Loading...
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23#include <linux/sched.h>
24#include <linux/latencytop.h>
25#include <linux/cpumask.h>
26#include <linux/cpuidle.h>
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
30#include <linux/mempolicy.h>
31#include <linux/migrate.h>
32#include <linux/task_work.h>
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
37
38/*
39 * Targeted preemption latency for CPU-bound tasks:
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 *
49 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
50 */
51unsigned int sysctl_sched_latency = 6000000ULL;
52unsigned int normalized_sysctl_sched_latency = 6000000ULL;
53
54/*
55 * The initial- and re-scaling of tunables is configurable
56 *
57 * Options are:
58 *
59 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
60 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
61 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
62 *
63 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
64 */
65enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
66
67/*
68 * Minimal preemption granularity for CPU-bound tasks:
69 *
70 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
71 */
72unsigned int sysctl_sched_min_granularity = 750000ULL;
73unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
74
75/*
76 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
77 */
78static unsigned int sched_nr_latency = 8;
79
80/*
81 * After fork, child runs first. If set to 0 (default) then
82 * parent will (try to) run first.
83 */
84unsigned int sysctl_sched_child_runs_first __read_mostly;
85
86/*
87 * SCHED_OTHER wake-up granularity.
88 *
89 * This option delays the preemption effects of decoupled workloads
90 * and reduces their over-scheduling. Synchronous workloads will still
91 * have immediate wakeup/sleep latencies.
92 *
93 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
94 */
95unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
96unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
97
98const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
99
100#ifdef CONFIG_SMP
101/*
102 * For asym packing, by default the lower numbered cpu has higher priority.
103 */
104int __weak arch_asym_cpu_priority(int cpu)
105{
106 return -cpu;
107}
108#endif
109
110#ifdef CONFIG_CFS_BANDWIDTH
111/*
112 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
113 * each time a cfs_rq requests quota.
114 *
115 * Note: in the case that the slice exceeds the runtime remaining (either due
116 * to consumption or the quota being specified to be smaller than the slice)
117 * we will always only issue the remaining available time.
118 *
119 * (default: 5 msec, units: microseconds)
120 */
121unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
122#endif
123
124/*
125 * The margin used when comparing utilization with CPU capacity:
126 * util * margin < capacity * 1024
127 *
128 * (default: ~20%)
129 */
130unsigned int capacity_margin = 1280;
131
132static inline void update_load_add(struct load_weight *lw, unsigned long inc)
133{
134 lw->weight += inc;
135 lw->inv_weight = 0;
136}
137
138static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
139{
140 lw->weight -= dec;
141 lw->inv_weight = 0;
142}
143
144static inline void update_load_set(struct load_weight *lw, unsigned long w)
145{
146 lw->weight = w;
147 lw->inv_weight = 0;
148}
149
150/*
151 * Increase the granularity value when there are more CPUs,
152 * because with more CPUs the 'effective latency' as visible
153 * to users decreases. But the relationship is not linear,
154 * so pick a second-best guess by going with the log2 of the
155 * number of CPUs.
156 *
157 * This idea comes from the SD scheduler of Con Kolivas:
158 */
159static unsigned int get_update_sysctl_factor(void)
160{
161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
162 unsigned int factor;
163
164 switch (sysctl_sched_tunable_scaling) {
165 case SCHED_TUNABLESCALING_NONE:
166 factor = 1;
167 break;
168 case SCHED_TUNABLESCALING_LINEAR:
169 factor = cpus;
170 break;
171 case SCHED_TUNABLESCALING_LOG:
172 default:
173 factor = 1 + ilog2(cpus);
174 break;
175 }
176
177 return factor;
178}
179
180static void update_sysctl(void)
181{
182 unsigned int factor = get_update_sysctl_factor();
183
184#define SET_SYSCTL(name) \
185 (sysctl_##name = (factor) * normalized_sysctl_##name)
186 SET_SYSCTL(sched_min_granularity);
187 SET_SYSCTL(sched_latency);
188 SET_SYSCTL(sched_wakeup_granularity);
189#undef SET_SYSCTL
190}
191
192void sched_init_granularity(void)
193{
194 update_sysctl();
195}
196
197#define WMULT_CONST (~0U)
198#define WMULT_SHIFT 32
199
200static void __update_inv_weight(struct load_weight *lw)
201{
202 unsigned long w;
203
204 if (likely(lw->inv_weight))
205 return;
206
207 w = scale_load_down(lw->weight);
208
209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 lw->inv_weight = 1;
211 else if (unlikely(!w))
212 lw->inv_weight = WMULT_CONST;
213 else
214 lw->inv_weight = WMULT_CONST / w;
215}
216
217/*
218 * delta_exec * weight / lw.weight
