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
  97
  98const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
  99
 
 
 
 
 
 
 
 
 
 
 
 
 
 100#ifdef CONFIG_SMP
 101/*
 102 * For asym packing, by default the lower numbered cpu has higher priority.
 103 */
 104int __weak arch_asym_cpu_priority(int cpu)
 105{
 106	return -cpu;
 107}
 
 
 
 
 
 
 
 
 108#endif
 109
 110#ifdef CONFIG_CFS_BANDWIDTH
 111/*
 112 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 113 * each time a cfs_rq requests quota.
 114 *
 115 * Note: in the case that the slice exceeds the runtime remaining (either due
 116 * to consumption or the quota being specified to be smaller than the slice)
 117 * we will always only issue the remaining available time.
 118 *
 119 * (default: 5 msec, units: microseconds)
 120 */
 121unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
 122#endif
 123
 124/*
 125 * The margin used when comparing utilization with CPU capacity:
 126 * util * margin < capacity * 1024
 127 *
 128 * (default: ~20%)
 129 */
 130unsigned int capacity_margin				= 1280;
 131
 132static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 133{
 134	lw->weight += inc;
 135	lw->inv_weight = 0;
 136}
 137
 138static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 139{
 140	lw->weight -= dec;
 141	lw->inv_weight = 0;
 142}
 143
 144static inline void update_load_set(struct load_weight *lw, unsigned long w)
 145{
 146	lw->weight = w;
 147	lw->inv_weight = 0;
 148}
 149
 150/*
 151 * Increase the granularity value when there are more CPUs,
 152 * because with more CPUs the 'effective latency' as visible
 153 * to users decreases. But the relationship is not linear,
 154 * so pick a second-best guess by going with the log2 of the
 155 * number of CPUs.
 156 *
 157 * This idea comes from the SD scheduler of Con Kolivas:
 158 */
 159static unsigned int get_update_sysctl_factor(void)
 160{
 161	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
 162	unsigned int factor;
 163
 164	switch (sysctl_sched_tunable_scaling) {
 165	case SCHED_TUNABLESCALING_NONE:
 166		factor = 1;
 167		break;
 168	case SCHED_TUNABLESCALING_LINEAR:
 169		factor = cpus;
 170		break;
 171	case SCHED_TUNABLESCALING_LOG:
 172	default:
 173		factor = 1 + ilog2(cpus);
 174		break;
 175	}
 176
 177	return factor;
 178}
 179
 180static void update_sysctl(void)
 181{
 182	unsigned int factor = get_update_sysctl_factor();
 183
 184#define SET_SYSCTL(name) \
 185	(sysctl_##name = (factor) * normalized_sysctl_##name)
 186	SET_SYSCTL(sched_min_granularity);
 187	SET_SYSCTL(sched_latency);
 188	SET_SYSCTL(sched_wakeup_granularity);
 189#undef SET_SYSCTL
 190}
 191
 192void sched_init_granularity(void)
 193{
 194	update_sysctl();
 195}
 196
 197#define WMULT_CONST	(~0U)
 198#define WMULT_SHIFT	32
 199
 200static void __update_inv_weight(struct load_weight *lw)
 201{
 202	unsigned long w;
 203
 204	if (likely(lw->inv_weight))
 205		return;
 206
 207	w = scale_load_down(lw->weight);
 208
 209	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 210		lw->inv_weight = 1;
 211	else if (unlikely(!w))
 212		lw->inv_weight = WMULT_CONST;
 213	else
 214		lw->inv_weight = WMULT_CONST / w;
 215}
 216
 217/*
 218 * delta_exec * weight / lw.weight
 219 *   OR
 220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 221 *
 222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
 223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 225 *
 226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
 228 */
 229static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
 230{
 231	u64 fact = scale_load_down(weight);
 232	int shift = WMULT_SHIFT;
 233
 234	__update_inv_weight(lw);
 235
 236	if (unlikely(fact >> 32)) {
 237		while (fact >> 32) {
 238			fact >>= 1;
 239			shift--;
 240		}
 241	}
 242
 243	/* hint to use a 32x32->64 mul */
 244	fact = (u64)(u32)fact * lw->inv_weight;
 245
 246	while (fact >> 32) {
 247		fact >>= 1;
 248		shift--;
 249	}
 250
 251	return mul_u64_u32_shr(delta_exec, fact, shift);
 252}
 253
 254
 255const struct sched_class fair_sched_class;
 256
 257/**************************************************************
 258 * CFS operations on generic schedulable entities:
 259 */
 260
 261#ifdef CONFIG_FAIR_GROUP_SCHED
 262
 263/* cpu runqueue to which this cfs_rq is attached */
 264static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 265{
 266	return cfs_rq->rq;
 267}
 268
 269/* An entity is a task if it doesn't "own" a runqueue */
 270#define entity_is_task(se)	(!se->my_q)
 271
 272static inline struct task_struct *task_of(struct sched_entity *se)
 273{
 274	SCHED_WARN_ON(!entity_is_task(se));
 275	return container_of(se, struct task_struct, se);
 276}
 277
 278/* Walk up scheduling entities hierarchy */
 279#define for_each_sched_entity(se) \
 280		for (; se; se = se->parent)
 281
 282static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 283{
 284	return p->se.cfs_rq;
 285}
 286
 287/* runqueue on which this entity is (to be) queued */
 288static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 289{
 290	return se->cfs_rq;
 291}
 292
 293/* runqueue "owned" by this group */
 294static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 295{
 296	return grp->my_q;
 297}
 298
 299static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 300{
 301	if (!cfs_rq->on_list) {
 302		struct rq *rq = rq_of(cfs_rq);
 303		int cpu = cpu_of(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 304		/*
 305		 * Ensure we either appear before our parent (if already
 306		 * enqueued) or force our parent to appear after us when it is
 307		 * enqueued. The fact that we always enqueue bottom-up
 308		 * reduces this to two cases and a special case for the root
 309		 * cfs_rq. Furthermore, it also means that we will always reset
 310		 * tmp_alone_branch either when the branch is connected
 311		 * to a tree or when we reach the beg of the tree
 312		 */
 313		if (cfs_rq->tg->parent &&
 314		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
 315			/*
 316			 * If parent is already on the list, we add the child
 317			 * just before. Thanks to circular linked property of
 318			 * the list, this means to put the child at the tail
 319			 * of the list that starts by parent.
 320			 */
 321			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 322				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
 323			/*
 324			 * The branch is now connected to its tree so we can
 325			 * reset tmp_alone_branch to the beginning of the
 326			 * list.
 327			 */
 328			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 329		} else if (!cfs_rq->tg->parent) {
 330			/*
 331			 * cfs rq without parent should be put
 332			 * at the tail of the list.
 333			 */
 334			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 335				&rq->leaf_cfs_rq_list);
 336			/*
 337			 * We have reach the beg of a tree so we can reset
 338			 * tmp_alone_branch to the beginning of the list.
 339			 */
 340			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 341		} else {
 342			/*
 343			 * The parent has not already been added so we want to
 344			 * make sure that it will be put after us.
 345			 * tmp_alone_branch points to the beg of the branch
 346			 * where we will add parent.
 347			 */
 348			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
 349				rq->tmp_alone_branch);
 350			/*
 351			 * update tmp_alone_branch to points to the new beg
 352			 * of the branch
 353			 */
 354			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
 355		}
 356
 357		cfs_rq->on_list = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 358	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359}
 360
 361static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 362{
 363	if (cfs_rq->on_list) {
 
 
 
 
 
 
 
 
 
 
 
 
 364		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 365		cfs_rq->on_list = 0;
 366	}
 367}
 368
 
 
 
 
 
 369/* Iterate thr' all leaf cfs_rq's on a runqueue */
 370#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 371	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 
 372
 373/* Do the two (enqueued) entities belong to the same group ? */
 374static inline struct cfs_rq *
 375is_same_group(struct sched_entity *se, struct sched_entity *pse)
 376{
 377	if (se->cfs_rq == pse->cfs_rq)
 378		return se->cfs_rq;
 379
 380	return NULL;
 381}
 382
 383static inline struct sched_entity *parent_entity(struct sched_entity *se)
 384{
 385	return se->parent;
 386}
 387
 388static void
 389find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 390{
 391	int se_depth, pse_depth;
 392
 393	/*
 394	 * preemption test can be made between sibling entities who are in the
 395	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 396	 * both tasks until we find their ancestors who are siblings of common
 397	 * parent.
 398	 */
 399
 400	/* First walk up until both entities are at same depth */
 401	se_depth = (*se)->depth;
 402	pse_depth = (*pse)->depth;
 403
 404	while (se_depth > pse_depth) {
 405		se_depth--;
 406		*se = parent_entity(*se);
 407	}
 408
 409	while (pse_depth > se_depth) {
 410		pse_depth--;
 411		*pse = parent_entity(*pse);
 412	}
 413
 414	while (!is_same_group(*se, *pse)) {
 415		*se = parent_entity(*se);
 416		*pse = parent_entity(*pse);
 417	}
 418}
 419
 420#else	/* !CONFIG_FAIR_GROUP_SCHED */
 421
 422static inline struct task_struct *task_of(struct sched_entity *se)
 423{
 424	return container_of(se, struct task_struct, se);
 425}
 426
 427static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 428{
 429	return container_of(cfs_rq, struct rq, cfs);
 430}
 431
 432#define entity_is_task(se)	1
 433
 434#define for_each_sched_entity(se) \
 435		for (; se; se = NULL)
 436
 437static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 438{
 439	return &task_rq(p)->cfs;
 440}
 441
 442static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 443{
 444	struct task_struct *p = task_of(se);
 445	struct rq *rq = task_rq(p);
 446
 447	return &rq->cfs;
 448}
 449
 450/* runqueue "owned" by this group */
 451static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 452{
 453	return NULL;
 454}
 455
 456static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 
 
 
 
 
 
 457{
 
 458}
 459
 460static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 461{
 462}
 463
 464#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 465		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 
 
 
 
 466
 467static inline struct sched_entity *parent_entity(struct sched_entity *se)
 468{
 469	return NULL;
 470}
 471
 472static inline void
 473find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 474{
 475}
 476
 477#endif	/* CONFIG_FAIR_GROUP_SCHED */
 478
 479static __always_inline
 480void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
 481
 482/**************************************************************
 483 * Scheduling class tree data structure manipulation methods:
 484 */
 485
 486static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
 487{
 488	s64 delta = (s64)(vruntime - max_vruntime);
 489	if (delta > 0)
 490		max_vruntime = vruntime;
 491
 492	return max_vruntime;
 493}
 494
 495static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 496{
 497	s64 delta = (s64)(vruntime - min_vruntime);
 498	if (delta < 0)
 499		min_vruntime = vruntime;
 500
 501	return min_vruntime;
 502}
 503
 504static inline int entity_before(struct sched_entity *a,
 505				struct sched_entity *b)
 506{
 507	return (s64)(a->vruntime - b->vruntime) < 0;
 508}
 509
 510static void update_min_vruntime(struct cfs_rq *cfs_rq)
 511{
 512	struct sched_entity *curr = cfs_rq->curr;
 
 513
 514	u64 vruntime = cfs_rq->min_vruntime;
 515
 516	if (curr) {
 517		if (curr->on_rq)
 518			vruntime = curr->vruntime;
 519		else
 520			curr = NULL;
 521	}
 522
 523	if (cfs_rq->rb_leftmost) {
 524		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
 525						   struct sched_entity,
 526						   run_node);
 527
 528		if (!curr)
 529			vruntime = se->vruntime;
 530		else
 531			vruntime = min_vruntime(vruntime, se->vruntime);
 532	}
 533
 534	/* ensure we never gain time by being placed backwards. */
 535	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 536#ifndef CONFIG_64BIT
 537	smp_wmb();
 538	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 539#endif
 540}
 541
 542/*
 543 * Enqueue an entity into the rb-tree:
 544 */
 545static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 546{
 547	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
 548	struct rb_node *parent = NULL;
 549	struct sched_entity *entry;
 550	int leftmost = 1;
 551
 552	/*
 553	 * Find the right place in the rbtree:
 554	 */
 555	while (*link) {
 556		parent = *link;
 557		entry = rb_entry(parent, struct sched_entity, run_node);
 558		/*
 559		 * We dont care about collisions. Nodes with
 560		 * the same key stay together.
 561		 */
 562		if (entity_before(se, entry)) {
 563			link = &parent->rb_left;
 564		} else {
 565			link = &parent->rb_right;
 566			leftmost = 0;
 567		}
 568	}
 569
 570	/*
 571	 * Maintain a cache of leftmost tree entries (it is frequently
 572	 * used):
 573	 */
 574	if (leftmost)
 575		cfs_rq->rb_leftmost = &se->run_node;
 576
 577	rb_link_node(&se->run_node, parent, link);
 578	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 
 579}
 580
 581static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 582{
 583	if (cfs_rq->rb_leftmost == &se->run_node) {
 584		struct rb_node *next_node;
 585
 586		next_node = rb_next(&se->run_node);
 587		cfs_rq->rb_leftmost = next_node;
 588	}
 589
 590	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 591}
 592
 593struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 594{
 595	struct rb_node *left = cfs_rq->rb_leftmost;
 596
 597	if (!left)
 598		return NULL;
 599
 600	return rb_entry(left, struct sched_entity, run_node);
 601}
 602
 603static struct sched_entity *__pick_next_entity(struct sched_entity *se)
 604{
 605	struct rb_node *next = rb_next(&se->run_node);
 606
 607	if (!next)
 608		return NULL;
 609
 610	return rb_entry(next, struct sched_entity, run_node);
 611}
 612
 613#ifdef CONFIG_SCHED_DEBUG
 614struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 615{
 616	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
 617
 618	if (!last)
 619		return NULL;
 620
 621	return rb_entry(last, struct sched_entity, run_node);
 622}
 623
 624/**************************************************************
 625 * Scheduling class statistics methods:
 626 */
 627
 628int sched_proc_update_handler(struct ctl_table *table, int write,
 629		void __user *buffer, size_t *lenp,
 630		loff_t *ppos)
 631{
 632	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 633	unsigned int factor = get_update_sysctl_factor();
 634
 635	if (ret || !write)
 636		return ret;
 637
 638	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 639					sysctl_sched_min_granularity);
 640
 641#define WRT_SYSCTL(name) \
 642	(normalized_sysctl_##name = sysctl_##name / (factor))
 643	WRT_SYSCTL(sched_min_granularity);
 644	WRT_SYSCTL(sched_latency);
 645	WRT_SYSCTL(sched_wakeup_granularity);
 646#undef WRT_SYSCTL
 647
 648	return 0;
 649}
 650#endif
 651
 652/*
 653 * delta /= w
 654 */
 655static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
 656{
 657	if (unlikely(se->load.weight != NICE_0_LOAD))
 658		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
 659
 660	return delta;
 661}
 662
 663/*
 664 * The idea is to set a period in which each task runs once.
 665 *
 666 * When there are too many tasks (sched_nr_latency) we have to stretch
 667 * this period because otherwise the slices get too small.
 668 *
 669 * p = (nr <= nl) ? l : l*nr/nl
 670 */
 671static u64 __sched_period(unsigned long nr_running)
 672{
 673	if (unlikely(nr_running > sched_nr_latency))
 674		return nr_running * sysctl_sched_min_granularity;
 675	else
 676		return sysctl_sched_latency;
 677}
 678
 679/*
 680 * We calculate the wall-time slice from the period by taking a part
 681 * proportional to the weight.
 682 *
 683 * s = p*P[w/rw]
 684 */
 685static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 686{
 687	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 688
 689	for_each_sched_entity(se) {
 690		struct load_weight *load;
 691		struct load_weight lw;
 692
 693		cfs_rq = cfs_rq_of(se);
 694		load = &cfs_rq->load;
 695
 696		if (unlikely(!se->on_rq)) {
 697			lw = cfs_rq->load;
 698
 699			update_load_add(&lw, se->load.weight);
 700			load = &lw;
 701		}
 702		slice = __calc_delta(slice, se->load.weight, load);
 703	}
 704	return slice;
 705}
 706
 707/*
 708 * We calculate the vruntime slice of a to-be-inserted task.
 709 *
 710 * vs = s/w
 711 */
 712static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 713{
 714	return calc_delta_fair(sched_slice(cfs_rq, se), se);
 715}
 716
 
 717#ifdef CONFIG_SMP
 
 718static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
 719static unsigned long task_h_load(struct task_struct *p);
 720
 721/*
 722 * We choose a half-life close to 1 scheduling period.
 723 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 724 * dependent on this value.
 725 */
 726#define LOAD_AVG_PERIOD 32
 727#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
 728#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
 729
 730/* Give new sched_entity start runnable values to heavy its load in infant time */
 731void init_entity_runnable_average(struct sched_entity *se)
 732{
 733	struct sched_avg *sa = &se->avg;
 734
 735	sa->last_update_time = 0;
 736	/*
 737	 * sched_avg's period_contrib should be strictly less then 1024, so
 738	 * we give it 1023 to make sure it is almost a period (1024us), and
 739	 * will definitely be update (after enqueue).
 740	 */
 741	sa->period_contrib = 1023;
 742	/*
 743	 * Tasks are intialized with full load to be seen as heavy tasks until
 744	 * they get a chance to stabilize to their real load level.
 745	 * Group entities are intialized with zero load to reflect the fact that
 746	 * nothing has been attached to the task group yet.
 747	 */
 748	if (entity_is_task(se))
 749		sa->load_avg = scale_load_down(se->load.weight);
 750	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
 751	/*
 752	 * At this point, util_avg won't be used in select_task_rq_fair anyway
 753	 */
 754	sa->util_avg = 0;
 755	sa->util_sum = 0;
 756	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
 757}
 758
 759static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
 760static void attach_entity_cfs_rq(struct sched_entity *se);
 761
 762/*
 763 * With new tasks being created, their initial util_avgs are extrapolated
 764 * based on the cfs_rq's current util_avg:
 765 *
 766 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 767 *
 768 * However, in many cases, the above util_avg does not give a desired
 769 * value. Moreover, the sum of the util_avgs may be divergent, such
 770 * as when the series is a harmonic series.
 771 *
 772 * To solve this problem, we also cap the util_avg of successive tasks to
 773 * only 1/2 of the left utilization budget:
 774 *
 775 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 776 *
 777 * where n denotes the nth task.
 778 *
 779 * For example, a simplest series from the beginning would be like:
 
 780 *
 781 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 783 *
 784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 785 * if util_avg > util_avg_cap.
 786 */
 787void post_init_entity_util_avg(struct sched_entity *se)
 788{
 
 789	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 790	struct sched_avg *sa = &se->avg;
 791	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
 
 792
 793	if (cap > 0) {
 794		if (cfs_rq->avg.util_avg != 0) {
 795			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
 796			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
 797
 798			if (sa->util_avg > cap)
 799				sa->util_avg = cap;
 800		} else {
 801			sa->util_avg = cap;
 802		}
 803		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
 804	}
 805
 806	if (entity_is_task(se)) {
 807		struct task_struct *p = task_of(se);
 808		if (p->sched_class != &fair_sched_class) {
 809			/*
 810			 * For !fair tasks do:
 811			 *
 812			update_cfs_rq_load_avg(now, cfs_rq, false);
 813			attach_entity_load_avg(cfs_rq, se);
 814			switched_from_fair(rq, p);
 815			 *
 816			 * such that the next switched_to_fair() has the
 817			 * expected state.
 818			 */
 819			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
 820			return;
 821		}
 822	}
 823
 824	attach_entity_cfs_rq(se);
 825}
 826
 827#else /* !CONFIG_SMP */
 828void init_entity_runnable_average(struct sched_entity *se)
 829{
 830}
 831void post_init_entity_util_avg(struct sched_entity *se)
 832{
 833}
 834static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
 835{
 836}
 837#endif /* CONFIG_SMP */
 838
 839/*
 840 * Update the current task's runtime statistics.
 841 */
 842static void update_curr(struct cfs_rq *cfs_rq)
 843{
 844	struct sched_entity *curr = cfs_rq->curr;
 845	u64 now = rq_clock_task(rq_of(cfs_rq));
 846	u64 delta_exec;
 847
 848	if (unlikely(!curr))
 849		return;
 850
 851	delta_exec = now - curr->exec_start;
 852	if (unlikely((s64)delta_exec <= 0))
 853		return;
 854
 855	curr->exec_start = now;
 856
 857	schedstat_set(curr->statistics.exec_max,
 858		      max(delta_exec, curr->statistics.exec_max));
 859
 860	curr->sum_exec_runtime += delta_exec;
 861	schedstat_add(cfs_rq->exec_clock, delta_exec);
 862
 863	curr->vruntime += calc_delta_fair(delta_exec, curr);
 864	update_min_vruntime(cfs_rq);
 865
 866	if (entity_is_task(curr)) {
 867		struct task_struct *curtask = task_of(curr);
 868
 869		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 870		cpuacct_charge(curtask, delta_exec);
 871		account_group_exec_runtime(curtask, delta_exec);
 872	}
 873
 874	account_cfs_rq_runtime(cfs_rq, delta_exec);
 875}
 876
 877static void update_curr_fair(struct rq *rq)
 878{
 879	update_curr(cfs_rq_of(&rq->curr->se));
 880}
 881
 882static inline void
 883update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 884{
 885	u64 wait_start, prev_wait_start;
 886
 887	if (!schedstat_enabled())
 888		return;
 889
 890	wait_start = rq_clock(rq_of(cfs_rq));
 891	prev_wait_start = schedstat_val(se->statistics.wait_start);
 892
 893	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
 894	    likely(wait_start > prev_wait_start))
 895		wait_start -= prev_wait_start;
 896
 897	schedstat_set(se->statistics.wait_start, wait_start);
 898}
 899
 900static inline void
 901update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 902{
 903	struct task_struct *p;
 904	u64 delta;
 905
 906	if (!schedstat_enabled())
 907		return;
 908
 909	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
 910
 911	if (entity_is_task(se)) {
 912		p = task_of(se);
 913		if (task_on_rq_migrating(p)) {
 914			/*
 915			 * Preserve migrating task's wait time so wait_start
 916			 * time stamp can be adjusted to accumulate wait time
 917			 * prior to migration.
 918			 */
 919			schedstat_set(se->statistics.wait_start, delta);
 920			return;
 921		}
 922		trace_sched_stat_wait(p, delta);
 923	}
 924
 925	schedstat_set(se->statistics.wait_max,
 926		      max(schedstat_val(se->statistics.wait_max), delta));
 927	schedstat_inc(se->statistics.wait_count);
 928	schedstat_add(se->statistics.wait_sum, delta);
 929	schedstat_set(se->statistics.wait_start, 0);
 930}
 931
 932static inline void
 933update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 934{
 935	struct task_struct *tsk = NULL;
 936	u64 sleep_start, block_start;
 937
 938	if (!schedstat_enabled())
 939		return;
 940
 941	sleep_start = schedstat_val(se->statistics.sleep_start);
 942	block_start = schedstat_val(se->statistics.block_start);
 943
 944	if (entity_is_task(se))
 945		tsk = task_of(se);
 946
 947	if (sleep_start) {
 948		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
 949
 950		if ((s64)delta < 0)
 951			delta = 0;
 952
 953		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
 954			schedstat_set(se->statistics.sleep_max, delta);
 955
 956		schedstat_set(se->statistics.sleep_start, 0);
 957		schedstat_add(se->statistics.sum_sleep_runtime, delta);
 958
 959		if (tsk) {
 960			account_scheduler_latency(tsk, delta >> 10, 1);
 961			trace_sched_stat_sleep(tsk, delta);
 962		}
 963	}
 964	if (block_start) {
 965		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
 966
 967		if ((s64)delta < 0)
 968			delta = 0;
 969
 970		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
 971			schedstat_set(se->statistics.block_max, delta);
 972
 973		schedstat_set(se->statistics.block_start, 0);
 974		schedstat_add(se->statistics.sum_sleep_runtime, delta);
 975
 976		if (tsk) {
 977			if (tsk->in_iowait) {
 978				schedstat_add(se->statistics.iowait_sum, delta);
 979				schedstat_inc(se->statistics.iowait_count);
 980				trace_sched_stat_iowait(tsk, delta);
 981			}
 982
 983			trace_sched_stat_blocked(tsk, delta);
 984
 985			/*
 986			 * Blocking time is in units of nanosecs, so shift by
 987			 * 20 to get a milliseconds-range estimation of the
 988			 * amount of time that the task spent sleeping:
 989			 */
 990			if (unlikely(prof_on == SLEEP_PROFILING)) {
 991				profile_hits(SLEEP_PROFILING,
 992						(void *)get_wchan(tsk),
 993						delta >> 20);
 994			}
 995			account_scheduler_latency(tsk, delta >> 10, 0);
 996		}
 997	}
 998}
 999
1000/*
1001 * Task is being enqueued - update stats:
1002 */
1003static inline void
1004update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1005{
1006	if (!schedstat_enabled())
1007		return;
1008
1009	/*
1010	 * Are we enqueueing a waiting task? (for current tasks
1011	 * a dequeue/enqueue event is a NOP)
1012	 */
1013	if (se != cfs_rq->curr)
1014		update_stats_wait_start(cfs_rq, se);
1015
1016	if (flags & ENQUEUE_WAKEUP)
1017		update_stats_enqueue_sleeper(cfs_rq, se);
1018}
1019
1020static inline void
1021update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1022{
1023
1024	if (!schedstat_enabled())
1025		return;
1026
1027	/*
1028	 * Mark the end of the wait period if dequeueing a
1029	 * waiting task:
1030	 */
1031	if (se != cfs_rq->curr)
1032		update_stats_wait_end(cfs_rq, se);
1033
1034	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1035		struct task_struct *tsk = task_of(se);
1036
1037		if (tsk->state & TASK_INTERRUPTIBLE)
1038			schedstat_set(se->statistics.sleep_start,
1039				      rq_clock(rq_of(cfs_rq)));
1040		if (tsk->state & TASK_UNINTERRUPTIBLE)
1041			schedstat_set(se->statistics.block_start,
1042				      rq_clock(rq_of(cfs_rq)));
1043	}
1044}
1045
1046/*
1047 * We are picking a new current task - update its stats:
1048 */
1049static inline void
1050update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1051{
1052	/*
1053	 * We are starting a new run period:
1054	 */
1055	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1056}
1057
1058/**************************************************
1059 * Scheduling class queueing methods:
1060 */
1061
1062#ifdef CONFIG_NUMA_BALANCING
1063/*
1064 * Approximate time to scan a full NUMA task in ms. The task scan period is
1065 * calculated based on the tasks virtual memory size and
1066 * numa_balancing_scan_size.
1067 */
1068unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1069unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1070
1071/* Portion of address space to scan in MB */
1072unsigned int sysctl_numa_balancing_scan_size = 256;
1073
1074/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1075unsigned int sysctl_numa_balancing_scan_delay = 1000;
1076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077static unsigned int task_nr_scan_windows(struct task_struct *p)
1078{
1079	unsigned long rss = 0;
1080	unsigned long nr_scan_pages;
1081
1082	/*
1083	 * Calculations based on RSS as non-present and empty pages are skipped
1084	 * by the PTE scanner and NUMA hinting faults should be trapped based
1085	 * on resident pages
1086	 */
1087	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1088	rss = get_mm_rss(p->mm);
1089	if (!rss)
1090		rss = nr_scan_pages;
1091
1092	rss = round_up(rss, nr_scan_pages);
1093	return rss / nr_scan_pages;
1094}
1095
1096/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1097#define MAX_SCAN_WINDOW 2560
1098
1099static unsigned int task_scan_min(struct task_struct *p)
1100{
1101	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1102	unsigned int scan, floor;
1103	unsigned int windows = 1;
1104
1105	if (scan_size < MAX_SCAN_WINDOW)
1106		windows = MAX_SCAN_WINDOW / scan_size;
1107	floor = 1000 / windows;
1108
1109	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1110	return max_t(unsigned int, floor, scan);
1111}
1112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113static unsigned int task_scan_max(struct task_struct *p)
1114{
1115	unsigned int smin = task_scan_min(p);
1116	unsigned int smax;
 
1117
1118	/* Watch for min being lower than max due to floor calculations */
1119	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120	return max(smin, smax);
1121}
1122
1123static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1124{
1125	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1126	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1127}
1128
1129static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1130{
1131	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1132	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1133}
1134
1135struct numa_group {
1136	atomic_t refcount;
1137
1138	spinlock_t lock; /* nr_tasks, tasks */
1139	int nr_tasks;
1140	pid_t gid;
1141	int active_nodes;
1142
1143	struct rcu_head rcu;
1144	unsigned long total_faults;
1145	unsigned long max_faults_cpu;
1146	/*
1147	 * Faults_cpu is used to decide whether memory should move
1148	 * towards the CPU. As a consequence, these stats are weighted
1149	 * more by CPU use than by memory faults.
1150	 */
1151	unsigned long *faults_cpu;
1152	unsigned long faults[0];
1153};
1154
1155/* Shared or private faults. */
1156#define NR_NUMA_HINT_FAULT_TYPES 2
1157
1158/* Memory and CPU locality */
1159#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1160
1161/* Averaged statistics, and temporary buffers. */
1162#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1163
1164pid_t task_numa_group_id(struct task_struct *p)
1165{
1166	return p->numa_group ? p->numa_group->gid : 0;
 
 
 
 
 
 
 
 
 
1167}
1168
1169/*
1170 * The averaged statistics, shared & private, memory & cpu,
1171 * occupy the first half of the array. The second half of the
1172 * array is for current counters, which are averaged into the
1173 * first set by task_numa_placement.
1174 */
1175static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1176{
1177	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1178}
1179
1180static inline unsigned long task_faults(struct task_struct *p, int nid)
1181{
1182	if (!p->numa_faults)
1183		return 0;
1184
1185	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1186		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1187}
1188
1189static inline unsigned long group_faults(struct task_struct *p, int nid)
1190{
1191	if (!p->numa_group)
 
 
1192		return 0;
1193
1194	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1195		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1196}
1197
1198static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1199{
1200	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1201		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1202}
1203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204/*
1205 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1206 * considered part of a numa group's pseudo-interleaving set. Migrations
1207 * between these nodes are slowed down, to allow things to settle down.
1208 */
1209#define ACTIVE_NODE_FRACTION 3
1210
1211static bool numa_is_active_node(int nid, struct numa_group *ng)
1212{
1213	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1214}
1215
1216/* Handle placement on systems where not all nodes are directly connected. */
1217static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1218					int maxdist, bool task)
1219{
1220	unsigned long score = 0;
1221	int node;
1222
1223	/*
1224	 * All nodes are directly connected, and the same distance
1225	 * from each other. No need for fancy placement algorithms.
1226	 */
1227	if (sched_numa_topology_type == NUMA_DIRECT)
1228		return 0;
1229
1230	/*
1231	 * This code is called for each node, introducing N^2 complexity,
1232	 * which should be ok given the number of nodes rarely exceeds 8.
1233	 */
1234	for_each_online_node(node) {
1235		unsigned long faults;
1236		int dist = node_distance(nid, node);
1237
1238		/*
1239		 * The furthest away nodes in the system are not interesting
1240		 * for placement; nid was already counted.
1241		 */
1242		if (dist == sched_max_numa_distance || node == nid)
1243			continue;
1244
1245		/*
1246		 * On systems with a backplane NUMA topology, compare groups
1247		 * of nodes, and move tasks towards the group with the most
1248		 * memory accesses. When comparing two nodes at distance
1249		 * "hoplimit", only nodes closer by than "hoplimit" are part
1250		 * of each group. Skip other nodes.
1251		 */
1252		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1253					dist > maxdist)
1254			continue;
1255
1256		/* Add up the faults from nearby nodes. */
1257		if (task)
1258			faults = task_faults(p, node);
1259		else
1260			faults = group_faults(p, node);
1261
1262		/*
1263		 * On systems with a glueless mesh NUMA topology, there are
1264		 * no fixed "groups of nodes". Instead, nodes that are not
1265		 * directly connected bounce traffic through intermediate
1266		 * nodes; a numa_group can occupy any set of nodes.
1267		 * The further away a node is, the less the faults count.
1268		 * This seems to result in good task placement.
1269		 */
1270		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1271			faults *= (sched_max_numa_distance - dist);
1272			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1273		}
1274
1275		score += faults;
1276	}
1277
1278	return score;
1279}
1280
1281/*
1282 * These return the fraction of accesses done by a particular task, or
1283 * task group, on a particular numa node.  The group weight is given a
1284 * larger multiplier, in order to group tasks together that are almost
1285 * evenly spread out between numa nodes.
1286 */
1287static inline unsigned long task_weight(struct task_struct *p, int nid,
1288					int dist)
1289{
1290	unsigned long faults, total_faults;
1291
1292	if (!p->numa_faults)
1293		return 0;
1294
1295	total_faults = p->total_numa_faults;
1296
1297	if (!total_faults)
1298		return 0;
1299
1300	faults = task_faults(p, nid);
1301	faults += score_nearby_nodes(p, nid, dist, true);
1302
1303	return 1000 * faults / total_faults;
1304}
1305
1306static inline unsigned long group_weight(struct task_struct *p, int nid,
1307					 int dist)
1308{
 
1309	unsigned long faults, total_faults;
1310
1311	if (!p->numa_group)
1312		return 0;
1313
1314	total_faults = p->numa_group->total_faults;
1315
1316	if (!total_faults)
1317		return 0;
1318
1319	faults = group_faults(p, nid);
1320	faults += score_nearby_nodes(p, nid, dist, false);
1321
1322	return 1000 * faults / total_faults;
1323}
1324
1325bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1326				int src_nid, int dst_cpu)
1327{
1328	struct numa_group *ng = p->numa_group;
1329	int dst_nid = cpu_to_node(dst_cpu);
1330	int last_cpupid, this_cpupid;
1331
1332	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
 
 
 
 
 
 
 
 
 
 
 
1333
1334	/*
1335	 * Multi-stage node selection is used in conjunction with a periodic
1336	 * migration fault to build a temporal task<->page relation. By using
1337	 * a two-stage filter we remove short/unlikely relations.
1338	 *
1339	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1340	 * a task's usage of a particular page (n_p) per total usage of this
1341	 * page (n_t) (in a given time-span) to a probability.
1342	 *
1343	 * Our periodic faults will sample this probability and getting the
1344	 * same result twice in a row, given these samples are fully
1345	 * independent, is then given by P(n)^2, provided our sample period
1346	 * is sufficiently short compared to the usage pattern.
1347	 *
1348	 * This quadric squishes small probabilities, making it less likely we
1349	 * act on an unlikely task<->page relation.
1350	 */
1351	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1352	if (!cpupid_pid_unset(last_cpupid) &&
1353				cpupid_to_nid(last_cpupid) != dst_nid)
1354		return false;
1355
1356	/* Always allow migrate on private faults */
1357	if (cpupid_match_pid(p, last_cpupid))
1358		return true;
1359
1360	/* A shared fault, but p->numa_group has not been set up yet. */
1361	if (!ng)
1362		return true;
1363
1364	/*
1365	 * Destination node is much more heavily used than the source
1366	 * node? Allow migration.
1367	 */
1368	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1369					ACTIVE_NODE_FRACTION)
1370		return true;
1371
1372	/*
1373	 * Distribute memory according to CPU & memory use on each node,
1374	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1375	 *
1376	 * faults_cpu(dst)   3   faults_cpu(src)
1377	 * --------------- * - > ---------------
1378	 * faults_mem(dst)   4   faults_mem(src)
1379	 */
1380	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1381	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1382}
1383
1384static unsigned long weighted_cpuload(const int cpu);
1385static unsigned long source_load(int cpu, int type);
1386static unsigned long target_load(int cpu, int type);
1387static unsigned long capacity_of(int cpu);
1388static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
 
 
 
 
 
 
 
 
 
 
 
 
1389
1390/* Cached statistics for all CPUs within a node */
1391struct numa_stats {
1392	unsigned long nr_running;
1393	unsigned long load;
1394
1395	/* Total compute capacity of CPUs on a node */
1396	unsigned long compute_capacity;
1397
1398	/* Approximate capacity in terms of runnable tasks on a node */
1399	unsigned long task_capacity;
1400	int has_free_capacity;
1401};
1402
1403/*
1404 * XXX borrowed from update_sg_lb_stats
1405 */
1406static void update_numa_stats(struct numa_stats *ns, int nid)
1407{
1408	int smt, cpu, cpus = 0;
1409	unsigned long capacity;
1410
1411	memset(ns, 0, sizeof(*ns));
1412	for_each_cpu(cpu, cpumask_of_node(nid)) {
1413		struct rq *rq = cpu_rq(cpu);
1414
1415		ns->nr_running += rq->nr_running;
1416		ns->load += weighted_cpuload(cpu);
1417		ns->compute_capacity += capacity_of(cpu);
1418
1419		cpus++;
 
1420	}
 
1421
1422	/*
1423	 * If we raced with hotplug and there are no CPUs left in our mask
1424	 * the @ns structure is NULL'ed and task_numa_compare() will
1425	 * not find this node attractive.
1426	 *
1427	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1428	 * imbalance and bail there.
1429	 */
1430	if (!cpus)
1431		return;
1432
1433	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1434	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1435	capacity = cpus / smt; /* cores */
1436
1437	ns->task_capacity = min_t(unsigned, capacity,
1438		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1439	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1440}
1441
1442struct task_numa_env {
1443	struct task_struct *p;
1444
1445	int src_cpu, src_nid;
1446	int dst_cpu, dst_nid;
1447
1448	struct numa_stats src_stats, dst_stats;
1449
1450	int imbalance_pct;
1451	int dist;
1452
1453	struct task_struct *best_task;
1454	long best_imp;
1455	int best_cpu;
1456};
1457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458static void task_numa_assign(struct task_numa_env *env,
1459			     struct task_struct *p, long imp)
1460{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461	if (env->best_task)
1462		put_task_struct(env->best_task);
1463	if (p)
1464		get_task_struct(p);
1465
1466	env->best_task = p;
1467	env->best_imp = imp;
1468	env->best_cpu = env->dst_cpu;
1469}
1470
1471static bool load_too_imbalanced(long src_load, long dst_load,
1472				struct task_numa_env *env)
1473{
1474	long imb, old_imb;
1475	long orig_src_load, orig_dst_load;
1476	long src_capacity, dst_capacity;
1477
1478	/*
1479	 * The load is corrected for the CPU capacity available on each node.
1480	 *
1481	 * src_load        dst_load
1482	 * ------------ vs ---------
1483	 * src_capacity    dst_capacity
1484	 */
1485	src_capacity = env->src_stats.compute_capacity;
1486	dst_capacity = env->dst_stats.compute_capacity;
1487
1488	/* We care about the slope of the imbalance, not the direction. */
1489	if (dst_load < src_load)
1490		swap(dst_load, src_load);
1491
1492	/* Is the difference below the threshold? */
1493	imb = dst_load * src_capacity * 100 -
1494	      src_load * dst_capacity * env->imbalance_pct;
1495	if (imb <= 0)
1496		return false;
1497
1498	/*
1499	 * The imbalance is above the allowed threshold.
1500	 * Compare it with the old imbalance.
1501	 */
1502	orig_src_load = env->src_stats.load;
1503	orig_dst_load = env->dst_stats.load;
1504
1505	if (orig_dst_load < orig_src_load)
1506		swap(orig_dst_load, orig_src_load);
1507
1508	old_imb = orig_dst_load * src_capacity * 100 -
1509		  orig_src_load * dst_capacity * env->imbalance_pct;
1510
1511	/* Would this change make things worse? */
1512	return (imb > old_imb);
1513}
1514
1515/*
 
 
 
 
 
 
 
1516 * This checks if the overall compute and NUMA accesses of the system would
1517 * be improved if the source tasks was migrated to the target dst_cpu taking
1518 * into account that it might be best if task running on the dst_cpu should
1519 * be exchanged with the source task
1520 */
1521static void task_numa_compare(struct task_numa_env *env,
1522			      long taskimp, long groupimp)
1523{
1524	struct rq *src_rq = cpu_rq(env->src_cpu);
1525	struct rq *dst_rq = cpu_rq(env->dst_cpu);
 
1526	struct task_struct *cur;
1527	long src_load, dst_load;
1528	long load;
1529	long imp = env->p->numa_group ? groupimp : taskimp;
1530	long moveimp = imp;
1531	int dist = env->dist;
 
 
 
 
 
 
1532
1533	rcu_read_lock();
1534	cur = task_rcu_dereference(&dst_rq->curr);
1535	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1536		cur = NULL;
1537
1538	/*
1539	 * Because we have preemption enabled we can get migrated around and
1540	 * end try selecting ourselves (current == env->p) as a swap candidate.
1541	 */
1542	if (cur == env->p)
 
1543		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544
1545	/*
1546	 * "imp" is the fault differential for the source task between the
1547	 * source and destination node. Calculate the total differential for
1548	 * the source task and potential destination task. The more negative
1549	 * the value is, the more rmeote accesses that would be expected to
1550	 * be incurred if the tasks were swapped.
 
 
 
1551	 */
1552	if (cur) {
1553		/* Skip this swap candidate if cannot move to the source cpu */
1554		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1555			goto unlock;
1556
1557		/*
1558		 * If dst and source tasks are in the same NUMA group, or not
1559		 * in any group then look only at task weights.
1560		 */
1561		if (cur->numa_group == env->p->numa_group) {
1562			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1563			      task_weight(cur, env->dst_nid, dist);
1564			/*
1565			 * Add some hysteresis to prevent swapping the
1566			 * tasks within a group over tiny differences.
1567			 */
1568			if (cur->numa_group)
1569				imp -= imp/16;
1570		} else {
1571			/*
1572			 * Compare the group weights. If a task is all by
1573			 * itself (not part of a group), use the task weight
1574			 * instead.
1575			 */
1576			if (cur->numa_group)
1577				imp += group_weight(cur, env->src_nid, dist) -
1578				       group_weight(cur, env->dst_nid, dist);
1579			else
1580				imp += task_weight(cur, env->src_nid, dist) -
1581				       task_weight(cur, env->dst_nid, dist);
1582		}
1583	}
1584
1585	if (imp <= env->best_imp && moveimp <= env->best_imp)
1586		goto unlock;
 
1587
1588	if (!cur) {
1589		/* Is there capacity at our destination? */
1590		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1591		    !env->dst_stats.has_free_capacity)
1592			goto unlock;
 
 
 
1593
1594		goto balance;
 
 
 
1595	}
1596
1597	/* Balance doesn't matter much if we're running a task per cpu */
1598	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1599			dst_rq->nr_running == 1)
 
 
 
1600		goto assign;
 
 
 
 
 
 
 
 
 
 
1601
1602	/*
1603	 * In the overloaded case, try and keep the load balanced.
1604	 */
1605balance:
1606	load = task_h_load(env->p);
 
 
1607	dst_load = env->dst_stats.load + load;
1608	src_load = env->src_stats.load - load;
1609
1610	if (moveimp > imp && moveimp > env->best_imp) {
1611		/*
1612		 * If the improvement from just moving env->p direction is
1613		 * better than swapping tasks around, check if a move is
1614		 * possible. Store a slightly smaller score than moveimp,
1615		 * so an actually idle CPU will win.
1616		 */
1617		if (!load_too_imbalanced(src_load, dst_load, env)) {
1618			imp = moveimp - 1;
1619			cur = NULL;
1620			goto assign;
1621		}
1622	}
1623
1624	if (imp <= env->best_imp)
1625		goto unlock;
1626
1627	if (cur) {
1628		load = task_h_load(cur);
1629		dst_load -= load;
1630		src_load += load;
1631	}
1632
1633	if (load_too_imbalanced(src_load, dst_load, env))
1634		goto unlock;
1635
1636	/*
1637	 * One idle CPU per node is evaluated for a task numa move.
1638	 * Call select_idle_sibling to maybe find a better one.
1639	 */
1640	if (!cur) {
 
 
 
 
 
 
1641		/*
1642		 * select_idle_siblings() uses an per-cpu cpumask that
1643		 * can be used from IRQ context.
1644		 */
1645		local_irq_disable();
1646		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1647						   env->dst_cpu);
1648		local_irq_enable();
 
 
1649	}
1650
1651assign:
1652	task_numa_assign(env, cur, imp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1653unlock:
1654	rcu_read_unlock();
 
 
1655}
1656
1657static void task_numa_find_cpu(struct task_numa_env *env,
1658				long taskimp, long groupimp)
1659{
 
1660	int cpu;
1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1662	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1663		/* Skip this CPU if the source task cannot migrate */
1664		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1665			continue;
1666
1667		env->dst_cpu = cpu;
1668		task_numa_compare(env, taskimp, groupimp);
 
1669	}
1670}
1671
1672/* Only move tasks to a NUMA node less busy than the current node. */
1673static bool numa_has_capacity(struct task_numa_env *env)
1674{
1675	struct numa_stats *src = &env->src_stats;
1676	struct numa_stats *dst = &env->dst_stats;
1677
1678	if (src->has_free_capacity && !dst->has_free_capacity)
1679		return false;
1680
1681	/*
1682	 * Only consider a task move if the source has a higher load
1683	 * than the destination, corrected for CPU capacity on each node.
1684	 *
1685	 *      src->load                dst->load
1686	 * --------------------- vs ---------------------
1687	 * src->compute_capacity    dst->compute_capacity
1688	 */
1689	if (src->load * dst->compute_capacity * env->imbalance_pct >
1690
1691	    dst->load * src->compute_capacity * 100)
1692		return true;
1693
1694	return false;
1695}
1696
1697static int task_numa_migrate(struct task_struct *p)
1698{
1699	struct task_numa_env env = {
1700		.p = p,
1701
1702		.src_cpu = task_cpu(p),
1703		.src_nid = task_node(p),
1704
1705		.imbalance_pct = 112,
1706
1707		.best_task = NULL,
1708		.best_imp = 0,
1709		.best_cpu = -1,
1710	};
1711	struct sched_domain *sd;
1712	unsigned long taskweight, groupweight;
1713	int nid, ret, dist;
1714	long taskimp, groupimp;
 
 
 
1715
1716	/*
1717	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1718	 * imbalance and would be the first to start moving tasks about.
1719	 *
1720	 * And we want to avoid any moving of tasks about, as that would create
1721	 * random movement of tasks -- counter the numa conditions we're trying
1722	 * to satisfy here.
1723	 */
1724	rcu_read_lock();
1725	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1726	if (sd)
1727		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1728	rcu_read_unlock();
1729
1730	/*
1731	 * Cpusets can break the scheduler domain tree into smaller
1732	 * balance domains, some of which do not cross NUMA boundaries.
1733	 * Tasks that are "trapped" in such domains cannot be migrated
1734	 * elsewhere, so there is no point in (re)trying.
1735	 */
1736	if (unlikely(!sd)) {
1737		p->numa_preferred_nid = task_node(p);
1738		return -EINVAL;
1739	}
1740
1741	env.dst_nid = p->numa_preferred_nid;
1742	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1743	taskweight = task_weight(p, env.src_nid, dist);
1744	groupweight = group_weight(p, env.src_nid, dist);
1745	update_numa_stats(&env.src_stats, env.src_nid);
1746	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1747	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1748	update_numa_stats(&env.dst_stats, env.dst_nid);
1749
1750	/* Try to find a spot on the preferred nid. */
1751	if (numa_has_capacity(&env))
1752		task_numa_find_cpu(&env, taskimp, groupimp);
1753
1754	/*
1755	 * Look at other nodes in these cases:
1756	 * - there is no space available on the preferred_nid
1757	 * - the task is part of a numa_group that is interleaved across
1758	 *   multiple NUMA nodes; in order to better consolidate the group,
1759	 *   we need to check other locations.
1760	 */
1761	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
 
1762		for_each_online_node(nid) {
1763			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1764				continue;
1765
1766			dist = node_distance(env.src_nid, env.dst_nid);
1767			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1768						dist != env.dist) {
1769				taskweight = task_weight(p, env.src_nid, dist);
1770				groupweight = group_weight(p, env.src_nid, dist);
1771			}
1772
1773			/* Only consider nodes where both task and groups benefit */
1774			taskimp = task_weight(p, nid, dist) - taskweight;
1775			groupimp = group_weight(p, nid, dist) - groupweight;
1776			if (taskimp < 0 && groupimp < 0)
1777				continue;
1778
1779			env.dist = dist;
1780			env.dst_nid = nid;
1781			update_numa_stats(&env.dst_stats, env.dst_nid);
1782			if (numa_has_capacity(&env))
1783				task_numa_find_cpu(&env, taskimp, groupimp);
1784		}
1785	}
1786
1787	/*
1788	 * If the task is part of a workload that spans multiple NUMA nodes,
1789	 * and is migrating into one of the workload's active nodes, remember
1790	 * this node as the task's preferred numa node, so the workload can
1791	 * settle down.
1792	 * A task that migrated to a second choice node will be better off
1793	 * trying for a better one later. Do not set the preferred node here.
1794	 */
1795	if (p->numa_group) {
1796		struct numa_group *ng = p->numa_group;
1797
1798		if (env.best_cpu == -1)
1799			nid = env.src_nid;
1800		else
1801			nid = env.dst_nid;
1802
1803		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1804			sched_setnuma(p, env.dst_nid);
1805	}
1806
1807	/* No better CPU than the current one was found. */
1808	if (env.best_cpu == -1)
 
1809		return -EAGAIN;
 
1810
1811	/*
1812	 * Reset the scan period if the task is being rescheduled on an
1813	 * alternative node to recheck if the tasks is now properly placed.
1814	 */
1815	p->numa_scan_period = task_scan_min(p);
1816
1817	if (env.best_task == NULL) {
1818		ret = migrate_task_to(p, env.best_cpu);
 
1819		if (ret != 0)
1820			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1821		return ret;
1822	}
1823
1824	ret = migrate_swap(p, env.best_task);
 
 
1825	if (ret != 0)
1826		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1827	put_task_struct(env.best_task);
1828	return ret;
1829}
1830
1831/* Attempt to migrate a task to a CPU on the preferred node. */
1832static void numa_migrate_preferred(struct task_struct *p)
1833{
1834	unsigned long interval = HZ;
1835
1836	/* This task has no NUMA fault statistics yet */
1837	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1838		return;
1839
1840	/* Periodically retry migrating the task to the preferred node */
1841	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1842	p->numa_migrate_retry = jiffies + interval;
1843
1844	/* Success if task is already running on preferred CPU */
1845	if (task_node(p) == p->numa_preferred_nid)
1846		return;
1847
1848	/* Otherwise, try migrate to a CPU on the preferred node */
1849	task_numa_migrate(p);
1850}
1851
1852/*
1853 * Find out how many nodes on the workload is actively running on. Do this by
1854 * tracking the nodes from which NUMA hinting faults are triggered. This can
1855 * be different from the set of nodes where the workload's memory is currently
1856 * located.
1857 */
1858static void numa_group_count_active_nodes(struct numa_group *numa_group)
1859{
1860	unsigned long faults, max_faults = 0;
1861	int nid, active_nodes = 0;
1862
1863	for_each_online_node(nid) {
1864		faults = group_faults_cpu(numa_group, nid);
1865		if (faults > max_faults)
1866			max_faults = faults;
1867	}
1868
1869	for_each_online_node(nid) {
1870		faults = group_faults_cpu(numa_group, nid);
1871		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1872			active_nodes++;
1873	}
1874
1875	numa_group->max_faults_cpu = max_faults;
1876	numa_group->active_nodes = active_nodes;
1877}
1878
1879/*
1880 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1881 * increments. The more local the fault statistics are, the higher the scan
1882 * period will be for the next scan window. If local/(local+remote) ratio is
1883 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1884 * the scan period will decrease. Aim for 70% local accesses.
1885 */
1886#define NUMA_PERIOD_SLOTS 10
1887#define NUMA_PERIOD_THRESHOLD 7
1888
1889/*
1890 * Increase the scan period (slow down scanning) if the majority of
1891 * our memory is already on our local node, or if the majority of
1892 * the page accesses are shared with other processes.
1893 * Otherwise, decrease the scan period.
1894 */
1895static void update_task_scan_period(struct task_struct *p,
1896			unsigned long shared, unsigned long private)
1897{
1898	unsigned int period_slot;
1899	int ratio;
1900	int diff;
1901
1902	unsigned long remote = p->numa_faults_locality[0];
1903	unsigned long local = p->numa_faults_locality[1];
1904
1905	/*
1906	 * If there were no record hinting faults then either the task is
1907	 * completely idle or all activity is areas that are not of interest
1908	 * to automatic numa balancing. Related to that, if there were failed
1909	 * migration then it implies we are migrating too quickly or the local
1910	 * node is overloaded. In either case, scan slower
1911	 */
1912	if (local + shared == 0 || p->numa_faults_locality[2]) {
1913		p->numa_scan_period = min(p->numa_scan_period_max,
1914			p->numa_scan_period << 1);
1915
1916		p->mm->numa_next_scan = jiffies +
1917			msecs_to_jiffies(p->numa_scan_period);
1918
1919		return;
1920	}
1921
1922	/*
1923	 * Prepare to scale scan period relative to the current period.
1924	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1925	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1926	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1927	 */
1928	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1929	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1930	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1931		int slot = ratio - NUMA_PERIOD_THRESHOLD;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1932		if (!slot)
1933			slot = 1;
1934		diff = slot * period_slot;
1935	} else {
1936		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1937
1938		/*
1939		 * Scale scan rate increases based on sharing. There is an
1940		 * inverse relationship between the degree of sharing and
1941		 * the adjustment made to the scanning period. Broadly
1942		 * speaking the intent is that there is little point
1943		 * scanning faster if shared accesses dominate as it may
1944		 * simply bounce migrations uselessly
1945		 */
1946		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1947		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1948	}
1949
1950	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1951			task_scan_min(p), task_scan_max(p));
1952	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1953}
1954
1955/*
1956 * Get the fraction of time the task has been running since the last
1957 * NUMA placement cycle. The scheduler keeps similar statistics, but
1958 * decays those on a 32ms period, which is orders of magnitude off
1959 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1960 * stats only if the task is so new there are no NUMA statistics yet.
1961 */
1962static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1963{
1964	u64 runtime, delta, now;
1965	/* Use the start of this time slice to avoid calculations. */
1966	now = p->se.exec_start;
1967	runtime = p->se.sum_exec_runtime;
1968
1969	if (p->last_task_numa_placement) {
1970		delta = runtime - p->last_sum_exec_runtime;
1971		*period = now - p->last_task_numa_placement;
 
 
 
 
1972	} else {
1973		delta = p->se.avg.load_sum / p->se.load.weight;
1974		*period = LOAD_AVG_MAX;
1975	}
1976
1977	p->last_sum_exec_runtime = runtime;
1978	p->last_task_numa_placement = now;
1979
1980	return delta;
1981}
1982
1983/*
1984 * Determine the preferred nid for a task in a numa_group. This needs to
1985 * be done in a way that produces consistent results with group_weight,
1986 * otherwise workloads might not converge.
1987 */
1988static int preferred_group_nid(struct task_struct *p, int nid)
1989{
1990	nodemask_t nodes;
1991	int dist;
1992
1993	/* Direct connections between all NUMA nodes. */
1994	if (sched_numa_topology_type == NUMA_DIRECT)
1995		return nid;
1996
1997	/*
1998	 * On a system with glueless mesh NUMA topology, group_weight
1999	 * scores nodes according to the number of NUMA hinting faults on
2000	 * both the node itself, and on nearby nodes.
2001	 */
2002	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2003		unsigned long score, max_score = 0;
2004		int node, max_node = nid;
2005
2006		dist = sched_max_numa_distance;
2007
2008		for_each_online_node(node) {
2009			score = group_weight(p, node, dist);
2010			if (score > max_score) {
2011				max_score = score;
2012				max_node = node;
2013			}
2014		}
2015		return max_node;
2016	}
2017
2018	/*
2019	 * Finding the preferred nid in a system with NUMA backplane
2020	 * interconnect topology is more involved. The goal is to locate
2021	 * tasks from numa_groups near each other in the system, and
2022	 * untangle workloads from different sides of the system. This requires
2023	 * searching down the hierarchy of node groups, recursively searching
2024	 * inside the highest scoring group of nodes. The nodemask tricks
2025	 * keep the complexity of the search down.
2026	 */
2027	nodes = node_online_map;
2028	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2029		unsigned long max_faults = 0;
2030		nodemask_t max_group = NODE_MASK_NONE;
2031		int a, b;
2032
2033		/* Are there nodes at this distance from each other? */
2034		if (!find_numa_distance(dist))
2035			continue;
2036
2037		for_each_node_mask(a, nodes) {
2038			unsigned long faults = 0;
2039			nodemask_t this_group;
2040			nodes_clear(this_group);
2041
2042			/* Sum group's NUMA faults; includes a==b case. */
2043			for_each_node_mask(b, nodes) {
2044				if (node_distance(a, b) < dist) {
2045					faults += group_faults(p, b);
2046					node_set(b, this_group);
2047					node_clear(b, nodes);
2048				}
2049			}
2050
2051			/* Remember the top group. */
2052			if (faults > max_faults) {
2053				max_faults = faults;
2054				max_group = this_group;
2055				/*
2056				 * subtle: at the smallest distance there is
2057				 * just one node left in each "group", the
2058				 * winner is the preferred nid.
2059				 */
2060				nid = a;
2061			}
2062		}
2063		/* Next round, evaluate the nodes within max_group. */
2064		if (!max_faults)
2065			break;
2066		nodes = max_group;
2067	}
2068	return nid;
2069}
2070
2071static void task_numa_placement(struct task_struct *p)
2072{
2073	int seq, nid, max_nid = -1, max_group_nid = -1;
2074	unsigned long max_faults = 0, max_group_faults = 0;
2075	unsigned long fault_types[2] = { 0, 0 };
2076	unsigned long total_faults;
2077	u64 runtime, period;
2078	spinlock_t *group_lock = NULL;
 
2079
2080	/*
2081	 * The p->mm->numa_scan_seq field gets updated without
2082	 * exclusive access. Use READ_ONCE() here to ensure
2083	 * that the field is read in a single access:
2084	 */
2085	seq = READ_ONCE(p->mm->numa_scan_seq);
2086	if (p->numa_scan_seq == seq)
2087		return;
2088	p->numa_scan_seq = seq;
2089	p->numa_scan_period_max = task_scan_max(p);
2090
2091	total_faults = p->numa_faults_locality[0] +
2092		       p->numa_faults_locality[1];
2093	runtime = numa_get_avg_runtime(p, &period);
2094
2095	/* If the task is part of a group prevent parallel updates to group stats */
2096	if (p->numa_group) {
2097		group_lock = &p->numa_group->lock;
 
2098		spin_lock_irq(group_lock);
2099	}
2100
2101	/* Find the node with the highest number of faults */
2102	for_each_online_node(nid) {
2103		/* Keep track of the offsets in numa_faults array */
2104		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2105		unsigned long faults = 0, group_faults = 0;
2106		int priv;
2107
2108		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2109			long diff, f_diff, f_weight;
2110
2111			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2112			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2113			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2114			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2115
2116			/* Decay existing window, copy faults since last scan */
2117			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2118			fault_types[priv] += p->numa_faults[membuf_idx];
2119			p->numa_faults[membuf_idx] = 0;
2120
2121			/*
2122			 * Normalize the faults_from, so all tasks in a group
2123			 * count according to CPU use, instead of by the raw
2124			 * number of faults. Tasks with little runtime have
2125			 * little over-all impact on throughput, and thus their
2126			 * faults are less important.
2127			 */
2128			f_weight = div64_u64(runtime << 16, period + 1);
2129			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2130				   (total_faults + 1);
2131			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2132			p->numa_faults[cpubuf_idx] = 0;
2133
2134			p->numa_faults[mem_idx] += diff;
2135			p->numa_faults[cpu_idx] += f_diff;
2136			faults += p->numa_faults[mem_idx];
2137			p->total_numa_faults += diff;
2138			if (p->numa_group) {
2139				/*
2140				 * safe because we can only change our own group
2141				 *
2142				 * mem_idx represents the offset for a given
2143				 * nid and priv in a specific region because it
2144				 * is at the beginning of the numa_faults array.
2145				 */
2146				p->numa_group->faults[mem_idx] += diff;
2147				p->numa_group->faults_cpu[mem_idx] += f_diff;
2148				p->numa_group->total_faults += diff;
2149				group_faults += p->numa_group->faults[mem_idx];
2150			}
2151		}
2152
2153		if (faults > max_faults) {
2154			max_faults = faults;
 
 
 
 
 
2155			max_nid = nid;
2156		}
2157
2158		if (group_faults > max_group_faults) {
2159			max_group_faults = group_faults;
2160			max_group_nid = nid;
2161		}
2162	}
2163
2164	update_task_scan_period(p, fault_types[0], fault_types[1]);
2165
2166	if (p->numa_group) {
2167		numa_group_count_active_nodes(p->numa_group);
2168		spin_unlock_irq(group_lock);
2169		max_nid = preferred_group_nid(p, max_group_nid);
2170	}
2171
2172	if (max_faults) {
2173		/* Set the new preferred node */
2174		if (max_nid != p->numa_preferred_nid)
2175			sched_setnuma(p, max_nid);
2176
2177		if (task_node(p) != p->numa_preferred_nid)
2178			numa_migrate_preferred(p);
2179	}
 
 
2180}
2181
2182static inline int get_numa_group(struct numa_group *grp)
2183{
2184	return atomic_inc_not_zero(&grp->refcount);
2185}
2186
2187static inline void put_numa_group(struct numa_group *grp)
2188{
2189	if (atomic_dec_and_test(&grp->refcount))
2190		kfree_rcu(grp, rcu);
2191}
2192
2193static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2194			int *priv)
2195{
2196	struct numa_group *grp, *my_grp;
2197	struct task_struct *tsk;
2198	bool join = false;
2199	int cpu = cpupid_to_cpu(cpupid);
2200	int i;
2201
2202	if (unlikely(!p->numa_group)) {
2203		unsigned int size = sizeof(struct numa_group) +
2204				    4*nr_node_ids*sizeof(unsigned long);
2205
2206		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2207		if (!grp)
2208			return;
2209
2210		atomic_set(&grp->refcount, 1);
2211		grp->active_nodes = 1;
2212		grp->max_faults_cpu = 0;
2213		spin_lock_init(&grp->lock);
2214		grp->gid = p->pid;
2215		/* Second half of the array tracks nids where faults happen */
2216		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2217						nr_node_ids;
2218
2219		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2220			grp->faults[i] = p->numa_faults[i];
2221
2222		grp->total_faults = p->total_numa_faults;
2223
2224		grp->nr_tasks++;
2225		rcu_assign_pointer(p->numa_group, grp);
2226	}
2227
2228	rcu_read_lock();
2229	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2230
2231	if (!cpupid_match_pid(tsk, cpupid))
2232		goto no_join;
2233
2234	grp = rcu_dereference(tsk->numa_group);
2235	if (!grp)
2236		goto no_join;
2237
2238	my_grp = p->numa_group;
2239	if (grp == my_grp)
2240		goto no_join;
2241
2242	/*
2243	 * Only join the other group if its bigger; if we're the bigger group,
2244	 * the other task will join us.
2245	 */
2246	if (my_grp->nr_tasks > grp->nr_tasks)
2247		goto no_join;
2248
2249	/*
2250	 * Tie-break on the grp address.
2251	 */
2252	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2253		goto no_join;
2254
2255	/* Always join threads in the same process. */
2256	if (tsk->mm == current->mm)
2257		join = true;
2258
2259	/* Simple filter to avoid false positives due to PID collisions */
2260	if (flags & TNF_SHARED)
2261		join = true;
2262
2263	/* Update priv based on whether false sharing was detected */
2264	*priv = !join;
2265
2266	if (join && !get_numa_group(grp))
2267		goto no_join;
2268
2269	rcu_read_unlock();
2270
2271	if (!join)
2272		return;
2273
2274	BUG_ON(irqs_disabled());
2275	double_lock_irq(&my_grp->lock, &grp->lock);
2276
2277	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2278		my_grp->faults[i] -= p->numa_faults[i];
2279		grp->faults[i] += p->numa_faults[i];
2280	}
2281	my_grp->total_faults -= p->total_numa_faults;
2282	grp->total_faults += p->total_numa_faults;
2283
2284	my_grp->nr_tasks--;
2285	grp->nr_tasks++;
2286
2287	spin_unlock(&my_grp->lock);
2288	spin_unlock_irq(&grp->lock);
2289
2290	rcu_assign_pointer(p->numa_group, grp);
2291
2292	put_numa_group(my_grp);
2293	return;
2294
2295no_join:
2296	rcu_read_unlock();
2297	return;
2298}
2299
2300void task_numa_free(struct task_struct *p)
2301{
2302	struct numa_group *grp = p->numa_group;
2303	void *numa_faults = p->numa_faults;
 
 
 
 
 
 
 
 
2304	unsigned long flags;
2305	int i;
2306
 
 
 
2307	if (grp) {
2308		spin_lock_irqsave(&grp->lock, flags);
2309		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2310			grp->faults[i] -= p->numa_faults[i];
2311		grp->total_faults -= p->total_numa_faults;
2312
2313		grp->nr_tasks--;
2314		spin_unlock_irqrestore(&grp->lock, flags);
2315		RCU_INIT_POINTER(p->numa_group, NULL);
2316		put_numa_group(grp);
2317	}
2318
2319	p->numa_faults = NULL;
2320	kfree(numa_faults);
 
 
 
 
 
 
2321}
2322
2323/*
2324 * Got a PROT_NONE fault for a page on @node.
2325 */
2326void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2327{
2328	struct task_struct *p = current;
2329	bool migrated = flags & TNF_MIGRATED;
2330	int cpu_node = task_node(current);
2331	int local = !!(flags & TNF_FAULT_LOCAL);
2332	struct numa_group *ng;
2333	int priv;
2334
2335	if (!static_branch_likely(&sched_numa_balancing))
2336		return;
2337
2338	/* for example, ksmd faulting in a user's mm */
2339	if (!p->mm)
2340		return;
2341
2342	/* Allocate buffer to track faults on a per-node basis */
2343	if (unlikely(!p->numa_faults)) {
2344		int size = sizeof(*p->numa_faults) *
2345			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2346
2347		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2348		if (!p->numa_faults)
2349			return;
2350
2351		p->total_numa_faults = 0;
2352		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2353	}
2354
2355	/*
2356	 * First accesses are treated as private, otherwise consider accesses
2357	 * to be private if the accessing pid has not changed
2358	 */
2359	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2360		priv = 1;
2361	} else {
2362		priv = cpupid_match_pid(p, last_cpupid);
2363		if (!priv && !(flags & TNF_NO_GROUP))
2364			task_numa_group(p, last_cpupid, flags, &priv);
2365	}
2366
2367	/*
2368	 * If a workload spans multiple NUMA nodes, a shared fault that
2369	 * occurs wholly within the set of nodes that the workload is
2370	 * actively using should be counted as local. This allows the
2371	 * scan rate to slow down when a workload has settled down.
2372	 */
2373	ng = p->numa_group;
2374	if (!priv && !local && ng && ng->active_nodes > 1 &&
2375				numa_is_active_node(cpu_node, ng) &&
2376				numa_is_active_node(mem_node, ng))
2377		local = 1;
2378
2379	task_numa_placement(p);
2380
2381	/*
2382	 * Retry task to preferred node migration periodically, in case it
2383	 * case it previously failed, or the scheduler moved us.
2384	 */
2385	if (time_after(jiffies, p->numa_migrate_retry))
 
2386		numa_migrate_preferred(p);
 
2387
2388	if (migrated)
2389		p->numa_pages_migrated += pages;
2390	if (flags & TNF_MIGRATE_FAIL)
2391		p->numa_faults_locality[2] += pages;
2392
2393	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2394	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2395	p->numa_faults_locality[local] += pages;
2396}
2397
2398static void reset_ptenuma_scan(struct task_struct *p)
2399{
2400	/*
2401	 * We only did a read acquisition of the mmap sem, so
2402	 * p->mm->numa_scan_seq is written to without exclusive access
2403	 * and the update is not guaranteed to be atomic. That's not
2404	 * much of an issue though, since this is just used for
2405	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2406	 * expensive, to avoid any form of compiler optimizations:
2407	 */
2408	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2409	p->mm->numa_scan_offset = 0;
2410}
2411
2412/*
2413 * The expensive part of numa migration is done from task_work context.
2414 * Triggered from task_tick_numa().
2415 */
2416void task_numa_work(struct callback_head *work)
2417{
2418	unsigned long migrate, next_scan, now = jiffies;
2419	struct task_struct *p = current;
2420	struct mm_struct *mm = p->mm;
2421	u64 runtime = p->se.sum_exec_runtime;
2422	struct vm_area_struct *vma;
2423	unsigned long start, end;
2424	unsigned long nr_pte_updates = 0;
2425	long pages, virtpages;
2426
2427	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2428
2429	work->next = work; /* protect against double add */
2430	/*
2431	 * Who cares about NUMA placement when they're dying.
2432	 *
2433	 * NOTE: make sure not to dereference p->mm before this check,
2434	 * exit_task_work() happens _after_ exit_mm() so we could be called
2435	 * without p->mm even though we still had it when we enqueued this
2436	 * work.
2437	 */
2438	if (p->flags & PF_EXITING)
2439		return;
2440
2441	if (!mm->numa_next_scan) {
2442		mm->numa_next_scan = now +
2443			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2444	}
2445
2446	/*
2447	 * Enforce maximal scan/migration frequency..
2448	 */
2449	migrate = mm->numa_next_scan;
2450	if (time_before(now, migrate))
2451		return;
2452
2453	if (p->numa_scan_period == 0) {
2454		p->numa_scan_period_max = task_scan_max(p);
2455		p->numa_scan_period = task_scan_min(p);
2456	}
2457
2458	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2459	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2460		return;
2461
2462	/*
2463	 * Delay this task enough that another task of this mm will likely win
2464	 * the next time around.
2465	 */
2466	p->node_stamp += 2 * TICK_NSEC;
2467
2468	start = mm->numa_scan_offset;
2469	pages = sysctl_numa_balancing_scan_size;
2470	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2471	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2472	if (!pages)
2473		return;
2474
2475
2476	down_read(&mm->mmap_sem);
 
2477	vma = find_vma(mm, start);
2478	if (!vma) {
2479		reset_ptenuma_scan(p);
2480		start = 0;
2481		vma = mm->mmap;
2482	}
2483	for (; vma; vma = vma->vm_next) {
2484		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2485			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2486			continue;
2487		}
2488
2489		/*
2490		 * Shared library pages mapped by multiple processes are not
2491		 * migrated as it is expected they are cache replicated. Avoid
2492		 * hinting faults in read-only file-backed mappings or the vdso
2493		 * as migrating the pages will be of marginal benefit.
2494		 */
2495		if (!vma->vm_mm ||
2496		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2497			continue;
2498
2499		/*
2500		 * Skip inaccessible VMAs to avoid any confusion between
2501		 * PROT_NONE and NUMA hinting ptes
2502		 */
2503		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2504			continue;
2505
2506		do {
2507			start = max(start, vma->vm_start);
2508			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2509			end = min(end, vma->vm_end);
2510			nr_pte_updates = change_prot_numa(vma, start, end);
2511
2512			/*
2513			 * Try to scan sysctl_numa_balancing_size worth of
2514			 * hpages that have at least one present PTE that
2515			 * is not already pte-numa. If the VMA contains
2516			 * areas that are unused or already full of prot_numa
2517			 * PTEs, scan up to virtpages, to skip through those
2518			 * areas faster.
2519			 */
2520			if (nr_pte_updates)
2521				pages -= (end - start) >> PAGE_SHIFT;
2522			virtpages -= (end - start) >> PAGE_SHIFT;
2523
2524			start = end;
2525			if (pages <= 0 || virtpages <= 0)
2526				goto out;
2527
2528			cond_resched();
2529		} while (end != vma->vm_end);
2530	}
2531
2532out:
2533	/*
2534	 * It is possible to reach the end of the VMA list but the last few
2535	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2536	 * would find the !migratable VMA on the next scan but not reset the
2537	 * scanner to the start so check it now.
2538	 */
2539	if (vma)
2540		mm->numa_scan_offset = start;
2541	else
2542		reset_ptenuma_scan(p);
2543	up_read(&mm->mmap_sem);
2544
2545	/*
2546	 * Make sure tasks use at least 32x as much time to run other code
2547	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2548	 * Usually update_task_scan_period slows down scanning enough; on an
2549	 * overloaded system we need to limit overhead on a per task basis.
2550	 */
2551	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2552		u64 diff = p->se.sum_exec_runtime - runtime;
2553		p->node_stamp += 32 * diff;
2554	}
2555}
2556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2557/*
2558 * Drive the periodic memory faults..
2559 */
2560void task_tick_numa(struct rq *rq, struct task_struct *curr)
2561{
2562	struct callback_head *work = &curr->numa_work;
2563	u64 period, now;
2564
2565	/*
2566	 * We don't care about NUMA placement if we don't have memory.
2567	 */
2568	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2569		return;
2570
2571	/*
2572	 * Using runtime rather than walltime has the dual advantage that
2573	 * we (mostly) drive the selection from busy threads and that the
2574	 * task needs to have done some actual work before we bother with
2575	 * NUMA placement.
2576	 */
2577	now = curr->se.sum_exec_runtime;
2578	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2579
2580	if (now > curr->node_stamp + period) {
2581		if (!curr->node_stamp)
2582			curr->numa_scan_period = task_scan_min(curr);
2583		curr->node_stamp += period;
2584
2585		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2586			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2587			task_work_add(curr, work, true);
2588		}
2589	}
2590}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2591#else
2592static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2593{
2594}
2595
2596static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2597{
2598}
2599
2600static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2601{
2602}
 
 
 
 
 
2603#endif /* CONFIG_NUMA_BALANCING */
2604
2605static void
2606account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2607{
2608	update_load_add(&cfs_rq->load, se->load.weight);
2609	if (!parent_entity(se))
2610		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2611#ifdef CONFIG_SMP
2612	if (entity_is_task(se)) {
2613		struct rq *rq = rq_of(cfs_rq);
2614
2615		account_numa_enqueue(rq, task_of(se));
2616		list_add(&se->group_node, &rq->cfs_tasks);
2617	}
2618#endif
2619	cfs_rq->nr_running++;
2620}
2621
2622static void
2623account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2624{
2625	update_load_sub(&cfs_rq->load, se->load.weight);
2626	if (!parent_entity(se))
2627		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2628#ifdef CONFIG_SMP
2629	if (entity_is_task(se)) {
2630		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2631		list_del_init(&se->group_node);
2632	}
2633#endif
2634	cfs_rq->nr_running--;
2635}
2636
2637#ifdef CONFIG_FAIR_GROUP_SCHED
2638# ifdef CONFIG_SMP
2639static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2640{
2641	long tg_weight, load, shares;
2642
2643	/*
2644	 * This really should be: cfs_rq->avg.load_avg, but instead we use
2645	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2646	 * the shares for small weight interactive tasks.
2647	 */
2648	load = scale_load_down(cfs_rq->load.weight);
2649
2650	tg_weight = atomic_long_read(&tg->load_avg);
2651
2652	/* Ensure tg_weight >= load */
2653	tg_weight -= cfs_rq->tg_load_avg_contrib;
2654	tg_weight += load;
 
2655
2656	shares = (tg->shares * load);
2657	if (tg_weight)
2658		shares /= tg_weight;
 
 
 
 
 
 
 
 
 
 
 
 
 
2659
2660	if (shares < MIN_SHARES)
2661		shares = MIN_SHARES;
2662	if (shares > tg->shares)
2663		shares = tg->shares;
 
 
 
 
 
 
2664
2665	return shares;
 
 
 
 
 
2666}
2667# else /* CONFIG_SMP */
2668static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
 
2669{
2670	return tg->shares;
 
2671}
2672# endif /* CONFIG_SMP */
 
 
 
 
 
2673
2674static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2675			    unsigned long weight)
2676{
2677	if (se->on_rq) {
2678		/* commit outstanding execution time */
2679		if (cfs_rq->curr == se)
2680			update_curr(cfs_rq);
2681		account_entity_dequeue(cfs_rq, se);
2682	}
 
2683
2684	update_load_set(&se->load, weight);
2685
2686	if (se->on_rq)
2687		account_entity_enqueue(cfs_rq, se);
2688}
2689
2690static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2691
2692static void update_cfs_shares(struct cfs_rq *cfs_rq)
2693{
2694	struct task_group *tg;
2695	struct sched_entity *se;
2696	long shares;
2697
2698	tg = cfs_rq->tg;
2699	se = tg->se[cpu_of(rq_of(cfs_rq))];
2700	if (!se || throttled_hierarchy(cfs_rq))
2701		return;
2702#ifndef CONFIG_SMP
2703	if (likely(se->load.weight == tg->shares))
2704		return;
2705#endif
2706	shares = calc_cfs_shares(cfs_rq, tg);
2707
2708	reweight_entity(cfs_rq_of(se), se, shares);
2709}
2710#else /* CONFIG_FAIR_GROUP_SCHED */
2711static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2712{
2713}
2714#endif /* CONFIG_FAIR_GROUP_SCHED */
2715
2716#ifdef CONFIG_SMP
2717/* Precomputed fixed inverse multiplies for multiplication by y^n */
2718static const u32 runnable_avg_yN_inv[] = {
2719	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2720	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2721	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2722	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2723	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2724	0x85aac367, 0x82cd8698,
2725};
2726
2727/*
2728 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2729 * over-estimates when re-combining.
2730 */
2731static const u32 runnable_avg_yN_sum[] = {
2732	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2733	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2734	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2735};
2736
2737/*
2738 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2739 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2740 * were generated:
2741 */
2742static const u32 __accumulated_sum_N32[] = {
2743	    0, 23371, 35056, 40899, 43820, 45281,
2744	46011, 46376, 46559, 46650, 46696, 46719,
2745};
2746
2747/*
2748 * Approximate:
2749 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2750 */
2751static __always_inline u64 decay_load(u64 val, u64 n)
2752{
2753	unsigned int local_n;
2754
2755	if (!n)
2756		return val;
2757	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2758		return 0;
2759
2760	/* after bounds checking we can collapse to 32-bit */
2761	local_n = n;
 
2762
2763	/*
2764	 * As y^PERIOD = 1/2, we can combine
2765	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2766	 * With a look-up table which covers y^n (n<PERIOD)
2767	 *
2768	 * To achieve constant time decay_load.
2769	 */
2770	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2771		val >>= local_n / LOAD_AVG_PERIOD;
2772		local_n %= LOAD_AVG_PERIOD;
2773	}
2774
2775	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2776	return val;
2777}
2778
2779/*
2780 * For updates fully spanning n periods, the contribution to runnable
2781 * average will be: \Sum 1024*y^n
2782 *
2783 * We can compute this reasonably efficiently by combining:
2784 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2785 */
2786static u32 __compute_runnable_contrib(u64 n)
2787{
2788	u32 contrib = 0;
2789
2790	if (likely(n <= LOAD_AVG_PERIOD))
2791		return runnable_avg_yN_sum[n];
2792	else if (unlikely(n >= LOAD_AVG_MAX_N))
2793		return LOAD_AVG_MAX;
2794
2795	/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2796	contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2797	n %= LOAD_AVG_PERIOD;
2798	contrib = decay_load(contrib, n);
2799	return contrib + runnable_avg_yN_sum[n];
2800}
2801
2802#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2803
2804/*
2805 * We can represent the historical contribution to runnable average as the
2806 * coefficients of a geometric series.  To do this we sub-divide our runnable
2807 * history into segments of approximately 1ms (1024us); label the segment that
2808 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2809 *
2810 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2811 *      p0            p1           p2
2812 *     (now)       (~1ms ago)  (~2ms ago)
2813 *
2814 * Let u_i denote the fraction of p_i that the entity was runnable.
 