219 * OR
220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
221 *
222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
225 *
226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
228 */
229static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
230{
231 u64 fact = scale_load_down(weight);
232 int shift = WMULT_SHIFT;
233
234 __update_inv_weight(lw);
235
236 if (unlikely(fact >> 32)) {
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
241 }
242
243 /* hint to use a 32x32->64 mul */
244 fact = (u64)(u32)fact * lw->inv_weight;
245
246 while (fact >> 32) {
247 fact >>= 1;
248 shift--;
249 }
250
251 return mul_u64_u32_shr(delta_exec, fact, shift);
252}
253
254
255const struct sched_class fair_sched_class;
256
257/**************************************************************
258 * CFS operations on generic schedulable entities:
259 */
260
261#ifdef CONFIG_FAIR_GROUP_SCHED
262
263/* cpu runqueue to which this cfs_rq is attached */
264static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
265{
266 return cfs_rq->rq;
267}
268
269/* An entity is a task if it doesn't "own" a runqueue */
270#define entity_is_task(se) (!se->my_q)
271
272static inline struct task_struct *task_of(struct sched_entity *se)
273{
274 SCHED_WARN_ON(!entity_is_task(se));
275 return container_of(se, struct task_struct, se);
276}
277
278/* Walk up scheduling entities hierarchy */
279#define for_each_sched_entity(se) \
280 for (; se; se = se->parent)
281
282static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
283{
284 return p->se.cfs_rq;
285}
286
287/* runqueue on which this entity is (to be) queued */
288static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
289{
290 return se->cfs_rq;
291}
292
293/* runqueue "owned" by this group */
294static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
295{
296 return grp->my_q;
297}
298
299static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
300{
301 if (!cfs_rq->on_list) {
302 struct rq *rq = rq_of(cfs_rq);
303 int cpu = cpu_of(rq);
304 /*
305 * Ensure we either appear before our parent (if already
306 * enqueued) or force our parent to appear after us when it is
307 * enqueued. The fact that we always enqueue bottom-up
308 * reduces this to two cases and a special case for the root
309 * cfs_rq. Furthermore, it also means that we will always reset
310 * tmp_alone_branch either when the branch is connected
311 * to a tree or when we reach the beg of the tree
312 */
313 if (cfs_rq->tg->parent &&
314 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
315 /*
316 * If parent is already on the list, we add the child
317 * just before. Thanks to circular linked property of
318 * the list, this means to put the child at the tail
319 * of the list that starts by parent.
320 */
321 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
322 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
323 /*
324 * The branch is now connected to its tree so we can
325 * reset tmp_alone_branch to the beginning of the
326 * list.
327 */
328 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
329 } else if (!cfs_rq->tg->parent) {
330 /*
331 * cfs rq without parent should be put
332 * at the tail of the list.
333 */
334 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
335 &rq->leaf_cfs_rq_list);
336 /*
337 * We have reach the beg of a tree so we can reset
338 * tmp_alone_branch to the beginning of the list.
339 */
340 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
341 } else {
342 /*
343 * The parent has not already been added so we want to
344 * make sure that it will be put after us.
345 * tmp_alone_branch points to the beg of the branch
346 * where we will add parent.
347 */
348 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
349 rq->tmp_alone_branch);
350 /*
351 * update tmp_alone_branch to points to the new beg
352 * of the branch
353 */
354 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
355 }
356
357 cfs_rq->on_list = 1;
358 }
359}
360
361static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
362{
363 if (cfs_rq->on_list) {
364 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
365 cfs_rq->on_list = 0;
366 }
367}
368
369/* Iterate thr' all leaf cfs_rq's on a runqueue */
370#define for_each_leaf_cfs_rq(rq, cfs_rq) \
371 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
372
373/* Do the two (enqueued) entities belong to the same group ? */
374static inline struct cfs_rq *
375is_same_group(struct sched_entity *se, struct sched_entity *pse)
376{
377 if (se->cfs_rq == pse->cfs_rq)
378 return se->cfs_rq;
379
380 return NULL;
381}
382
383static inline struct sched_entity *parent_entity(struct sched_entity *se)
384{
385 return se->parent;
386}
387
388static void
389find_matching_se(struct sched_entity **se, struct sched_entity **pse)
390{
391 int se_depth, pse_depth;
392
393 /*
394 * preemption test can be made between sibling entities who are in the
395 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
396 * both tasks until we find their ancestors who are siblings of common
397 * parent.