2815 *
2816 * We then designate the fractions u_i as our co-efficients, yielding the
2817 * following representation of historical load:
2818 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2819 *
2820 * We choose y based on the with of a reasonably scheduling period, fixing:
2821 *   y^32 = 0.5
 
2822 *
2823 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2824 * approximately half as much as the contribution to load within the last ms
2825 * (u_0).
2826 *
2827 * When a period "rolls over" and we have new u_0`, multiplying the previous
2828 * sum again by y is sufficient to update:
2829 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2830 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 
 
 
 
 
 
 
 
 
 
 
 
 
2831 */
2832static __always_inline int
2833__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2834		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2835{
2836	u64 delta, scaled_delta, periods;
2837	u32 contrib;
2838	unsigned int delta_w, scaled_delta_w, decayed = 0;
2839	unsigned long scale_freq, scale_cpu;
2840
2841	delta = now - sa->last_update_time;
2842	/*
2843	 * This should only happen when time goes backwards, which it
2844	 * unfortunately does during sched clock init when we swap over to TSC.
2845	 */
2846	if ((s64)delta < 0) {
2847		sa->last_update_time = now;
2848		return 0;
2849	}
2850
2851	/*
2852	 * Use 1024ns as the unit of measurement since it's a reasonable
2853	 * approximation of 1us and fast to compute.
2854	 */
2855	delta >>= 10;
2856	if (!delta)
2857		return 0;
2858	sa->last_update_time = now;
2859
2860	scale_freq = arch_scale_freq_capacity(NULL, cpu);
2861	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2862
2863	/* delta_w is the amount already accumulated against our next period */
2864	delta_w = sa->period_contrib;
2865	if (delta + delta_w >= 1024) {
2866		decayed = 1;
2867
2868		/* how much left for next period will start over, we don't know yet */
2869		sa->period_contrib = 0;
 
2870
2871		/*
2872		 * Now that we know we're crossing a period boundary, figure
2873		 * out how much from delta we need to complete the current
2874		 * period and accrue it.
2875		 */
2876		delta_w = 1024 - delta_w;
2877		scaled_delta_w = cap_scale(delta_w, scale_freq);
2878		if (weight) {
2879			sa->load_sum += weight * scaled_delta_w;
2880			if (cfs_rq) {
2881				cfs_rq->runnable_load_sum +=
2882						weight * scaled_delta_w;
2883			}
2884		}
2885		if (running)
2886			sa->util_sum += scaled_delta_w * scale_cpu;
2887
2888		delta -= delta_w;
2889
2890		/* Figure out how many additional periods this update spans */
2891		periods = delta / 1024;
2892		delta %= 1024;
 
 
 
 
 
2893
2894		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2895		if (cfs_rq) {
2896			cfs_rq->runnable_load_sum =
2897				decay_load(cfs_rq->runnable_load_sum, periods + 1);
2898		}
2899		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2900
2901		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2902		contrib = __compute_runnable_contrib(periods);
2903		contrib = cap_scale(contrib, scale_freq);
2904		if (weight) {
2905			sa->load_sum += weight * contrib;
2906			if (cfs_rq)
2907				cfs_rq->runnable_load_sum += weight * contrib;
2908		}
2909		if (running)
2910			sa->util_sum += contrib * scale_cpu;
2911	}
2912
2913	/* Remainder of delta accrued against u_0` */
2914	scaled_delta = cap_scale(delta, scale_freq);
2915	if (weight) {
2916		sa->load_sum += weight * scaled_delta;
2917		if (cfs_rq)
2918			cfs_rq->runnable_load_sum += weight * scaled_delta;
2919	}
2920	if (running)
2921		sa->util_sum += scaled_delta * scale_cpu;
2922
2923	sa->period_contrib += delta;
 
 
 
 
2924
2925	if (decayed) {
2926		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2927		if (cfs_rq) {
2928			cfs_rq->runnable_load_avg =
2929				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2930		}
2931		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2932	}
2933
2934	return decayed;
 
 
2935}
 
2936
2937/*
2938 * Signed add and clamp on underflow.
2939 *
2940 * Explicitly do a load-store to ensure the intermediate value never hits
2941 * memory. This allows lockless observations without ever seeing the negative
2942 * values.
2943 */
2944#define add_positive(_ptr, _val) do {                           \
2945	typeof(_ptr) ptr = (_ptr);                              \
2946	typeof(_val) val = (_val);                              \
2947	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2948								\
2949	res = var + val;                                        \
2950								\
2951	if (val < 0 && res > var)                               \
2952		res = 0;                                        \
2953								\
2954	WRITE_ONCE(*ptr, res);                                  \
2955} while (0)
2956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2957#ifdef CONFIG_FAIR_GROUP_SCHED
2958/**
2959 * update_tg_load_avg - update the tg's load avg
2960 * @cfs_rq: the cfs_rq whose avg changed
2961 * @force: update regardless of how small the difference
2962 *
2963 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2964 * However, because tg->load_avg is a global value there are performance
2965 * considerations.
2966 *
2967 * In order to avoid having to look at the other cfs_rq's, we use a
2968 * differential update where we store the last value we propagated. This in
2969 * turn allows skipping updates if the differential is 'small'.
2970 *
2971 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2972 * done) and effective_load() (which is not done because it is too costly).
2973 */
2974static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2975{
2976	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2977
2978	/*
2979	 * No need to update load_avg for root_task_group as it is not used.
2980	 */
2981	if (cfs_rq->tg == &root_task_group)
2982		return;
2983
2984	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2985		atomic_long_add(delta, &cfs_rq->tg->load_avg);
2986		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2987	}
2988}
2989
2990/*
2991 * Called within set_task_rq() right before setting a task's cpu. The
2992 * caller only guarantees p->pi_lock is held; no other assumptions,
2993 * including the state of rq->lock, should be made.
2994 */
2995void set_task_rq_fair(struct sched_entity *se,
2996		      struct cfs_rq *prev, struct cfs_rq *next)
2997{
 
 
 
2998	if (!sched_feat(ATTACH_AGE_LOAD))
2999		return;
3000
3001	/*
3002	 * We are supposed to update the task to "current" time, then its up to
3003	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3004	 * getting what current time is, so simply throw away the out-of-date
3005	 * time. This will result in the wakee task is less decayed, but giving
3006	 * the wakee more load sounds not bad.
3007	 */
3008	if (se->avg.last_update_time && prev) {
3009		u64 p_last_update_time;
3010		u64 n_last_update_time;
3011
3012#ifndef CONFIG_64BIT
 
3013		u64 p_last_update_time_copy;
3014		u64 n_last_update_time_copy;
3015
3016		do {
3017			p_last_update_time_copy = prev->load_last_update_time_copy;
3018			n_last_update_time_copy = next->load_last_update_time_copy;
3019
3020			smp_rmb();
3021
3022			p_last_update_time = prev->avg.last_update_time;
3023			n_last_update_time = next->avg.last_update_time;
3024
3025		} while (p_last_update_time != p_last_update_time_copy ||
3026			 n_last_update_time != n_last_update_time_copy);
 
3027#else
3028		p_last_update_time = prev->avg.last_update_time;
3029		n_last_update_time = next->avg.last_update_time;
3030#endif
3031		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
3032				  &se->avg, 0, 0, NULL);
3033		se->avg.last_update_time = n_last_update_time;
3034	}
3035}
3036
3037/* Take into account change of utilization of a child task group */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3038static inline void
3039update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3040{
3041	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3042	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
 
3043
3044	/* Nothing to update */
3045	if (!delta)
3046		return;
3047
 
 
 
 
 
 
3048	/* Set new sched_entity's utilization */
3049	se->avg.util_avg = gcfs_rq->avg.util_avg;
3050	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3051
3052	/* Update parent cfs_rq utilization */
3053	add_positive(&cfs_rq->avg.util_avg, delta);
3054	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3055}
3056
3057/* Take into account change of load of a child task group */
3058static inline void
3059update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3060{
3061	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3062	long delta, load = gcfs_rq->avg.load_avg;
 
 
 
 
3063
3064	/*
3065	 * If the load of group cfs_rq is null, the load of the
3066	 * sched_entity will also be null so we can skip the formula
3067	 */
3068	if (load) {
3069		long tg_load;
3070
3071		/* Get tg's load and ensure tg_load > 0 */
3072		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
 
 
 
 
 
 
3073
3074		/* Ensure tg_load >= load and updated with current load*/
3075		tg_load -= gcfs_rq->tg_load_avg_contrib;
3076		tg_load += load;
 
 
 
 
 
3077
3078		/*
3079		 * We need to compute a correction term in the case that the
3080		 * task group is consuming more CPU than a task of equal
3081		 * weight. A task with a weight equals to tg->shares will have
3082		 * a load less or equal to scale_load_down(tg->shares).
3083		 * Similarly, the sched_entities that represent the task group
3084		 * at parent level, can't have a load higher than
3085		 * scale_load_down(tg->shares). And the Sum of sched_entities'
3086		 * load must be <= scale_load_down(tg->shares).
3087		 */
3088		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3089			/* scale gcfs_rq's load into tg's shares*/
3090			load *= scale_load_down(gcfs_rq->tg->shares);
3091			load /= tg_load;
3092		}
3093	}
3094
3095	delta = load - se->avg.load_avg;
3096
3097	/* Nothing to update */
3098	if (!delta)
3099		return;
 
 
3100
3101	/* Set new sched_entity's load */
3102	se->avg.load_avg = load;
3103	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
3104
3105	/* Update parent cfs_rq load */
3106	add_positive(&cfs_rq->avg.load_avg, delta);
3107	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3108
3109	/*
3110	 * If the sched_entity is already enqueued, we also have to update the
3111	 * runnable load avg.
 
 
3112	 */
3113	if (se->on_rq) {
3114		/* Update parent cfs_rq runnable_load_avg */
3115		add_positive(&cfs_rq->runnable_load_avg, delta);
3116		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3117	}
3118}
3119
3120static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3121{
3122	cfs_rq->propagate_avg = 1;
3123}
3124
3125static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3126{
3127	struct cfs_rq *cfs_rq = group_cfs_rq(se);
3128
3129	if (!cfs_rq->propagate_avg)
3130		return 0;
 
 
 
3131
3132	cfs_rq->propagate_avg = 0;
3133	return 1;
 
 
3134}
3135
3136/* Update task and its cfs_rq load average */
3137static inline int propagate_entity_load_avg(struct sched_entity *se)
3138{
3139	struct cfs_rq *cfs_rq;
3140
3141	if (entity_is_task(se))
3142		return 0;
3143
3144	if (!test_and_clear_tg_cfs_propagate(se))
 
3145		return 0;
3146
 
 
3147	cfs_rq = cfs_rq_of(se);
3148
3149	set_tg_cfs_propagate(cfs_rq);
 
 
 
 
3150
3151	update_tg_cfs_util(cfs_rq, se);
3152	update_tg_cfs_load(cfs_rq, se);
3153
3154	return 1;
3155}
3156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3157#else /* CONFIG_FAIR_GROUP_SCHED */
3158
3159static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3160
3161static inline int propagate_entity_load_avg(struct sched_entity *se)
3162{
3163	return 0;
3164}
3165
3166static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3167
3168#endif /* CONFIG_FAIR_GROUP_SCHED */
3169
3170static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3171{
3172	if (&this_rq()->cfs == cfs_rq) {
3173		/*
3174		 * There are a few boundary cases this might miss but it should
3175		 * get called often enough that that should (hopefully) not be
3176		 * a real problem -- added to that it only calls on the local
3177		 * CPU, so if we enqueue remotely we'll miss an update, but
3178		 * the next tick/schedule should update.
3179		 *
3180		 * It will not get called when we go idle, because the idle
3181		 * thread is a different class (!fair), nor will the utilization
3182		 * number include things like RT tasks.
3183		 *
3184		 * As is, the util number is not freq-invariant (we'd have to
3185		 * implement arch_scale_freq_capacity() for that).
3186		 *
3187		 * See cpu_util().
3188		 */
3189		cpufreq_update_util(rq_of(cfs_rq), 0);
3190	}
3191}
3192
3193/*
3194 * Unsigned subtract and clamp on underflow.
3195 *
3196 * Explicitly do a load-store to ensure the intermediate value never hits
3197 * memory. This allows lockless observations without ever seeing the negative
3198 * values.
3199 */
3200#define sub_positive(_ptr, _val) do {				\
3201	typeof(_ptr) ptr = (_ptr);				\
3202	typeof(*ptr) val = (_val);				\
3203	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3204	res = var - val;					\
3205	if (res > var)						\
3206		res = 0;					\
3207	WRITE_ONCE(*ptr, res);					\
3208} while (0)
3209
3210/**
3211 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3212 * @now: current time, as per cfs_rq_clock_task()
3213 * @cfs_rq: cfs_rq to update
3214 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3215 *
3216 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3217 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3218 * post_init_entity_util_avg().
3219 *
3220 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3221 *
3222 * Returns true if the load decayed or we removed load.
3223 *
3224 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3225 * call update_tg_load_avg() when this function returns true.
3226 */
3227static inline int
3228update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3229{
 
3230	struct sched_avg *sa = &cfs_rq->avg;
3231	int decayed, removed_load = 0, removed_util = 0;
 
 
 
 
 
 
 
 
 
 
 
3232
3233	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3234		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3235		sub_positive(&sa->load_avg, r);
3236		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3237		removed_load = 1;
3238		set_tg_cfs_propagate(cfs_rq);
3239	}
3240
3241	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3242		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3243		sub_positive(&sa->util_avg, r);
3244		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3245		removed_util = 1;
3246		set_tg_cfs_propagate(cfs_rq);
 
 
 
 
 
 
 
 
 
 
 
3247	}
3248
3249	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3250		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
3251
3252#ifndef CONFIG_64BIT
3253	smp_wmb();
3254	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3255#endif
3256
3257	if (update_freq && (decayed || removed_util))
3258		cfs_rq_util_change(cfs_rq);
3259
3260	return decayed || removed_load;
3261}
3262
3263/*
3264 * Optional action to be done while updating the load average
3265 */
3266#define UPDATE_TG	0x1
3267#define SKIP_AGE_LOAD	0x2
3268
3269/* Update task and its cfs_rq load average */
3270static inline void update_load_avg(struct sched_entity *se, int flags)
3271{
3272	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3273	u64 now = cfs_rq_clock_task(cfs_rq);
3274	struct rq *rq = rq_of(cfs_rq);
3275	int cpu = cpu_of(rq);
3276	int decayed;
3277
3278	/*
3279	 * Track task load average for carrying it to new CPU after migrated, and
3280	 * track group sched_entity load average for task_h_load calc in migration
3281	 */
3282	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
3283		__update_load_avg(now, cpu, &se->avg,
3284			  se->on_rq * scale_load_down(se->load.weight),
3285			  cfs_rq->curr == se, NULL);
3286	}
3287
3288	decayed  = update_cfs_rq_load_avg(now, cfs_rq, true);
3289	decayed |= propagate_entity_load_avg(se);
3290
3291	if (decayed && (flags & UPDATE_TG))
3292		update_tg_load_avg(cfs_rq, 0);
3293}
3294
3295/**
3296 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3297 * @cfs_rq: cfs_rq to attach to
3298 * @se: sched_entity to attach
3299 *
3300 * Must call update_cfs_rq_load_avg() before this, since we rely on
3301 * cfs_rq->avg.last_update_time being current.
3302 */
3303static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3304{
 
 
 
 
 
 
 
 
 
 
 
 
 
3305	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3306	cfs_rq->avg.load_avg += se->avg.load_avg;
3307	cfs_rq->avg.load_sum += se->avg.load_sum;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3308	cfs_rq->avg.util_avg += se->avg.util_avg;
3309	cfs_rq->avg.util_sum += se->avg.util_sum;
3310	set_tg_cfs_propagate(cfs_rq);
 
 
 
3311
3312	cfs_rq_util_change(cfs_rq);
 
 
3313}
3314
3315/**
3316 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3317 * @cfs_rq: cfs_rq to detach from
3318 * @se: sched_entity to detach
3319 *
3320 * Must call update_cfs_rq_load_avg() before this, since we rely on
3321 * cfs_rq->avg.last_update_time being current.
3322 */
3323static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3324{
3325
3326	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3327	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3328	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3329	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3330	set_tg_cfs_propagate(cfs_rq);
 
3331
3332	cfs_rq_util_change(cfs_rq);
 
 
 
 
3333}
3334
3335/* Add the load generated by se into cfs_rq's load average */
3336static inline void
3337enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 
 
 
 
 
 
3338{
3339	struct sched_avg *sa = &se->avg;
 
 
 
 
 
 
 
 
3340
3341	cfs_rq->runnable_load_avg += sa->load_avg;
3342	cfs_rq->runnable_load_sum += sa->load_sum;
 
 
3343
3344	if (!sa->last_update_time) {
 
 
 
 
 
 
3345		attach_entity_load_avg(cfs_rq, se);
3346		update_tg_load_avg(cfs_rq, 0);
3347	}
3348}
3349
3350/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3351static inline void
3352dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3353{
3354	cfs_rq->runnable_load_avg =
3355		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3356	cfs_rq->runnable_load_sum =
3357		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3358}
3359
3360#ifndef CONFIG_64BIT
3361static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3362{
3363	u64 last_update_time_copy;
3364	u64 last_update_time;
3365
3366	do {
3367		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3368		smp_rmb();
3369		last_update_time = cfs_rq->avg.last_update_time;
3370	} while (last_update_time != last_update_time_copy);
3371
3372	return last_update_time;
3373}
3374#else
3375static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3376{
3377	return cfs_rq->avg.last_update_time;
3378}
3379#endif
3380
3381/*
3382 * Synchronize entity load avg of dequeued entity without locking
3383 * the previous rq.
3384 */
3385void sync_entity_load_avg(struct sched_entity *se)
3386{
3387	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3388	u64 last_update_time;
3389
3390	last_update_time = cfs_rq_last_update_time(cfs_rq);
3391	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3392}
3393
3394/*
3395 * Task first catches up with cfs_rq, and then subtract
3396 * itself from the cfs_rq (task must be off the queue now).
3397 */
3398void remove_entity_load_avg(struct sched_entity *se)
3399{
3400	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 
3401
3402	/*
3403	 * tasks cannot exit without having gone through wake_up_new_task() ->
3404	 * post_init_entity_util_avg() which will have added things to the
3405	 * cfs_rq, so we can remove unconditionally.
3406	 *
3407	 * Similarly for groups, they will have passed through
3408	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3409	 * calls this.
3410	 */
3411
3412	sync_entity_load_avg(se);
3413	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3414	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
 
 
 
 
 
3415}
3416
3417static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3418{
3419	return cfs_rq->runnable_load_avg;
3420}
3421
3422static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3423{
3424	return cfs_rq->avg.load_avg;
3425}
3426
3427static int idle_balance(struct rq *this_rq);
3428
3429#else /* CONFIG_SMP */
 
 
 
3430
3431static inline int
3432update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3433{
3434	return 0;
 
 
3435}
3436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3437#define UPDATE_TG	0x0
3438#define SKIP_AGE_LOAD	0x0
 
3439
3440static inline void update_load_avg(struct sched_entity *se, int not_used1)
3441{
3442	cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3443}
3444
3445static inline void
3446enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3447static inline void
3448dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3449static inline void remove_entity_load_avg(struct sched_entity *se) {}
3450
3451static inline void
3452attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3453static inline void
3454detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3455
3456static inline int idle_balance(struct rq *rq)
3457{
3458	return 0;
3459}
3460
 
 
 
 
 
 
 
 
3461#endif /* CONFIG_SMP */
3462
3463static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3464{
3465#ifdef CONFIG_SCHED_DEBUG
3466	s64 d = se->vruntime - cfs_rq->min_vruntime;
3467
3468	if (d < 0)
3469		d = -d;
3470
3471	if (d > 3*sysctl_sched_latency)
3472		schedstat_inc(cfs_rq->nr_spread_over);
3473#endif
3474}
3475
3476static void
3477place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3478{
3479	u64 vruntime = cfs_rq->min_vruntime;
3480
3481	/*
3482	 * The 'current' period is already promised to the current tasks,
3483	 * however the extra weight of the new task will slow them down a
3484	 * little, place the new task so that it fits in the slot that
3485	 * stays open at the end.
3486	 */
3487	if (initial && sched_feat(START_DEBIT))
3488		vruntime += sched_vslice(cfs_rq, se);
3489
3490	/* sleeps up to a single latency don't count. */
3491	if (!initial) {
3492		unsigned long thresh = sysctl_sched_latency;
3493
3494		/*
3495		 * Halve their sleep time's effect, to allow
3496		 * for a gentler effect of sleepers:
3497		 */
3498		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3499			thresh >>= 1;
3500
3501		vruntime -= thresh;
3502	}
3503
3504	/* ensure we never gain time by being placed backwards. */
3505	se->vruntime = max_vruntime(se->vruntime, vruntime);
3506}
3507
3508static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3509
3510static inline void check_schedstat_required(void)
3511{
3512#ifdef CONFIG_SCHEDSTATS
3513	if (schedstat_enabled())
3514		return;
3515
3516	/* Force schedstat enabled if a dependent tracepoint is active */
3517	if (trace_sched_stat_wait_enabled()    ||
3518			trace_sched_stat_sleep_enabled()   ||
3519			trace_sched_stat_iowait_enabled()  ||
3520			trace_sched_stat_blocked_enabled() ||
3521			trace_sched_stat_runtime_enabled())  {
3522		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3523			     "stat_blocked and stat_runtime require the "
3524			     "kernel parameter schedstats=enabled or "
3525			     "kernel.sched_schedstats=1\n");
3526	}
3527#endif
3528}
3529
 
3530
3531/*
3532 * MIGRATION
3533 *
3534 *	dequeue
3535 *	  update_curr()
3536 *	    update_min_vruntime()
3537 *	  vruntime -= min_vruntime
3538 *
3539 *	enqueue
3540 *	  update_curr()
3541 *	    update_min_vruntime()
3542 *	  vruntime += min_vruntime
3543 *
3544 * this way the vruntime transition between RQs is done when both
3545 * min_vruntime are up-to-date.
3546 *
3547 * WAKEUP (remote)
3548 *
3549 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3550 *	  vruntime -= min_vruntime
3551 *
3552 *	enqueue
3553 *	  update_curr()
3554 *	    update_min_vruntime()
3555 *	  vruntime += min_vruntime
3556 *
3557 * this way we don't have the most up-to-date min_vruntime on the originating
3558 * CPU and an up-to-date min_vruntime on the destination CPU.
3559 */
3560
3561static void
3562enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3563{
3564	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3565	bool curr = cfs_rq->curr == se;
3566
3567	/*
3568	 * If we're the current task, we must renormalise before calling
3569	 * update_curr().
3570	 */
3571	if (renorm && curr)
3572		se->vruntime += cfs_rq->min_vruntime;
3573
3574	update_curr(cfs_rq);
3575
3576	/*
3577	 * Otherwise, renormalise after, such that we're placed at the current
3578	 * moment in time, instead of some random moment in the past. Being
3579	 * placed in the past could significantly boost this task to the
3580	 * fairness detriment of existing tasks.
3581	 */
3582	if (renorm && !curr)
3583		se->vruntime += cfs_rq->min_vruntime;
3584
3585	update_load_avg(se, UPDATE_TG);
3586	enqueue_entity_load_avg(cfs_rq, se);
 
 
 
 
 
 
 
 
 
3587	account_entity_enqueue(cfs_rq, se);
3588	update_cfs_shares(cfs_rq);
3589
3590	if (flags & ENQUEUE_WAKEUP)
3591		place_entity(cfs_rq, se, 0);
3592
3593	check_schedstat_required();
3594	update_stats_enqueue(cfs_rq, se, flags);
3595	check_spread(cfs_rq, se);
3596	if (!curr)
3597		__enqueue_entity(cfs_rq, se);
3598	se->on_rq = 1;
3599
3600	if (cfs_rq->nr_running == 1) {
 
 
 
 
 
3601		list_add_leaf_cfs_rq(cfs_rq);
 
 
3602		check_enqueue_throttle(cfs_rq);
3603	}
3604}
3605
3606static void __clear_buddies_last(struct sched_entity *se)
3607{
3608	for_each_sched_entity(se) {
3609		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3610		if (cfs_rq->last != se)
3611			break;
3612
3613		cfs_rq->last = NULL;
3614	}
3615}
3616
3617static void __clear_buddies_next(struct sched_entity *se)
3618{
3619	for_each_sched_entity(se) {
3620		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3621		if (cfs_rq->next != se)
3622			break;
3623
3624		cfs_rq->next = NULL;
3625	}
3626}
3627
3628static void __clear_buddies_skip(struct sched_entity *se)
3629{
3630	for_each_sched_entity(se) {
3631		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3632		if (cfs_rq->skip != se)
3633			break;
3634
3635		cfs_rq->skip = NULL;
3636	}
3637}
3638
3639static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3640{
3641	if (cfs_rq->last == se)
3642		__clear_buddies_last(se);
3643
3644	if (cfs_rq->next == se)
3645		__clear_buddies_next(se);
3646
3647	if (cfs_rq->skip == se)
3648		__clear_buddies_skip(se);
3649}
3650
3651static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3652
3653static void
3654dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3655{
3656	/*
3657	 * Update run-time statistics of the 'current'.
3658	 */
3659	update_curr(cfs_rq);
3660	update_load_avg(se, UPDATE_TG);
3661	dequeue_entity_load_avg(cfs_rq, se);
 
 
 
 
 
 
 
 
 
3662
3663	update_stats_dequeue(cfs_rq, se, flags);
3664
3665	clear_buddies(cfs_rq, se);
3666
3667	if (se != cfs_rq->curr)
3668		__dequeue_entity(cfs_rq, se);
3669	se->on_rq = 0;
3670	account_entity_dequeue(cfs_rq, se);
3671
3672	/*
3673	 * Normalize after update_curr(); which will also have moved
3674	 * min_vruntime if @se is the one holding it back. But before doing
3675	 * update_min_vruntime() again, which will discount @se's position and
3676	 * can move min_vruntime forward still more.
3677	 */
3678	if (!(flags & DEQUEUE_SLEEP))
3679		se->vruntime -= cfs_rq->min_vruntime;
3680
3681	/* return excess runtime on last dequeue */
3682	return_cfs_rq_runtime(cfs_rq);
3683
3684	update_cfs_shares(cfs_rq);
3685
3686	/*
3687	 * Now advance min_vruntime if @se was the entity holding it back,
3688	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3689	 * put back on, and if we advance min_vruntime, we'll be placed back
3690	 * further than we started -- ie. we'll be penalized.
3691	 */
3692	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3693		update_min_vruntime(cfs_rq);
3694}
3695
3696/*
3697 * Preempt the current task with a newly woken task if needed:
3698 */
3699static void
3700check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3701{
3702	unsigned long ideal_runtime, delta_exec;
3703	struct sched_entity *se;
3704	s64 delta;
3705
3706	ideal_runtime = sched_slice(cfs_rq, curr);
3707	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3708	if (delta_exec > ideal_runtime) {
3709		resched_curr(rq_of(cfs_rq));
3710		/*
3711		 * The current task ran long enough, ensure it doesn't get
3712		 * re-elected due to buddy favours.
3713		 */
3714		clear_buddies(cfs_rq, curr);
3715		return;
3716	}
3717
3718	/*
3719	 * Ensure that a task that missed wakeup preemption by a
3720	 * narrow margin doesn't have to wait for a full slice.
3721	 * This also mitigates buddy induced latencies under load.
3722	 */
3723	if (delta_exec < sysctl_sched_min_granularity)
3724		return;
3725
3726	se = __pick_first_entity(cfs_rq);
3727	delta = curr->vruntime - se->vruntime;
3728
3729	if (delta < 0)
3730		return;
3731
3732	if (delta > ideal_runtime)
3733		resched_curr(rq_of(cfs_rq));
3734}
3735
3736static void
3737set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3738{
3739	/* 'current' is not kept within the tree. */
3740	if (se->on_rq) {
3741		/*
3742		 * Any task has to be enqueued before it get to execute on
3743		 * a CPU. So account for the time it spent waiting on the
3744		 * runqueue.
3745		 */
3746		update_stats_wait_end(cfs_rq, se);
3747		__dequeue_entity(cfs_rq, se);
3748		update_load_avg(se, UPDATE_TG);
3749	}
3750
3751	update_stats_curr_start(cfs_rq, se);
3752	cfs_rq->curr = se;
3753
3754	/*
3755	 * Track our maximum slice length, if the CPU's load is at
3756	 * least twice that of our own weight (i.e. dont track it
3757	 * when there are only lesser-weight tasks around):
3758	 */
3759	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
 
3760		schedstat_set(se->statistics.slice_max,
3761			max((u64)schedstat_val(se->statistics.slice_max),
3762			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
3763	}
3764
3765	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3766}
3767
3768static int
3769wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3770
3771/*
3772 * Pick the next process, keeping these things in mind, in this order:
3773 * 1) keep things fair between processes/task groups
3774 * 2) pick the "next" process, since someone really wants that to run
3775 * 3) pick the "last" process, for cache locality
3776 * 4) do not run the "skip" process, if something else is available
3777 */
3778static struct sched_entity *
3779pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3780{
3781	struct sched_entity *left = __pick_first_entity(cfs_rq);
3782	struct sched_entity *se;
3783
3784	/*
3785	 * If curr is set we have to see if its left of the leftmost entity
3786	 * still in the tree, provided there was anything in the tree at all.
3787	 */
3788	if (!left || (curr && entity_before(curr, left)))
3789		left = curr;
3790
3791	se = left; /* ideally we run the leftmost entity */
3792
3793	/*
3794	 * Avoid running the skip buddy, if running something else can
3795	 * be done without getting too unfair.
3796	 */
3797	if (cfs_rq->skip == se) {
3798		struct sched_entity *second;
3799
3800		if (se == curr) {
3801			second = __pick_first_entity(cfs_rq);
3802		} else {
3803			second = __pick_next_entity(se);
3804			if (!second || (curr && entity_before(curr, second)))
3805				second = curr;
3806		}
3807
3808		if (second && wakeup_preempt_entity(second, left) < 1)
3809			se = second;
3810	}
3811
3812	/*
3813	 * Prefer last buddy, try to return the CPU to a preempted task.
3814	 */
3815	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3816		se = cfs_rq->last;
3817
3818	/*
3819	 * Someone really wants this to run. If it's not unfair, run it.
3820	 */
3821	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3822		se = cfs_rq->next;
3823
3824	clear_buddies(cfs_rq, se);
3825
3826	return se;
3827}
3828
3829static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3830
3831static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3832{
3833	/*
3834	 * If still on the runqueue then deactivate_task()
3835	 * was not called and update_curr() has to be done:
3836	 */
3837	if (prev->on_rq)
3838		update_curr(cfs_rq);
3839
3840	/* throttle cfs_rqs exceeding runtime */
3841	check_cfs_rq_runtime(cfs_rq);
3842
3843	check_spread(cfs_rq, prev);
3844
3845	if (prev->on_rq) {
3846		update_stats_wait_start(cfs_rq, prev);
3847		/* Put 'current' back into the tree. */
3848		__enqueue_entity(cfs_rq, prev);
3849		/* in !on_rq case, update occurred at dequeue */
3850		update_load_avg(prev, 0);
3851	}
3852	cfs_rq->curr = NULL;
3853}
3854
3855static void
3856entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3857{
3858	/*
3859	 * Update run-time statistics of the 'current'.
3860	 */
3861	update_curr(cfs_rq);
3862
3863	/*
3864	 * Ensure that runnable average is periodically updated.
3865	 */
3866	update_load_avg(curr, UPDATE_TG);
3867	update_cfs_shares(cfs_rq);
3868
3869#ifdef CONFIG_SCHED_HRTICK
3870	/*
3871	 * queued ticks are scheduled to match the slice, so don't bother
3872	 * validating it and just reschedule.
3873	 */
3874	if (queued) {
3875		resched_curr(rq_of(cfs_rq));
3876		return;
3877	}
3878	/*
3879	 * don't let the period tick interfere with the hrtick preemption
3880	 */
3881	if (!sched_feat(DOUBLE_TICK) &&
3882			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3883		return;
3884#endif
3885
3886	if (cfs_rq->nr_running > 1)
3887		check_preempt_tick(cfs_rq, curr);
3888}
3889
3890
3891/**************************************************
3892 * CFS bandwidth control machinery
3893 */
3894
3895#ifdef CONFIG_CFS_BANDWIDTH
3896
3897#ifdef HAVE_JUMP_LABEL
3898static struct static_key __cfs_bandwidth_used;
3899
3900static inline bool cfs_bandwidth_used(void)
3901{
3902	return static_key_false(&__cfs_bandwidth_used);
3903}
3904
3905void cfs_bandwidth_usage_inc(void)
3906{
3907	static_key_slow_inc(&__cfs_bandwidth_used);
3908}
3909
3910void cfs_bandwidth_usage_dec(void)
3911{
3912	static_key_slow_dec(&__cfs_bandwidth_used);
3913}
3914#else /* HAVE_JUMP_LABEL */
3915static bool cfs_bandwidth_used(void)
3916{
3917	return true;
3918}
3919
3920void cfs_bandwidth_usage_inc(void) {}
3921void cfs_bandwidth_usage_dec(void) {}
3922#endif /* HAVE_JUMP_LABEL */
3923
3924/*
3925 * default period for cfs group bandwidth.
3926 * default: 0.1s, units: nanoseconds
3927 */
3928static inline u64 default_cfs_period(void)
3929{
3930	return 100000000ULL;
3931}
3932
3933static inline u64 sched_cfs_bandwidth_slice(void)
3934{
3935	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3936}
3937
3938/*
3939 * Replenish runtime according to assigned quota and update expiration time.
3940 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3941 * additional synchronization around rq->lock.
3942 *
3943 * requires cfs_b->lock
3944 */
3945void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3946{
3947	u64 now;
3948
3949	if (cfs_b->quota == RUNTIME_INF)
3950		return;
3951
3952	now = sched_clock_cpu(smp_processor_id());
3953	cfs_b->runtime = cfs_b->quota;
3954	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3955}
3956
3957static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3958{
3959	return &tg->cfs_bandwidth;
3960}
3961
3962/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3963static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3964{
3965	if (unlikely(cfs_rq->throttle_count))
3966		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
3967
3968	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3969}
3970
3971/* returns 0 on failure to allocate runtime */
3972static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 
3973{
3974	struct task_group *tg = cfs_rq->tg;
3975	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3976	u64 amount = 0, min_amount, expires;
3977
3978	/* note: this is a positive sum as runtime_remaining <= 0 */
3979	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3980
3981	raw_spin_lock(&cfs_b->lock);
3982	if (cfs_b->quota == RUNTIME_INF)
3983		amount = min_amount;
3984	else {
3985		start_cfs_bandwidth(cfs_b);
3986
3987		if (cfs_b->runtime > 0) {
3988			amount = min(cfs_b->runtime, min_amount);
3989			cfs_b->runtime -= amount;
3990			cfs_b->idle = 0;
3991		}
3992	}
3993	expires = cfs_b->runtime_expires;
3994	raw_spin_unlock(&cfs_b->lock);
3995
3996	cfs_rq->runtime_remaining += amount;
3997	/*
3998	 * we may have advanced our local expiration to account for allowed
3999	 * spread between our sched_clock and the one on which runtime was
4000	 * issued.
4001	 */
4002	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4003		cfs_rq->runtime_expires = expires;
4004
4005	return cfs_rq->runtime_remaining > 0;
4006}
4007
4008/*
4009 * Note: This depends on the synchronization provided by sched_clock and the
4010 * fact that rq->clock snapshots this value.
4011 */
4012static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4013{
4014	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 
4015
4016	/* if the deadline is ahead of our clock, nothing to do */
4017	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4018		return;
4019
4020	if (cfs_rq->runtime_remaining < 0)
4021		return;
4022
4023	/*
4024	 * If the local deadline has passed we have to consider the
4025	 * possibility that our sched_clock is 'fast' and the global deadline
4026	 * has not truly expired.
4027	 *
4028	 * Fortunately we can check determine whether this the case by checking
4029	 * whether the global deadline has advanced. It is valid to compare
4030	 * cfs_b->runtime_expires without any locks since we only care about
4031	 * exact equality, so a partial write will still work.
4032	 */
4033
4034	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4035		/* extend local deadline, drift is bounded above by 2 ticks */
4036		cfs_rq->runtime_expires += TICK_NSEC;
4037	} else {
4038		/* global deadline is ahead, expiration has passed */
4039		cfs_rq->runtime_remaining = 0;
4040	}
4041}
4042
4043static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4044{
4045	/* dock delta_exec before expiring quota (as it could span periods) */
4046	cfs_rq->runtime_remaining -= delta_exec;
4047	expire_cfs_rq_runtime(cfs_rq);
4048
4049	if (likely(cfs_rq->runtime_remaining > 0))
4050		return;
4051
 
 
4052	/*
4053	 * if we're unable to extend our runtime we resched so that the active
4054	 * hierarchy can be throttled
4055	 */
4056	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4057		resched_curr(rq_of(cfs_rq));
4058}
4059
4060static __always_inline
4061void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4062{
4063	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4064		return;
4065
4066	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4067}
4068
4069static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4070{
4071	return cfs_bandwidth_used() && cfs_rq->throttled;
4072}
4073
4074/* check whether cfs_rq, or any parent, is throttled */
4075static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4076{
4077	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4078}
4079
4080/*
4081 * Ensure that neither of the group entities corresponding to src_cpu or
4082 * dest_cpu are members of a throttled hierarchy when performing group
4083 * load-balance operations.
4084 */
4085static inline int throttled_lb_pair(struct task_group *tg,
4086				    int src_cpu, int dest_cpu)
4087{
4088	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4089
4090	src_cfs_rq = tg->cfs_rq[src_cpu];
4091	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4092
4093	return throttled_hierarchy(src_cfs_rq) ||
4094	       throttled_hierarchy(dest_cfs_rq);
4095}
4096
4097/* updated child weight may affect parent so we have to do this bottom up */
4098static int tg_unthrottle_up(struct task_group *tg, void *data)
4099{
4100	struct rq *rq = data;
4101	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4102
4103	cfs_rq->throttle_count--;
4104	if (!cfs_rq->throttle_count) {
4105		/* adjust cfs_rq_clock_task() */
4106		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4107					     cfs_rq->throttled_clock_task;
 
 
 
 
4108	}
4109
4110	return 0;
4111}
4112
4113static int tg_throttle_down(struct task_group *tg, void *data)
4114{
4115	struct rq *rq = data;
4116	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4117
4118	/* group is entering throttled state, stop time */
4119	if (!cfs_rq->throttle_count)
4120		cfs_rq->throttled_clock_task = rq_clock_task(rq);
 
 
4121	cfs_rq->throttle_count++;
4122
4123	return 0;
4124}
4125
4126static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4127{
4128	struct rq *rq = rq_of(cfs_rq);
4129	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4130	struct sched_entity *se;
4131	long task_delta, dequeue = 1;
4132	bool empty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4133
4134	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4135
4136	/* freeze hierarchy runnable averages while throttled */
4137	rcu_read_lock();
4138	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4139	rcu_read_unlock();
4140
4141	task_delta = cfs_rq->h_nr_running;
 
4142	for_each_sched_entity(se) {
4143		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4144		/* throttled entity or throttle-on-deactivate */
4145		if (!se->on_rq)
4146			break;
4147
4148		if (dequeue)
4149			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
 
 
 
 
 
4150		qcfs_rq->h_nr_running -= task_delta;
 
4151
4152		if (qcfs_rq->load.weight)
4153			dequeue = 0;
4154	}
4155
4156	if (!se)
4157		sub_nr_running(rq, task_delta);
4158
4159	cfs_rq->throttled = 1;
4160	cfs_rq->throttled_clock = rq_clock(rq);
4161	raw_spin_lock(&cfs_b->lock);
4162	empty = list_empty(&cfs_b->throttled_cfs_rq);
4163
4164	/*
4165	 * Add to the _head_ of the list, so that an already-started
4166	 * distribute_cfs_runtime will not see us
4167	 */
4168	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4169
4170	/*
4171	 * If we're the first throttled task, make sure the bandwidth
4172	 * timer is running.
4173	 */
4174	if (empty)
4175		start_cfs_bandwidth(cfs_b);
4176
4177	raw_spin_unlock(&cfs_b->lock);
4178}
4179
4180void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4181{
4182	struct rq *rq = rq_of(cfs_rq);
4183	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4184	struct sched_entity *se;
4185	int enqueue = 1;
4186	long task_delta;
4187
4188	se = cfs_rq->tg->se[cpu_of(rq)];
4189
4190	cfs_rq->throttled = 0;
4191
4192	update_rq_clock(rq);
4193
4194	raw_spin_lock(&cfs_b->lock);
4195	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4196	list_del_rcu(&cfs_rq->throttled_list);
4197	raw_spin_unlock(&cfs_b->lock);
4198
4199	/* update hierarchical throttle state */
4200	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4201
4202	if (!cfs_rq->load.weight)
4203		return;
4204
4205	task_delta = cfs_rq->h_nr_running;
 
4206	for_each_sched_entity(se) {
4207		if (se->on_rq)
4208			enqueue = 0;
 
 
4209
 
 
 
 
 
 
 
 
 
4210		cfs_rq = cfs_rq_of(se);
4211		if (enqueue)
4212			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
 
 
4213		cfs_rq->h_nr_running += task_delta;
 
4214
 
 
4215		if (cfs_rq_throttled(cfs_rq))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4216			break;
4217	}
4218
4219	if (!se)
4220		add_nr_running(rq, task_delta);
4221
4222	/* determine whether we need to wake up potentially idle cpu */
4223	if (rq->curr == rq->idle && rq->cfs.nr_running)
4224		resched_curr(rq);
4225}
4226
4227static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4228		u64 remaining, u64 expires)
4229{
4230	struct cfs_rq *cfs_rq;
4231	u64 runtime;
4232	u64 starting_runtime = remaining;
4233
4234	rcu_read_lock();
4235	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4236				throttled_list) {
4237		struct rq *rq = rq_of(cfs_rq);
 
4238
4239		raw_spin_lock(&rq->lock);
4240		if (!cfs_rq_throttled(cfs_rq))
4241			goto next;
4242
 
 
 
 
4243		runtime = -cfs_rq->runtime_remaining + 1;
4244		if (runtime > remaining)
4245			runtime = remaining;
4246		remaining -= runtime;
 
 
4247
4248		cfs_rq->runtime_remaining += runtime;
4249		cfs_rq->runtime_expires = expires;
4250
4251		/* we check whether we're throttled above */
4252		if (cfs_rq->runtime_remaining > 0)
4253			unthrottle_cfs_rq(cfs_rq);
4254
4255next:
4256		raw_spin_unlock(&rq->lock);
4257
4258		if (!remaining)
4259			break;
4260	}
4261	rcu_read_unlock();
4262
4263	return starting_runtime - remaining;
4264}
4265
4266/*
4267 * Responsible for refilling a task_group's bandwidth and unthrottling its
4268 * cfs_rqs as appropriate. If there has been no activity within the last
4269 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4270 * used to track this state.
4271 */
4272static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4273{
4274	u64 runtime, runtime_expires;
4275	int throttled;
4276
4277	/* no need to continue the timer with no bandwidth constraint */
4278	if (cfs_b->quota == RUNTIME_INF)
4279		goto out_deactivate;
4280
4281	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4282	cfs_b->nr_periods += overrun;
4283
4284	/*
4285	 * idle depends on !throttled (for the case of a large deficit), and if
4286	 * we're going inactive then everything else can be deferred
4287	 */
4288	if (cfs_b->idle && !throttled)
4289		goto out_deactivate;
4290
4291	__refill_cfs_bandwidth_runtime(cfs_b);
4292
4293	if (!throttled) {
4294		/* mark as potentially idle for the upcoming period */
4295		cfs_b->idle = 1;
4296		return 0;
4297	}
4298
4299	/* account preceding periods in which throttling occurred */
4300	cfs_b->nr_throttled += overrun;
4301
4302	runtime_expires = cfs_b->runtime_expires;
4303
4304	/*
4305	 * This check is repeated as we are holding onto the new bandwidth while
4306	 * we unthrottle. This can potentially race with an unthrottled group
4307	 * trying to acquire new bandwidth from the global pool. This can result
4308	 * in us over-using our runtime if it is all used during this loop, but
4309	 * only by limited amounts in that extreme case.
4310	 */
4311	while (throttled && cfs_b->runtime > 0) {
4312		runtime = cfs_b->runtime;
4313		raw_spin_unlock(&cfs_b->lock);
4314		/* we can't nest cfs_b->lock while distributing bandwidth */
4315		runtime = distribute_cfs_runtime(cfs_b, runtime,
4316						 runtime_expires);
4317		raw_spin_lock(&cfs_b->lock);
4318
4319		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4320
4321		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4322	}
4323
4324	/*
4325	 * While we are ensured activity in the period following an
4326	 * unthrottle, this also covers the case in which the new bandwidth is
4327	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4328	 * timer to remain active while there are any throttled entities.)
4329	 */
4330	cfs_b->idle = 0;
4331
4332	return 0;
4333
4334out_deactivate:
4335	return 1;
4336}
4337
4338/* a cfs_rq won't donate quota below this amount */
4339static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4340/* minimum remaining period time to redistribute slack quota */
4341static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4342/* how long we wait to gather additional slack before distributing */
4343static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4344
4345/*
4346 * Are we near the end of the current quota period?
4347 *
4348 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4349 * hrtimer base being cleared by hrtimer_start. In the case of
4350 * migrate_hrtimers, base is never cleared, so we are fine.
4351 */
4352static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4353{
4354	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4355	u64 remaining;
4356
4357	/* if the call-back is running a quota refresh is already occurring */
4358	if (hrtimer_callback_running(refresh_timer))
4359		return 1;
4360
4361	/* is a quota refresh about to occur? */
4362	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4363	if (remaining < min_expire)
4364		return 1;
4365
4366	return 0;
4367}
4368
4369static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4370{
4371	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4372
4373	/* if there's a quota refresh soon don't bother with slack */
4374	if (runtime_refresh_within(cfs_b, min_left))
4375		return;
4376
 
 
 
 
 
4377	hrtimer_start(&cfs_b->slack_timer,
4378			ns_to_ktime(cfs_bandwidth_slack_period),
4379			HRTIMER_MODE_REL);
4380}
4381
4382/* we know any runtime found here is valid as update_curr() precedes return */
4383static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4384{
4385	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4386	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4387
4388	if (slack_runtime <= 0)
4389		return;
4390
4391	raw_spin_lock(&cfs_b->lock);
4392	if (cfs_b->quota != RUNTIME_INF &&
4393	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4394		cfs_b->runtime += slack_runtime;
4395
4396		/* we are under rq->lock, defer unthrottling using a timer */
4397		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4398		    !list_empty(&cfs_b->throttled_cfs_rq))
4399			start_cfs_slack_bandwidth(cfs_b);
4400	}
4401	raw_spin_unlock(&cfs_b->lock);
4402
4403	/* even if it's not valid for return we don't want to try again */
4404	cfs_rq->runtime_remaining -= slack_runtime;
4405}
4406
4407static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4408{
4409	if (!cfs_bandwidth_used())
4410		return;
4411
4412	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4413		return;
4414
4415	__return_cfs_rq_runtime(cfs_rq);
4416}
4417
4418/*
4419 * This is done with a timer (instead of inline with bandwidth return) since
4420 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4421 */
4422static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4423{
4424	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4425	u64 expires;
4426
4427	/* confirm we're still not at a refresh boundary */
4428	raw_spin_lock(&cfs_b->lock);
 
 
4429	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4430		raw_spin_unlock(&cfs_b->lock);
4431		return;
4432	}
4433
4434	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4435		runtime = cfs_b->runtime;
4436
4437	expires = cfs_b->runtime_expires;
4438	raw_spin_unlock(&cfs_b->lock);
4439
4440	if (!runtime)
4441		return;
4442
4443	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4444
4445	raw_spin_lock(&cfs_b->lock);
4446	if (expires == cfs_b->runtime_expires)
4447		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4448	raw_spin_unlock(&cfs_b->lock);
4449}
4450
4451/*
4452 * When a group wakes up we want to make sure that its quota is not already
4453 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4454 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4455 */
4456static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4457{
4458	if (!cfs_bandwidth_used())
4459		return;
4460
4461	/* an active group must be handled by the update_curr()->put() path */
4462	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4463		return;
4464
4465	/* ensure the group is not already throttled */
4466	if (cfs_rq_throttled(cfs_rq))
4467		return;
4468
4469	/* update runtime allocation */
4470	account_cfs_rq_runtime(cfs_rq, 0);
4471	if (cfs_rq->runtime_remaining <= 0)
4472		throttle_cfs_rq(cfs_rq);
4473}
4474
4475static void sync_throttle(struct task_group *tg, int cpu)
4476{
4477	struct cfs_rq *pcfs_rq, *cfs_rq;
4478
4479	if (!cfs_bandwidth_used())
4480		return;
4481
4482	if (!tg->parent)
4483		return;
4484
4485	cfs_rq = tg->cfs_rq[cpu];
4486	pcfs_rq = tg->parent->cfs_rq[cpu];
4487
4488	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4489	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4490}
4491
4492/* conditionally throttle active cfs_rq's from put_prev_entity() */
4493static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4494{
4495	if (!cfs_bandwidth_used())
4496		return false;
4497
4498	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4499		return false;
4500
4501	/*
4502	 * it's possible for a throttled entity to be forced into a running
4503	 * state (e.g. set_curr_task), in this case we're finished.
4504	 */
4505	if (cfs_rq_throttled(cfs_rq))
4506		return true;
4507
4508	throttle_cfs_rq(cfs_rq);
4509	return true;
4510}
4511
4512static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4513{
4514	struct cfs_bandwidth *cfs_b =
4515		container_of(timer, struct cfs_bandwidth, slack_timer);
4516
4517	do_sched_cfs_slack_timer(cfs_b);
4518
4519	return HRTIMER_NORESTART;
4520}
4521
 
 
4522static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4523{
4524	struct cfs_bandwidth *cfs_b =
4525		container_of(timer, struct cfs_bandwidth, period_timer);
 
4526	int overrun;
4527	int idle = 0;
 
4528
4529	raw_spin_lock(&cfs_b->lock);
4530	for (;;) {
4531		overrun = hrtimer_forward_now(timer, cfs_b->period);
4532		if (!overrun)
4533			break;
4534
4535		idle = do_sched_cfs_period_timer(cfs_b, overrun);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4536	}
4537	if (idle)
4538		cfs_b->period_active = 0;
4539	raw_spin_unlock(&cfs_b->lock);
4540
4541	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4542}
4543
4544void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4545{
4546	raw_spin_lock_init(&cfs_b->lock);
4547	cfs_b->runtime = 0;
4548	cfs_b->quota = RUNTIME_INF;
4549	cfs_b->period = ns_to_ktime(default_cfs_period());
4550
4551	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4552	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4553	cfs_b->period_timer.function = sched_cfs_period_timer;
4554	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4555	cfs_b->slack_timer.function = sched_cfs_slack_timer;
 
4556}
4557
4558static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4559{
4560	cfs_rq->runtime_enabled = 0;
4561	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4562}
4563
4564void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4565{
4566	lockdep_assert_held(&cfs_b->lock);
4567
4568	if (!cfs_b->period_active) {
4569		cfs_b->period_active = 1;
4570		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4571		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4572	}
 
4573}
4574
4575static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4576{
4577	/* init_cfs_bandwidth() was not called */
4578	if (!cfs_b->throttled_cfs_rq.next)
4579		return;
4580
4581	hrtimer_cancel(&cfs_b->period_timer);
4582	hrtimer_cancel(&cfs_b->slack_timer);
4583}
4584
 
 
 
 
 
 
 
 
4585static void __maybe_unused update_runtime_enabled(struct rq *rq)
4586{
4587	struct cfs_rq *cfs_rq;
 
 
4588
4589	for_each_leaf_cfs_rq(rq, cfs_rq) {
4590		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
 
 
4591
4592		raw_spin_lock(&cfs_b->lock);
4593		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4594		raw_spin_unlock(&cfs_b->lock);
4595	}
 
4596}
4597
 
4598static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4599{
4600	struct cfs_rq *cfs_rq;
 
 
 
 
 
 
4601
4602	for_each_leaf_cfs_rq(rq, cfs_rq) {
4603		if (!cfs_rq->runtime_enabled)
4604			continue;
4605
4606		/*
4607		 * clock_task is not advancing so we just need to make sure
4608		 * there's some valid quota amount
4609		 */
4610		cfs_rq->runtime_remaining = 1;
4611		/*
4612		 * Offline rq is schedulable till cpu is completely disabled
4613		 * in take_cpu_down(), so we prevent new cfs throttling here.
4614		 */
4615		cfs_rq->runtime_enabled = 0;
4616
4617		if (cfs_rq_throttled(cfs_rq))
4618			unthrottle_cfs_rq(cfs_rq);
4619	}
 
4620}
4621
4622#else /* CONFIG_CFS_BANDWIDTH */
4623static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
 
4624{
4625	return rq_clock_task(rq_of(cfs_rq));
4626}
4627
4628static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4629static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4630static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4631static inline void sync_throttle(struct task_group *tg, int cpu) {}
4632static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4633
4634static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4635{
4636	return 0;
4637}
4638
4639static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4640{
4641	return 0;
4642}
4643
4644static inline int throttled_lb_pair(struct task_group *tg,
4645				    int src_cpu, int dest_cpu)
4646{
4647	return 0;
4648}
4649
4650void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4651
4652#ifdef CONFIG_FAIR_GROUP_SCHED
4653static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4654#endif
4655
4656static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4657{
4658	return NULL;
4659}
4660static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4661static inline void update_runtime_enabled(struct rq *rq) {}
4662static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4663
4664#endif /* CONFIG_CFS_BANDWIDTH */
4665
4666/**************************************************
4667 * CFS operations on tasks:
4668 */
4669
4670#ifdef CONFIG_SCHED_HRTICK
4671static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4672{
4673	struct sched_entity *se = &p->se;
4674	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4675
4676	SCHED_WARN_ON(task_rq(p) != rq);
4677
4678	if (rq->cfs.h_nr_running > 1) {
4679		u64 slice = sched_slice(cfs_rq, se);
4680		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4681		s64 delta = slice - ran;
4682
4683		if (delta < 0) {
4684			if (rq->curr == p)
4685				resched_curr(rq);
4686			return;
4687		}
4688		hrtick_start(rq, delta);
4689	}
4690}
4691
4692/*
4693 * called from enqueue/dequeue and updates the hrtick when the
4694 * current task is from our class and nr_running is low enough
4695 * to matter.
4696 */
4697static void hrtick_update(struct rq *rq)
4698{
4699	struct task_struct *curr = rq->curr;
4700
4701	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4702		return;
4703
4704	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4705		hrtick_start_fair(rq, curr);
4706}
4707#else /* !CONFIG_SCHED_HRTICK */
4708static inline void
4709hrtick_start_fair(struct rq *rq, struct task_struct *p)
4710{
4711}
4712
4713static inline void hrtick_update(struct rq *rq)
4714{
4715}
4716#endif
4717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4718/*
4719 * The enqueue_task method is called before nr_running is
4720 * increased. Here we update the fair scheduling stats and
4721 * then put the task into the rbtree:
4722 */
4723static void
4724enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4725{
4726	struct cfs_rq *cfs_rq;
4727	struct sched_entity *se = &p->se;
 
 
 
 
 
 
 
 
 
4728
4729	/*
4730	 * If in_iowait is set, the code below may not trigger any cpufreq
4731	 * utilization updates, so do it here explicitly with the IOWAIT flag
4732	 * passed.
4733	 */
4734	if (p->in_iowait)
4735		cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4736
4737	for_each_sched_entity(se) {
4738		if (se->on_rq)
4739			break;
4740		cfs_rq = cfs_rq_of(se);
4741		enqueue_entity(cfs_rq, se, flags);
4742
4743		/*
4744		 * end evaluation on encountering a throttled cfs_rq
4745		 *
4746		 * note: in the case of encountering a throttled cfs_rq we will
4747		 * post the final h_nr_running increment below.
4748		 */
4749		if (cfs_rq_throttled(cfs_rq))
4750			break;
4751		cfs_rq->h_nr_running++;
 
 
 
 
 
4752
4753		flags = ENQUEUE_WAKEUP;
4754	}
4755
4756	for_each_sched_entity(se) {
4757		cfs_rq = cfs_rq_of(se);
 
 
 
 
 
4758		cfs_rq->h_nr_running++;
 
4759
 
4760		if (cfs_rq_throttled(cfs_rq))
4761			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4762
4763		update_load_avg(se, UPDATE_TG);
4764		update_cfs_shares(cfs_rq);
 
4765	}
4766
4767	if (!se)
4768		add_nr_running(rq, 1);
4769
4770	hrtick_update(rq);
4771}
4772
4773static void set_next_buddy(struct sched_entity *se);
4774
4775/*
4776 * The dequeue_task method is called before nr_running is
4777 * decreased. We remove the task from the rbtree and
4778 * update the fair scheduling stats:
4779 */
4780static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4781{
4782	struct cfs_rq *cfs_rq;
4783	struct sched_entity *se = &p->se;
4784	int task_sleep = flags & DEQUEUE_SLEEP;
 
 
4785
4786	for_each_sched_entity(se) {
4787		cfs_rq = cfs_rq_of(se);
4788		dequeue_entity(cfs_rq, se, flags);
4789
4790		/*
4791		 * end evaluation on encountering a throttled cfs_rq
4792		 *
4793		 * note: in the case of encountering a throttled cfs_rq we will
4794		 * post the final h_nr_running decrement below.
4795		*/
4796		if (cfs_rq_throttled(cfs_rq))
4797			break;
4798		cfs_rq->h_nr_running--;
 
 
 
 
 
4799
4800		/* Don't dequeue parent if it has other entities besides us */
4801		if (cfs_rq->load.weight) {
4802			/* Avoid re-evaluating load for this entity: */
4803			se = parent_entity(se);
4804			/*
4805			 * Bias pick_next to pick a task from this cfs_rq, as
4806			 * p is sleeping when it is within its sched_slice.
4807			 */
4808			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4809				set_next_buddy(se);
4810			break;
4811		}
4812		flags |= DEQUEUE_SLEEP;
4813	}
4814
4815	for_each_sched_entity(se) {
4816		cfs_rq = cfs_rq_of(se);
 
 
 
 
 
4817		cfs_rq->h_nr_running--;
 
4818
 
4819		if (cfs_rq_throttled(cfs_rq))
4820			break;
4821
4822		update_load_avg(se, UPDATE_TG);
4823		update_cfs_shares(cfs_rq);
4824	}
4825
4826	if (!se)
4827		sub_nr_running(rq, 1);
 
 
 
 
4828
 
 
4829	hrtick_update(rq);
4830}
4831
4832#ifdef CONFIG_SMP
4833
4834/* Working cpumask for: load_balance, load_balance_newidle. */
4835DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4836DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4837
4838#ifdef CONFIG_NO_HZ_COMMON
4839/*
4840 * per rq 'load' arrray crap; XXX kill this.
4841 */
4842
4843/*
4844 * The exact cpuload calculated at every tick would be:
4845 *
4846 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4847 *
4848 * If a cpu misses updates for n ticks (as it was idle) and update gets
4849 * called on the n+1-th tick when cpu may be busy, then we have:
4850 *
4851 *   load_n   = (1 - 1/2^i)^n * load_0
4852 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4853 *
4854 * decay_load_missed() below does efficient calculation of
4855 *
4856 *   load' = (1 - 1/2^i)^n * load
4857 *
4858 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4859 * This allows us to precompute the above in said factors, thereby allowing the
4860 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4861 * fixed_power_int())
4862 *
4863 * The calculation is approximated on a 128 point scale.
4864 */
4865#define DEGRADE_SHIFT		7
4866
4867static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4868static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4869	{   0,   0,  0,  0,  0,  0, 0, 0 },
4870	{  64,  32,  8,  0,  0,  0, 0, 0 },
4871	{  96,  72, 40, 12,  1,  0, 0, 0 },
4872	{ 112,  98, 75, 43, 15,  1, 0, 0 },
4873	{ 120, 112, 98, 76, 45, 16, 2, 0 }
4874};
4875
4876/*
4877 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4878 * would be when CPU is idle and so we just decay the old load without
4879 * adding any new load.
4880 */
4881static unsigned long
4882decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4883{
4884	int j = 0;
4885
4886	if (!missed_updates)
4887		return load;
4888
4889	if (missed_updates >= degrade_zero_ticks[idx])
4890		return 0;
4891
4892	if (idx == 1)
4893		return load >> missed_updates;
4894
4895	while (missed_updates) {
4896		if (missed_updates % 2)
4897			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
 
4898
4899		missed_updates >>= 1;
4900		j++;
4901	}
4902	return load;
4903}
4904#endif /* CONFIG_NO_HZ_COMMON */
4905
4906/**
4907 * __cpu_load_update - update the rq->cpu_load[] statistics
4908 * @this_rq: The rq to update statistics for
4909 * @this_load: The current load
4910 * @pending_updates: The number of missed updates
4911 *
4912 * Update rq->cpu_load[] statistics. This function is usually called every
4913 * scheduler tick (TICK_NSEC).
4914 *
4915 * This function computes a decaying average:
4916 *
4917 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4918 *
4919 * Because of NOHZ it might not get called on every tick which gives need for
4920 * the @pending_updates argument.
4921 *
4922 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4923 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4924 *             = A * (A * load[i]_n-2 + B) + B
4925 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
4926 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4927 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4928 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4929 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4930 *
4931 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4932 * any change in load would have resulted in the tick being turned back on.
4933 *
4934 * For regular NOHZ, this reduces to:
4935 *
4936 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
4937 *
4938 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4939 * term.
4940 */
4941static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4942			    unsigned long pending_updates)
4943{
4944	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4945	int i, scale;
4946
4947	this_rq->nr_load_updates++;
4948
4949	/* Update our load: */
4950	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4951	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4952		unsigned long old_load, new_load;
4953
4954		/* scale is effectively 1 << i now, and >> i divides by scale */
4955
4956		old_load = this_rq->cpu_load[i];
4957#ifdef CONFIG_NO_HZ_COMMON
4958		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4959		if (tickless_load) {
4960			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4961			/*
4962			 * old_load can never be a negative value because a
4963			 * decayed tickless_load cannot be greater than the
4964			 * original tickless_load.
4965			 */
4966			old_load += tickless_load;
4967		}
4968#endif
4969		new_load = this_load;
4970		/*
4971		 * Round up the averaging division if load is increasing. This
4972		 * prevents us from getting stuck on 9 if the load is 10, for
4973		 * example.
4974		 */
4975		if (new_load > old_load)
4976			new_load += scale - 1;
4977
4978		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4979	}
4980
4981	sched_avg_update(this_rq);
4982}
4983
4984/* Used instead of source_load when we know the type == 0 */
4985static unsigned long weighted_cpuload(const int cpu)
4986{
4987	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4988}
4989
4990#ifdef CONFIG_NO_HZ_COMMON
4991/*
4992 * There is no sane way to deal with nohz on smp when using jiffies because the
4993 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4994 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4995 *
4996 * Therefore we need to avoid the delta approach from the regular tick when
4997 * possible since that would seriously skew the load calculation. This is why we
4998 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4999 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5000 * loop exit, nohz_idle_balance, nohz full exit...)
5001 *
5002 * This means we might still be one tick off for nohz periods.
5003 */
5004
5005static void cpu_load_update_nohz(struct rq *this_rq,
5006				 unsigned long curr_jiffies,
5007				 unsigned long load)
5008{
5009	unsigned long pending_updates;
5010
5011	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5012	if (pending_updates) {
5013		this_rq->last_load_update_tick = curr_jiffies;
5014		/*
5015		 * In the regular NOHZ case, we were idle, this means load 0.
5016		 * In the NOHZ_FULL case, we were non-idle, we should consider
5017		 * its weighted load.
5018		 */
5019		cpu_load_update(this_rq, load, pending_updates);
5020	}
5021}
5022
5023/*
5024 * Called from nohz_idle_balance() to update the load ratings before doing the
5025 * idle balance.
5026 */
5027static void cpu_load_update_idle(struct rq *this_rq)
5028{
5029	/*
5030	 * bail if there's load or we're actually up-to-date.
5031	 */
5032	if (weighted_cpuload(cpu_of(this_rq)))
5033		return;
5034
5035	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5036}
5037
5038/*
5039 * Record CPU load on nohz entry so we know the tickless load to account
5040 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5041 * than other cpu_load[idx] but it should be fine as cpu_load readers
5042 * shouldn't rely into synchronized cpu_load[*] updates.
5043 */
5044void cpu_load_update_nohz_start(void)
5045{
5046	struct rq *this_rq = this_rq();
 
5047
5048	/*
5049	 * This is all lockless but should be fine. If weighted_cpuload changes
5050	 * concurrently we'll exit nohz. And cpu_load write can race with
5051	 * cpu_load_update_idle() but both updater would be writing the same.
5052	 */
5053	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
5054}
5055
5056/*
5057 * Account the tickless load in the end of a nohz frame.
5058 */
5059void cpu_load_update_nohz_stop(void)
5060{
5061	unsigned long curr_jiffies = READ_ONCE(jiffies);
5062	struct rq *this_rq = this_rq();
5063	unsigned long load;
5064
5065	if (curr_jiffies == this_rq->last_load_update_tick)
5066		return;
5067
5068	load = weighted_cpuload(cpu_of(this_rq));
5069	raw_spin_lock(&this_rq->lock);
5070	update_rq_clock(this_rq);
5071	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5072	raw_spin_unlock(&this_rq->lock);
5073}
5074#else /* !CONFIG_NO_HZ_COMMON */
5075static inline void cpu_load_update_nohz(struct rq *this_rq,
5076					unsigned long curr_jiffies,
5077					unsigned long load) { }
5078#endif /* CONFIG_NO_HZ_COMMON */
5079
5080static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5081{
5082#ifdef CONFIG_NO_HZ_COMMON
5083	/* See the mess around cpu_load_update_nohz(). */
5084	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5085#endif
5086	cpu_load_update(this_rq, load, 1);
5087}
5088
5089/*
5090 * Called from scheduler_tick()
5091 */
5092void cpu_load_update_active(struct rq *this_rq)
5093{
5094	unsigned long load = weighted_cpuload(cpu_of(this_rq));
5095
5096	if (tick_nohz_tick_stopped())
5097		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5098	else
5099		cpu_load_update_periodic(this_rq, load);
5100}
5101
5102/*
5103 * Return a low guess at the load of a migration-source cpu weighted
5104 * according to the scheduling class and "nice" value.
5105 *
5106 * We want to under-estimate the load of migration sources, to
5107 * balance conservatively.
5108 */
5109static unsigned long source_load(int cpu, int type)
5110{
5111	struct rq *rq = cpu_rq(cpu);
5112	unsigned long total = weighted_cpuload(cpu);
5113
5114	if (type == 0 || !sched_feat(LB_BIAS))
5115		return total;
5116
5117	return min(rq->cpu_load[type-1], total);
5118}
 
5119
5120/*
5121 * Return a high guess at the load of a migration-target cpu weighted
5122 * according to the scheduling class and "nice" value.
5123 */
5124static unsigned long target_load(int cpu, int type)
5125{
5126	struct rq *rq = cpu_rq(cpu);
5127	unsigned long total = weighted_cpuload(cpu);
5128
5129	if (type == 0 || !sched_feat(LB_BIAS))
5130		return total;
5131
5132	return max(rq->cpu_load[type-1], total);
5133}
5134
5135static unsigned long capacity_of(int cpu)
5136{
5137	return cpu_rq(cpu)->cpu_capacity;
5138}
5139
5140static unsigned long capacity_orig_of(int cpu)
5141{
5142	return cpu_rq(cpu)->cpu_capacity_orig;
5143}
5144
5145static unsigned long cpu_avg_load_per_task(int cpu)
5146{
5147	struct rq *rq = cpu_rq(cpu);
5148	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5149	unsigned long load_avg = weighted_cpuload(cpu);
5150
5151	if (nr_running)
5152		return load_avg / nr_running;
5153
5154	return 0;
5155}
5156
5157#ifdef CONFIG_FAIR_GROUP_SCHED
5158/*
5159 * effective_load() calculates the load change as seen from the root_task_group
5160 *
5161 * Adding load to a group doesn't make a group heavier, but can cause movement
5162 * of group shares between cpus. Assuming the shares were perfectly aligned one
5163 * can calculate the shift in shares.
5164 *
5165 * Calculate the effective load difference if @wl is added (subtracted) to @tg
5166 * on this @cpu and results in a total addition (subtraction) of @wg to the
5167 * total group weight.
5168 *
5169 * Given a runqueue weight distribution (rw_i) we can compute a shares
5170 * distribution (s_i) using:
5171 *
5172 *   s_i = rw_i / \Sum rw_j						(1)
5173 *
5174 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5175 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5176 * shares distribution (s_i):
5177 *
5178 *   rw_i = {   2,   4,   1,   0 }
5179 *   s_i  = { 2/7, 4/7, 1/7,   0 }
5180 *
5181 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5182 * task used to run on and the CPU the waker is running on), we need to
5183 * compute the effect of waking a task on either CPU and, in case of a sync
5184 * wakeup, compute the effect of the current task going to sleep.
5185 *
5186 * So for a change of @wl to the local @cpu with an overall group weight change
5187 * of @wl we can compute the new shares distribution (s'_i) using:
5188 *
5189 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
5190 *
5191 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5192 * differences in waking a task to CPU 0. The additional task changes the
5193 * weight and shares distributions like:
5194 *
5195 *   rw'_i = {   3,   4,   1,   0 }
5196 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
5197 *
5198 * We can then compute the difference in effective weight by using:
5199 *
5200 *   dw_i = S * (s'_i - s_i)						(3)
5201 *
5202 * Where 'S' is the group weight as seen by its parent.
5203 *
5204 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5205 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5206 * 4/7) times the weight of the group.
5207 */
5208static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5209{
5210	struct sched_entity *se = tg->se[cpu];
5211
5212	if (!tg->parent)	/* the trivial, non-cgroup case */
5213		return wl;
5214
5215	for_each_sched_entity(se) {
5216		struct cfs_rq *cfs_rq = se->my_q;
5217		long W, w = cfs_rq_load_avg(cfs_rq);
5218
5219		tg = cfs_rq->tg;
5220
5221		/*
5222		 * W = @wg + \Sum rw_j
5223		 */
5224		W = wg + atomic_long_read(&tg->load_avg);
5225
5226		/* Ensure \Sum rw_j >= rw_i */
5227		W -= cfs_rq->tg_load_avg_contrib;
5228		W += w;
5229
5230		/*
5231		 * w = rw_i + @wl
5232		 */
5233		w += wl;
5234
5235		/*
5236		 * wl = S * s'_i; see (2)
5237		 */
5238		if (W > 0 && w < W)
5239			wl = (w * (long)scale_load_down(tg->shares)) / W;
5240		else
5241			wl = scale_load_down(tg->shares);
5242
5243		/*
5244		 * Per the above, wl is the new se->load.weight value; since
5245		 * those are clipped to [MIN_SHARES, ...) do so now. See
5246		 * calc_cfs_shares().
5247		 */
5248		if (wl < MIN_SHARES)
5249			wl = MIN_SHARES;
5250
5251		/*
5252		 * wl = dw_i = S * (s'_i - s_i); see (3)
5253		 */
5254		wl -= se->avg.load_avg;
5255
5256		/*
5257		 * Recursively apply this logic to all parent groups to compute
5258		 * the final effective load change on the root group. Since
5259		 * only the @tg group gets extra weight, all parent groups can
5260		 * only redistribute existing shares. @wl is the shift in shares
5261		 * resulting from this level per the above.
5262		 */
5263		wg = 0;
5264	}
5265
5266	return wl;
5267}
5268#else
5269
5270static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5271{
5272	return wl;
5273}
5274
5275#endif
5276
5277static void record_wakee(struct task_struct *p)
5278{
5279	/*
5280	 * Only decay a single time; tasks that have less then 1 wakeup per
5281	 * jiffy will not have built up many flips.
5282	 */
5283	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5284		current->wakee_flips >>= 1;
5285		current->wakee_flip_decay_ts = jiffies;
5286	}
5287
5288	if (current->last_wakee != p) {
5289		current->last_wakee = p;
5290		current->wakee_flips++;
5291	}
5292}
5293
5294/*
5295 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5296 *
5297 * A waker of many should wake a different task than the one last awakened
5298 * at a frequency roughly N times higher than one of its wakees.
5299 *
5300 * In order to determine whether we should let the load spread vs consolidating
5301 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5302 * partner, and a factor of lls_size higher frequency in the other.
5303 *
5304 * With both conditions met, we can be relatively sure that the relationship is
5305 * non-monogamous, with partner count exceeding socket size.
5306 *
5307 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5308 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5309 * socket size.
5310 */
5311static int wake_wide(struct task_struct *p)
5312{
5313	unsigned int master = current->wakee_flips;
5314	unsigned int slave = p->wakee_flips;
5315	int factor = this_cpu_read(sd_llc_size);
5316
5317	if (master < slave)
5318		swap(master, slave);
5319	if (slave < factor || master < slave * factor)
5320		return 0;
5321	return 1;
5322}
5323
5324static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5325		       int prev_cpu, int sync)
 
 
 
 
 
 
 
 
 
 
 
 
5326{
5327	s64 this_load, load;
5328	s64 this_eff_load, prev_eff_load;
5329	int idx, this_cpu;
5330	struct task_group *tg;
5331	unsigned long weight;
5332	int balanced;
5333
5334	idx	  = sd->wake_idx;
5335	this_cpu  = smp_processor_id();
5336	load	  = source_load(prev_cpu, idx);
5337	this_load = target_load(this_cpu, idx);
5338
5339	/*
5340	 * If sync wakeup then subtract the (maximum possible)
5341	 * effect of the currently running task from the load
5342	 * of the current CPU:
5343	 */
5344	if (sync) {
5345		tg = task_group(current);
5346		weight = current->se.avg.load_avg;
5347
5348		this_load += effective_load(tg, this_cpu, -weight, -weight);
5349		load += effective_load(tg, prev_cpu, 0, -weight);
5350	}
5351
5352	tg = task_group(p);
5353	weight = p->se.avg.load_avg;
5354
5355	/*
5356	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5357	 * due to the sync cause above having dropped this_load to 0, we'll
5358	 * always have an imbalance, but there's really nothing you can do
5359	 * about that, so that's good too.
5360	 *
5361	 * Otherwise check if either cpus are near enough in load to allow this
5362	 * task to be woken on this_cpu.
 
 
 
5363	 */
5364	this_eff_load = 100;
5365	this_eff_load *= capacity_of(prev_cpu);
5366
5367	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5368	prev_eff_load *= capacity_of(this_cpu);
5369
5370	if (this_load > 0) {
5371		this_eff_load *= this_load +
5372			effective_load(tg, this_cpu, weight, weight);
5373
5374		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5375	}
5376
5377	balanced = this_eff_load <= prev_eff_load;
5378
5379	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5380
5381	if (!balanced)
5382		return 0;
5383
5384	schedstat_inc(sd->ttwu_move_affine);
5385	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5386
5387	return 1;
5388}
5389
5390static inline int task_util(struct task_struct *p);
5391static int cpu_util_wake(int cpu, struct task_struct *p);
5392
5393static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5394{
5395	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5396}
5397
5398/*
5399 * find_idlest_group finds and returns the least busy CPU group within the
5400 * domain.
5401 */
5402static struct sched_group *
5403find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5404		  int this_cpu, int sd_flag)
5405{
5406	struct sched_group *idlest = NULL, *group = sd->groups;
5407	struct sched_group *most_spare_sg = NULL;
5408	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5409	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5410	unsigned long most_spare = 0, this_spare = 0;
5411	int load_idx = sd->forkexec_idx;
5412	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5413	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5414				(sd->imbalance_pct-100) / 100;
5415
5416	if (sd_flag & SD_BALANCE_WAKE)
5417		load_idx = sd->wake_idx;
5418
5419	do {
5420		unsigned long load, avg_load, runnable_load;
5421		unsigned long spare_cap, max_spare_cap;
5422		int local_group;
5423		int i;
5424
5425		/* Skip over this group if it has no CPUs allowed */
5426		if (!cpumask_intersects(sched_group_cpus(group),
5427					tsk_cpus_allowed(p)))
5428			continue;
5429
5430		local_group = cpumask_test_cpu(this_cpu,
5431					       sched_group_cpus(group));
5432
5433		/*
5434		 * Tally up the load of all CPUs in the group and find
5435		 * the group containing the CPU with most spare capacity.
5436		 */
5437		avg_load = 0;
5438		runnable_load = 0;
5439		max_spare_cap = 0;
5440
5441		for_each_cpu(i, sched_group_cpus(group)) {
5442			/* Bias balancing toward cpus of our domain */
5443			if (local_group)
5444				load = source_load(i, load_idx);
5445			else
5446				load = target_load(i, load_idx);
5447
5448			runnable_load += load;
5449
5450			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
 
5451
5452			spare_cap = capacity_spare_wake(i, p);
 
5453
5454			if (spare_cap > max_spare_cap)
5455				max_spare_cap = spare_cap;
5456		}
5457
5458		/* Adjust by relative CPU capacity of the group */
5459		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5460					group->sgc->capacity;
5461		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5462					group->sgc->capacity;
5463
5464		if (local_group) {
5465			this_runnable_load = runnable_load;
5466			this_avg_load = avg_load;
5467			this_spare = max_spare_cap;
5468		} else {
5469			if (min_runnable_load > (runnable_load + imbalance)) {
5470				/*
5471				 * The runnable load is significantly smaller
5472				 * so we can pick this new cpu
5473				 */
5474				min_runnable_load = runnable_load;
5475				min_avg_load = avg_load;
5476				idlest = group;
5477			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5478				   (100*min_avg_load > imbalance_scale*avg_load)) {
5479				/*
5480				 * The runnable loads are close so take the
5481				 * blocked load into account through avg_load.
5482				 */
5483				min_avg_load = avg_load;
5484				idlest = group;
5485			}
5486
5487			if (most_spare < max_spare_cap) {
5488				most_spare = max_spare_cap;
5489				most_spare_sg = group;
5490			}
5491		}
5492	} while (group = group->next, group != sd->groups);
5493
5494	/*
5495	 * The cross-over point between using spare capacity or least load
5496	 * is too conservative for high utilization tasks on partially
5497	 * utilized systems if we require spare_capacity > task_util(p),
5498	 * so we allow for some task stuffing by using
5499	 * spare_capacity > task_util(p)/2.
5500	 *
5501	 * Spare capacity can't be used for fork because the utilization has
5502	 * not been set yet, we must first select a rq to compute the initial
5503	 * utilization.
5504	 */
5505	if (sd_flag & SD_BALANCE_FORK)
5506		goto skip_spare;
5507
5508	if (this_spare > task_util(p) / 2 &&
5509	    imbalance_scale*this_spare > 100*most_spare)
5510		return NULL;
5511
5512	if (most_spare > task_util(p) / 2)
5513		return most_spare_sg;
 
 
5514
5515skip_spare:
5516	if (!idlest)
5517		return NULL;
5518
5519	if (min_runnable_load > (this_runnable_load + imbalance))
5520		return NULL;
5521
5522	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5523	     (100*this_avg_load < imbalance_scale*min_avg_load))
5524		return NULL;
5525
5526	return idlest;
 
 
5527}
5528
 
 
 
5529/*
5530 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5531 */
5532static int
5533find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5534{
5535	unsigned long load, min_load = ULONG_MAX;
5536	unsigned int min_exit_latency = UINT_MAX;
5537	u64 latest_idle_timestamp = 0;
5538	int least_loaded_cpu = this_cpu;
5539	int shallowest_idle_cpu = -1;
5540	int i;
5541
5542	/* Check if we have any choice: */
5543	if (group->group_weight == 1)
5544		return cpumask_first(sched_group_cpus(group));
5545
5546	/* Traverse only the allowed CPUs */
5547	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5548		if (idle_cpu(i)) {
 
 
 
5549			struct rq *rq = cpu_rq(i);
5550			struct cpuidle_state *idle = idle_get_state(rq);
5551			if (idle && idle->exit_latency < min_exit_latency) {
5552				/*
5553				 * We give priority to a CPU whose idle state
5554				 * has the smallest exit latency irrespective
5555				 * of any idle timestamp.
5556				 */
5557				min_exit_latency = idle->exit_latency;
5558				latest_idle_timestamp = rq->idle_stamp;
5559				shallowest_idle_cpu = i;
5560			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5561				   rq->idle_stamp > latest_idle_timestamp) {
5562				/*
5563				 * If equal or no active idle state, then
5564				 * the most recently idled CPU might have
5565				 * a warmer cache.
5566				 */
5567				latest_idle_timestamp = rq->idle_stamp;
5568				shallowest_idle_cpu = i;
5569			}
5570		} else if (shallowest_idle_cpu == -1) {
5571			load = weighted_cpuload(i);
5572			if (load < min_load || (load == min_load && i == this_cpu)) {
5573				min_load = load;
5574				least_loaded_cpu = i;
5575			}
5576		}
5577	}
5578
5579	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5580}
5581
5582/*
5583 * Implement a for_each_cpu() variant that starts the scan at a given cpu
5584 * (@start), and wraps around.
5585 *
5586 * This is used to scan for idle CPUs; such that not all CPUs looking for an
5587 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5588 * through the LLC domain.
5589 *
5590 * Especially tbench is found sensitive to this.
5591 */
5592
5593static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
5594{
5595	int next;
5596
5597again:
5598	next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
5599
5600	if (*wrapped) {
5601		if (next >= start)
5602			return nr_cpumask_bits;
5603	} else {
5604		if (next >= nr_cpumask_bits) {
5605			*wrapped = 1;
5606			n = -1;
5607			goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5608		}
5609	}
5610
5611	return next;
5612}
5613
5614#define for_each_cpu_wrap(cpu, mask, start, wrap)				\
5615	for ((wrap) = 0, (cpu) = (start)-1;					\
5616		(cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)),	\
5617		(cpu) < nr_cpumask_bits; )
5618
5619#ifdef CONFIG_SCHED_SMT
 
 
5620
5621static inline void set_idle_cores(int cpu, int val)
5622{
5623	struct sched_domain_shared *sds;
5624
5625	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5626	if (sds)
5627		WRITE_ONCE(sds->has_idle_cores, val);
5628}
5629
5630static inline bool test_idle_cores(int cpu, bool def)
5631{
5632	struct sched_domain_shared *sds;
5633
5634	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5635	if (sds)
5636		return READ_ONCE(sds->has_idle_cores);
5637
5638	return def;
5639}
5640
5641/*
5642 * Scans the local SMT mask to see if the entire core is idle, and records this
5643 * information in sd_llc_shared->has_idle_cores.
5644 *
5645 * Since SMT siblings share all cache levels, inspecting this limited remote
5646 * state should be fairly cheap.
5647 */
5648void __update_idle_core(struct rq *rq)
5649{
5650	int core = cpu_of(rq);
5651	int cpu;
5652
5653	rcu_read_lock();
5654	if (test_idle_cores(core, true))
5655		goto unlock;
5656
5657	for_each_cpu(cpu, cpu_smt_mask(core)) {
5658		if (cpu == core)
5659			continue;
5660
5661		if (!idle_cpu(cpu))
5662			goto unlock;
5663	}
5664
5665	set_idle_cores(core, 1);
5666unlock:
5667	rcu_read_unlock();
5668}
5669
5670/*
5671 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5672 * there are no idle cores left in the system; tracked through
5673 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5674 */
5675static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5676{
5677	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5678	int core, cpu, wrap;
5679
5680	if (!static_branch_likely(&sched_smt_present))
5681		return -1;
5682
5683	if (!test_idle_cores(target, false))
5684		return -1;
5685
5686	cpumask_and(cpus, sched_domain_span(sd), tsk_cpus_allowed(p));
5687
5688	for_each_cpu_wrap(core, cpus, target, wrap) {
5689		bool idle = true;
5690
5691		for_each_cpu(cpu, cpu_smt_mask(core)) {
5692			cpumask_clear_cpu(cpu, cpus);
5693			if (!idle_cpu(cpu))
5694				idle = false;
 
 
5695		}
 
5696
5697		if (idle)
5698			return core;
5699	}
5700
5701	/*
5702	 * Failed to find an idle core; stop looking for one.
5703	 */
5704	set_idle_cores(target, 0);
5705
5706	return -1;
5707}
5708
5709/*
5710 * Scan the local SMT mask for idle CPUs.
5711 */
5712static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5713{
5714	int cpu;
5715
5716	if (!static_branch_likely(&sched_smt_present))
5717		return -1;
5718
5719	for_each_cpu(cpu, cpu_smt_mask(target)) {
5720		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5721			continue;
5722		if (idle_cpu(cpu))
5723			return cpu;
5724	}
5725
5726	return -1;
5727}
5728
5729#else /* CONFIG_SCHED_SMT */
5730
5731static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5732{
5733	return -1;
5734}
5735
5736static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5737{
5738	return -1;
5739}
5740
5741#endif /* CONFIG_SCHED_SMT */
5742
5743/*
5744 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5745 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5746 * average idle time for this rq (as found in rq->avg_idle).
5747 */
5748static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5749{
 
5750	struct sched_domain *this_sd;
5751	u64 avg_cost, avg_idle = this_rq()->avg_idle;
5752	u64 time, cost;
5753	s64 delta;
5754	int cpu, wrap;
5755
5756	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5757	if (!this_sd)
5758		return -1;
5759
5760	avg_cost = this_sd->avg_scan_cost;
5761
5762	/*
5763	 * Due to large variance we need a large fuzz factor; hackbench in
5764	 * particularly is sensitive here.
5765	 */
5766	if ((avg_idle / 512) < avg_cost)
 
 
 
5767		return -1;
5768
5769	time = local_clock();
 
 
 
 
 
 
5770
5771	for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5772		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5773			continue;
5774		if (idle_cpu(cpu))
 
 
 
 
5775			break;
5776	}
5777
5778	time = local_clock() - time;
5779	cost = this_sd->avg_scan_cost;
5780	delta = (s64)(time - cost) / 8;
5781	this_sd->avg_scan_cost += delta;
5782
5783	return cpu;
5784}
5785
5786/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5787 * Try and locate an idle core/thread in the LLC cache domain.
5788 */
5789static int select_idle_sibling(struct task_struct *p, int prev, int target)
5790{
5791	struct sched_domain *sd;
5792	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5793
5794	if (idle_cpu(target))
 
5795		return target;
5796
5797	/*
5798	 * If the previous cpu is cache affine and idle, don't be stupid.
5799	 */
5800	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5801		return prev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5802
5803	sd = rcu_dereference(per_cpu(sd_llc, target));
5804	if (!sd)
5805		return target;
5806
5807	i = select_idle_core(p, sd, target);
5808	if ((unsigned)i < nr_cpumask_bits)
5809		return i;
5810
5811	i = select_idle_cpu(p, sd, target);
5812	if ((unsigned)i < nr_cpumask_bits)
5813		return i;
5814
5815	i = select_idle_smt(p, sd, target);
5816	if ((unsigned)i < nr_cpumask_bits)
5817		return i;
5818
5819	return target;
5820}
5821
5822/*
5823 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5824 * tasks. The unit of the return value must be the one of capacity so we can
5825 * compare the utilization with the capacity of the CPU that is available for
5826 * CFS task (ie cpu_capacity).
 
 
5827 *
5828 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5829 * recent utilization of currently non-runnable tasks on a CPU. It represents
5830 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5831 * capacity_orig is the cpu_capacity available at the highest frequency
5832 * (arch_scale_freq_capacity()).
5833 * The utilization of a CPU converges towards a sum equal to or less than the
5834 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5835 * the running time on this CPU scaled by capacity_curr.
5836 *
 
 
 
 
 
 
 
 
5837 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5838 * higher than capacity_orig because of unfortunate rounding in
5839 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5840 * the average stabilizes with the new running time. We need to check that the
5841 * utilization stays within the range of [0..capacity_orig] and cap it if
5842 * necessary. Without utilization capping, a group could be seen as overloaded
5843 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5844 * available capacity. We allow utilization to overshoot capacity_curr (but not
5845 * capacity_orig) as it useful for predicting the capacity required after task
5846 * migrations (scheduler-driven DVFS).
 
 
5847 */
5848static int cpu_util(int cpu)
5849{
5850	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5851	unsigned long capacity = capacity_orig_of(cpu);
5852
5853	return (util >= capacity) ? capacity : util;
5854}
5855
5856static inline int task_util(struct task_struct *p)
5857{
5858	return p->se.avg.util_avg;
 
5859}
5860
5861/*
5862 * cpu_util_wake: Compute cpu utilization with any contributions from
5863 * the waking task p removed.
 
 
 
 
 
 
 
 
 
5864 */
5865static int cpu_util_wake(int cpu, struct task_struct *p)
5866{
5867	unsigned long util, capacity;
 
5868
5869	/* Task has no contribution or is new */
5870	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5871		return cpu_util(cpu);
5872
5873	capacity = capacity_orig_of(cpu);
5874	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5875
5876	return (util >= capacity) ? capacity : util;
 
 
 
 
 
 
 
 
5877}
5878
5879/*
5880 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5881 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5882 *
5883 * In that case WAKE_AFFINE doesn't make sense and we'll let
5884 * BALANCE_WAKE sort things out.
5885 */
5886static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5887{
5888	long min_cap, max_cap;
 
 
 
 
 
 
 
 
 
 
 
 
5889
5890	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5891	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5892
5893	/* Minimum capacity is close to max, no need to abort wake_affine */
5894	if (max_cap - min_cap < max_cap >> 3)
5895		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5896
5897	/* Bring task utilization in sync with prev_cpu */
5898	sync_entity_load_avg(&p->se);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5899
5900	return min_cap * 1024 < task_util(p) * capacity_margin;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5901}
5902
5903/*
5904 * select_task_rq_fair: Select target runqueue for the waking task in domains
5905 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5906 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5907 *
5908 * Balances load by selecting the idlest cpu in the idlest group, or under
5909 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5910 *
5911 * Returns the target cpu number.
5912 *
5913 * preempt must be disabled.
5914 */
5915static int
5916select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5917{
5918	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5919	int cpu = smp_processor_id();
5920	int new_cpu = prev_cpu;
5921	int want_affine = 0;
5922	int sync = wake_flags & WF_SYNC;
5923
5924	if (sd_flag & SD_BALANCE_WAKE) {
5925		record_wakee(p);
5926		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5927			      && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
 
 
 
 
 
 
 
5928	}
5929
5930	rcu_read_lock();
5931	for_each_domain(cpu, tmp) {
5932		if (!(tmp->flags & SD_LOAD_BALANCE))
5933			break;
5934
5935		/*
5936		 * If both cpu and prev_cpu are part of this domain,
5937		 * cpu is a valid SD_WAKE_AFFINE target.
5938		 */
5939		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5940		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5941			affine_sd = tmp;
 
 
 
5942			break;
5943		}
5944
5945		if (tmp->flags & sd_flag)
5946			sd = tmp;
5947		else if (!want_affine)
5948			break;
5949	}
5950
5951	if (affine_sd) {
5952		sd = NULL; /* Prefer wake_affine over balance flags */
5953		if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
5954			new_cpu = cpu;
5955	}
5956
5957	if (!sd) {
5958		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5959			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
5960
5961	} else while (sd) {
5962		struct sched_group *group;
5963		int weight;
5964
5965		if (!(sd->flags & sd_flag)) {
5966			sd = sd->child;
5967			continue;
5968		}
5969
5970		group = find_idlest_group(sd, p, cpu, sd_flag);
5971		if (!group) {
5972			sd = sd->child;
5973			continue;
5974		}
5975
5976		new_cpu = find_idlest_cpu(group, p, cpu);
5977		if (new_cpu == -1 || new_cpu == cpu) {
5978			/* Now try balancing at a lower domain level of cpu */
5979			sd = sd->child;
5980			continue;
5981		}
5982
5983		/* Now try balancing at a lower domain level of new_cpu */
5984		cpu = new_cpu;
5985		weight = sd->span_weight;
5986		sd = NULL;
5987		for_each_domain(cpu, tmp) {
5988			if (weight <= tmp->span_weight)
5989				break;
5990			if (tmp->flags & sd_flag)
5991				sd = tmp;
5992		}
5993		/* while loop will break here if sd == NULL */
5994	}
5995	rcu_read_unlock();
5996
5997	return new_cpu;
5998}
5999
 
 
6000/*
6001 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6002 * cfs_rq_of(p) references at time of call are still valid and identify the
6003 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6004 */
6005static void migrate_task_rq_fair(struct task_struct *p)
6006{
6007	/*
6008	 * As blocked tasks retain absolute vruntime the migration needs to
6009	 * deal with this by subtracting the old and adding the new
6010	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6011	 * the task on the new runqueue.
6012	 */
6013	if (p->state == TASK_WAKING) {
6014		struct sched_entity *se = &p->se;
6015		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6016		u64 min_vruntime;
6017
6018#ifndef CONFIG_64BIT
6019		u64 min_vruntime_copy;
6020
6021		do {
6022			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6023			smp_rmb();
6024			min_vruntime = cfs_rq->min_vruntime;
6025		} while (min_vruntime != min_vruntime_copy);
6026#else
6027		min_vruntime = cfs_rq->min_vruntime;
6028#endif
6029
6030		se->vruntime -= min_vruntime;
6031	}
6032
6033	/*
6034	 * We are supposed to update the task to "current" time, then its up to date
6035	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6036	 * what current time is, so simply throw away the out-of-date time. This
6037	 * will result in the wakee task is less decayed, but giving the wakee more
6038	 * load sounds not bad.
6039	 */
6040	remove_entity_load_avg(&p->se);
 
 
 
 
 
 
 
 
 
 
 
6041
6042	/* Tell new CPU we are migrated */
6043	p->se.avg.last_update_time = 0;
6044
6045	/* We have migrated, no longer consider this task hot */
6046	p->se.exec_start = 0;
 
 
6047}
6048
6049static void task_dead_fair(struct task_struct *p)
6050{
6051	remove_entity_load_avg(&p->se);
6052}
 
 
 
 
 
 
 
 
 
6053#endif /* CONFIG_SMP */
6054
6055static unsigned long
6056wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6057{
6058	unsigned long gran = sysctl_sched_wakeup_granularity;
6059
6060	/*
6061	 * Since its curr running now, convert the gran from real-time
6062	 * to virtual-time in his units.
6063	 *
6064	 * By using 'se' instead of 'curr' we penalize light tasks, so
6065	 * they get preempted easier. That is, if 'se' < 'curr' then
6066	 * the resulting gran will be larger, therefore penalizing the
6067	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6068	 * be smaller, again penalizing the lighter task.
6069	 *
6070	 * This is especially important for buddies when the leftmost
6071	 * task is higher priority than the buddy.
6072	 */
6073	return calc_delta_fair(gran, se);
6074}
6075
6076/*
6077 * Should 'se' preempt 'curr'.
6078 *
6079 *             |s1
6080 *        |s2
6081 *   |s3
6082 *         g
6083 *      |<--->|c
6084 *
6085 *  w(c, s1) = -1
6086 *  w(c, s2) =  0
6087 *  w(c, s3) =  1
6088 *
6089 */
6090static int
6091wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6092{
6093	s64 gran, vdiff = curr->vruntime - se->vruntime;
6094
6095	if (vdiff <= 0)
6096		return -1;
6097
6098	gran = wakeup_gran(curr, se);
6099	if (vdiff > gran)
6100		return 1;
6101
6102	return 0;
6103}
6104
6105static void set_last_buddy(struct sched_entity *se)
6106{
6107	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6108		return;
6109
6110	for_each_sched_entity(se)
 
 
6111		cfs_rq_of(se)->last = se;
 
6112}
6113
6114static void set_next_buddy(struct sched_entity *se)
6115{
6116	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6117		return;
6118
6119	for_each_sched_entity(se)
 
 
6120		cfs_rq_of(se)->next = se;
 
6121}
6122
6123static void set_skip_buddy(struct sched_entity *se)
6124{
6125	for_each_sched_entity(se)
6126		cfs_rq_of(se)->skip = se;
6127}
6128
6129/*
6130 * Preempt the current task with a newly woken task if needed:
6131 */
6132static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6133{
6134	struct task_struct *curr = rq->curr;
6135	struct sched_entity *se = &curr->se, *pse = &p->se;
6136	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6137	int scale = cfs_rq->nr_running >= sched_nr_latency;
6138	int next_buddy_marked = 0;
6139
6140	if (unlikely(se == pse))
6141		return;
6142
6143	/*
6144	 * This is possible from callers such as attach_tasks(), in which we
6145	 * unconditionally check_prempt_curr() after an enqueue (which may have
6146	 * lead to a throttle).  This both saves work and prevents false
6147	 * next-buddy nomination below.
6148	 */
6149	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6150		return;
6151
6152	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6153		set_next_buddy(pse);
6154		next_buddy_marked = 1;
6155	}
6156
6157	/*
6158	 * We can come here with TIF_NEED_RESCHED already set from new task
6159	 * wake up path.
6160	 *
6161	 * Note: this also catches the edge-case of curr being in a throttled
6162	 * group (e.g. via set_curr_task), since update_curr() (in the
6163	 * enqueue of curr) will have resulted in resched being set.  This
6164	 * prevents us from potentially nominating it as a false LAST_BUDDY
6165	 * below.
6166	 */
6167	if (test_tsk_need_resched(curr))
6168		return;
6169
6170	/* Idle tasks are by definition preempted by non-idle tasks. */
6171	if (unlikely(curr->policy == SCHED_IDLE) &&
6172	    likely(p->policy != SCHED_IDLE))
6173		goto preempt;
6174
6175	/*
6176	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6177	 * is driven by the tick):
6178	 */
6179	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6180		return;
6181
6182	find_matching_se(&se, &pse);
6183	update_curr(cfs_rq_of(se));
6184	BUG_ON(!pse);
6185	if (wakeup_preempt_entity(se, pse) == 1) {
6186		/*
6187		 * Bias pick_next to pick the sched entity that is
6188		 * triggering this preemption.
6189		 */
6190		if (!next_buddy_marked)
6191			set_next_buddy(pse);
6192		goto preempt;
6193	}
6194
6195	return;
6196
6197preempt:
6198	resched_curr(rq);
6199	/*
6200	 * Only set the backward buddy when the current task is still
6201	 * on the rq. This can happen when a wakeup gets interleaved
6202	 * with schedule on the ->pre_schedule() or idle_balance()
6203	 * point, either of which can * drop the rq lock.
6204	 *
6205	 * Also, during early boot the idle thread is in the fair class,
6206	 * for obvious reasons its a bad idea to schedule back to it.
6207	 */
6208	if (unlikely(!se->on_rq || curr == rq->idle))
6209		return;
6210
6211	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6212		set_last_buddy(se);
6213}
6214
6215static struct task_struct *
6216pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
6217{
6218	struct cfs_rq *cfs_rq = &rq->cfs;
6219	struct sched_entity *se;
6220	struct task_struct *p;
6221	int new_tasks;
6222
6223again:
6224#ifdef CONFIG_FAIR_GROUP_SCHED
6225	if (!cfs_rq->nr_running)
6226		goto idle;
6227
6228	if (prev->sched_class != &fair_sched_class)
 
6229		goto simple;
6230
6231	/*
6232	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6233	 * likely that a next task is from the same cgroup as the current.
6234	 *
6235	 * Therefore attempt to avoid putting and setting the entire cgroup
6236	 * hierarchy, only change the part that actually changes.
6237	 */
6238
6239	do {
6240		struct sched_entity *curr = cfs_rq->curr;
6241
6242		/*
6243		 * Since we got here without doing put_prev_entity() we also
6244		 * have to consider cfs_rq->curr. If it is still a runnable
6245		 * entity, update_curr() will update its vruntime, otherwise
6246		 * forget we've ever seen it.
6247		 */
6248		if (curr) {
6249			if (curr->on_rq)
6250				update_curr(cfs_rq);
6251			else
6252				curr = NULL;
6253
6254			/*
6255			 * This call to check_cfs_rq_runtime() will do the
6256			 * throttle and dequeue its entity in the parent(s).
6257			 * Therefore the 'simple' nr_running test will indeed
6258			 * be correct.
6259			 */
6260			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
 
 
 
 
 
6261				goto simple;
 
6262		}
6263
6264		se = pick_next_entity(cfs_rq, curr);
6265		cfs_rq = group_cfs_rq(se);
6266	} while (cfs_rq);
6267
6268	p = task_of(se);
6269
6270	/*
6271	 * Since we haven't yet done put_prev_entity and if the selected task
6272	 * is a different task than we started out with, try and touch the
6273	 * least amount of cfs_rqs.
6274	 */
6275	if (prev != p) {
6276		struct sched_entity *pse = &prev->se;
6277
6278		while (!(cfs_rq = is_same_group(se, pse))) {
6279			int se_depth = se->depth;
6280			int pse_depth = pse->depth;
6281
6282			if (se_depth <= pse_depth) {
6283				put_prev_entity(cfs_rq_of(pse), pse);
6284				pse = parent_entity(pse);
6285			}
6286			if (se_depth >= pse_depth) {
6287				set_next_entity(cfs_rq_of(se), se);
6288				se = parent_entity(se);
6289			}
6290		}
6291
6292		put_prev_entity(cfs_rq, pse);
6293		set_next_entity(cfs_rq, se);
6294	}
6295
6296	if (hrtick_enabled(rq))
6297		hrtick_start_fair(rq, p);
6298
6299	return p;
6300simple:
6301	cfs_rq = &rq->cfs;
6302#endif
6303
6304	if (!cfs_rq->nr_running)
6305		goto idle;
6306
6307	put_prev_task(rq, prev);
6308
6309	do {
6310		se = pick_next_entity(cfs_rq, NULL);
6311		set_next_entity(cfs_rq, se);
6312		cfs_rq = group_cfs_rq(se);
6313	} while (cfs_rq);
6314
6315	p = task_of(se);
6316
 
 
 
 
 
 
 
 
 
 
6317	if (hrtick_enabled(rq))
6318		hrtick_start_fair(rq, p);
6319
 
 
6320	return p;
6321
6322idle:
 
 
 
 
 
6323	/*
6324	 * This is OK, because current is on_cpu, which avoids it being picked
6325	 * for load-balance and preemption/IRQs are still disabled avoiding
6326	 * further scheduler activity on it and we're being very careful to
6327	 * re-start the picking loop.
6328	 */
6329	lockdep_unpin_lock(&rq->lock, cookie);
6330	new_tasks = idle_balance(rq);
6331	lockdep_repin_lock(&rq->lock, cookie);
6332	/*
6333	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6334	 * possible for any higher priority task to appear. In that case we
6335	 * must re-start the pick_next_entity() loop.
6336	 */
6337	if (new_tasks < 0)
6338		return RETRY_TASK;
6339
6340	if (new_tasks > 0)
6341		goto again;
6342
 
 
 
 
 
 
6343	return NULL;
6344}
6345
 
 
 
 
 
6346/*
6347 * Account for a descheduled task:
6348 */
6349static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6350{
6351	struct sched_entity *se = &prev->se;
6352	struct cfs_rq *cfs_rq;
6353
6354	for_each_sched_entity(se) {
6355		cfs_rq = cfs_rq_of(se);
6356		put_prev_entity(cfs_rq, se);
6357	}
6358}
6359
6360/*
6361 * sched_yield() is very simple
6362 *
6363 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6364 */
6365static void yield_task_fair(struct rq *rq)
6366{
6367	struct task_struct *curr = rq->curr;
6368	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6369	struct sched_entity *se = &curr->se;
6370
6371	/*
6372	 * Are we the only task in the tree?
6373	 */
6374	if (unlikely(rq->nr_running == 1))
6375		return;
6376
6377	clear_buddies(cfs_rq, se);
6378
6379	if (curr->policy != SCHED_BATCH) {
6380		update_rq_clock(rq);
6381		/*
6382		 * Update run-time statistics of the 'current'.
6383		 */
6384		update_curr(cfs_rq);
6385		/*
6386		 * Tell update_rq_clock() that we've just updated,
6387		 * so we don't do microscopic update in schedule()
6388		 * and double the fastpath cost.
6389		 */
6390		rq_clock_skip_update(rq, true);
6391	}
6392
6393	set_skip_buddy(se);
6394}
6395
6396static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6397{
6398	struct sched_entity *se = &p->se;
6399
6400	/* throttled hierarchies are not runnable */
6401	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6402		return false;
6403
6404	/* Tell the scheduler that we'd really like pse to run next. */
6405	set_next_buddy(se);
6406
6407	yield_task_fair(rq);
6408
6409	return true;
6410}
6411
6412#ifdef CONFIG_SMP
6413/**************************************************
6414 * Fair scheduling class load-balancing methods.
6415 *
6416 * BASICS
6417 *
6418 * The purpose of load-balancing is to achieve the same basic fairness the
6419 * per-cpu scheduler provides, namely provide a proportional amount of compute
6420 * time to each task. This is expressed in the following equation:
6421 *
6422 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6423 *
6424 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6425 * W_i,0 is defined as:
6426 *
6427 *   W_i,0 = \Sum_j w_i,j                                             (2)
6428 *
6429 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6430 * is derived from the nice value as per sched_prio_to_weight[].
6431 *
6432 * The weight average is an exponential decay average of the instantaneous
6433 * weight:
6434 *
6435 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6436 *
6437 * C_i is the compute capacity of cpu i, typically it is the
6438 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6439 * can also include other factors [XXX].
6440 *
6441 * To achieve this balance we define a measure of imbalance which follows
6442 * directly from (1):
6443 *
6444 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6445 *
6446 * We them move tasks around to minimize the imbalance. In the continuous
6447 * function space it is obvious this converges, in the discrete case we get
6448 * a few fun cases generally called infeasible weight scenarios.
6449 *
6450 * [XXX expand on:
6451 *     - infeasible weights;
6452 *     - local vs global optima in the discrete case. ]
6453 *
6454 *
6455 * SCHED DOMAINS
6456 *
6457 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6458 * for all i,j solution, we create a tree of cpus that follows the hardware
6459 * topology where each level pairs two lower groups (or better). This results
6460 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6461 * tree to only the first of the previous level and we decrease the frequency
6462 * of load-balance at each level inv. proportional to the number of cpus in
6463 * the groups.
6464 *
6465 * This yields:
6466 *
6467 *     log_2 n     1     n
6468 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6469 *     i = 0      2^i   2^i
6470 *                               `- size of each group
6471 *         |         |     `- number of cpus doing load-balance
6472 *         |         `- freq
6473 *         `- sum over all levels
6474 *
6475 * Coupled with a limit on how many tasks we can migrate every balance pass,
6476 * this makes (5) the runtime complexity of the balancer.
6477 *
6478 * An important property here is that each CPU is still (indirectly) connected
6479 * to every other cpu in at most O(log n) steps:
6480 *
6481 * The adjacency matrix of the resulting graph is given by:
6482 *
6483 *             log_2 n
6484 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6485 *             k = 0
6486 *
6487 * And you'll find that:
6488 *
6489 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6490 *
6491 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6492 * The task movement gives a factor of O(m), giving a convergence complexity
6493 * of:
6494 *
6495 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6496 *
6497 *
6498 * WORK CONSERVING
6499 *
6500 * In order to avoid CPUs going idle while there's still work to do, new idle
6501 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6502 * tree itself instead of relying on other CPUs to bring it work.
6503 *
6504 * This adds some complexity to both (5) and (8) but it reduces the total idle
6505 * time.
6506 *
6507 * [XXX more?]
6508 *
6509 *
6510 * CGROUPS
6511 *
6512 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6513 *
6514 *                                s_k,i
6515 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6516 *                                 S_k
6517 *
6518 * Where
6519 *
6520 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6521 *
6522 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6523 *
6524 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6525 * property.
6526 *
6527 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6528 *      rewrite all of this once again.]
6529 */
6530
6531static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6532
6533enum fbq_type { regular, remote, all };
6534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6535#define LBF_ALL_PINNED	0x01
6536#define LBF_NEED_BREAK	0x02
6537#define LBF_DST_PINNED  0x04
6538#define LBF_SOME_PINNED	0x08
 
 
6539
6540struct lb_env {
6541	struct sched_domain	*sd;
6542
6543	struct rq		*src_rq;
6544	int			src_cpu;
6545
6546	int			dst_cpu;
6547	struct rq		*dst_rq;
6548
6549	struct cpumask		*dst_grpmask;
6550	int			new_dst_cpu;
6551	enum cpu_idle_type	idle;
6552	long			imbalance;
6553	/* The set of CPUs under consideration for load-balancing */
6554	struct cpumask		*cpus;
6555
6556	unsigned int		flags;
6557
6558	unsigned int		loop;
6559	unsigned int		loop_break;
6560	unsigned int		loop_max;
6561
6562	enum fbq_type		fbq_type;
 
6563	struct list_head	tasks;
6564};
6565
6566/*
6567 * Is this task likely cache-hot:
6568 */
6569static int task_hot(struct task_struct *p, struct lb_env *env)
6570{
6571	s64 delta;
6572
6573	lockdep_assert_held(&env->src_rq->lock);
6574
6575	if (p->sched_class != &fair_sched_class)
6576		return 0;
6577
6578	if (unlikely(p->policy == SCHED_IDLE))
6579		return 0;
6580
6581	/*
6582	 * Buddy candidates are cache hot:
6583	 */
6584	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6585			(&p->se == cfs_rq_of(&p->se)->next ||
6586			 &p->se == cfs_rq_of(&p->se)->last))
6587		return 1;
6588
6589	if (sysctl_sched_migration_cost == -1)
6590		return 1;
6591	if (sysctl_sched_migration_cost == 0)
6592		return 0;
6593
6594	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6595
6596	return delta < (s64)sysctl_sched_migration_cost;
6597}
6598
6599#ifdef CONFIG_NUMA_BALANCING
6600/*
6601 * Returns 1, if task migration degrades locality
6602 * Returns 0, if task migration improves locality i.e migration preferred.
6603 * Returns -1, if task migration is not affected by locality.
6604 */
6605static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6606{
6607	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6608	unsigned long src_faults, dst_faults;
6609	int src_nid, dst_nid;
6610
6611	if (!static_branch_likely(&sched_numa_balancing))
6612		return -1;
6613
6614	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6615		return -1;
6616
6617	src_nid = cpu_to_node(env->src_cpu);
6618	dst_nid = cpu_to_node(env->dst_cpu);
6619
6620	if (src_nid == dst_nid)
6621		return -1;
6622
6623	/* Migrating away from the preferred node is always bad. */
6624	if (src_nid == p->numa_preferred_nid) {
6625		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6626			return 1;
6627		else
6628			return -1;
6629	}
6630
6631	/* Encourage migration to the preferred node. */
6632	if (dst_nid == p->numa_preferred_nid)
6633		return 0;
6634
 
 
 
 
 
6635	if (numa_group) {
6636		src_faults = group_faults(p, src_nid);
6637		dst_faults = group_faults(p, dst_nid);
6638	} else {
6639		src_faults = task_faults(p, src_nid);
6640		dst_faults = task_faults(p, dst_nid);
6641	}
6642
6643	return dst_faults < src_faults;
6644}
6645
6646#else
6647static inline int migrate_degrades_locality(struct task_struct *p,
6648					     struct lb_env *env)
6649{
6650	return -1;
6651}
6652#endif
6653
6654/*
6655 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6656 */
6657static
6658int can_migrate_task(struct task_struct *p, struct lb_env *env)
6659{
6660	int tsk_cache_hot;
6661
6662	lockdep_assert_held(&env->src_rq->lock);
6663
6664	/*
6665	 * We do not migrate tasks that are:
6666	 * 1) throttled_lb_pair, or
6667	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6668	 * 3) running (obviously), or
6669	 * 4) are cache-hot on their current CPU.
6670	 */
6671	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6672		return 0;
6673
6674	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6675		int cpu;
6676
6677		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6678
6679		env->flags |= LBF_SOME_PINNED;
6680
6681		/*
6682		 * Remember if this task can be migrated to any other cpu in
6683		 * our sched_group. We may want to revisit it if we couldn't
6684		 * meet load balance goals by pulling other tasks on src_cpu.
6685		 *
6686		 * Also avoid computing new_dst_cpu if we have already computed
6687		 * one in current iteration.
6688		 */
6689		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6690			return 0;
6691
6692		/* Prevent to re-select dst_cpu via env's cpus */
6693		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6694			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6695				env->flags |= LBF_DST_PINNED;
6696				env->new_dst_cpu = cpu;
6697				break;
6698			}
6699		}
6700
6701		return 0;
6702	}
6703
6704	/* Record that we found atleast one task that could run on dst_cpu */
6705	env->flags &= ~LBF_ALL_PINNED;
6706
6707	if (task_running(env->src_rq, p)) {
6708		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6709		return 0;
6710	}
6711
6712	/*
6713	 * Aggressive migration if:
6714	 * 1) destination numa is preferred
6715	 * 2) task is cache cold, or
6716	 * 3) too many balance attempts have failed.
6717	 */
6718	tsk_cache_hot = migrate_degrades_locality(p, env);
6719	if (tsk_cache_hot == -1)
6720		tsk_cache_hot = task_hot(p, env);
6721
6722	if (tsk_cache_hot <= 0 ||
6723	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6724		if (tsk_cache_hot == 1) {
6725			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6726			schedstat_inc(p->se.statistics.nr_forced_migrations);
6727		}
6728		return 1;
6729	}
6730
6731	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
6732	return 0;
6733}
6734
6735/*
6736 * detach_task() -- detach the task for the migration specified in env
6737 */
6738static void detach_task(struct task_struct *p, struct lb_env *env)
6739{
6740	lockdep_assert_held(&env->src_rq->lock);
6741
6742	p->on_rq = TASK_ON_RQ_MIGRATING;
6743	deactivate_task(env->src_rq, p, 0);
6744	set_task_cpu(p, env->dst_cpu);
6745}
6746
6747/*
6748 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6749 * part of active balancing operations within "domain".
6750 *
6751 * Returns a task if successful and NULL otherwise.
6752 */
6753static struct task_struct *detach_one_task(struct lb_env *env)
6754{
6755	struct task_struct *p, *n;
6756
6757	lockdep_assert_held(&env->src_rq->lock);
6758
6759	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
 
6760		if (!can_migrate_task(p, env))
6761			continue;
6762
6763		detach_task(p, env);
6764
6765		/*
6766		 * Right now, this is only the second place where
6767		 * lb_gained[env->idle] is updated (other is detach_tasks)
6768		 * so we can safely collect stats here rather than
6769		 * inside detach_tasks().
6770		 */
6771		schedstat_inc(env->sd->lb_gained[env->idle]);
6772		return p;
6773	}
6774	return NULL;
6775}
6776
6777static const unsigned int sched_nr_migrate_break = 32;
6778
6779/*
6780 * detach_tasks() -- tries to detach up to imbalance weighted load from
6781 * busiest_rq, as part of a balancing operation within domain "sd".
6782 *
6783 * Returns number of detached tasks if successful and 0 otherwise.
6784 */
6785static int detach_tasks(struct lb_env *env)
6786{
6787	struct list_head *tasks = &env->src_rq->cfs_tasks;
 
6788	struct task_struct *p;
6789	unsigned long load;
6790	int detached = 0;
6791
6792	lockdep_assert_held(&env->src_rq->lock);
6793
6794	if (env->imbalance <= 0)
6795		return 0;
6796
6797	while (!list_empty(tasks)) {
6798		/*
6799		 * We don't want to steal all, otherwise we may be treated likewise,
6800		 * which could at worst lead to a livelock crash.
6801		 */
6802		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6803			break;
6804
6805		p = list_first_entry(tasks, struct task_struct, se.group_node);
6806
6807		env->loop++;
6808		/* We've more or less seen every task there is, call it quits */
6809		if (env->loop > env->loop_max)
6810			break;
6811
6812		/* take a breather every nr_migrate tasks */
6813		if (env->loop > env->loop_break) {
6814			env->loop_break += sched_nr_migrate_break;
6815			env->flags |= LBF_NEED_BREAK;
6816			break;
6817		}
6818
6819		if (!can_migrate_task(p, env))
6820			goto next;
6821
6822		load = task_h_load(p);
 
 
 
 
 
 
 
 
 
6823
6824		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6825			goto next;
 
6826
6827		if ((load / 2) > env->imbalance)
6828			goto next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6829
6830		detach_task(p, env);
6831		list_add(&p->se.group_node, &env->tasks);
6832
6833		detached++;
6834		env->imbalance -= load;
6835
6836#ifdef CONFIG_PREEMPT
6837		/*
6838		 * NEWIDLE balancing is a source of latency, so preemptible
6839		 * kernels will stop after the first task is detached to minimize
6840		 * the critical section.
6841		 */
6842		if (env->idle == CPU_NEWLY_IDLE)
6843			break;
6844#endif
6845
6846		/*
6847		 * We only want to steal up to the prescribed amount of
6848		 * weighted load.
6849		 */
6850		if (env->imbalance <= 0)
6851			break;
6852
6853		continue;
6854next:
6855		list_move_tail(&p->se.group_node, tasks);
6856	}
6857
6858	/*
6859	 * Right now, this is one of only two places we collect this stat
6860	 * so we can safely collect detach_one_task() stats here rather
6861	 * than inside detach_one_task().
6862	 */
6863	schedstat_add(env->sd->lb_gained[env->idle], detached);
6864
6865	return detached;
6866}
6867
6868/*
6869 * attach_task() -- attach the task detached by detach_task() to its new rq.
6870 */
6871static void attach_task(struct rq *rq, struct task_struct *p)
6872{
6873	lockdep_assert_held(&rq->lock);
6874
6875	BUG_ON(task_rq(p) != rq);
6876	activate_task(rq, p, 0);
6877	p->on_rq = TASK_ON_RQ_QUEUED;
6878	check_preempt_curr(rq, p, 0);
6879}
6880
6881/*
6882 * attach_one_task() -- attaches the task returned from detach_one_task() to
6883 * its new rq.
6884 */
6885static void attach_one_task(struct rq *rq, struct task_struct *p)
6886{
6887	raw_spin_lock(&rq->lock);
 
 
 
6888	attach_task(rq, p);
6889	raw_spin_unlock(&rq->lock);
6890}
6891
6892/*
6893 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6894 * new rq.
6895 */
6896static void attach_tasks(struct lb_env *env)
6897{
6898	struct list_head *tasks = &env->tasks;
6899	struct task_struct *p;
 
6900
6901	raw_spin_lock(&env->dst_rq->lock);
 
6902
6903	while (!list_empty(tasks)) {
6904		p = list_first_entry(tasks, struct task_struct, se.group_node);
6905		list_del_init(&p->se.group_node);
6906
6907		attach_task(env->dst_rq, p);
6908	}
6909
6910	raw_spin_unlock(&env->dst_rq->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6911}
6912
6913#ifdef CONFIG_FAIR_GROUP_SCHED
6914static void update_blocked_averages(int cpu)
 
6915{
6916	struct rq *rq = cpu_rq(cpu);
6917	struct cfs_rq *cfs_rq;
6918	unsigned long flags;
6919
6920	raw_spin_lock_irqsave(&rq->lock, flags);
6921	update_rq_clock(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6922
6923	/*
6924	 * Iterates the task_group tree in a bottom up fashion, see
6925	 * list_add_leaf_cfs_rq() for details.
6926	 */
6927	for_each_leaf_cfs_rq(rq, cfs_rq) {
6928		/* throttled entities do not contribute to load */
6929		if (throttled_hierarchy(cfs_rq))
6930			continue;
6931
6932		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6933			update_tg_load_avg(cfs_rq, 0);
6934
6935		/* Propagate pending load changes to the parent */
6936		if (cfs_rq->tg->se[cpu])
6937			update_load_avg(cfs_rq->tg->se[cpu], 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6938	}
6939	raw_spin_unlock_irqrestore(&rq->lock, flags);
 
6940}
6941
6942/*
6943 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6944 * This needs to be done in a top-down fashion because the load of a child
6945 * group is a fraction of its parents load.
6946 */
6947static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6948{
6949	struct rq *rq = rq_of(cfs_rq);
6950	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6951	unsigned long now = jiffies;
6952	unsigned long load;
6953
6954	if (cfs_rq->last_h_load_update == now)
6955		return;
6956
6957	cfs_rq->h_load_next = NULL;
6958	for_each_sched_entity(se) {
6959		cfs_rq = cfs_rq_of(se);
6960		cfs_rq->h_load_next = se;
6961		if (cfs_rq->last_h_load_update == now)
6962			break;
6963	}
6964
6965	if (!se) {
6966		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6967		cfs_rq->last_h_load_update = now;
6968	}
6969
6970	while ((se = cfs_rq->h_load_next) != NULL) {
6971		load = cfs_rq->h_load;
6972		load = div64_ul(load * se->avg.load_avg,
6973			cfs_rq_load_avg(cfs_rq) + 1);
6974		cfs_rq = group_cfs_rq(se);
6975		cfs_rq->h_load = load;
6976		cfs_rq->last_h_load_update = now;
6977	}
6978}
6979
6980static unsigned long task_h_load(struct task_struct *p)
6981{
6982	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6983
6984	update_cfs_rq_h_load(cfs_rq);
6985	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6986			cfs_rq_load_avg(cfs_rq) + 1);
6987}
6988#else
6989static inline void update_blocked_averages(int cpu)
6990{
6991	struct rq *rq = cpu_rq(cpu);
6992	struct cfs_rq *cfs_rq = &rq->cfs;
6993	unsigned long flags;
6994
6995	raw_spin_lock_irqsave(&rq->lock, flags);
6996	update_rq_clock(rq);
6997	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6998	raw_spin_unlock_irqrestore(&rq->lock, flags);
 
6999}
7000
7001static unsigned long task_h_load(struct task_struct *p)
7002{
7003	return p->se.avg.load_avg;
7004}
7005#endif
7006
7007/********** Helpers for find_busiest_group ************************/
 
 
 
 
7008
7009enum group_type {
7010	group_other = 0,
7011	group_imbalanced,
7012	group_overloaded,
7013};
 
 
 
 
 
 
 
 
7014
7015/*
7016 * sg_lb_stats - stats of a sched_group required for load_balancing
7017 */
7018struct sg_lb_stats {
7019	unsigned long avg_load; /*Avg load across the CPUs of the group */
7020	unsigned long group_load; /* Total load over the CPUs of the group */
7021	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7022	unsigned long load_per_task;
7023	unsigned long group_capacity;
7024	unsigned long group_util; /* Total utilization of the group */
7025	unsigned int sum_nr_running; /* Nr tasks running in the group */
 
 
7026	unsigned int idle_cpus;
7027	unsigned int group_weight;
7028	enum group_type group_type;
7029	int group_no_capacity;
 
7030#ifdef CONFIG_NUMA_BALANCING
7031	unsigned int nr_numa_running;
7032	unsigned int nr_preferred_running;
7033#endif
7034};
7035
7036/*
7037 * sd_lb_stats - Structure to store the statistics of a sched_domain
7038 *		 during load balancing.
7039 */
7040struct sd_lb_stats {
7041	struct sched_group *busiest;	/* Busiest group in this sd */
7042	struct sched_group *local;	/* Local group in this sd */
7043	unsigned long total_load;	/* Total load of all groups in sd */
7044	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7045	unsigned long avg_load;	/* Average load across all groups in sd */
 
7046
7047	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7048	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7049};
7050
7051static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7052{
7053	/*
7054	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7055	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7056	 * We must however clear busiest_stat::avg_load because
7057	 * update_sd_pick_busiest() reads this before assignment.
 
7058	 */
7059	*sds = (struct sd_lb_stats){
7060		.busiest = NULL,
7061		.local = NULL,
7062		.total_load = 0UL,
7063		.total_capacity = 0UL,
7064		.busiest_stat = {
7065			.avg_load = 0UL,
7066			.sum_nr_running = 0,
7067			.group_type = group_other,
7068		},
7069	};
7070}
7071
7072/**
7073 * get_sd_load_idx - Obtain the load index for a given sched domain.
7074 * @sd: The sched_domain whose load_idx is to be obtained.
7075 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7076 *
7077 * Return: The load index.
7078 */
7079static inline int get_sd_load_idx(struct sched_domain *sd,
7080					enum cpu_idle_type idle)
7081{
7082	int load_idx;
7083
7084	switch (idle) {
7085	case CPU_NOT_IDLE:
7086		load_idx = sd->busy_idx;
7087		break;
7088
7089	case CPU_NEWLY_IDLE:
7090		load_idx = sd->newidle_idx;
7091		break;
7092	default:
7093		load_idx = sd->idle_idx;
7094		break;
7095	}
7096
7097	return load_idx;
7098}
7099
7100static unsigned long scale_rt_capacity(int cpu)
7101{
7102	struct rq *rq = cpu_rq(cpu);
7103	u64 total, used, age_stamp, avg;
7104	s64 delta;
 
7105
7106	/*
7107	 * Since we're reading these variables without serialization make sure
7108	 * we read them once before doing sanity checks on them.
7109	 */
7110	age_stamp = READ_ONCE(rq->age_stamp);
7111	avg = READ_ONCE(rq->rt_avg);
7112	delta = __rq_clock_broken(rq) - age_stamp;
7113
7114	if (unlikely(delta < 0))
7115		delta = 0;
7116
7117	total = sched_avg_period() + delta;
 
 
 
 
 
 
 
 
7118
7119	used = div_u64(avg, total);
 
7120
7121	if (likely(used < SCHED_CAPACITY_SCALE))
7122		return SCHED_CAPACITY_SCALE - used;
7123
7124	return 1;
7125}
7126
7127static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7128{
7129	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7130	struct sched_group *sdg = sd->groups;
7131
7132	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7133
7134	capacity *= scale_rt_capacity(cpu);
7135	capacity >>= SCHED_CAPACITY_SHIFT;
7136
7137	if (!capacity)
7138		capacity = 1;
7139
7140	cpu_rq(cpu)->cpu_capacity = capacity;
7141	sdg->sgc->capacity = capacity;
7142	sdg->sgc->min_capacity = capacity;
 
7143}
7144
7145void update_group_capacity(struct sched_domain *sd, int cpu)
7146{
7147	struct sched_domain *child = sd->child;
7148	struct sched_group *group, *sdg = sd->groups;
7149	unsigned long capacity, min_capacity;
7150	unsigned long interval;
7151
7152	interval = msecs_to_jiffies(sd->balance_interval);
7153	interval = clamp(interval, 1UL, max_load_balance_interval);
7154	sdg->sgc->next_update = jiffies + interval;
7155
7156	if (!child) {
7157		update_cpu_capacity(sd, cpu);
7158		return;
7159	}
7160
7161	capacity = 0;
7162	min_capacity = ULONG_MAX;
 
7163
7164	if (child->flags & SD_OVERLAP) {
7165		/*
7166		 * SD_OVERLAP domains cannot assume that child groups
7167		 * span the current group.
7168		 */
7169
7170		for_each_cpu(cpu, sched_group_cpus(sdg)) {
7171			struct sched_group_capacity *sgc;
7172			struct rq *rq = cpu_rq(cpu);
7173
7174			/*
7175			 * build_sched_domains() -> init_sched_groups_capacity()
7176			 * gets here before we've attached the domains to the
7177			 * runqueues.
7178			 *
7179			 * Use capacity_of(), which is set irrespective of domains
7180			 * in update_cpu_capacity().
7181			 *
7182			 * This avoids capacity from being 0 and
7183			 * causing divide-by-zero issues on boot.
7184			 */
7185			if (unlikely(!rq->sd)) {
7186				capacity += capacity_of(cpu);
7187			} else {
7188				sgc = rq->sd->groups->sgc;
7189				capacity += sgc->capacity;
7190			}
7191
7192			min_capacity = min(capacity, min_capacity);
 
 
7193		}
7194	} else  {
7195		/*
7196		 * !SD_OVERLAP domains can assume that child groups
7197		 * span the current group.
7198		 */
7199
7200		group = child->groups;
7201		do {
7202			struct sched_group_capacity *sgc = group->sgc;
7203
7204			capacity += sgc->capacity;
7205			min_capacity = min(sgc->min_capacity, min_capacity);
 
7206			group = group->next;
7207		} while (group != child->groups);
7208	}
7209
7210	sdg->sgc->capacity = capacity;
7211	sdg->sgc->min_capacity = min_capacity;
 
7212}
7213
7214/*
7215 * Check whether the capacity of the rq has been noticeably reduced by side
7216 * activity. The imbalance_pct is used for the threshold.
7217 * Return true is the capacity is reduced
7218 */
7219static inline int
7220check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7221{
7222	return ((rq->cpu_capacity * sd->imbalance_pct) <
7223				(rq->cpu_capacity_orig * 100));
7224}
7225
7226/*
 
 
 
 
 
 
 
 
 
 
 
 
7227 * Group imbalance indicates (and tries to solve) the problem where balancing
7228 * groups is inadequate due to tsk_cpus_allowed() constraints.
7229 *
7230 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7231 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7232 * Something like:
7233 *
7234 *	{ 0 1 2 3 } { 4 5 6 7 }
7235 *	        *     * * *
7236 *
7237 * If we were to balance group-wise we'd place two tasks in the first group and
7238 * two tasks in the second group. Clearly this is undesired as it will overload
7239 * cpu 3 and leave one of the cpus in the second group unused.
7240 *
7241 * The current solution to this issue is detecting the skew in the first group
7242 * by noticing the lower domain failed to reach balance and had difficulty
7243 * moving tasks due to affinity constraints.
7244 *
7245 * When this is so detected; this group becomes a candidate for busiest; see
7246 * update_sd_pick_busiest(). And calculate_imbalance() and
7247 * find_busiest_group() avoid some of the usual balance conditions to allow it
7248 * to create an effective group imbalance.
7249 *
7250 * This is a somewhat tricky proposition since the next run might not find the
7251 * group imbalance and decide the groups need to be balanced again. A most
7252 * subtle and fragile situation.
7253 */
7254
7255static inline int sg_imbalanced(struct sched_group *group)
7256{
7257	return group->sgc->imbalance;
7258}
7259
7260/*
7261 * group_has_capacity returns true if the group has spare capacity that could
7262 * be used by some tasks.
7263 * We consider that a group has spare capacity if the  * number of task is
7264 * smaller than the number of CPUs or if the utilization is lower than the
7265 * available capacity for CFS tasks.
7266 * For the latter, we use a threshold to stabilize the state, to take into
7267 * account the variance of the tasks' load and to return true if the available
7268 * capacity in meaningful for the load balancer.
7269 * As an example, an available capacity of 1% can appear but it doesn't make
7270 * any benefit for the load balance.
7271 */
7272static inline bool
7273group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7274{
7275	if (sgs->sum_nr_running < sgs->group_weight)
7276		return true;
7277
 
 
 
 
7278	if ((sgs->group_capacity * 100) >
7279			(sgs->group_util * env->sd->imbalance_pct))
7280		return true;
7281
7282	return false;
7283}
7284
7285/*
7286 *  group_is_overloaded returns true if the group has more tasks than it can
7287 *  handle.
7288 *  group_is_overloaded is not equals to !group_has_capacity because a group
7289 *  with the exact right number of tasks, has no more spare capacity but is not
7290 *  overloaded so both group_has_capacity and group_is_overloaded return
7291 *  false.
7292 */
7293static inline bool
7294group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7295{
7296	if (sgs->sum_nr_running <= sgs->group_weight)
7297		return false;
7298
7299	if ((sgs->group_capacity * 100) <
7300			(sgs->group_util * env->sd->imbalance_pct))
 
 
 
 
7301		return true;
7302
7303	return false;
7304}
7305
7306/*
7307 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7308 * per-CPU capacity than sched_group ref.
7309 */
7310static inline bool
7311group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
 
 
 
 
 
 
 
 
 
 
7312{
7313	return sg->sgc->min_capacity * capacity_margin <
7314						ref->sgc->min_capacity * 1024;
7315}
7316
7317static inline enum
7318group_type group_classify(struct sched_group *group,
 
7319			  struct sg_lb_stats *sgs)
7320{
7321	if (sgs->group_no_capacity)
7322		return group_overloaded;
7323
7324	if (sg_imbalanced(group))
7325		return group_imbalanced;
7326
7327	return group_other;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7328}
7329
7330/**
7331 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7332 * @env: The load balancing environment.
7333 * @group: sched_group whose statistics are to be updated.
7334 * @load_idx: Load index of sched_domain of this_cpu for load calc.
7335 * @local_group: Does group contain this_cpu.
7336 * @sgs: variable to hold the statistics for this group.
7337 * @overload: Indicate more than one runnable task for any CPU.
7338 */
7339static inline void update_sg_lb_stats(struct lb_env *env,
7340			struct sched_group *group, int load_idx,
7341			int local_group, struct sg_lb_stats *sgs,
7342			bool *overload)
7343{
7344	unsigned long load;
7345	int i, nr_running;
7346
7347	memset(sgs, 0, sizeof(*sgs));
7348
7349	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
 
 
7350		struct rq *rq = cpu_rq(i);
7351
7352		/* Bias balancing toward cpus of our domain */
7353		if (local_group)
7354			load = target_load(i, load_idx);
7355		else
7356			load = source_load(i, load_idx);
7357
7358		sgs->group_load += load;
7359		sgs->group_util += cpu_util(i);
7360		sgs->sum_nr_running += rq->cfs.h_nr_running;
 
7361
7362		nr_running = rq->nr_running;
 
 
7363		if (nr_running > 1)
7364			*overload = true;
 
 
 
7365
7366#ifdef CONFIG_NUMA_BALANCING
7367		sgs->nr_numa_running += rq->nr_numa_running;
7368		sgs->nr_preferred_running += rq->nr_preferred_running;
7369#endif
7370		sgs->sum_weighted_load += weighted_cpuload(i);
7371		/*
7372		 * No need to call idle_cpu() if nr_running is not 0
7373		 */
7374		if (!nr_running && idle_cpu(i))
7375			sgs->idle_cpus++;
 
 
 
 
 
 
 
 
 
 
 
 
 
7376	}
7377
7378	/* Adjust by relative CPU capacity of the group */
7379	sgs->group_capacity = group->sgc->capacity;
7380	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
 
 
 
 
7381
7382	if (sgs->sum_nr_running)
7383		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7384
7385	sgs->group_weight = group->group_weight;
7386
7387	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7388	sgs->group_type = group_classify(group, sgs);
 
 
 
 
7389}
7390
7391/**
7392 * update_sd_pick_busiest - return 1 on busiest group
7393 * @env: The load balancing environment.
7394 * @sds: sched_domain statistics
7395 * @sg: sched_group candidate to be checked for being the busiest
7396 * @sgs: sched_group statistics
7397 *
7398 * Determine if @sg is a busier group than the previously selected
7399 * busiest group.
7400 *
7401 * Return: %true if @sg is a busier group than the previously selected
7402 * busiest group. %false otherwise.
7403 */
7404static bool update_sd_pick_busiest(struct lb_env *env,
7405				   struct sd_lb_stats *sds,
7406				   struct sched_group *sg,
7407				   struct sg_lb_stats *sgs)
7408{
7409	struct sg_lb_stats *busiest = &sds->busiest_stat;
7410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7411	if (sgs->group_type > busiest->group_type)
7412		return true;
7413
7414	if (sgs->group_type < busiest->group_type)
7415		return false;
7416
7417	if (sgs->avg_load <= busiest->avg_load)
7418		return false;
7419
7420	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7421		goto asym_packing;
7422
7423	/*
7424	 * Candidate sg has no more than one task per CPU and
7425	 * has higher per-CPU capacity. Migrating tasks to less
7426	 * capable CPUs may harm throughput. Maximize throughput,
7427	 * power/energy consequences are not considered.
7428	 */
7429	if (sgs->sum_nr_running <= sgs->group_weight &&
7430	    group_smaller_cpu_capacity(sds->local, sg))
 
 
 
 
 
 
 
 
 
 
 
7431		return false;
7432
7433asym_packing:
7434	/* This is the busiest node in its class. */
7435	if (!(env->sd->flags & SD_ASYM_PACKING))
7436		return true;
 
7437
7438	/* No ASYM_PACKING if target cpu is already busy */
7439	if (env->idle == CPU_NOT_IDLE)
7440		return true;
7441	/*
7442	 * ASYM_PACKING needs to move all the work to the highest
7443	 * prority CPUs in the group, therefore mark all groups
7444	 * of lower priority than ourself as busy.
7445	 */
7446	if (sgs->sum_nr_running &&
7447	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7448		if (!sds->busiest)
7449			return true;
7450
7451		/* Prefer to move from lowest priority cpu's work */
7452		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7453				      sg->asym_prefer_cpu))
7454			return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7455	}
7456
7457	return false;
 
 
 
 
 
 
 
 
 
 
 
7458}
7459
7460#ifdef CONFIG_NUMA_BALANCING
7461static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7462{
7463	if (sgs->sum_nr_running > sgs->nr_numa_running)
7464		return regular;
7465	if (sgs->sum_nr_running > sgs->nr_preferred_running)
7466		return remote;
7467	return all;
7468}
7469
7470static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7471{
7472	if (rq->nr_running > rq->nr_numa_running)
7473		return regular;
7474	if (rq->nr_running > rq->nr_preferred_running)
7475		return remote;
7476	return all;
7477}
7478#else
7479static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7480{
7481	return all;
7482}
7483
7484static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7485{
7486	return regular;
7487}
7488#endif /* CONFIG_NUMA_BALANCING */
7489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7490/**
7491 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7492 * @env: The load balancing environment.
7493 * @sds: variable to hold the statistics for this sched_domain.
7494 */
 
7495static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7496{
7497	struct sched_domain *child = env->sd->child;
7498	struct sched_group *sg = env->sd->groups;
 
7499	struct sg_lb_stats tmp_sgs;
7500	int load_idx, prefer_sibling = 0;
7501	bool overload = false;
7502
7503	if (child && child->flags & SD_PREFER_SIBLING)
7504		prefer_sibling = 1;
7505
7506	load_idx = get_sd_load_idx(env->sd, env->idle);
 
 
 
7507
7508	do {
7509		struct sg_lb_stats *sgs = &tmp_sgs;
7510		int local_group;
7511
7512		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
7513		if (local_group) {
7514			sds->local = sg;
7515			sgs = &sds->local_stat;
7516
7517			if (env->idle != CPU_NEWLY_IDLE ||
7518			    time_after_eq(jiffies, sg->sgc->next_update))
7519				update_group_capacity(env->sd, env->dst_cpu);
7520		}
7521
7522		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7523						&overload);
7524
7525		if (local_group)
7526			goto next_group;
7527
7528		/*
7529		 * In case the child domain prefers tasks go to siblings
7530		 * first, lower the sg capacity so that we'll try
7531		 * and move all the excess tasks away. We lower the capacity
7532		 * of a group only if the local group has the capacity to fit
7533		 * these excess tasks. The extra check prevents the case where
7534		 * you always pull from the heaviest group when it is already
7535		 * under-utilized (possible with a large weight task outweighs
7536		 * the tasks on the system).
7537		 */
7538		if (prefer_sibling && sds->local &&
7539		    group_has_capacity(env, &sds->local_stat) &&
7540		    (sgs->sum_nr_running > 1)) {
7541			sgs->group_no_capacity = 1;
7542			sgs->group_type = group_classify(sg, sgs);
7543		}
7544
7545		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7546			sds->busiest = sg;
7547			sds->busiest_stat = *sgs;
7548		}
7549
7550next_group:
7551		/* Now, start updating sd_lb_stats */
7552		sds->total_load += sgs->group_load;
7553		sds->total_capacity += sgs->group_capacity;
7554
7555		sg = sg->next;
7556	} while (sg != env->sd->groups);
7557
7558	if (env->sd->flags & SD_NUMA)
7559		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7560
7561	if (!env->sd->parent) {
7562		/* update overload indicator if we are at root domain */
7563		if (env->dst_rq->rd->overload != overload)
7564			env->dst_rq->rd->overload = overload;
7565	}
7566
7567}
7568
7569/**
7570 * check_asym_packing - Check to see if the group is packed into the
7571 *			sched doman.
7572 *
7573 * This is primarily intended to used at the sibling level.  Some
7574 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
7575 * case of POWER7, it can move to lower SMT modes only when higher
7576 * threads are idle.  When in lower SMT modes, the threads will
7577 * perform better since they share less core resources.  Hence when we
7578 * have idle threads, we want them to be the higher ones.
7579 *
7580 * This packing function is run on idle threads.  It checks to see if
7581 * the busiest CPU in this domain (core in the P7 case) has a higher
7582 * CPU number than the packing function is being run on.  Here we are
7583 * assuming lower CPU number will be equivalent to lower a SMT thread
7584 * number.
7585 *
7586 * Return: 1 when packing is required and a task should be moved to
7587 * this CPU.  The amount of the imbalance is returned in *imbalance.
7588 *
7589 * @env: The load balancing environment.
7590 * @sds: Statistics of the sched_domain which is to be packed
7591 */
7592static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7593{
7594	int busiest_cpu;
7595
7596	if (!(env->sd->flags & SD_ASYM_PACKING))
7597		return 0;
 
 
7598
7599	if (env->idle == CPU_NOT_IDLE)
7600		return 0;
7601
7602	if (!sds->busiest)
7603		return 0;
7604
7605	busiest_cpu = sds->busiest->asym_prefer_cpu;
7606	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7607		return 0;
7608
7609	env->imbalance = DIV_ROUND_CLOSEST(
7610		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7611		SCHED_CAPACITY_SCALE);
 
 
7612
7613	return 1;
 
 
7614}
7615
7616/**
7617 * fix_small_imbalance - Calculate the minor imbalance that exists
7618 *			amongst the groups of a sched_domain, during
7619 *			load balancing.
7620 * @env: The load balancing environment.
7621 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7622 */
7623static inline
7624void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7625{
7626	unsigned long tmp, capa_now = 0, capa_move = 0;
7627	unsigned int imbn = 2;
7628	unsigned long scaled_busy_load_per_task;
7629	struct sg_lb_stats *local, *busiest;
7630
7631	local = &sds->local_stat;
7632	busiest = &sds->busiest_stat;
7633
7634	if (!local->sum_nr_running)
7635		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7636	else if (busiest->load_per_task > local->load_per_task)
7637		imbn = 1;
7638
7639	scaled_busy_load_per_task =
7640		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7641		busiest->group_capacity;
7642
7643	if (busiest->avg_load + scaled_busy_load_per_task >=
7644	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
7645		env->imbalance = busiest->load_per_task;
7646		return;
7647	}
7648
7649	/*
7650	 * OK, we don't have enough imbalance to justify moving tasks,
7651	 * however we may be able to increase total CPU capacity used by
7652	 * moving them.
7653	 */
 
 
 
7654
7655	capa_now += busiest->group_capacity *
7656			min(busiest->load_per_task, busiest->avg_load);
7657	capa_now += local->group_capacity *
7658			min(local->load_per_task, local->avg_load);
7659	capa_now /= SCHED_CAPACITY_SCALE;
7660
7661	/* Amount of load we'd subtract */
7662	if (busiest->avg_load > scaled_busy_load_per_task) {
7663		capa_move += busiest->group_capacity *
7664			    min(busiest->load_per_task,
7665				busiest->avg_load - scaled_busy_load_per_task);
7666	}
7667
7668	/* Amount of load we'd add */
7669	if (busiest->avg_load * busiest->group_capacity <
7670	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7671		tmp = (busiest->avg_load * busiest->group_capacity) /
7672		      local->group_capacity;
7673	} else {
7674		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7675		      local->group_capacity;
7676	}
7677	capa_move += local->group_capacity *
7678		    min(local->load_per_task, local->avg_load + tmp);
7679	capa_move /= SCHED_CAPACITY_SCALE;
7680
7681	/* Move if we gain throughput */
7682	if (capa_move > capa_now)
7683		env->imbalance = busiest->load_per_task;
7684}
7685
7686/**
7687 * calculate_imbalance - Calculate the amount of imbalance present within the
7688 *			 groups of a given sched_domain during load balance.
7689 * @env: load balance environment
7690 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7691 */
7692static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7693{
7694	unsigned long max_pull, load_above_capacity = ~0UL;
7695	struct sg_lb_stats *local, *busiest;
7696
7697	local = &sds->local_stat;
7698	busiest = &sds->busiest_stat;
7699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7700	if (busiest->group_type == group_imbalanced) {
7701		/*
7702		 * In the group_imb case we cannot rely on group-wide averages
7703		 * to ensure cpu-load equilibrium, look at wider averages. XXX
 
 
7704		 */
7705		busiest->load_per_task =
7706			min(busiest->load_per_task, sds->avg_load);
 
7707	}
7708
7709	/*
7710	 * Avg load of busiest sg can be less and avg load of local sg can
7711	 * be greater than avg load across all sgs of sd because avg load
7712	 * factors in sg capacity and sgs with smaller group_type are
7713	 * skipped when updating the busiest sg:
7714	 */
7715	if (busiest->avg_load <= sds->avg_load ||
7716	    local->avg_load >= sds->avg_load) {
7717		env->imbalance = 0;
7718		return fix_small_imbalance(env, sds);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7719	}
7720
7721	/*
7722	 * If there aren't any idle cpus, avoid creating some.
 
7723	 */
7724	if (busiest->group_type == group_overloaded &&
7725	    local->group_type   == group_overloaded) {
7726		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7727		if (load_above_capacity > busiest->group_capacity) {
7728			load_above_capacity -= busiest->group_capacity;
7729			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7730			load_above_capacity /= busiest->group_capacity;
7731		} else
7732			load_above_capacity = ~0UL;
 
 
 
 
 
 
 
 
 
 
7733	}
7734
7735	/*
7736	 * We're trying to get all the cpus to the average_load, so we don't
7737	 * want to push ourselves above the average load, nor do we wish to
7738	 * reduce the max loaded cpu below the average load. At the same time,
7739	 * we also don't want to reduce the group load below the group
7740	 * capacity. Thus we look for the minimum possible imbalance.
 
7741	 */
7742	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7743
7744	/* How much load to actually move to equalise the imbalance */
7745	env->imbalance = min(
7746		max_pull * busiest->group_capacity,
7747		(sds->avg_load - local->avg_load) * local->group_capacity
7748	) / SCHED_CAPACITY_SCALE;
7749
7750	/*
7751	 * if *imbalance is less than the average load per runnable task
7752	 * there is no guarantee that any tasks will be moved so we'll have
7753	 * a think about bumping its value to force at least one task to be
7754	 * moved
7755	 */
7756	if (env->imbalance < busiest->load_per_task)
7757		return fix_small_imbalance(env, sds);
7758}
7759
7760/******* find_busiest_group() helpers end here *********************/
7761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7762/**
7763 * find_busiest_group - Returns the busiest group within the sched_domain
7764 * if there is an imbalance.
7765 *
7766 * Also calculates the amount of weighted load which should be moved
7767 * to restore balance.
7768 *
7769 * @env: The load balancing environment.
7770 *
7771 * Return:	- The busiest group if imbalance exists.
7772 */
7773static struct sched_group *find_busiest_group(struct lb_env *env)
7774{
7775	struct sg_lb_stats *local, *busiest;
7776	struct sd_lb_stats sds;
7777
7778	init_sd_lb_stats(&sds);
7779
7780	/*
7781	 * Compute the various statistics relavent for load balancing at
7782	 * this level.
7783	 */
7784	update_sd_lb_stats(env, &sds);
 
 
 
 
 
 
 
 
7785	local = &sds.local_stat;
7786	busiest = &sds.busiest_stat;
7787
7788	/* ASYM feature bypasses nice load balance check */
7789	if (check_asym_packing(env, &sds))
7790		return sds.busiest;
7791
7792	/* There is no busy sibling group to pull tasks from */
7793	if (!sds.busiest || busiest->sum_nr_running == 0)
7794		goto out_balanced;
7795
7796	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7797						/ sds.total_capacity;
 
 
 
 
 
7798
7799	/*
7800	 * If the busiest group is imbalanced the below checks don't
7801	 * work because they assume all things are equal, which typically
7802	 * isn't true due to cpus_allowed constraints and the like.
7803	 */
7804	if (busiest->group_type == group_imbalanced)
7805		goto force_balance;
7806
7807	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7808	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7809	    busiest->group_no_capacity)
7810		goto force_balance;
7811
7812	/*
7813	 * If the local group is busier than the selected busiest group
7814	 * don't try and pull any tasks.
7815	 */
7816	if (local->avg_load >= busiest->avg_load)
7817		goto out_balanced;
7818
7819	/*
7820	 * Don't pull any tasks if this group is already above the domain
7821	 * average load.
7822	 */
7823	if (local->avg_load >= sds.avg_load)
7824		goto out_balanced;
 
 
 
 
 
 
 
 
 
7825
7826	if (env->idle == CPU_IDLE) {
7827		/*
7828		 * This cpu is idle. If the busiest group is not overloaded
7829		 * and there is no imbalance between this and busiest group
7830		 * wrt idle cpus, it is balanced. The imbalance becomes
7831		 * significant if the diff is greater than 1 otherwise we
7832		 * might end up to just move the imbalance on another group
7833		 */
7834		if ((busiest->group_type != group_overloaded) &&
7835				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7836			goto out_balanced;
7837	} else {
7838		/*
7839		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7840		 * imbalance_pct to be conservative.
7841		 */
7842		if (100 * busiest->avg_load <=
7843				env->sd->imbalance_pct * local->avg_load)
7844			goto out_balanced;
7845	}
7846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7847force_balance:
7848	/* Looks like there is an imbalance. Compute it */
7849	calculate_imbalance(env, &sds);
7850	return sds.busiest;
7851
7852out_balanced:
7853	env->imbalance = 0;
7854	return NULL;
7855}
7856
7857/*
7858 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7859 */
7860static struct rq *find_busiest_queue(struct lb_env *env,
7861				     struct sched_group *group)
7862{
7863	struct rq *busiest = NULL, *rq;
7864	unsigned long busiest_load = 0, busiest_capacity = 1;
 
7865	int i;
7866
7867	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7868		unsigned long capacity, wl;
 
7869		enum fbq_type rt;
7870
7871		rq = cpu_rq(i);
7872		rt = fbq_classify_rq(rq);
7873
7874		/*
7875		 * We classify groups/runqueues into three groups:
7876		 *  - regular: there are !numa tasks
7877		 *  - remote:  there are numa tasks that run on the 'wrong' node
7878		 *  - all:     there is no distinction
7879		 *
7880		 * In order to avoid migrating ideally placed numa tasks,
7881		 * ignore those when there's better options.
7882		 *
7883		 * If we ignore the actual busiest queue to migrate another
7884		 * task, the next balance pass can still reduce the busiest
7885		 * queue by moving tasks around inside the node.
7886		 *
7887		 * If we cannot move enough load due to this classification
7888		 * the next pass will adjust the group classification and
7889		 * allow migration of more tasks.
7890		 *
7891		 * Both cases only affect the total convergence complexity.
7892		 */
7893		if (rt > env->fbq_type)
7894			continue;
7895
7896		capacity = capacity_of(i);
7897
7898		wl = weighted_cpuload(i);
7899
7900		/*
7901		 * When comparing with imbalance, use weighted_cpuload()
7902		 * which is not scaled with the cpu capacity.
 
 
7903		 */
7904
7905		if (rq->nr_running == 1 && wl > env->imbalance &&
7906		    !check_cpu_capacity(rq, env->sd))
7907			continue;
7908
7909		/*
7910		 * For the load comparisons with the other cpu's, consider
7911		 * the weighted_cpuload() scaled with the cpu capacity, so
7912		 * that the load can be moved away from the cpu that is
7913		 * potentially running at a lower capacity.
7914		 *
7915		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7916		 * multiplication to rid ourselves of the division works out
7917		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
7918		 * our previous maximum.
7919		 */
7920		if (wl * busiest_capacity > busiest_load * capacity) {
7921			busiest_load = wl;
7922			busiest_capacity = capacity;
7923			busiest = rq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7924		}
7925	}
7926
7927	return busiest;
7928}
7929
7930/*
7931 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7932 * so long as it is large enough.
7933 */
7934#define MAX_PINNED_INTERVAL	512
7935
7936static int need_active_balance(struct lb_env *env)
 
7937{
7938	struct sched_domain *sd = env->sd;
 
 
 
 
 
 
 
7939
7940	if (env->idle == CPU_NEWLY_IDLE) {
 
 
 
7941
7942		/*
7943		 * ASYM_PACKING needs to force migrate tasks from busy but
7944		 * lower priority CPUs in order to pack all tasks in the
7945		 * highest priority CPUs.
7946		 */
7947		if ((sd->flags & SD_ASYM_PACKING) &&
7948		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
7949			return 1;
7950	}
7951
7952	/*
7953	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7954	 * It's worth migrating the task if the src_cpu's capacity is reduced
7955	 * because of other sched_class or IRQs if more capacity stays
7956	 * available on dst_cpu.
7957	 */
7958	if ((env->idle != CPU_NOT_IDLE) &&
7959	    (env->src_rq->cfs.h_nr_running == 1)) {
7960		if ((check_cpu_capacity(env->src_rq, sd)) &&
7961		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7962			return 1;
7963	}
7964
 
 
 
 
 
 
 
 
 
 
 
 
 
7965	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7966}
7967
7968static int active_load_balance_cpu_stop(void *data);
7969
7970static int should_we_balance(struct lb_env *env)
7971{
7972	struct sched_group *sg = env->sd->groups;
7973	struct cpumask *sg_cpus, *sg_mask;
7974	int cpu, balance_cpu = -1;
 
 
 
 
 
 
7975
7976	/*
7977	 * In the newly idle case, we will allow all the cpu's
7978	 * to do the newly idle load balance.
7979	 */
7980	if (env->idle == CPU_NEWLY_IDLE)
7981		return 1;
7982
7983	sg_cpus = sched_group_cpus(sg);
7984	sg_mask = sched_group_mask(sg);
7985	/* Try to find first idle cpu */
7986	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7987		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7988			continue;
7989
7990		balance_cpu = cpu;
7991		break;
7992	}
7993
7994	if (balance_cpu == -1)
7995		balance_cpu = group_balance_cpu(sg);
7996
7997	/*
7998	 * First idle cpu or the first cpu(busiest) in this sched group
7999	 * is eligible for doing load balancing at this and above domains.
8000	 */
8001	return balance_cpu == env->dst_cpu;
8002}
8003
8004/*
8005 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8006 * tasks if there is an imbalance.
8007 */
8008static int load_balance(int this_cpu, struct rq *this_rq,
8009			struct sched_domain *sd, enum cpu_idle_type idle,
8010			int *continue_balancing)
8011{
8012	int ld_moved, cur_ld_moved, active_balance = 0;
8013	struct sched_domain *sd_parent = sd->parent;
8014	struct sched_group *group;
8015	struct rq *busiest;
8016	unsigned long flags;
8017	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8018
8019	struct lb_env env = {
8020		.sd		= sd,
8021		.dst_cpu	= this_cpu,
8022		.dst_rq		= this_rq,
8023		.dst_grpmask    = sched_group_cpus(sd->groups),
8024		.idle		= idle,
8025		.loop_break	= sched_nr_migrate_break,
8026		.cpus		= cpus,
8027		.fbq_type	= all,
8028		.tasks		= LIST_HEAD_INIT(env.tasks),
8029	};
8030
8031	/*
8032	 * For NEWLY_IDLE load_balancing, we don't need to consider
8033	 * other cpus in our group
8034	 */
8035	if (idle == CPU_NEWLY_IDLE)
8036		env.dst_grpmask = NULL;
8037
8038	cpumask_copy(cpus, cpu_active_mask);
8039
8040	schedstat_inc(sd->lb_count[idle]);
8041
8042redo:
8043	if (!should_we_balance(&env)) {
8044		*continue_balancing = 0;
8045		goto out_balanced;
8046	}
8047
8048	group = find_busiest_group(&env);
8049	if (!group) {
8050		schedstat_inc(sd->lb_nobusyg[idle]);
8051		goto out_balanced;
8052	}
8053
8054	busiest = find_busiest_queue(&env, group);
8055	if (!busiest) {
8056		schedstat_inc(sd->lb_nobusyq[idle]);
8057		goto out_balanced;
8058	}
8059
8060	BUG_ON(busiest == env.dst_rq);
8061
8062	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8063
8064	env.src_cpu = busiest->cpu;
8065	env.src_rq = busiest;
8066
8067	ld_moved = 0;
8068	if (busiest->nr_running > 1) {
8069		/*
8070		 * Attempt to move tasks. If find_busiest_group has found
8071		 * an imbalance but busiest->nr_running <= 1, the group is
8072		 * still unbalanced. ld_moved simply stays zero, so it is
8073		 * correctly treated as an imbalance.
8074		 */
8075		env.flags |= LBF_ALL_PINNED;
8076		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8077
8078more_balance:
8079		raw_spin_lock_irqsave(&busiest->lock, flags);
 
8080
8081		/*
8082		 * cur_ld_moved - load moved in current iteration
8083		 * ld_moved     - cumulative load moved across iterations
8084		 */
8085		cur_ld_moved = detach_tasks(&env);
8086
8087		/*
8088		 * We've detached some tasks from busiest_rq. Every
8089		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8090		 * unlock busiest->lock, and we are able to be sure
8091		 * that nobody can manipulate the tasks in parallel.
8092		 * See task_rq_lock() family for the details.
8093		 */
8094
8095		raw_spin_unlock(&busiest->lock);
8096
8097		if (cur_ld_moved) {
8098			attach_tasks(&env);
8099			ld_moved += cur_ld_moved;
8100		}
8101
8102		local_irq_restore(flags);
8103
8104		if (env.flags & LBF_NEED_BREAK) {
8105			env.flags &= ~LBF_NEED_BREAK;
8106			goto more_balance;
8107		}
8108
8109		/*
8110		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8111		 * us and move them to an alternate dst_cpu in our sched_group
8112		 * where they can run. The upper limit on how many times we
8113		 * iterate on same src_cpu is dependent on number of cpus in our
8114		 * sched_group.
8115		 *
8116		 * This changes load balance semantics a bit on who can move
8117		 * load to a given_cpu. In addition to the given_cpu itself
8118		 * (or a ilb_cpu acting on its behalf where given_cpu is
8119		 * nohz-idle), we now have balance_cpu in a position to move
8120		 * load to given_cpu. In rare situations, this may cause
8121		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8122		 * _independently_ and at _same_ time to move some load to
8123		 * given_cpu) causing exceess load to be moved to given_cpu.
8124		 * This however should not happen so much in practice and
8125		 * moreover subsequent load balance cycles should correct the
8126		 * excess load moved.
8127		 */
8128		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8129
8130			/* Prevent to re-select dst_cpu via env's cpus */
8131			cpumask_clear_cpu(env.dst_cpu, env.cpus);
8132
8133			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8134			env.dst_cpu	 = env.new_dst_cpu;
8135			env.flags	&= ~LBF_DST_PINNED;
8136			env.loop	 = 0;
8137			env.loop_break	 = sched_nr_migrate_break;
8138
8139			/*
8140			 * Go back to "more_balance" rather than "redo" since we
8141			 * need to continue with same src_cpu.
8142			 */
8143			goto more_balance;
8144		}
8145
8146		/*
8147		 * We failed to reach balance because of affinity.
8148		 */
8149		if (sd_parent) {
8150			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8151
8152			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8153				*group_imbalance = 1;
8154		}
8155
8156		/* All tasks on this runqueue were pinned by CPU affinity */
8157		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8158			cpumask_clear_cpu(cpu_of(busiest), cpus);
8159			if (!cpumask_empty(cpus)) {
 
 
 
 
 
 
 
 
8160				env.loop = 0;
8161				env.loop_break = sched_nr_migrate_break;
8162				goto redo;
8163			}
8164			goto out_all_pinned;
8165		}
8166	}
8167
8168	if (!ld_moved) {
8169		schedstat_inc(sd->lb_failed[idle]);
8170		/*
8171		 * Increment the failure counter only on periodic balance.
8172		 * We do not want newidle balance, which can be very
8173		 * frequent, pollute the failure counter causing
8174		 * excessive cache_hot migrations and active balances.
8175		 */
8176		if (idle != CPU_NEWLY_IDLE)
8177			sd->nr_balance_failed++;
8178
8179		if (need_active_balance(&env)) {
 
 
8180			raw_spin_lock_irqsave(&busiest->lock, flags);
8181
8182			/* don't kick the active_load_balance_cpu_stop,
8183			 * if the curr task on busiest cpu can't be
8184			 * moved to this_cpu
 
8185			 */
8186			if (!cpumask_test_cpu(this_cpu,
8187					tsk_cpus_allowed(busiest->curr))) {
8188				raw_spin_unlock_irqrestore(&busiest->lock,
8189							    flags);
8190				env.flags |= LBF_ALL_PINNED;
8191				goto out_one_pinned;
8192			}
8193
8194			/*
8195			 * ->active_balance synchronizes accesses to
8196			 * ->active_balance_work.  Once set, it's cleared
8197			 * only after active load balance is finished.
8198			 */
8199			if (!busiest->active_balance) {
8200				busiest->active_balance = 1;
8201				busiest->push_cpu = this_cpu;
8202				active_balance = 1;
8203			}
8204			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8205
8206			if (active_balance) {
8207				stop_one_cpu_nowait(cpu_of(busiest),
8208					active_load_balance_cpu_stop, busiest,
8209					&busiest->active_balance_work);
8210			}
8211
8212			/* We've kicked active balancing, force task migration. */
8213			sd->nr_balance_failed = sd->cache_nice_tries+1;
8214		}
8215	} else
8216		sd->nr_balance_failed = 0;
8217
8218	if (likely(!active_balance)) {
8219		/* We were unbalanced, so reset the balancing interval */
8220		sd->balance_interval = sd->min_interval;
8221	} else {
8222		/*
8223		 * If we've begun active balancing, start to back off. This
8224		 * case may not be covered by the all_pinned logic if there
8225		 * is only 1 task on the busy runqueue (because we don't call
8226		 * detach_tasks).
8227		 */
8228		if (sd->balance_interval < sd->max_interval)
8229			sd->balance_interval *= 2;
8230	}
8231
8232	goto out;
8233
8234out_balanced:
8235	/*
8236	 * We reach balance although we may have faced some affinity
8237	 * constraints. Clear the imbalance flag if it was set.
 