398 */
399
400 /* First walk up until both entities are at same depth */
401 se_depth = (*se)->depth;
402 pse_depth = (*pse)->depth;
403
404 while (se_depth > pse_depth) {
405 se_depth--;
406 *se = parent_entity(*se);
407 }
408
409 while (pse_depth > se_depth) {
410 pse_depth--;
411 *pse = parent_entity(*pse);
412 }
413
414 while (!is_same_group(*se, *pse)) {
415 *se = parent_entity(*se);
416 *pse = parent_entity(*pse);
417 }
418}
419
420#else /* !CONFIG_FAIR_GROUP_SCHED */
421
422static inline struct task_struct *task_of(struct sched_entity *se)
423{
424 return container_of(se, struct task_struct, se);
425}
426
427static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
428{
429 return container_of(cfs_rq, struct rq, cfs);
430}
431
432#define entity_is_task(se) 1
433
434#define for_each_sched_entity(se) \
435 for (; se; se = NULL)
436
437static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
438{
439 return &task_rq(p)->cfs;
440}
441
442static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
443{
444 struct task_struct *p = task_of(se);
445 struct rq *rq = task_rq(p);
446
447 return &rq->cfs;
448}
449
450/* runqueue "owned" by this group */
451static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
452{
453 return NULL;
454}
455
456static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
457{
458}
459
460static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
461{
462}
463
464#define for_each_leaf_cfs_rq(rq, cfs_rq) \
465 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
466
467static inline struct sched_entity *parent_entity(struct sched_entity *se)
468{
469 return NULL;
470}
471
472static inline void
473find_matching_se(struct sched_entity **se, struct sched_entity **pse)
474{
475}
476
477#endif /* CONFIG_FAIR_GROUP_SCHED */
478
479static __always_inline
480void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
481
482/**************************************************************
483 * Scheduling class tree data structure manipulation methods:
484 */
485
486static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
487{
488 s64 delta = (s64)(vruntime - max_vruntime);
489 if (delta > 0)
490 max_vruntime = vruntime;
491
492 return max_vruntime;
493}
494
495static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
496{
497 s64 delta = (s64)(vruntime - min_vruntime);
498 if (delta < 0)
499 min_vruntime = vruntime;
500
501 return min_vruntime;
502}
503
504static inline int entity_before(struct sched_entity *a,
505 struct sched_entity *b)
506{
507 return (s64)(a->vruntime - b->vruntime) < 0;
508}
509
510static void update_min_vruntime(struct cfs_rq *cfs_rq)
511{
512 struct sched_entity *curr = cfs_rq->curr;
513
514 u64 vruntime = cfs_rq->min_vruntime;
515
516 if (curr) {
517 if (curr->on_rq)
518 vruntime = curr->vruntime;
519 else
520 curr = NULL;
521 }
522
523 if (cfs_rq->rb_leftmost) {
524 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
525 struct sched_entity,
526 run_node);
527
528 if (!curr)
529 vruntime = se->vruntime;
530 else
531 vruntime = min_vruntime(vruntime, se->vruntime);
532 }
533
534 /* ensure we never gain time by being placed backwards. */
535 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
536#ifndef CONFIG_64BIT
537 smp_wmb();
538 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
539#endif
540}
541
542/*
543 * Enqueue an entity into the rb-tree:
544 */
545static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
546{
547 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
548 struct rb_node *parent = NULL;
549 struct sched_entity *entry;
550 int leftmost = 1;
551
552 /*
553 * Find the right place in the rbtree:
554 */
555 while (*link) {
556 parent = *link;
557 entry = rb_entry(parent, struct sched_entity, run_node);
558 /*
559 * We dont care about collisions. Nodes with
560 * the same key stay together.
561 */
562 if (entity_before(se, entry)) {
563 link = &parent->rb_left;
564 } else {
565 link = &parent->rb_right;
566 leftmost = 0;
567 }
568 }
569
570 /*
571 * Maintain a cache of leftmost tree entries (it is frequently
572 * used):
573 */
574 if (leftmost)
575 cfs_rq->rb_leftmost = &se->run_node;
576
577 rb_link_node(&se->run_node, parent, link);
578 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
579}
580
581static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
582{
583 if (cfs_rq->rb_leftmost == &se->run_node) {
584 struct rb_node *next_node;
585
586 next_node = rb_next(&se->run_node);
587 cfs_rq->rb_leftmost = next_node;
588 }
589
590 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
591}
592
593struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
594{
595 struct rb_node *left = cfs_rq->rb_leftmost;
596
597 if (!left)
598 return NULL;
599
600 return rb_entry(left, struct sched_entity, run_node);
601}
602
603static struct sched_entity *__pick_next_entity(struct sched_entity *se)
604{
605 struct rb_node *next = rb_next(&se->run_node);
606
607 if (!next)
608 return NULL;
609
610 return rb_entry(next, struct sched_entity, run_node);
611}
612
613#ifdef CONFIG_SCHED_DEBUG
614struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
615{
616 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
617
618 if (!last)
619 return NULL;
620
621 return rb_entry(last, struct sched_entity, run_node);
622}
623
624/**************************************************************
625 * Scheduling class statistics methods:
626 */
627
628int sched_proc_update_handler(struct ctl_table *table, int write,
629 void __user *buffer, size_t *lenp,
630 loff_t *ppos)
631{
632 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
633 unsigned int factor = get_update_sysctl_factor();
634
635 if (ret || !write)
636 return ret;
637
638 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
639 sysctl_sched_min_granularity);
640
641#define WRT_SYSCTL(name) \
642 (normalized_sysctl_##name = sysctl_##name / (factor))
643 WRT_SYSCTL(sched_min_granularity);
644 WRT_SYSCTL(sched_latency);
645 WRT_SYSCTL(sched_wakeup_granularity);
646#undef WRT_SYSCTL
647
648 return 0;
649}
650#endif
651
652/*
653 * delta /= w
654 */
655static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
656{
657 if (unlikely(se->load.weight != NICE_0_LOAD))
658 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
659
660 return delta;
661}
662
663/*
664 * The idea is to set a period in which each task runs once.