8238	 */
8239	if (sd_parent) {
8240		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8241
8242		if (*group_imbalance)
8243			*group_imbalance = 0;
8244	}
8245
8246out_all_pinned:
8247	/*
8248	 * We reach balance because all tasks are pinned at this level so
8249	 * we can't migrate them. Let the imbalance flag set so parent level
8250	 * can try to migrate them.
8251	 */
8252	schedstat_inc(sd->lb_balanced[idle]);
8253
8254	sd->nr_balance_failed = 0;
8255
8256out_one_pinned:
 
 
 
 
 
 
 
 
 
 
 
8257	/* tune up the balancing interval */
8258	if (((env.flags & LBF_ALL_PINNED) &&
8259			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8260			(sd->balance_interval < sd->max_interval))
8261		sd->balance_interval *= 2;
8262
8263	ld_moved = 0;
8264out:
8265	return ld_moved;
8266}
8267
8268static inline unsigned long
8269get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8270{
8271	unsigned long interval = sd->balance_interval;
8272
8273	if (cpu_busy)
8274		interval *= sd->busy_factor;
8275
8276	/* scale ms to jiffies */
8277	interval = msecs_to_jiffies(interval);
8278	interval = clamp(interval, 1UL, max_load_balance_interval);
8279
8280	return interval;
8281}
8282
8283static inline void
8284update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8285{
8286	unsigned long interval, next;
8287
8288	/* used by idle balance, so cpu_busy = 0 */
8289	interval = get_sd_balance_interval(sd, 0);
8290	next = sd->last_balance + interval;
8291
8292	if (time_after(*next_balance, next))
8293		*next_balance = next;
8294}
8295
8296/*
8297 * idle_balance is called by schedule() if this_cpu is about to become
8298 * idle. Attempts to pull tasks from other CPUs.
8299 */
8300static int idle_balance(struct rq *this_rq)
8301{
8302	unsigned long next_balance = jiffies + HZ;
8303	int this_cpu = this_rq->cpu;
8304	struct sched_domain *sd;
8305	int pulled_task = 0;
8306	u64 curr_cost = 0;
8307
8308	/*
8309	 * We must set idle_stamp _before_ calling idle_balance(), such that we
8310	 * measure the duration of idle_balance() as idle time.
8311	 */
8312	this_rq->idle_stamp = rq_clock(this_rq);
8313
8314	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8315	    !this_rq->rd->overload) {
8316		rcu_read_lock();
8317		sd = rcu_dereference_check_sched_domain(this_rq->sd);
8318		if (sd)
8319			update_next_balance(sd, &next_balance);
8320		rcu_read_unlock();
8321
8322		goto out;
8323	}
8324
8325	raw_spin_unlock(&this_rq->lock);
8326
8327	update_blocked_averages(this_cpu);
8328	rcu_read_lock();
8329	for_each_domain(this_cpu, sd) {
8330		int continue_balancing = 1;
8331		u64 t0, domain_cost;
8332
8333		if (!(sd->flags & SD_LOAD_BALANCE))
8334			continue;
8335
8336		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8337			update_next_balance(sd, &next_balance);
8338			break;
8339		}
8340
8341		if (sd->flags & SD_BALANCE_NEWIDLE) {
8342			t0 = sched_clock_cpu(this_cpu);
8343
8344			pulled_task = load_balance(this_cpu, this_rq,
8345						   sd, CPU_NEWLY_IDLE,
8346						   &continue_balancing);
8347
8348			domain_cost = sched_clock_cpu(this_cpu) - t0;
8349			if (domain_cost > sd->max_newidle_lb_cost)
8350				sd->max_newidle_lb_cost = domain_cost;
8351
8352			curr_cost += domain_cost;
8353		}
8354
8355		update_next_balance(sd, &next_balance);
8356
8357		/*
8358		 * Stop searching for tasks to pull if there are
8359		 * now runnable tasks on this rq.
8360		 */
8361		if (pulled_task || this_rq->nr_running > 0)
8362			break;
8363	}
8364	rcu_read_unlock();
8365
8366	raw_spin_lock(&this_rq->lock);
8367
8368	if (curr_cost > this_rq->max_idle_balance_cost)
8369		this_rq->max_idle_balance_cost = curr_cost;
8370
8371	/*
8372	 * While browsing the domains, we released the rq lock, a task could
8373	 * have been enqueued in the meantime. Since we're not going idle,
8374	 * pretend we pulled a task.
8375	 */
8376	if (this_rq->cfs.h_nr_running && !pulled_task)
8377		pulled_task = 1;
8378
8379out:
8380	/* Move the next balance forward */
8381	if (time_after(this_rq->next_balance, next_balance))
8382		this_rq->next_balance = next_balance;
8383
8384	/* Is there a task of a high priority class? */
8385	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8386		pulled_task = -1;
8387
8388	if (pulled_task)
8389		this_rq->idle_stamp = 0;
8390
8391	return pulled_task;
8392}
8393
8394/*
8395 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8396 * running tasks off the busiest CPU onto idle CPUs. It requires at
8397 * least 1 task to be running on each physical CPU where possible, and
8398 * avoids physical / logical imbalances.
8399 */
8400static int active_load_balance_cpu_stop(void *data)
8401{
8402	struct rq *busiest_rq = data;
8403	int busiest_cpu = cpu_of(busiest_rq);
8404	int target_cpu = busiest_rq->push_cpu;
8405	struct rq *target_rq = cpu_rq(target_cpu);
8406	struct sched_domain *sd;
8407	struct task_struct *p = NULL;
 
8408
8409	raw_spin_lock_irq(&busiest_rq->lock);
 
 
 
 
 
 
 
8410
8411	/* make sure the requested cpu hasn't gone down in the meantime */
8412	if (unlikely(busiest_cpu != smp_processor_id() ||
8413		     !busiest_rq->active_balance))
8414		goto out_unlock;
8415
8416	/* Is there any task to move? */
8417	if (busiest_rq->nr_running <= 1)
8418		goto out_unlock;
8419
8420	/*
8421	 * This condition is "impossible", if it occurs
8422	 * we need to fix it. Originally reported by
8423	 * Bjorn Helgaas on a 128-cpu setup.
8424	 */
8425	BUG_ON(busiest_rq == target_rq);
8426
8427	/* Search for an sd spanning us and the target CPU. */
8428	rcu_read_lock();
8429	for_each_domain(target_cpu, sd) {
8430		if ((sd->flags & SD_LOAD_BALANCE) &&
8431		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8432				break;
8433	}
8434
8435	if (likely(sd)) {
8436		struct lb_env env = {
8437			.sd		= sd,
8438			.dst_cpu	= target_cpu,
8439			.dst_rq		= target_rq,
8440			.src_cpu	= busiest_rq->cpu,
8441			.src_rq		= busiest_rq,
8442			.idle		= CPU_IDLE,
 
 
 
 
 
 
 
8443		};
8444
8445		schedstat_inc(sd->alb_count);
 
8446
8447		p = detach_one_task(&env);
8448		if (p) {
8449			schedstat_inc(sd->alb_pushed);
8450			/* Active balancing done, reset the failure counter. */
8451			sd->nr_balance_failed = 0;
8452		} else {
8453			schedstat_inc(sd->alb_failed);
8454		}
8455	}
8456	rcu_read_unlock();
8457out_unlock:
8458	busiest_rq->active_balance = 0;
8459	raw_spin_unlock(&busiest_rq->lock);
8460
8461	if (p)
8462		attach_one_task(target_rq, p);
8463
8464	local_irq_enable();
8465
8466	return 0;
8467}
8468
8469static inline int on_null_domain(struct rq *rq)
8470{
8471	return unlikely(!rcu_dereference_sched(rq->sd));
8472}
8473
8474#ifdef CONFIG_NO_HZ_COMMON
8475/*
8476 * idle load balancing details
8477 * - When one of the busy CPUs notice that there may be an idle rebalancing
8478 *   needed, they will kick the idle load balancer, which then does idle
8479 *   load balancing for all the idle CPUs.
8480 */
8481static struct {
8482	cpumask_var_t idle_cpus_mask;
8483	atomic_t nr_cpus;
8484	unsigned long next_balance;     /* in jiffy units */
8485} nohz ____cacheline_aligned;
8486
8487static inline int find_new_ilb(void)
8488{
8489	int ilb = cpumask_first(nohz.idle_cpus_mask);
8490
8491	if (ilb < nr_cpu_ids && idle_cpu(ilb))
8492		return ilb;
8493
8494	return nr_cpu_ids;
8495}
8496
8497/*
8498 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8499 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8500 * CPU (if there is one).
8501 */
8502static void nohz_balancer_kick(void)
8503{
8504	int ilb_cpu;
8505
8506	nohz.next_balance++;
8507
8508	ilb_cpu = find_new_ilb();
8509
8510	if (ilb_cpu >= nr_cpu_ids)
8511		return;
8512
8513	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8514		return;
8515	/*
8516	 * Use smp_send_reschedule() instead of resched_cpu().
8517	 * This way we generate a sched IPI on the target cpu which
8518	 * is idle. And the softirq performing nohz idle load balance
8519	 * will be run before returning from the IPI.
8520	 */
8521	smp_send_reschedule(ilb_cpu);
8522	return;
8523}
8524
8525void nohz_balance_exit_idle(unsigned int cpu)
8526{
8527	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8528		/*
8529		 * Completely isolated CPUs don't ever set, so we must test.
8530		 */
8531		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8532			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8533			atomic_dec(&nohz.nr_cpus);
8534		}
8535		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8536	}
8537}
8538
8539static inline void set_cpu_sd_state_busy(void)
8540{
8541	struct sched_domain *sd;
8542	int cpu = smp_processor_id();
8543
8544	rcu_read_lock();
8545	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8546
8547	if (!sd || !sd->nohz_idle)
8548		goto unlock;
8549	sd->nohz_idle = 0;
8550
8551	atomic_inc(&sd->shared->nr_busy_cpus);
8552unlock:
8553	rcu_read_unlock();
8554}
8555
8556void set_cpu_sd_state_idle(void)
8557{
8558	struct sched_domain *sd;
8559	int cpu = smp_processor_id();
8560
8561	rcu_read_lock();
8562	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8563
8564	if (!sd || sd->nohz_idle)
8565		goto unlock;
8566	sd->nohz_idle = 1;
8567
8568	atomic_dec(&sd->shared->nr_busy_cpus);
8569unlock:
8570	rcu_read_unlock();
8571}
8572
8573/*
8574 * This routine will record that the cpu is going idle with tick stopped.
8575 * This info will be used in performing idle load balancing in the future.
8576 */
8577void nohz_balance_enter_idle(int cpu)
8578{
8579	/*
8580	 * If this cpu is going down, then nothing needs to be done.
8581	 */
8582	if (!cpu_active(cpu))
8583		return;
8584
8585	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8586		return;
8587
8588	/*
8589	 * If we're a completely isolated CPU, we don't play.
8590	 */
8591	if (on_null_domain(cpu_rq(cpu)))
8592		return;
8593
8594	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8595	atomic_inc(&nohz.nr_cpus);
8596	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8597}
8598#endif
8599
8600static DEFINE_SPINLOCK(balancing);
8601
8602/*
8603 * Scale the max load_balance interval with the number of CPUs in the system.
8604 * This trades load-balance latency on larger machines for less cross talk.
8605 */
8606void update_max_interval(void)
8607{
8608	max_load_balance_interval = HZ*num_online_cpus()/10;
8609}
8610
8611/*
8612 * It checks each scheduling domain to see if it is due to be balanced,
8613 * and initiates a balancing operation if so.
8614 *
8615 * Balancing parameters are set up in init_sched_domains.
8616 */
8617static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8618{
8619	int continue_balancing = 1;
8620	int cpu = rq->cpu;
 
8621	unsigned long interval;
8622	struct sched_domain *sd;
8623	/* Earliest time when we have to do rebalance again */
8624	unsigned long next_balance = jiffies + 60*HZ;
8625	int update_next_balance = 0;
8626	int need_serialize, need_decay = 0;
8627	u64 max_cost = 0;
8628
8629	update_blocked_averages(cpu);
8630
8631	rcu_read_lock();
8632	for_each_domain(cpu, sd) {
8633		/*
8634		 * Decay the newidle max times here because this is a regular
8635		 * visit to all the domains. Decay ~1% per second.
8636		 */
8637		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8638			sd->max_newidle_lb_cost =
8639				(sd->max_newidle_lb_cost * 253) / 256;
8640			sd->next_decay_max_lb_cost = jiffies + HZ;
8641			need_decay = 1;
8642		}
8643		max_cost += sd->max_newidle_lb_cost;
8644
8645		if (!(sd->flags & SD_LOAD_BALANCE))
8646			continue;
8647
8648		/*
8649		 * Stop the load balance at this level. There is another
8650		 * CPU in our sched group which is doing load balancing more
8651		 * actively.
8652		 */
8653		if (!continue_balancing) {
8654			if (need_decay)
8655				continue;
8656			break;
8657		}
8658
8659		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8660
8661		need_serialize = sd->flags & SD_SERIALIZE;
8662		if (need_serialize) {
8663			if (!spin_trylock(&balancing))
8664				goto out;
8665		}
8666
8667		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8668			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8669				/*
8670				 * The LBF_DST_PINNED logic could have changed
8671				 * env->dst_cpu, so we can't know our idle
8672				 * state even if we migrated tasks. Update it.
8673				 */
8674				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
 
8675			}
8676			sd->last_balance = jiffies;
8677			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8678		}
8679		if (need_serialize)
8680			spin_unlock(&balancing);
8681out:
8682		if (time_after(next_balance, sd->last_balance + interval)) {
8683			next_balance = sd->last_balance + interval;
8684			update_next_balance = 1;
8685		}
8686	}
8687	if (need_decay) {
8688		/*
8689		 * Ensure the rq-wide value also decays but keep it at a
8690		 * reasonable floor to avoid funnies with rq->avg_idle.
8691		 */
8692		rq->max_idle_balance_cost =
8693			max((u64)sysctl_sched_migration_cost, max_cost);
8694	}
8695	rcu_read_unlock();
8696
8697	/*
8698	 * next_balance will be updated only when there is a need.
8699	 * When the cpu is attached to null domain for ex, it will not be
8700	 * updated.
8701	 */
8702	if (likely(update_next_balance)) {
8703		rq->next_balance = next_balance;
8704
8705#ifdef CONFIG_NO_HZ_COMMON
8706		/*
8707		 * If this CPU has been elected to perform the nohz idle
8708		 * balance. Other idle CPUs have already rebalanced with
8709		 * nohz_idle_balance() and nohz.next_balance has been
8710		 * updated accordingly. This CPU is now running the idle load
8711		 * balance for itself and we need to update the
8712		 * nohz.next_balance accordingly.
8713		 */
8714		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8715			nohz.next_balance = rq->next_balance;
8716#endif
8717	}
8718}
8719
 
 
 
 
 
8720#ifdef CONFIG_NO_HZ_COMMON
8721/*
8722 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8723 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 
 
 
 
8724 */
8725static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8726{
8727	int this_cpu = this_rq->cpu;
8728	struct rq *rq;
8729	int balance_cpu;
8730	/* Earliest time when we have to do rebalance again */
8731	unsigned long next_balance = jiffies + 60*HZ;
 
 
8732	int update_next_balance = 0;
 
 
 
 
 
 
8733
8734	if (idle != CPU_IDLE ||
8735	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8736		goto end;
 
 
 
 
 
 
 
 
 
 
 
 
8737
8738	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8739		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8740			continue;
8741
8742		/*
8743		 * If this cpu gets work to do, stop the load balancing
8744		 * work being done for other cpus. Next load
8745		 * balancing owner will pick it up.
8746		 */
8747		if (need_resched())
8748			break;
 
 
8749
8750		rq = cpu_rq(balance_cpu);
8751
 
 
8752		/*
8753		 * If time for next balance is due,
8754		 * do the balance.
8755		 */
8756		if (time_after_eq(jiffies, rq->next_balance)) {
8757			raw_spin_lock_irq(&rq->lock);
 
 
8758			update_rq_clock(rq);
8759			cpu_load_update_idle(rq);
8760			raw_spin_unlock_irq(&rq->lock);
8761			rebalance_domains(rq, CPU_IDLE);
 
8762		}
8763
8764		if (time_after(next_balance, rq->next_balance)) {
8765			next_balance = rq->next_balance;
8766			update_next_balance = 1;
8767		}
8768	}
8769
8770	/*
8771	 * next_balance will be updated only when there is a need.
8772	 * When the CPU is attached to null domain for ex, it will not be
8773	 * updated.
8774	 */
8775	if (likely(update_next_balance))
8776		nohz.next_balance = next_balance;
8777end:
8778	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8779}
8780
8781/*
8782 * Current heuristic for kicking the idle load balancer in the presence
8783 * of an idle cpu in the system.
8784 *   - This rq has more than one task.
8785 *   - This rq has at least one CFS task and the capacity of the CPU is
8786 *     significantly reduced because of RT tasks or IRQs.
8787 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
8788 *     multiple busy cpu.
8789 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8790 *     domain span are idle.
8791 */
8792static inline bool nohz_kick_needed(struct rq *rq)
8793{
8794	unsigned long now = jiffies;
8795	struct sched_domain_shared *sds;
8796	struct sched_domain *sd;
8797	int nr_busy, i, cpu = rq->cpu;
8798	bool kick = false;
8799
8800	if (unlikely(rq->idle_balance))
 
 
 
 
 
8801		return false;
8802
8803       /*
8804	* We may be recently in ticked or tickless idle mode. At the first
8805	* busy tick after returning from idle, we will update the busy stats.
8806	*/
8807	set_cpu_sd_state_busy();
8808	nohz_balance_exit_idle(cpu);
 
 
8809
8810	/*
8811	 * None are in tickless mode and hence no need for NOHZ idle load
8812	 * balancing.
8813	 */
8814	if (likely(!atomic_read(&nohz.nr_cpus)))
8815		return false;
8816
8817	if (time_before(now, nohz.next_balance))
8818		return false;
 
8819
8820	if (rq->nr_running >= 2)
8821		return true;
 
 
8822
8823	rcu_read_lock();
8824	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8825	if (sds) {
8826		/*
8827		 * XXX: write a coherent comment on why we do this.
8828		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8829		 */
8830		nr_busy = atomic_read(&sds->nr_busy_cpus);
8831		if (nr_busy > 1) {
8832			kick = true;
8833			goto unlock;
8834		}
 
 
8835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8836	}
8837
8838	sd = rcu_dereference(rq->sd);
8839	if (sd) {
8840		if ((rq->cfs.h_nr_running >= 1) &&
8841				check_cpu_capacity(rq, sd)) {
8842			kick = true;
8843			goto unlock;
 
 
 
 
 
8844		}
8845	}
8846
8847	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8848	if (sd) {
8849		for_each_cpu(i, sched_domain_span(sd)) {
8850			if (i == cpu ||
8851			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8852				continue;
8853
8854			if (sched_asym_prefer(i, cpu)) {
8855				kick = true;
8856				goto unlock;
8857			}
 
 
 
 
 
8858		}
 
 
 
 
 
 
 
 
 
8859	}
8860unlock:
8861	rcu_read_unlock();
8862	return kick;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8863}
8864#else
8865static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8866#endif
8867
8868/*
8869 * run_rebalance_domains is triggered when needed from the scheduler tick.
8870 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8871 */
8872static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8873{
8874	struct rq *this_rq = this_rq();
8875	enum cpu_idle_type idle = this_rq->idle_balance ?
8876						CPU_IDLE : CPU_NOT_IDLE;
8877
8878	/*
8879	 * If this cpu has a pending nohz_balance_kick, then do the
8880	 * balancing on behalf of the other idle cpus whose ticks are
8881	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8882	 * give the idle cpus a chance to load balance. Else we may
8883	 * load balance only within the local sched_domain hierarchy
8884	 * and abort nohz_idle_balance altogether if we pull some load.
8885	 */
8886	nohz_idle_balance(this_rq, idle);
 
 
 
 
8887	rebalance_domains(this_rq, idle);
8888}
8889
8890/*
8891 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8892 */
8893void trigger_load_balance(struct rq *rq)
8894{
8895	/* Don't need to rebalance while attached to NULL domain */
8896	if (unlikely(on_null_domain(rq)))
8897		return;
8898
8899	if (time_after_eq(jiffies, rq->next_balance))
8900		raise_softirq(SCHED_SOFTIRQ);
8901#ifdef CONFIG_NO_HZ_COMMON
8902	if (nohz_kick_needed(rq))
8903		nohz_balancer_kick();
8904#endif
8905}
8906
8907static void rq_online_fair(struct rq *rq)
8908{
8909	update_sysctl();
8910
8911	update_runtime_enabled(rq);
8912}
8913
8914static void rq_offline_fair(struct rq *rq)
8915{
8916	update_sysctl();
8917
8918	/* Ensure any throttled groups are reachable by pick_next_task */
8919	unthrottle_offline_cfs_rqs(rq);
8920}
8921
8922#endif /* CONFIG_SMP */
8923
8924/*
8925 * scheduler tick hitting a task of our scheduling class:
 
 
 
 
 
8926 */
8927static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8928{
8929	struct cfs_rq *cfs_rq;
8930	struct sched_entity *se = &curr->se;
8931
8932	for_each_sched_entity(se) {
8933		cfs_rq = cfs_rq_of(se);
8934		entity_tick(cfs_rq, se, queued);
8935	}
8936
8937	if (static_branch_unlikely(&sched_numa_balancing))
8938		task_tick_numa(rq, curr);
 
 
 
8939}
8940
8941/*
8942 * called on fork with the child task as argument from the parent's context
8943 *  - child not yet on the tasklist
8944 *  - preemption disabled
8945 */
8946static void task_fork_fair(struct task_struct *p)
8947{
8948	struct cfs_rq *cfs_rq;
8949	struct sched_entity *se = &p->se, *curr;
8950	struct rq *rq = this_rq();
 
8951
8952	raw_spin_lock(&rq->lock);
8953	update_rq_clock(rq);
8954
8955	cfs_rq = task_cfs_rq(current);
8956	curr = cfs_rq->curr;
8957	if (curr) {
8958		update_curr(cfs_rq);
8959		se->vruntime = curr->vruntime;
8960	}
8961	place_entity(cfs_rq, se, 1);
8962
8963	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8964		/*
8965		 * Upon rescheduling, sched_class::put_prev_task() will place
8966		 * 'current' within the tree based on its new key value.
8967		 */
8968		swap(curr->vruntime, se->vruntime);
8969		resched_curr(rq);
8970	}
8971
8972	se->vruntime -= cfs_rq->min_vruntime;
8973	raw_spin_unlock(&rq->lock);
8974}
8975
8976/*
8977 * Priority of the task has changed. Check to see if we preempt
8978 * the current task.
8979 */
8980static void
8981prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8982{
8983	if (!task_on_rq_queued(p))
8984		return;
8985
 
 
 
8986	/*
8987	 * Reschedule if we are currently running on this runqueue and
8988	 * our priority decreased, or if we are not currently running on
8989	 * this runqueue and our priority is higher than the current's
8990	 */
8991	if (rq->curr == p) {
8992		if (p->prio > oldprio)
8993			resched_curr(rq);
8994	} else
8995		check_preempt_curr(rq, p, 0);
8996}
8997
8998static inline bool vruntime_normalized(struct task_struct *p)
8999{
9000	struct sched_entity *se = &p->se;
9001
9002	/*
9003	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9004	 * the dequeue_entity(.flags=0) will already have normalized the
9005	 * vruntime.
9006	 */
9007	if (p->on_rq)
9008		return true;
9009
9010	/*
9011	 * When !on_rq, vruntime of the task has usually NOT been normalized.
9012	 * But there are some cases where it has already been normalized:
9013	 *
9014	 * - A forked child which is waiting for being woken up by
9015	 *   wake_up_new_task().
9016	 * - A task which has been woken up by try_to_wake_up() and
9017	 *   waiting for actually being woken up by sched_ttwu_pending().
9018	 */
9019	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
 
9020		return true;
9021
9022	return false;
9023}
9024
9025#ifdef CONFIG_FAIR_GROUP_SCHED
9026/*
9027 * Propagate the changes of the sched_entity across the tg tree to make it
9028 * visible to the root
9029 */
9030static void propagate_entity_cfs_rq(struct sched_entity *se)
9031{
9032	struct cfs_rq *cfs_rq;
9033
9034	/* Start to propagate at parent */
9035	se = se->parent;
9036
9037	for_each_sched_entity(se) {
9038		cfs_rq = cfs_rq_of(se);
9039
9040		if (cfs_rq_throttled(cfs_rq))
9041			break;
9042
9043		update_load_avg(se, UPDATE_TG);
9044	}
9045}
9046#else
9047static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9048#endif
9049
9050static void detach_entity_cfs_rq(struct sched_entity *se)
9051{
9052	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9053
9054	/* Catch up with the cfs_rq and remove our load when we leave */
9055	update_load_avg(se, 0);
9056	detach_entity_load_avg(cfs_rq, se);
9057	update_tg_load_avg(cfs_rq, false);
9058	propagate_entity_cfs_rq(se);
9059}
9060
9061static void attach_entity_cfs_rq(struct sched_entity *se)
9062{
9063	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9064
9065#ifdef CONFIG_FAIR_GROUP_SCHED
9066	/*
9067	 * Since the real-depth could have been changed (only FAIR
9068	 * class maintain depth value), reset depth properly.
9069	 */
9070	se->depth = se->parent ? se->parent->depth + 1 : 0;
9071#endif
9072
9073	/* Synchronize entity with its cfs_rq */
9074	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9075	attach_entity_load_avg(cfs_rq, se);
9076	update_tg_load_avg(cfs_rq, false);
9077	propagate_entity_cfs_rq(se);
9078}
9079
9080static void detach_task_cfs_rq(struct task_struct *p)
9081{
9082	struct sched_entity *se = &p->se;
9083	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9084
9085	if (!vruntime_normalized(p)) {
9086		/*
9087		 * Fix up our vruntime so that the current sleep doesn't
9088		 * cause 'unlimited' sleep bonus.
9089		 */
9090		place_entity(cfs_rq, se, 0);
9091		se->vruntime -= cfs_rq->min_vruntime;
9092	}
9093
9094	detach_entity_cfs_rq(se);
9095}
9096
9097static void attach_task_cfs_rq(struct task_struct *p)
9098{
9099	struct sched_entity *se = &p->se;
9100	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9101
9102	attach_entity_cfs_rq(se);
9103
9104	if (!vruntime_normalized(p))
9105		se->vruntime += cfs_rq->min_vruntime;
9106}
9107
9108static void switched_from_fair(struct rq *rq, struct task_struct *p)
9109{
9110	detach_task_cfs_rq(p);
9111}
9112
9113static void switched_to_fair(struct rq *rq, struct task_struct *p)
9114{
9115	attach_task_cfs_rq(p);
9116
9117	if (task_on_rq_queued(p)) {
9118		/*
9119		 * We were most likely switched from sched_rt, so
9120		 * kick off the schedule if running, otherwise just see
9121		 * if we can still preempt the current task.
9122		 */
9123		if (rq->curr == p)
9124			resched_curr(rq);
9125		else
9126			check_preempt_curr(rq, p, 0);
9127	}
9128}
9129
9130/* Account for a task changing its policy or group.
9131 *
9132 * This routine is mostly called to set cfs_rq->curr field when a task
9133 * migrates between groups/classes.
9134 */
9135static void set_curr_task_fair(struct rq *rq)
9136{
9137	struct sched_entity *se = &rq->curr->se;
 
 
 
 
 
 
 
 
 
 
9138
9139	for_each_sched_entity(se) {
9140		struct cfs_rq *cfs_rq = cfs_rq_of(se);
9141
9142		set_next_entity(cfs_rq, se);
9143		/* ensure bandwidth has been allocated on our new cfs_rq */
9144		account_cfs_rq_runtime(cfs_rq, 0);
9145	}
9146}
9147
9148void init_cfs_rq(struct cfs_rq *cfs_rq)
9149{
9150	cfs_rq->tasks_timeline = RB_ROOT;
9151	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9152#ifndef CONFIG_64BIT
9153	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9154#endif
9155#ifdef CONFIG_SMP
9156#ifdef CONFIG_FAIR_GROUP_SCHED
9157	cfs_rq->propagate_avg = 0;
9158#endif
9159	atomic_long_set(&cfs_rq->removed_load_avg, 0);
9160	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9161#endif
9162}
9163
9164#ifdef CONFIG_FAIR_GROUP_SCHED
9165static void task_set_group_fair(struct task_struct *p)
9166{
9167	struct sched_entity *se = &p->se;
9168
9169	set_task_rq(p, task_cpu(p));
9170	se->depth = se->parent ? se->parent->depth + 1 : 0;
9171}
9172
9173static void task_move_group_fair(struct task_struct *p)
9174{
9175	detach_task_cfs_rq(p);
9176	set_task_rq(p, task_cpu(p));
9177
9178#ifdef CONFIG_SMP
9179	/* Tell se's cfs_rq has been changed -- migrated */
9180	p->se.avg.last_update_time = 0;
9181#endif
9182	attach_task_cfs_rq(p);
9183}
9184
9185static void task_change_group_fair(struct task_struct *p, int type)
9186{
9187	switch (type) {
9188	case TASK_SET_GROUP:
9189		task_set_group_fair(p);
9190		break;
9191
9192	case TASK_MOVE_GROUP:
9193		task_move_group_fair(p);
9194		break;
9195	}
9196}
9197
9198void free_fair_sched_group(struct task_group *tg)
9199{
9200	int i;
9201
9202	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9203
9204	for_each_possible_cpu(i) {
9205		if (tg->cfs_rq)
9206			kfree(tg->cfs_rq[i]);
9207		if (tg->se)
9208			kfree(tg->se[i]);
9209	}
9210
9211	kfree(tg->cfs_rq);
9212	kfree(tg->se);
9213}
9214
9215int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9216{
9217	struct sched_entity *se;
9218	struct cfs_rq *cfs_rq;
9219	int i;
9220
9221	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9222	if (!tg->cfs_rq)
9223		goto err;
9224	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9225	if (!tg->se)
9226		goto err;
9227
9228	tg->shares = NICE_0_LOAD;
9229
9230	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9231
9232	for_each_possible_cpu(i) {
9233		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9234				      GFP_KERNEL, cpu_to_node(i));
9235		if (!cfs_rq)
9236			goto err;
9237
9238		se = kzalloc_node(sizeof(struct sched_entity),
9239				  GFP_KERNEL, cpu_to_node(i));
9240		if (!se)
9241			goto err_free_rq;
9242
9243		init_cfs_rq(cfs_rq);
9244		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9245		init_entity_runnable_average(se);
9246	}
9247
9248	return 1;
9249
9250err_free_rq:
9251	kfree(cfs_rq);
9252err:
9253	return 0;
9254}
9255
9256void online_fair_sched_group(struct task_group *tg)
9257{
9258	struct sched_entity *se;
 
9259	struct rq *rq;
9260	int i;
9261
9262	for_each_possible_cpu(i) {
9263		rq = cpu_rq(i);
9264		se = tg->se[i];
9265
9266		raw_spin_lock_irq(&rq->lock);
9267		attach_entity_cfs_rq(se);
9268		sync_throttle(tg, i);
9269		raw_spin_unlock_irq(&rq->lock);
9270	}
9271}
9272
9273void unregister_fair_sched_group(struct task_group *tg)
9274{
9275	unsigned long flags;
9276	struct rq *rq;
9277	int cpu;
9278
9279	for_each_possible_cpu(cpu) {
9280		if (tg->se[cpu])
9281			remove_entity_load_avg(tg->se[cpu]);
9282
9283		/*
9284		 * Only empty task groups can be destroyed; so we can speculatively
9285		 * check on_list without danger of it being re-added.
9286		 */
9287		if (!tg->cfs_rq[cpu]->on_list)
9288			continue;
9289
9290		rq = cpu_rq(cpu);
9291
9292		raw_spin_lock_irqsave(&rq->lock, flags);
9293		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9294		raw_spin_unlock_irqrestore(&rq->lock, flags);
9295	}
9296}
9297
9298void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9299			struct sched_entity *se, int cpu,
9300			struct sched_entity *parent)
9301{
9302	struct rq *rq = cpu_rq(cpu);
9303
9304	cfs_rq->tg = tg;
9305	cfs_rq->rq = rq;
9306	init_cfs_rq_runtime(cfs_rq);
9307
9308	tg->cfs_rq[cpu] = cfs_rq;
9309	tg->se[cpu] = se;
9310
9311	/* se could be NULL for root_task_group */
9312	if (!se)
9313		return;
9314
9315	if (!parent) {
9316		se->cfs_rq = &rq->cfs;
9317		se->depth = 0;
9318	} else {
9319		se->cfs_rq = parent->my_q;
9320		se->depth = parent->depth + 1;
9321	}
9322
9323	se->my_q = cfs_rq;
9324	/* guarantee group entities always have weight */
9325	update_load_set(&se->load, NICE_0_LOAD);
9326	se->parent = parent;
9327}
9328
9329static DEFINE_MUTEX(shares_mutex);
9330
9331int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9332{
9333	int i;
9334	unsigned long flags;
9335
9336	/*
9337	 * We can't change the weight of the root cgroup.
9338	 */
9339	if (!tg->se[0])
9340		return -EINVAL;
9341
9342	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9343
9344	mutex_lock(&shares_mutex);
9345	if (tg->shares == shares)
9346		goto done;
9347
9348	tg->shares = shares;
9349	for_each_possible_cpu(i) {
9350		struct rq *rq = cpu_rq(i);
9351		struct sched_entity *se;
 
9352
9353		se = tg->se[i];
9354		/* Propagate contribution to hierarchy */
9355		raw_spin_lock_irqsave(&rq->lock, flags);
9356
9357		/* Possible calls to update_curr() need rq clock */
9358		update_rq_clock(rq);
9359		for_each_sched_entity(se)
9360			update_cfs_shares(group_cfs_rq(se));
9361		raw_spin_unlock_irqrestore(&rq->lock, flags);
 
 
9362	}
9363
9364done:
9365	mutex_unlock(&shares_mutex);
9366	return 0;
9367}
9368#else /* CONFIG_FAIR_GROUP_SCHED */
9369
9370void free_fair_sched_group(struct task_group *tg) { }
9371
9372int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9373{
9374	return 1;
9375}
9376
9377void online_fair_sched_group(struct task_group *tg) { }
9378
9379void unregister_fair_sched_group(struct task_group *tg) { }
9380
9381#endif /* CONFIG_FAIR_GROUP_SCHED */
9382
9383
9384static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9385{
9386	struct sched_entity *se = &task->se;
9387	unsigned int rr_interval = 0;
9388
9389	/*
9390	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9391	 * idle runqueue:
9392	 */
9393	if (rq->cfs.load.weight)
9394		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9395
9396	return rr_interval;
9397}
9398
9399/*
9400 * All the scheduling class methods:
9401 */
9402const struct sched_class fair_sched_class = {
9403	.next			= &idle_sched_class,
9404	.enqueue_task		= enqueue_task_fair,
9405	.dequeue_task		= dequeue_task_fair,
9406	.yield_task		= yield_task_fair,
9407	.yield_to_task		= yield_to_task_fair,
9408
9409	.check_preempt_curr	= check_preempt_wakeup,
9410
9411	.pick_next_task		= pick_next_task_fair,
9412	.put_prev_task		= put_prev_task_fair,
 
9413
9414#ifdef CONFIG_SMP
 
9415	.select_task_rq		= select_task_rq_fair,
9416	.migrate_task_rq	= migrate_task_rq_fair,
9417
9418	.rq_online		= rq_online_fair,
9419	.rq_offline		= rq_offline_fair,
9420
9421	.task_dead		= task_dead_fair,
9422	.set_cpus_allowed	= set_cpus_allowed_common,
9423#endif
9424
9425	.set_curr_task          = set_curr_task_fair,
9426	.task_tick		= task_tick_fair,
9427	.task_fork		= task_fork_fair,
9428
9429	.prio_changed		= prio_changed_fair,
9430	.switched_from		= switched_from_fair,
9431	.switched_to		= switched_to_fair,
9432
9433	.get_rr_interval	= get_rr_interval_fair,
9434
9435	.update_curr		= update_curr_fair,
9436
9437#ifdef CONFIG_FAIR_GROUP_SCHED
9438	.task_change_group	= task_change_group_fair,
9439#endif
 
 
 
 
9440};
9441
9442#ifdef CONFIG_SCHED_DEBUG
9443void print_cfs_stats(struct seq_file *m, int cpu)
9444{
9445	struct cfs_rq *cfs_rq;
9446
9447	rcu_read_lock();
9448	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9449		print_cfs_rq(m, cpu, cfs_rq);
9450	rcu_read_unlock();
9451}
9452
9453#ifdef CONFIG_NUMA_BALANCING
9454void show_numa_stats(struct task_struct *p, struct seq_file *m)
9455{
9456	int node;
9457	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
 
9458
 
 
9459	for_each_online_node(node) {
9460		if (p->numa_faults) {
9461			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9462			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9463		}
9464		if (p->numa_group) {
9465			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9466			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9467		}
9468		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9469	}
 
9470}
9471#endif /* CONFIG_NUMA_BALANCING */
9472#endif /* CONFIG_SCHED_DEBUG */
9473
9474__init void init_sched_fair_class(void)
9475{
9476#ifdef CONFIG_SMP
9477	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9478
9479#ifdef CONFIG_NO_HZ_COMMON
9480	nohz.next_balance = jiffies;
 
9481	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9482#endif
9483#endif /* SMP */
9484
9485}
v5.9
    1// SPDX-License-Identifier: GPL-2.0
    2/*
    3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
    4 *
    5 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
    6 *
    7 *  Interactivity improvements by Mike Galbraith
    8 *  (C) 2007 Mike Galbraith <efault@gmx.de>
    9 *
   10 *  Various enhancements by Dmitry Adamushko.
   11 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
   12 *
   13 *  Group scheduling enhancements by Srivatsa Vaddagiri
   14 *  Copyright IBM Corporation, 2007
   15 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
   16 *
   17 *  Scaled math optimizations by Thomas Gleixner
   18 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
   19 *
   20 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
   21 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   22 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   23#include "sched.h"
   24
   25/*
   26 * Targeted preemption latency for CPU-bound tasks:
   27 *
   28 * NOTE: this latency value is not the same as the concept of
   29 * 'timeslice length' - timeslices in CFS are of variable length
   30 * and have no persistent notion like in traditional, time-slice
   31 * based scheduling concepts.
   32 *
   33 * (to see the precise effective timeslice length of your workload,
   34 *  run vmstat and monitor the context-switches (cs) field)
   35 *
   36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
   37 */
   38unsigned int sysctl_sched_latency			= 6000000ULL;
   39static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
   40
   41/*
   42 * The initial- and re-scaling of tunables is configurable
   43 *
   44 * Options are:
   45 *
   46 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
   47 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
   48 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
   49 *
   50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
   51 */
   52enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
   53
   54/*
   55 * Minimal preemption granularity for CPU-bound tasks:
   56 *
   57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
   58 */
   59unsigned int sysctl_sched_min_granularity			= 750000ULL;
   60static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
   61
   62/*
   63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
   64 */
   65static unsigned int sched_nr_latency = 8;
   66
   67/*
   68 * After fork, child runs first. If set to 0 (default) then
   69 * parent will (try to) run first.
   70 */
   71unsigned int sysctl_sched_child_runs_first __read_mostly;
   72
   73/*
   74 * SCHED_OTHER wake-up granularity.
   75 *
   76 * This option delays the preemption effects of decoupled workloads
   77 * and reduces their over-scheduling. Synchronous workloads will still
   78 * have immediate wakeup/sleep latencies.
   79 *
   80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
   81 */
   82unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
   83static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
   84
   85const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
   86
   87int sched_thermal_decay_shift;
   88static int __init setup_sched_thermal_decay_shift(char *str)
   89{
   90	int _shift = 0;
   91
   92	if (kstrtoint(str, 0, &_shift))
   93		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
   94
   95	sched_thermal_decay_shift = clamp(_shift, 0, 10);
   96	return 1;
   97}
   98__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
   99
  100#ifdef CONFIG_SMP
  101/*
  102 * For asym packing, by default the lower numbered CPU has higher priority.
  103 */
  104int __weak arch_asym_cpu_priority(int cpu)
  105{
  106	return -cpu;
  107}
  108
  109/*
  110 * The margin used when comparing utilization with CPU capacity.
  111 *
  112 * (default: ~20%)
  113 */
  114#define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
  115
  116#endif
  117
  118#ifdef CONFIG_CFS_BANDWIDTH
  119/*
  120 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  121 * each time a cfs_rq requests quota.
  122 *
  123 * Note: in the case that the slice exceeds the runtime remaining (either due
  124 * to consumption or the quota being specified to be smaller than the slice)
  125 * we will always only issue the remaining available time.
  126 *
  127 * (default: 5 msec, units: microseconds)
  128 */
  129unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
  130#endif
  131
 
 
 
 
 
 
 
 
  132static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  133{
  134	lw->weight += inc;
  135	lw->inv_weight = 0;
  136}
  137
  138static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  139{
  140	lw->weight -= dec;
  141	lw->inv_weight = 0;
  142}
  143
  144static inline void update_load_set(struct load_weight *lw, unsigned long w)
  145{
  146	lw->weight = w;
  147	lw->inv_weight = 0;
  148}
  149
  150/*
  151 * Increase the granularity value when there are more CPUs,
  152 * because with more CPUs the 'effective latency' as visible
  153 * to users decreases. But the relationship is not linear,
  154 * so pick a second-best guess by going with the log2 of the
  155 * number of CPUs.
  156 *
  157 * This idea comes from the SD scheduler of Con Kolivas:
  158 */
  159static unsigned int get_update_sysctl_factor(void)
  160{
  161	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
  162	unsigned int factor;
  163
  164	switch (sysctl_sched_tunable_scaling) {
  165	case SCHED_TUNABLESCALING_NONE:
  166		factor = 1;
  167		break;
  168	case SCHED_TUNABLESCALING_LINEAR:
  169		factor = cpus;
  170		break;
  171	case SCHED_TUNABLESCALING_LOG:
  172	default:
  173		factor = 1 + ilog2(cpus);
  174		break;
  175	}
  176
  177	return factor;
  178}
  179
  180static void update_sysctl(void)
  181{
  182	unsigned int factor = get_update_sysctl_factor();
  183
  184#define SET_SYSCTL(name) \
  185	(sysctl_##name = (factor) * normalized_sysctl_##name)
  186	SET_SYSCTL(sched_min_granularity);
  187	SET_SYSCTL(sched_latency);
  188	SET_SYSCTL(sched_wakeup_granularity);
  189#undef SET_SYSCTL
  190}
  191
  192void __init sched_init_granularity(void)
  193{
  194	update_sysctl();
  195}
  196
  197#define WMULT_CONST	(~0U)
  198#define WMULT_SHIFT	32
  199
  200static void __update_inv_weight(struct load_weight *lw)
  201{
  202	unsigned long w;
  203
  204	if (likely(lw->inv_weight))
  205		return;
  206
  207	w = scale_load_down(lw->weight);
  208
  209	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  210		lw->inv_weight = 1;
  211	else if (unlikely(!w))
  212		lw->inv_weight = WMULT_CONST;
  213	else
  214		lw->inv_weight = WMULT_CONST / w;
  215}
  216
  217/*
  218 * delta_exec * weight / lw.weight
  219 *   OR
  220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
  221 *
  222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
  223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
  224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
  225 *
  226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
  227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
  228 */
  229static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
  230{
  231	u64 fact = scale_load_down(weight);
  232	int shift = WMULT_SHIFT;
  233
  234	__update_inv_weight(lw);
  235
  236	if (unlikely(fact >> 32)) {
  237		while (fact >> 32) {
  238			fact >>= 1;
  239			shift--;
  240		}
  241	}
  242
  243	fact = mul_u32_u32(fact, lw->inv_weight);
 
  244
  245	while (fact >> 32) {
  246		fact >>= 1;
  247		shift--;
  248	}
  249
  250	return mul_u64_u32_shr(delta_exec, fact, shift);
  251}
  252
  253
  254const struct sched_class fair_sched_class;
  255
  256/**************************************************************
  257 * CFS operations on generic schedulable entities:
  258 */
  259
  260#ifdef CONFIG_FAIR_GROUP_SCHED
 
 
 
 
 
 
 
 
 
 
  261static inline struct task_struct *task_of(struct sched_entity *se)
  262{
  263	SCHED_WARN_ON(!entity_is_task(se));
  264	return container_of(se, struct task_struct, se);
  265}
  266
  267/* Walk up scheduling entities hierarchy */
  268#define for_each_sched_entity(se) \
  269		for (; se; se = se->parent)
  270
  271static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  272{
  273	return p->se.cfs_rq;
  274}
  275
  276/* runqueue on which this entity is (to be) queued */
  277static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  278{
  279	return se->cfs_rq;
  280}
  281
  282/* runqueue "owned" by this group */
  283static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  284{
  285	return grp->my_q;
  286}
  287
  288static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
  289{
  290	if (!path)
  291		return;
  292
  293	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
  294		autogroup_path(cfs_rq->tg, path, len);
  295	else if (cfs_rq && cfs_rq->tg->css.cgroup)
  296		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
  297	else
  298		strlcpy(path, "(null)", len);
  299}
  300
  301static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  302{
  303	struct rq *rq = rq_of(cfs_rq);
  304	int cpu = cpu_of(rq);
  305
  306	if (cfs_rq->on_list)
  307		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
  308
  309	cfs_rq->on_list = 1;
  310
  311	/*
  312	 * Ensure we either appear before our parent (if already
  313	 * enqueued) or force our parent to appear after us when it is
  314	 * enqueued. The fact that we always enqueue bottom-up
  315	 * reduces this to two cases and a special case for the root
  316	 * cfs_rq. Furthermore, it also means that we will always reset
  317	 * tmp_alone_branch either when the branch is connected
  318	 * to a tree or when we reach the top of the tree
  319	 */
  320	if (cfs_rq->tg->parent &&
  321	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
  322		/*
  323		 * If parent is already on the list, we add the child
  324		 * just before. Thanks to circular linked property of
  325		 * the list, this means to put the child at the tail
  326		 * of the list that starts by parent.
 
 
 
  327		 */
  328		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  329			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
  330		/*
  331		 * The branch is now connected to its tree so we can
  332		 * reset tmp_alone_branch to the beginning of the
  333		 * list.
  334		 */
  335		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
  336		return true;
  337	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  338
  339	if (!cfs_rq->tg->parent) {
  340		/*
  341		 * cfs rq without parent should be put
  342		 * at the tail of the list.
  343		 */
  344		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  345			&rq->leaf_cfs_rq_list);
  346		/*
  347		 * We have reach the top of a tree so we can reset
  348		 * tmp_alone_branch to the beginning of the list.
  349		 */
  350		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
  351		return true;
  352	}
  353
  354	/*
  355	 * The parent has not already been added so we want to
  356	 * make sure that it will be put after us.
  357	 * tmp_alone_branch points to the begin of the branch
  358	 * where we will add parent.
  359	 */
  360	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
  361	/*
  362	 * update tmp_alone_branch to points to the new begin
  363	 * of the branch
  364	 */
  365	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
  366	return false;
  367}
  368
  369static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  370{
  371	if (cfs_rq->on_list) {
  372		struct rq *rq = rq_of(cfs_rq);
  373
  374		/*
  375		 * With cfs_rq being unthrottled/throttled during an enqueue,
  376		 * it can happen the tmp_alone_branch points the a leaf that
  377		 * we finally want to del. In this case, tmp_alone_branch moves
  378		 * to the prev element but it will point to rq->leaf_cfs_rq_list
  379		 * at the end of the enqueue.
  380		 */
  381		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
  382			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
  383
  384		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  385		cfs_rq->on_list = 0;
  386	}
  387}
  388
  389static inline void assert_list_leaf_cfs_rq(struct rq *rq)
  390{
  391	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
  392}
  393
  394/* Iterate thr' all leaf cfs_rq's on a runqueue */
  395#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
  396	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
  397				 leaf_cfs_rq_list)
  398
  399/* Do the two (enqueued) entities belong to the same group ? */
  400static inline struct cfs_rq *
  401is_same_group(struct sched_entity *se, struct sched_entity *pse)
  402{
  403	if (se->cfs_rq == pse->cfs_rq)
  404		return se->cfs_rq;
  405
  406	return NULL;
  407}
  408
  409static inline struct sched_entity *parent_entity(struct sched_entity *se)
  410{
  411	return se->parent;
  412}
  413
  414static void
  415find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  416{
  417	int se_depth, pse_depth;
  418
  419	/*
  420	 * preemption test can be made between sibling entities who are in the
  421	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  422	 * both tasks until we find their ancestors who are siblings of common
  423	 * parent.
  424	 */
  425
  426	/* First walk up until both entities are at same depth */
  427	se_depth = (*se)->depth;
  428	pse_depth = (*pse)->depth;
  429
  430	while (se_depth > pse_depth) {
  431		se_depth--;
  432		*se = parent_entity(*se);
  433	}
  434
  435	while (pse_depth > se_depth) {
  436		pse_depth--;
  437		*pse = parent_entity(*pse);
  438	}
  439
  440	while (!is_same_group(*se, *pse)) {
  441		*se = parent_entity(*se);
  442		*pse = parent_entity(*pse);
  443	}
  444}
  445
  446#else	/* !CONFIG_FAIR_GROUP_SCHED */
  447
  448static inline struct task_struct *task_of(struct sched_entity *se)
  449{
  450	return container_of(se, struct task_struct, se);
  451}
  452
 
 
 
 
 
 
 
  453#define for_each_sched_entity(se) \
  454		for (; se; se = NULL)
  455
  456static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  457{
  458	return &task_rq(p)->cfs;
  459}
  460
  461static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  462{
  463	struct task_struct *p = task_of(se);
  464	struct rq *rq = task_rq(p);
  465
  466	return &rq->cfs;
  467}
  468
  469/* runqueue "owned" by this group */
  470static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  471{
  472	return NULL;
  473}
  474
  475static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
  476{
  477	if (path)
  478		strlcpy(path, "(null)", len);
  479}
  480
  481static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  482{
  483	return true;
  484}
  485
  486static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  487{
  488}
  489
  490static inline void assert_list_leaf_cfs_rq(struct rq *rq)
  491{
  492}
  493
  494#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
  495		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
  496
  497static inline struct sched_entity *parent_entity(struct sched_entity *se)
  498{
  499	return NULL;
  500}
  501
  502static inline void
  503find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  504{
  505}
  506
  507#endif	/* CONFIG_FAIR_GROUP_SCHED */
  508
  509static __always_inline
  510void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
  511
  512/**************************************************************
  513 * Scheduling class tree data structure manipulation methods:
  514 */
  515
  516static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
  517{
  518	s64 delta = (s64)(vruntime - max_vruntime);
  519	if (delta > 0)
  520		max_vruntime = vruntime;
  521
  522	return max_vruntime;
  523}
  524
  525static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  526{
  527	s64 delta = (s64)(vruntime - min_vruntime);
  528	if (delta < 0)
  529		min_vruntime = vruntime;
  530
  531	return min_vruntime;
  532}
  533
  534static inline int entity_before(struct sched_entity *a,
  535				struct sched_entity *b)
  536{
  537	return (s64)(a->vruntime - b->vruntime) < 0;
  538}
  539
  540static void update_min_vruntime(struct cfs_rq *cfs_rq)
  541{
  542	struct sched_entity *curr = cfs_rq->curr;
  543	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
  544
  545	u64 vruntime = cfs_rq->min_vruntime;
  546
  547	if (curr) {
  548		if (curr->on_rq)
  549			vruntime = curr->vruntime;
  550		else
  551			curr = NULL;
  552	}
  553
  554	if (leftmost) { /* non-empty tree */
  555		struct sched_entity *se;
  556		se = rb_entry(leftmost, struct sched_entity, run_node);
 
  557
  558		if (!curr)
  559			vruntime = se->vruntime;
  560		else
  561			vruntime = min_vruntime(vruntime, se->vruntime);
  562	}
  563
  564	/* ensure we never gain time by being placed backwards. */
  565	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  566#ifndef CONFIG_64BIT
  567	smp_wmb();
  568	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  569#endif
  570}
  571
  572/*
  573 * Enqueue an entity into the rb-tree:
  574 */
  575static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  576{
  577	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
  578	struct rb_node *parent = NULL;
  579	struct sched_entity *entry;
  580	bool leftmost = true;
  581
  582	/*
  583	 * Find the right place in the rbtree:
  584	 */
  585	while (*link) {
  586		parent = *link;
  587		entry = rb_entry(parent, struct sched_entity, run_node);
  588		/*
  589		 * We dont care about collisions. Nodes with
  590		 * the same key stay together.
  591		 */
  592		if (entity_before(se, entry)) {
  593			link = &parent->rb_left;
  594		} else {
  595			link = &parent->rb_right;
  596			leftmost = false;
  597		}
  598	}
  599
 
 
 
 
 
 
 
  600	rb_link_node(&se->run_node, parent, link);
  601	rb_insert_color_cached(&se->run_node,
  602			       &cfs_rq->tasks_timeline, leftmost);
  603}
  604
  605static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  606{
  607	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
 
 
 
 
 
 
 
  608}
  609
  610struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  611{
  612	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
  613
  614	if (!left)
  615		return NULL;
  616
  617	return rb_entry(left, struct sched_entity, run_node);
  618}
  619
  620static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  621{
  622	struct rb_node *next = rb_next(&se->run_node);
  623
  624	if (!next)
  625		return NULL;
  626
  627	return rb_entry(next, struct sched_entity, run_node);
  628}
  629
  630#ifdef CONFIG_SCHED_DEBUG
  631struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  632{
  633	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
  634
  635	if (!last)
  636		return NULL;
  637
  638	return rb_entry(last, struct sched_entity, run_node);
  639}
  640
  641/**************************************************************
  642 * Scheduling class statistics methods:
  643 */
  644
  645int sched_proc_update_handler(struct ctl_table *table, int write,
  646		void *buffer, size_t *lenp, loff_t *ppos)
 
  647{
  648	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  649	unsigned int factor = get_update_sysctl_factor();
  650
  651	if (ret || !write)
  652		return ret;
  653
  654	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  655					sysctl_sched_min_granularity);
  656
  657#define WRT_SYSCTL(name) \
  658	(normalized_sysctl_##name = sysctl_##name / (factor))
  659	WRT_SYSCTL(sched_min_granularity);
  660	WRT_SYSCTL(sched_latency);
  661	WRT_SYSCTL(sched_wakeup_granularity);
  662#undef WRT_SYSCTL
  663
  664	return 0;
  665}
  666#endif
  667
  668/*
  669 * delta /= w
  670 */
  671static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
  672{
  673	if (unlikely(se->load.weight != NICE_0_LOAD))
  674		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
  675
  676	return delta;
  677}
  678
  679/*
  680 * The idea is to set a period in which each task runs once.
  681 *
  682 * When there are too many tasks (sched_nr_latency) we have to stretch
  683 * this period because otherwise the slices get too small.
  684 *
  685 * p = (nr <= nl) ? l : l*nr/nl
  686 */
  687static u64 __sched_period(unsigned long nr_running)
  688{
  689	if (unlikely(nr_running > sched_nr_latency))
  690		return nr_running * sysctl_sched_min_granularity;
  691	else
  692		return sysctl_sched_latency;
  693}
  694
  695/*
  696 * We calculate the wall-time slice from the period by taking a part
  697 * proportional to the weight.
  698 *
  699 * s = p*P[w/rw]
  700 */
  701static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  702{
  703	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  704
  705	for_each_sched_entity(se) {
  706		struct load_weight *load;
  707		struct load_weight lw;
  708
  709		cfs_rq = cfs_rq_of(se);
  710		load = &cfs_rq->load;
  711
  712		if (unlikely(!se->on_rq)) {
  713			lw = cfs_rq->load;
  714
  715			update_load_add(&lw, se->load.weight);
  716			load = &lw;
  717		}
  718		slice = __calc_delta(slice, se->load.weight, load);
  719	}
  720	return slice;
  721}
  722
  723/*
  724 * We calculate the vruntime slice of a to-be-inserted task.
  725 *
  726 * vs = s/w
  727 */
  728static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  729{
  730	return calc_delta_fair(sched_slice(cfs_rq, se), se);
  731}
  732
  733#include "pelt.h"
  734#ifdef CONFIG_SMP
  735
  736static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
  737static unsigned long task_h_load(struct task_struct *p);
  738static unsigned long capacity_of(int cpu);
 
 
 
 
 
 
 
 
  739
  740/* Give new sched_entity start runnable values to heavy its load in infant time */
  741void init_entity_runnable_average(struct sched_entity *se)
  742{
  743	struct sched_avg *sa = &se->avg;
  744
  745	memset(sa, 0, sizeof(*sa));
  746
 
 
 
 
 
  747	/*
  748	 * Tasks are initialized with full load to be seen as heavy tasks until
  749	 * they get a chance to stabilize to their real load level.
  750	 * Group entities are initialized with zero load to reflect the fact that
  751	 * nothing has been attached to the task group yet.
  752	 */
  753	if (entity_is_task(se))
  754		sa->load_avg = scale_load_down(se->load.weight);
  755
 
 
 
 
 
  756	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
  757}
  758
 
  759static void attach_entity_cfs_rq(struct sched_entity *se);
  760
  761/*
  762 * With new tasks being created, their initial util_avgs are extrapolated
  763 * based on the cfs_rq's current util_avg:
  764 *
  765 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
  766 *
  767 * However, in many cases, the above util_avg does not give a desired
  768 * value. Moreover, the sum of the util_avgs may be divergent, such
  769 * as when the series is a harmonic series.
  770 *
  771 * To solve this problem, we also cap the util_avg of successive tasks to
  772 * only 1/2 of the left utilization budget:
  773 *
  774 *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
  775 *
  776 * where n denotes the nth task and cpu_scale the CPU capacity.
  777 *
  778 * For example, for a CPU with 1024 of capacity, a simplest series from
  779 * the beginning would be like:
  780 *
  781 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
  782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
  783 *
  784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
  785 * if util_avg > util_avg_cap.
  786 */
  787void post_init_entity_util_avg(struct task_struct *p)
  788{
  789	struct sched_entity *se = &p->se;
  790	struct cfs_rq *cfs_rq = cfs_rq_of(se);
  791	struct sched_avg *sa = &se->avg;
  792	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
  793	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
  794
  795	if (cap > 0) {
  796		if (cfs_rq->avg.util_avg != 0) {
  797			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
  798			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
  799
  800			if (sa->util_avg > cap)
  801				sa->util_avg = cap;
  802		} else {
  803			sa->util_avg = cap;
  804		}
 
  805	}
  806
  807	sa->runnable_avg = sa->util_avg;
  808
  809	if (p->sched_class != &fair_sched_class) {
  810		/*
  811		 * For !fair tasks do:
  812		 *
  813		update_cfs_rq_load_avg(now, cfs_rq);
  814		attach_entity_load_avg(cfs_rq, se);
  815		switched_from_fair(rq, p);
  816		 *
  817		 * such that the next switched_to_fair() has the
  818		 * expected state.
  819		 */
  820		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
  821		return;
 
  822	}
  823
  824	attach_entity_cfs_rq(se);
  825}
  826
  827#else /* !CONFIG_SMP */
  828void init_entity_runnable_average(struct sched_entity *se)
  829{
  830}
  831void post_init_entity_util_avg(struct task_struct *p)
  832{
  833}
  834static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
  835{
  836}
  837#endif /* CONFIG_SMP */
  838
  839/*
  840 * Update the current task's runtime statistics.
  841 */
  842static void update_curr(struct cfs_rq *cfs_rq)
  843{
  844	struct sched_entity *curr = cfs_rq->curr;
  845	u64 now = rq_clock_task(rq_of(cfs_rq));
  846	u64 delta_exec;
  847
  848	if (unlikely(!curr))
  849		return;
  850
  851	delta_exec = now - curr->exec_start;
  852	if (unlikely((s64)delta_exec <= 0))
  853		return;
  854
  855	curr->exec_start = now;
  856
  857	schedstat_set(curr->statistics.exec_max,
  858		      max(delta_exec, curr->statistics.exec_max));
  859
  860	curr->sum_exec_runtime += delta_exec;
  861	schedstat_add(cfs_rq->exec_clock, delta_exec);
  862
  863	curr->vruntime += calc_delta_fair(delta_exec, curr);
  864	update_min_vruntime(cfs_rq);
  865
  866	if (entity_is_task(curr)) {
  867		struct task_struct *curtask = task_of(curr);
  868
  869		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  870		cgroup_account_cputime(curtask, delta_exec);
  871		account_group_exec_runtime(curtask, delta_exec);
  872	}
  873
  874	account_cfs_rq_runtime(cfs_rq, delta_exec);
  875}
  876
  877static void update_curr_fair(struct rq *rq)
  878{
  879	update_curr(cfs_rq_of(&rq->curr->se));
  880}
  881
  882static inline void
  883update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  884{
  885	u64 wait_start, prev_wait_start;
  886
  887	if (!schedstat_enabled())
  888		return;
  889
  890	wait_start = rq_clock(rq_of(cfs_rq));
  891	prev_wait_start = schedstat_val(se->statistics.wait_start);
  892
  893	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
  894	    likely(wait_start > prev_wait_start))
  895		wait_start -= prev_wait_start;
  896
  897	__schedstat_set(se->statistics.wait_start, wait_start);
  898}
  899
  900static inline void
  901update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  902{
  903	struct task_struct *p;
  904	u64 delta;
  905
  906	if (!schedstat_enabled())
  907		return;
  908
  909	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
  910
  911	if (entity_is_task(se)) {
  912		p = task_of(se);
  913		if (task_on_rq_migrating(p)) {
  914			/*
  915			 * Preserve migrating task's wait time so wait_start
  916			 * time stamp can be adjusted to accumulate wait time
  917			 * prior to migration.
  918			 */
  919			__schedstat_set(se->statistics.wait_start, delta);
  920			return;
  921		}
  922		trace_sched_stat_wait(p, delta);
  923	}
  924
  925	__schedstat_set(se->statistics.wait_max,
  926		      max(schedstat_val(se->statistics.wait_max), delta));
  927	__schedstat_inc(se->statistics.wait_count);
  928	__schedstat_add(se->statistics.wait_sum, delta);
  929	__schedstat_set(se->statistics.wait_start, 0);
  930}
  931
  932static inline void
  933update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  934{
  935	struct task_struct *tsk = NULL;
  936	u64 sleep_start, block_start;
  937
  938	if (!schedstat_enabled())
  939		return;
  940
  941	sleep_start = schedstat_val(se->statistics.sleep_start);
  942	block_start = schedstat_val(se->statistics.block_start);
  943
  944	if (entity_is_task(se))
  945		tsk = task_of(se);
  946
  947	if (sleep_start) {
  948		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
  949
  950		if ((s64)delta < 0)
  951			delta = 0;
  952
  953		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
  954			__schedstat_set(se->statistics.sleep_max, delta);
  955
  956		__schedstat_set(se->statistics.sleep_start, 0);
  957		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
  958
  959		if (tsk) {
  960			account_scheduler_latency(tsk, delta >> 10, 1);
  961			trace_sched_stat_sleep(tsk, delta);
  962		}
  963	}
  964	if (block_start) {
  965		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
  966
  967		if ((s64)delta < 0)
  968			delta = 0;
  969
  970		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
  971			__schedstat_set(se->statistics.block_max, delta);
  972
  973		__schedstat_set(se->statistics.block_start, 0);
  974		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
  975
  976		if (tsk) {
  977			if (tsk->in_iowait) {
  978				__schedstat_add(se->statistics.iowait_sum, delta);
  979				__schedstat_inc(se->statistics.iowait_count);
  980				trace_sched_stat_iowait(tsk, delta);
  981			}
  982
  983			trace_sched_stat_blocked(tsk, delta);
  984
  985			/*
  986			 * Blocking time is in units of nanosecs, so shift by
  987			 * 20 to get a milliseconds-range estimation of the
  988			 * amount of time that the task spent sleeping:
  989			 */
  990			if (unlikely(prof_on == SLEEP_PROFILING)) {
  991				profile_hits(SLEEP_PROFILING,
  992						(void *)get_wchan(tsk),
  993						delta >> 20);
  994			}
  995			account_scheduler_latency(tsk, delta >> 10, 0);
  996		}
  997	}
  998}
  999
 1000/*
 1001 * Task is being enqueued - update stats:
 1002 */
 1003static inline void
 1004update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 1005{
 1006	if (!schedstat_enabled())
 1007		return;
 1008
 1009	/*
 1010	 * Are we enqueueing a waiting task? (for current tasks
 1011	 * a dequeue/enqueue event is a NOP)
 1012	 */
 1013	if (se != cfs_rq->curr)
 1014		update_stats_wait_start(cfs_rq, se);
 1015
 1016	if (flags & ENQUEUE_WAKEUP)
 1017		update_stats_enqueue_sleeper(cfs_rq, se);
 1018}
 1019
 1020static inline void
 1021update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 1022{
 1023
 1024	if (!schedstat_enabled())
 1025		return;
 1026
 1027	/*
 1028	 * Mark the end of the wait period if dequeueing a
 1029	 * waiting task:
 1030	 */
 1031	if (se != cfs_rq->curr)
 1032		update_stats_wait_end(cfs_rq, se);
 1033
 1034	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
 1035		struct task_struct *tsk = task_of(se);
 1036
 1037		if (tsk->state & TASK_INTERRUPTIBLE)
 1038			__schedstat_set(se->statistics.sleep_start,
 1039				      rq_clock(rq_of(cfs_rq)));
 1040		if (tsk->state & TASK_UNINTERRUPTIBLE)
 1041			__schedstat_set(se->statistics.block_start,
 1042				      rq_clock(rq_of(cfs_rq)));
 1043	}
 1044}
 1045
 1046/*
 1047 * We are picking a new current task - update its stats:
 1048 */
 1049static inline void
 1050update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 1051{
 1052	/*
 1053	 * We are starting a new run period:
 1054	 */
 1055	se->exec_start = rq_clock_task(rq_of(cfs_rq));
 1056}
 1057
 1058/**************************************************
 1059 * Scheduling class queueing methods:
 1060 */
 1061
 1062#ifdef CONFIG_NUMA_BALANCING
 1063/*
 1064 * Approximate time to scan a full NUMA task in ms. The task scan period is
 1065 * calculated based on the tasks virtual memory size and
 1066 * numa_balancing_scan_size.
 1067 */
 1068unsigned int sysctl_numa_balancing_scan_period_min = 1000;
 1069unsigned int sysctl_numa_balancing_scan_period_max = 60000;
 1070
 1071/* Portion of address space to scan in MB */
 1072unsigned int sysctl_numa_balancing_scan_size = 256;
 1073
 1074/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
 1075unsigned int sysctl_numa_balancing_scan_delay = 1000;
 1076
 1077struct numa_group {
 1078	refcount_t refcount;
 1079
 1080	spinlock_t lock; /* nr_tasks, tasks */
 1081	int nr_tasks;
 1082	pid_t gid;
 1083	int active_nodes;
 1084
 1085	struct rcu_head rcu;
 1086	unsigned long total_faults;
 1087	unsigned long max_faults_cpu;
 1088	/*
 1089	 * Faults_cpu is used to decide whether memory should move
 1090	 * towards the CPU. As a consequence, these stats are weighted
 1091	 * more by CPU use than by memory faults.
 1092	 */
 1093	unsigned long *faults_cpu;
 1094	unsigned long faults[];
 1095};
 1096
 1097/*
 1098 * For functions that can be called in multiple contexts that permit reading
 1099 * ->numa_group (see struct task_struct for locking rules).
 1100 */
 1101static struct numa_group *deref_task_numa_group(struct task_struct *p)
 1102{
 1103	return rcu_dereference_check(p->numa_group, p == current ||
 1104		(lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
 1105}
 1106
 1107static struct numa_group *deref_curr_numa_group(struct task_struct *p)
 1108{
 1109	return rcu_dereference_protected(p->numa_group, p == current);
 1110}
 1111
 1112static inline unsigned long group_faults_priv(struct numa_group *ng);
 1113static inline unsigned long group_faults_shared(struct numa_group *ng);
 1114
 1115static unsigned int task_nr_scan_windows(struct task_struct *p)
 1116{
 1117	unsigned long rss = 0;
 1118	unsigned long nr_scan_pages;
 1119
 1120	/*
 1121	 * Calculations based on RSS as non-present and empty pages are skipped
 1122	 * by the PTE scanner and NUMA hinting faults should be trapped based
 1123	 * on resident pages
 1124	 */
 1125	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
 1126	rss = get_mm_rss(p->mm);
 1127	if (!rss)
 1128		rss = nr_scan_pages;
 1129
 1130	rss = round_up(rss, nr_scan_pages);
 1131	return rss / nr_scan_pages;
 1132}
 1133
 1134/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
 1135#define MAX_SCAN_WINDOW 2560
 1136
 1137static unsigned int task_scan_min(struct task_struct *p)
 1138{
 1139	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
 1140	unsigned int scan, floor;
 1141	unsigned int windows = 1;
 1142
 1143	if (scan_size < MAX_SCAN_WINDOW)
 1144		windows = MAX_SCAN_WINDOW / scan_size;
 1145	floor = 1000 / windows;
 1146
 1147	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
 1148	return max_t(unsigned int, floor, scan);
 1149}
 1150
 1151static unsigned int task_scan_start(struct task_struct *p)
 1152{
 1153	unsigned long smin = task_scan_min(p);
 1154	unsigned long period = smin;
 1155	struct numa_group *ng;
 1156
 1157	/* Scale the maximum scan period with the amount of shared memory. */
 1158	rcu_read_lock();
 1159	ng = rcu_dereference(p->numa_group);
 1160	if (ng) {
 1161		unsigned long shared = group_faults_shared(ng);
 1162		unsigned long private = group_faults_priv(ng);
 1163
 1164		period *= refcount_read(&ng->refcount);
 1165		period *= shared + 1;
 1166		period /= private + shared + 1;
 1167	}
 1168	rcu_read_unlock();
 1169
 1170	return max(smin, period);
 1171}
 1172
 1173static unsigned int task_scan_max(struct task_struct *p)
 1174{
 1175	unsigned long smin = task_scan_min(p);
 1176	unsigned long smax;
 1177	struct numa_group *ng;
 1178
 1179	/* Watch for min being lower than max due to floor calculations */
 1180	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
 1181
 1182	/* Scale the maximum scan period with the amount of shared memory. */
 1183	ng = deref_curr_numa_group(p);
 1184	if (ng) {
 1185		unsigned long shared = group_faults_shared(ng);
 1186		unsigned long private = group_faults_priv(ng);
 1187		unsigned long period = smax;
 1188
 1189		period *= refcount_read(&ng->refcount);
 1190		period *= shared + 1;
 1191		period /= private + shared + 1;
 1192
 1193		smax = max(smax, period);
 1194	}
 1195
 1196	return max(smin, smax);
 1197}
 1198
 1199static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
 1200{
 1201	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
 1202	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
 1203}
 1204
 1205static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
 1206{
 1207	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
 1208	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
 1209}
 1210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1211/* Shared or private faults. */
 1212#define NR_NUMA_HINT_FAULT_TYPES 2
 1213
 1214/* Memory and CPU locality */
 1215#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
 1216
 1217/* Averaged statistics, and temporary buffers. */
 1218#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
 1219
 1220pid_t task_numa_group_id(struct task_struct *p)
 1221{
 1222	struct numa_group *ng;
 1223	pid_t gid = 0;
 1224
 1225	rcu_read_lock();
 1226	ng = rcu_dereference(p->numa_group);
 1227	if (ng)
 1228		gid = ng->gid;
 1229	rcu_read_unlock();
 1230
 1231	return gid;
 1232}
 1233
 1234/*
 1235 * The averaged statistics, shared & private, memory & CPU,
 1236 * occupy the first half of the array. The second half of the
 1237 * array is for current counters, which are averaged into the
 1238 * first set by task_numa_placement.
 1239 */
 1240static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
 1241{
 1242	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
 1243}
 1244
 1245static inline unsigned long task_faults(struct task_struct *p, int nid)
 1246{
 1247	if (!p->numa_faults)
 1248		return 0;
 1249
 1250	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
 1251		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
 1252}
 1253
 1254static inline unsigned long group_faults(struct task_struct *p, int nid)
 1255{
 1256	struct numa_group *ng = deref_task_numa_group(p);
 1257
 1258	if (!ng)
 1259		return 0;
 1260
 1261	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
 1262		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
 1263}
 1264
 1265static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
 1266{
 1267	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
 1268		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
 1269}
 1270
 1271static inline unsigned long group_faults_priv(struct numa_group *ng)
 1272{
 1273	unsigned long faults = 0;
 1274	int node;
 1275
 1276	for_each_online_node(node) {
 1277		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
 1278	}
 1279
 1280	return faults;
 1281}
 1282
 1283static inline unsigned long group_faults_shared(struct numa_group *ng)
 1284{
 1285	unsigned long faults = 0;
 1286	int node;
 1287
 1288	for_each_online_node(node) {
 1289		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
 1290	}
 1291
 1292	return faults;
 1293}
 1294
 1295/*
 1296 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 1297 * considered part of a numa group's pseudo-interleaving set. Migrations
 1298 * between these nodes are slowed down, to allow things to settle down.
 1299 */
 1300#define ACTIVE_NODE_FRACTION 3
 1301
 1302static bool numa_is_active_node(int nid, struct numa_group *ng)
 1303{
 1304	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
 1305}
 1306
 1307/* Handle placement on systems where not all nodes are directly connected. */
 1308static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
 1309					int maxdist, bool task)
 1310{
 1311	unsigned long score = 0;
 1312	int node;
 1313
 1314	/*
 1315	 * All nodes are directly connected, and the same distance
 1316	 * from each other. No need for fancy placement algorithms.
 1317	 */
 1318	if (sched_numa_topology_type == NUMA_DIRECT)
 1319		return 0;
 1320
 1321	/*
 1322	 * This code is called for each node, introducing N^2 complexity,
 1323	 * which should be ok given the number of nodes rarely exceeds 8.
 1324	 */
 1325	for_each_online_node(node) {
 1326		unsigned long faults;
 1327		int dist = node_distance(nid, node);
 1328
 1329		/*
 1330		 * The furthest away nodes in the system are not interesting
 1331		 * for placement; nid was already counted.
 1332		 */
 1333		if (dist == sched_max_numa_distance || node == nid)
 1334			continue;
 1335
 1336		/*
 1337		 * On systems with a backplane NUMA topology, compare groups
 1338		 * of nodes, and move tasks towards the group with the most
 1339		 * memory accesses. When comparing two nodes at distance
 1340		 * "hoplimit", only nodes closer by than "hoplimit" are part
 1341		 * of each group. Skip other nodes.
 1342		 */
 1343		if (sched_numa_topology_type == NUMA_BACKPLANE &&
 1344					dist >= maxdist)
 1345			continue;
 1346
 1347		/* Add up the faults from nearby nodes. */
 1348		if (task)
 1349			faults = task_faults(p, node);
 1350		else
 1351			faults = group_faults(p, node);
 1352
 1353		/*
 1354		 * On systems with a glueless mesh NUMA topology, there are
 1355		 * no fixed "groups of nodes". Instead, nodes that are not
 1356		 * directly connected bounce traffic through intermediate
 1357		 * nodes; a numa_group can occupy any set of nodes.
 1358		 * The further away a node is, the less the faults count.
 1359		 * This seems to result in good task placement.
 1360		 */
 1361		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
 1362			faults *= (sched_max_numa_distance - dist);
 1363			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
 1364		}
 1365
 1366		score += faults;
 1367	}
 1368
 1369	return score;
 1370}
 1371
 1372/*
 1373 * These return the fraction of accesses done by a particular task, or
 1374 * task group, on a particular numa node.  The group weight is given a
 1375 * larger multiplier, in order to group tasks together that are almost
 1376 * evenly spread out between numa nodes.
 1377 */
 1378static inline unsigned long task_weight(struct task_struct *p, int nid,
 1379					int dist)
 1380{
 1381	unsigned long faults, total_faults;
 1382
 1383	if (!p->numa_faults)
 1384		return 0;
 1385
 1386	total_faults = p->total_numa_faults;
 1387
 1388	if (!total_faults)
 1389		return 0;
 1390
 1391	faults = task_faults(p, nid);
 1392	faults += score_nearby_nodes(p, nid, dist, true);
 1393
 1394	return 1000 * faults / total_faults;
 1395}
 1396
 1397static inline unsigned long group_weight(struct task_struct *p, int nid,
 1398					 int dist)
 1399{
 1400	struct numa_group *ng = deref_task_numa_group(p);
 1401	unsigned long faults, total_faults;
 1402
 1403	if (!ng)
 1404		return 0;
 1405
 1406	total_faults = ng->total_faults;
 1407
 1408	if (!total_faults)
 1409		return 0;
 1410
 1411	faults = group_faults(p, nid);
 1412	faults += score_nearby_nodes(p, nid, dist, false);
 1413
 1414	return 1000 * faults / total_faults;
 1415}
 1416
 1417bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
 1418				int src_nid, int dst_cpu)
 1419{
 1420	struct numa_group *ng = deref_curr_numa_group(p);
 1421	int dst_nid = cpu_to_node(dst_cpu);
 1422	int last_cpupid, this_cpupid;
 1423
 1424	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
 1425	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
 1426
 1427	/*
 1428	 * Allow first faults or private faults to migrate immediately early in
 1429	 * the lifetime of a task. The magic number 4 is based on waiting for
 1430	 * two full passes of the "multi-stage node selection" test that is
 1431	 * executed below.
 1432	 */
 1433	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
 1434	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
 1435		return true;
 1436
 1437	/*
 1438	 * Multi-stage node selection is used in conjunction with a periodic
 1439	 * migration fault to build a temporal task<->page relation. By using
 1440	 * a two-stage filter we remove short/unlikely relations.
 1441	 *
 1442	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
 1443	 * a task's usage of a particular page (n_p) per total usage of this
 1444	 * page (n_t) (in a given time-span) to a probability.
 1445	 *
 1446	 * Our periodic faults will sample this probability and getting the
 1447	 * same result twice in a row, given these samples are fully
 1448	 * independent, is then given by P(n)^2, provided our sample period
 1449	 * is sufficiently short compared to the usage pattern.
 1450	 *
 1451	 * This quadric squishes small probabilities, making it less likely we
 1452	 * act on an unlikely task<->page relation.
 1453	 */
 
 1454	if (!cpupid_pid_unset(last_cpupid) &&
 1455				cpupid_to_nid(last_cpupid) != dst_nid)
 1456		return false;
 1457
 1458	/* Always allow migrate on private faults */
 1459	if (cpupid_match_pid(p, last_cpupid))
 1460		return true;
 1461
 1462	/* A shared fault, but p->numa_group has not been set up yet. */
 1463	if (!ng)
 1464		return true;
 1465
 1466	/*
 1467	 * Destination node is much more heavily used than the source
 1468	 * node? Allow migration.
 1469	 */
 1470	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
 1471					ACTIVE_NODE_FRACTION)
 1472		return true;
 1473
 1474	/*
 1475	 * Distribute memory according to CPU & memory use on each node,
 1476	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
 1477	 *
 1478	 * faults_cpu(dst)   3   faults_cpu(src)
 1479	 * --------------- * - > ---------------
 1480	 * faults_mem(dst)   4   faults_mem(src)
 1481	 */
 1482	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
 1483	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
 1484}
 1485
 1486/*
 1487 * 'numa_type' describes the node at the moment of load balancing.
 1488 */
 1489enum numa_type {
 1490	/* The node has spare capacity that can be used to run more tasks.  */
 1491	node_has_spare = 0,
 1492	/*
 1493	 * The node is fully used and the tasks don't compete for more CPU
 1494	 * cycles. Nevertheless, some tasks might wait before running.
 1495	 */
 1496	node_fully_busy,
 1497	/*
 1498	 * The node is overloaded and can't provide expected CPU cycles to all
 1499	 * tasks.
 1500	 */
 1501	node_overloaded
 1502};
 1503
 1504/* Cached statistics for all CPUs within a node */
 1505struct numa_stats {
 
 1506	unsigned long load;
 1507	unsigned long util;
 1508	/* Total compute capacity of CPUs on a node */
 1509	unsigned long compute_capacity;
 1510	unsigned int nr_running;
 1511	unsigned int weight;
 1512	enum numa_type node_type;
 1513	int idle_cpu;
 1514};
 1515
 1516static inline bool is_core_idle(int cpu)
 
 
 
 1517{
 1518#ifdef CONFIG_SCHED_SMT
 1519	int sibling;
 
 
 
 
 1520
 1521	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
 1522		if (cpu == sibling)
 1523			continue;
 1524
 1525		if (!idle_cpu(cpu))
 1526			return false;
 1527	}
 1528#endif
 1529
 1530	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1531}
 1532
 1533struct task_numa_env {
 1534	struct task_struct *p;
 1535
 1536	int src_cpu, src_nid;
 1537	int dst_cpu, dst_nid;
 1538
 1539	struct numa_stats src_stats, dst_stats;
 1540
 1541	int imbalance_pct;
 1542	int dist;
 1543
 1544	struct task_struct *best_task;
 1545	long best_imp;
 1546	int best_cpu;
 1547};
 1548
 1549static unsigned long cpu_load(struct rq *rq);
 1550static unsigned long cpu_util(int cpu);
 1551static inline long adjust_numa_imbalance(int imbalance, int src_nr_running);
 1552
 1553static inline enum
 1554numa_type numa_classify(unsigned int imbalance_pct,
 1555			 struct numa_stats *ns)
 1556{
 1557	if ((ns->nr_running > ns->weight) &&
 1558	    ((ns->compute_capacity * 100) < (ns->util * imbalance_pct)))
 1559		return node_overloaded;
 1560
 1561	if ((ns->nr_running < ns->weight) ||
 1562	    ((ns->compute_capacity * 100) > (ns->util * imbalance_pct)))
 1563		return node_has_spare;
 1564
 1565	return node_fully_busy;
 1566}
 1567
 1568#ifdef CONFIG_SCHED_SMT
 1569/* Forward declarations of select_idle_sibling helpers */
 1570static inline bool test_idle_cores(int cpu, bool def);
 1571static inline int numa_idle_core(int idle_core, int cpu)
 1572{
 1573	if (!static_branch_likely(&sched_smt_present) ||
 1574	    idle_core >= 0 || !test_idle_cores(cpu, false))
 1575		return idle_core;
 1576
 1577	/*
 1578	 * Prefer cores instead of packing HT siblings
 1579	 * and triggering future load balancing.
 1580	 */
 1581	if (is_core_idle(cpu))
 1582		idle_core = cpu;
 1583
 1584	return idle_core;
 1585}
 1586#else
 1587static inline int numa_idle_core(int idle_core, int cpu)
 1588{
 1589	return idle_core;
 1590}
 1591#endif
 1592
 1593/*
 1594 * Gather all necessary information to make NUMA balancing placement
 1595 * decisions that are compatible with standard load balancer. This
 1596 * borrows code and logic from update_sg_lb_stats but sharing a
 1597 * common implementation is impractical.
 1598 */
 1599static void update_numa_stats(struct task_numa_env *env,
 1600			      struct numa_stats *ns, int nid,
 1601			      bool find_idle)
 1602{
 1603	int cpu, idle_core = -1;
 1604
 1605	memset(ns, 0, sizeof(*ns));
 1606	ns->idle_cpu = -1;
 1607
 1608	rcu_read_lock();
 1609	for_each_cpu(cpu, cpumask_of_node(nid)) {
 1610		struct rq *rq = cpu_rq(cpu);
 1611
 1612		ns->load += cpu_load(rq);
 1613		ns->util += cpu_util(cpu);
 1614		ns->nr_running += rq->cfs.h_nr_running;
 1615		ns->compute_capacity += capacity_of(cpu);
 1616
 1617		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
 1618			if (READ_ONCE(rq->numa_migrate_on) ||
 1619			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
 1620				continue;
 1621
 1622			if (ns->idle_cpu == -1)
 1623				ns->idle_cpu = cpu;
 1624
 1625			idle_core = numa_idle_core(idle_core, cpu);
 1626		}
 1627	}
 1628	rcu_read_unlock();
 1629
 1630	ns->weight = cpumask_weight(cpumask_of_node(nid));
 1631
 1632	ns->node_type = numa_classify(env->imbalance_pct, ns);
 1633
 1634	if (idle_core >= 0)
 1635		ns->idle_cpu = idle_core;
 1636}
 1637
 1638static void task_numa_assign(struct task_numa_env *env,
 1639			     struct task_struct *p, long imp)
 1640{
 1641	struct rq *rq = cpu_rq(env->dst_cpu);
 1642
 1643	/* Check if run-queue part of active NUMA balance. */
 1644	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
 1645		int cpu;
 1646		int start = env->dst_cpu;
 1647
 1648		/* Find alternative idle CPU. */
 1649		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
 1650			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
 1651			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
 1652				continue;
 1653			}
 1654
 1655			env->dst_cpu = cpu;
 1656			rq = cpu_rq(env->dst_cpu);
 1657			if (!xchg(&rq->numa_migrate_on, 1))
 1658				goto assign;
 1659		}
 1660
 1661		/* Failed to find an alternative idle CPU */
 1662		return;
 1663	}
 1664
 1665assign:
 1666	/*
 1667	 * Clear previous best_cpu/rq numa-migrate flag, since task now
 1668	 * found a better CPU to move/swap.
 1669	 */
 1670	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
 1671		rq = cpu_rq(env->best_cpu);
 1672		WRITE_ONCE(rq->numa_migrate_on, 0);
 1673	}
 1674
 1675	if (env->best_task)
 1676		put_task_struct(env->best_task);
 1677	if (p)
 1678		get_task_struct(p);
 1679
 1680	env->best_task = p;
 1681	env->best_imp = imp;
 1682	env->best_cpu = env->dst_cpu;
 1683}
 1684
 1685static bool load_too_imbalanced(long src_load, long dst_load,
 1686				struct task_numa_env *env)
 1687{
 1688	long imb, old_imb;
 1689	long orig_src_load, orig_dst_load;
 1690	long src_capacity, dst_capacity;
 1691
 1692	/*
 1693	 * The load is corrected for the CPU capacity available on each node.
 1694	 *
 1695	 * src_load        dst_load
 1696	 * ------------ vs ---------
 1697	 * src_capacity    dst_capacity
 1698	 */
 1699	src_capacity = env->src_stats.compute_capacity;
 1700	dst_capacity = env->dst_stats.compute_capacity;
 1701
 1702	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
 
 
 
 
 
 
 
 
 1703
 
 
 
 
 1704	orig_src_load = env->src_stats.load;
 1705	orig_dst_load = env->dst_stats.load;
 1706
 1707	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
 
 
 
 
 1708
 1709	/* Would this change make things worse? */
 1710	return (imb > old_imb);
 1711}
 1712
 1713/*
 1714 * Maximum NUMA importance can be 1998 (2*999);
 1715 * SMALLIMP @ 30 would be close to 1998/64.
 1716 * Used to deter task migration.
 1717 */
 1718#define SMALLIMP	30
 1719
 1720/*
 1721 * This checks if the overall compute and NUMA accesses of the system would
 1722 * be improved if the source tasks was migrated to the target dst_cpu taking
 1723 * into account that it might be best if task running on the dst_cpu should
 1724 * be exchanged with the source task
 1725 */
 1726static bool task_numa_compare(struct task_numa_env *env,
 1727			      long taskimp, long groupimp, bool maymove)
 1728{
 1729	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
 1730	struct rq *dst_rq = cpu_rq(env->dst_cpu);
 1731	long imp = p_ng ? groupimp : taskimp;
 1732	struct task_struct *cur;
 1733	long src_load, dst_load;
 
 
 
 1734	int dist = env->dist;
 1735	long moveimp = imp;
 1736	long load;
 1737	bool stopsearch = false;
 1738
 1739	if (READ_ONCE(dst_rq->numa_migrate_on))
 1740		return false;
 1741
 1742	rcu_read_lock();
 1743	cur = rcu_dereference(dst_rq->curr);
 1744	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
 1745		cur = NULL;
 1746
 1747	/*
 1748	 * Because we have preemption enabled we can get migrated around and
 1749	 * end try selecting ourselves (current == env->p) as a swap candidate.
 1750	 */
 1751	if (cur == env->p) {
 1752		stopsearch = true;
 1753		goto unlock;
 1754	}
 1755
 1756	if (!cur) {
 1757		if (maymove && moveimp >= env->best_imp)
 1758			goto assign;
 1759		else
 1760			goto unlock;
 1761	}
 1762
 1763	/* Skip this swap candidate if cannot move to the source cpu. */
 1764	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
 1765		goto unlock;
 1766
 1767	/*
 1768	 * Skip this swap candidate if it is not moving to its preferred
 1769	 * node and the best task is.
 1770	 */
 1771	if (env->best_task &&
 1772	    env->best_task->numa_preferred_nid == env->src_nid &&
 1773	    cur->numa_preferred_nid != env->src_nid) {
 1774		goto unlock;
 1775	}
 1776
 1777	/*
 1778	 * "imp" is the fault differential for the source task between the
 1779	 * source and destination node. Calculate the total differential for
 1780	 * the source task and potential destination task. The more negative
 1781	 * the value is, the more remote accesses that would be expected to
 1782	 * be incurred if the tasks were swapped.
 1783	 *
 1784	 * If dst and source tasks are in the same NUMA group, or not
 1785	 * in any group then look only at task weights.
 1786	 */
 1787	cur_ng = rcu_dereference(cur->numa_group);
 1788	if (cur_ng == p_ng) {
 1789		imp = taskimp + task_weight(cur, env->src_nid, dist) -
 1790		      task_weight(cur, env->dst_nid, dist);
 
 1791		/*
 1792		 * Add some hysteresis to prevent swapping the
 1793		 * tasks within a group over tiny differences.
 1794		 */
 1795		if (cur_ng)
 1796			imp -= imp / 16;
 1797	} else {
 1798		/*
 1799		 * Compare the group weights. If a task is all by itself
 1800		 * (not part of a group), use the task weight instead.
 1801		 */
 1802		if (cur_ng && p_ng)
 1803			imp += group_weight(cur, env->src_nid, dist) -
 1804			       group_weight(cur, env->dst_nid, dist);
 1805		else
 1806			imp += task_weight(cur, env->src_nid, dist) -
 1807			       task_weight(cur, env->dst_nid, dist);
 
 
 
 
 
 
 
 
 
 1808	}
 1809
 1810	/* Discourage picking a task already on its preferred node */
 1811	if (cur->numa_preferred_nid == env->dst_nid)
 1812		imp -= imp / 16;
 1813
 1814	/*
 1815	 * Encourage picking a task that moves to its preferred node.
 1816	 * This potentially makes imp larger than it's maximum of
 1817	 * 1998 (see SMALLIMP and task_weight for why) but in this
 1818	 * case, it does not matter.
 1819	 */
 1820	if (cur->numa_preferred_nid == env->src_nid)
 1821		imp += imp / 8;
 1822
 1823	if (maymove && moveimp > imp && moveimp > env->best_imp) {
 1824		imp = moveimp;
 1825		cur = NULL;
 1826		goto assign;
 1827	}
 1828
 1829	/*
 1830	 * Prefer swapping with a task moving to its preferred node over a
 1831	 * task that is not.
 1832	 */
 1833	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
 1834	    env->best_task->numa_preferred_nid != env->src_nid) {
 1835		goto assign;
 1836	}
 1837
 1838	/*
 1839	 * If the NUMA importance is less than SMALLIMP,
 1840	 * task migration might only result in ping pong
 1841	 * of tasks and also hurt performance due to cache
 1842	 * misses.
 1843	 */
 1844	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
 1845		goto unlock;
 1846
 1847	/*
 1848	 * In the overloaded case, try and keep the load balanced.
 1849	 */
 1850	load = task_h_load(env->p) - task_h_load(cur);
 1851	if (!load)
 1852		goto assign;
 1853
 1854	dst_load = env->dst_stats.load + load;
 1855	src_load = env->src_stats.load - load;
 1856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1857	if (load_too_imbalanced(src_load, dst_load, env))
 1858		goto unlock;
 1859
 1860assign:
 1861	/* Evaluate an idle CPU for a task numa move. */
 
 
 1862	if (!cur) {
 1863		int cpu = env->dst_stats.idle_cpu;
 1864
 1865		/* Nothing cached so current CPU went idle since the search. */
 1866		if (cpu < 0)
 1867			cpu = env->dst_cpu;
 1868
 1869		/*
 1870		 * If the CPU is no longer truly idle and the previous best CPU
 1871		 * is, keep using it.
 1872		 */
 1873		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
 1874		    idle_cpu(env->best_cpu)) {
 1875			cpu = env->best_cpu;
 1876		}
 1877
 1878		env->dst_cpu = cpu;
 1879	}
 1880
 
 1881	task_numa_assign(env, cur, imp);
 1882
 1883	/*
 1884	 * If a move to idle is allowed because there is capacity or load
 1885	 * balance improves then stop the search. While a better swap
 1886	 * candidate may exist, a search is not free.
 1887	 */
 1888	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
 1889		stopsearch = true;
 1890
 1891	/*
 1892	 * If a swap candidate must be identified and the current best task
 1893	 * moves its preferred node then stop the search.
 1894	 */
 1895	if (!maymove && env->best_task &&
 1896	    env->best_task->numa_preferred_nid == env->src_nid) {
 1897		stopsearch = true;
 1898	}
 1899unlock:
 1900	rcu_read_unlock();
 1901
 1902	return stopsearch;
 1903}
 1904
 1905static void task_numa_find_cpu(struct task_numa_env *env,
 1906				long taskimp, long groupimp)
 1907{
 1908	bool maymove = false;
 1909	int cpu;
 1910
 1911	/*
 1912	 * If dst node has spare capacity, then check if there is an
 1913	 * imbalance that would be overruled by the load balancer.
 1914	 */
 1915	if (env->dst_stats.node_type == node_has_spare) {
 1916		unsigned int imbalance;
 1917		int src_running, dst_running;
 1918
 1919		/*
 1920		 * Would movement cause an imbalance? Note that if src has
 1921		 * more running tasks that the imbalance is ignored as the
 1922		 * move improves the imbalance from the perspective of the
 1923		 * CPU load balancer.
 1924		 * */
 1925		src_running = env->src_stats.nr_running - 1;
 1926		dst_running = env->dst_stats.nr_running + 1;
 1927		imbalance = max(0, dst_running - src_running);
 1928		imbalance = adjust_numa_imbalance(imbalance, src_running);
 1929
 1930		/* Use idle CPU if there is no imbalance */
 1931		if (!imbalance) {
 1932			maymove = true;
 1933			if (env->dst_stats.idle_cpu >= 0) {
 1934				env->dst_cpu = env->dst_stats.idle_cpu;
 1935				task_numa_assign(env, NULL, 0);
 1936				return;
 1937			}
 1938		}
 1939	} else {
 1940		long src_load, dst_load, load;
 1941		/*
 1942		 * If the improvement from just moving env->p direction is better
 1943		 * than swapping tasks around, check if a move is possible.
 1944		 */
 1945		load = task_h_load(env->p);
 1946		dst_load = env->dst_stats.load + load;
 1947		src_load = env->src_stats.load - load;
 1948		maymove = !load_too_imbalanced(src_load, dst_load, env);
 1949	}
 1950
 1951	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
 1952		/* Skip this CPU if the source task cannot migrate */
 1953		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
 1954			continue;
 1955
 1956		env->dst_cpu = cpu;
 1957		if (task_numa_compare(env, taskimp, groupimp, maymove))
 1958			break;
 1959	}
 1960}
 1961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1962static int task_numa_migrate(struct task_struct *p)
 1963{
 1964	struct task_numa_env env = {
 1965		.p = p,
 1966
 1967		.src_cpu = task_cpu(p),
 1968		.src_nid = task_node(p),
 1969
 1970		.imbalance_pct = 112,
 1971
 1972		.best_task = NULL,
 1973		.best_imp = 0,
 1974		.best_cpu = -1,
 1975	};
 
 1976	unsigned long taskweight, groupweight;
 1977	struct sched_domain *sd;
 1978	long taskimp, groupimp;
 1979	struct numa_group *ng;
 1980	struct rq *best_rq;
 1981	int nid, ret, dist;
 1982
 1983	/*
 1984	 * Pick the lowest SD_NUMA domain, as that would have the smallest
 1985	 * imbalance and would be the first to start moving tasks about.
 1986	 *
 1987	 * And we want to avoid any moving of tasks about, as that would create
 1988	 * random movement of tasks -- counter the numa conditions we're trying
 1989	 * to satisfy here.
 1990	 */
 1991	rcu_read_lock();
 1992	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
 1993	if (sd)
 1994		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
 1995	rcu_read_unlock();
 1996
 1997	/*
 1998	 * Cpusets can break the scheduler domain tree into smaller
 1999	 * balance domains, some of which do not cross NUMA boundaries.
 2000	 * Tasks that are "trapped" in such domains cannot be migrated
 2001	 * elsewhere, so there is no point in (re)trying.
 2002	 */
 2003	if (unlikely(!sd)) {
 2004		sched_setnuma(p, task_node(p));
 2005		return -EINVAL;
 2006	}
 2007
 2008	env.dst_nid = p->numa_preferred_nid;
 2009	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
 2010	taskweight = task_weight(p, env.src_nid, dist);
 2011	groupweight = group_weight(p, env.src_nid, dist);
 2012	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
 2013	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
 2014	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
 2015	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
 2016
 2017	/* Try to find a spot on the preferred nid. */
 2018	task_numa_find_cpu(&env, taskimp, groupimp);
 
 2019
 2020	/*
 2021	 * Look at other nodes in these cases:
 2022	 * - there is no space available on the preferred_nid
 2023	 * - the task is part of a numa_group that is interleaved across
 2024	 *   multiple NUMA nodes; in order to better consolidate the group,
 2025	 *   we need to check other locations.
 2026	 */
 2027	ng = deref_curr_numa_group(p);
 2028	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
 2029		for_each_online_node(nid) {
 2030			if (nid == env.src_nid || nid == p->numa_preferred_nid)
 2031				continue;
 2032
 2033			dist = node_distance(env.src_nid, env.dst_nid);
 2034			if (sched_numa_topology_type == NUMA_BACKPLANE &&
 2035						dist != env.dist) {
 2036				taskweight = task_weight(p, env.src_nid, dist);
 2037				groupweight = group_weight(p, env.src_nid, dist);
 2038			}
 2039
 2040			/* Only consider nodes where both task and groups benefit */
 2041			taskimp = task_weight(p, nid, dist) - taskweight;
 2042			groupimp = group_weight(p, nid, dist) - groupweight;
 2043			if (taskimp < 0 && groupimp < 0)
 2044				continue;
 2045
 2046			env.dist = dist;
 2047			env.dst_nid = nid;
 2048			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
 2049			task_numa_find_cpu(&env, taskimp, groupimp);
 
 2050		}
 2051	}
 2052
 2053	/*
 2054	 * If the task is part of a workload that spans multiple NUMA nodes,
 2055	 * and is migrating into one of the workload's active nodes, remember
 2056	 * this node as the task's preferred numa node, so the workload can
 2057	 * settle down.
 2058	 * A task that migrated to a second choice node will be better off
 2059	 * trying for a better one later. Do not set the preferred node here.
 2060	 */
 2061	if (ng) {
 
 
 2062		if (env.best_cpu == -1)
 2063			nid = env.src_nid;
 2064		else
 2065			nid = cpu_to_node(env.best_cpu);
 2066
 2067		if (nid != p->numa_preferred_nid)
 2068			sched_setnuma(p, nid);
 2069	}
 2070
 2071	/* No better CPU than the current one was found. */
 2072	if (env.best_cpu == -1) {
 2073		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
 2074		return -EAGAIN;
 2075	}
 2076
 2077	best_rq = cpu_rq(env.best_cpu);
 
 
 
 
 
 2078	if (env.best_task == NULL) {
 2079		ret = migrate_task_to(p, env.best_cpu);
 2080		WRITE_ONCE(best_rq->numa_migrate_on, 0);
 2081		if (ret != 0)
 2082			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
 2083		return ret;
 2084	}
 2085
 2086	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
 2087	WRITE_ONCE(best_rq->numa_migrate_on, 0);
 2088
 2089	if (ret != 0)
 2090		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
 2091	put_task_struct(env.best_task);
 2092	return ret;
 2093}
 2094
 2095/* Attempt to migrate a task to a CPU on the preferred node. */
 2096static void numa_migrate_preferred(struct task_struct *p)
 2097{
 2098	unsigned long interval = HZ;
 2099
 2100	/* This task has no NUMA fault statistics yet */
 2101	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
 2102		return;
 2103
 2104	/* Periodically retry migrating the task to the preferred node */
 2105	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
 2106	p->numa_migrate_retry = jiffies + interval;
 2107
 2108	/* Success if task is already running on preferred CPU */
 2109	if (task_node(p) == p->numa_preferred_nid)
 2110		return;
 2111
 2112	/* Otherwise, try migrate to a CPU on the preferred node */
 2113	task_numa_migrate(p);
 2114}
 2115
 2116/*
 2117 * Find out how many nodes on the workload is actively running on. Do this by
 2118 * tracking the nodes from which NUMA hinting faults are triggered. This can
 2119 * be different from the set of nodes where the workload's memory is currently
 2120 * located.
 2121 */
 2122static void numa_group_count_active_nodes(struct numa_group *numa_group)
 2123{
 2124	unsigned long faults, max_faults = 0;
 2125	int nid, active_nodes = 0;
 2126
 2127	for_each_online_node(nid) {
 2128		faults = group_faults_cpu(numa_group, nid);
 2129		if (faults > max_faults)
 2130			max_faults = faults;
 2131	}
 2132
 2133	for_each_online_node(nid) {
 2134		faults = group_faults_cpu(numa_group, nid);
 2135		if (faults * ACTIVE_NODE_FRACTION > max_faults)
 2136			active_nodes++;
 2137	}
 2138
 2139	numa_group->max_faults_cpu = max_faults;
 2140	numa_group->active_nodes = active_nodes;
 2141}
 2142
 2143/*
 2144 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 2145 * increments. The more local the fault statistics are, the higher the scan
 2146 * period will be for the next scan window. If local/(local+remote) ratio is
 2147 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 2148 * the scan period will decrease. Aim for 70% local accesses.
 2149 */
 2150#define NUMA_PERIOD_SLOTS 10
 2151#define NUMA_PERIOD_THRESHOLD 7
 2152
 2153/*
 2154 * Increase the scan period (slow down scanning) if the majority of
 2155 * our memory is already on our local node, or if the majority of
 2156 * the page accesses are shared with other processes.
 2157 * Otherwise, decrease the scan period.
 2158 */
 2159static void update_task_scan_period(struct task_struct *p,
 2160			unsigned long shared, unsigned long private)
 2161{
 2162	unsigned int period_slot;
 2163	int lr_ratio, ps_ratio;
 2164	int diff;
 2165
 2166	unsigned long remote = p->numa_faults_locality[0];
 2167	unsigned long local = p->numa_faults_locality[1];
 2168
 2169	/*
 2170	 * If there were no record hinting faults then either the task is
 2171	 * completely idle or all activity is areas that are not of interest
 2172	 * to automatic numa balancing. Related to that, if there were failed
 2173	 * migration then it implies we are migrating too quickly or the local
 2174	 * node is overloaded. In either case, scan slower
 2175	 */
 2176	if (local + shared == 0 || p->numa_faults_locality[2]) {
 2177		p->numa_scan_period = min(p->numa_scan_period_max,
 2178			p->numa_scan_period << 1);
 2179
 2180		p->mm->numa_next_scan = jiffies +
 2181			msecs_to_jiffies(p->numa_scan_period);
 2182
 2183		return;
 2184	}
 2185
 2186	/*
 2187	 * Prepare to scale scan period relative to the current period.
 2188	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
 2189	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
 2190	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
 2191	 */
 2192	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
 2193	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
 2194	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
 2195
 2196	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
 2197		/*
 2198		 * Most memory accesses are local. There is no need to
 2199		 * do fast NUMA scanning, since memory is already local.
 2200		 */
 2201		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
 2202		if (!slot)
 2203			slot = 1;
 2204		diff = slot * period_slot;
 2205	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
 2206		/*
 2207		 * Most memory accesses are shared with other tasks.
 2208		 * There is no point in continuing fast NUMA scanning,
 2209		 * since other tasks may just move the memory elsewhere.
 2210		 */
 2211		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
 2212		if (!slot)
 2213			slot = 1;
 2214		diff = slot * period_slot;
 2215	} else {
 
 
 2216		/*
 2217		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
 2218		 * yet they are not on the local NUMA node. Speed up
 2219		 * NUMA scanning to get the memory moved over.
 
 
 
 2220		 */
 2221		int ratio = max(lr_ratio, ps_ratio);
 2222		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
 2223	}
 2224
 2225	p->numa_scan_period = clamp(p->numa_scan_period + diff,
 2226			task_scan_min(p), task_scan_max(p));
 2227	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
 2228}
 2229
 2230/*
 2231 * Get the fraction of time the task has been running since the last
 2232 * NUMA placement cycle. The scheduler keeps similar statistics, but
 2233 * decays those on a 32ms period, which is orders of magnitude off
 2234 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 2235 * stats only if the task is so new there are no NUMA statistics yet.
 2236 */
 2237static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
 2238{
 2239	u64 runtime, delta, now;
 2240	/* Use the start of this time slice to avoid calculations. */
 2241	now = p->se.exec_start;
 2242	runtime = p->se.sum_exec_runtime;
 2243
 2244	if (p->last_task_numa_placement) {
 2245		delta = runtime - p->last_sum_exec_runtime;
 2246		*period = now - p->last_task_numa_placement;
 2247
 2248		/* Avoid time going backwards, prevent potential divide error: */
 2249		if (unlikely((s64)*period < 0))
 2250			*period = 0;
 2251	} else {
 2252		delta = p->se.avg.load_sum;
 2253		*period = LOAD_AVG_MAX;
 2254	}
 2255
 2256	p->last_sum_exec_runtime = runtime;
 2257	p->last_task_numa_placement = now;
 2258
 2259	return delta;
 2260}
 2261
 2262/*
 2263 * Determine the preferred nid for a task in a numa_group. This needs to
 2264 * be done in a way that produces consistent results with group_weight,
 2265 * otherwise workloads might not converge.
 2266 */
 2267static int preferred_group_nid(struct task_struct *p, int nid)
 2268{
 2269	nodemask_t nodes;
 2270	int dist;
 2271
 2272	/* Direct connections between all NUMA nodes. */
 2273	if (sched_numa_topology_type == NUMA_DIRECT)
 2274		return nid;
 2275
 2276	/*
 2277	 * On a system with glueless mesh NUMA topology, group_weight
 2278	 * scores nodes according to the number of NUMA hinting faults on
 2279	 * both the node itself, and on nearby nodes.
 2280	 */
 2281	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
 2282		unsigned long score, max_score = 0;
 2283		int node, max_node = nid;
 2284
 2285		dist = sched_max_numa_distance;
 2286
 2287		for_each_online_node(node) {
 2288			score = group_weight(p, node, dist);
 2289			if (score > max_score) {
 2290				max_score = score;
 2291				max_node = node;
 2292			}
 2293		}
 2294		return max_node;
 2295	}
 2296
 2297	/*
 2298	 * Finding the preferred nid in a system with NUMA backplane
 2299	 * interconnect topology is more involved. The goal is to locate
 2300	 * tasks from numa_groups near each other in the system, and
 2301	 * untangle workloads from different sides of the system. This requires
 2302	 * searching down the hierarchy of node groups, recursively searching
 2303	 * inside the highest scoring group of nodes. The nodemask tricks
 2304	 * keep the complexity of the search down.
 2305	 */
 2306	nodes = node_online_map;
 2307	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
 2308		unsigned long max_faults = 0;
 2309		nodemask_t max_group = NODE_MASK_NONE;
 2310		int a, b;
 2311
 2312		/* Are there nodes at this distance from each other? */
 2313		if (!find_numa_distance(dist))
 2314			continue;
 2315
 2316		for_each_node_mask(a, nodes) {
 2317			unsigned long faults = 0;
 2318			nodemask_t this_group;
 2319			nodes_clear(this_group);
 2320
 2321			/* Sum group's NUMA faults; includes a==b case. */
 2322			for_each_node_mask(b, nodes) {
 2323				if (node_distance(a, b) < dist) {
 2324					faults += group_faults(p, b);
 2325					node_set(b, this_group);
 2326					node_clear(b, nodes);
 2327				}
 2328			}
 2329
 2330			/* Remember the top group. */
 2331			if (faults > max_faults) {
 2332				max_faults = faults;
 2333				max_group = this_group;
 2334				/*
 2335				 * subtle: at the smallest distance there is
 2336				 * just one node left in each "group", the
 2337				 * winner is the preferred nid.
 2338				 */
 2339				nid = a;
 2340			}
 2341		}
 2342		/* Next round, evaluate the nodes within max_group. */
 2343		if (!max_faults)
 2344			break;
 2345		nodes = max_group;
 2346	}
 2347	return nid;
 2348}
 2349
 2350static void task_numa_placement(struct task_struct *p)
 2351{
 2352	int seq, nid, max_nid = NUMA_NO_NODE;
 2353	unsigned long max_faults = 0;
 2354	unsigned long fault_types[2] = { 0, 0 };
 2355	unsigned long total_faults;
 2356	u64 runtime, period;
 2357	spinlock_t *group_lock = NULL;
 2358	struct numa_group *ng;
 2359
 2360	/*
 2361	 * The p->mm->numa_scan_seq field gets updated without
 2362	 * exclusive access. Use READ_ONCE() here to ensure
 2363	 * that the field is read in a single access:
 2364	 */
 2365	seq = READ_ONCE(p->mm->numa_scan_seq);
 2366	if (p->numa_scan_seq == seq)
 2367		return;
 2368	p->numa_scan_seq = seq;
 2369	p->numa_scan_period_max = task_scan_max(p);
 2370
 2371	total_faults = p->numa_faults_locality[0] +
 2372		       p->numa_faults_locality[1];
 2373	runtime = numa_get_avg_runtime(p, &period);
 2374
 2375	/* If the task is part of a group prevent parallel updates to group stats */
 2376	ng = deref_curr_numa_group(p);
 2377	if (ng) {
 2378		group_lock = &ng->lock;
 2379		spin_lock_irq(group_lock);
 2380	}
 2381
 2382	/* Find the node with the highest number of faults */
 2383	for_each_online_node(nid) {
 2384		/* Keep track of the offsets in numa_faults array */
 2385		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
 2386		unsigned long faults = 0, group_faults = 0;
 2387		int priv;
 2388
 2389		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
 2390			long diff, f_diff, f_weight;
 2391
 2392			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
 2393			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
 2394			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
 2395			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
 2396
 2397			/* Decay existing window, copy faults since last scan */
 2398			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
 2399			fault_types[priv] += p->numa_faults[membuf_idx];
 2400			p->numa_faults[membuf_idx] = 0;
 2401
 2402			/*
 2403			 * Normalize the faults_from, so all tasks in a group
 2404			 * count according to CPU use, instead of by the raw
 2405			 * number of faults. Tasks with little runtime have
 2406			 * little over-all impact on throughput, and thus their
 2407			 * faults are less important.
 2408			 */
 2409			f_weight = div64_u64(runtime << 16, period + 1);
 2410			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
 2411				   (total_faults + 1);
 2412			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
 2413			p->numa_faults[cpubuf_idx] = 0;
 2414
 2415			p->numa_faults[mem_idx] += diff;
 2416			p->numa_faults[cpu_idx] += f_diff;
 2417			faults += p->numa_faults[mem_idx];
 2418			p->total_numa_faults += diff;
 2419			if (ng) {
 2420				/*
 2421				 * safe because we can only change our own group
 2422				 *
 2423				 * mem_idx represents the offset for a given
 2424				 * nid and priv in a specific region because it
 2425				 * is at the beginning of the numa_faults array.
 2426				 */
 2427				ng->faults[mem_idx] += diff;
 2428				ng->faults_cpu[mem_idx] += f_diff;
 2429				ng->total_faults += diff;
 2430				group_faults += ng->faults[mem_idx];
 2431			}
 2432		}
 2433
 2434		if (!ng) {
 2435			if (faults > max_faults) {
 2436				max_faults = faults;
 2437				max_nid = nid;
 2438			}
 2439		} else if (group_faults > max_faults) {
 2440			max_faults = group_faults;
 2441			max_nid = nid;
 2442		}
 
 
 
 
 
 2443	}
 2444
 2445	if (ng) {
 2446		numa_group_count_active_nodes(ng);
 
 
 2447		spin_unlock_irq(group_lock);
 2448		max_nid = preferred_group_nid(p, max_nid);
 2449	}
 2450
 2451	if (max_faults) {
 2452		/* Set the new preferred node */
 2453		if (max_nid != p->numa_preferred_nid)
 2454			sched_setnuma(p, max_nid);
 
 
 
 2455	}
 2456
 2457	update_task_scan_period(p, fault_types[0], fault_types[1]);
 2458}
 2459
 2460static inline int get_numa_group(struct numa_group *grp)
 2461{
 2462	return refcount_inc_not_zero(&grp->refcount);
 2463}
 2464
 2465static inline void put_numa_group(struct numa_group *grp)
 2466{
 2467	if (refcount_dec_and_test(&grp->refcount))
 2468		kfree_rcu(grp, rcu);
 2469}
 2470
 2471static void task_numa_group(struct task_struct *p, int cpupid, int flags,
 2472			int *priv)
 2473{
 2474	struct numa_group *grp, *my_grp;
 2475	struct task_struct *tsk;
 2476	bool join = false;
 2477	int cpu = cpupid_to_cpu(cpupid);
 2478	int i;
 2479
 2480	if (unlikely(!deref_curr_numa_group(p))) {
 2481		unsigned int size = sizeof(struct numa_group) +
 2482				    4*nr_node_ids*sizeof(unsigned long);
 2483
 2484		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
 2485		if (!grp)
 2486			return;
 2487
 2488		refcount_set(&grp->refcount, 1);
 2489		grp->active_nodes = 1;
 2490		grp->max_faults_cpu = 0;
 2491		spin_lock_init(&grp->lock);
 2492		grp->gid = p->pid;
 2493		/* Second half of the array tracks nids where faults happen */
 2494		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
 2495						nr_node_ids;
 2496
 2497		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
 2498			grp->faults[i] = p->numa_faults[i];
 2499
 2500		grp->total_faults = p->total_numa_faults;
 2501
 2502		grp->nr_tasks++;
 2503		rcu_assign_pointer(p->numa_group, grp);
 2504	}
 2505
 2506	rcu_read_lock();
 2507	tsk = READ_ONCE(cpu_rq(cpu)->curr);
 2508
 2509	if (!cpupid_match_pid(tsk, cpupid))
 2510		goto no_join;
 2511
 2512	grp = rcu_dereference(tsk->numa_group);
 2513	if (!grp)
 2514		goto no_join;
 2515
 2516	my_grp = deref_curr_numa_group(p);
 2517	if (grp == my_grp)
 2518		goto no_join;
 2519
 2520	/*
 2521	 * Only join the other group if its bigger; if we're the bigger group,
 2522	 * the other task will join us.
 2523	 */
 2524	if (my_grp->nr_tasks > grp->nr_tasks)
 2525		goto no_join;
 2526
 2527	/*
 2528	 * Tie-break on the grp address.
 2529	 */
 2530	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
 2531		goto no_join;
 2532
 2533	/* Always join threads in the same process. */
 2534	if (tsk->mm == current->mm)
 2535		join = true;
 2536
 2537	/* Simple filter to avoid false positives due to PID collisions */
 2538	if (flags & TNF_SHARED)
 2539		join = true;
 2540
 2541	/* Update priv based on whether false sharing was detected */
 2542	*priv = !join;
 2543
 2544	if (join && !get_numa_group(grp))
 2545		goto no_join;
 2546
 2547	rcu_read_unlock();
 2548
 2549	if (!join)
 2550		return;
 2551
 2552	BUG_ON(irqs_disabled());
 2553	double_lock_irq(&my_grp->lock, &grp->lock);
 2554
 2555	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
 2556		my_grp->faults[i] -= p->numa_faults[i];
 2557		grp->faults[i] += p->numa_faults[i];
 2558	}
 2559	my_grp->total_faults -= p->total_numa_faults;
 2560	grp->total_faults += p->total_numa_faults;
 2561
 2562	my_grp->nr_tasks--;
 2563	grp->nr_tasks++;
 2564
 2565	spin_unlock(&my_grp->lock);
 2566	spin_unlock_irq(&grp->lock);
 2567
 2568	rcu_assign_pointer(p->numa_group, grp);
 2569
 2570	put_numa_group(my_grp);
 2571	return;
 2572
 2573no_join:
 2574	rcu_read_unlock();
 2575	return;
 2576}
 2577
 2578/*
 2579 * Get rid of NUMA staticstics associated with a task (either current or dead).
 2580 * If @final is set, the task is dead and has reached refcount zero, so we can
 2581 * safely free all relevant data structures. Otherwise, there might be
 2582 * concurrent reads from places like load balancing and procfs, and we should
 2583 * reset the data back to default state without freeing ->numa_faults.
 2584 */
 2585void task_numa_free(struct task_struct *p, bool final)
 2586{
 2587	/* safe: p either is current or is being freed by current */
 2588	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
 2589	unsigned long *numa_faults = p->numa_faults;
 2590	unsigned long flags;
 2591	int i;
 2592
 2593	if (!numa_faults)
 2594		return;
 2595
 2596	if (grp) {
 2597		spin_lock_irqsave(&grp->lock, flags);
 2598		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
 2599			grp->faults[i] -= p->numa_faults[i];
 2600		grp->total_faults -= p->total_numa_faults;
 2601
 2602		grp->nr_tasks--;
 2603		spin_unlock_irqrestore(&grp->lock, flags);
 2604		RCU_INIT_POINTER(p->numa_group, NULL);
 2605		put_numa_group(grp);
 2606	}
 2607
 2608	if (final) {
 2609		p->numa_faults = NULL;
 2610		kfree(numa_faults);
 2611	} else {
 2612		p->total_numa_faults = 0;
 2613		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
 2614			numa_faults[i] = 0;
 2615	}
 2616}
 2617
 2618/*
 2619 * Got a PROT_NONE fault for a page on @node.
 2620 */
 2621void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
 2622{
 2623	struct task_struct *p = current;
 2624	bool migrated = flags & TNF_MIGRATED;
 2625	int cpu_node = task_node(current);
 2626	int local = !!(flags & TNF_FAULT_LOCAL);
 2627	struct numa_group *ng;
 2628	int priv;
 2629
 2630	if (!static_branch_likely(&sched_numa_balancing))
 2631		return;
 2632
 2633	/* for example, ksmd faulting in a user's mm */
 2634	if (!p->mm)
 2635		return;
 2636
 2637	/* Allocate buffer to track faults on a per-node basis */
 2638	if (unlikely(!p->numa_faults)) {
 2639		int size = sizeof(*p->numa_faults) *
 2640			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
 2641
 2642		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
 2643		if (!p->numa_faults)
 2644			return;
 2645
 2646		p->total_numa_faults = 0;
 2647		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
 2648	}
 2649
 2650	/*
 2651	 * First accesses are treated as private, otherwise consider accesses
 2652	 * to be private if the accessing pid has not changed
 2653	 */
 2654	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
 2655		priv = 1;
 2656	} else {
 2657		priv = cpupid_match_pid(p, last_cpupid);
 2658		if (!priv && !(flags & TNF_NO_GROUP))
 2659			task_numa_group(p, last_cpupid, flags, &priv);
 2660	}
 2661
 2662	/*
 2663	 * If a workload spans multiple NUMA nodes, a shared fault that
 2664	 * occurs wholly within the set of nodes that the workload is
 2665	 * actively using should be counted as local. This allows the
 2666	 * scan rate to slow down when a workload has settled down.
 2667	 */
 2668	ng = deref_curr_numa_group(p);
 2669	if (!priv && !local && ng && ng->active_nodes > 1 &&
 2670				numa_is_active_node(cpu_node, ng) &&
 2671				numa_is_active_node(mem_node, ng))
 2672		local = 1;
 2673
 
 
 2674	/*
 2675	 * Retry to migrate task to preferred node periodically, in case it
 2676	 * previously failed, or the scheduler moved us.
 2677	 */
 2678	if (time_after(jiffies, p->numa_migrate_retry)) {
 2679		task_numa_placement(p);
 2680		numa_migrate_preferred(p);
 2681	}
 2682
 2683	if (migrated)
 2684		p->numa_pages_migrated += pages;
 2685	if (flags & TNF_MIGRATE_FAIL)
 2686		p->numa_faults_locality[2] += pages;
 2687
 2688	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
 2689	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
 2690	p->numa_faults_locality[local] += pages;
 2691}
 2692
 2693static void reset_ptenuma_scan(struct task_struct *p)
 2694{
 2695	/*
 2696	 * We only did a read acquisition of the mmap sem, so
 2697	 * p->mm->numa_scan_seq is written to without exclusive access
 2698	 * and the update is not guaranteed to be atomic. That's not
 2699	 * much of an issue though, since this is just used for
 2700	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
 2701	 * expensive, to avoid any form of compiler optimizations:
 2702	 */
 2703	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
 2704	p->mm->numa_scan_offset = 0;
 2705}
 2706
 2707/*
 2708 * The expensive part of numa migration is done from task_work context.
 2709 * Triggered from task_tick_numa().
 2710 */
 2711static void task_numa_work(struct callback_head *work)
 2712{
 2713	unsigned long migrate, next_scan, now = jiffies;
 2714	struct task_struct *p = current;
 2715	struct mm_struct *mm = p->mm;
 2716	u64 runtime = p->se.sum_exec_runtime;
 2717	struct vm_area_struct *vma;
 2718	unsigned long start, end;
 2719	unsigned long nr_pte_updates = 0;
 2720	long pages, virtpages;
 2721
 2722	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
 2723
 2724	work->next = work;
 2725	/*
 2726	 * Who cares about NUMA placement when they're dying.
 2727	 *
 2728	 * NOTE: make sure not to dereference p->mm before this check,
 2729	 * exit_task_work() happens _after_ exit_mm() so we could be called
 2730	 * without p->mm even though we still had it when we enqueued this
 2731	 * work.
 2732	 */
 2733	if (p->flags & PF_EXITING)
 2734		return;
 2735
 2736	if (!mm->numa_next_scan) {
 2737		mm->numa_next_scan = now +
 2738			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
 2739	}
 2740
 2741	/*
 2742	 * Enforce maximal scan/migration frequency..
 2743	 */
 2744	migrate = mm->numa_next_scan;
 2745	if (time_before(now, migrate))
 2746		return;
 2747
 2748	if (p->numa_scan_period == 0) {
 2749		p->numa_scan_period_max = task_scan_max(p);
 2750		p->numa_scan_period = task_scan_start(p);
 2751	}
 2752
 2753	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
 2754	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
 2755		return;
 2756
 2757	/*
 2758	 * Delay this task enough that another task of this mm will likely win
 2759	 * the next time around.
 2760	 */
 2761	p->node_stamp += 2 * TICK_NSEC;
 2762
 2763	start = mm->numa_scan_offset;
 2764	pages = sysctl_numa_balancing_scan_size;
 2765	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
 2766	virtpages = pages * 8;	   /* Scan up to this much virtual space */
 2767	if (!pages)
 2768		return;
 2769
 2770
 2771	if (!mmap_read_trylock(mm))
 2772		return;
 2773	vma = find_vma(mm, start);
 2774	if (!vma) {
 2775		reset_ptenuma_scan(p);
 2776		start = 0;
 2777		vma = mm->mmap;
 2778	}
 2779	for (; vma; vma = vma->vm_next) {
 2780		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
 2781			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
 2782			continue;
 2783		}
 2784
 2785		/*
 2786		 * Shared library pages mapped by multiple processes are not
 2787		 * migrated as it is expected they are cache replicated. Avoid
 2788		 * hinting faults in read-only file-backed mappings or the vdso
 2789		 * as migrating the pages will be of marginal benefit.
 2790		 */
 2791		if (!vma->vm_mm ||
 2792		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
 2793			continue;
 2794
 2795		/*
 2796		 * Skip inaccessible VMAs to avoid any confusion between
 2797		 * PROT_NONE and NUMA hinting ptes
 2798		 */
 2799		if (!vma_is_accessible(vma))
 2800			continue;
 2801
 2802		do {
 2803			start = max(start, vma->vm_start);
 2804			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
 2805			end = min(end, vma->vm_end);
 2806			nr_pte_updates = change_prot_numa(vma, start, end);
 2807
 2808			/*
 2809			 * Try to scan sysctl_numa_balancing_size worth of
 2810			 * hpages that have at least one present PTE that
 2811			 * is not already pte-numa. If the VMA contains
 2812			 * areas that are unused or already full of prot_numa
 2813			 * PTEs, scan up to virtpages, to skip through those
 2814			 * areas faster.
 2815			 */
 2816			if (nr_pte_updates)
 2817				pages -= (end - start) >> PAGE_SHIFT;
 2818			virtpages -= (end - start) >> PAGE_SHIFT;
 2819
 2820			start = end;
 2821			if (pages <= 0 || virtpages <= 0)
 2822				goto out;
 2823
 2824			cond_resched();
 2825		} while (end != vma->vm_end);
 2826	}
 2827
 2828out:
 2829	/*
 2830	 * It is possible to reach the end of the VMA list but the last few
 2831	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
 2832	 * would find the !migratable VMA on the next scan but not reset the
 2833	 * scanner to the start so check it now.
 2834	 */
 2835	if (vma)
 2836		mm->numa_scan_offset = start;
 2837	else
 2838		reset_ptenuma_scan(p);
 2839	mmap_read_unlock(mm);
 2840
 2841	/*
 2842	 * Make sure tasks use at least 32x as much time to run other code
 2843	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
 2844	 * Usually update_task_scan_period slows down scanning enough; on an
 2845	 * overloaded system we need to limit overhead on a per task basis.
 2846	 */
 2847	if (unlikely(p->se.sum_exec_runtime != runtime)) {
 2848		u64 diff = p->se.sum_exec_runtime - runtime;
 2849		p->node_stamp += 32 * diff;
 2850	}
 2851}
 2852
 2853void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
 2854{
 2855	int mm_users = 0;
 2856	struct mm_struct *mm = p->mm;
 2857
 2858	if (mm) {
 2859		mm_users = atomic_read(&mm->mm_users);
 2860		if (mm_users == 1) {
 2861			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
 2862			mm->numa_scan_seq = 0;
 2863		}
 2864	}
 2865	p->node_stamp			= 0;
 2866	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
 2867	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
 2868	/* Protect against double add, see task_tick_numa and task_numa_work */
 2869	p->numa_work.next		= &p->numa_work;
 2870	p->numa_faults			= NULL;
 2871	RCU_INIT_POINTER(p->numa_group, NULL);
 2872	p->last_task_numa_placement	= 0;
 2873	p->last_sum_exec_runtime	= 0;
 2874
 2875	init_task_work(&p->numa_work, task_numa_work);
 2876
 2877	/* New address space, reset the preferred nid */
 2878	if (!(clone_flags & CLONE_VM)) {
 2879		p->numa_preferred_nid = NUMA_NO_NODE;
 2880		return;
 2881	}
 2882
 2883	/*
 2884	 * New thread, keep existing numa_preferred_nid which should be copied
 2885	 * already by arch_dup_task_struct but stagger when scans start.
 2886	 */
 2887	if (mm) {
 2888		unsigned int delay;
 2889
 2890		delay = min_t(unsigned int, task_scan_max(current),
 2891			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
 2892		delay += 2 * TICK_NSEC;
 2893		p->node_stamp = delay;
 2894	}
 2895}
 2896
 2897/*
 2898 * Drive the periodic memory faults..
 2899 */
 2900static void task_tick_numa(struct rq *rq, struct task_struct *curr)
 2901{
 2902	struct callback_head *work = &curr->numa_work;
 2903	u64 period, now;
 2904
 2905	/*
 2906	 * We don't care about NUMA placement if we don't have memory.
 2907	 */
 2908	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
 2909		return;
 2910
 2911	/*
 2912	 * Using runtime rather than walltime has the dual advantage that
 2913	 * we (mostly) drive the selection from busy threads and that the
 2914	 * task needs to have done some actual work before we bother with
 2915	 * NUMA placement.
 2916	 */
 2917	now = curr->se.sum_exec_runtime;
 2918	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
 2919
 2920	if (now > curr->node_stamp + period) {
 2921		if (!curr->node_stamp)
 2922			curr->numa_scan_period = task_scan_start(curr);
 2923		curr->node_stamp += period;
 2924
 2925		if (!time_before(jiffies, curr->mm->numa_next_scan))
 
 2926			task_work_add(curr, work, true);
 
 2927	}
 2928}
 2929
 2930static void update_scan_period(struct task_struct *p, int new_cpu)
 2931{
 2932	int src_nid = cpu_to_node(task_cpu(p));
 2933	int dst_nid = cpu_to_node(new_cpu);
 2934
 2935	if (!static_branch_likely(&sched_numa_balancing))
 2936		return;
 2937
 2938	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
 2939		return;
 2940
 2941	if (src_nid == dst_nid)
 2942		return;
 2943
 2944	/*
 2945	 * Allow resets if faults have been trapped before one scan
 2946	 * has completed. This is most likely due to a new task that
 2947	 * is pulled cross-node due to wakeups or load balancing.
 2948	 */
 2949	if (p->numa_scan_seq) {
 2950		/*
 2951		 * Avoid scan adjustments if moving to the preferred
 2952		 * node or if the task was not previously running on
 2953		 * the preferred node.
 2954		 */
 2955		if (dst_nid == p->numa_preferred_nid ||
 2956		    (p->numa_preferred_nid != NUMA_NO_NODE &&
 2957			src_nid != p->numa_preferred_nid))
 2958			return;
 2959	}
 2960
 2961	p->numa_scan_period = task_scan_start(p);
 2962}
 2963
 2964#else
 2965static void task_tick_numa(struct rq *rq, struct task_struct *curr)
 2966{
 2967}
 2968
 2969static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
 2970{
 2971}
 2972
 2973static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
 2974{
 2975}
 2976
 2977static inline void update_scan_period(struct task_struct *p, int new_cpu)
 2978{
 2979}
 2980
 2981#endif /* CONFIG_NUMA_BALANCING */
 2982
 2983static void
 2984account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 2985{
 2986	update_load_add(&cfs_rq->load, se->load.weight);
 
 
 2987#ifdef CONFIG_SMP
 2988	if (entity_is_task(se)) {
 2989		struct rq *rq = rq_of(cfs_rq);
 2990
 2991		account_numa_enqueue(rq, task_of(se));
 2992		list_add(&se->group_node, &rq->cfs_tasks);
 2993	}
 2994#endif
 2995	cfs_rq->nr_running++;
 2996}
 2997
 2998static void
 2999account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 3000{
 3001	update_load_sub(&cfs_rq->load, se->load.weight);
 
 
 3002#ifdef CONFIG_SMP
 3003	if (entity_is_task(se)) {
 3004		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
 3005		list_del_init(&se->group_node);
 3006	}
 3007#endif
 3008	cfs_rq->nr_running--;
 3009}
 3010
 3011/*
 3012 * Signed add and clamp on underflow.
 3013 *
 3014 * Explicitly do a load-store to ensure the intermediate value never hits
 3015 * memory. This allows lockless observations without ever seeing the negative
 3016 * values.
 3017 */
 3018#define add_positive(_ptr, _val) do {                           \
 3019	typeof(_ptr) ptr = (_ptr);                              \
 3020	typeof(_val) val = (_val);                              \
 3021	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
 3022								\
 3023	res = var + val;                                        \
 3024								\
 3025	if (val < 0 && res > var)                               \
 3026		res = 0;                                        \
 3027								\
 3028	WRITE_ONCE(*ptr, res);                                  \
 3029} while (0)
 3030
 3031/*
 3032 * Unsigned subtract and clamp on underflow.
 3033 *
 3034 * Explicitly do a load-store to ensure the intermediate value never hits
 3035 * memory. This allows lockless observations without ever seeing the negative
 3036 * values.
 3037 */
 3038#define sub_positive(_ptr, _val) do {				\
 3039	typeof(_ptr) ptr = (_ptr);				\
 3040	typeof(*ptr) val = (_val);				\
 3041	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
 3042	res = var - val;					\
 3043	if (res > var)						\
 3044		res = 0;					\
 3045	WRITE_ONCE(*ptr, res);					\
 3046} while (0)
 3047
 3048/*
 3049 * Remove and clamp on negative, from a local variable.
 3050 *
 3051 * A variant of sub_positive(), which does not use explicit load-store
 3052 * and is thus optimized for local variable updates.
 3053 */
 3054#define lsub_positive(_ptr, _val) do {				\
 3055	typeof(_ptr) ptr = (_ptr);				\
 3056	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
 3057} while (0)
 3058
 3059#ifdef CONFIG_SMP
 3060static inline void
 3061enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 3062{
 3063	cfs_rq->avg.load_avg += se->avg.load_avg;
 3064	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
 3065}
 3066
 3067static inline void
 3068dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 3069{
 3070	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
 3071	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
 3072}
 3073#else
 3074static inline void
 3075enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
 3076static inline void
 3077dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
 3078#endif
 3079
 3080static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
 3081			    unsigned long weight)
 3082{
 3083	if (se->on_rq) {
 3084		/* commit outstanding execution time */
 3085		if (cfs_rq->curr == se)
 3086			update_curr(cfs_rq);
 3087		account_entity_dequeue(cfs_rq, se);
 3088	}
 3089	dequeue_load_avg(cfs_rq, se);
 3090
 3091	update_load_set(&se->load, weight);
 3092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3093#ifdef CONFIG_SMP
 3094	do {
 3095		u32 divider = get_pelt_divider(&se->avg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3096
 3097		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
 3098	} while (0);
 3099#endif
 3100
 3101	enqueue_load_avg(cfs_rq, se);
 3102	if (se->on_rq)
 3103		account_entity_enqueue(cfs_rq, se);
 
 
 
 
 
 
 
 
 3104
 
 
 3105}
 3106
 3107void reweight_task(struct task_struct *p, int prio)
 
 
 
 
 
 
 
 3108{
 3109	struct sched_entity *se = &p->se;
 3110	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 3111	struct load_weight *load = &se->load;
 3112	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
 
 
 3113
 3114	reweight_entity(cfs_rq, se, weight);
 3115	load->inv_weight = sched_prio_to_wmult[prio];
 
 
 
 3116}
 3117
 3118#ifdef CONFIG_FAIR_GROUP_SCHED
 3119#ifdef CONFIG_SMP
 3120/*
 3121 * All this does is approximate the hierarchical proportion which includes that
 3122 * global sum we all love to hate.
 3123 *
 3124 * That is, the weight of a group entity, is the proportional share of the
 3125 * group weight based on the group runqueue weights. That is:
 3126 *
 3127 *                     tg->weight * grq->load.weight
 3128 *   ge->load.weight = -----------------------------               (1)
 3129 *			  \Sum grq->load.weight
 3130 *
 3131 * Now, because computing that sum is prohibitively expensive to compute (been
 3132 * there, done that) we approximate it with this average stuff. The average
 3133 * moves slower and therefore the approximation is cheaper and more stable.
 3134 *
 3135 * So instead of the above, we substitute:
 3136 *
 3137 *   grq->load.weight -> grq->avg.load_avg                         (2)
 3138 *
 3139 * which yields the following:
 3140 *
 3141 *                     tg->weight * grq->avg.load_avg
 3142 *   ge->load.weight = ------------------------------              (3)
 3143 *				tg->load_avg
 3144 *
 3145 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
 3146 *
 3147 * That is shares_avg, and it is right (given the approximation (2)).
 3148 *
 3149 * The problem with it is that because the average is slow -- it was designed
 3150 * to be exactly that of course -- this leads to transients in boundary
 3151 * conditions. In specific, the case where the group was idle and we start the
 3152 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
 3153 * yielding bad latency etc..
 3154 *
 3155 * Now, in that special case (1) reduces to:
 3156 *
 3157 *                     tg->weight * grq->load.weight
 3158 *   ge->load.weight = ----------------------------- = tg->weight   (4)
 3159 *			    grp->load.weight
 3160 *
 3161 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
 
 
 3162 *
 3163 * So what we do is modify our approximation (3) to approach (4) in the (near)
 3164 * UP case, like:
 3165 *
 3166 *   ge->load.weight =
 
 
 3167 *
 3168 *              tg->weight * grq->load.weight
 3169 *     ---------------------------------------------------         (5)
 3170 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
 3171 *
 3172 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
 3173 * we need to use grq->avg.load_avg as its lower bound, which then gives:
 
 3174 *
 3175 *
 3176 *                     tg->weight * grq->load.weight
 3177 *   ge->load.weight = -----------------------------		   (6)
 3178 *				tg_load_avg'
 3179 *
 3180 * Where:
 3181 *
 3182 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
 3183 *                  max(grq->load.weight, grq->avg.load_avg)
 3184 *
 3185 * And that is shares_weight and is icky. In the (near) UP case it approaches
 3186 * (4) while in the normal case it approaches (3). It consistently
 3187 * overestimates the ge->load.weight and therefore:
 3188 *
 3189 *   \Sum ge->load.weight >= tg->weight
 3190 *
 3191 * hence icky!
 3192 */
 3193static long calc_group_shares(struct cfs_rq *cfs_rq)
 
 
 3194{
 3195	long tg_weight, tg_shares, load, shares;
 3196	struct task_group *tg = cfs_rq->tg;
 
 
 3197
 3198	tg_shares = READ_ONCE(tg->shares);
 
 
 
 
 
 
 
 
 3199
 3200	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
 
 
 
 
 
 
 
 3201
 3202	tg_weight = atomic_long_read(&tg->load_avg);
 
 3203
 3204	/* Ensure tg_weight >= load */
 3205	tg_weight -= cfs_rq->tg_load_avg_contrib;
 3206	tg_weight += load;
 
 3207
 3208	shares = (tg_shares * load);
 3209	if (tg_weight)
 3210		shares /= tg_weight;
 3211
 3212	/*
 3213	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
 3214	 * of a group with small tg->shares value. It is a floor value which is
 3215	 * assigned as a minimum load.weight to the sched_entity representing
 3216	 * the group on a CPU.
 3217	 *
 3218	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
 3219	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
 3220	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
 3221	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
 3222	 * instead of 0.
 3223	 */
 3224	return clamp_t(long, shares, MIN_SHARES, tg_shares);
 3225}
 3226#endif /* CONFIG_SMP */
 
 3227
 3228static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
 3229
 3230/*
 3231 * Recomputes the group entity based on the current state of its group
 3232 * runqueue.
 3233 */
 3234static void update_cfs_group(struct sched_entity *se)
 3235{
 3236	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
 3237	long shares;
 3238
 3239	if (!gcfs_rq)
 3240		return;
 
 
 
 
 3241
 3242	if (throttled_hierarchy(gcfs_rq))
 3243		return;
 
 
 
 
 
 
 
 
 
 3244
 3245#ifndef CONFIG_SMP
 3246	shares = READ_ONCE(gcfs_rq->tg->shares);
 
 
 
 
 
 
 
 3247
 3248	if (likely(se->load.weight == shares))
 3249		return;
 3250#else
 3251	shares   = calc_group_shares(gcfs_rq);
 3252#endif
 3253
 3254	reweight_entity(cfs_rq_of(se), se, shares);
 3255}
 
 
 
 
 
 
 3256
 3257#else /* CONFIG_FAIR_GROUP_SCHED */
 3258static inline void update_cfs_group(struct sched_entity *se)
 3259{
 3260}
 3261#endif /* CONFIG_FAIR_GROUP_SCHED */
 3262
 3263static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
 3264{
 3265	struct rq *rq = rq_of(cfs_rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3266
 3267	if (&rq->cfs == cfs_rq) {
 3268		/*
 3269		 * There are a few boundary cases this might miss but it should
 3270		 * get called often enough that that should (hopefully) not be
 3271		 * a real problem.
 3272		 *
 3273		 * It will not get called when we go idle, because the idle
 3274		 * thread is a different class (!fair), nor will the utilization
 3275		 * number include things like RT tasks.
 3276		 *
 3277		 * As is, the util number is not freq-invariant (we'd have to
 3278		 * implement arch_scale_freq_capacity() for that).
 3279		 *
 3280		 * See cpu_util().
 3281		 */
 3282		cpufreq_update_util(rq, flags);
 3283	}
 3284}
 3285
 3286#ifdef CONFIG_SMP
 3287#ifdef CONFIG_FAIR_GROUP_SCHED
 3288/**
 3289 * update_tg_load_avg - update the tg's load avg
 3290 * @cfs_rq: the cfs_rq whose avg changed
 3291 * @force: update regardless of how small the difference
 3292 *
 3293 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 3294 * However, because tg->load_avg is a global value there are performance
 3295 * considerations.
 3296 *
 3297 * In order to avoid having to look at the other cfs_rq's, we use a
 3298 * differential update where we store the last value we propagated. This in
 3299 * turn allows skipping updates if the differential is 'small'.
 3300 *
 3301 * Updating tg's load_avg is necessary before update_cfs_share().
 
 3302 */
 3303static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
 3304{
 3305	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
 3306
 3307	/*
 3308	 * No need to update load_avg for root_task_group as it is not used.
 3309	 */
 3310	if (cfs_rq->tg == &root_task_group)
 3311		return;
 3312
 3313	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
 3314		atomic_long_add(delta, &cfs_rq->tg->load_avg);
 3315		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
 3316	}
 3317}
 3318
 3319/*
 3320 * Called within set_task_rq() right before setting a task's CPU. The
 3321 * caller only guarantees p->pi_lock is held; no other assumptions,
 3322 * including the state of rq->lock, should be made.
 3323 */
 3324void set_task_rq_fair(struct sched_entity *se,
 3325		      struct cfs_rq *prev, struct cfs_rq *next)
 3326{
 3327	u64 p_last_update_time;
 3328	u64 n_last_update_time;
 3329
 3330	if (!sched_feat(ATTACH_AGE_LOAD))
 3331		return;
 3332
 3333	/*
 3334	 * We are supposed to update the task to "current" time, then its up to
 3335	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
 3336	 * getting what current time is, so simply throw away the out-of-date
 3337	 * time. This will result in the wakee task is less decayed, but giving
 3338	 * the wakee more load sounds not bad.
 3339	 */
 3340	if (!(se->avg.last_update_time && prev))
 3341		return;
 
 3342
 3343#ifndef CONFIG_64BIT
 3344	{
 3345		u64 p_last_update_time_copy;
 3346		u64 n_last_update_time_copy;
 3347
 3348		do {
 3349			p_last_update_time_copy = prev->load_last_update_time_copy;
 3350			n_last_update_time_copy = next->load_last_update_time_copy;
 3351
 3352			smp_rmb();
 3353
 3354			p_last_update_time = prev->avg.last_update_time;
 3355			n_last_update_time = next->avg.last_update_time;
 3356
 3357		} while (p_last_update_time != p_last_update_time_copy ||
 3358			 n_last_update_time != n_last_update_time_copy);
 3359	}
 3360#else
 3361	p_last_update_time = prev->avg.last_update_time;
 3362	n_last_update_time = next->avg.last_update_time;
 3363#endif
 3364	__update_load_avg_blocked_se(p_last_update_time, se);
 3365	se->avg.last_update_time = n_last_update_time;
 
 
 3366}
 3367
 3368
 3369/*
 3370 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
 3371 * propagate its contribution. The key to this propagation is the invariant
 3372 * that for each group:
 3373 *
 3374 *   ge->avg == grq->avg						(1)
 3375 *
 3376 * _IFF_ we look at the pure running and runnable sums. Because they
 3377 * represent the very same entity, just at different points in the hierarchy.
 3378 *
 3379 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
 3380 * and simply copies the running/runnable sum over (but still wrong, because
 3381 * the group entity and group rq do not have their PELT windows aligned).
 3382 *
 3383 * However, update_tg_cfs_load() is more complex. So we have:
 3384 *
 3385 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
 3386 *
 3387 * And since, like util, the runnable part should be directly transferable,
 3388 * the following would _appear_ to be the straight forward approach:
 3389 *
 3390 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
 3391 *
 3392 * And per (1) we have:
 3393 *
 3394 *   ge->avg.runnable_avg == grq->avg.runnable_avg
 3395 *
 3396 * Which gives:
 3397 *
 3398 *                      ge->load.weight * grq->avg.load_avg
 3399 *   ge->avg.load_avg = -----------------------------------		(4)
 3400 *                               grq->load.weight
 3401 *
 3402 * Except that is wrong!
 3403 *
 3404 * Because while for entities historical weight is not important and we
 3405 * really only care about our future and therefore can consider a pure
 3406 * runnable sum, runqueues can NOT do this.
 3407 *
 3408 * We specifically want runqueues to have a load_avg that includes
 3409 * historical weights. Those represent the blocked load, the load we expect
 3410 * to (shortly) return to us. This only works by keeping the weights as
 3411 * integral part of the sum. We therefore cannot decompose as per (3).
 3412 *
 3413 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
 3414 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
 3415 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
 3416 * runnable section of these tasks overlap (or not). If they were to perfectly
 3417 * align the rq as a whole would be runnable 2/3 of the time. If however we
 3418 * always have at least 1 runnable task, the rq as a whole is always runnable.
 3419 *
 3420 * So we'll have to approximate.. :/
 3421 *
 3422 * Given the constraint:
 3423 *
 3424 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
 3425 *
 3426 * We can construct a rule that adds runnable to a rq by assuming minimal
 3427 * overlap.
 3428 *
 3429 * On removal, we'll assume each task is equally runnable; which yields:
 3430 *
 3431 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
 3432 *
 3433 * XXX: only do this for the part of runnable > running ?
 3434 *
 3435 */
 3436
 3437static inline void
 3438update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
 3439{
 
 3440	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
 3441	u32 divider;
 3442
 3443	/* Nothing to update */
 3444	if (!delta)
 3445		return;
 3446
 3447	/*
 3448	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
 3449	 * See ___update_load_avg() for details.
 3450	 */
 3451	divider = get_pelt_divider(&cfs_rq->avg);
 3452
 3453	/* Set new sched_entity's utilization */
 3454	se->avg.util_avg = gcfs_rq->avg.util_avg;
 3455	se->avg.util_sum = se->avg.util_avg * divider;
 3456
 3457	/* Update parent cfs_rq utilization */
 3458	add_positive(&cfs_rq->avg.util_avg, delta);
 3459	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
 3460}
 3461
 
 3462static inline void
 3463update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
 3464{
 3465	long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
 3466	u32 divider;
 3467
 3468	/* Nothing to update */
 3469	if (!delta)
 3470		return;
 3471
 3472	/*
 3473	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
 3474	 * See ___update_load_avg() for details.
 3475	 */
 3476	divider = get_pelt_divider(&cfs_rq->avg);
 
 3477
 3478	/* Set new sched_entity's runnable */
 3479	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
 3480	se->avg.runnable_sum = se->avg.runnable_avg * divider;
 3481
 3482	/* Update parent cfs_rq runnable */
 3483	add_positive(&cfs_rq->avg.runnable_avg, delta);
 3484	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
 3485}
 3486
 3487static inline void
 3488update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
 3489{
 3490	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
 3491	unsigned long load_avg;
 3492	u64 load_sum = 0;
 3493	s64 delta_sum;
 3494	u32 divider;
 3495
 3496	if (!runnable_sum)
 3497		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3498
 3499	gcfs_rq->prop_runnable_sum = 0;
 3500
 3501	/*
 3502	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
 3503	 * See ___update_load_avg() for details.
 3504	 */
 3505	divider = get_pelt_divider(&cfs_rq->avg);
 3506
 3507	if (runnable_sum >= 0) {
 3508		/*
 3509		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
 3510		 * the CPU is saturated running == runnable.
 3511		 */
 3512		runnable_sum += se->avg.load_sum;
 3513		runnable_sum = min_t(long, runnable_sum, divider);
 3514	} else {
 3515		/*
 3516		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
 3517		 * assuming all tasks are equally runnable.
 3518		 */
 3519		if (scale_load_down(gcfs_rq->load.weight)) {
 3520			load_sum = div_s64(gcfs_rq->avg.load_sum,
 3521				scale_load_down(gcfs_rq->load.weight));
 3522		}
 3523
 3524		/* But make sure to not inflate se's runnable */
 3525		runnable_sum = min(se->avg.load_sum, load_sum);
 3526	}
 3527
 3528	/*
 3529	 * runnable_sum can't be lower than running_sum
 3530	 * Rescale running sum to be in the same range as runnable sum
 3531	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
 3532	 * runnable_sum is in [0 : LOAD_AVG_MAX]
 3533	 */
 3534	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
 3535	runnable_sum = max(runnable_sum, running_sum);
 
 
 
 
 3536
 3537	load_sum = (s64)se_weight(se) * runnable_sum;
 3538	load_avg = div_s64(load_sum, divider);
 
 
 3539
 3540	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
 3541	delta_avg = load_avg - se->avg.load_avg;
 
 3542
 3543	se->avg.load_sum = runnable_sum;
 3544	se->avg.load_avg = load_avg;
 3545	add_positive(&cfs_rq->avg.load_avg, delta_avg);
 3546	add_positive(&cfs_rq->avg.load_sum, delta_sum);
 3547}
 3548
 3549static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
 3550{
 3551	cfs_rq->propagate = 1;
 3552	cfs_rq->prop_runnable_sum += runnable_sum;
 3553}
 3554
 3555/* Update task and its cfs_rq load average */
 3556static inline int propagate_entity_load_avg(struct sched_entity *se)
 3557{
 3558	struct cfs_rq *cfs_rq, *gcfs_rq;
 3559
 3560	if (entity_is_task(se))
 3561		return 0;
 3562
 3563	gcfs_rq = group_cfs_rq(se);
 3564	if (!gcfs_rq->propagate)
 3565		return 0;
 3566
 3567	gcfs_rq->propagate = 0;
 3568
 3569	cfs_rq = cfs_rq_of(se);
 3570
 3571	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
 3572
 3573	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
 3574	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
 3575	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
 3576
 3577	trace_pelt_cfs_tp(cfs_rq);
 3578	trace_pelt_se_tp(se);
 3579
 3580	return 1;
 3581}
 3582
 3583/*
 3584 * Check if we need to update the load and the utilization of a blocked
 3585 * group_entity:
 3586 */
 3587static inline bool skip_blocked_update(struct sched_entity *se)
 3588{
 3589	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
 3590
 3591	/*
 3592	 * If sched_entity still have not zero load or utilization, we have to
 3593	 * decay it:
 3594	 */
 3595	if (se->avg.load_avg || se->avg.util_avg)
 3596		return false;
 3597
 3598	/*
 3599	 * If there is a pending propagation, we have to update the load and
 3600	 * the utilization of the sched_entity:
 3601	 */
 3602	if (gcfs_rq->propagate)
 3603		return false;
 3604
 3605	/*
 3606	 * Otherwise, the load and the utilization of the sched_entity is
 3607	 * already zero and there is no pending propagation, so it will be a
 3608	 * waste of time to try to decay it:
 3609	 */
 3610	return true;
 3611}
 3612
 3613#else /* CONFIG_FAIR_GROUP_SCHED */
 3614
 3615static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
 3616
 3617static inline int propagate_entity_load_avg(struct sched_entity *se)
 3618{
 3619	return 0;
 3620}
 3621
 3622static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
 3623
 3624#endif /* CONFIG_FAIR_GROUP_SCHED */
 3625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3626/**
 3627 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 3628 * @now: current time, as per cfs_rq_clock_pelt()
 3629 * @cfs_rq: cfs_rq to update
 
 3630 *
 3631 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 3632 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 3633 * post_init_entity_util_avg().
 3634 *
 3635 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 3636 *
 3637 * Returns true if the load decayed or we removed load.
 3638 *
 3639 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 3640 * call update_tg_load_avg() when this function returns true.
 3641 */
 3642static inline int
 3643update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
 3644{
 3645	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
 3646	struct sched_avg *sa = &cfs_rq->avg;
 3647	int decayed = 0;
 3648
 3649	if (cfs_rq->removed.nr) {
 3650		unsigned long r;
 3651		u32 divider = get_pelt_divider(&cfs_rq->avg);
 3652
 3653		raw_spin_lock(&cfs_rq->removed.lock);
 3654		swap(cfs_rq->removed.util_avg, removed_util);
 3655		swap(cfs_rq->removed.load_avg, removed_load);
 3656		swap(cfs_rq->removed.runnable_avg, removed_runnable);
 3657		cfs_rq->removed.nr = 0;
 3658		raw_spin_unlock(&cfs_rq->removed.lock);
 3659
 3660		r = removed_load;
 
 3661		sub_positive(&sa->load_avg, r);
 3662		sub_positive(&sa->load_sum, r * divider);
 
 
 
 3663
 3664		r = removed_util;
 
 3665		sub_positive(&sa->util_avg, r);
 3666		sub_positive(&sa->util_sum, r * divider);
 3667
 3668		r = removed_runnable;
 3669		sub_positive(&sa->runnable_avg, r);
 3670		sub_positive(&sa->runnable_sum, r * divider);
 3671
 3672		/*
 3673		 * removed_runnable is the unweighted version of removed_load so we
 3674		 * can use it to estimate removed_load_sum.
 3675		 */
 3676		add_tg_cfs_propagate(cfs_rq,
 3677			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
 3678
 3679		decayed = 1;
 3680	}
 3681
 3682	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
 
 3683
 3684#ifndef CONFIG_64BIT
 3685	smp_wmb();
 3686	cfs_rq->load_last_update_time_copy = sa->last_update_time;
 3687#endif
 3688
 3689	return decayed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3690}
 3691
 3692/**
 3693 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 3694 * @cfs_rq: cfs_rq to attach to
 3695 * @se: sched_entity to attach
 3696 *
 3697 * Must call update_cfs_rq_load_avg() before this, since we rely on
 3698 * cfs_rq->avg.last_update_time being current.
 3699 */
 3700static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 3701{
 3702	/*
 3703	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
 3704	 * See ___update_load_avg() for details.
 3705	 */
 3706	u32 divider = get_pelt_divider(&cfs_rq->avg);
 3707
 3708	/*
 3709	 * When we attach the @se to the @cfs_rq, we must align the decay
 3710	 * window because without that, really weird and wonderful things can
 3711	 * happen.
 3712	 *
 3713	 * XXX illustrate
 3714	 */
 3715	se->avg.last_update_time = cfs_rq->avg.last_update_time;
 3716	se->avg.period_contrib = cfs_rq->avg.period_contrib;
 3717
 3718	/*
 3719	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
 3720	 * period_contrib. This isn't strictly correct, but since we're
 3721	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
 3722	 * _sum a little.
 3723	 */
 3724	se->avg.util_sum = se->avg.util_avg * divider;
 3725
 3726	se->avg.runnable_sum = se->avg.runnable_avg * divider;
 3727
 3728	se->avg.load_sum = divider;
 3729	if (se_weight(se)) {
 3730		se->avg.load_sum =
 3731			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
 3732	}
 3733
 3734	enqueue_load_avg(cfs_rq, se);
 3735	cfs_rq->avg.util_avg += se->avg.util_avg;
 3736	cfs_rq->avg.util_sum += se->avg.util_sum;
 3737	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
 3738	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
 3739
 3740	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
 3741
 3742	cfs_rq_util_change(cfs_rq, 0);
 3743
 3744	trace_pelt_cfs_tp(cfs_rq);
 3745}
 3746
 3747/**
 3748 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 3749 * @cfs_rq: cfs_rq to detach from
 3750 * @se: sched_entity to detach
 3751 *
 3752 * Must call update_cfs_rq_load_avg() before this, since we rely on
 3753 * cfs_rq->avg.last_update_time being current.
 3754 */
 3755static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
 3756{
 3757	dequeue_load_avg(cfs_rq, se);
 
 
 3758	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
 3759	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
 3760	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
 3761	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
 3762
 3763	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
 3764
 3765	cfs_rq_util_change(cfs_rq, 0);
 3766
 3767	trace_pelt_cfs_tp(cfs_rq);
 3768}
 3769
 3770/*
 3771 * Optional action to be done while updating the load average
 3772 */
 3773#define UPDATE_TG	0x1
 3774#define SKIP_AGE_LOAD	0x2
 3775#define DO_ATTACH	0x4
 3776
 3777/* Update task and its cfs_rq load average */
 3778static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 3779{
 3780	u64 now = cfs_rq_clock_pelt(cfs_rq);
 3781	int decayed;
 3782
 3783	/*
 3784	 * Track task load average for carrying it to new CPU after migrated, and
 3785	 * track group sched_entity load average for task_h_load calc in migration
 3786	 */
 3787	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
 3788		__update_load_avg_se(now, cfs_rq, se);
 3789
 3790	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
 3791	decayed |= propagate_entity_load_avg(se);
 3792
 3793	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
 3794
 3795		/*
 3796		 * DO_ATTACH means we're here from enqueue_entity().
 3797		 * !last_update_time means we've passed through
 3798		 * migrate_task_rq_fair() indicating we migrated.
 3799		 *
 3800		 * IOW we're enqueueing a task on a new CPU.
 3801		 */
 3802		attach_entity_load_avg(cfs_rq, se);
 3803		update_tg_load_avg(cfs_rq, 0);
 
 
 3804
 3805	} else if (decayed) {
 3806		cfs_rq_util_change(cfs_rq, 0);
 3807
 3808		if (flags & UPDATE_TG)
 3809			update_tg_load_avg(cfs_rq, 0);
 3810	}
 
 
 3811}
 3812
 3813#ifndef CONFIG_64BIT
 3814static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
 3815{
 3816	u64 last_update_time_copy;
 3817	u64 last_update_time;
 3818
 3819	do {
 3820		last_update_time_copy = cfs_rq->load_last_update_time_copy;
 3821		smp_rmb();
 3822		last_update_time = cfs_rq->avg.last_update_time;
 3823	} while (last_update_time != last_update_time_copy);
 3824
 3825	return last_update_time;
 3826}
 3827#else
 3828static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
 3829{
 3830	return cfs_rq->avg.last_update_time;
 3831}
 3832#endif
 3833
 3834/*
 3835 * Synchronize entity load avg of dequeued entity without locking
 3836 * the previous rq.
 3837 */
 3838static void sync_entity_load_avg(struct sched_entity *se)
 3839{
 3840	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 3841	u64 last_update_time;
 3842
 3843	last_update_time = cfs_rq_last_update_time(cfs_rq);
 3844	__update_load_avg_blocked_se(last_update_time, se);
 3845}
 3846
 3847/*
 3848 * Task first catches up with cfs_rq, and then subtract
 3849 * itself from the cfs_rq (task must be off the queue now).
 3850 */
 3851static void remove_entity_load_avg(struct sched_entity *se)
 3852{
 3853	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 3854	unsigned long flags;
 3855
 3856	/*
 3857	 * tasks cannot exit without having gone through wake_up_new_task() ->
 3858	 * post_init_entity_util_avg() which will have added things to the
 3859	 * cfs_rq, so we can remove unconditionally.
 