665 *
666 * When there are too many tasks (sched_nr_latency) we have to stretch
667 * this period because otherwise the slices get too small.
668 *
669 * p = (nr <= nl) ? l : l*nr/nl
670 */
671static u64 __sched_period(unsigned long nr_running)
672{
673 if (unlikely(nr_running > sched_nr_latency))
674 return nr_running * sysctl_sched_min_granularity;
675 else
676 return sysctl_sched_latency;
677}
678
679/*
680 * We calculate the wall-time slice from the period by taking a part
681 * proportional to the weight.
682 *
683 * s = p*P[w/rw]
684 */
685static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
686{
687 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
688
689 for_each_sched_entity(se) {
690 struct load_weight *load;
691 struct load_weight lw;
692
693 cfs_rq = cfs_rq_of(se);
694 load = &cfs_rq->load;
695
696 if (unlikely(!se->on_rq)) {
697 lw = cfs_rq->load;
698
699 update_load_add(&lw, se->load.weight);
700 load = &lw;
701 }
702 slice = __calc_delta(slice, se->load.weight, load);
703 }
704 return slice;
705}
706
707/*
708 * We calculate the vruntime slice of a to-be-inserted task.
709 *
710 * vs = s/w
711 */
712static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
713{
714 return calc_delta_fair(sched_slice(cfs_rq, se), se);
715}
716
717#ifdef CONFIG_SMP
718static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
719static unsigned long task_h_load(struct task_struct *p);
720
721/*
722 * We choose a half-life close to 1 scheduling period.
723 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
724 * dependent on this value.
725 */
726#define LOAD_AVG_PERIOD 32
727#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
728#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
729
730/* Give new sched_entity start runnable values to heavy its load in infant time */
731void init_entity_runnable_average(struct sched_entity *se)
732{
733 struct sched_avg *sa = &se->avg;
734
735 sa->last_update_time = 0;
736 /*
737 * sched_avg's period_contrib should be strictly less then 1024, so
738 * we give it 1023 to make sure it is almost a period (1024us), and
739 * will definitely be update (after enqueue).
740 */
741 sa->period_contrib = 1023;
742 /*
743 * Tasks are intialized with full load to be seen as heavy tasks until
744 * they get a chance to stabilize to their real load level.
745 * Group entities are intialized with zero load to reflect the fact that
746 * nothing has been attached to the task group yet.
747 */
748 if (entity_is_task(se))
749 sa->load_avg = scale_load_down(se->load.weight);
750 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
751 /*
752 * At this point, util_avg won't be used in select_task_rq_fair anyway
753 */
754 sa->util_avg = 0;
755 sa->util_sum = 0;
756 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
757}
758
759static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
760static void attach_entity_cfs_rq(struct sched_entity *se);
761
762/*
763 * With new tasks being created, their initial util_avgs are extrapolated
764 * based on the cfs_rq's current util_avg:
765 *
766 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
767 *
768 * However, in many cases, the above util_avg does not give a desired
769 * value. Moreover, the sum of the util_avgs may be divergent, such
770 * as when the series is a harmonic series.
771 *
772 * To solve this problem, we also cap the util_avg of successive tasks to
773 * only 1/2 of the left utilization budget:
774 *
775 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
776 *
777 * where n denotes the nth task.
778 *
779 * For example, a simplest series from the beginning would be like:
780 *
781 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
783 *
784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
785 * if util_avg > util_avg_cap.
786 */
787void post_init_entity_util_avg(struct sched_entity *se)
788{
789 struct cfs_rq *cfs_rq = cfs_rq_of(se);
790 struct sched_avg *sa = &se->avg;
791 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
792
793 if (cap > 0) {
794 if (cfs_rq->avg.util_avg != 0) {
795 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
796 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
797
798 if (sa->util_avg > cap)
799 sa->util_avg = cap;
800 } else {
801 sa->util_avg = cap;
802 }
803 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
804 }
805
806 if (entity_is_task(se)) {
807 struct task_struct *p = task_of(se);
808 if (p->sched_class != &fair_sched_class) {
809 /*
810 * For !fair tasks do:
811 *
812 update_cfs_rq_load_avg(now, cfs_rq, false);
813 attach_entity_load_avg(cfs_rq, se);
814 switched_from_fair(rq, p);
815 *
816 * such that the next switched_to_fair() has the
817 * expected state.