 
 
 
 3860	 */
 3861
 3862	sync_entity_load_avg(se);
 3863
 3864	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
 3865	++cfs_rq->removed.nr;
 3866	cfs_rq->removed.util_avg	+= se->avg.util_avg;
 3867	cfs_rq->removed.load_avg	+= se->avg.load_avg;
 3868	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
 3869	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
 3870}
 3871
 3872static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
 3873{
 3874	return cfs_rq->avg.runnable_avg;
 3875}
 3876
 3877static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
 3878{
 3879	return cfs_rq->avg.load_avg;
 3880}
 3881
 3882static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
 3883
 3884static inline unsigned long task_util(struct task_struct *p)
 3885{
 3886	return READ_ONCE(p->se.avg.util_avg);
 3887}
 3888
 3889static inline unsigned long _task_util_est(struct task_struct *p)
 
 3890{
 3891	struct util_est ue = READ_ONCE(p->se.avg.util_est);
 3892
 3893	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
 3894}
 3895
 3896static inline unsigned long task_util_est(struct task_struct *p)
 3897{
 3898	return max(task_util(p), _task_util_est(p));
 3899}
 3900
 3901#ifdef CONFIG_UCLAMP_TASK
 3902static inline unsigned long uclamp_task_util(struct task_struct *p)
 3903{
 3904	return clamp(task_util_est(p),
 3905		     uclamp_eff_value(p, UCLAMP_MIN),
 3906		     uclamp_eff_value(p, UCLAMP_MAX));
 3907}
 3908#else
 3909static inline unsigned long uclamp_task_util(struct task_struct *p)
 3910{
 3911	return task_util_est(p);
 3912}
 3913#endif
 3914
 3915static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
 3916				    struct task_struct *p)
 3917{
 3918	unsigned int enqueued;
 3919
 3920	if (!sched_feat(UTIL_EST))
 3921		return;
 3922
 3923	/* Update root cfs_rq's estimated utilization */
 3924	enqueued  = cfs_rq->avg.util_est.enqueued;
 3925	enqueued += _task_util_est(p);
 3926	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
 3927
 3928	trace_sched_util_est_cfs_tp(cfs_rq);
 3929}
 3930
 3931/*
 3932 * Check if a (signed) value is within a specified (unsigned) margin,
 3933 * based on the observation that:
 3934 *
 3935 *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
 3936 *
 3937 * NOTE: this only works when value + maring < INT_MAX.
 3938 */
 3939static inline bool within_margin(int value, int margin)
 3940{
 3941	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
 3942}
 3943
 3944static void
 3945util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
 3946{
 3947	long last_ewma_diff;
 3948	struct util_est ue;
 3949	int cpu;
 3950
 3951	if (!sched_feat(UTIL_EST))
 3952		return;
 3953
 3954	/* Update root cfs_rq's estimated utilization */
 3955	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
 3956	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
 3957	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
 3958
 3959	trace_sched_util_est_cfs_tp(cfs_rq);
 3960
 3961	/*
 3962	 * Skip update of task's estimated utilization when the task has not
 3963	 * yet completed an activation, e.g. being migrated.
 3964	 */
 3965	if (!task_sleep)
 3966		return;
 3967
 3968	/*
 3969	 * If the PELT values haven't changed since enqueue time,
 3970	 * skip the util_est update.
 3971	 */
 3972	ue = p->se.avg.util_est;
 3973	if (ue.enqueued & UTIL_AVG_UNCHANGED)
 3974		return;
 3975
 3976	/*
 3977	 * Reset EWMA on utilization increases, the moving average is used only
 3978	 * to smooth utilization decreases.
 3979	 */
 3980	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
 3981	if (sched_feat(UTIL_EST_FASTUP)) {
 3982		if (ue.ewma < ue.enqueued) {
 3983			ue.ewma = ue.enqueued;
 3984			goto done;
 3985		}
 3986	}
 3987
 3988	/*
 3989	 * Skip update of task's estimated utilization when its EWMA is
 3990	 * already ~1% close to its last activation value.
 3991	 */
 3992	last_ewma_diff = ue.enqueued - ue.ewma;
 3993	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
 3994		return;
 3995
 3996	/*
 3997	 * To avoid overestimation of actual task utilization, skip updates if
 3998	 * we cannot grant there is idle time in this CPU.
 3999	 */
 4000	cpu = cpu_of(rq_of(cfs_rq));
 4001	if (task_util(p) > capacity_orig_of(cpu))
 4002		return;
 4003
 4004	/*
 4005	 * Update Task's estimated utilization
 4006	 *
 4007	 * When *p completes an activation we can consolidate another sample
 4008	 * of the task size. This is done by storing the current PELT value
 4009	 * as ue.enqueued and by using this value to update the Exponential
 4010	 * Weighted Moving Average (EWMA):
 4011	 *
 4012	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
 4013	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
 4014	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
 4015	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
 4016	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
 4017	 *
 4018	 * Where 'w' is the weight of new samples, which is configured to be
 4019	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
 4020	 */
 4021	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
 4022	ue.ewma  += last_ewma_diff;
 4023	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
 4024done:
 4025	WRITE_ONCE(p->se.avg.util_est, ue);
 4026
 4027	trace_sched_util_est_se_tp(&p->se);
 4028}
 4029
 4030static inline int task_fits_capacity(struct task_struct *p, long capacity)
 4031{
 4032	return fits_capacity(uclamp_task_util(p), capacity);
 4033}
 4034
 4035static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
 4036{
 4037	if (!static_branch_unlikely(&sched_asym_cpucapacity))
 4038		return;
 4039
 4040	if (!p) {
 4041		rq->misfit_task_load = 0;
 4042		return;
 4043	}
 4044
 4045	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
 4046		rq->misfit_task_load = 0;
 4047		return;
 4048	}
 4049
 4050	/*
 4051	 * Make sure that misfit_task_load will not be null even if
 4052	 * task_h_load() returns 0.
 4053	 */
 4054	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
 4055}
 4056
 4057#else /* CONFIG_SMP */
 4058
 4059#define UPDATE_TG	0x0
 4060#define SKIP_AGE_LOAD	0x0
 4061#define DO_ATTACH	0x0
 4062
 4063static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
 4064{
 4065	cfs_rq_util_change(cfs_rq, 0);
 4066}
 4067
 
 
 
 
 4068static inline void remove_entity_load_avg(struct sched_entity *se) {}
 4069
 4070static inline void
 4071attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
 4072static inline void
 4073detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
 4074
 4075static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
 4076{
 4077	return 0;
 4078}
 4079
 4080static inline void
 4081util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
 4082
 4083static inline void
 4084util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
 4085		 bool task_sleep) {}
 4086static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
 4087
 4088#endif /* CONFIG_SMP */
 4089
 4090static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
 4091{
 4092#ifdef CONFIG_SCHED_DEBUG
 4093	s64 d = se->vruntime - cfs_rq->min_vruntime;
 4094
 4095	if (d < 0)
 4096		d = -d;
 4097
 4098	if (d > 3*sysctl_sched_latency)
 4099		schedstat_inc(cfs_rq->nr_spread_over);
 4100#endif
 4101}
 4102
 4103static void
 4104place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
 4105{
 4106	u64 vruntime = cfs_rq->min_vruntime;
 4107
 4108	/*
 4109	 * The 'current' period is already promised to the current tasks,
 4110	 * however the extra weight of the new task will slow them down a
 4111	 * little, place the new task so that it fits in the slot that
 4112	 * stays open at the end.
 4113	 */
 4114	if (initial && sched_feat(START_DEBIT))
 4115		vruntime += sched_vslice(cfs_rq, se);
 4116
 4117	/* sleeps up to a single latency don't count. */
 4118	if (!initial) {
 4119		unsigned long thresh = sysctl_sched_latency;
 4120
 4121		/*
 4122		 * Halve their sleep time's effect, to allow
 4123		 * for a gentler effect of sleepers:
 4124		 */
 4125		if (sched_feat(GENTLE_FAIR_SLEEPERS))
 4126			thresh >>= 1;
 4127
 4128		vruntime -= thresh;
 4129	}
 4130
 4131	/* ensure we never gain time by being placed backwards. */
 4132	se->vruntime = max_vruntime(se->vruntime, vruntime);
 4133}
 4134
 4135static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
 4136
 4137static inline void check_schedstat_required(void)
 4138{
 4139#ifdef CONFIG_SCHEDSTATS
 4140	if (schedstat_enabled())
 4141		return;
 4142
 4143	/* Force schedstat enabled if a dependent tracepoint is active */
 4144	if (trace_sched_stat_wait_enabled()    ||
 4145			trace_sched_stat_sleep_enabled()   ||
 4146			trace_sched_stat_iowait_enabled()  ||
 4147			trace_sched_stat_blocked_enabled() ||
 4148			trace_sched_stat_runtime_enabled())  {
 4149		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
 4150			     "stat_blocked and stat_runtime require the "
 4151			     "kernel parameter schedstats=enable or "
 4152			     "kernel.sched_schedstats=1\n");
 4153	}
 4154#endif
 4155}
 4156
 4157static inline bool cfs_bandwidth_used(void);
 4158
 4159/*
 4160 * MIGRATION
 4161 *
 4162 *	dequeue
 4163 *	  update_curr()
 4164 *	    update_min_vruntime()
 4165 *	  vruntime -= min_vruntime
 4166 *
 4167 *	enqueue
 4168 *	  update_curr()
 4169 *	    update_min_vruntime()
 4170 *	  vruntime += min_vruntime
 4171 *
 4172 * this way the vruntime transition between RQs is done when both
 4173 * min_vruntime are up-to-date.
 4174 *
 4175 * WAKEUP (remote)
 4176 *
 4177 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
 4178 *	  vruntime -= min_vruntime
 4179 *
 4180 *	enqueue
 4181 *	  update_curr()
 4182 *	    update_min_vruntime()
 4183 *	  vruntime += min_vruntime
 4184 *
 4185 * this way we don't have the most up-to-date min_vruntime on the originating
 4186 * CPU and an up-to-date min_vruntime on the destination CPU.
 4187 */
 4188
 4189static void
 4190enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 4191{
 4192	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
 4193	bool curr = cfs_rq->curr == se;
 4194
 4195	/*
 4196	 * If we're the current task, we must renormalise before calling
 4197	 * update_curr().
 4198	 */
 4199	if (renorm && curr)
 4200		se->vruntime += cfs_rq->min_vruntime;
 4201
 4202	update_curr(cfs_rq);
 4203
 4204	/*
 4205	 * Otherwise, renormalise after, such that we're placed at the current
 4206	 * moment in time, instead of some random moment in the past. Being
 4207	 * placed in the past could significantly boost this task to the
 4208	 * fairness detriment of existing tasks.
 4209	 */
 4210	if (renorm && !curr)
 4211		se->vruntime += cfs_rq->min_vruntime;
 4212
 4213	/*
 4214	 * When enqueuing a sched_entity, we must:
 4215	 *   - Update loads to have both entity and cfs_rq synced with now.
 4216	 *   - Add its load to cfs_rq->runnable_avg
 4217	 *   - For group_entity, update its weight to reflect the new share of
 4218	 *     its group cfs_rq
 4219	 *   - Add its new weight to cfs_rq->load.weight
 4220	 */
 4221	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
 4222	se_update_runnable(se);
 4223	update_cfs_group(se);
 4224	account_entity_enqueue(cfs_rq, se);
 
 4225
 4226	if (flags & ENQUEUE_WAKEUP)
 4227		place_entity(cfs_rq, se, 0);
 4228
 4229	check_schedstat_required();
 4230	update_stats_enqueue(cfs_rq, se, flags);
 4231	check_spread(cfs_rq, se);
 4232	if (!curr)
 4233		__enqueue_entity(cfs_rq, se);
 4234	se->on_rq = 1;
 4235
 4236	/*
 4237	 * When bandwidth control is enabled, cfs might have been removed
 4238	 * because of a parent been throttled but cfs->nr_running > 1. Try to
 4239	 * add it unconditionnally.
 4240	 */
 4241	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
 4242		list_add_leaf_cfs_rq(cfs_rq);
 4243
 4244	if (cfs_rq->nr_running == 1)
 4245		check_enqueue_throttle(cfs_rq);
 
 4246}
 4247
 4248static void __clear_buddies_last(struct sched_entity *se)
 4249{
 4250	for_each_sched_entity(se) {
 4251		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 4252		if (cfs_rq->last != se)
 4253			break;
 4254
 4255		cfs_rq->last = NULL;
 4256	}
 4257}
 4258
 4259static void __clear_buddies_next(struct sched_entity *se)
 4260{
 4261	for_each_sched_entity(se) {
 4262		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 4263		if (cfs_rq->next != se)
 4264			break;
 4265
 4266		cfs_rq->next = NULL;
 4267	}
 4268}
 4269
 4270static void __clear_buddies_skip(struct sched_entity *se)
 4271{
 4272	for_each_sched_entity(se) {
 4273		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 4274		if (cfs_rq->skip != se)
 4275			break;
 4276
 4277		cfs_rq->skip = NULL;
 4278	}
 4279}
 4280
 4281static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
 4282{
 4283	if (cfs_rq->last == se)
 4284		__clear_buddies_last(se);
 4285
 4286	if (cfs_rq->next == se)
 4287		__clear_buddies_next(se);
 4288
 4289	if (cfs_rq->skip == se)
 4290		__clear_buddies_skip(se);
 4291}
 4292
 4293static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
 4294
 4295static void
 4296dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 4297{
 4298	/*
 4299	 * Update run-time statistics of the 'current'.
 4300	 */
 4301	update_curr(cfs_rq);
 4302
 4303	/*
 4304	 * When dequeuing a sched_entity, we must:
 4305	 *   - Update loads to have both entity and cfs_rq synced with now.
 4306	 *   - Subtract its load from the cfs_rq->runnable_avg.
 4307	 *   - Subtract its previous weight from cfs_rq->load.weight.
 4308	 *   - For group entity, update its weight to reflect the new share
 4309	 *     of its group cfs_rq.
 4310	 */
 4311	update_load_avg(cfs_rq, se, UPDATE_TG);
 4312	se_update_runnable(se);
 4313
 4314	update_stats_dequeue(cfs_rq, se, flags);
 4315
 4316	clear_buddies(cfs_rq, se);
 4317
 4318	if (se != cfs_rq->curr)
 4319		__dequeue_entity(cfs_rq, se);
 4320	se->on_rq = 0;
 4321	account_entity_dequeue(cfs_rq, se);
 4322
 4323	/*
 4324	 * Normalize after update_curr(); which will also have moved
 4325	 * min_vruntime if @se is the one holding it back. But before doing
 4326	 * update_min_vruntime() again, which will discount @se's position and
 4327	 * can move min_vruntime forward still more.
 4328	 */
 4329	if (!(flags & DEQUEUE_SLEEP))
 4330		se->vruntime -= cfs_rq->min_vruntime;
 4331
 4332	/* return excess runtime on last dequeue */
 4333	return_cfs_rq_runtime(cfs_rq);
 4334
 4335	update_cfs_group(se);
 4336
 4337	/*
 4338	 * Now advance min_vruntime if @se was the entity holding it back,
 4339	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
 4340	 * put back on, and if we advance min_vruntime, we'll be placed back
 4341	 * further than we started -- ie. we'll be penalized.
 4342	 */
 4343	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
 4344		update_min_vruntime(cfs_rq);
 4345}
 4346
 4347/*
 4348 * Preempt the current task with a newly woken task if needed:
 4349 */
 4350static void
 4351check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
 4352{
 4353	unsigned long ideal_runtime, delta_exec;
 4354	struct sched_entity *se;
 4355	s64 delta;
 4356
 4357	ideal_runtime = sched_slice(cfs_rq, curr);
 4358	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
 4359	if (delta_exec > ideal_runtime) {
 4360		resched_curr(rq_of(cfs_rq));
 4361		/*
 4362		 * The current task ran long enough, ensure it doesn't get
 4363		 * re-elected due to buddy favours.
 4364		 */
 4365		clear_buddies(cfs_rq, curr);
 4366		return;
 4367	}
 4368
 4369	/*
 4370	 * Ensure that a task that missed wakeup preemption by a
 4371	 * narrow margin doesn't have to wait for a full slice.
 4372	 * This also mitigates buddy induced latencies under load.
 4373	 */
 4374	if (delta_exec < sysctl_sched_min_granularity)
 4375		return;
 4376
 4377	se = __pick_first_entity(cfs_rq);
 4378	delta = curr->vruntime - se->vruntime;
 4379
 4380	if (delta < 0)
 4381		return;
 4382
 4383	if (delta > ideal_runtime)
 4384		resched_curr(rq_of(cfs_rq));
 4385}
 4386
 4387static void
 4388set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 4389{
 4390	/* 'current' is not kept within the tree. */
 4391	if (se->on_rq) {
 4392		/*
 4393		 * Any task has to be enqueued before it get to execute on
 4394		 * a CPU. So account for the time it spent waiting on the
 4395		 * runqueue.
 4396		 */
 4397		update_stats_wait_end(cfs_rq, se);
 4398		__dequeue_entity(cfs_rq, se);
 4399		update_load_avg(cfs_rq, se, UPDATE_TG);
 4400	}
 4401
 4402	update_stats_curr_start(cfs_rq, se);
 4403	cfs_rq->curr = se;
 4404
 4405	/*
 4406	 * Track our maximum slice length, if the CPU's load is at
 4407	 * least twice that of our own weight (i.e. dont track it
 4408	 * when there are only lesser-weight tasks around):
 4409	 */
 4410	if (schedstat_enabled() &&
 4411	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
 4412		schedstat_set(se->statistics.slice_max,
 4413			max((u64)schedstat_val(se->statistics.slice_max),
 4414			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
 4415	}
 4416
 4417	se->prev_sum_exec_runtime = se->sum_exec_runtime;
 4418}
 4419
 4420static int
 4421wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
 4422
 4423/*
 4424 * Pick the next process, keeping these things in mind, in this order:
 4425 * 1) keep things fair between processes/task groups
 4426 * 2) pick the "next" process, since someone really wants that to run
 4427 * 3) pick the "last" process, for cache locality
 4428 * 4) do not run the "skip" process, if something else is available
 4429 */
 4430static struct sched_entity *
 4431pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
 4432{
 4433	struct sched_entity *left = __pick_first_entity(cfs_rq);
 4434	struct sched_entity *se;
 4435
 4436	/*
 4437	 * If curr is set we have to see if its left of the leftmost entity
 4438	 * still in the tree, provided there was anything in the tree at all.
 4439	 */
 4440	if (!left || (curr && entity_before(curr, left)))
 4441		left = curr;
 4442
 4443	se = left; /* ideally we run the leftmost entity */
 4444
 4445	/*
 4446	 * Avoid running the skip buddy, if running something else can
 4447	 * be done without getting too unfair.
 4448	 */
 4449	if (cfs_rq->skip == se) {
 4450		struct sched_entity *second;
 4451
 4452		if (se == curr) {
 4453			second = __pick_first_entity(cfs_rq);
 4454		} else {
 4455			second = __pick_next_entity(se);
 4456			if (!second || (curr && entity_before(curr, second)))
 4457				second = curr;
 4458		}
 4459
 4460		if (second && wakeup_preempt_entity(second, left) < 1)
 4461			se = second;
 4462	}
 4463
 4464	/*
 4465	 * Prefer last buddy, try to return the CPU to a preempted task.
 4466	 */
 4467	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
 4468		se = cfs_rq->last;
 4469
 4470	/*
 4471	 * Someone really wants this to run. If it's not unfair, run it.
 4472	 */
 4473	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
 4474		se = cfs_rq->next;
 4475
 4476	clear_buddies(cfs_rq, se);
 4477
 4478	return se;
 4479}
 4480
 4481static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
 4482
 4483static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
 4484{
 4485	/*
 4486	 * If still on the runqueue then deactivate_task()
 4487	 * was not called and update_curr() has to be done:
 4488	 */
 4489	if (prev->on_rq)
 4490		update_curr(cfs_rq);
 4491
 4492	/* throttle cfs_rqs exceeding runtime */
 4493	check_cfs_rq_runtime(cfs_rq);
 4494
 4495	check_spread(cfs_rq, prev);
 4496
 4497	if (prev->on_rq) {
 4498		update_stats_wait_start(cfs_rq, prev);
 4499		/* Put 'current' back into the tree. */
 4500		__enqueue_entity(cfs_rq, prev);
 4501		/* in !on_rq case, update occurred at dequeue */
 4502		update_load_avg(cfs_rq, prev, 0);
 4503	}
 4504	cfs_rq->curr = NULL;
 4505}
 4506
 4507static void
 4508entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
 4509{
 4510	/*
 4511	 * Update run-time statistics of the 'current'.
 4512	 */
 4513	update_curr(cfs_rq);
 4514
 4515	/*
 4516	 * Ensure that runnable average is periodically updated.
 4517	 */
 4518	update_load_avg(cfs_rq, curr, UPDATE_TG);
 4519	update_cfs_group(curr);
 4520
 4521#ifdef CONFIG_SCHED_HRTICK
 4522	/*
 4523	 * queued ticks are scheduled to match the slice, so don't bother
 4524	 * validating it and just reschedule.
 4525	 */
 4526	if (queued) {
 4527		resched_curr(rq_of(cfs_rq));
 4528		return;
 4529	}
 4530	/*
 4531	 * don't let the period tick interfere with the hrtick preemption
 4532	 */
 4533	if (!sched_feat(DOUBLE_TICK) &&
 4534			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
 4535		return;
 4536#endif
 4537
 4538	if (cfs_rq->nr_running > 1)
 4539		check_preempt_tick(cfs_rq, curr);
 4540}
 4541
 4542
 4543/**************************************************
 4544 * CFS bandwidth control machinery
 4545 */
 4546
 4547#ifdef CONFIG_CFS_BANDWIDTH
 4548
 4549#ifdef CONFIG_JUMP_LABEL
 4550static struct static_key __cfs_bandwidth_used;
 4551
 4552static inline bool cfs_bandwidth_used(void)
 4553{
 4554	return static_key_false(&__cfs_bandwidth_used);
 4555}
 4556
 4557void cfs_bandwidth_usage_inc(void)
 4558{
 4559	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
 4560}
 4561
 4562void cfs_bandwidth_usage_dec(void)
 4563{
 4564	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
 4565}
 4566#else /* CONFIG_JUMP_LABEL */
 4567static bool cfs_bandwidth_used(void)
 4568{
 4569	return true;
 4570}
 4571
 4572void cfs_bandwidth_usage_inc(void) {}
 4573void cfs_bandwidth_usage_dec(void) {}
 4574#endif /* CONFIG_JUMP_LABEL */
 4575
 4576/*
 4577 * default period for cfs group bandwidth.
 4578 * default: 0.1s, units: nanoseconds
 4579 */
 4580static inline u64 default_cfs_period(void)
 4581{
 4582	return 100000000ULL;
 4583}
 4584
 4585static inline u64 sched_cfs_bandwidth_slice(void)
 4586{
 4587	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
 4588}
 4589
 4590/*
 4591 * Replenish runtime according to assigned quota. We use sched_clock_cpu
 4592 * directly instead of rq->clock to avoid adding additional synchronization
 4593 * around rq->lock.
 4594 *
 4595 * requires cfs_b->lock
 4596 */
 4597void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
 4598{
 4599	if (cfs_b->quota != RUNTIME_INF)
 4600		cfs_b->runtime = cfs_b->quota;
 
 
 
 
 
 
 4601}
 4602
 4603static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
 4604{
 4605	return &tg->cfs_bandwidth;
 4606}
 4607
 
 
 
 
 
 
 
 
 
 4608/* returns 0 on failure to allocate runtime */
 4609static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
 4610				   struct cfs_rq *cfs_rq, u64 target_runtime)
 4611{
 4612	u64 min_amount, amount = 0;
 4613
 4614	lockdep_assert_held(&cfs_b->lock);
 4615
 4616	/* note: this is a positive sum as runtime_remaining <= 0 */
 4617	min_amount = target_runtime - cfs_rq->runtime_remaining;
 4618
 
 4619	if (cfs_b->quota == RUNTIME_INF)
 4620		amount = min_amount;
 4621	else {
 4622		start_cfs_bandwidth(cfs_b);
 4623
 4624		if (cfs_b->runtime > 0) {
 4625			amount = min(cfs_b->runtime, min_amount);
 4626			cfs_b->runtime -= amount;
 4627			cfs_b->idle = 0;
 4628		}
 4629	}
 
 
 4630
 4631	cfs_rq->runtime_remaining += amount;
 
 
 
 
 
 
 
 4632
 4633	return cfs_rq->runtime_remaining > 0;
 4634}
 4635
 4636/* returns 0 on failure to allocate runtime */
 4637static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 
 
 
 4638{
 4639	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 4640	int ret;
 4641
 4642	raw_spin_lock(&cfs_b->lock);
 4643	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
 4644	raw_spin_unlock(&cfs_b->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4645
 4646	return ret;
 
 
 
 
 
 
 4647}
 4648
 4649static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
 4650{
 4651	/* dock delta_exec before expiring quota (as it could span periods) */
 4652	cfs_rq->runtime_remaining -= delta_exec;
 
 4653
 4654	if (likely(cfs_rq->runtime_remaining > 0))
 4655		return;
 4656
 4657	if (cfs_rq->throttled)
 4658		return;
 4659	/*
 4660	 * if we're unable to extend our runtime we resched so that the active
 4661	 * hierarchy can be throttled
 4662	 */
 4663	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
 4664		resched_curr(rq_of(cfs_rq));
 4665}
 4666
 4667static __always_inline
 4668void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
 4669{
 4670	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
 4671		return;
 4672
 4673	__account_cfs_rq_runtime(cfs_rq, delta_exec);
 4674}
 4675
 4676static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
 4677{
 4678	return cfs_bandwidth_used() && cfs_rq->throttled;
 4679}
 4680
 4681/* check whether cfs_rq, or any parent, is throttled */
 4682static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
 4683{
 4684	return cfs_bandwidth_used() && cfs_rq->throttle_count;
 4685}
 4686
 4687/*
 4688 * Ensure that neither of the group entities corresponding to src_cpu or
 4689 * dest_cpu are members of a throttled hierarchy when performing group
 4690 * load-balance operations.
 4691 */
 4692static inline int throttled_lb_pair(struct task_group *tg,
 4693				    int src_cpu, int dest_cpu)
 4694{
 4695	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
 4696
 4697	src_cfs_rq = tg->cfs_rq[src_cpu];
 4698	dest_cfs_rq = tg->cfs_rq[dest_cpu];
 4699
 4700	return throttled_hierarchy(src_cfs_rq) ||
 4701	       throttled_hierarchy(dest_cfs_rq);
 4702}
 4703
 
 4704static int tg_unthrottle_up(struct task_group *tg, void *data)
 4705{
 4706	struct rq *rq = data;
 4707	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
 4708
 4709	cfs_rq->throttle_count--;
 4710	if (!cfs_rq->throttle_count) {
 
 4711		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
 4712					     cfs_rq->throttled_clock_task;
 4713
 4714		/* Add cfs_rq with already running entity in the list */
 4715		if (cfs_rq->nr_running >= 1)
 4716			list_add_leaf_cfs_rq(cfs_rq);
 4717	}
 4718
 4719	return 0;
 4720}
 4721
 4722static int tg_throttle_down(struct task_group *tg, void *data)
 4723{
 4724	struct rq *rq = data;
 4725	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
 4726
 4727	/* group is entering throttled state, stop time */
 4728	if (!cfs_rq->throttle_count) {
 4729		cfs_rq->throttled_clock_task = rq_clock_task(rq);
 4730		list_del_leaf_cfs_rq(cfs_rq);
 4731	}
 4732	cfs_rq->throttle_count++;
 4733
 4734	return 0;
 4735}
 4736
 4737static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
 4738{
 4739	struct rq *rq = rq_of(cfs_rq);
 4740	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 4741	struct sched_entity *se;
 4742	long task_delta, idle_task_delta, dequeue = 1;
 4743
 4744	raw_spin_lock(&cfs_b->lock);
 4745	/* This will start the period timer if necessary */
 4746	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
 4747		/*
 4748		 * We have raced with bandwidth becoming available, and if we
 4749		 * actually throttled the timer might not unthrottle us for an
 4750		 * entire period. We additionally needed to make sure that any
 4751		 * subsequent check_cfs_rq_runtime calls agree not to throttle
 4752		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
 4753		 * for 1ns of runtime rather than just check cfs_b.
 4754		 */
 4755		dequeue = 0;
 4756	} else {
 4757		list_add_tail_rcu(&cfs_rq->throttled_list,
 4758				  &cfs_b->throttled_cfs_rq);
 4759	}
 4760	raw_spin_unlock(&cfs_b->lock);
 4761
 4762	if (!dequeue)
 4763		return false;  /* Throttle no longer required. */
 4764
 4765	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
 4766
 4767	/* freeze hierarchy runnable averages while throttled */
 4768	rcu_read_lock();
 4769	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
 4770	rcu_read_unlock();
 4771
 4772	task_delta = cfs_rq->h_nr_running;
 4773	idle_task_delta = cfs_rq->idle_h_nr_running;
 4774	for_each_sched_entity(se) {
 4775		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
 4776		/* throttled entity or throttle-on-deactivate */
 4777		if (!se->on_rq)
 4778			break;
 4779
 4780		if (dequeue) {
 4781			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
 4782		} else {
 4783			update_load_avg(qcfs_rq, se, 0);
 4784			se_update_runnable(se);
 4785		}
 4786
 4787		qcfs_rq->h_nr_running -= task_delta;
 4788		qcfs_rq->idle_h_nr_running -= idle_task_delta;
 4789
 4790		if (qcfs_rq->load.weight)
 4791			dequeue = 0;
 4792	}
 4793
 4794	if (!se)
 4795		sub_nr_running(rq, task_delta);
 4796
 
 
 
 
 
 
 
 
 
 
 
 4797	/*
 4798	 * Note: distribution will already see us throttled via the
 4799	 * throttled-list.  rq->lock protects completion.
 4800	 */
 4801	cfs_rq->throttled = 1;
 4802	cfs_rq->throttled_clock = rq_clock(rq);
 4803	return true;
 
 4804}
 4805
 4806void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
 4807{
 4808	struct rq *rq = rq_of(cfs_rq);
 4809	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 4810	struct sched_entity *se;
 4811	long task_delta, idle_task_delta;
 
 4812
 4813	se = cfs_rq->tg->se[cpu_of(rq)];
 4814
 4815	cfs_rq->throttled = 0;
 4816
 4817	update_rq_clock(rq);
 4818
 4819	raw_spin_lock(&cfs_b->lock);
 4820	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
 4821	list_del_rcu(&cfs_rq->throttled_list);
 4822	raw_spin_unlock(&cfs_b->lock);
 4823
 4824	/* update hierarchical throttle state */
 4825	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
 4826
 4827	if (!cfs_rq->load.weight)
 4828		return;
 4829
 4830	task_delta = cfs_rq->h_nr_running;
 4831	idle_task_delta = cfs_rq->idle_h_nr_running;
 4832	for_each_sched_entity(se) {
 4833		if (se->on_rq)
 4834			break;
 4835		cfs_rq = cfs_rq_of(se);
 4836		enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
 4837
 4838		cfs_rq->h_nr_running += task_delta;
 4839		cfs_rq->idle_h_nr_running += idle_task_delta;
 4840
 4841		/* end evaluation on encountering a throttled cfs_rq */
 4842		if (cfs_rq_throttled(cfs_rq))
 4843			goto unthrottle_throttle;
 4844	}
 4845
 4846	for_each_sched_entity(se) {
 4847		cfs_rq = cfs_rq_of(se);
 4848
 4849		update_load_avg(cfs_rq, se, UPDATE_TG);
 4850		se_update_runnable(se);
 4851
 4852		cfs_rq->h_nr_running += task_delta;
 4853		cfs_rq->idle_h_nr_running += idle_task_delta;
 4854
 4855
 4856		/* end evaluation on encountering a throttled cfs_rq */
 4857		if (cfs_rq_throttled(cfs_rq))
 4858			goto unthrottle_throttle;
 4859
 4860		/*
 4861		 * One parent has been throttled and cfs_rq removed from the
 4862		 * list. Add it back to not break the leaf list.
 4863		 */
 4864		if (throttled_hierarchy(cfs_rq))
 4865			list_add_leaf_cfs_rq(cfs_rq);
 4866	}
 4867
 4868	/* At this point se is NULL and we are at root level*/
 4869	add_nr_running(rq, task_delta);
 4870
 4871unthrottle_throttle:
 4872	/*
 4873	 * The cfs_rq_throttled() breaks in the above iteration can result in
 4874	 * incomplete leaf list maintenance, resulting in triggering the
 4875	 * assertion below.
 4876	 */
 4877	for_each_sched_entity(se) {
 4878		cfs_rq = cfs_rq_of(se);
 4879
 4880		if (list_add_leaf_cfs_rq(cfs_rq))
 4881			break;
 4882	}
 4883
 4884	assert_list_leaf_cfs_rq(rq);
 
 4885
 4886	/* Determine whether we need to wake up potentially idle CPU: */
 4887	if (rq->curr == rq->idle && rq->cfs.nr_running)
 4888		resched_curr(rq);
 4889}
 4890
 4891static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
 
 4892{
 4893	struct cfs_rq *cfs_rq;
 4894	u64 runtime, remaining = 1;
 
 4895
 4896	rcu_read_lock();
 4897	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
 4898				throttled_list) {
 4899		struct rq *rq = rq_of(cfs_rq);
 4900		struct rq_flags rf;
 4901
 4902		rq_lock_irqsave(rq, &rf);
 4903		if (!cfs_rq_throttled(cfs_rq))
 4904			goto next;
 4905
 4906		/* By the above check, this should never be true */
 4907		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
 4908
 4909		raw_spin_lock(&cfs_b->lock);
 4910		runtime = -cfs_rq->runtime_remaining + 1;
 4911		if (runtime > cfs_b->runtime)
 4912			runtime = cfs_b->runtime;
 4913		cfs_b->runtime -= runtime;
 4914		remaining = cfs_b->runtime;
 4915		raw_spin_unlock(&cfs_b->lock);
 4916
 4917		cfs_rq->runtime_remaining += runtime;
 
 4918
 4919		/* we check whether we're throttled above */
 4920		if (cfs_rq->runtime_remaining > 0)
 4921			unthrottle_cfs_rq(cfs_rq);
 4922
 4923next:
 4924		rq_unlock_irqrestore(rq, &rf);
 4925
 4926		if (!remaining)
 4927			break;
 4928	}
 4929	rcu_read_unlock();
 
 
 4930}
 4931
 4932/*
 4933 * Responsible for refilling a task_group's bandwidth and unthrottling its
 4934 * cfs_rqs as appropriate. If there has been no activity within the last
 4935 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 4936 * used to track this state.
 4937 */
 4938static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
 4939{
 
 4940	int throttled;
 4941
 4942	/* no need to continue the timer with no bandwidth constraint */
 4943	if (cfs_b->quota == RUNTIME_INF)
 4944		goto out_deactivate;
 4945
 4946	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
 4947	cfs_b->nr_periods += overrun;
 4948
 4949	/*
 4950	 * idle depends on !throttled (for the case of a large deficit), and if
 4951	 * we're going inactive then everything else can be deferred
 4952	 */
 4953	if (cfs_b->idle && !throttled)
 4954		goto out_deactivate;
 4955
 4956	__refill_cfs_bandwidth_runtime(cfs_b);
 4957
 4958	if (!throttled) {
 4959		/* mark as potentially idle for the upcoming period */
 4960		cfs_b->idle = 1;
 4961		return 0;
 4962	}
 4963
 4964	/* account preceding periods in which throttling occurred */
 4965	cfs_b->nr_throttled += overrun;
 4966
 
 
 4967	/*
 4968	 * This check is repeated as we release cfs_b->lock while we unthrottle.
 
 
 
 
 4969	 */
 4970	while (throttled && cfs_b->runtime > 0) {
 4971		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
 
 4972		/* we can't nest cfs_b->lock while distributing bandwidth */
 4973		distribute_cfs_runtime(cfs_b);
 4974		raw_spin_lock_irqsave(&cfs_b->lock, flags);
 
 4975
 4976		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
 
 
 4977	}
 4978
 4979	/*
 4980	 * While we are ensured activity in the period following an
 4981	 * unthrottle, this also covers the case in which the new bandwidth is
 4982	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
 4983	 * timer to remain active while there are any throttled entities.)
 4984	 */
 4985	cfs_b->idle = 0;
 4986
 4987	return 0;
 4988
 4989out_deactivate:
 4990	return 1;
 4991}
 4992
 4993/* a cfs_rq won't donate quota below this amount */
 4994static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
 4995/* minimum remaining period time to redistribute slack quota */
 4996static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
 4997/* how long we wait to gather additional slack before distributing */
 4998static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
 4999
 5000/*
 5001 * Are we near the end of the current quota period?
 5002 *
 5003 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 5004 * hrtimer base being cleared by hrtimer_start. In the case of
 5005 * migrate_hrtimers, base is never cleared, so we are fine.
 5006 */
 5007static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
 5008{
 5009	struct hrtimer *refresh_timer = &cfs_b->period_timer;
 5010	u64 remaining;
 5011
 5012	/* if the call-back is running a quota refresh is already occurring */
 5013	if (hrtimer_callback_running(refresh_timer))
 5014		return 1;
 5015
 5016	/* is a quota refresh about to occur? */
 5017	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
 5018	if (remaining < min_expire)
 5019		return 1;
 5020
 5021	return 0;
 5022}
 5023
 5024static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
 5025{
 5026	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
 5027
 5028	/* if there's a quota refresh soon don't bother with slack */
 5029	if (runtime_refresh_within(cfs_b, min_left))
 5030		return;
 5031
 5032	/* don't push forwards an existing deferred unthrottle */
 5033	if (cfs_b->slack_started)
 5034		return;
 5035	cfs_b->slack_started = true;
 5036
 5037	hrtimer_start(&cfs_b->slack_timer,
 5038			ns_to_ktime(cfs_bandwidth_slack_period),
 5039			HRTIMER_MODE_REL);
 5040}
 5041
 5042/* we know any runtime found here is valid as update_curr() precedes return */
 5043static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 5044{
 5045	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 5046	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
 5047
 5048	if (slack_runtime <= 0)
 5049		return;
 5050
 5051	raw_spin_lock(&cfs_b->lock);
 5052	if (cfs_b->quota != RUNTIME_INF) {
 
 5053		cfs_b->runtime += slack_runtime;
 5054
 5055		/* we are under rq->lock, defer unthrottling using a timer */
 5056		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
 5057		    !list_empty(&cfs_b->throttled_cfs_rq))
 5058			start_cfs_slack_bandwidth(cfs_b);
 5059	}
 5060	raw_spin_unlock(&cfs_b->lock);
 5061
 5062	/* even if it's not valid for return we don't want to try again */
 5063	cfs_rq->runtime_remaining -= slack_runtime;
 5064}
 5065
 5066static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 5067{
 5068	if (!cfs_bandwidth_used())
 5069		return;
 5070
 5071	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
 5072		return;
 5073
 5074	__return_cfs_rq_runtime(cfs_rq);
 5075}
 5076
 5077/*
 5078 * This is done with a timer (instead of inline with bandwidth return) since
 5079 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 5080 */
 5081static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
 5082{
 5083	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
 5084	unsigned long flags;
 5085
 5086	/* confirm we're still not at a refresh boundary */
 5087	raw_spin_lock_irqsave(&cfs_b->lock, flags);
 5088	cfs_b->slack_started = false;
 5089
 5090	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
 5091		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
 5092		return;
 5093	}
 5094
 5095	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
 5096		runtime = cfs_b->runtime;
 5097
 5098	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
 
 5099
 5100	if (!runtime)
 5101		return;
 5102
 5103	distribute_cfs_runtime(cfs_b);
 5104
 5105	raw_spin_lock_irqsave(&cfs_b->lock, flags);
 5106	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
 
 
 5107}
 5108
 5109/*
 5110 * When a group wakes up we want to make sure that its quota is not already
 5111 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 5112 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 5113 */
 5114static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
 5115{
 5116	if (!cfs_bandwidth_used())
 5117		return;
 5118
 5119	/* an active group must be handled by the update_curr()->put() path */
 5120	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
 5121		return;
 5122
 5123	/* ensure the group is not already throttled */
 5124	if (cfs_rq_throttled(cfs_rq))
 5125		return;
 5126
 5127	/* update runtime allocation */
 5128	account_cfs_rq_runtime(cfs_rq, 0);
 5129	if (cfs_rq->runtime_remaining <= 0)
 5130		throttle_cfs_rq(cfs_rq);
 5131}
 5132
 5133static void sync_throttle(struct task_group *tg, int cpu)
 5134{
 5135	struct cfs_rq *pcfs_rq, *cfs_rq;
 5136
 5137	if (!cfs_bandwidth_used())
 5138		return;
 5139
 5140	if (!tg->parent)
 5141		return;
 5142
 5143	cfs_rq = tg->cfs_rq[cpu];
 5144	pcfs_rq = tg->parent->cfs_rq[cpu];
 5145
 5146	cfs_rq->throttle_count = pcfs_rq->throttle_count;
 5147	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
 5148}
 5149
 5150/* conditionally throttle active cfs_rq's from put_prev_entity() */
 5151static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 5152{
 5153	if (!cfs_bandwidth_used())
 5154		return false;
 5155
 5156	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
 5157		return false;
 5158
 5159	/*
 5160	 * it's possible for a throttled entity to be forced into a running
 5161	 * state (e.g. set_curr_task), in this case we're finished.
 5162	 */
 5163	if (cfs_rq_throttled(cfs_rq))
 5164		return true;
 5165
 5166	return throttle_cfs_rq(cfs_rq);
 
 5167}
 5168
 5169static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
 5170{
 5171	struct cfs_bandwidth *cfs_b =
 5172		container_of(timer, struct cfs_bandwidth, slack_timer);
 5173
 5174	do_sched_cfs_slack_timer(cfs_b);
 5175
 5176	return HRTIMER_NORESTART;
 5177}
 5178
 5179extern const u64 max_cfs_quota_period;
 5180
 5181static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
 5182{
 5183	struct cfs_bandwidth *cfs_b =
 5184		container_of(timer, struct cfs_bandwidth, period_timer);
 5185	unsigned long flags;
 5186	int overrun;
 5187	int idle = 0;
 5188	int count = 0;
 5189
 5190	raw_spin_lock_irqsave(&cfs_b->lock, flags);
 5191	for (;;) {
 5192		overrun = hrtimer_forward_now(timer, cfs_b->period);
 5193		if (!overrun)
 5194			break;
 5195
 5196		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
 5197
 5198		if (++count > 3) {
 5199			u64 new, old = ktime_to_ns(cfs_b->period);
 5200
 5201			/*
 5202			 * Grow period by a factor of 2 to avoid losing precision.
 5203			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
 5204			 * to fail.
 5205			 */
 5206			new = old * 2;
 5207			if (new < max_cfs_quota_period) {
 5208				cfs_b->period = ns_to_ktime(new);
 5209				cfs_b->quota *= 2;
 5210
 5211				pr_warn_ratelimited(
 5212	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
 5213					smp_processor_id(),
 5214					div_u64(new, NSEC_PER_USEC),
 5215					div_u64(cfs_b->quota, NSEC_PER_USEC));
 5216			} else {
 5217				pr_warn_ratelimited(
 5218	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
 5219					smp_processor_id(),
 5220					div_u64(old, NSEC_PER_USEC),
 5221					div_u64(cfs_b->quota, NSEC_PER_USEC));
 5222			}
 5223
 5224			/* reset count so we don't come right back in here */
 5225			count = 0;
 5226		}
 5227	}
 5228	if (idle)
 5229		cfs_b->period_active = 0;
 5230	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
 5231
 5232	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
 5233}
 5234
 5235void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
 5236{
 5237	raw_spin_lock_init(&cfs_b->lock);
 5238	cfs_b->runtime = 0;
 5239	cfs_b->quota = RUNTIME_INF;
 5240	cfs_b->period = ns_to_ktime(default_cfs_period());
 5241
 5242	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
 5243	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
 5244	cfs_b->period_timer.function = sched_cfs_period_timer;
 5245	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 5246	cfs_b->slack_timer.function = sched_cfs_slack_timer;
 5247	cfs_b->slack_started = false;
 5248}
 5249
 5250static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 5251{
 5252	cfs_rq->runtime_enabled = 0;
 5253	INIT_LIST_HEAD(&cfs_rq->throttled_list);
 5254}
 5255
 5256void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
 5257{
 5258	lockdep_assert_held(&cfs_b->lock);
 5259
 5260	if (cfs_b->period_active)
 5261		return;
 5262
 5263	cfs_b->period_active = 1;
 5264	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
 5265	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
 5266}
 5267
 5268static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
 5269{
 5270	/* init_cfs_bandwidth() was not called */
 5271	if (!cfs_b->throttled_cfs_rq.next)
 5272		return;
 5273
 5274	hrtimer_cancel(&cfs_b->period_timer);
 5275	hrtimer_cancel(&cfs_b->slack_timer);
 5276}
 5277
 5278/*
 5279 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
 5280 *
 5281 * The race is harmless, since modifying bandwidth settings of unhooked group
 5282 * bits doesn't do much.
 5283 */
 5284
 5285/* cpu online calback */
 5286static void __maybe_unused update_runtime_enabled(struct rq *rq)
 5287{
 5288	struct task_group *tg;
 5289
 5290	lockdep_assert_held(&rq->lock);
 5291
 5292	rcu_read_lock();
 5293	list_for_each_entry_rcu(tg, &task_groups, list) {
 5294		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
 5295		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
 5296
 5297		raw_spin_lock(&cfs_b->lock);
 5298		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
 5299		raw_spin_unlock(&cfs_b->lock);
 5300	}
 5301	rcu_read_unlock();
 5302}
 5303
 5304/* cpu offline callback */
 5305static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
 5306{
 5307	struct task_group *tg;
 5308
 5309	lockdep_assert_held(&rq->lock);
 5310
 5311	rcu_read_lock();
 5312	list_for_each_entry_rcu(tg, &task_groups, list) {
 5313		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
 5314
 
 5315		if (!cfs_rq->runtime_enabled)
 5316			continue;
 5317
 5318		/*
 5319		 * clock_task is not advancing so we just need to make sure
 5320		 * there's some valid quota amount
 5321		 */
 5322		cfs_rq->runtime_remaining = 1;
 5323		/*
 5324		 * Offline rq is schedulable till CPU is completely disabled
 5325		 * in take_cpu_down(), so we prevent new cfs throttling here.
 5326		 */
 5327		cfs_rq->runtime_enabled = 0;
 5328
 5329		if (cfs_rq_throttled(cfs_rq))
 5330			unthrottle_cfs_rq(cfs_rq);
 5331	}
 5332	rcu_read_unlock();
 5333}
 5334
 5335#else /* CONFIG_CFS_BANDWIDTH */
 5336
 5337static inline bool cfs_bandwidth_used(void)
 5338{
 5339	return false;
 5340}
 5341
 5342static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
 5343static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
 5344static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
 5345static inline void sync_throttle(struct task_group *tg, int cpu) {}
 5346static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
 5347
 5348static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
 5349{
 5350	return 0;
 5351}
 5352
 5353static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
 5354{
 5355	return 0;
 5356}
 5357
 5358static inline int throttled_lb_pair(struct task_group *tg,
 5359				    int src_cpu, int dest_cpu)
 5360{
 5361	return 0;
 5362}
 5363
 5364void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
 5365
 5366#ifdef CONFIG_FAIR_GROUP_SCHED
 5367static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
 5368#endif
 5369
 5370static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
 5371{
 5372	return NULL;
 5373}
 5374static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
 5375static inline void update_runtime_enabled(struct rq *rq) {}
 5376static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
 5377
 5378#endif /* CONFIG_CFS_BANDWIDTH */
 5379
 5380/**************************************************
 5381 * CFS operations on tasks:
 5382 */
 5383
 5384#ifdef CONFIG_SCHED_HRTICK
 5385static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
 5386{
 5387	struct sched_entity *se = &p->se;
 5388	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 5389
 5390	SCHED_WARN_ON(task_rq(p) != rq);
 5391
 5392	if (rq->cfs.h_nr_running > 1) {
 5393		u64 slice = sched_slice(cfs_rq, se);
 5394		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
 5395		s64 delta = slice - ran;
 5396
 5397		if (delta < 0) {
 5398			if (rq->curr == p)
 5399				resched_curr(rq);
 5400			return;
 5401		}
 5402		hrtick_start(rq, delta);
 5403	}
 5404}
 5405
 5406/*
 5407 * called from enqueue/dequeue and updates the hrtick when the
 5408 * current task is from our class and nr_running is low enough
 5409 * to matter.
 5410 */
 5411static void hrtick_update(struct rq *rq)
 5412{
 5413	struct task_struct *curr = rq->curr;
 5414
 5415	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
 5416		return;
 5417
 5418	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
 5419		hrtick_start_fair(rq, curr);
 5420}
 5421#else /* !CONFIG_SCHED_HRTICK */
 5422static inline void
 5423hrtick_start_fair(struct rq *rq, struct task_struct *p)
 5424{
 5425}
 5426
 5427static inline void hrtick_update(struct rq *rq)
 5428{
 5429}
 5430#endif
 5431
 5432#ifdef CONFIG_SMP
 5433static inline unsigned long cpu_util(int cpu);
 5434
 5435static inline bool cpu_overutilized(int cpu)
 5436{
 5437	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
 5438}
 5439
 5440static inline void update_overutilized_status(struct rq *rq)
 5441{
 5442	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
 5443		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
 5444		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
 5445	}
 5446}
 5447#else
 5448static inline void update_overutilized_status(struct rq *rq) { }
 5449#endif
 5450
 5451/* Runqueue only has SCHED_IDLE tasks enqueued */
 5452static int sched_idle_rq(struct rq *rq)
 5453{
 5454	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
 5455			rq->nr_running);
 5456}
 5457
 5458#ifdef CONFIG_SMP
 5459static int sched_idle_cpu(int cpu)
 5460{
 5461	return sched_idle_rq(cpu_rq(cpu));
 5462}
 5463#endif
 5464
 5465/*
 5466 * The enqueue_task method is called before nr_running is
 5467 * increased. Here we update the fair scheduling stats and
 5468 * then put the task into the rbtree:
 5469 */
 5470static void
 5471enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 5472{
 5473	struct cfs_rq *cfs_rq;
 5474	struct sched_entity *se = &p->se;
 5475	int idle_h_nr_running = task_has_idle_policy(p);
 5476
 5477	/*
 5478	 * The code below (indirectly) updates schedutil which looks at
 5479	 * the cfs_rq utilization to select a frequency.
 5480	 * Let's add the task's estimated utilization to the cfs_rq's
 5481	 * estimated utilization, before we update schedutil.
 5482	 */
 5483	util_est_enqueue(&rq->cfs, p);
 5484
 5485	/*
 5486	 * If in_iowait is set, the code below may not trigger any cpufreq
 5487	 * utilization updates, so do it here explicitly with the IOWAIT flag
 5488	 * passed.
 5489	 */
 5490	if (p->in_iowait)
 5491		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
 5492
 5493	for_each_sched_entity(se) {
 5494		if (se->on_rq)
 5495			break;
 5496		cfs_rq = cfs_rq_of(se);
 5497		enqueue_entity(cfs_rq, se, flags);
 5498
 
 
 
 
 
 
 
 
 5499		cfs_rq->h_nr_running++;
 5500		cfs_rq->idle_h_nr_running += idle_h_nr_running;
 5501
 5502		/* end evaluation on encountering a throttled cfs_rq */
 5503		if (cfs_rq_throttled(cfs_rq))
 5504			goto enqueue_throttle;
 5505
 5506		flags = ENQUEUE_WAKEUP;
 5507	}
 5508
 5509	for_each_sched_entity(se) {
 5510		cfs_rq = cfs_rq_of(se);
 5511
 5512		update_load_avg(cfs_rq, se, UPDATE_TG);
 5513		se_update_runnable(se);
 5514		update_cfs_group(se);
 5515
 5516		cfs_rq->h_nr_running++;
 5517		cfs_rq->idle_h_nr_running += idle_h_nr_running;
 5518
 5519		/* end evaluation on encountering a throttled cfs_rq */
 5520		if (cfs_rq_throttled(cfs_rq))
 5521			goto enqueue_throttle;
 5522
 5523               /*
 5524                * One parent has been throttled and cfs_rq removed from the
 5525                * list. Add it back to not break the leaf list.
 5526                */
 5527               if (throttled_hierarchy(cfs_rq))
 5528                       list_add_leaf_cfs_rq(cfs_rq);
 5529	}
 5530
 5531	/* At this point se is NULL and we are at root level*/
 5532	add_nr_running(rq, 1);
 5533
 5534	/*
 5535	 * Since new tasks are assigned an initial util_avg equal to
 5536	 * half of the spare capacity of their CPU, tiny tasks have the
 5537	 * ability to cross the overutilized threshold, which will
 5538	 * result in the load balancer ruining all the task placement
 5539	 * done by EAS. As a way to mitigate that effect, do not account
 5540	 * for the first enqueue operation of new tasks during the
 5541	 * overutilized flag detection.
 5542	 *
 5543	 * A better way of solving this problem would be to wait for
 5544	 * the PELT signals of tasks to converge before taking them
 5545	 * into account, but that is not straightforward to implement,
 5546	 * and the following generally works well enough in practice.
 5547	 */
 5548	if (flags & ENQUEUE_WAKEUP)
 5549		update_overutilized_status(rq);
 5550
 5551enqueue_throttle:
 5552	if (cfs_bandwidth_used()) {
 5553		/*
 5554		 * When bandwidth control is enabled; the cfs_rq_throttled()
 5555		 * breaks in the above iteration can result in incomplete
 5556		 * leaf list maintenance, resulting in triggering the assertion
 5557		 * below.
 5558		 */
 5559		for_each_sched_entity(se) {
 5560			cfs_rq = cfs_rq_of(se);
 5561
 5562			if (list_add_leaf_cfs_rq(cfs_rq))
 5563				break;
 5564		}
 5565	}
 5566
 5567	assert_list_leaf_cfs_rq(rq);
 
 5568
 5569	hrtick_update(rq);
 5570}
 5571
 5572static void set_next_buddy(struct sched_entity *se);
 5573
 5574/*
 5575 * The dequeue_task method is called before nr_running is
 5576 * decreased. We remove the task from the rbtree and
 5577 * update the fair scheduling stats:
 5578 */
 5579static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 5580{
 5581	struct cfs_rq *cfs_rq;
 5582	struct sched_entity *se = &p->se;
 5583	int task_sleep = flags & DEQUEUE_SLEEP;
 5584	int idle_h_nr_running = task_has_idle_policy(p);
 5585	bool was_sched_idle = sched_idle_rq(rq);
 5586
 5587	for_each_sched_entity(se) {
 5588		cfs_rq = cfs_rq_of(se);
 5589		dequeue_entity(cfs_rq, se, flags);
 5590
 
 
 
 
 
 
 
 
 5591		cfs_rq->h_nr_running--;
 5592		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
 5593
 5594		/* end evaluation on encountering a throttled cfs_rq */
 5595		if (cfs_rq_throttled(cfs_rq))
 5596			goto dequeue_throttle;
 5597
 5598		/* Don't dequeue parent if it has other entities besides us */
 5599		if (cfs_rq->load.weight) {
 5600			/* Avoid re-evaluating load for this entity: */
 5601			se = parent_entity(se);
 5602			/*
 5603			 * Bias pick_next to pick a task from this cfs_rq, as
 5604			 * p is sleeping when it is within its sched_slice.
 5605			 */
 5606			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
 5607				set_next_buddy(se);
 5608			break;
 5609		}
 5610		flags |= DEQUEUE_SLEEP;
 5611	}
 5612
 5613	for_each_sched_entity(se) {
 5614		cfs_rq = cfs_rq_of(se);
 5615
 5616		update_load_avg(cfs_rq, se, UPDATE_TG);
 5617		se_update_runnable(se);
 5618		update_cfs_group(se);
 5619
 5620		cfs_rq->h_nr_running--;
 5621		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
 5622
 5623		/* end evaluation on encountering a throttled cfs_rq */
 5624		if (cfs_rq_throttled(cfs_rq))
 5625			goto dequeue_throttle;
 5626
 
 
 5627	}
 5628
 5629	/* At this point se is NULL and we are at root level*/
 5630	sub_nr_running(rq, 1);
 5631
 5632	/* balance early to pull high priority tasks */
 5633	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
 5634		rq->next_balance = jiffies;
 5635
 5636dequeue_throttle:
 5637	util_est_dequeue(&rq->cfs, p, task_sleep);
 5638	hrtick_update(rq);
 5639}
 5640
 5641#ifdef CONFIG_SMP
 5642
 5643/* Working cpumask for: load_balance, load_balance_newidle. */
 5644DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
 5645DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
 5646
 5647#ifdef CONFIG_NO_HZ_COMMON
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5648
 5649static struct {
 5650	cpumask_var_t idle_cpus_mask;
 5651	atomic_t nr_cpus;
 5652	int has_blocked;		/* Idle CPUS has blocked load */
 5653	unsigned long next_balance;     /* in jiffy units */
 5654	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
 5655} nohz ____cacheline_aligned;
 5656
 
 
 
 
 
 5657#endif /* CONFIG_NO_HZ_COMMON */
 5658
 5659static unsigned long cpu_load(struct rq *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5660{
 5661	return cfs_rq_load_avg(&rq->cfs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5662}
 5663
 
 
 
 
 
 
 
 5664/*
 5665 * cpu_load_without - compute CPU load without any contributions from *p
 5666 * @cpu: the CPU which load is requested
 5667 * @p: the task which load should be discounted
 5668 *
 5669 * The load of a CPU is defined by the load of tasks currently enqueued on that
 5670 * CPU as well as tasks which are currently sleeping after an execution on that
 5671 * CPU.
 
 
 5672 *
 5673 * This method returns the load of the specified CPU by discounting the load of
 5674 * the specified task, whenever the task is currently contributing to the CPU
 5675 * load.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5676 */
 5677static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
 5678{
 5679	struct cfs_rq *cfs_rq;
 5680	unsigned int load;
 5681
 5682	/* Task has no contribution or is new */
 5683	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
 5684		return cpu_load(rq);
 
 
 
 
 5685
 5686	cfs_rq = &rq->cfs;
 5687	load = READ_ONCE(cfs_rq->avg.load_avg);
 
 
 
 
 
 
 5688
 5689	/* Discount task's util from CPU's util */
 5690	lsub_positive(&load, task_h_load(p));
 5691
 5692	return load;
 
 
 
 
 5693}
 
 
 
 
 
 5694
 5695static unsigned long cpu_runnable(struct rq *rq)
 5696{
 5697	return cfs_rq_runnable_avg(&rq->cfs);
 
 
 
 
 5698}
 5699
 5700static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
 
 
 
 5701{
 5702	struct cfs_rq *cfs_rq;
 5703	unsigned int runnable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5704
 5705	/* Task has no contribution or is new */
 5706	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
 5707		return cpu_runnable(rq);
 5708
 5709	cfs_rq = &rq->cfs;
 5710	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
 
 
 
 
 
 
 5711
 5712	/* Discount task's runnable from CPU's runnable */
 5713	lsub_positive(&runnable, p->se.avg.runnable_avg);
 5714
 5715	return runnable;
 5716}
 5717
 5718static unsigned long capacity_of(int cpu)
 5719{
 5720	return cpu_rq(cpu)->cpu_capacity;
 5721}
 5722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5723static void record_wakee(struct task_struct *p)
 5724{
 5725	/*
 5726	 * Only decay a single time; tasks that have less then 1 wakeup per
 5727	 * jiffy will not have built up many flips.
 5728	 */
 5729	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
 5730		current->wakee_flips >>= 1;
 5731		current->wakee_flip_decay_ts = jiffies;
 5732	}
 5733
 5734	if (current->last_wakee != p) {
 5735		current->last_wakee = p;
 5736		current->wakee_flips++;
 5737	}
 5738}
 5739
 5740/*
 5741 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
 5742 *
 5743 * A waker of many should wake a different task than the one last awakened
 5744 * at a frequency roughly N times higher than one of its wakees.
 5745 *
 5746 * In order to determine whether we should let the load spread vs consolidating
 5747 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 5748 * partner, and a factor of lls_size higher frequency in the other.
 5749 *
 5750 * With both conditions met, we can be relatively sure that the relationship is
 5751 * non-monogamous, with partner count exceeding socket size.
 5752 *
 5753 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 5754 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 5755 * socket size.
 5756 */
 5757static int wake_wide(struct task_struct *p)
 5758{
 5759	unsigned int master = current->wakee_flips;
 5760	unsigned int slave = p->wakee_flips;
 5761	int factor = __this_cpu_read(sd_llc_size);
 5762
 5763	if (master < slave)
 5764		swap(master, slave);
 5765	if (slave < factor || master < slave * factor)
 5766		return 0;
 5767	return 1;
 5768}
 5769
 5770/*
 5771 * The purpose of wake_affine() is to quickly determine on which CPU we can run
 5772 * soonest. For the purpose of speed we only consider the waking and previous
 5773 * CPU.
 5774 *
 5775 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
 5776 *			cache-affine and is (or	will be) idle.
 5777 *
 5778 * wake_affine_weight() - considers the weight to reflect the average
 5779 *			  scheduling latency of the CPUs. This seems to work
 5780 *			  for the overloaded case.
 5781 */
 5782static int
 5783wake_affine_idle(int this_cpu, int prev_cpu, int sync)
 5784{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5785	/*
 5786	 * If this_cpu is idle, it implies the wakeup is from interrupt
 5787	 * context. Only allow the move if cache is shared. Otherwise an
 5788	 * interrupt intensive workload could force all tasks onto one
 5789	 * node depending on the IO topology or IRQ affinity settings.
 5790	 *
 5791	 * If the prev_cpu is idle and cache affine then avoid a migration.
 5792	 * There is no guarantee that the cache hot data from an interrupt
 5793	 * is more important than cache hot data on the prev_cpu and from
 5794	 * a cpufreq perspective, it's better to have higher utilisation
 5795	 * on one CPU.
 5796	 */
 5797	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
 5798		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5799
 5800	if (sync && cpu_rq(this_cpu)->nr_running == 1)
 5801		return this_cpu;
 5802
 5803	return nr_cpumask_bits;
 
 
 5804}
 5805
 5806static int
 5807wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
 5808		   int this_cpu, int prev_cpu, int sync)
 
 
 
 
 5809{
 5810	s64 this_eff_load, prev_eff_load;
 5811	unsigned long task_load;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5812
 5813	this_eff_load = cpu_load(cpu_rq(this_cpu));
 5814
 5815	if (sync) {
 5816		unsigned long current_load = task_h_load(current);
 5817
 5818		if (current_load > this_eff_load)
 5819			return this_cpu;
 5820
 5821		this_eff_load -= current_load;
 5822	}
 
 5823
 5824	task_load = task_h_load(p);
 
 
 
 
 5825
 5826	this_eff_load += task_load;
 5827	if (sched_feat(WA_BIAS))
 5828		this_eff_load *= 100;
 5829	this_eff_load *= capacity_of(prev_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5830
 5831	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
 5832	prev_eff_load -= task_load;
 5833	if (sched_feat(WA_BIAS))
 5834		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
 5835	prev_eff_load *= capacity_of(this_cpu);
 
 5836
 5837	/*
 5838	 * If sync, adjust the weight of prev_eff_load such that if
 5839	 * prev_eff == this_eff that select_idle_sibling() will consider
 5840	 * stacking the wakee on top of the waker if no other CPU is
 5841	 * idle.
 
 
 
 
 
 5842	 */
 5843	if (sync)
 5844		prev_eff_load += 1;
 5845
 5846	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
 5847}
 
 5848
 5849static int wake_affine(struct sched_domain *sd, struct task_struct *p,
 5850		       int this_cpu, int prev_cpu, int sync)
 5851{
 5852	int target = nr_cpumask_bits;
 5853
 5854	if (sched_feat(WA_IDLE))
 5855		target = wake_affine_idle(this_cpu, prev_cpu, sync);
 
 5856
 5857	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
 5858		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
 5859
 5860	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
 5861	if (target == nr_cpumask_bits)
 5862		return prev_cpu;
 5863
 5864	schedstat_inc(sd->ttwu_move_affine);
 5865	schedstat_inc(p->se.statistics.nr_wakeups_affine);
 5866	return target;
 5867}
 5868
 5869static struct sched_group *
 5870find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
 5871
 5872/*
 5873 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
 5874 */
 5875static int
 5876find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
 5877{
 5878	unsigned long load, min_load = ULONG_MAX;
 5879	unsigned int min_exit_latency = UINT_MAX;
 5880	u64 latest_idle_timestamp = 0;
 5881	int least_loaded_cpu = this_cpu;
 5882	int shallowest_idle_cpu = -1;
 5883	int i;
 5884
 5885	/* Check if we have any choice: */
 5886	if (group->group_weight == 1)
 5887		return cpumask_first(sched_group_span(group));
 5888
 5889	/* Traverse only the allowed CPUs */
 5890	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
 5891		if (sched_idle_cpu(i))
 5892			return i;
 5893
 5894		if (available_idle_cpu(i)) {
 5895			struct rq *rq = cpu_rq(i);
 5896			struct cpuidle_state *idle = idle_get_state(rq);
 5897			if (idle && idle->exit_latency < min_exit_latency) {
 5898				/*
 5899				 * We give priority to a CPU whose idle state
 5900				 * has the smallest exit latency irrespective
 5901				 * of any idle timestamp.
 5902				 */
 5903				min_exit_latency = idle->exit_latency;
 5904				latest_idle_timestamp = rq->idle_stamp;
 5905				shallowest_idle_cpu = i;
 5906			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
 5907				   rq->idle_stamp > latest_idle_timestamp) {
 5908				/*
 5909				 * If equal or no active idle state, then
 5910				 * the most recently idled CPU might have
 5911				 * a warmer cache.
 5912				 */
 5913				latest_idle_timestamp = rq->idle_stamp;
 5914				shallowest_idle_cpu = i;
 5915			}
 5916		} else if (shallowest_idle_cpu == -1) {
 5917			load = cpu_load(cpu_rq(i));
 5918			if (load < min_load) {
 5919				min_load = load;
 5920				least_loaded_cpu = i;
 5921			}
 5922		}
 5923	}
 5924
 5925	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
 5926}
 5927
 5928static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
 5929				  int cpu, int prev_cpu, int sd_flag)
 
 
 
 
 
 
 
 
 
 
 5930{
 5931	int new_cpu = cpu;
 5932
 5933	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
 5934		return prev_cpu;
 5935
 5936	/*
 5937	 * We need task's util for cpu_util_without, sync it up to
 5938	 * prev_cpu's last_update_time.
 5939	 */
 5940	if (!(sd_flag & SD_BALANCE_FORK))
 5941		sync_entity_load_avg(&p->se);
 5942
 5943	while (sd) {
 5944		struct sched_group *group;
 5945		struct sched_domain *tmp;
 5946		int weight;
 5947
 5948		if (!(sd->flags & sd_flag)) {
 5949			sd = sd->child;
 5950			continue;
 5951		}
 5952
 5953		group = find_idlest_group(sd, p, cpu);
 5954		if (!group) {
 5955			sd = sd->child;
 5956			continue;
 5957		}
 5958
 5959		new_cpu = find_idlest_group_cpu(group, p, cpu);
 5960		if (new_cpu == cpu) {
 5961			/* Now try balancing at a lower domain level of 'cpu': */
 5962			sd = sd->child;
 5963			continue;
 5964		}
 5965
 5966		/* Now try balancing at a lower domain level of 'new_cpu': */
 5967		cpu = new_cpu;
 5968		weight = sd->span_weight;
 5969		sd = NULL;
 5970		for_each_domain(cpu, tmp) {
 5971			if (weight <= tmp->span_weight)
 5972				break;
 5973			if (tmp->flags & sd_flag)
 5974				sd = tmp;
 5975		}
 5976	}
 5977
 5978	return new_cpu;
 5979}
 5980
 
 
 
 
 
 5981#ifdef CONFIG_SCHED_SMT
 5982DEFINE_STATIC_KEY_FALSE(sched_smt_present);
 5983EXPORT_SYMBOL_GPL(sched_smt_present);
 5984
 5985static inline void set_idle_cores(int cpu, int val)
 5986{
 5987	struct sched_domain_shared *sds;
 5988
 5989	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
 5990	if (sds)
 5991		WRITE_ONCE(sds->has_idle_cores, val);
 5992}
 5993
 5994static inline bool test_idle_cores(int cpu, bool def)
 5995{
 5996	struct sched_domain_shared *sds;
 5997
 5998	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
 5999	if (sds)
 6000		return READ_ONCE(sds->has_idle_cores);
 6001
 6002	return def;
 6003}
 6004
 6005/*
 6006 * Scans the local SMT mask to see if the entire core is idle, and records this
 6007 * information in sd_llc_shared->has_idle_cores.
 6008 *
 6009 * Since SMT siblings share all cache levels, inspecting this limited remote
 6010 * state should be fairly cheap.
 6011 */
 6012void __update_idle_core(struct rq *rq)
 6013{
 6014	int core = cpu_of(rq);
 6015	int cpu;
 6016
 6017	rcu_read_lock();
 6018	if (test_idle_cores(core, true))
 6019		goto unlock;
 6020
 6021	for_each_cpu(cpu, cpu_smt_mask(core)) {
 6022		if (cpu == core)
 6023			continue;
 6024
 6025		if (!available_idle_cpu(cpu))
 6026			goto unlock;
 6027	}
 6028
 6029	set_idle_cores(core, 1);
 6030unlock:
 6031	rcu_read_unlock();
 6032}
 6033
 6034/*
 6035 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 6036 * there are no idle cores left in the system; tracked through
 6037 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 6038 */
 6039static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
 6040{
 6041	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
 6042	int core, cpu;
 6043
 6044	if (!static_branch_likely(&sched_smt_present))
 6045		return -1;
 6046
 6047	if (!test_idle_cores(target, false))
 6048		return -1;
 6049
 6050	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
 6051
 6052	for_each_cpu_wrap(core, cpus, target) {
 6053		bool idle = true;
 6054
 6055		for_each_cpu(cpu, cpu_smt_mask(core)) {
 6056			if (!available_idle_cpu(cpu)) {
 
 6057				idle = false;
 6058				break;
 6059			}
 6060		}
 6061		cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
 6062
 6063		if (idle)
 6064			return core;
 6065	}
 6066
 6067	/*
 6068	 * Failed to find an idle core; stop looking for one.
 6069	 */
 6070	set_idle_cores(target, 0);
 6071
 6072	return -1;
 6073}
 6074
 6075/*
 6076 * Scan the local SMT mask for idle CPUs.
 6077 */
 6078static int select_idle_smt(struct task_struct *p, int target)
 6079{
 6080	int cpu;
 6081
 6082	if (!static_branch_likely(&sched_smt_present))
 6083		return -1;
 6084
 6085	for_each_cpu(cpu, cpu_smt_mask(target)) {
 6086		if (!cpumask_test_cpu(cpu, p->cpus_ptr))
 6087			continue;
 6088		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
 6089			return cpu;
 6090	}
 6091
 6092	return -1;
 6093}
 6094
 6095#else /* CONFIG_SCHED_SMT */
 6096
 6097static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
 6098{
 6099	return -1;
 6100}
 6101
 6102static inline int select_idle_smt(struct task_struct *p, int target)
 6103{
 6104	return -1;
 6105}
 6106
 6107#endif /* CONFIG_SCHED_SMT */
 6108
 6109/*
 6110 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 6111 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 6112 * average idle time for this rq (as found in rq->avg_idle).
 6113 */
 6114static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
 6115{
 6116	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
 6117	struct sched_domain *this_sd;
 6118	u64 avg_cost, avg_idle;
 6119	u64 time;
 6120	int this = smp_processor_id();
 6121	int cpu, nr = INT_MAX;
 6122
 6123	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
 6124	if (!this_sd)
 6125		return -1;
 6126
 
 
 6127	/*
 6128	 * Due to large variance we need a large fuzz factor; hackbench in
 6129	 * particularly is sensitive here.
 6130	 */
 6131	avg_idle = this_rq()->avg_idle / 512;
 6132	avg_cost = this_sd->avg_scan_cost + 1;
 6133
 6134	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
 6135		return -1;
 6136
 6137	if (sched_feat(SIS_PROP)) {
 6138		u64 span_avg = sd->span_weight * avg_idle;
 6139		if (span_avg > 4*avg_cost)
 6140			nr = div_u64(span_avg, avg_cost);
 6141		else
 6142			nr = 4;
 6143	}
 6144
 6145	time = cpu_clock(this);
 6146
 6147	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
 6148
 6149	for_each_cpu_wrap(cpu, cpus, target) {
 6150		if (!--nr)
 6151			return -1;
 6152		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
 6153			break;
 6154	}
 6155
 6156	time = cpu_clock(this) - time;
 6157	update_avg(&this_sd->avg_scan_cost, time);
 
 
 6158
 6159	return cpu;
 6160}
 6161
 6162/*
 6163 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
 6164 * the task fits. If no CPU is big enough, but there are idle ones, try to
 6165 * maximize capacity.
 6166 */
 6167static int
 6168select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
 6169{
 6170	unsigned long best_cap = 0;
 6171	int cpu, best_cpu = -1;
 6172	struct cpumask *cpus;
 6173
 6174	sync_entity_load_avg(&p->se);
 6175
 6176	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
 6177	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
 6178
 6179	for_each_cpu_wrap(cpu, cpus, target) {
 6180		unsigned long cpu_cap = capacity_of(cpu);
 6181
 6182		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
 6183			continue;
 6184		if (task_fits_capacity(p, cpu_cap))
 6185			return cpu;
 6186
 6187		if (cpu_cap > best_cap) {
 6188			best_cap = cpu_cap;
 6189			best_cpu = cpu;
 6190		}
 6191	}
 6192
 6193	return best_cpu;
 6194}
 6195
 6196/*
 6197 * Try and locate an idle core/thread in the LLC cache domain.
 6198 */
 6199static int select_idle_sibling(struct task_struct *p, int prev, int target)
 6200{
 6201	struct sched_domain *sd;
 6202	int i, recent_used_cpu;
 6203
 6204	/*
 6205	 * For asymmetric CPU capacity systems, our domain of interest is
 6206	 * sd_asym_cpucapacity rather than sd_llc.
 6207	 */
 6208	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
 6209		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
 6210		/*
 6211		 * On an asymmetric CPU capacity system where an exclusive
 6212		 * cpuset defines a symmetric island (i.e. one unique
 6213		 * capacity_orig value through the cpuset), the key will be set
 6214		 * but the CPUs within that cpuset will not have a domain with
 6215		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
 6216		 * capacity path.
 6217		 */
 6218		if (!sd)
 6219			goto symmetric;
 6220
 6221		i = select_idle_capacity(p, sd, target);
 6222		return ((unsigned)i < nr_cpumask_bits) ? i : target;
 6223	}
 6224
 6225symmetric:
 6226	if (available_idle_cpu(target) || sched_idle_cpu(target))
 6227		return target;
 6228
 6229	/*
 6230	 * If the previous CPU is cache affine and idle, don't be stupid:
 6231	 */
 6232	if (prev != target && cpus_share_cache(prev, target) &&
 6233	    (available_idle_cpu(prev) || sched_idle_cpu(prev)))
 6234		return prev;
 6235
 6236	/*
 6237	 * Allow a per-cpu kthread to stack with the wakee if the
 6238	 * kworker thread and the tasks previous CPUs are the same.
 6239	 * The assumption is that the wakee queued work for the
 6240	 * per-cpu kthread that is now complete and the wakeup is
 6241	 * essentially a sync wakeup. An obvious example of this
 6242	 * pattern is IO completions.
 6243	 */
 6244	if (is_per_cpu_kthread(current) &&
 6245	    prev == smp_processor_id() &&
 6246	    this_rq()->nr_running <= 1) {
 6247		return prev;
 6248	}
 6249
 6250	/* Check a recently used CPU as a potential idle candidate: */
 6251	recent_used_cpu = p->recent_used_cpu;
 6252	if (recent_used_cpu != prev &&
 6253	    recent_used_cpu != target &&
 6254	    cpus_share_cache(recent_used_cpu, target) &&
 6255	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
 6256	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
 6257		/*
 6258		 * Replace recent_used_cpu with prev as it is a potential
 6259		 * candidate for the next wake:
 6260		 */
 6261		p->recent_used_cpu = prev;
 6262		return recent_used_cpu;
 6263	}
 6264
 6265	sd = rcu_dereference(per_cpu(sd_llc, target));
 6266	if (!sd)
 6267		return target;
 6268
 6269	i = select_idle_core(p, sd, target);
 6270	if ((unsigned)i < nr_cpumask_bits)
 6271		return i;
 6272
 6273	i = select_idle_cpu(p, sd, target);
 6274	if ((unsigned)i < nr_cpumask_bits)
 6275		return i;
 6276
 6277	i = select_idle_smt(p, target);
 6278	if ((unsigned)i < nr_cpumask_bits)
 6279		return i;
 6280
 6281	return target;
 6282}
 6283
 6284/**
 6285 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
 6286 * @cpu: the CPU to get the utilization of
 6287 *
 6288 * The unit of the return value must be the one of capacity so we can compare
 6289 * the utilization with the capacity of the CPU that is available for CFS task
 6290 * (ie cpu_capacity).
 6291 *
 6292 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 6293 * recent utilization of currently non-runnable tasks on a CPU. It represents
 6294 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 6295 * capacity_orig is the cpu_capacity available at the highest frequency
 6296 * (arch_scale_freq_capacity()).
 6297 * The utilization of a CPU converges towards a sum equal to or less than the
 6298 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 6299 * the running time on this CPU scaled by capacity_curr.
 6300 *
 6301 * The estimated utilization of a CPU is defined to be the maximum between its
 6302 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
 6303 * currently RUNNABLE on that CPU.
 6304 * This allows to properly represent the expected utilization of a CPU which
 6305 * has just got a big task running since a long sleep period. At the same time
 6306 * however it preserves the benefits of the "blocked utilization" in
 6307 * describing the potential for other tasks waking up on the same CPU.
 6308 *
 6309 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 6310 * higher than capacity_orig because of unfortunate rounding in
 6311 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 6312 * the average stabilizes with the new running time. We need to check that the
 6313 * utilization stays within the range of [0..capacity_orig] and cap it if
 6314 * necessary. Without utilization capping, a group could be seen as overloaded
 6315 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 6316 * available capacity. We allow utilization to overshoot capacity_curr (but not
 6317 * capacity_orig) as it useful for predicting the capacity required after task
 6318 * migrations (scheduler-driven DVFS).
 6319 *
 6320 * Return: the (estimated) utilization for the specified CPU
 6321 */
 6322static inline unsigned long cpu_util(int cpu)
 6323{
 6324	struct cfs_rq *cfs_rq;
 6325	unsigned int util;
 6326
 6327	cfs_rq = &cpu_rq(cpu)->cfs;
 6328	util = READ_ONCE(cfs_rq->avg.util_avg);
 6329
 6330	if (sched_feat(UTIL_EST))
 6331		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
 6332
 6333	return min_t(unsigned long, util, capacity_orig_of(cpu));
 6334}
 6335
 6336/*
 6337 * cpu_util_without: compute cpu utilization without any contributions from *p
 6338 * @cpu: the CPU which utilization is requested
 6339 * @p: the task which utilization should be discounted
 6340 *
 6341 * The utilization of a CPU is defined by the utilization of tasks currently
 6342 * enqueued on that CPU as well as tasks which are currently sleeping after an
 6343 * execution on that CPU.
 6344 *
 6345 * This method returns the utilization of the specified CPU by discounting the
 6346 * utilization of the specified task, whenever the task is currently
 6347 * contributing to the CPU utilization.
 6348 */
 6349static unsigned long cpu_util_without(int cpu, struct task_struct *p)
 6350{
 6351	struct cfs_rq *cfs_rq;
 6352	unsigned int util;
 6353
 6354	/* Task has no contribution or is new */
 6355	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
 6356		return cpu_util(cpu);
 6357
 6358	cfs_rq = &cpu_rq(cpu)->cfs;
 6359	util = READ_ONCE(cfs_rq->avg.util_avg);
 6360
 6361	/* Discount task's util from CPU's util */
 6362	lsub_positive(&util, task_util(p));
 6363
 6364	/*
 6365	 * Covered cases:
 6366	 *
 6367	 * a) if *p is the only task sleeping on this CPU, then:
 6368	 *      cpu_util (== task_util) > util_est (== 0)
 6369	 *    and thus we return:
 6370	 *      cpu_util_without = (cpu_util - task_util) = 0
 6371	 *
 6372	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
 6373	 *    IDLE, then:
 6374	 *      cpu_util >= task_util
 6375	 *      cpu_util > util_est (== 0)
 6376	 *    and thus we discount *p's blocked utilization to return:
 6377	 *      cpu_util_without = (cpu_util - task_util) >= 0
 6378	 *
 6379	 * c) if other tasks are RUNNABLE on that CPU and
 6380	 *      util_est > cpu_util
 6381	 *    then we use util_est since it returns a more restrictive
 6382	 *    estimation of the spare capacity on that CPU, by just
 6383	 *    considering the expected utilization of tasks already
 6384	 *    runnable on that CPU.
 6385	 *
 6386	 * Cases a) and b) are covered by the above code, while case c) is
 6387	 * covered by the following code when estimated utilization is
 6388	 * enabled.
 6389	 */
 6390	if (sched_feat(UTIL_EST)) {
 6391		unsigned int estimated =
 6392			READ_ONCE(cfs_rq->avg.util_est.enqueued);
 6393
 6394		/*
 6395		 * Despite the following checks we still have a small window
 6396		 * for a possible race, when an execl's select_task_rq_fair()
 6397		 * races with LB's detach_task():
 6398		 *
 6399		 *   detach_task()
 6400		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
 6401		 *     ---------------------------------- A
 6402		 *     deactivate_task()                   \
 6403		 *       dequeue_task()                     + RaceTime
 6404		 *         util_est_dequeue()              /
 6405		 *     ---------------------------------- B
 6406		 *
 6407		 * The additional check on "current == p" it's required to
 6408		 * properly fix the execl regression and it helps in further
 6409		 * reducing the chances for the above race.
 6410		 */
 6411		if (unlikely(task_on_rq_queued(p) || current == p))
 6412			lsub_positive(&estimated, _task_util_est(p));
 6413
 6414		util = max(util, estimated);
 6415	}
 6416
 6417	/*
 6418	 * Utilization (estimated) can exceed the CPU capacity, thus let's
 6419	 * clamp to the maximum CPU capacity to ensure consistency with
 6420	 * the cpu_util call.
 6421	 */
 6422	return min_t(unsigned long, util, capacity_orig_of(cpu));
 6423}
 6424
 6425/*
 6426 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
 6427 * to @dst_cpu.
 