818 */
819 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
820 return;
821 }
822 }
823
824 attach_entity_cfs_rq(se);
825}
826
827#else /* !CONFIG_SMP */
828void init_entity_runnable_average(struct sched_entity *se)
829{
830}
831void post_init_entity_util_avg(struct sched_entity *se)
832{
833}
834static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
835{
836}
837#endif /* CONFIG_SMP */
838
839/*
840 * Update the current task's runtime statistics.
841 */
842static void update_curr(struct cfs_rq *cfs_rq)
843{
844 struct sched_entity *curr = cfs_rq->curr;
845 u64 now = rq_clock_task(rq_of(cfs_rq));
846 u64 delta_exec;
847
848 if (unlikely(!curr))
849 return;
850
851 delta_exec = now - curr->exec_start;
852 if (unlikely((s64)delta_exec <= 0))
853 return;
854
855 curr->exec_start = now;
856
857 schedstat_set(curr->statistics.exec_max,
858 max(delta_exec, curr->statistics.exec_max));
859
860 curr->sum_exec_runtime += delta_exec;
861 schedstat_add(cfs_rq->exec_clock, delta_exec);
862
863 curr->vruntime += calc_delta_fair(delta_exec, curr);
864 update_min_vruntime(cfs_rq);
865
866 if (entity_is_task(curr)) {
867 struct task_struct *curtask = task_of(curr);
868
869 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
870 cpuacct_charge(curtask, delta_exec);
871 account_group_exec_runtime(curtask, delta_exec);
872 }
873
874 account_cfs_rq_runtime(cfs_rq, delta_exec);
875}
876
877static void update_curr_fair(struct rq *rq)
878{
879 update_curr(cfs_rq_of(&rq->curr->se));
880}
881
882static inline void
883update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
884{
885 u64 wait_start, prev_wait_start;
886
887 if (!schedstat_enabled())
888 return;
889
890 wait_start = rq_clock(rq_of(cfs_rq));
891 prev_wait_start = schedstat_val(se->statistics.wait_start);
892
893 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
894 likely(wait_start > prev_wait_start))
895 wait_start -= prev_wait_start;
896
897 schedstat_set(se->statistics.wait_start, wait_start);
898}
899
900static inline void
901update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
902{
903 struct task_struct *p;
904 u64 delta;
905
906 if (!schedstat_enabled())
907 return;
908
909 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
910
911 if (entity_is_task(se)) {
912 p = task_of(se);
913 if (task_on_rq_migrating(p)) {
914 /*
915 * Preserve migrating task's wait time so wait_start
916 * time stamp can be adjusted to accumulate wait time
917 * prior to migration.
918 */
919 schedstat_set(se->statistics.wait_start, delta);
920 return;
921 }
922 trace_sched_stat_wait(p, delta);
923 }
924
925 schedstat_set(se->statistics.wait_max,
926 max(schedstat_val(se->statistics.wait_max), delta));
927 schedstat_inc(se->statistics.wait_count);
928 schedstat_add(se->statistics.wait_sum, delta);
929 schedstat_set(se->statistics.wait_start, 0);
930}
931
932static inline void
933update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
934{
935 struct task_struct *tsk = NULL;
936 u64 sleep_start, block_start;
937
938 if (!schedstat_enabled())
939 return;
940
941 sleep_start = schedstat_val(se->statistics.sleep_start);
942 block_start = schedstat_val(se->statistics.block_start);
943
944 if (entity_is_task(se))
945 tsk = task_of(se);
946
947 if (sleep_start) {
948 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
949
950 if ((s64)delta < 0)
951 delta = 0;
952
953 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
954 schedstat_set(se->statistics.sleep_max, delta);
955
956 schedstat_set(se->statistics.sleep_start, 0);
957 schedstat_add(se->statistics.sum_sleep_runtime, delta);
958
959 if (tsk) {
960 account_scheduler_latency(tsk, delta >> 10, 1);
961 trace_sched_stat_sleep(tsk, delta);
962 }
963 }
964 if (block_start) {
965 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
966
967 if ((s64)delta < 0)
968 delta = 0;
969
970 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
971 schedstat_set(se->statistics.block_max, delta);
972
973 schedstat_set(se->statistics.block_start, 0);
974 schedstat_add(se->statistics.sum_sleep_runtime, delta);
975
976 if (tsk) {
977 if (tsk->in_iowait) {
978 schedstat_add(se->statistics.iowait_sum, delta);
979 schedstat_inc(se->statistics.iowait_count);
980 trace_sched_stat_iowait(tsk, delta);
981 }
982
983 trace_sched_stat_blocked(tsk, delta);
984
985 /*
986 * Blocking time is in units of nanosecs, so shift by
987 * 20 to get a milliseconds-range estimation of the
988 * amount of time that the task spent sleeping:
989 */
990 if (unlikely(prof_on == SLEEP_PROFILING)) {
991 profile_hits(SLEEP_PROFILING,
992 (void *)get_wchan(tsk),
993 delta >> 20);
994 }
995 account_scheduler_latency(tsk, delta >> 10, 0);
996 }
997 }
998}
999
1000/*
1001 * Task is being enqueued - update stats:
1002 */
1003static inline void
1004update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1005{
1006 if (!schedstat_enabled())
1007 return;
1008
1009 /*
1010 * Are we enqueueing a waiting task? (for current tasks
1011 * a dequeue/enqueue event is a NOP)
1012 */
1013 if (se != cfs_rq->curr)
1014 update_stats_wait_start(cfs_rq, se);
1015
1016 if (flags & ENQUEUE_WAKEUP)
1017 update_stats_enqueue_sleeper(cfs_rq, se);
1018}
1019
1020static inline void
1021update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1022{
1023
1024 if (!schedstat_enabled())
1025 return;
1026
1027 /*
1028 * Mark the end of the wait period if dequeueing a
1029 * waiting task:
1030 */
1031 if (se != cfs_rq->curr)
1032 update_stats_wait_end(cfs_rq, se);
1033
1034 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1035 struct task_struct *tsk = task_of(se);
1036
1037 if (tsk->state & TASK_INTERRUPTIBLE)
1038 schedstat_set(se->statistics.sleep_start,
1039 rq_clock(rq_of(cfs_rq)));
1040 if (tsk->state & TASK_UNINTERRUPTIBLE)
1041 schedstat_set(se->statistics.block_start,
1042 rq_clock(rq_of(cfs_rq)));
1043 }
1044}
1045
1046/*
1047 * We are picking a new current task - update its stats:
1048 */
1049static inline void
1050update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1051{
1052 /*
1053 * We are starting a new run period:
1054 */
1055 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1056}
1057
1058/**************************************************
1059 * Scheduling class queueing methods:
1060 */
1061
1062#ifdef CONFIG_NUMA_BALANCING
1063/*
1064 * Approximate time to scan a full NUMA task in ms. The task scan period is
1065 * calculated based on the tasks virtual memory size and
1066 * numa_balancing_scan_size.
1067 */
1068unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1069unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1070
1071/* Portion of address space to scan in MB */
1072unsigned int sysctl_numa_balancing_scan_size = 256;
1073
1074/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1075unsigned int sysctl_numa_balancing_scan_delay = 1000;
1076
1077static unsigned int task_nr_scan_windows(struct task_struct *p)
1078{
1079 unsigned long rss = 0;
1080 unsigned long nr_scan_pages;
1081
1082 /*
1083 * Calculations based on RSS as non-present and empty pages are skipped
1084 * by the PTE scanner and NUMA hinting faults should be trapped based
1085 * on resident pages
1086 */
1087 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1088 rss = get_mm_rss(p->mm);
1089 if (!rss)
1090 rss = nr_scan_pages;
1091
1092 rss = round_up(rss, nr_scan_pages);
1093 return rss / nr_scan_pages;
1094}
1095
1096/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1097#define MAX_SCAN_WINDOW 2560
1098
1099static unsigned int task_scan_min(struct task_struct *p)
1100{
1101 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1102 unsigned int scan, floor;
1103 unsigned int windows = 1;
1104
1105 if (scan_size < MAX_SCAN_WINDOW)
1106 windows = MAX_SCAN_WINDOW / scan_size;
1107 floor = 1000 / windows;
1108
1109 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1110 return max_t(unsigned int, floor, scan);
1111}
1112
1113static unsigned int task_scan_max(struct task_struct *p)
1114{
1115 unsigned int smin = task_scan_min(p);
1116 unsigned int smax;
1117
1118 /* Watch for min being lower than max due to floor calculations */
1119 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1120 return max(smin, smax);
1121}
1122
1123static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1124{
1125 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1126 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1127}
1128
1129static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1130{
1131 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1132 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1133}
1134
1135struct numa_group {
1136 atomic_t refcount;
1137
1138 spinlock_t lock; /* nr_tasks, tasks */
1139 int nr_tasks;
1140 pid_t gid;
1141 int active_nodes;
1142
1143 struct rcu_head rcu;
1144 unsigned long total_faults;
1145 unsigned long max_faults_cpu;
1146 /*
1147 * Faults_cpu is used to decide whether memory should move
1148 * towards the CPU. As a consequence, these stats are weighted
1149 * more by CPU use than by memory faults.