 
 
 6428 */
 6429static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
 6430{
 6431	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
 6432	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
 6433
 6434	/*
 6435	 * If @p migrates from @cpu to another, remove its contribution. Or,
 6436	 * if @p migrates from another CPU to @cpu, add its contribution. In
 6437	 * the other cases, @cpu is not impacted by the migration, so the
 6438	 * util_avg should already be correct.
 6439	 */
 6440	if (task_cpu(p) == cpu && dst_cpu != cpu)
 6441		sub_positive(&util, task_util(p));
 6442	else if (task_cpu(p) != cpu && dst_cpu == cpu)
 6443		util += task_util(p);
 6444
 6445	if (sched_feat(UTIL_EST)) {
 6446		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
 6447
 6448		/*
 6449		 * During wake-up, the task isn't enqueued yet and doesn't
 6450		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
 6451		 * so just add it (if needed) to "simulate" what will be
 6452		 * cpu_util() after the task has been enqueued.
 6453		 */
 6454		if (dst_cpu == cpu)
 6455			util_est += _task_util_est(p);
 6456
 6457		util = max(util, util_est);
 6458	}
 6459
 6460	return min(util, capacity_orig_of(cpu));
 6461}
 6462
 6463/*
 6464 * compute_energy(): Estimates the energy that @pd would consume if @p was
 6465 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
 6466 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
 6467 * to compute what would be the energy if we decided to actually migrate that
 6468 * task.
 6469 */
 6470static long
 6471compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
 6472{
 6473	struct cpumask *pd_mask = perf_domain_span(pd);
 6474	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
 6475	unsigned long max_util = 0, sum_util = 0;
 6476	int cpu;
 6477
 6478	/*
 6479	 * The capacity state of CPUs of the current rd can be driven by CPUs
 6480	 * of another rd if they belong to the same pd. So, account for the
 6481	 * utilization of these CPUs too by masking pd with cpu_online_mask
 6482	 * instead of the rd span.
 6483	 *
 6484	 * If an entire pd is outside of the current rd, it will not appear in
 6485	 * its pd list and will not be accounted by compute_energy().
 6486	 */
 6487	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
 6488		unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
 6489		struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
 6490
 6491		/*
 6492		 * Busy time computation: utilization clamping is not
 6493		 * required since the ratio (sum_util / cpu_capacity)
 6494		 * is already enough to scale the EM reported power
 6495		 * consumption at the (eventually clamped) cpu_capacity.
 6496		 */
 6497		sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
 6498					       ENERGY_UTIL, NULL);
 6499
 6500		/*
 6501		 * Performance domain frequency: utilization clamping
 6502		 * must be considered since it affects the selection
 6503		 * of the performance domain frequency.
 6504		 * NOTE: in case RT tasks are running, by default the
 6505		 * FREQUENCY_UTIL's utilization can be max OPP.
 6506		 */
 6507		cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
 6508					      FREQUENCY_UTIL, tsk);
 6509		max_util = max(max_util, cpu_util);
 6510	}
 6511
 6512	return em_cpu_energy(pd->em_pd, max_util, sum_util);
 6513}
 6514
 6515/*
 6516 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
 6517 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
 6518 * spare capacity in each performance domain and uses it as a potential
 6519 * candidate to execute the task. Then, it uses the Energy Model to figure
 6520 * out which of the CPU candidates is the most energy-efficient.
 6521 *
 6522 * The rationale for this heuristic is as follows. In a performance domain,
 6523 * all the most energy efficient CPU candidates (according to the Energy
 6524 * Model) are those for which we'll request a low frequency. When there are
 6525 * several CPUs for which the frequency request will be the same, we don't
 6526 * have enough data to break the tie between them, because the Energy Model
 6527 * only includes active power costs. With this model, if we assume that
 6528 * frequency requests follow utilization (e.g. using schedutil), the CPU with
 6529 * the maximum spare capacity in a performance domain is guaranteed to be among
 6530 * the best candidates of the performance domain.
 6531 *
 6532 * In practice, it could be preferable from an energy standpoint to pack
 6533 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
 6534 * but that could also hurt our chances to go cluster idle, and we have no
 6535 * ways to tell with the current Energy Model if this is actually a good
 6536 * idea or not. So, find_energy_efficient_cpu() basically favors
 6537 * cluster-packing, and spreading inside a cluster. That should at least be
 6538 * a good thing for latency, and this is consistent with the idea that most
 6539 * of the energy savings of EAS come from the asymmetry of the system, and
 6540 * not so much from breaking the tie between identical CPUs. That's also the
 6541 * reason why EAS is enabled in the topology code only for systems where
 6542 * SD_ASYM_CPUCAPACITY is set.
 6543 *
 6544 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
 6545 * they don't have any useful utilization data yet and it's not possible to
 6546 * forecast their impact on energy consumption. Consequently, they will be
 6547 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
 6548 * to be energy-inefficient in some use-cases. The alternative would be to
 6549 * bias new tasks towards specific types of CPUs first, or to try to infer
 6550 * their util_avg from the parent task, but those heuristics could hurt
 6551 * other use-cases too. So, until someone finds a better way to solve this,
 6552 * let's keep things simple by re-using the existing slow path.
 6553 */
 6554static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
 6555{
 6556	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
 6557	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
 6558	unsigned long cpu_cap, util, base_energy = 0;
 6559	int cpu, best_energy_cpu = prev_cpu;
 6560	struct sched_domain *sd;
 6561	struct perf_domain *pd;
 6562
 6563	rcu_read_lock();
 6564	pd = rcu_dereference(rd->pd);
 6565	if (!pd || READ_ONCE(rd->overutilized))
 6566		goto fail;
 6567
 6568	/*
 6569	 * Energy-aware wake-up happens on the lowest sched_domain starting
 6570	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
 6571	 */
 6572	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
 6573	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
 6574		sd = sd->parent;
 6575	if (!sd)
 6576		goto fail;
 6577
 
 6578	sync_entity_load_avg(&p->se);
 6579	if (!task_util_est(p))
 6580		goto unlock;
 6581
 6582	for (; pd; pd = pd->next) {
 6583		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
 6584		unsigned long base_energy_pd;
 6585		int max_spare_cap_cpu = -1;
 6586
 6587		/* Compute the 'base' energy of the pd, without @p */
 6588		base_energy_pd = compute_energy(p, -1, pd);
 6589		base_energy += base_energy_pd;
 6590
 6591		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
 6592			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
 6593				continue;
 6594
 6595			util = cpu_util_next(cpu, p, cpu);
 6596			cpu_cap = capacity_of(cpu);
 6597			spare_cap = cpu_cap - util;
 6598
 6599			/*
 6600			 * Skip CPUs that cannot satisfy the capacity request.
 6601			 * IOW, placing the task there would make the CPU
 6602			 * overutilized. Take uclamp into account to see how
 6603			 * much capacity we can get out of the CPU; this is
 6604			 * aligned with schedutil_cpu_util().
 6605			 */
 6606			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
 6607			if (!fits_capacity(util, cpu_cap))
 6608				continue;
 6609
 6610			/* Always use prev_cpu as a candidate. */
 6611			if (cpu == prev_cpu) {
 6612				prev_delta = compute_energy(p, prev_cpu, pd);
 6613				prev_delta -= base_energy_pd;
 6614				best_delta = min(best_delta, prev_delta);
 6615			}
 6616
 6617			/*
 6618			 * Find the CPU with the maximum spare capacity in
 6619			 * the performance domain
 6620			 */
 6621			if (spare_cap > max_spare_cap) {
 6622				max_spare_cap = spare_cap;
 6623				max_spare_cap_cpu = cpu;
 6624			}
 6625		}
 6626
 6627		/* Evaluate the energy impact of using this CPU. */
 6628		if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
 6629			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
 6630			cur_delta -= base_energy_pd;
 6631			if (cur_delta < best_delta) {
 6632				best_delta = cur_delta;
 6633				best_energy_cpu = max_spare_cap_cpu;
 6634			}
 6635		}
 6636	}
 6637unlock:
 6638	rcu_read_unlock();
 6639
 6640	/*
 6641	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
 6642	 * least 6% of the energy used by prev_cpu.
 6643	 */
 6644	if (prev_delta == ULONG_MAX)
 6645		return best_energy_cpu;
 6646
 6647	if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
 6648		return best_energy_cpu;
 6649
 6650	return prev_cpu;
 6651
 6652fail:
 6653	rcu_read_unlock();
 6654
 6655	return -1;
 6656}
 6657
 6658/*
 6659 * select_task_rq_fair: Select target runqueue for the waking task in domains
 6660 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 6661 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
 6662 *
 6663 * Balances load by selecting the idlest CPU in the idlest group, or under
 6664 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
 6665 *
 6666 * Returns the target CPU number.
 6667 *
 6668 * preempt must be disabled.
 6669 */
 6670static int
 6671select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
 6672{
 6673	struct sched_domain *tmp, *sd = NULL;
 6674	int cpu = smp_processor_id();
 6675	int new_cpu = prev_cpu;
 6676	int want_affine = 0;
 6677	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
 6678
 6679	if (sd_flag & SD_BALANCE_WAKE) {
 6680		record_wakee(p);
 6681
 6682		if (sched_energy_enabled()) {
 6683			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
 6684			if (new_cpu >= 0)
 6685				return new_cpu;
 6686			new_cpu = prev_cpu;
 6687		}
 6688
 6689		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
 6690	}
 6691
 6692	rcu_read_lock();
 6693	for_each_domain(cpu, tmp) {
 
 
 
 6694		/*
 6695		 * If both 'cpu' and 'prev_cpu' are part of this domain,
 6696		 * cpu is a valid SD_WAKE_AFFINE target.
 6697		 */
 6698		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
 6699		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
 6700			if (cpu != prev_cpu)
 6701				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
 6702
 6703			sd = NULL; /* Prefer wake_affine over balance flags */
 6704			break;
 6705		}
 6706
 6707		if (tmp->flags & sd_flag)
 6708			sd = tmp;
 6709		else if (!want_affine)
 6710			break;
 6711	}
 6712
 6713	if (unlikely(sd)) {
 6714		/* Slow path */
 6715		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
 6716	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
 6717		/* Fast path */
 
 
 
 
 6718
 6719		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 6720
 6721		if (want_affine)
 6722			current->recent_used_cpu = cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 6723	}
 6724	rcu_read_unlock();
 6725
 6726	return new_cpu;
 6727}
 6728
 6729static void detach_entity_cfs_rq(struct sched_entity *se);
 6730
 6731/*
 6732 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
 6733 * cfs_rq_of(p) references at time of call are still valid and identify the
 6734 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
 6735 */
 6736static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
 6737{
 6738	/*
 6739	 * As blocked tasks retain absolute vruntime the migration needs to
 6740	 * deal with this by subtracting the old and adding the new
 6741	 * min_vruntime -- the latter is done by enqueue_entity() when placing
 6742	 * the task on the new runqueue.
 6743	 */
 6744	if (p->state == TASK_WAKING) {
 6745		struct sched_entity *se = &p->se;
 6746		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 6747		u64 min_vruntime;
 6748
 6749#ifndef CONFIG_64BIT
 6750		u64 min_vruntime_copy;
 6751
 6752		do {
 6753			min_vruntime_copy = cfs_rq->min_vruntime_copy;
 6754			smp_rmb();
 6755			min_vruntime = cfs_rq->min_vruntime;
 6756		} while (min_vruntime != min_vruntime_copy);
 6757#else
 6758		min_vruntime = cfs_rq->min_vruntime;
 6759#endif
 6760
 6761		se->vruntime -= min_vruntime;
 6762	}
 6763
 6764	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
 6765		/*
 6766		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
 6767		 * rq->lock and can modify state directly.
 6768		 */
 6769		lockdep_assert_held(&task_rq(p)->lock);
 6770		detach_entity_cfs_rq(&p->se);
 6771
 6772	} else {
 6773		/*
 6774		 * We are supposed to update the task to "current" time, then
 6775		 * its up to date and ready to go to new CPU/cfs_rq. But we
 6776		 * have difficulty in getting what current time is, so simply
 6777		 * throw away the out-of-date time. This will result in the
 6778		 * wakee task is less decayed, but giving the wakee more load
 6779		 * sounds not bad.
 6780		 */
 6781		remove_entity_load_avg(&p->se);
 6782	}
 6783
 6784	/* Tell new CPU we are migrated */
 6785	p->se.avg.last_update_time = 0;
 6786
 6787	/* We have migrated, no longer consider this task hot */
 6788	p->se.exec_start = 0;
 6789
 6790	update_scan_period(p, new_cpu);
 6791}
 6792
 6793static void task_dead_fair(struct task_struct *p)
 6794{
 6795	remove_entity_load_avg(&p->se);
 6796}
 6797
 6798static int
 6799balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 6800{
 6801	if (rq->nr_running)
 6802		return 1;
 6803
 6804	return newidle_balance(rq, rf) != 0;
 6805}
 6806#endif /* CONFIG_SMP */
 6807
 6808static unsigned long wakeup_gran(struct sched_entity *se)
 
 6809{
 6810	unsigned long gran = sysctl_sched_wakeup_granularity;
 6811
 6812	/*
 6813	 * Since its curr running now, convert the gran from real-time
 6814	 * to virtual-time in his units.
 6815	 *
 6816	 * By using 'se' instead of 'curr' we penalize light tasks, so
 6817	 * they get preempted easier. That is, if 'se' < 'curr' then
 6818	 * the resulting gran will be larger, therefore penalizing the
 6819	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
 6820	 * be smaller, again penalizing the lighter task.
 6821	 *
 6822	 * This is especially important for buddies when the leftmost
 6823	 * task is higher priority than the buddy.
 6824	 */
 6825	return calc_delta_fair(gran, se);
 6826}
 6827
 6828/*
 6829 * Should 'se' preempt 'curr'.
 6830 *
 6831 *             |s1
 6832 *        |s2
 6833 *   |s3
 6834 *         g
 6835 *      |<--->|c
 6836 *
 6837 *  w(c, s1) = -1
 6838 *  w(c, s2) =  0
 6839 *  w(c, s3) =  1
 6840 *
 6841 */
 6842static int
 6843wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
 6844{
 6845	s64 gran, vdiff = curr->vruntime - se->vruntime;
 6846
 6847	if (vdiff <= 0)
 6848		return -1;
 6849
 6850	gran = wakeup_gran(se);
 6851	if (vdiff > gran)
 6852		return 1;
 6853
 6854	return 0;
 6855}
 6856
 6857static void set_last_buddy(struct sched_entity *se)
 6858{
 6859	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
 6860		return;
 6861
 6862	for_each_sched_entity(se) {
 6863		if (SCHED_WARN_ON(!se->on_rq))
 6864			return;
 6865		cfs_rq_of(se)->last = se;
 6866	}
 6867}
 6868
 6869static void set_next_buddy(struct sched_entity *se)
 6870{
 6871	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
 6872		return;
 6873
 6874	for_each_sched_entity(se) {
 6875		if (SCHED_WARN_ON(!se->on_rq))
 6876			return;
 6877		cfs_rq_of(se)->next = se;
 6878	}
 6879}
 6880
 6881static void set_skip_buddy(struct sched_entity *se)
 6882{
 6883	for_each_sched_entity(se)
 6884		cfs_rq_of(se)->skip = se;
 6885}
 6886
 6887/*
 6888 * Preempt the current task with a newly woken task if needed:
 6889 */
 6890static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
 6891{
 6892	struct task_struct *curr = rq->curr;
 6893	struct sched_entity *se = &curr->se, *pse = &p->se;
 6894	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
 6895	int scale = cfs_rq->nr_running >= sched_nr_latency;
 6896	int next_buddy_marked = 0;
 6897
 6898	if (unlikely(se == pse))
 6899		return;
 6900
 6901	/*
 6902	 * This is possible from callers such as attach_tasks(), in which we
 6903	 * unconditionally check_prempt_curr() after an enqueue (which may have
 6904	 * lead to a throttle).  This both saves work and prevents false
 6905	 * next-buddy nomination below.
 6906	 */
 6907	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
 6908		return;
 6909
 6910	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
 6911		set_next_buddy(pse);
 6912		next_buddy_marked = 1;
 6913	}
 6914
 6915	/*
 6916	 * We can come here with TIF_NEED_RESCHED already set from new task
 6917	 * wake up path.
 6918	 *
 6919	 * Note: this also catches the edge-case of curr being in a throttled
 6920	 * group (e.g. via set_curr_task), since update_curr() (in the
 6921	 * enqueue of curr) will have resulted in resched being set.  This
 6922	 * prevents us from potentially nominating it as a false LAST_BUDDY
 6923	 * below.
 6924	 */
 6925	if (test_tsk_need_resched(curr))
 6926		return;
 6927
 6928	/* Idle tasks are by definition preempted by non-idle tasks. */
 6929	if (unlikely(task_has_idle_policy(curr)) &&
 6930	    likely(!task_has_idle_policy(p)))
 6931		goto preempt;
 6932
 6933	/*
 6934	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
 6935	 * is driven by the tick):
 6936	 */
 6937	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
 6938		return;
 6939
 6940	find_matching_se(&se, &pse);
 6941	update_curr(cfs_rq_of(se));
 6942	BUG_ON(!pse);
 6943	if (wakeup_preempt_entity(se, pse) == 1) {
 6944		/*
 6945		 * Bias pick_next to pick the sched entity that is
 6946		 * triggering this preemption.
 6947		 */
 6948		if (!next_buddy_marked)
 6949			set_next_buddy(pse);
 6950		goto preempt;
 6951	}
 6952
 6953	return;
 6954
 6955preempt:
 6956	resched_curr(rq);
 6957	/*
 6958	 * Only set the backward buddy when the current task is still
 6959	 * on the rq. This can happen when a wakeup gets interleaved
 6960	 * with schedule on the ->pre_schedule() or idle_balance()
 6961	 * point, either of which can * drop the rq lock.
 6962	 *
 6963	 * Also, during early boot the idle thread is in the fair class,
 6964	 * for obvious reasons its a bad idea to schedule back to it.
 6965	 */
 6966	if (unlikely(!se->on_rq || curr == rq->idle))
 6967		return;
 6968
 6969	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
 6970		set_last_buddy(se);
 6971}
 6972
 6973struct task_struct *
 6974pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 6975{
 6976	struct cfs_rq *cfs_rq = &rq->cfs;
 6977	struct sched_entity *se;
 6978	struct task_struct *p;
 6979	int new_tasks;
 6980
 6981again:
 6982	if (!sched_fair_runnable(rq))
 
 6983		goto idle;
 6984
 6985#ifdef CONFIG_FAIR_GROUP_SCHED
 6986	if (!prev || prev->sched_class != &fair_sched_class)
 6987		goto simple;
 6988
 6989	/*
 6990	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
 6991	 * likely that a next task is from the same cgroup as the current.
 6992	 *
 6993	 * Therefore attempt to avoid putting and setting the entire cgroup
 6994	 * hierarchy, only change the part that actually changes.
 6995	 */
 6996
 6997	do {
 6998		struct sched_entity *curr = cfs_rq->curr;
 6999
 7000		/*
 7001		 * Since we got here without doing put_prev_entity() we also
 7002		 * have to consider cfs_rq->curr. If it is still a runnable
 7003		 * entity, update_curr() will update its vruntime, otherwise
 7004		 * forget we've ever seen it.
 7005		 */
 7006		if (curr) {
 7007			if (curr->on_rq)
 7008				update_curr(cfs_rq);
 7009			else
 7010				curr = NULL;
 7011
 7012			/*
 7013			 * This call to check_cfs_rq_runtime() will do the
 7014			 * throttle and dequeue its entity in the parent(s).
 7015			 * Therefore the nr_running test will indeed
 7016			 * be correct.
 7017			 */
 7018			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
 7019				cfs_rq = &rq->cfs;
 7020
 7021				if (!cfs_rq->nr_running)
 7022					goto idle;
 7023
 7024				goto simple;
 7025			}
 7026		}
 7027
 7028		se = pick_next_entity(cfs_rq, curr);
 7029		cfs_rq = group_cfs_rq(se);
 7030	} while (cfs_rq);
 7031
 7032	p = task_of(se);
 7033
 7034	/*
 7035	 * Since we haven't yet done put_prev_entity and if the selected task
 7036	 * is a different task than we started out with, try and touch the
 7037	 * least amount of cfs_rqs.
 7038	 */
 7039	if (prev != p) {
 7040		struct sched_entity *pse = &prev->se;
 7041
 7042		while (!(cfs_rq = is_same_group(se, pse))) {
 7043			int se_depth = se->depth;
 7044			int pse_depth = pse->depth;
 7045
 7046			if (se_depth <= pse_depth) {
 7047				put_prev_entity(cfs_rq_of(pse), pse);
 7048				pse = parent_entity(pse);
 7049			}
 7050			if (se_depth >= pse_depth) {
 7051				set_next_entity(cfs_rq_of(se), se);
 7052				se = parent_entity(se);
 7053			}
 7054		}
 7055
 7056		put_prev_entity(cfs_rq, pse);
 7057		set_next_entity(cfs_rq, se);
 7058	}
 7059
 7060	goto done;
 
 
 
 7061simple:
 
 7062#endif
 7063	if (prev)
 7064		put_prev_task(rq, prev);
 
 
 
 7065
 7066	do {
 7067		se = pick_next_entity(cfs_rq, NULL);
 7068		set_next_entity(cfs_rq, se);
 7069		cfs_rq = group_cfs_rq(se);
 7070	} while (cfs_rq);
 7071
 7072	p = task_of(se);
 7073
 7074done: __maybe_unused;
 7075#ifdef CONFIG_SMP
 7076	/*
 7077	 * Move the next running task to the front of
 7078	 * the list, so our cfs_tasks list becomes MRU
 7079	 * one.
 7080	 */
 7081	list_move(&p->se.group_node, &rq->cfs_tasks);
 7082#endif
 7083
 7084	if (hrtick_enabled(rq))
 7085		hrtick_start_fair(rq, p);
 7086
 7087	update_misfit_status(p, rq);
 7088
 7089	return p;
 7090
 7091idle:
 7092	if (!rf)
 7093		return NULL;
 7094
 7095	new_tasks = newidle_balance(rq, rf);
 7096
 7097	/*
 7098	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
 
 
 
 
 
 
 
 
 
 7099	 * possible for any higher priority task to appear. In that case we
 7100	 * must re-start the pick_next_entity() loop.
 7101	 */
 7102	if (new_tasks < 0)
 7103		return RETRY_TASK;
 7104
 7105	if (new_tasks > 0)
 7106		goto again;
 7107
 7108	/*
 7109	 * rq is about to be idle, check if we need to update the
 7110	 * lost_idle_time of clock_pelt
 7111	 */
 7112	update_idle_rq_clock_pelt(rq);
 7113
 7114	return NULL;
 7115}
 7116
 7117static struct task_struct *__pick_next_task_fair(struct rq *rq)
 7118{
 7119	return pick_next_task_fair(rq, NULL, NULL);
 7120}
 7121
 7122/*
 7123 * Account for a descheduled task:
 7124 */
 7125static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
 7126{
 7127	struct sched_entity *se = &prev->se;
 7128	struct cfs_rq *cfs_rq;
 7129
 7130	for_each_sched_entity(se) {
 7131		cfs_rq = cfs_rq_of(se);
 7132		put_prev_entity(cfs_rq, se);
 7133	}
 7134}
 7135
 7136/*
 7137 * sched_yield() is very simple
 7138 *
 7139 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 7140 */
 7141static void yield_task_fair(struct rq *rq)
 7142{
 7143	struct task_struct *curr = rq->curr;
 7144	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
 7145	struct sched_entity *se = &curr->se;
 7146
 7147	/*
 7148	 * Are we the only task in the tree?
 7149	 */
 7150	if (unlikely(rq->nr_running == 1))
 7151		return;
 7152
 7153	clear_buddies(cfs_rq, se);
 7154
 7155	if (curr->policy != SCHED_BATCH) {
 7156		update_rq_clock(rq);
 7157		/*
 7158		 * Update run-time statistics of the 'current'.
 7159		 */
 7160		update_curr(cfs_rq);
 7161		/*
 7162		 * Tell update_rq_clock() that we've just updated,
 7163		 * so we don't do microscopic update in schedule()
 7164		 * and double the fastpath cost.
 7165		 */
 7166		rq_clock_skip_update(rq);
 7167	}
 7168
 7169	set_skip_buddy(se);
 7170}
 7171
 7172static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
 7173{
 7174	struct sched_entity *se = &p->se;
 7175
 7176	/* throttled hierarchies are not runnable */
 7177	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
 7178		return false;
 7179
 7180	/* Tell the scheduler that we'd really like pse to run next. */
 7181	set_next_buddy(se);
 7182
 7183	yield_task_fair(rq);
 7184
 7185	return true;
 7186}
 7187
 7188#ifdef CONFIG_SMP
 7189/**************************************************
 7190 * Fair scheduling class load-balancing methods.
 7191 *
 7192 * BASICS
 7193 *
 7194 * The purpose of load-balancing is to achieve the same basic fairness the
 7195 * per-CPU scheduler provides, namely provide a proportional amount of compute
 7196 * time to each task. This is expressed in the following equation:
 7197 *
 7198 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 7199 *
 7200 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
 7201 * W_i,0 is defined as:
 7202 *
 7203 *   W_i,0 = \Sum_j w_i,j                                             (2)
 7204 *
 7205 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
 7206 * is derived from the nice value as per sched_prio_to_weight[].
 7207 *
 7208 * The weight average is an exponential decay average of the instantaneous
 7209 * weight:
 7210 *
 7211 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 7212 *
 7213 * C_i is the compute capacity of CPU i, typically it is the
 7214 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 7215 * can also include other factors [XXX].
 7216 *
 7217 * To achieve this balance we define a measure of imbalance which follows
 7218 * directly from (1):
 7219 *
 7220 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
 7221 *
 7222 * We them move tasks around to minimize the imbalance. In the continuous
 7223 * function space it is obvious this converges, in the discrete case we get
 7224 * a few fun cases generally called infeasible weight scenarios.
 7225 *
 7226 * [XXX expand on:
 7227 *     - infeasible weights;
 7228 *     - local vs global optima in the discrete case. ]
 7229 *
 7230 *
 7231 * SCHED DOMAINS
 7232 *
 7233 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 7234 * for all i,j solution, we create a tree of CPUs that follows the hardware
 7235 * topology where each level pairs two lower groups (or better). This results
 7236 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
 7237 * tree to only the first of the previous level and we decrease the frequency
 7238 * of load-balance at each level inv. proportional to the number of CPUs in
 7239 * the groups.
 7240 *
 7241 * This yields:
 7242 *
 7243 *     log_2 n     1     n
 7244 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 7245 *     i = 0      2^i   2^i
 7246 *                               `- size of each group
 7247 *         |         |     `- number of CPUs doing load-balance
 7248 *         |         `- freq
 7249 *         `- sum over all levels
 7250 *
 7251 * Coupled with a limit on how many tasks we can migrate every balance pass,
 7252 * this makes (5) the runtime complexity of the balancer.
 7253 *
 7254 * An important property here is that each CPU is still (indirectly) connected
 7255 * to every other CPU in at most O(log n) steps:
 7256 *
 7257 * The adjacency matrix of the resulting graph is given by:
 7258 *
 7259 *             log_2 n
 7260 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 7261 *             k = 0
 7262 *
 7263 * And you'll find that:
 7264 *
 7265 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 7266 *
 7267 * Showing there's indeed a path between every CPU in at most O(log n) steps.
 7268 * The task movement gives a factor of O(m), giving a convergence complexity
 7269 * of:
 7270 *
 7271 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 7272 *
 7273 *
 7274 * WORK CONSERVING
 7275 *
 7276 * In order to avoid CPUs going idle while there's still work to do, new idle
 7277 * balancing is more aggressive and has the newly idle CPU iterate up the domain
 7278 * tree itself instead of relying on other CPUs to bring it work.
 7279 *
 7280 * This adds some complexity to both (5) and (8) but it reduces the total idle
 7281 * time.
 7282 *
 7283 * [XXX more?]
 7284 *
 7285 *
 7286 * CGROUPS
 7287 *
 7288 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 7289 *
 7290 *                                s_k,i
 7291 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 7292 *                                 S_k
 7293 *
 7294 * Where
 7295 *
 7296 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 7297 *
 7298 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
 7299 *
 7300 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 7301 * property.
 7302 *
 7303 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 7304 *      rewrite all of this once again.]
 7305 */
 7306
 7307static unsigned long __read_mostly max_load_balance_interval = HZ/10;
 7308
 7309enum fbq_type { regular, remote, all };
 7310
 7311/*
 7312 * 'group_type' describes the group of CPUs at the moment of load balancing.
 7313 *
 7314 * The enum is ordered by pulling priority, with the group with lowest priority
 7315 * first so the group_type can simply be compared when selecting the busiest
 7316 * group. See update_sd_pick_busiest().
 7317 */
 7318enum group_type {
 7319	/* The group has spare capacity that can be used to run more tasks.  */
 7320	group_has_spare = 0,
 7321	/*
 7322	 * The group is fully used and the tasks don't compete for more CPU
 7323	 * cycles. Nevertheless, some tasks might wait before running.
 7324	 */
 7325	group_fully_busy,
 7326	/*
 7327	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
 7328	 * and must be migrated to a more powerful CPU.
 7329	 */
 7330	group_misfit_task,
 7331	/*
 7332	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
 7333	 * and the task should be migrated to it instead of running on the
 7334	 * current CPU.
 7335	 */
 7336	group_asym_packing,
 7337	/*
 7338	 * The tasks' affinity constraints previously prevented the scheduler
 7339	 * from balancing the load across the system.
 7340	 */
 7341	group_imbalanced,
 7342	/*
 7343	 * The CPU is overloaded and can't provide expected CPU cycles to all
 7344	 * tasks.
 7345	 */
 7346	group_overloaded
 7347};
 7348
 7349enum migration_type {
 7350	migrate_load = 0,
 7351	migrate_util,
 7352	migrate_task,
 7353	migrate_misfit
 7354};
 7355
 7356#define LBF_ALL_PINNED	0x01
 7357#define LBF_NEED_BREAK	0x02
 7358#define LBF_DST_PINNED  0x04
 7359#define LBF_SOME_PINNED	0x08
 7360#define LBF_NOHZ_STATS	0x10
 7361#define LBF_NOHZ_AGAIN	0x20
 7362
 7363struct lb_env {
 7364	struct sched_domain	*sd;
 7365
 7366	struct rq		*src_rq;
 7367	int			src_cpu;
 7368
 7369	int			dst_cpu;
 7370	struct rq		*dst_rq;
 7371
 7372	struct cpumask		*dst_grpmask;
 7373	int			new_dst_cpu;
 7374	enum cpu_idle_type	idle;
 7375	long			imbalance;
 7376	/* The set of CPUs under consideration for load-balancing */
 7377	struct cpumask		*cpus;
 7378
 7379	unsigned int		flags;
 7380
 7381	unsigned int		loop;
 7382	unsigned int		loop_break;
 7383	unsigned int		loop_max;
 7384
 7385	enum fbq_type		fbq_type;
 7386	enum migration_type	migration_type;
 7387	struct list_head	tasks;
 7388};
 7389
 7390/*
 7391 * Is this task likely cache-hot:
 7392 */
 7393static int task_hot(struct task_struct *p, struct lb_env *env)
 7394{
 7395	s64 delta;
 7396
 7397	lockdep_assert_held(&env->src_rq->lock);
 7398
 7399	if (p->sched_class != &fair_sched_class)
 7400		return 0;
 7401
 7402	if (unlikely(task_has_idle_policy(p)))
 7403		return 0;
 7404
 7405	/*
 7406	 * Buddy candidates are cache hot:
 7407	 */
 7408	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
 7409			(&p->se == cfs_rq_of(&p->se)->next ||
 7410			 &p->se == cfs_rq_of(&p->se)->last))
 7411		return 1;
 7412
 7413	if (sysctl_sched_migration_cost == -1)
 7414		return 1;
 7415	if (sysctl_sched_migration_cost == 0)
 7416		return 0;
 7417
 7418	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
 7419
 7420	return delta < (s64)sysctl_sched_migration_cost;
 7421}
 7422
 7423#ifdef CONFIG_NUMA_BALANCING
 7424/*
 7425 * Returns 1, if task migration degrades locality
 7426 * Returns 0, if task migration improves locality i.e migration preferred.
 7427 * Returns -1, if task migration is not affected by locality.
 7428 */
 7429static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
 7430{
 7431	struct numa_group *numa_group = rcu_dereference(p->numa_group);
 7432	unsigned long src_weight, dst_weight;
 7433	int src_nid, dst_nid, dist;
 7434
 7435	if (!static_branch_likely(&sched_numa_balancing))
 7436		return -1;
 7437
 7438	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
 7439		return -1;
 7440
 7441	src_nid = cpu_to_node(env->src_cpu);
 7442	dst_nid = cpu_to_node(env->dst_cpu);
 7443
 7444	if (src_nid == dst_nid)
 7445		return -1;
 7446
 7447	/* Migrating away from the preferred node is always bad. */
 7448	if (src_nid == p->numa_preferred_nid) {
 7449		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
 7450			return 1;
 7451		else
 7452			return -1;
 7453	}
 7454
 7455	/* Encourage migration to the preferred node. */
 7456	if (dst_nid == p->numa_preferred_nid)
 7457		return 0;
 7458
 7459	/* Leaving a core idle is often worse than degrading locality. */
 7460	if (env->idle == CPU_IDLE)
 7461		return -1;
 7462
 7463	dist = node_distance(src_nid, dst_nid);
 7464	if (numa_group) {
 7465		src_weight = group_weight(p, src_nid, dist);
 7466		dst_weight = group_weight(p, dst_nid, dist);
 7467	} else {
 7468		src_weight = task_weight(p, src_nid, dist);
 7469		dst_weight = task_weight(p, dst_nid, dist);
 7470	}
 7471
 7472	return dst_weight < src_weight;
 7473}
 7474
 7475#else
 7476static inline int migrate_degrades_locality(struct task_struct *p,
 7477					     struct lb_env *env)
 7478{
 7479	return -1;
 7480}
 7481#endif
 7482
 7483/*
 7484 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 7485 */
 7486static
 7487int can_migrate_task(struct task_struct *p, struct lb_env *env)
 7488{
 7489	int tsk_cache_hot;
 7490
 7491	lockdep_assert_held(&env->src_rq->lock);
 7492
 7493	/*
 7494	 * We do not migrate tasks that are:
 7495	 * 1) throttled_lb_pair, or
 7496	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
 7497	 * 3) running (obviously), or
 7498	 * 4) are cache-hot on their current CPU.
 7499	 */
 7500	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
 7501		return 0;
 7502
 7503	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
 7504		int cpu;
 7505
 7506		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
 7507
 7508		env->flags |= LBF_SOME_PINNED;
 7509
 7510		/*
 7511		 * Remember if this task can be migrated to any other CPU in
 7512		 * our sched_group. We may want to revisit it if we couldn't
 7513		 * meet load balance goals by pulling other tasks on src_cpu.
 7514		 *
 7515		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
 7516		 * already computed one in current iteration.
 7517		 */
 7518		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
 7519			return 0;
 7520
 7521		/* Prevent to re-select dst_cpu via env's CPUs: */
 7522		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
 7523			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
 7524				env->flags |= LBF_DST_PINNED;
 7525				env->new_dst_cpu = cpu;
 7526				break;
 7527			}
 7528		}
 7529
 7530		return 0;
 7531	}
 7532
 7533	/* Record that we found atleast one task that could run on dst_cpu */
 7534	env->flags &= ~LBF_ALL_PINNED;
 7535
 7536	if (task_running(env->src_rq, p)) {
 7537		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
 7538		return 0;
 7539	}
 7540
 7541	/*
 7542	 * Aggressive migration if:
 7543	 * 1) destination numa is preferred
 7544	 * 2) task is cache cold, or
 7545	 * 3) too many balance attempts have failed.
 7546	 */
 7547	tsk_cache_hot = migrate_degrades_locality(p, env);
 7548	if (tsk_cache_hot == -1)
 7549		tsk_cache_hot = task_hot(p, env);
 7550
 7551	if (tsk_cache_hot <= 0 ||
 7552	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
 7553		if (tsk_cache_hot == 1) {
 7554			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
 7555			schedstat_inc(p->se.statistics.nr_forced_migrations);
 7556		}
 7557		return 1;
 7558	}
 7559
 7560	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
 7561	return 0;
 7562}
 7563
 7564/*
 7565 * detach_task() -- detach the task for the migration specified in env
 7566 */
 7567static void detach_task(struct task_struct *p, struct lb_env *env)
 7568{
 7569	lockdep_assert_held(&env->src_rq->lock);
 7570
 7571	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
 
 7572	set_task_cpu(p, env->dst_cpu);
 7573}
 7574
 7575/*
 7576 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
 7577 * part of active balancing operations within "domain".
 7578 *
 7579 * Returns a task if successful and NULL otherwise.
 7580 */
 7581static struct task_struct *detach_one_task(struct lb_env *env)
 7582{
 7583	struct task_struct *p;
 7584
 7585	lockdep_assert_held(&env->src_rq->lock);
 7586
 7587	list_for_each_entry_reverse(p,
 7588			&env->src_rq->cfs_tasks, se.group_node) {
 7589		if (!can_migrate_task(p, env))
 7590			continue;
 7591
 7592		detach_task(p, env);
 7593
 7594		/*
 7595		 * Right now, this is only the second place where
 7596		 * lb_gained[env->idle] is updated (other is detach_tasks)
 7597		 * so we can safely collect stats here rather than
 7598		 * inside detach_tasks().
 7599		 */
 7600		schedstat_inc(env->sd->lb_gained[env->idle]);
 7601		return p;
 7602	}
 7603	return NULL;
 7604}
 7605
 7606static const unsigned int sched_nr_migrate_break = 32;
 7607
 7608/*
 7609 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
 7610 * busiest_rq, as part of a balancing operation within domain "sd".
 7611 *
 7612 * Returns number of detached tasks if successful and 0 otherwise.
 7613 */
 7614static int detach_tasks(struct lb_env *env)
 7615{
 7616	struct list_head *tasks = &env->src_rq->cfs_tasks;
 7617	unsigned long util, load;
 7618	struct task_struct *p;
 
 7619	int detached = 0;
 7620
 7621	lockdep_assert_held(&env->src_rq->lock);
 7622
 7623	if (env->imbalance <= 0)
 7624		return 0;
 7625
 7626	while (!list_empty(tasks)) {
 7627		/*
 7628		 * We don't want to steal all, otherwise we may be treated likewise,
 7629		 * which could at worst lead to a livelock crash.
 7630		 */
 7631		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
 7632			break;
 7633
 7634		p = list_last_entry(tasks, struct task_struct, se.group_node);
 7635
 7636		env->loop++;
 7637		/* We've more or less seen every task there is, call it quits */
 7638		if (env->loop > env->loop_max)
 7639			break;
 7640
 7641		/* take a breather every nr_migrate tasks */
 7642		if (env->loop > env->loop_break) {
 7643			env->loop_break += sched_nr_migrate_break;
 7644			env->flags |= LBF_NEED_BREAK;
 7645			break;
 7646		}
 7647
 7648		if (!can_migrate_task(p, env))
 7649			goto next;
 7650
 7651		switch (env->migration_type) {
 7652		case migrate_load:
 7653			/*
 7654			 * Depending of the number of CPUs and tasks and the
 7655			 * cgroup hierarchy, task_h_load() can return a null
 7656			 * value. Make sure that env->imbalance decreases
 7657			 * otherwise detach_tasks() will stop only after
 7658			 * detaching up to loop_max tasks.
 7659			 */
 7660			load = max_t(unsigned long, task_h_load(p), 1);
 7661
 7662			if (sched_feat(LB_MIN) &&
 7663			    load < 16 && !env->sd->nr_balance_failed)
 7664				goto next;
 7665
 7666			/*
 7667			 * Make sure that we don't migrate too much load.
 7668			 * Nevertheless, let relax the constraint if
 7669			 * scheduler fails to find a good waiting task to
 7670			 * migrate.
 7671			 */
 7672			if (load/2 > env->imbalance &&
 7673			    env->sd->nr_balance_failed <= env->sd->cache_nice_tries)
 7674				goto next;
 7675
 7676			env->imbalance -= load;
 7677			break;
 7678
 7679		case migrate_util:
 7680			util = task_util_est(p);
 7681
 7682			if (util > env->imbalance)
 7683				goto next;
 7684
 7685			env->imbalance -= util;
 7686			break;
 7687
 7688		case migrate_task:
 7689			env->imbalance--;
 7690			break;
 7691
 7692		case migrate_misfit:
 7693			/* This is not a misfit task */
 7694			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
 7695				goto next;
 7696
 7697			env->imbalance = 0;
 7698			break;
 7699		}
 7700
 7701		detach_task(p, env);
 7702		list_add(&p->se.group_node, &env->tasks);
 7703
 7704		detached++;
 
 7705
 7706#ifdef CONFIG_PREEMPTION
 7707		/*
 7708		 * NEWIDLE balancing is a source of latency, so preemptible
 7709		 * kernels will stop after the first task is detached to minimize
 7710		 * the critical section.
 7711		 */
 7712		if (env->idle == CPU_NEWLY_IDLE)
 7713			break;
 7714#endif
 7715
 7716		/*
 7717		 * We only want to steal up to the prescribed amount of
 7718		 * load/util/tasks.
 7719		 */
 7720		if (env->imbalance <= 0)
 7721			break;
 7722
 7723		continue;
 7724next:
 7725		list_move(&p->se.group_node, tasks);
 7726	}
 7727
 7728	/*
 7729	 * Right now, this is one of only two places we collect this stat
 7730	 * so we can safely collect detach_one_task() stats here rather
 7731	 * than inside detach_one_task().
 7732	 */
 7733	schedstat_add(env->sd->lb_gained[env->idle], detached);
 7734
 7735	return detached;
 7736}
 7737
 7738/*
 7739 * attach_task() -- attach the task detached by detach_task() to its new rq.
 7740 */
 7741static void attach_task(struct rq *rq, struct task_struct *p)
 7742{
 7743	lockdep_assert_held(&rq->lock);
 7744
 7745	BUG_ON(task_rq(p) != rq);
 7746	activate_task(rq, p, ENQUEUE_NOCLOCK);
 
 7747	check_preempt_curr(rq, p, 0);
 7748}
 7749
 7750/*
 7751 * attach_one_task() -- attaches the task returned from detach_one_task() to
 7752 * its new rq.
 7753 */
 7754static void attach_one_task(struct rq *rq, struct task_struct *p)
 7755{
 7756	struct rq_flags rf;
 7757
 7758	rq_lock(rq, &rf);
 7759	update_rq_clock(rq);
 7760	attach_task(rq, p);
 7761	rq_unlock(rq, &rf);
 7762}
 7763
 7764/*
 7765 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 7766 * new rq.
 7767 */
 7768static void attach_tasks(struct lb_env *env)
 7769{
 7770	struct list_head *tasks = &env->tasks;
 7771	struct task_struct *p;
 7772	struct rq_flags rf;
 7773
 7774	rq_lock(env->dst_rq, &rf);
 7775	update_rq_clock(env->dst_rq);
 7776
 7777	while (!list_empty(tasks)) {
 7778		p = list_first_entry(tasks, struct task_struct, se.group_node);
 7779		list_del_init(&p->se.group_node);
 7780
 7781		attach_task(env->dst_rq, p);
 7782	}
 7783
 7784	rq_unlock(env->dst_rq, &rf);
 7785}
 7786
 7787#ifdef CONFIG_NO_HZ_COMMON
 7788static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
 7789{
 7790	if (cfs_rq->avg.load_avg)
 7791		return true;
 7792
 7793	if (cfs_rq->avg.util_avg)
 7794		return true;
 7795
 7796	return false;
 7797}
 7798
 7799static inline bool others_have_blocked(struct rq *rq)
 7800{
 7801	if (READ_ONCE(rq->avg_rt.util_avg))
 7802		return true;
 7803
 7804	if (READ_ONCE(rq->avg_dl.util_avg))
 7805		return true;
 7806
 7807	if (thermal_load_avg(rq))
 7808		return true;
 7809
 7810#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 7811	if (READ_ONCE(rq->avg_irq.util_avg))
 7812		return true;
 7813#endif
 7814
 7815	return false;
 7816}
 7817
 7818static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
 7819{
 7820	rq->last_blocked_load_update_tick = jiffies;
 7821
 7822	if (!has_blocked)
 7823		rq->has_blocked_load = 0;
 7824}
 7825#else
 7826static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
 7827static inline bool others_have_blocked(struct rq *rq) { return false; }
 7828static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
 7829#endif
 7830
 7831static bool __update_blocked_others(struct rq *rq, bool *done)
 7832{
 7833	const struct sched_class *curr_class;
 7834	u64 now = rq_clock_pelt(rq);
 7835	unsigned long thermal_pressure;
 7836	bool decayed;
 7837
 7838	/*
 7839	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
 7840	 * DL and IRQ signals have been updated before updating CFS.
 7841	 */
 7842	curr_class = rq->curr->sched_class;
 7843
 7844	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
 7845
 7846	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
 7847		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
 7848		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
 7849		  update_irq_load_avg(rq, 0);
 7850
 7851	if (others_have_blocked(rq))
 7852		*done = false;
 7853
 7854	return decayed;
 7855}
 7856
 7857#ifdef CONFIG_FAIR_GROUP_SCHED
 7858
 7859static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
 7860{
 7861	if (cfs_rq->load.weight)
 7862		return false;
 
 7863
 7864	if (cfs_rq->avg.load_sum)
 7865		return false;
 7866
 7867	if (cfs_rq->avg.util_sum)
 7868		return false;
 7869
 7870	if (cfs_rq->avg.runnable_sum)
 7871		return false;
 7872
 7873	return true;
 7874}
 7875
 7876static bool __update_blocked_fair(struct rq *rq, bool *done)
 7877{
 7878	struct cfs_rq *cfs_rq, *pos;
 7879	bool decayed = false;
 7880	int cpu = cpu_of(rq);
 7881
 7882	/*
 7883	 * Iterates the task_group tree in a bottom up fashion, see
 7884	 * list_add_leaf_cfs_rq() for details.
 7885	 */
 7886	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
 7887		struct sched_entity *se;
 
 
 7888
 7889		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
 7890			update_tg_load_avg(cfs_rq, 0);
 7891
 7892			if (cfs_rq == &rq->cfs)
 7893				decayed = true;
 7894		}
 7895
 7896		/* Propagate pending load changes to the parent, if any: */
 7897		se = cfs_rq->tg->se[cpu];
 7898		if (se && !skip_blocked_update(se))
 7899			update_load_avg(cfs_rq_of(se), se, 0);
 7900
 7901		/*
 7902		 * There can be a lot of idle CPU cgroups.  Don't let fully
 7903		 * decayed cfs_rqs linger on the list.
 7904		 */
 7905		if (cfs_rq_is_decayed(cfs_rq))
 7906			list_del_leaf_cfs_rq(cfs_rq);
 7907
 7908		/* Don't need periodic decay once load/util_avg are null */
 7909		if (cfs_rq_has_blocked(cfs_rq))
 7910			*done = false;
 7911	}
 7912
 7913	return decayed;
 7914}
 7915
 7916/*
 7917 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
 7918 * This needs to be done in a top-down fashion because the load of a child
 7919 * group is a fraction of its parents load.
 7920 */
 7921static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
 7922{
 7923	struct rq *rq = rq_of(cfs_rq);
 7924	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
 7925	unsigned long now = jiffies;
 7926	unsigned long load;
 7927
 7928	if (cfs_rq->last_h_load_update == now)
 7929		return;
 7930
 7931	WRITE_ONCE(cfs_rq->h_load_next, NULL);
 7932	for_each_sched_entity(se) {
 7933		cfs_rq = cfs_rq_of(se);
 7934		WRITE_ONCE(cfs_rq->h_load_next, se);
 7935		if (cfs_rq->last_h_load_update == now)
 7936			break;
 7937	}
 7938
 7939	if (!se) {
 7940		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
 7941		cfs_rq->last_h_load_update = now;
 7942	}
 7943
 7944	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
 7945		load = cfs_rq->h_load;
 7946		load = div64_ul(load * se->avg.load_avg,
 7947			cfs_rq_load_avg(cfs_rq) + 1);
 7948		cfs_rq = group_cfs_rq(se);
 7949		cfs_rq->h_load = load;
 7950		cfs_rq->last_h_load_update = now;
 7951	}
 7952}
 7953
 7954static unsigned long task_h_load(struct task_struct *p)
 7955{
 7956	struct cfs_rq *cfs_rq = task_cfs_rq(p);
 7957
 7958	update_cfs_rq_h_load(cfs_rq);
 7959	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
 7960			cfs_rq_load_avg(cfs_rq) + 1);
 7961}
 7962#else
 7963static bool __update_blocked_fair(struct rq *rq, bool *done)
 7964{
 
 7965	struct cfs_rq *cfs_rq = &rq->cfs;
 7966	bool decayed;
 7967
 7968	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
 7969	if (cfs_rq_has_blocked(cfs_rq))
 7970		*done = false;
 7971
 7972	return decayed;
 7973}
 7974
 7975static unsigned long task_h_load(struct task_struct *p)
 7976{
 7977	return p->se.avg.load_avg;
 7978}
 7979#endif
 7980
 7981static void update_blocked_averages(int cpu)
 7982{
 7983	bool decayed = false, done = true;
 7984	struct rq *rq = cpu_rq(cpu);
 7985	struct rq_flags rf;
 7986
 7987	rq_lock_irqsave(rq, &rf);
 7988	update_rq_clock(rq);
 7989
 7990	decayed |= __update_blocked_others(rq, &done);
 7991	decayed |= __update_blocked_fair(rq, &done);
 7992
 7993	update_blocked_load_status(rq, !done);
 7994	if (decayed)
 7995		cpufreq_update_util(rq, 0);
 7996	rq_unlock_irqrestore(rq, &rf);
 7997}
 7998
 7999/********** Helpers for find_busiest_group ************************/
 8000
 8001/*
 8002 * sg_lb_stats - stats of a sched_group required for load_balancing
 8003 */
 8004struct sg_lb_stats {
 8005	unsigned long avg_load; /*Avg load across the CPUs of the group */
 8006	unsigned long group_load; /* Total load over the CPUs of the group */
 
 
 8007	unsigned long group_capacity;
 8008	unsigned long group_util; /* Total utilization over the CPUs of the group */
 8009	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
 8010	unsigned int sum_nr_running; /* Nr of tasks running in the group */
 8011	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
 8012	unsigned int idle_cpus;
 8013	unsigned int group_weight;
 8014	enum group_type group_type;
 8015	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
 8016	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
 8017#ifdef CONFIG_NUMA_BALANCING
 8018	unsigned int nr_numa_running;
 8019	unsigned int nr_preferred_running;
 8020#endif
 8021};
 8022
 8023/*
 8024 * sd_lb_stats - Structure to store the statistics of a sched_domain
 8025 *		 during load balancing.
 8026 */
 8027struct sd_lb_stats {
 8028	struct sched_group *busiest;	/* Busiest group in this sd */
 8029	struct sched_group *local;	/* Local group in this sd */
 8030	unsigned long total_load;	/* Total load of all groups in sd */
 8031	unsigned long total_capacity;	/* Total capacity of all groups in sd */
 8032	unsigned long avg_load;	/* Average load across all groups in sd */
 8033	unsigned int prefer_sibling; /* tasks should go to sibling first */
 8034
 8035	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
 8036	struct sg_lb_stats local_stat;	/* Statistics of the local group */
 8037};
 8038
 8039static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
 8040{
 8041	/*
 8042	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
 8043	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
 8044	 * We must however set busiest_stat::group_type and
 8045	 * busiest_stat::idle_cpus to the worst busiest group because
 8046	 * update_sd_pick_busiest() reads these before assignment.
 8047	 */
 8048	*sds = (struct sd_lb_stats){
 8049		.busiest = NULL,
 8050		.local = NULL,
 8051		.total_load = 0UL,
 8052		.total_capacity = 0UL,
 8053		.busiest_stat = {
 8054			.idle_cpus = UINT_MAX,
 8055			.group_type = group_has_spare,
 
 8056		},
 8057	};
 8058}
 8059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8060static unsigned long scale_rt_capacity(int cpu)
 8061{
 8062	struct rq *rq = cpu_rq(cpu);
 8063	unsigned long max = arch_scale_cpu_capacity(cpu);
 8064	unsigned long used, free;
 8065	unsigned long irq;
 8066
 8067	irq = cpu_util_irq(rq);
 
 
 
 
 
 
 8068
 8069	if (unlikely(irq >= max))
 8070		return 1;
 8071
 8072	/*
 8073	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
 8074	 * (running and not running) with weights 0 and 1024 respectively.
 8075	 * avg_thermal.load_avg tracks thermal pressure and the weighted
 8076	 * average uses the actual delta max capacity(load).
 8077	 */
 8078	used = READ_ONCE(rq->avg_rt.util_avg);
 8079	used += READ_ONCE(rq->avg_dl.util_avg);
 8080	used += thermal_load_avg(rq);
 8081
 8082	if (unlikely(used >= max))
 8083		return 1;
 8084
 8085	free = max - used;
 
 8086
 8087	return scale_irq_capacity(free, irq, max);
 8088}
 8089
 8090static void update_cpu_capacity(struct sched_domain *sd, int cpu)
 8091{
 8092	unsigned long capacity = scale_rt_capacity(cpu);
 8093	struct sched_group *sdg = sd->groups;
 8094
 8095	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
 
 
 
 8096
 8097	if (!capacity)
 8098		capacity = 1;
 8099
 8100	cpu_rq(cpu)->cpu_capacity = capacity;
 8101	sdg->sgc->capacity = capacity;
 8102	sdg->sgc->min_capacity = capacity;
 8103	sdg->sgc->max_capacity = capacity;
 8104}
 8105
 8106void update_group_capacity(struct sched_domain *sd, int cpu)
 8107{
 8108	struct sched_domain *child = sd->child;
 8109	struct sched_group *group, *sdg = sd->groups;
 8110	unsigned long capacity, min_capacity, max_capacity;
 8111	unsigned long interval;
 8112
 8113	interval = msecs_to_jiffies(sd->balance_interval);
 8114	interval = clamp(interval, 1UL, max_load_balance_interval);
 8115	sdg->sgc->next_update = jiffies + interval;
 8116
 8117	if (!child) {
 8118		update_cpu_capacity(sd, cpu);
 8119		return;
 8120	}
 8121
 8122	capacity = 0;
 8123	min_capacity = ULONG_MAX;
 8124	max_capacity = 0;
 8125
 8126	if (child->flags & SD_OVERLAP) {
 8127		/*
 8128		 * SD_OVERLAP domains cannot assume that child groups
 8129		 * span the current group.
 8130		 */
 8131
 8132		for_each_cpu(cpu, sched_group_span(sdg)) {
 8133			unsigned long cpu_cap = capacity_of(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8134
 8135			capacity += cpu_cap;
 8136			min_capacity = min(cpu_cap, min_capacity);
 8137			max_capacity = max(cpu_cap, max_capacity);
 8138		}
 8139	} else  {
 8140		/*
 8141		 * !SD_OVERLAP domains can assume that child groups
 8142		 * span the current group.
 8143		 */
 8144
 8145		group = child->groups;
 8146		do {
 8147			struct sched_group_capacity *sgc = group->sgc;
 8148
 8149			capacity += sgc->capacity;
 8150			min_capacity = min(sgc->min_capacity, min_capacity);
 8151			max_capacity = max(sgc->max_capacity, max_capacity);
 8152			group = group->next;
 8153		} while (group != child->groups);
 8154	}
 8155
 8156	sdg->sgc->capacity = capacity;
 8157	sdg->sgc->min_capacity = min_capacity;
 8158	sdg->sgc->max_capacity = max_capacity;
 8159}
 8160
 8161/*
 8162 * Check whether the capacity of the rq has been noticeably reduced by side
 8163 * activity. The imbalance_pct is used for the threshold.
 8164 * Return true is the capacity is reduced
 8165 */
 8166static inline int
 8167check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
 8168{
 8169	return ((rq->cpu_capacity * sd->imbalance_pct) <
 8170				(rq->cpu_capacity_orig * 100));
 8171}
 8172
 8173/*
 8174 * Check whether a rq has a misfit task and if it looks like we can actually
 8175 * help that task: we can migrate the task to a CPU of higher capacity, or
 8176 * the task's current CPU is heavily pressured.
 8177 */
 8178static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
 8179{
 8180	return rq->misfit_task_load &&
 8181		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
 8182		 check_cpu_capacity(rq, sd));
 8183}
 8184
 8185/*
 8186 * Group imbalance indicates (and tries to solve) the problem where balancing
 8187 * groups is inadequate due to ->cpus_ptr constraints.
 8188 *
 8189 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
 8190 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
 8191 * Something like:
 8192 *
 8193 *	{ 0 1 2 3 } { 4 5 6 7 }
 8194 *	        *     * * *
 8195 *
 8196 * If we were to balance group-wise we'd place two tasks in the first group and
 8197 * two tasks in the second group. Clearly this is undesired as it will overload
 8198 * cpu 3 and leave one of the CPUs in the second group unused.
 8199 *
 8200 * The current solution to this issue is detecting the skew in the first group
 8201 * by noticing the lower domain failed to reach balance and had difficulty
 8202 * moving tasks due to affinity constraints.
 8203 *
 8204 * When this is so detected; this group becomes a candidate for busiest; see
 8205 * update_sd_pick_busiest(). And calculate_imbalance() and
 8206 * find_busiest_group() avoid some of the usual balance conditions to allow it
 8207 * to create an effective group imbalance.
 8208 *
 8209 * This is a somewhat tricky proposition since the next run might not find the
 8210 * group imbalance and decide the groups need to be balanced again. A most
 8211 * subtle and fragile situation.
 8212 */
 8213
 8214static inline int sg_imbalanced(struct sched_group *group)
 8215{
 8216	return group->sgc->imbalance;
 8217}
 8218
 8219/*
 8220 * group_has_capacity returns true if the group has spare capacity that could
 8221 * be used by some tasks.
 8222 * We consider that a group has spare capacity if the  * number of task is
 8223 * smaller than the number of CPUs or if the utilization is lower than the
 8224 * available capacity for CFS tasks.
 8225 * For the latter, we use a threshold to stabilize the state, to take into
 8226 * account the variance of the tasks' load and to return true if the available
 8227 * capacity in meaningful for the load balancer.
 8228 * As an example, an available capacity of 1% can appear but it doesn't make
 8229 * any benefit for the load balance.
 8230 */
 8231static inline bool
 8232group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
 8233{
 8234	if (sgs->sum_nr_running < sgs->group_weight)
 8235		return true;
 8236
 8237	if ((sgs->group_capacity * imbalance_pct) <
 8238			(sgs->group_runnable * 100))
 8239		return false;
 8240
 8241	if ((sgs->group_capacity * 100) >
 8242			(sgs->group_util * imbalance_pct))
 8243		return true;
 8244
 8245	return false;
 8246}
 8247
 8248/*
 8249 *  group_is_overloaded returns true if the group has more tasks than it can
 8250 *  handle.
 8251 *  group_is_overloaded is not equals to !group_has_capacity because a group
 8252 *  with the exact right number of tasks, has no more spare capacity but is not
 8253 *  overloaded so both group_has_capacity and group_is_overloaded return
 8254 *  false.
 8255 */
 8256static inline bool
 8257group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
 8258{
 8259	if (sgs->sum_nr_running <= sgs->group_weight)
 8260		return false;
 8261
 8262	if ((sgs->group_capacity * 100) <
 8263			(sgs->group_util * imbalance_pct))
 8264		return true;
 8265
 8266	if ((sgs->group_capacity * imbalance_pct) <
 8267			(sgs->group_runnable * 100))
 8268		return true;
 8269
 8270	return false;
 8271}
 8272
 8273/*
 8274 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
 8275 * per-CPU capacity than sched_group ref.
 8276 */
 8277static inline bool
 8278group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
 8279{
 8280	return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
 8281}
 8282
 8283/*
 8284 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
 8285 * per-CPU capacity_orig than sched_group ref.
 8286 */
 8287static inline bool
 8288group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
 8289{
 8290	return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
 
 8291}
 8292
 8293static inline enum
 8294group_type group_classify(unsigned int imbalance_pct,
 8295			  struct sched_group *group,
 8296			  struct sg_lb_stats *sgs)
 8297{
 8298	if (group_is_overloaded(imbalance_pct, sgs))
 8299		return group_overloaded;
 8300
 8301	if (sg_imbalanced(group))
 8302		return group_imbalanced;
 8303
 8304	if (sgs->group_asym_packing)
 8305		return group_asym_packing;
 8306
 8307	if (sgs->group_misfit_task_load)
 8308		return group_misfit_task;
 8309
 8310	if (!group_has_capacity(imbalance_pct, sgs))
 8311		return group_fully_busy;
 8312
 8313	return group_has_spare;
 8314}
 8315
 8316static bool update_nohz_stats(struct rq *rq, bool force)
 8317{
 8318#ifdef CONFIG_NO_HZ_COMMON
 8319	unsigned int cpu = rq->cpu;
 8320
 8321	if (!rq->has_blocked_load)
 8322		return false;
 8323
 8324	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
 8325		return false;
 8326
 8327	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
 8328		return true;
 8329
 8330	update_blocked_averages(cpu);
 8331
 8332	return rq->has_blocked_load;
 8333#else
 8334	return false;
 8335#endif
 8336}
 8337
 8338/**
 8339 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 8340 * @env: The load balancing environment.
 8341 * @group: sched_group whose statistics are to be updated.
 
 
 8342 * @sgs: variable to hold the statistics for this group.
 8343 * @sg_status: Holds flag indicating the status of the sched_group
 8344 */
 8345static inline void update_sg_lb_stats(struct lb_env *env,
 8346				      struct sched_group *group,
 8347				      struct sg_lb_stats *sgs,
 8348				      int *sg_status)
 8349{
 8350	int i, nr_running, local_group;
 
 8351
 8352	memset(sgs, 0, sizeof(*sgs));
 8353
 8354	local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
 8355
 8356	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
 8357		struct rq *rq = cpu_rq(i);
 8358
 8359		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
 8360			env->flags |= LBF_NOHZ_AGAIN;
 
 
 
 8361
 8362		sgs->group_load += cpu_load(rq);
 8363		sgs->group_util += cpu_util(i);
 8364		sgs->group_runnable += cpu_runnable(rq);
 8365		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
 8366
 8367		nr_running = rq->nr_running;
 8368		sgs->sum_nr_running += nr_running;
 8369
 8370		if (nr_running > 1)
 8371			*sg_status |= SG_OVERLOAD;
 8372
 8373		if (cpu_overutilized(i))
 8374			*sg_status |= SG_OVERUTILIZED;
 8375
 8376#ifdef CONFIG_NUMA_BALANCING
 8377		sgs->nr_numa_running += rq->nr_numa_running;
 8378		sgs->nr_preferred_running += rq->nr_preferred_running;
 8379#endif
 
 8380		/*
 8381		 * No need to call idle_cpu() if nr_running is not 0
 8382		 */
 8383		if (!nr_running && idle_cpu(i)) {
 8384			sgs->idle_cpus++;
 8385			/* Idle cpu can't have misfit task */
 8386			continue;
 8387		}
 8388
 8389		if (local_group)
 8390			continue;
 8391
 8392		/* Check for a misfit task on the cpu */
 8393		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
 8394		    sgs->group_misfit_task_load < rq->misfit_task_load) {
 8395			sgs->group_misfit_task_load = rq->misfit_task_load;
 8396			*sg_status |= SG_OVERLOAD;
 8397		}
 8398	}
 8399
 8400	/* Check if dst CPU is idle and preferred to this group */
 8401	if (env->sd->flags & SD_ASYM_PACKING &&
 8402	    env->idle != CPU_NOT_IDLE &&
 8403	    sgs->sum_h_nr_running &&
 8404	    sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
 8405		sgs->group_asym_packing = 1;
 8406	}
 8407
 8408	sgs->group_capacity = group->sgc->capacity;
 
 8409
 8410	sgs->group_weight = group->group_weight;
 8411
 8412	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
 8413
 8414	/* Computing avg_load makes sense only when group is overloaded */
 8415	if (sgs->group_type == group_overloaded)
 8416		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
 8417				sgs->group_capacity;
 8418}
 8419
 8420/**
 8421 * update_sd_pick_busiest - return 1 on busiest group
 8422 * @env: The load balancing environment.
 8423 * @sds: sched_domain statistics
 8424 * @sg: sched_group candidate to be checked for being the busiest
 8425 * @sgs: sched_group statistics
 8426 *
 8427 * Determine if @sg is a busier group than the previously selected
 8428 * busiest group.
 8429 *
 8430 * Return: %true if @sg is a busier group than the previously selected
 8431 * busiest group. %false otherwise.
 8432 */
 8433static bool update_sd_pick_busiest(struct lb_env *env,
 8434				   struct sd_lb_stats *sds,
 8435				   struct sched_group *sg,
 8436				   struct sg_lb_stats *sgs)
 8437{
 8438	struct sg_lb_stats *busiest = &sds->busiest_stat;
 8439
 8440	/* Make sure that there is at least one task to pull */
 8441	if (!sgs->sum_h_nr_running)
 8442		return false;
 8443
 8444	/*
 8445	 * Don't try to pull misfit tasks we can't help.
 8446	 * We can use max_capacity here as reduction in capacity on some
 8447	 * CPUs in the group should either be possible to resolve
 8448	 * internally or be covered by avg_load imbalance (eventually).
 8449	 */
 8450	if (sgs->group_type == group_misfit_task &&
 8451	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
 8452	     sds->local_stat.group_type != group_has_spare))
 8453		return false;
 8454
 8455	if (sgs->group_type > busiest->group_type)
 8456		return true;
 8457
 8458	if (sgs->group_type < busiest->group_type)
 8459		return false;
 8460
 
 
 
 
 
 
 8461	/*
 8462	 * The candidate and the current busiest group are the same type of
 8463	 * group. Let check which one is the busiest according to the type.
 
 
 8464	 */
 8465
 8466	switch (sgs->group_type) {
 8467	case group_overloaded:
 8468		/* Select the overloaded group with highest avg_load. */
 8469		if (sgs->avg_load <= busiest->avg_load)
 8470			return false;
 8471		break;
 8472
 8473	case group_imbalanced:
 8474		/*
 8475		 * Select the 1st imbalanced group as we don't have any way to
 8476		 * choose one more than another.
 8477		 */
 8478		return false;
 8479
 8480	case group_asym_packing:
 8481		/* Prefer to move from lowest priority CPU's work */
 8482		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
 8483			return false;
 8484		break;
 8485
 8486	case group_misfit_task:
 8487		/*
 8488		 * If we have more than one misfit sg go with the biggest
 8489		 * misfit.
 8490		 */
 8491		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
 8492			return false;
 8493		break;
 8494
 8495	case group_fully_busy:
 8496		/*
 8497		 * Select the fully busy group with highest avg_load. In
 8498		 * theory, there is no need to pull task from such kind of
 8499		 * group because tasks have all compute capacity that they need
 8500		 * but we can still improve the overall throughput by reducing
 8501		 * contention when accessing shared HW resources.
 8502		 *
 8503		 * XXX for now avg_load is not computed and always 0 so we
 8504		 * select the 1st one.
 8505		 */
 8506		if (sgs->avg_load <= busiest->avg_load)
 8507			return false;
 8508		break;
 8509
 8510	case group_has_spare:
 8511		/*
 8512		 * Select not overloaded group with lowest number of idle cpus
 8513		 * and highest number of running tasks. We could also compare
 8514		 * the spare capacity which is more stable but it can end up
 8515		 * that the group has less spare capacity but finally more idle
 8516		 * CPUs which means less opportunity to pull tasks.
 8517		 */
 8518		if (sgs->idle_cpus > busiest->idle_cpus)
 8519			return false;
 8520		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
 8521			 (sgs->sum_nr_running <= busiest->sum_nr_running))
 8522			return false;
 8523
 8524		break;
 8525	}
 8526
 8527	/*
 8528	 * Candidate sg has no more than one task per CPU and has higher
 8529	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
 8530	 * throughput. Maximize throughput, power/energy consequences are not
 8531	 * considered.
 8532	 */
 8533	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
 8534	    (sgs->group_type <= group_fully_busy) &&
 8535	    (group_smaller_min_cpu_capacity(sds->local, sg)))
 8536		return false;
 8537
 8538	return true;
 8539}
 8540
 8541#ifdef CONFIG_NUMA_BALANCING
 8542static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
 8543{
 8544	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
 8545		return regular;
 8546	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
 8547		return remote;
 8548	return all;
 8549}
 8550
 8551static inline enum fbq_type fbq_classify_rq(struct rq *rq)
 8552{
 8553	if (rq->nr_running > rq->nr_numa_running)
 8554		return regular;
 8555	if (rq->nr_running > rq->nr_preferred_running)
 8556		return remote;
 8557	return all;
 8558}
 8559#else
 8560static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
 8561{
 8562	return all;
 8563}
 8564
 8565static inline enum fbq_type fbq_classify_rq(struct rq *rq)
 8566{
 8567	return regular;
 8568}
 8569#endif /* CONFIG_NUMA_BALANCING */
 8570
 8571
 8572struct sg_lb_stats;
 8573
 8574/*
 8575 * task_running_on_cpu - return 1 if @p is running on @cpu.
 8576 */
 8577
 8578static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
 8579{
 8580	/* Task has no contribution or is new */
 8581	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
 8582		return 0;
 8583
 8584	if (task_on_rq_queued(p))
 8585		return 1;
 8586
 8587	return 0;
 8588}
 8589
 8590/**
 8591 * idle_cpu_without - would a given CPU be idle without p ?
 8592 * @cpu: the processor on which idleness is tested.
 8593 * @p: task which should be ignored.
 8594 *
 8595 * Return: 1 if the CPU would be idle. 0 otherwise.
 8596 */
 8597static int idle_cpu_without(int cpu, struct task_struct *p)
 8598{
 8599	struct rq *rq = cpu_rq(cpu);
 8600
 8601	if (rq->curr != rq->idle && rq->curr != p)
 8602		return 0;
 8603
 8604	/*
 8605	 * rq->nr_running can't be used but an updated version without the
 8606	 * impact of p on cpu must be used instead. The updated nr_running
 8607	 * be computed and tested before calling idle_cpu_without().
 8608	 */
 8609
 8610#ifdef CONFIG_SMP
 8611	if (rq->ttwu_pending)
 8612		return 0;
 8613#endif
 8614
 8615	return 1;
 8616}
 8617
 8618/*
 8619 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
 8620 * @sd: The sched_domain level to look for idlest group.
 8621 * @group: sched_group whose statistics are to be updated.
 8622 * @sgs: variable to hold the statistics for this group.
 8623 * @p: The task for which we look for the idlest group/CPU.
 8624 */
 8625static inline void update_sg_wakeup_stats(struct sched_domain *sd,
 8626					  struct sched_group *group,
 8627					  struct sg_lb_stats *sgs,
 8628					  struct task_struct *p)
 8629{
 8630	int i, nr_running;
 8631
 8632	memset(sgs, 0, sizeof(*sgs));
 8633
 8634	for_each_cpu(i, sched_group_span(group)) {
 8635		struct rq *rq = cpu_rq(i);
 8636		unsigned int local;
 8637
 8638		sgs->group_load += cpu_load_without(rq, p);
 8639		sgs->group_util += cpu_util_without(i, p);
 8640		sgs->group_runnable += cpu_runnable_without(rq, p);
 8641		local = task_running_on_cpu(i, p);
 8642		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
 8643
 8644		nr_running = rq->nr_running - local;
 8645		sgs->sum_nr_running += nr_running;
 8646
 8647		/*
 8648		 * No need to call idle_cpu_without() if nr_running is not 0
 8649		 */
 8650		if (!nr_running && idle_cpu_without(i, p))
 8651			sgs->idle_cpus++;
 8652
 8653	}
 8654
 8655	/* Check if task fits in the group */
 8656	if (sd->flags & SD_ASYM_CPUCAPACITY &&
 8657	    !task_fits_capacity(p, group->sgc->max_capacity)) {
 8658		sgs->group_misfit_task_load = 1;
 8659	}
 8660
 8661	sgs->group_capacity = group->sgc->capacity;
 8662
 8663	sgs->group_weight = group->group_weight;
 8664
 8665	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
 8666
 8667	/*
 8668	 * Computing avg_load makes sense only when group is fully busy or
 8669	 * overloaded
 8670	 */
 8671	if (sgs->group_type == group_fully_busy ||
 8672		sgs->group_type == group_overloaded)
 8673		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
 8674				sgs->group_capacity;
 8675}
 8676
 8677static bool update_pick_idlest(struct sched_group *idlest,
 8678			       struct sg_lb_stats *idlest_sgs,
 8679			       struct sched_group *group,
 8680			       struct sg_lb_stats *sgs)
 8681{
 8682	if (sgs->group_type < idlest_sgs->group_type)
 8683		return true;
 8684
 8685	if (sgs->group_type > idlest_sgs->group_type)
 8686		return false;
 8687
 8688	/*
 8689	 * The candidate and the current idlest group are the same type of
 8690	 * group. Let check which one is the idlest according to the type.
 8691	 */
 8692
 8693	switch (sgs->group_type) {
 8694	case group_overloaded:
 8695	case group_fully_busy:
 8696		/* Select the group with lowest avg_load. */
 8697		if (idlest_sgs->avg_load <= sgs->avg_load)
 8698			return false;
 8699		break;
 8700
 8701	case group_imbalanced:
 8702	case group_asym_packing:
 8703		/* Those types are not used in the slow wakeup path */
 8704		return false;
 8705
 8706	case group_misfit_task:
 8707		/* Select group with the highest max capacity */
 8708		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
 8709			return false;
 8710		break;
 8711
 8712	case group_has_spare:
 8713		/* Select group with most idle CPUs */
 8714		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
 8715			return false;
 8716
 8717		/* Select group with lowest group_util */
 8718		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
 8719			idlest_sgs->group_util <= sgs->group_util)
 8720			return false;
 8721
 8722		break;
 8723	}
 8724
 8725	return true;
 8726}
 8727
 8728/*
 8729 * find_idlest_group() finds and returns the least busy CPU group within the
 8730 * domain.
 8731 *
 8732 * Assumes p is allowed on at least one CPU in sd.
 8733 */
 8734static struct sched_group *
 8735find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
 8736{
 8737	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
 8738	struct sg_lb_stats local_sgs, tmp_sgs;
 8739	struct sg_lb_stats *sgs;
 8740	unsigned long imbalance;
 8741	struct sg_lb_stats idlest_sgs = {
 8742			.avg_load = UINT_MAX,
 8743			.group_type = group_overloaded,
 8744	};
 8745
 8746	imbalance = scale_load_down(NICE_0_LOAD) *
 8747				(sd->imbalance_pct-100) / 100;
 8748
 8749	do {
 8750		int local_group;
 8751
 8752		/* Skip over this group if it has no CPUs allowed */
 8753		if (!cpumask_intersects(sched_group_span(group),
 8754					p->cpus_ptr))
 8755			continue;
 8756
 8757		local_group = cpumask_test_cpu(this_cpu,
 8758					       sched_group_span(group));
 8759
 8760		if (local_group) {
 8761			sgs = &local_sgs;
 8762			local = group;
 8763		} else {
 8764			sgs = &tmp_sgs;
 8765		}
 8766
 8767		update_sg_wakeup_stats(sd, group, sgs, p);
 8768
 8769		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
 8770			idlest = group;
 8771			idlest_sgs = *sgs;
 8772		}
 8773
 8774	} while (group = group->next, group != sd->groups);
 8775
 8776
 8777	/* There is no idlest group to push tasks to */
 8778	if (!idlest)
 8779		return NULL;
 8780
 8781	/* The local group has been skipped because of CPU affinity */
 8782	if (!local)
 8783		return idlest;
 8784
 8785	/*
 8786	 * If the local group is idler than the selected idlest group
 8787	 * don't try and push the task.
 8788	 */
 8789	if (local_sgs.group_type < idlest_sgs.group_type)
 8790		return NULL;
 8791
 8792	/*
 8793	 * If the local group is busier than the selected idlest group
 8794	 * try and push the task.
 8795	 */
 8796	if (local_sgs.group_type > idlest_sgs.group_type)
 8797		return idlest;
 8798
 8799	switch (local_sgs.group_type) {
 8800	case group_overloaded:
 8801	case group_fully_busy:
 8802		/*
 8803		 * When comparing groups across NUMA domains, it's possible for
 8804		 * the local domain to be very lightly loaded relative to the
 8805		 * remote domains but "imbalance" skews the comparison making
 8806		 * remote CPUs look much more favourable. When considering
 8807		 * cross-domain, add imbalance to the load on the remote node
 8808		 * and consider staying local.
 8809		 */
 8810
 8811		if ((sd->flags & SD_NUMA) &&
 8812		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
 8813			return NULL;
 8814
 8815		/*
 8816		 * If the local group is less loaded than the selected
 8817		 * idlest group don't try and push any tasks.
 8818		 */
 8819		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
 8820			return NULL;
 8821
 8822		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
 8823			return NULL;
 8824		break;
 8825
 8826	case group_imbalanced:
 8827	case group_asym_packing:
 8828		/* Those type are not used in the slow wakeup path */
 8829		return NULL;
 8830
 8831	case group_misfit_task:
 8832		/* Select group with the highest max capacity */
 8833		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
 8834			return NULL;
 8835		break;
 8836
 8837	case group_has_spare:
 8838		if (sd->flags & SD_NUMA) {
 8839#ifdef CONFIG_NUMA_BALANCING
 8840			int idlest_cpu;
 8841			/*
 8842			 * If there is spare capacity at NUMA, try to select
 8843			 * the preferred node
 8844			 */
 8845			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
 8846				return NULL;
 8847
 8848			idlest_cpu = cpumask_first(sched_group_span(idlest));
 8849			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
 8850				return idlest;
 8851#endif
 8852			/*
 8853			 * Otherwise, keep the task on this node to stay close
 8854			 * its wakeup source and improve locality. If there is
 8855			 * a real need of migration, periodic load balance will
 8856			 * take care of it.
 8857			 */
 8858			if (local_sgs.idle_cpus)
 8859				return NULL;
 8860		}
 8861
 8862		/*
 8863		 * Select group with highest number of idle CPUs. We could also
 8864		 * compare the utilization which is more stable but it can end
 8865		 * up that the group has less spare capacity but finally more
 8866		 * idle CPUs which means more opportunity to run task.
 8867		 */
 8868		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
 8869			return NULL;
 8870		break;
 8871	}
 8872
 8873	return idlest;
 8874}
 8875
 8876/**
 8877 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
 8878 * @env: The load balancing environment.
 8879 * @sds: variable to hold the statistics for this sched_domain.
 8880 */
 8881
 8882static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
 8883{
 8884	struct sched_domain *child = env->sd->child;
 8885	struct sched_group *sg = env->sd->groups;
 8886	struct sg_lb_stats *local = &sds->local_stat;
 8887	struct sg_lb_stats tmp_sgs;
 8888	int sg_status = 0;
 
 
 
 
 8889
 8890#ifdef CONFIG_NO_HZ_COMMON
 8891	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
 8892		env->flags |= LBF_NOHZ_STATS;
 8893#endif
 8894
 8895	do {
 8896		struct sg_lb_stats *sgs = &tmp_sgs;
 8897		int local_group;
 8898
 8899		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
 8900		if (local_group) {
 8901			sds->local = sg;
 8902			sgs = local;
 8903
 8904			if (env->idle != CPU_NEWLY_IDLE ||
 8905			    time_after_eq(jiffies, sg->sgc->next_update))
 8906				update_group_capacity(env->sd, env->dst_cpu);
 8907		}
 8908
 8909		update_sg_lb_stats(env, sg, sgs, &sg_status);
 
 8910
 8911		if (local_group)
 8912			goto next_group;
 8913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8914
 8915		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
 8916			sds->busiest = sg;
 8917			sds->busiest_stat = *sgs;
 8918		}
 8919
 8920next_group:
 8921		/* Now, start updating sd_lb_stats */
 8922		sds->total_load += sgs->group_load;
 8923		sds->total_capacity += sgs->group_capacity;
 8924
 8925		sg = sg->next;
 8926	} while (sg != env->sd->groups);
 8927
 8928	/* Tag domain that child domain prefers tasks go to siblings first */
 8929	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
 
 
 
 
 
 
 8930
 8931#ifdef CONFIG_NO_HZ_COMMON
 8932	if ((env->flags & LBF_NOHZ_AGAIN) &&
 8933	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8934
 8935		WRITE_ONCE(nohz.next_blocked,
 8936			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
 8937	}
 8938#endif
 8939
 8940	if (env->sd->flags & SD_NUMA)
 8941		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
 8942
 8943	if (!env->sd->parent) {
 8944		struct root_domain *rd = env->dst_rq->rd;
 8945
 8946		/* update overload indicator if we are at root domain */
 8947		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
 
 8948
 8949		/* Update over-utilization (tipping point, U >= 0) indicator */
 8950		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
 8951		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
 8952	} else if (sg_status & SG_OVERUTILIZED) {
 8953		struct root_domain *rd = env->dst_rq->rd;
 8954
 8955		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
 8956		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
 8957	}
 8958}
 8959
 8960static inline long adjust_numa_imbalance(int imbalance, int src_nr_running)
 
 
 
 
 
 
 
 
 8961{
 8962	unsigned int imbalance_min;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8963
 8964	/*
 8965	 * Allow a small imbalance based on a simple pair of communicating
 8966	 * tasks that remain local when the source domain is almost idle.
 