1150 */
1151 unsigned long *faults_cpu;
1152 unsigned long faults[0];
1153};
1154
1155/* Shared or private faults. */
1156#define NR_NUMA_HINT_FAULT_TYPES 2
1157
1158/* Memory and CPU locality */
1159#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1160
1161/* Averaged statistics, and temporary buffers. */
1162#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1163
1164pid_t task_numa_group_id(struct task_struct *p)
1165{
1166 return p->numa_group ? p->numa_group->gid : 0;
1167}
1168
1169/*
1170 * The averaged statistics, shared & private, memory & cpu,
1171 * occupy the first half of the array. The second half of the
1172 * array is for current counters, which are averaged into the
1173 * first set by task_numa_placement.
1174 */
1175static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1176{
1177 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1178}
1179
1180static inline unsigned long task_faults(struct task_struct *p, int nid)
1181{
1182 if (!p->numa_faults)
1183 return 0;
1184
1185 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1186 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1187}
1188
1189static inline unsigned long group_faults(struct task_struct *p, int nid)
1190{
1191 if (!p->numa_group)
1192 return 0;
1193
1194 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1195 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1196}
1197
1198static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1199{
1200 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1201 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1202}
1203
1204/*
1205 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1206 * considered part of a numa group's pseudo-interleaving set. Migrations
1207 * between these nodes are slowed down, to allow things to settle down.
1208 */
1209#define ACTIVE_NODE_FRACTION 3
1210
1211static bool numa_is_active_node(int nid, struct numa_group *ng)
1212{
1213 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1214}
1215
1216/* Handle placement on systems where not all nodes are directly connected. */
1217static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1218 int maxdist, bool task)
1219{
1220 unsigned long score = 0;
1221 int node;
1222
1223 /*
1224 * All nodes are directly connected, and the same distance
1225 * from each other. No need for fancy placement algorithms.
1226 */
1227 if (sched_numa_topology_type == NUMA_DIRECT)
1228 return 0;
1229
1230 /*
1231 * This code is called for each node, introducing N^2 complexity,
1232 * which should be ok given the number of nodes rarely exceeds 8.
1233 */
1234 for_each_online_node(node) {
1235 unsigned long faults;
1236 int dist = node_distance(nid, node);
1237
1238 /*
1239 * The furthest away nodes in the system are not interesting
1240 * for placement; nid was already counted.
1241 */
1242 if (dist == sched_max_numa_distance || node == nid)
1243 continue;
1244
1245 /*
1246 * On systems with a backplane NUMA topology, compare groups
1247 * of nodes, and move tasks towards the group with the most
1248 * memory accesses. When comparing two nodes at distance
1249 * "hoplimit", only nodes closer by than "hoplimit" are part
1250 * of each group. Skip other nodes.
1251 */
1252 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1253 dist > maxdist)
1254 continue;
1255
1256 /* Add up the faults from nearby nodes. */
1257 if (task)
1258 faults = task_faults(p, node);
1259 else
1260 faults = group_faults(p, node);
1261
1262 /*
1263 * On systems with a glueless mesh NUMA topology, there are
1264 * no fixed "groups of nodes". Instead, nodes that are not
1265 * directly connected bounce traffic through intermediate
1266 * nodes; a numa_group can occupy any set of nodes.
1267 * The further away a node is, the less the faults count.
1268 * This seems to result in good task placement.
1269 */
1270 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1271 faults *= (sched_max_numa_distance - dist);
1272 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1273 }
1274
1275 score += faults;
1276 }
1277
1278 return score;
1279}
1280
1281/*
1282 * These return the fraction of accesses done by a particular task, or
1283 * task group, on a particular numa node. The group weight is given a
1284 * larger multiplier, in order to group tasks together that are almost
1285 * evenly spread out between numa nodes.
1286 */
1287static inline unsigned long task_weight(struct task_struct *p, int nid,
1288 int dist)
1289{
1290 unsigned long faults, total_faults;
1291
1292 if (!p->numa_faults)
1293 return 0;
1294
1295 total_faults = p->total_numa_faults;
1296
1297 if (!total_faults)
1298 return 0;
1299
1300 faults = task_faults(p, nid);
1301 faults += score_nearby_nodes(p, nid, dist, true);
1302
1303 return 1000 * faults / total_faults;
1304}
1305
1306static inline unsigned long group_weight(struct task_struct *p, int nid,
1307 int dist)
1308{
1309 unsigned long faults, total_faults;
1310
1311 if (!p->numa_group)
1312 return 0;
1313
1314 total_faults = p->numa_group->total_faults;
1315
1316 if (!total_faults)
1317 return 0;
1318
1319 faults = group_faults(p, nid);
1320 faults += score_nearby_nodes(p, nid, dist, false);
1321
1322 return 1000 * faults / total_faults;
1323}
1324
1325bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1326 int src_nid, int dst_cpu)
1327{
1328 struct numa_group *ng = p->numa_group;
1329 int dst_nid = cpu_to_node(dst_cpu);
1330 int last_cpupid, this_cpupid;
1331
1332 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1333
1334 /*
1335 * Multi-stage node selection is used in conjunction with a periodic
1336 * migration fault to build a temporal task<->page relation. By using
1337 * a two-stage filter we remove short/unlikely relations.