 8967	 */
 8968	imbalance_min = 2;
 8969	if (src_nr_running <= imbalance_min)
 8970		return 0;
 8971
 8972	return imbalance;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8973}
 8974
 8975/**
 8976 * calculate_imbalance - Calculate the amount of imbalance present within the
 8977 *			 groups of a given sched_domain during load balance.
 8978 * @env: load balance environment
 8979 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 8980 */
 8981static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
 8982{
 
 8983	struct sg_lb_stats *local, *busiest;
 8984
 8985	local = &sds->local_stat;
 8986	busiest = &sds->busiest_stat;
 8987
 8988	if (busiest->group_type == group_misfit_task) {
 8989		/* Set imbalance to allow misfit tasks to be balanced. */
 8990		env->migration_type = migrate_misfit;
 8991		env->imbalance = 1;
 8992		return;
 8993	}
 8994
 8995	if (busiest->group_type == group_asym_packing) {
 8996		/*
 8997		 * In case of asym capacity, we will try to migrate all load to
 8998		 * the preferred CPU.
 8999		 */
 9000		env->migration_type = migrate_task;
 9001		env->imbalance = busiest->sum_h_nr_running;
 9002		return;
 9003	}
 9004
 9005	if (busiest->group_type == group_imbalanced) {
 9006		/*
 9007		 * In the group_imb case we cannot rely on group-wide averages
 9008		 * to ensure CPU-load equilibrium, try to move any task to fix
 9009		 * the imbalance. The next load balance will take care of
 9010		 * balancing back the system.
 9011		 */
 9012		env->migration_type = migrate_task;
 9013		env->imbalance = 1;
 9014		return;
 9015	}
 9016
 9017	/*
 9018	 * Try to use spare capacity of local group without overloading it or
 9019	 * emptying busiest.
 
 
 9020	 */
 9021	if (local->group_type == group_has_spare) {
 9022		if (busiest->group_type > group_fully_busy) {
 9023			/*
 9024			 * If busiest is overloaded, try to fill spare
 9025			 * capacity. This might end up creating spare capacity
 9026			 * in busiest or busiest still being overloaded but
 9027			 * there is no simple way to directly compute the
 9028			 * amount of load to migrate in order to balance the
 9029			 * system.
 9030			 */
 9031			env->migration_type = migrate_util;
 9032			env->imbalance = max(local->group_capacity, local->group_util) -
 9033					 local->group_util;
 9034
 9035			/*
 9036			 * In some cases, the group's utilization is max or even
 9037			 * higher than capacity because of migrations but the
 9038			 * local CPU is (newly) idle. There is at least one
 9039			 * waiting task in this overloaded busiest group. Let's
 9040			 * try to pull it.
 9041			 */
 9042			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
 9043				env->migration_type = migrate_task;
 9044				env->imbalance = 1;
 9045			}
 9046
 9047			return;
 9048		}
 9049
 9050		if (busiest->group_weight == 1 || sds->prefer_sibling) {
 9051			unsigned int nr_diff = busiest->sum_nr_running;
 9052			/*
 9053			 * When prefer sibling, evenly spread running tasks on
 9054			 * groups.
 9055			 */
 9056			env->migration_type = migrate_task;
 9057			lsub_positive(&nr_diff, local->sum_nr_running);
 9058			env->imbalance = nr_diff >> 1;
 9059		} else {
 9060
 9061			/*
 9062			 * If there is no overload, we just want to even the number of
 9063			 * idle cpus.
 9064			 */
 9065			env->migration_type = migrate_task;
 9066			env->imbalance = max_t(long, 0, (local->idle_cpus -
 9067						 busiest->idle_cpus) >> 1);
 9068		}
 9069
 9070		/* Consider allowing a small imbalance between NUMA groups */
 9071		if (env->sd->flags & SD_NUMA)
 9072			env->imbalance = adjust_numa_imbalance(env->imbalance,
 9073						busiest->sum_nr_running);
 9074
 9075		return;
 9076	}
 9077
 9078	/*
 9079	 * Local is fully busy but has to take more load to relieve the
 9080	 * busiest group
 9081	 */
 9082	if (local->group_type < group_overloaded) {
 9083		/*
 9084		 * Local will become overloaded so the avg_load metrics are
 9085		 * finally needed.
 9086		 */
 9087
 9088		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
 9089				  local->group_capacity;
 9090
 9091		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
 9092				sds->total_capacity;
 9093		/*
 9094		 * If the local group is more loaded than the selected
 9095		 * busiest group don't try to pull any tasks.
 9096		 */
 9097		if (local->avg_load >= busiest->avg_load) {
 9098			env->imbalance = 0;
 9099			return;
 9100		}
 9101	}
 9102
 9103	/*
 9104	 * Both group are or will become overloaded and we're trying to get all
 9105	 * the CPUs to the average_load, so we don't want to push ourselves
 9106	 * above the average load, nor do we wish to reduce the max loaded CPU
 9107	 * below the average load. At the same time, we also don't want to
 9108	 * reduce the group load below the group capacity. Thus we look for
 9109	 * the minimum possible imbalance.
 9110	 */
 9111	env->migration_type = migrate_load;
 
 
 9112	env->imbalance = min(
 9113		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
 9114		(sds->avg_load - local->avg_load) * local->group_capacity
 9115	) / SCHED_CAPACITY_SCALE;
 
 
 
 
 
 
 
 
 
 9116}
 9117
 9118/******* find_busiest_group() helpers end here *********************/
 9119
 9120/*
 9121 * Decision matrix according to the local and busiest group type:
 9122 *
 9123 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
 9124 * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
 9125 * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
 9126 * misfit_task      force     N/A        N/A    N/A  force      force
 9127 * asym_packing     force     force      N/A    N/A  force      force
 9128 * imbalanced       force     force      N/A    N/A  force      force
 9129 * overloaded       force     force      N/A    N/A  force      avg_load
 9130 *
 9131 * N/A :      Not Applicable because already filtered while updating
 9132 *            statistics.
 9133 * balanced : The system is balanced for these 2 groups.
 9134 * force :    Calculate the imbalance as load migration is probably needed.
 9135 * avg_load : Only if imbalance is significant enough.
 9136 * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
 9137 *            different in groups.
 9138 */
 9139
 9140/**
 9141 * find_busiest_group - Returns the busiest group within the sched_domain
 9142 * if there is an imbalance.
 9143 *
 9144 * Also calculates the amount of runnable load which should be moved
 9145 * to restore balance.
 9146 *
 9147 * @env: The load balancing environment.
 9148 *
 9149 * Return:	- The busiest group if imbalance exists.
 9150 */
 9151static struct sched_group *find_busiest_group(struct lb_env *env)
 9152{
 9153	struct sg_lb_stats *local, *busiest;
 9154	struct sd_lb_stats sds;
 9155
 9156	init_sd_lb_stats(&sds);
 9157
 9158	/*
 9159	 * Compute the various statistics relevant for load balancing at
 9160	 * this level.
 9161	 */
 9162	update_sd_lb_stats(env, &sds);
 9163
 9164	if (sched_energy_enabled()) {
 9165		struct root_domain *rd = env->dst_rq->rd;
 9166
 9167		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
 9168			goto out_balanced;
 9169	}
 9170
 9171	local = &sds.local_stat;
 9172	busiest = &sds.busiest_stat;
 9173
 
 
 
 
 9174	/* There is no busy sibling group to pull tasks from */
 9175	if (!sds.busiest)
 9176		goto out_balanced;
 9177
 9178	/* Misfit tasks should be dealt with regardless of the avg load */
 9179	if (busiest->group_type == group_misfit_task)
 9180		goto force_balance;
 9181
 9182	/* ASYM feature bypasses nice load balance check */
 9183	if (busiest->group_type == group_asym_packing)
 9184		goto force_balance;
 9185
 9186	/*
 9187	 * If the busiest group is imbalanced the below checks don't
 9188	 * work because they assume all things are equal, which typically
 9189	 * isn't true due to cpus_ptr constraints and the like.
 9190	 */
 9191	if (busiest->group_type == group_imbalanced)
 9192		goto force_balance;
 9193
 
 
 
 
 
 9194	/*
 9195	 * If the local group is busier than the selected busiest group
 9196	 * don't try and pull any tasks.
 9197	 */
 9198	if (local->group_type > busiest->group_type)
 9199		goto out_balanced;
 9200
 9201	/*
 9202	 * When groups are overloaded, use the avg_load to ensure fairness
 9203	 * between tasks.
 9204	 */
 9205	if (local->group_type == group_overloaded) {
 9206		/*
 9207		 * If the local group is more loaded than the selected
 9208		 * busiest group don't try to pull any tasks.
 9209		 */
 9210		if (local->avg_load >= busiest->avg_load)
 9211			goto out_balanced;
 9212
 9213		/* XXX broken for overlapping NUMA groups */
 9214		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
 9215				sds.total_capacity;
 9216
 
 9217		/*
 9218		 * Don't pull any tasks if this group is already above the
 9219		 * domain average load.
 
 
 
 9220		 */
 9221		if (local->avg_load >= sds.avg_load)
 
 9222			goto out_balanced;
 9223
 9224		/*
 9225		 * If the busiest group is more loaded, use imbalance_pct to be
 9226		 * conservative.
 9227		 */
 9228		if (100 * busiest->avg_load <=
 9229				env->sd->imbalance_pct * local->avg_load)
 9230			goto out_balanced;
 9231	}
 9232
 9233	/* Try to move all excess tasks to child's sibling domain */
 9234	if (sds.prefer_sibling && local->group_type == group_has_spare &&
 9235	    busiest->sum_nr_running > local->sum_nr_running + 1)
 9236		goto force_balance;
 9237
 9238	if (busiest->group_type != group_overloaded) {
 9239		if (env->idle == CPU_NOT_IDLE)
 9240			/*
 9241			 * If the busiest group is not overloaded (and as a
 9242			 * result the local one too) but this CPU is already
 9243			 * busy, let another idle CPU try to pull task.
 9244			 */
 9245			goto out_balanced;
 9246
 9247		if (busiest->group_weight > 1 &&
 9248		    local->idle_cpus <= (busiest->idle_cpus + 1))
 9249			/*
 9250			 * If the busiest group is not overloaded
 9251			 * and there is no imbalance between this and busiest
 9252			 * group wrt idle CPUs, it is balanced. The imbalance
 9253			 * becomes significant if the diff is greater than 1
 9254			 * otherwise we might end up to just move the imbalance
 9255			 * on another group. Of course this applies only if
 9256			 * there is more than 1 CPU per group.
 9257			 */
 9258			goto out_balanced;
 9259
 9260		if (busiest->sum_h_nr_running == 1)
 9261			/*
 9262			 * busiest doesn't have any tasks waiting to run
 9263			 */
 9264			goto out_balanced;
 9265	}
 9266
 9267force_balance:
 9268	/* Looks like there is an imbalance. Compute it */
 9269	calculate_imbalance(env, &sds);
 9270	return env->imbalance ? sds.busiest : NULL;
 9271
 9272out_balanced:
 9273	env->imbalance = 0;
 9274	return NULL;
 9275}
 9276
 9277/*
 9278 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
 9279 */
 9280static struct rq *find_busiest_queue(struct lb_env *env,
 9281				     struct sched_group *group)
 9282{
 9283	struct rq *busiest = NULL, *rq;
 9284	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
 9285	unsigned int busiest_nr = 0;
 9286	int i;
 9287
 9288	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
 9289		unsigned long capacity, load, util;
 9290		unsigned int nr_running;
 9291		enum fbq_type rt;
 9292
 9293		rq = cpu_rq(i);
 9294		rt = fbq_classify_rq(rq);
 9295
 9296		/*
 9297		 * We classify groups/runqueues into three groups:
 9298		 *  - regular: there are !numa tasks
 9299		 *  - remote:  there are numa tasks that run on the 'wrong' node
 9300		 *  - all:     there is no distinction
 9301		 *
 9302		 * In order to avoid migrating ideally placed numa tasks,
 9303		 * ignore those when there's better options.
 9304		 *
 9305		 * If we ignore the actual busiest queue to migrate another
 9306		 * task, the next balance pass can still reduce the busiest
 9307		 * queue by moving tasks around inside the node.
 9308		 *
 9309		 * If we cannot move enough load due to this classification
 9310		 * the next pass will adjust the group classification and
 9311		 * allow migration of more tasks.
 9312		 *
 9313		 * Both cases only affect the total convergence complexity.
 9314		 */
 9315		if (rt > env->fbq_type)
 9316			continue;
 9317
 9318		capacity = capacity_of(i);
 9319		nr_running = rq->cfs.h_nr_running;
 
 9320
 9321		/*
 9322		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
 9323		 * eventually lead to active_balancing high->low capacity.
 9324		 * Higher per-CPU capacity is considered better than balancing
 9325		 * average load.
 9326		 */
 9327		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
 9328		    capacity_of(env->dst_cpu) < capacity &&
 9329		    nr_running == 1)
 9330			continue;
 9331
 9332		switch (env->migration_type) {
 9333		case migrate_load:
 9334			/*
 9335			 * When comparing with load imbalance, use cpu_load()
 9336			 * which is not scaled with the CPU capacity.
 9337			 */
 9338			load = cpu_load(rq);
 9339
 9340			if (nr_running == 1 && load > env->imbalance &&
 9341			    !check_cpu_capacity(rq, env->sd))
 9342				break;
 9343
 9344			/*
 9345			 * For the load comparisons with the other CPUs,
 9346			 * consider the cpu_load() scaled with the CPU
 9347			 * capacity, so that the load can be moved away
 9348			 * from the CPU that is potentially running at a
 9349			 * lower capacity.
 9350			 *
 9351			 * Thus we're looking for max(load_i / capacity_i),
 9352			 * crosswise multiplication to rid ourselves of the
 9353			 * division works out to:
 9354			 * load_i * capacity_j > load_j * capacity_i;
 9355			 * where j is our previous maximum.
 9356			 */
 9357			if (load * busiest_capacity > busiest_load * capacity) {
 9358				busiest_load = load;
 9359				busiest_capacity = capacity;
 9360				busiest = rq;
 9361			}
 9362			break;
 9363
 9364		case migrate_util:
 9365			util = cpu_util(cpu_of(rq));
 9366
 9367			/*
 9368			 * Don't try to pull utilization from a CPU with one
 9369			 * running task. Whatever its utilization, we will fail
 9370			 * detach the task.
 9371			 */
 9372			if (nr_running <= 1)
 9373				continue;
 9374
 9375			if (busiest_util < util) {
 9376				busiest_util = util;
 9377				busiest = rq;
 9378			}
 9379			break;
 9380
 9381		case migrate_task:
 9382			if (busiest_nr < nr_running) {
 9383				busiest_nr = nr_running;
 9384				busiest = rq;
 9385			}
 9386			break;
 9387
 9388		case migrate_misfit:
 9389			/*
 9390			 * For ASYM_CPUCAPACITY domains with misfit tasks we
 9391			 * simply seek the "biggest" misfit task.
 9392			 */
 9393			if (rq->misfit_task_load > busiest_load) {
 9394				busiest_load = rq->misfit_task_load;
 9395				busiest = rq;
 9396			}
 9397
 9398			break;
 9399
 9400		}
 9401	}
 9402
 9403	return busiest;
 9404}
 9405
 9406/*
 9407 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 9408 * so long as it is large enough.
 9409 */
 9410#define MAX_PINNED_INTERVAL	512
 9411
 9412static inline bool
 9413asym_active_balance(struct lb_env *env)
 9414{
 9415	/*
 9416	 * ASYM_PACKING needs to force migrate tasks from busy but
 9417	 * lower priority CPUs in order to pack all tasks in the
 9418	 * highest priority CPUs.
 9419	 */
 9420	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
 9421	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
 9422}
 9423
 9424static inline bool
 9425voluntary_active_balance(struct lb_env *env)
 9426{
 9427	struct sched_domain *sd = env->sd;
 9428
 9429	if (asym_active_balance(env))
 9430		return 1;
 
 
 
 
 
 
 
 9431
 9432	/*
 9433	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
 9434	 * It's worth migrating the task if the src_cpu's capacity is reduced
 9435	 * because of other sched_class or IRQs if more capacity stays
 9436	 * available on dst_cpu.
 9437	 */
 9438	if ((env->idle != CPU_NOT_IDLE) &&
 9439	    (env->src_rq->cfs.h_nr_running == 1)) {
 9440		if ((check_cpu_capacity(env->src_rq, sd)) &&
 9441		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
 9442			return 1;
 9443	}
 9444
 9445	if (env->migration_type == migrate_misfit)
 9446		return 1;
 9447
 9448	return 0;
 9449}
 9450
 9451static int need_active_balance(struct lb_env *env)
 9452{
 9453	struct sched_domain *sd = env->sd;
 9454
 9455	if (voluntary_active_balance(env))
 9456		return 1;
 9457
 9458	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
 9459}
 9460
 9461static int active_load_balance_cpu_stop(void *data);
 9462
 9463static int should_we_balance(struct lb_env *env)
 9464{
 9465	struct sched_group *sg = env->sd->groups;
 9466	int cpu;
 9467
 9468	/*
 9469	 * Ensure the balancing environment is consistent; can happen
 9470	 * when the softirq triggers 'during' hotplug.
 9471	 */
 9472	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
 9473		return 0;
 9474
 9475	/*
 9476	 * In the newly idle case, we will allow all the CPUs
 9477	 * to do the newly idle load balance.
 9478	 */
 9479	if (env->idle == CPU_NEWLY_IDLE)
 9480		return 1;
 9481
 9482	/* Try to find first idle CPU */
 9483	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
 9484		if (!idle_cpu(cpu))
 
 
 9485			continue;
 9486
 9487		/* Are we the first idle CPU? */
 9488		return cpu == env->dst_cpu;
 9489	}
 9490
 9491	/* Are we the first CPU of this group ? */
 9492	return group_balance_cpu(sg) == env->dst_cpu;
 
 
 
 
 
 
 9493}
 9494
 9495/*
 9496 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 9497 * tasks if there is an imbalance.
 9498 */
 9499static int load_balance(int this_cpu, struct rq *this_rq,
 9500			struct sched_domain *sd, enum cpu_idle_type idle,
 9501			int *continue_balancing)
 9502{
 9503	int ld_moved, cur_ld_moved, active_balance = 0;
 9504	struct sched_domain *sd_parent = sd->parent;
 9505	struct sched_group *group;
 9506	struct rq *busiest;
 9507	struct rq_flags rf;
 9508	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
 9509
 9510	struct lb_env env = {
 9511		.sd		= sd,
 9512		.dst_cpu	= this_cpu,
 9513		.dst_rq		= this_rq,
 9514		.dst_grpmask    = sched_group_span(sd->groups),
 9515		.idle		= idle,
 9516		.loop_break	= sched_nr_migrate_break,
 9517		.cpus		= cpus,
 9518		.fbq_type	= all,
 9519		.tasks		= LIST_HEAD_INIT(env.tasks),
 9520	};
 9521
 9522	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
 
 
 
 
 
 
 
 9523
 9524	schedstat_inc(sd->lb_count[idle]);
 9525
 9526redo:
 9527	if (!should_we_balance(&env)) {
 9528		*continue_balancing = 0;
 9529		goto out_balanced;
 9530	}
 9531
 9532	group = find_busiest_group(&env);
 9533	if (!group) {
 9534		schedstat_inc(sd->lb_nobusyg[idle]);
 9535		goto out_balanced;
 9536	}
 9537
 9538	busiest = find_busiest_queue(&env, group);
 9539	if (!busiest) {
 9540		schedstat_inc(sd->lb_nobusyq[idle]);
 9541		goto out_balanced;
 9542	}
 9543
 9544	BUG_ON(busiest == env.dst_rq);
 9545
 9546	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
 9547
 9548	env.src_cpu = busiest->cpu;
 9549	env.src_rq = busiest;
 9550
 9551	ld_moved = 0;
 9552	if (busiest->nr_running > 1) {
 9553		/*
 9554		 * Attempt to move tasks. If find_busiest_group has found
 9555		 * an imbalance but busiest->nr_running <= 1, the group is
 9556		 * still unbalanced. ld_moved simply stays zero, so it is
 9557		 * correctly treated as an imbalance.
 9558		 */
 9559		env.flags |= LBF_ALL_PINNED;
 9560		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
 9561
 9562more_balance:
 9563		rq_lock_irqsave(busiest, &rf);
 9564		update_rq_clock(busiest);
 9565
 9566		/*
 9567		 * cur_ld_moved - load moved in current iteration
 9568		 * ld_moved     - cumulative load moved across iterations
 9569		 */
 9570		cur_ld_moved = detach_tasks(&env);
 9571
 9572		/*
 9573		 * We've detached some tasks from busiest_rq. Every
 9574		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
 9575		 * unlock busiest->lock, and we are able to be sure
 9576		 * that nobody can manipulate the tasks in parallel.
 9577		 * See task_rq_lock() family for the details.
 9578		 */
 9579
 9580		rq_unlock(busiest, &rf);
 9581
 9582		if (cur_ld_moved) {
 9583			attach_tasks(&env);
 9584			ld_moved += cur_ld_moved;
 9585		}
 9586
 9587		local_irq_restore(rf.flags);
 9588
 9589		if (env.flags & LBF_NEED_BREAK) {
 9590			env.flags &= ~LBF_NEED_BREAK;
 9591			goto more_balance;
 9592		}
 9593
 9594		/*
 9595		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
 9596		 * us and move them to an alternate dst_cpu in our sched_group
 9597		 * where they can run. The upper limit on how many times we
 9598		 * iterate on same src_cpu is dependent on number of CPUs in our
 9599		 * sched_group.
 9600		 *
 9601		 * This changes load balance semantics a bit on who can move
 9602		 * load to a given_cpu. In addition to the given_cpu itself
 9603		 * (or a ilb_cpu acting on its behalf where given_cpu is
 9604		 * nohz-idle), we now have balance_cpu in a position to move
 9605		 * load to given_cpu. In rare situations, this may cause
 9606		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
 9607		 * _independently_ and at _same_ time to move some load to
 9608		 * given_cpu) causing exceess load to be moved to given_cpu.
 9609		 * This however should not happen so much in practice and
 9610		 * moreover subsequent load balance cycles should correct the
 9611		 * excess load moved.
 9612		 */
 9613		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
 9614
 9615			/* Prevent to re-select dst_cpu via env's CPUs */
 9616			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
 9617
 9618			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
 9619			env.dst_cpu	 = env.new_dst_cpu;
 9620			env.flags	&= ~LBF_DST_PINNED;
 9621			env.loop	 = 0;
 9622			env.loop_break	 = sched_nr_migrate_break;
 9623
 9624			/*
 9625			 * Go back to "more_balance" rather than "redo" since we
 9626			 * need to continue with same src_cpu.
 9627			 */
 9628			goto more_balance;
 9629		}
 9630
 9631		/*
 9632		 * We failed to reach balance because of affinity.
 9633		 */
 9634		if (sd_parent) {
 9635			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
 9636
 9637			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
 9638				*group_imbalance = 1;
 9639		}
 9640
 9641		/* All tasks on this runqueue were pinned by CPU affinity */
 9642		if (unlikely(env.flags & LBF_ALL_PINNED)) {
 9643			__cpumask_clear_cpu(cpu_of(busiest), cpus);
 9644			/*
 9645			 * Attempting to continue load balancing at the current
 9646			 * sched_domain level only makes sense if there are
 9647			 * active CPUs remaining as possible busiest CPUs to
 9648			 * pull load from which are not contained within the
 9649			 * destination group that is receiving any migrated
 9650			 * load.
 9651			 */
 9652			if (!cpumask_subset(cpus, env.dst_grpmask)) {
 9653				env.loop = 0;
 9654				env.loop_break = sched_nr_migrate_break;
 9655				goto redo;
 9656			}
 9657			goto out_all_pinned;
 9658		}
 9659	}
 9660
 9661	if (!ld_moved) {
 9662		schedstat_inc(sd->lb_failed[idle]);
 9663		/*
 9664		 * Increment the failure counter only on periodic balance.
 9665		 * We do not want newidle balance, which can be very
 9666		 * frequent, pollute the failure counter causing
 9667		 * excessive cache_hot migrations and active balances.
 9668		 */
 9669		if (idle != CPU_NEWLY_IDLE)
 9670			sd->nr_balance_failed++;
 9671
 9672		if (need_active_balance(&env)) {
 9673			unsigned long flags;
 9674
 9675			raw_spin_lock_irqsave(&busiest->lock, flags);
 9676
 9677			/*
 9678			 * Don't kick the active_load_balance_cpu_stop,
 9679			 * if the curr task on busiest CPU can't be
 9680			 * moved to this_cpu:
 9681			 */
 9682			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
 
 9683				raw_spin_unlock_irqrestore(&busiest->lock,
 9684							    flags);
 9685				env.flags |= LBF_ALL_PINNED;
 9686				goto out_one_pinned;
 9687			}
 9688
 9689			/*
 9690			 * ->active_balance synchronizes accesses to
 9691			 * ->active_balance_work.  Once set, it's cleared
 9692			 * only after active load balance is finished.
 9693			 */
 9694			if (!busiest->active_balance) {
 9695				busiest->active_balance = 1;
 9696				busiest->push_cpu = this_cpu;
 9697				active_balance = 1;
 9698			}
 9699			raw_spin_unlock_irqrestore(&busiest->lock, flags);
 9700
 9701			if (active_balance) {
 9702				stop_one_cpu_nowait(cpu_of(busiest),
 9703					active_load_balance_cpu_stop, busiest,
 9704					&busiest->active_balance_work);
 9705			}
 9706
 9707			/* We've kicked active balancing, force task migration. */
 9708			sd->nr_balance_failed = sd->cache_nice_tries+1;
 9709		}
 9710	} else
 9711		sd->nr_balance_failed = 0;
 9712
 9713	if (likely(!active_balance) || voluntary_active_balance(&env)) {
 9714		/* We were unbalanced, so reset the balancing interval */
 9715		sd->balance_interval = sd->min_interval;
 9716	} else {
 9717		/*
 9718		 * If we've begun active balancing, start to back off. This
 9719		 * case may not be covered by the all_pinned logic if there
 9720		 * is only 1 task on the busy runqueue (because we don't call
 9721		 * detach_tasks).
 9722		 */
 9723		if (sd->balance_interval < sd->max_interval)
 9724			sd->balance_interval *= 2;
 9725	}
 9726
 9727	goto out;
 9728
 9729out_balanced:
 9730	/*
 9731	 * We reach balance although we may have faced some affinity
 9732	 * constraints. Clear the imbalance flag only if other tasks got
 9733	 * a chance to move and fix the imbalance.
 9734	 */
 9735	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
 9736		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
 9737
 9738		if (*group_imbalance)
 9739			*group_imbalance = 0;
 9740	}
 9741
 9742out_all_pinned:
 9743	/*
 9744	 * We reach balance because all tasks are pinned at this level so
 9745	 * we can't migrate them. Let the imbalance flag set so parent level
 9746	 * can try to migrate them.
 9747	 */
 9748	schedstat_inc(sd->lb_balanced[idle]);
 9749
 9750	sd->nr_balance_failed = 0;
 9751
 9752out_one_pinned:
 9753	ld_moved = 0;
 9754
 9755	/*
 9756	 * newidle_balance() disregards balance intervals, so we could
 9757	 * repeatedly reach this code, which would lead to balance_interval
 9758	 * skyrocketting in a short amount of time. Skip the balance_interval
 9759	 * increase logic to avoid that.
 9760	 */
 9761	if (env.idle == CPU_NEWLY_IDLE)
 9762		goto out;
 9763
 9764	/* tune up the balancing interval */
 9765	if ((env.flags & LBF_ALL_PINNED &&
 9766	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
 9767	    sd->balance_interval < sd->max_interval)
 9768		sd->balance_interval *= 2;
 
 
 9769out:
 9770	return ld_moved;
 9771}
 9772
 9773static inline unsigned long
 9774get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
 9775{
 9776	unsigned long interval = sd->balance_interval;
 9777
 9778	if (cpu_busy)
 9779		interval *= sd->busy_factor;
 9780
 9781	/* scale ms to jiffies */
 9782	interval = msecs_to_jiffies(interval);
 9783	interval = clamp(interval, 1UL, max_load_balance_interval);
 9784
 9785	return interval;
 9786}
 9787
 9788static inline void
 9789update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
 9790{
 9791	unsigned long interval, next;
 9792
 9793	/* used by idle balance, so cpu_busy = 0 */
 9794	interval = get_sd_balance_interval(sd, 0);
 9795	next = sd->last_balance + interval;
 9796
 9797	if (time_after(*next_balance, next))
 9798		*next_balance = next;
 9799}
 9800
 9801/*
 9802 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9803 * running tasks off the busiest CPU onto idle CPUs. It requires at
 9804 * least 1 task to be running on each physical CPU where possible, and
 9805 * avoids physical / logical imbalances.
 9806 */
 9807static int active_load_balance_cpu_stop(void *data)
 9808{
 9809	struct rq *busiest_rq = data;
 9810	int busiest_cpu = cpu_of(busiest_rq);
 9811	int target_cpu = busiest_rq->push_cpu;
 9812	struct rq *target_rq = cpu_rq(target_cpu);
 9813	struct sched_domain *sd;
 9814	struct task_struct *p = NULL;
 9815	struct rq_flags rf;
 9816
 9817	rq_lock_irq(busiest_rq, &rf);
 9818	/*
 9819	 * Between queueing the stop-work and running it is a hole in which
 9820	 * CPUs can become inactive. We should not move tasks from or to
 9821	 * inactive CPUs.
 9822	 */
 9823	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
 9824		goto out_unlock;
 9825
 9826	/* Make sure the requested CPU hasn't gone down in the meantime: */
 9827	if (unlikely(busiest_cpu != smp_processor_id() ||
 9828		     !busiest_rq->active_balance))
 9829		goto out_unlock;
 9830
 9831	/* Is there any task to move? */
 9832	if (busiest_rq->nr_running <= 1)
 9833		goto out_unlock;
 9834
 9835	/*
 9836	 * This condition is "impossible", if it occurs
 9837	 * we need to fix it. Originally reported by
 9838	 * Bjorn Helgaas on a 128-CPU setup.
 9839	 */
 9840	BUG_ON(busiest_rq == target_rq);
 9841
 9842	/* Search for an sd spanning us and the target CPU. */
 9843	rcu_read_lock();
 9844	for_each_domain(target_cpu, sd) {
 9845		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
 9846			break;
 
 9847	}
 9848
 9849	if (likely(sd)) {
 9850		struct lb_env env = {
 9851			.sd		= sd,
 9852			.dst_cpu	= target_cpu,
 9853			.dst_rq		= target_rq,
 9854			.src_cpu	= busiest_rq->cpu,
 9855			.src_rq		= busiest_rq,
 9856			.idle		= CPU_IDLE,
 9857			/*
 9858			 * can_migrate_task() doesn't need to compute new_dst_cpu
 9859			 * for active balancing. Since we have CPU_IDLE, but no
 9860			 * @dst_grpmask we need to make that test go away with lying
 9861			 * about DST_PINNED.
 9862			 */
 9863			.flags		= LBF_DST_PINNED,
 9864		};
 9865
 9866		schedstat_inc(sd->alb_count);
 9867		update_rq_clock(busiest_rq);
 9868
 9869		p = detach_one_task(&env);
 9870		if (p) {
 9871			schedstat_inc(sd->alb_pushed);
 9872			/* Active balancing done, reset the failure counter. */
 9873			sd->nr_balance_failed = 0;
 9874		} else {
 9875			schedstat_inc(sd->alb_failed);
 9876		}
 9877	}
 9878	rcu_read_unlock();
 9879out_unlock:
 9880	busiest_rq->active_balance = 0;
 9881	rq_unlock(busiest_rq, &rf);
 9882
 9883	if (p)
 9884		attach_one_task(target_rq, p);
 9885
 9886	local_irq_enable();
 9887
 9888	return 0;
 9889}
 9890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9891static DEFINE_SPINLOCK(balancing);
 9892
 9893/*
 9894 * Scale the max load_balance interval with the number of CPUs in the system.
 9895 * This trades load-balance latency on larger machines for less cross talk.
 9896 */
 9897void update_max_interval(void)
 9898{
 9899	max_load_balance_interval = HZ*num_online_cpus()/10;
 9900}
 9901
 9902/*
 9903 * It checks each scheduling domain to see if it is due to be balanced,
 9904 * and initiates a balancing operation if so.
 9905 *
 9906 * Balancing parameters are set up in init_sched_domains.
 9907 */
 9908static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
 9909{
 9910	int continue_balancing = 1;
 9911	int cpu = rq->cpu;
 9912	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
 9913	unsigned long interval;
 9914	struct sched_domain *sd;
 9915	/* Earliest time when we have to do rebalance again */
 9916	unsigned long next_balance = jiffies + 60*HZ;
 9917	int update_next_balance = 0;
 9918	int need_serialize, need_decay = 0;
 9919	u64 max_cost = 0;
 9920
 
 
 9921	rcu_read_lock();
 9922	for_each_domain(cpu, sd) {
 9923		/*
 9924		 * Decay the newidle max times here because this is a regular
 9925		 * visit to all the domains. Decay ~1% per second.
 9926		 */
 9927		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
 9928			sd->max_newidle_lb_cost =
 9929				(sd->max_newidle_lb_cost * 253) / 256;
 9930			sd->next_decay_max_lb_cost = jiffies + HZ;
 9931			need_decay = 1;
 9932		}
 9933		max_cost += sd->max_newidle_lb_cost;
 9934
 
 
 
 9935		/*
 9936		 * Stop the load balance at this level. There is another
 9937		 * CPU in our sched group which is doing load balancing more
 9938		 * actively.
 9939		 */
 9940		if (!continue_balancing) {
 9941			if (need_decay)
 9942				continue;
 9943			break;
 9944		}
 9945
 9946		interval = get_sd_balance_interval(sd, busy);
 9947
 9948		need_serialize = sd->flags & SD_SERIALIZE;
 9949		if (need_serialize) {
 9950			if (!spin_trylock(&balancing))
 9951				goto out;
 9952		}
 9953
 9954		if (time_after_eq(jiffies, sd->last_balance + interval)) {
 9955			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
 9956				/*
 9957				 * The LBF_DST_PINNED logic could have changed
 9958				 * env->dst_cpu, so we can't know our idle
 9959				 * state even if we migrated tasks. Update it.
 9960				 */
 9961				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
 9962				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
 9963			}
 9964			sd->last_balance = jiffies;
 9965			interval = get_sd_balance_interval(sd, busy);
 9966		}
 9967		if (need_serialize)
 9968			spin_unlock(&balancing);
 9969out:
 9970		if (time_after(next_balance, sd->last_balance + interval)) {
 9971			next_balance = sd->last_balance + interval;
 9972			update_next_balance = 1;
 9973		}
 9974	}
 9975	if (need_decay) {
 9976		/*
 9977		 * Ensure the rq-wide value also decays but keep it at a
 9978		 * reasonable floor to avoid funnies with rq->avg_idle.
 9979		 */
 9980		rq->max_idle_balance_cost =
 9981			max((u64)sysctl_sched_migration_cost, max_cost);
 9982	}
 9983	rcu_read_unlock();
 9984
 9985	/*
 9986	 * next_balance will be updated only when there is a need.
 9987	 * When the cpu is attached to null domain for ex, it will not be
 9988	 * updated.
 9989	 */
 9990	if (likely(update_next_balance)) {
 9991		rq->next_balance = next_balance;
 9992
 9993#ifdef CONFIG_NO_HZ_COMMON
 9994		/*
 9995		 * If this CPU has been elected to perform the nohz idle
 9996		 * balance. Other idle CPUs have already rebalanced with
 9997		 * nohz_idle_balance() and nohz.next_balance has been
 9998		 * updated accordingly. This CPU is now running the idle load
 9999		 * balance for itself and we need to update the
10000		 * nohz.next_balance accordingly.
10001		 */
10002		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10003			nohz.next_balance = rq->next_balance;
10004#endif
10005	}
10006}
10007
10008static inline int on_null_domain(struct rq *rq)
10009{
10010	return unlikely(!rcu_dereference_sched(rq->sd));
10011}
10012
10013#ifdef CONFIG_NO_HZ_COMMON
10014/*
10015 * idle load balancing details
10016 * - When one of the busy CPUs notice that there may be an idle rebalancing
10017 *   needed, they will kick the idle load balancer, which then does idle
10018 *   load balancing for all the idle CPUs.
10019 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10020 *   anywhere yet.
10021 */
10022
10023static inline int find_new_ilb(void)
10024{
10025	int ilb;
10026
10027	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10028			      housekeeping_cpumask(HK_FLAG_MISC)) {
10029		if (idle_cpu(ilb))
10030			return ilb;
10031	}
10032
10033	return nr_cpu_ids;
10034}
10035
10036/*
10037 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10038 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10039 */
10040static void kick_ilb(unsigned int flags)
10041{
10042	int ilb_cpu;
10043
10044	/*
10045	 * Increase nohz.next_balance only when if full ilb is triggered but
10046	 * not if we only update stats.
10047	 */
10048	if (flags & NOHZ_BALANCE_KICK)
10049		nohz.next_balance = jiffies+1;
10050
10051	ilb_cpu = find_new_ilb();
10052
10053	if (ilb_cpu >= nr_cpu_ids)
10054		return;
10055
10056	/*
10057	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10058	 * the first flag owns it; cleared by nohz_csd_func().
10059	 */
10060	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10061	if (flags & NOHZ_KICK_MASK)
10062		return;
10063
10064	/*
10065	 * This way we generate an IPI on the target CPU which
10066	 * is idle. And the softirq performing nohz idle load balance
10067	 * will be run before returning from the IPI.
10068	 */
10069	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10070}
10071
10072/*
10073 * Current decision point for kicking the idle load balancer in the presence
10074 * of idle CPUs in the system.
10075 */
10076static void nohz_balancer_kick(struct rq *rq)
10077{
10078	unsigned long now = jiffies;
10079	struct sched_domain_shared *sds;
10080	struct sched_domain *sd;
10081	int nr_busy, i, cpu = rq->cpu;
10082	unsigned int flags = 0;
10083
10084	if (unlikely(rq->idle_balance))
10085		return;
10086
10087	/*
10088	 * We may be recently in ticked or tickless idle mode. At the first
10089	 * busy tick after returning from idle, we will update the busy stats.
10090	 */
10091	nohz_balance_exit_idle(rq);
10092
10093	/*
10094	 * None are in tickless mode and hence no need for NOHZ idle load
10095	 * balancing.
10096	 */
10097	if (likely(!atomic_read(&nohz.nr_cpus)))
10098		return;
10099
10100	if (READ_ONCE(nohz.has_blocked) &&
10101	    time_after(now, READ_ONCE(nohz.next_blocked)))
10102		flags = NOHZ_STATS_KICK;
10103
10104	if (time_before(now, nohz.next_balance))
10105		goto out;
10106
10107	if (rq->nr_running >= 2) {
10108		flags = NOHZ_KICK_MASK;
10109		goto out;
10110	}
10111
10112	rcu_read_lock();
10113
10114	sd = rcu_dereference(rq->sd);
10115	if (sd) {
10116		/*
10117		 * If there's a CFS task and the current CPU has reduced
10118		 * capacity; kick the ILB to see if there's a better CPU to run
10119		 * on.
10120		 */
10121		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10122			flags = NOHZ_KICK_MASK;
10123			goto unlock;
10124		}
10125	}
10126
10127	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10128	if (sd) {
10129		/*
10130		 * When ASYM_PACKING; see if there's a more preferred CPU
10131		 * currently idle; in which case, kick the ILB to move tasks
10132		 * around.
10133		 */
10134		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10135			if (sched_asym_prefer(i, cpu)) {
10136				flags = NOHZ_KICK_MASK;
10137				goto unlock;
10138			}
10139		}
10140	}
10141
10142	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10143	if (sd) {
10144		/*
10145		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10146		 * to run the misfit task on.
10147		 */
10148		if (check_misfit_status(rq, sd)) {
10149			flags = NOHZ_KICK_MASK;
10150			goto unlock;
10151		}
10152
10153		/*
10154		 * For asymmetric systems, we do not want to nicely balance
10155		 * cache use, instead we want to embrace asymmetry and only
10156		 * ensure tasks have enough CPU capacity.
10157		 *
10158		 * Skip the LLC logic because it's not relevant in that case.
10159		 */
10160		goto unlock;
10161	}
10162
10163	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10164	if (sds) {
10165		/*
10166		 * If there is an imbalance between LLC domains (IOW we could
10167		 * increase the overall cache use), we need some less-loaded LLC
10168		 * domain to pull some load. Likewise, we may need to spread
10169		 * load within the current LLC domain (e.g. packed SMT cores but
10170		 * other CPUs are idle). We can't really know from here how busy
10171		 * the others are - so just get a nohz balance going if it looks
10172		 * like this LLC domain has tasks we could move.
10173		 */
10174		nr_busy = atomic_read(&sds->nr_busy_cpus);
10175		if (nr_busy > 1) {
10176			flags = NOHZ_KICK_MASK;
10177			goto unlock;
10178		}
10179	}
10180unlock:
10181	rcu_read_unlock();
10182out:
10183	if (flags)
10184		kick_ilb(flags);
10185}
10186
10187static void set_cpu_sd_state_busy(int cpu)
10188{
10189	struct sched_domain *sd;
10190
10191	rcu_read_lock();
10192	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10193
10194	if (!sd || !sd->nohz_idle)
10195		goto unlock;
10196	sd->nohz_idle = 0;
10197
10198	atomic_inc(&sd->shared->nr_busy_cpus);
10199unlock:
10200	rcu_read_unlock();
10201}
10202
10203void nohz_balance_exit_idle(struct rq *rq)
10204{
10205	SCHED_WARN_ON(rq != this_rq());
10206
10207	if (likely(!rq->nohz_tick_stopped))
10208		return;
10209
10210	rq->nohz_tick_stopped = 0;
10211	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10212	atomic_dec(&nohz.nr_cpus);
10213
10214	set_cpu_sd_state_busy(rq->cpu);
10215}
10216
10217static void set_cpu_sd_state_idle(int cpu)
10218{
10219	struct sched_domain *sd;
10220
10221	rcu_read_lock();
10222	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10223
10224	if (!sd || sd->nohz_idle)
10225		goto unlock;
10226	sd->nohz_idle = 1;
10227
10228	atomic_dec(&sd->shared->nr_busy_cpus);
10229unlock:
10230	rcu_read_unlock();
10231}
10232
10233/*
10234 * This routine will record that the CPU is going idle with tick stopped.
10235 * This info will be used in performing idle load balancing in the future.
10236 */
10237void nohz_balance_enter_idle(int cpu)
10238{
10239	struct rq *rq = cpu_rq(cpu);
10240
10241	SCHED_WARN_ON(cpu != smp_processor_id());
10242
10243	/* If this CPU is going down, then nothing needs to be done: */
10244	if (!cpu_active(cpu))
10245		return;
10246
10247	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10248	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10249		return;
10250
10251	/*
10252	 * Can be set safely without rq->lock held
10253	 * If a clear happens, it will have evaluated last additions because
10254	 * rq->lock is held during the check and the clear
10255	 */
10256	rq->has_blocked_load = 1;
10257
10258	/*
10259	 * The tick is still stopped but load could have been added in the
10260	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10261	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10262	 * of nohz.has_blocked can only happen after checking the new load
10263	 */
10264	if (rq->nohz_tick_stopped)
10265		goto out;
10266
10267	/* If we're a completely isolated CPU, we don't play: */
10268	if (on_null_domain(rq))
10269		return;
10270
10271	rq->nohz_tick_stopped = 1;
10272
10273	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10274	atomic_inc(&nohz.nr_cpus);
10275
10276	/*
10277	 * Ensures that if nohz_idle_balance() fails to observe our
10278	 * @idle_cpus_mask store, it must observe the @has_blocked
10279	 * store.
10280	 */
10281	smp_mb__after_atomic();
10282
10283	set_cpu_sd_state_idle(cpu);
10284
10285out:
10286	/*
10287	 * Each time a cpu enter idle, we assume that it has blocked load and
10288	 * enable the periodic update of the load of idle cpus
10289	 */
10290	WRITE_ONCE(nohz.has_blocked, 1);
10291}
10292
10293/*
10294 * Internal function that runs load balance for all idle cpus. The load balance
10295 * can be a simple update of blocked load or a complete load balance with
10296 * tasks movement depending of flags.
10297 * The function returns false if the loop has stopped before running
10298 * through all idle CPUs.
10299 */
10300static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10301			       enum cpu_idle_type idle)
10302{
 
 
 
10303	/* Earliest time when we have to do rebalance again */
10304	unsigned long now = jiffies;
10305	unsigned long next_balance = now + 60*HZ;
10306	bool has_blocked_load = false;
10307	int update_next_balance = 0;
10308	int this_cpu = this_rq->cpu;
10309	int balance_cpu;
10310	int ret = false;
10311	struct rq *rq;
10312
10313	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10314
10315	/*
10316	 * We assume there will be no idle load after this update and clear
10317	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10318	 * set the has_blocked flag and trig another update of idle load.
10319	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10320	 * setting the flag, we are sure to not clear the state and not
10321	 * check the load of an idle cpu.
10322	 */
10323	WRITE_ONCE(nohz.has_blocked, 0);
10324
10325	/*
10326	 * Ensures that if we miss the CPU, we must see the has_blocked
10327	 * store from nohz_balance_enter_idle().
10328	 */
10329	smp_mb();
10330
10331	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
10332		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10333			continue;
10334
10335		/*
10336		 * If this CPU gets work to do, stop the load balancing
10337		 * work being done for other CPUs. Next load
10338		 * balancing owner will pick it up.
10339		 */
10340		if (need_resched()) {
10341			has_blocked_load = true;
10342			goto abort;
10343		}
10344
10345		rq = cpu_rq(balance_cpu);
10346
10347		has_blocked_load |= update_nohz_stats(rq, true);
10348
10349		/*
10350		 * If time for next balance is due,
10351		 * do the balance.
10352		 */
10353		if (time_after_eq(jiffies, rq->next_balance)) {
10354			struct rq_flags rf;
10355
10356			rq_lock_irqsave(rq, &rf);
10357			update_rq_clock(rq);
10358			rq_unlock_irqrestore(rq, &rf);
10359
10360			if (flags & NOHZ_BALANCE_KICK)
10361				rebalance_domains(rq, CPU_IDLE);
10362		}
10363
10364		if (time_after(next_balance, rq->next_balance)) {
10365			next_balance = rq->next_balance;
10366			update_next_balance = 1;
10367		}
10368	}
10369
10370	/*
10371	 * next_balance will be updated only when there is a need.
10372	 * When the CPU is attached to null domain for ex, it will not be
10373	 * updated.
10374	 */
10375	if (likely(update_next_balance))
10376		nohz.next_balance = next_balance;
10377
10378	/* Newly idle CPU doesn't need an update */
10379	if (idle != CPU_NEWLY_IDLE) {
10380		update_blocked_averages(this_cpu);
10381		has_blocked_load |= this_rq->has_blocked_load;
10382	}
10383
10384	if (flags & NOHZ_BALANCE_KICK)
10385		rebalance_domains(this_rq, CPU_IDLE);
10386
10387	WRITE_ONCE(nohz.next_blocked,
10388		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10389
10390	/* The full idle balance loop has been done */
10391	ret = true;
10392
10393abort:
10394	/* There is still blocked load, enable periodic update */
10395	if (has_blocked_load)
10396		WRITE_ONCE(nohz.has_blocked, 1);
10397
10398	return ret;
10399}
10400
10401/*
10402 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10403 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 
 
 
 
 
 
 
10404 */
10405static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10406{
10407	unsigned int flags = this_rq->nohz_idle_balance;
 
 
 
 
10408
10409	if (!flags)
10410		return false;
10411
10412	this_rq->nohz_idle_balance = 0;
10413
10414	if (idle != CPU_IDLE)
10415		return false;
10416
10417	_nohz_idle_balance(this_rq, flags, idle);
10418
10419	return true;
10420}
10421
10422static void nohz_newidle_balance(struct rq *this_rq)
10423{
10424	int this_cpu = this_rq->cpu;
10425
10426	/*
10427	 * This CPU doesn't want to be disturbed by scheduler
10428	 * housekeeping
10429	 */
10430	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10431		return;
10432
10433	/* Will wake up very soon. No time for doing anything else*/
10434	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10435		return;
10436
10437	/* Don't need to update blocked load of idle CPUs*/
10438	if (!READ_ONCE(nohz.has_blocked) ||
10439	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10440		return;
10441
10442	raw_spin_unlock(&this_rq->lock);
10443	/*
10444	 * This CPU is going to be idle and blocked load of idle CPUs
10445	 * need to be updated. Run the ilb locally as it is a good
10446	 * candidate for ilb instead of waking up another idle CPU.
10447	 * Kick an normal ilb if we failed to do the update.
10448	 */
10449	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10450		kick_ilb(NOHZ_STATS_KICK);
10451	raw_spin_lock(&this_rq->lock);
10452}
10453
10454#else /* !CONFIG_NO_HZ_COMMON */
10455static inline void nohz_balancer_kick(struct rq *rq) { }
10456
10457static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10458{
10459	return false;
10460}
10461
10462static inline void nohz_newidle_balance(struct rq *this_rq) { }
10463#endif /* CONFIG_NO_HZ_COMMON */
10464
10465/*
10466 * idle_balance is called by schedule() if this_cpu is about to become
10467 * idle. Attempts to pull tasks from other CPUs.
10468 *
10469 * Returns:
10470 *   < 0 - we released the lock and there are !fair tasks present
10471 *     0 - failed, no new tasks
10472 *   > 0 - success, new (fair) tasks present
10473 */
10474static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10475{
10476	unsigned long next_balance = jiffies + HZ;
10477	int this_cpu = this_rq->cpu;
10478	struct sched_domain *sd;
10479	int pulled_task = 0;
10480	u64 curr_cost = 0;
10481
10482	update_misfit_status(NULL, this_rq);
10483	/*
10484	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10485	 * measure the duration of idle_balance() as idle time.
10486	 */
10487	this_rq->idle_stamp = rq_clock(this_rq);
10488
10489	/*
10490	 * Do not pull tasks towards !active CPUs...
10491	 */
10492	if (!cpu_active(this_cpu))
10493		return 0;
10494
10495	/*
10496	 * This is OK, because current is on_cpu, which avoids it being picked
10497	 * for load-balance and preemption/IRQs are still disabled avoiding
10498	 * further scheduler activity on it and we're being very careful to
10499	 * re-start the picking loop.
10500	 */
10501	rq_unpin_lock(this_rq, rf);
10502
10503	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10504	    !READ_ONCE(this_rq->rd->overload)) {
10505
10506		rcu_read_lock();
10507		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10508		if (sd)
10509			update_next_balance(sd, &next_balance);
10510		rcu_read_unlock();
10511
10512		nohz_newidle_balance(this_rq);
10513
10514		goto out;
10515	}
10516
10517	raw_spin_unlock(&this_rq->lock);
10518
10519	update_blocked_averages(this_cpu);
10520	rcu_read_lock();
10521	for_each_domain(this_cpu, sd) {
10522		int continue_balancing = 1;
10523		u64 t0, domain_cost;
10524
10525		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10526			update_next_balance(sd, &next_balance);
10527			break;
10528		}
 
10529
10530		if (sd->flags & SD_BALANCE_NEWIDLE) {
10531			t0 = sched_clock_cpu(this_cpu);
 
 
 
 
10532
10533			pulled_task = load_balance(this_cpu, this_rq,
10534						   sd, CPU_NEWLY_IDLE,
10535						   &continue_balancing);
10536
10537			domain_cost = sched_clock_cpu(this_cpu) - t0;
10538			if (domain_cost > sd->max_newidle_lb_cost)
10539				sd->max_newidle_lb_cost = domain_cost;
10540
10541			curr_cost += domain_cost;
10542		}
10543
10544		update_next_balance(sd, &next_balance);
10545
10546		/*
10547		 * Stop searching for tasks to pull if there are
10548		 * now runnable tasks on this rq.
10549		 */
10550		if (pulled_task || this_rq->nr_running > 0)
10551			break;
10552	}
 
10553	rcu_read_unlock();
10554
10555	raw_spin_lock(&this_rq->lock);
10556
10557	if (curr_cost > this_rq->max_idle_balance_cost)
10558		this_rq->max_idle_balance_cost = curr_cost;
10559
10560out:
10561	/*
10562	 * While browsing the domains, we released the rq lock, a task could
10563	 * have been enqueued in the meantime. Since we're not going idle,
10564	 * pretend we pulled a task.
10565	 */
10566	if (this_rq->cfs.h_nr_running && !pulled_task)
10567		pulled_task = 1;
10568
10569	/* Move the next balance forward */
10570	if (time_after(this_rq->next_balance, next_balance))
10571		this_rq->next_balance = next_balance;
10572
10573	/* Is there a task of a high priority class? */
10574	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10575		pulled_task = -1;
10576
10577	if (pulled_task)
10578		this_rq->idle_stamp = 0;
10579
10580	rq_repin_lock(this_rq, rf);
10581
10582	return pulled_task;
10583}
 
 
 
10584
10585/*
10586 * run_rebalance_domains is triggered when needed from the scheduler tick.
10587 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10588 */
10589static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10590{
10591	struct rq *this_rq = this_rq();
10592	enum cpu_idle_type idle = this_rq->idle_balance ?
10593						CPU_IDLE : CPU_NOT_IDLE;
10594
10595	/*
10596	 * If this CPU has a pending nohz_balance_kick, then do the
10597	 * balancing on behalf of the other idle CPUs whose ticks are
10598	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10599	 * give the idle CPUs a chance to load balance. Else we may
10600	 * load balance only within the local sched_domain hierarchy
10601	 * and abort nohz_idle_balance altogether if we pull some load.
10602	 */
10603	if (nohz_idle_balance(this_rq, idle))
10604		return;
10605
10606	/* normal load balance */
10607	update_blocked_averages(this_rq->cpu);
10608	rebalance_domains(this_rq, idle);
10609}
10610
10611/*
10612 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10613 */
10614void trigger_load_balance(struct rq *rq)
10615{
10616	/* Don't need to rebalance while attached to NULL domain */
10617	if (unlikely(on_null_domain(rq)))
10618		return;
10619
10620	if (time_after_eq(jiffies, rq->next_balance))
10621		raise_softirq(SCHED_SOFTIRQ);
10622
10623	nohz_balancer_kick(rq);
 
 
10624}
10625
10626static void rq_online_fair(struct rq *rq)
10627{
10628	update_sysctl();
10629
10630	update_runtime_enabled(rq);
10631}
10632
10633static void rq_offline_fair(struct rq *rq)
10634{
10635	update_sysctl();
10636
10637	/* Ensure any throttled groups are reachable by pick_next_task */
10638	unthrottle_offline_cfs_rqs(rq);
10639}
10640
10641#endif /* CONFIG_SMP */
10642
10643/*
10644 * scheduler tick hitting a task of our scheduling class.
10645 *
10646 * NOTE: This function can be called remotely by the tick offload that
10647 * goes along full dynticks. Therefore no local assumption can be made
10648 * and everything must be accessed through the @rq and @curr passed in
10649 * parameters.
10650 */
10651static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10652{
10653	struct cfs_rq *cfs_rq;
10654	struct sched_entity *se = &curr->se;
10655
10656	for_each_sched_entity(se) {
10657		cfs_rq = cfs_rq_of(se);
10658		entity_tick(cfs_rq, se, queued);
10659	}
10660
10661	if (static_branch_unlikely(&sched_numa_balancing))
10662		task_tick_numa(rq, curr);
10663
10664	update_misfit_status(curr, rq);
10665	update_overutilized_status(task_rq(curr));
10666}
10667
10668/*
10669 * called on fork with the child task as argument from the parent's context
10670 *  - child not yet on the tasklist
10671 *  - preemption disabled
10672 */
10673static void task_fork_fair(struct task_struct *p)
10674{
10675	struct cfs_rq *cfs_rq;
10676	struct sched_entity *se = &p->se, *curr;
10677	struct rq *rq = this_rq();
10678	struct rq_flags rf;
10679
10680	rq_lock(rq, &rf);
10681	update_rq_clock(rq);
10682
10683	cfs_rq = task_cfs_rq(current);
10684	curr = cfs_rq->curr;
10685	if (curr) {
10686		update_curr(cfs_rq);
10687		se->vruntime = curr->vruntime;
10688	}
10689	place_entity(cfs_rq, se, 1);
10690
10691	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10692		/*
10693		 * Upon rescheduling, sched_class::put_prev_task() will place
10694		 * 'current' within the tree based on its new key value.
10695		 */
10696		swap(curr->vruntime, se->vruntime);
10697		resched_curr(rq);
10698	}
10699
10700	se->vruntime -= cfs_rq->min_vruntime;
10701	rq_unlock(rq, &rf);
10702}
10703
10704/*
10705 * Priority of the task has changed. Check to see if we preempt
10706 * the current task.
10707 */
10708static void
10709prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10710{
10711	if (!task_on_rq_queued(p))
10712		return;
10713
10714	if (rq->cfs.nr_running == 1)
10715		return;
10716
10717	/*
10718	 * Reschedule if we are currently running on this runqueue and
10719	 * our priority decreased, or if we are not currently running on
10720	 * this runqueue and our priority is higher than the current's
10721	 */
10722	if (rq->curr == p) {
10723		if (p->prio > oldprio)
10724			resched_curr(rq);
10725	} else
10726		check_preempt_curr(rq, p, 0);
10727}
10728
10729static inline bool vruntime_normalized(struct task_struct *p)
10730{
10731	struct sched_entity *se = &p->se;
10732
10733	/*
10734	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10735	 * the dequeue_entity(.flags=0) will already have normalized the
10736	 * vruntime.
10737	 */
10738	if (p->on_rq)
10739		return true;
10740
10741	/*
10742	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10743	 * But there are some cases where it has already been normalized:
10744	 *
10745	 * - A forked child which is waiting for being woken up by
10746	 *   wake_up_new_task().
10747	 * - A task which has been woken up by try_to_wake_up() and
10748	 *   waiting for actually being woken up by sched_ttwu_pending().
10749	 */
10750	if (!se->sum_exec_runtime ||
10751	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10752		return true;
10753
10754	return false;
10755}
10756
10757#ifdef CONFIG_FAIR_GROUP_SCHED
10758/*
10759 * Propagate the changes of the sched_entity across the tg tree to make it
10760 * visible to the root
10761 */
10762static void propagate_entity_cfs_rq(struct sched_entity *se)
10763{
10764	struct cfs_rq *cfs_rq;
10765
10766	/* Start to propagate at parent */
10767	se = se->parent;
10768
10769	for_each_sched_entity(se) {
10770		cfs_rq = cfs_rq_of(se);
10771
10772		if (cfs_rq_throttled(cfs_rq))
10773			break;
10774
10775		update_load_avg(cfs_rq, se, UPDATE_TG);
10776	}
10777}
10778#else
10779static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10780#endif
10781
10782static void detach_entity_cfs_rq(struct sched_entity *se)
10783{
10784	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10785
10786	/* Catch up with the cfs_rq and remove our load when we leave */
10787	update_load_avg(cfs_rq, se, 0);
10788	detach_entity_load_avg(cfs_rq, se);
10789	update_tg_load_avg(cfs_rq, false);
10790	propagate_entity_cfs_rq(se);
10791}
10792
10793static void attach_entity_cfs_rq(struct sched_entity *se)
10794{
10795	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10796
10797#ifdef CONFIG_FAIR_GROUP_SCHED
10798	/*
10799	 * Since the real-depth could have been changed (only FAIR
10800	 * class maintain depth value), reset depth properly.
10801	 */
10802	se->depth = se->parent ? se->parent->depth + 1 : 0;
10803#endif
10804
10805	/* Synchronize entity with its cfs_rq */
10806	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10807	attach_entity_load_avg(cfs_rq, se);
10808	update_tg_load_avg(cfs_rq, false);
10809	propagate_entity_cfs_rq(se);
10810}
10811
10812static void detach_task_cfs_rq(struct task_struct *p)
10813{
10814	struct sched_entity *se = &p->se;
10815	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10816
10817	if (!vruntime_normalized(p)) {
10818		/*
10819		 * Fix up our vruntime so that the current sleep doesn't
10820		 * cause 'unlimited' sleep bonus.
10821		 */
10822		place_entity(cfs_rq, se, 0);
10823		se->vruntime -= cfs_rq->min_vruntime;
10824	}
10825
10826	detach_entity_cfs_rq(se);
10827}
10828
10829static void attach_task_cfs_rq(struct task_struct *p)
10830{
10831	struct sched_entity *se = &p->se;
10832	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10833
10834	attach_entity_cfs_rq(se);
10835
10836	if (!vruntime_normalized(p))
10837		se->vruntime += cfs_rq->min_vruntime;
10838}
10839
10840static void switched_from_fair(struct rq *rq, struct task_struct *p)
10841{
10842	detach_task_cfs_rq(p);
10843}
10844
10845static void switched_to_fair(struct rq *rq, struct task_struct *p)
10846{
10847	attach_task_cfs_rq(p);
10848
10849	if (task_on_rq_queued(p)) {
10850		/*
10851		 * We were most likely switched from sched_rt, so
10852		 * kick off the schedule if running, otherwise just see
10853		 * if we can still preempt the current task.
10854		 */
10855		if (rq->curr == p)
10856			resched_curr(rq);
10857		else
10858			check_preempt_curr(rq, p, 0);
10859	}
10860}
10861
10862/* Account for a task changing its policy or group.
10863 *
10864 * This routine is mostly called to set cfs_rq->curr field when a task
10865 * migrates between groups/classes.
10866 */
10867static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10868{
10869	struct sched_entity *se = &p->se;
10870
10871#ifdef CONFIG_SMP
10872	if (task_on_rq_queued(p)) {
10873		/*
10874		 * Move the next running task to the front of the list, so our
10875		 * cfs_tasks list becomes MRU one.
10876		 */
10877		list_move(&se->group_node, &rq->cfs_tasks);
10878	}
10879#endif
10880
10881	for_each_sched_entity(se) {
10882		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10883
10884		set_next_entity(cfs_rq, se);
10885		/* ensure bandwidth has been allocated on our new cfs_rq */
10886		account_cfs_rq_runtime(cfs_rq, 0);
10887	}
10888}
10889
10890void init_cfs_rq(struct cfs_rq *cfs_rq)
10891{
10892	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10893	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10894#ifndef CONFIG_64BIT
10895	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10896#endif
10897#ifdef CONFIG_SMP
10898	raw_spin_lock_init(&cfs_rq->removed.lock);
 
 
 
 
10899#endif
10900}
10901
10902#ifdef CONFIG_FAIR_GROUP_SCHED
10903static void task_set_group_fair(struct task_struct *p)
10904{
10905	struct sched_entity *se = &p->se;
10906
10907	set_task_rq(p, task_cpu(p));
10908	se->depth = se->parent ? se->parent->depth + 1 : 0;
10909}
10910
10911static void task_move_group_fair(struct task_struct *p)
10912{
10913	detach_task_cfs_rq(p);
10914	set_task_rq(p, task_cpu(p));
10915
10916#ifdef CONFIG_SMP
10917	/* Tell se's cfs_rq has been changed -- migrated */
10918	p->se.avg.last_update_time = 0;
10919#endif
10920	attach_task_cfs_rq(p);
10921}
10922
10923static void task_change_group_fair(struct task_struct *p, int type)
10924{
10925	switch (type) {
10926	case TASK_SET_GROUP:
10927		task_set_group_fair(p);
10928		break;
10929
10930	case TASK_MOVE_GROUP:
10931		task_move_group_fair(p);
10932		break;
10933	}
10934}
10935
10936void free_fair_sched_group(struct task_group *tg)
10937{
10938	int i;
10939
10940	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10941
10942	for_each_possible_cpu(i) {
10943		if (tg->cfs_rq)
10944			kfree(tg->cfs_rq[i]);
10945		if (tg->se)
10946			kfree(tg->se[i]);
10947	}
10948
10949	kfree(tg->cfs_rq);
10950	kfree(tg->se);
10951}
10952
10953int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10954{
10955	struct sched_entity *se;
10956	struct cfs_rq *cfs_rq;
10957	int i;
10958
10959	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10960	if (!tg->cfs_rq)
10961		goto err;
10962	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10963	if (!tg->se)
10964		goto err;
10965
10966	tg->shares = NICE_0_LOAD;
10967
10968	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10969
10970	for_each_possible_cpu(i) {
10971		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10972				      GFP_KERNEL, cpu_to_node(i));
10973		if (!cfs_rq)
10974			goto err;
10975
10976		se = kzalloc_node(sizeof(struct sched_entity),
10977				  GFP_KERNEL, cpu_to_node(i));
10978		if (!se)
10979			goto err_free_rq;
10980
10981		init_cfs_rq(cfs_rq);
10982		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10983		init_entity_runnable_average(se);
10984	}
10985
10986	return 1;
10987
10988err_free_rq:
10989	kfree(cfs_rq);
10990err:
10991	return 0;
10992}
10993
10994void online_fair_sched_group(struct task_group *tg)
10995{
10996	struct sched_entity *se;
10997	struct rq_flags rf;
10998	struct rq *rq;
10999	int i;
11000
11001	for_each_possible_cpu(i) {
11002		rq = cpu_rq(i);
11003		se = tg->se[i];
11004		rq_lock_irq(rq, &rf);
11005		update_rq_clock(rq);
11006		attach_entity_cfs_rq(se);
11007		sync_throttle(tg, i);
11008		rq_unlock_irq(rq, &rf);
11009	}
11010}
11011
11012void unregister_fair_sched_group(struct task_group *tg)
11013{
11014	unsigned long flags;
11015	struct rq *rq;
11016	int cpu;
11017
11018	for_each_possible_cpu(cpu) {
11019		if (tg->se[cpu])
11020			remove_entity_load_avg(tg->se[cpu]);
11021
11022		/*
11023		 * Only empty task groups can be destroyed; so we can speculatively
11024		 * check on_list without danger of it being re-added.
11025		 */
11026		if (!tg->cfs_rq[cpu]->on_list)
11027			continue;
11028
11029		rq = cpu_rq(cpu);
11030
11031		raw_spin_lock_irqsave(&rq->lock, flags);
11032		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11033		raw_spin_unlock_irqrestore(&rq->lock, flags);
11034	}
11035}
11036
11037void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11038			struct sched_entity *se, int cpu,
11039			struct sched_entity *parent)
11040{
11041	struct rq *rq = cpu_rq(cpu);
11042
11043	cfs_rq->tg = tg;
11044	cfs_rq->rq = rq;
11045	init_cfs_rq_runtime(cfs_rq);
11046
11047	tg->cfs_rq[cpu] = cfs_rq;
11048	tg->se[cpu] = se;
11049
11050	/* se could be NULL for root_task_group */
11051	if (!se)
11052		return;
11053
11054	if (!parent) {
11055		se->cfs_rq = &rq->cfs;
11056		se->depth = 0;
11057	} else {
11058		se->cfs_rq = parent->my_q;
11059		se->depth = parent->depth + 1;
11060	}
11061
11062	se->my_q = cfs_rq;
11063	/* guarantee group entities always have weight */
11064	update_load_set(&se->load, NICE_0_LOAD);
11065	se->parent = parent;
11066}
11067
11068static DEFINE_MUTEX(shares_mutex);
11069
11070int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11071{
11072	int i;
 
11073
11074	/*
11075	 * We can't change the weight of the root cgroup.
11076	 */
11077	if (!tg->se[0])
11078		return -EINVAL;
11079
11080	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11081
11082	mutex_lock(&shares_mutex);
11083	if (tg->shares == shares)
11084		goto done;
11085
11086	tg->shares = shares;
11087	for_each_possible_cpu(i) {
11088		struct rq *rq = cpu_rq(i);
11089		struct sched_entity *se = tg->se[i];
11090		struct rq_flags rf;
11091
 
11092		/* Propagate contribution to hierarchy */
11093		rq_lock_irqsave(rq, &rf);
 
 
11094		update_rq_clock(rq);
11095		for_each_sched_entity(se) {
11096			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11097			update_cfs_group(se);
11098		}
11099		rq_unlock_irqrestore(rq, &rf);
11100	}
11101
11102done:
11103	mutex_unlock(&shares_mutex);
11104	return 0;
11105}
11106#else /* CONFIG_FAIR_GROUP_SCHED */
11107
11108void free_fair_sched_group(struct task_group *tg) { }
11109
11110int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11111{
11112	return 1;
11113}
11114
11115void online_fair_sched_group(struct task_group *tg) { }
11116
11117void unregister_fair_sched_group(struct task_group *tg) { }
11118
11119#endif /* CONFIG_FAIR_GROUP_SCHED */
11120
11121
11122static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11123{
11124	struct sched_entity *se = &task->se;
11125	unsigned int rr_interval = 0;
11126
11127	/*
11128	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11129	 * idle runqueue:
11130	 */
11131	if (rq->cfs.load.weight)
11132		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11133
11134	return rr_interval;
11135}
11136
11137/*
11138 * All the scheduling class methods:
11139 */
11140const struct sched_class fair_sched_class
11141	__attribute__((section("__fair_sched_class"))) = {
11142	.enqueue_task		= enqueue_task_fair,
11143	.dequeue_task		= dequeue_task_fair,
11144	.yield_task		= yield_task_fair,
11145	.yield_to_task		= yield_to_task_fair,
11146
11147	.check_preempt_curr	= check_preempt_wakeup,
11148
11149	.pick_next_task		= __pick_next_task_fair,
11150	.put_prev_task		= put_prev_task_fair,
11151	.set_next_task          = set_next_task_fair,
11152
11153#ifdef CONFIG_SMP
11154	.balance		= balance_fair,
11155	.select_task_rq		= select_task_rq_fair,
11156	.migrate_task_rq	= migrate_task_rq_fair,
11157
11158	.rq_online		= rq_online_fair,
11159	.rq_offline		= rq_offline_fair,
11160
11161	.task_dead		= task_dead_fair,
11162	.set_cpus_allowed	= set_cpus_allowed_common,
11163#endif
11164
 
11165	.task_tick		= task_tick_fair,
11166	.task_fork		= task_fork_fair,
11167
11168	.prio_changed		= prio_changed_fair,
11169	.switched_from		= switched_from_fair,
11170	.switched_to		= switched_to_fair,
11171
11172	.get_rr_interval	= get_rr_interval_fair,
11173
11174	.update_curr		= update_curr_fair,
11175
11176#ifdef CONFIG_FAIR_GROUP_SCHED
11177	.task_change_group	= task_change_group_fair,
11178#endif
11179
11180#ifdef CONFIG_UCLAMP_TASK
11181	.uclamp_enabled		= 1,
11182#endif
11183};
11184
11185#ifdef CONFIG_SCHED_DEBUG
11186void print_cfs_stats(struct seq_file *m, int cpu)
11187{
11188	struct cfs_rq *cfs_rq, *pos;
11189
11190	rcu_read_lock();
11191	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11192		print_cfs_rq(m, cpu, cfs_rq);
11193	rcu_read_unlock();
11194}
11195
11196#ifdef CONFIG_NUMA_BALANCING
11197void show_numa_stats(struct task_struct *p, struct seq_file *m)
11198{
11199	int node;
11200	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11201	struct numa_group *ng;
11202
11203	rcu_read_lock();
11204	ng = rcu_dereference(p->numa_group);
11205	for_each_online_node(node) {
11206		if (p->numa_faults) {
11207			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11208			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11209		}
11210		if (ng) {
11211			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11212			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11213		}
11214		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11215	}
11216	rcu_read_unlock();
11217}
11218#endif /* CONFIG_NUMA_BALANCING */
11219#endif /* CONFIG_SCHED_DEBUG */
11220
11221__init void init_sched_fair_class(void)
11222{
11223#ifdef CONFIG_SMP
11224	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11225
11226#ifdef CONFIG_NO_HZ_COMMON
11227	nohz.next_balance = jiffies;
11228	nohz.next_blocked = jiffies;
11229	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11230#endif
11231#endif /* SMP */
11232
11233}
11234
11235/*
11236 * Helper functions to facilitate extracting info from tracepoints.
11237 */
11238
11239const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11240{
11241#ifdef CONFIG_SMP
11242	return cfs_rq ? &cfs_rq->avg : NULL;
11243#else
11244	return NULL;
11245#endif
11246}
11247EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11248
11249char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11250{
11251	if (!cfs_rq) {
11252		if (str)
11253			strlcpy(str, "(null)", len);
11254		else
11255			return NULL;
11256	}
11257
11258	cfs_rq_tg_path(cfs_rq, str, len);
11259	return str;
11260}
11261EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11262
11263int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11264{
11265	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11266}
11267EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11268
11269const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11270{
11271#ifdef CONFIG_SMP
11272	return rq ? &rq->avg_rt : NULL;
11273#else
11274	return NULL;
11275#endif
11276}
11277EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11278
11279const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11280{
11281#ifdef CONFIG_SMP
11282	return rq ? &rq->avg_dl : NULL;
11283#else
11284	return NULL;
11285#endif
11286}
11287EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11288
11289const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11290{
11291#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11292	return rq ? &rq->avg_irq : NULL;
11293#else
11294	return NULL;
11295#endif
11296}
11297EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11298
11299int sched_trace_rq_cpu(struct rq *rq)
11300{
11301	return rq ? cpu_of(rq) : -1;
11302}
11303EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11304
11305const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11306{
11307#ifdef CONFIG_SMP
11308	return rd ? rd->span : NULL;
11309#else
11310	return NULL;
11311#endif
11312}
11313EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11314
11315int sched_trace_rq_nr_running(struct rq *rq)
11316{
11317        return rq ? rq->nr_running : -1;
11318}
11319EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);