1338 *
1339 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1340 * a task's usage of a particular page (n_p) per total usage of this
1341 * page (n_t) (in a given time-span) to a probability.
1342 *
1343 * Our periodic faults will sample this probability and getting the
1344 * same result twice in a row, given these samples are fully
1345 * independent, is then given by P(n)^2, provided our sample period
1346 * is sufficiently short compared to the usage pattern.
1347 *
1348 * This quadric squishes small probabilities, making it less likely we
1349 * act on an unlikely task<->page relation.
1350 */
1351 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1352 if (!cpupid_pid_unset(last_cpupid) &&
1353 cpupid_to_nid(last_cpupid) != dst_nid)
1354 return false;
1355
1356 /* Always allow migrate on private faults */
1357 if (cpupid_match_pid(p, last_cpupid))
1358 return true;
1359
1360 /* A shared fault, but p->numa_group has not been set up yet. */
1361 if (!ng)
1362 return true;
1363
1364 /*
1365 * Destination node is much more heavily used than the source
1366 * node? Allow migration.
1367 */
1368 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1369 ACTIVE_NODE_FRACTION)
1370 return true;
1371
1372 /*
1373 * Distribute memory according to CPU & memory use on each node,
1374 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1375 *
1376 * faults_cpu(dst) 3 faults_cpu(src)
1377 * --------------- * - > ---------------
1378 * faults_mem(dst) 4 faults_mem(src)
1379 */
1380 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1381 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1382}
1383
1384static unsigned long weighted_cpuload(const int cpu);
1385static unsigned long source_load(int cpu, int type);
1386static unsigned long target_load(int cpu, int type);
1387static unsigned long capacity_of(int cpu);
1388static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1389
1390/* Cached statistics for all CPUs within a node */
1391struct numa_stats {
1392 unsigned long nr_running;
1393 unsigned long load;
1394
1395 /* Total compute capacity of CPUs on a node */
1396 unsigned long compute_capacity;
1397
1398 /* Approximate capacity in terms of runnable tasks on a node */
1399 unsigned long task_capacity;
1400 int has_free_capacity;
1401};
1402
1403/*
1404 * XXX borrowed from update_sg_lb_stats
1405 */
1406static void update_numa_stats(struct numa_stats *ns, int nid)
1407{
1408 int smt, cpu, cpus = 0;
1409 unsigned long capacity;
1410
1411 memset(ns, 0, sizeof(*ns));
1412 for_each_cpu(cpu, cpumask_of_node(nid)) {
1413 struct rq *rq = cpu_rq(cpu);
1414
1415 ns->nr_running += rq->nr_running;
1416 ns->load += weighted_cpuload(cpu);
1417 ns->compute_capacity += capacity_of(cpu);
1418
1419 cpus++;
1420 }
1421
1422 /*
1423 * If we raced with hotplug and there are no CPUs left in our mask
1424 * the @ns structure is NULL'ed and task_numa_compare() will
1425 * not find this node attractive.
1426 *
1427 * We'll either bail at !has_free_capacity, or we'll detect a huge
1428 * imbalance and bail there.
1429 */
1430 if (!cpus)
1431 return;
1432
1433 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1434 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1435 capacity = cpus / smt; /* cores */
1436
1437 ns->task_capacity = min_t(unsigned, capacity,
1438 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1439 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1440}
1441
1442struct task_numa_env {
1443 struct task_struct *p;
1444
1445 int src_cpu, src_nid;
1446 int dst_cpu, dst_nid;
1447
1448 struct numa_stats src_stats, dst_stats;
1449
1450 int imbalance_pct;
1451 int dist;
1452
1453 struct task_struct *best_task;
1454 long best_imp;
1455 int best_cpu;
1456};
1457
1458static void task_numa_assign(struct task_numa_env *env,
1459 struct task_struct *p, long imp)
1460{
1461 if (env->best_task)
1462 put_task_struct(env->best_task);
1463 if (p)
1464 get_task_struct(p);
1465
1466 env->best_task = p;
1467 env->best_imp = imp;
1468 env->best_cpu = env->dst_cpu;
1469}
1470
1471static bool load_too_imbalanced(long src_load, long dst_load,
1472 struct task_numa_env *env)
1473{
1474 long imb, old_imb;
1475 long orig_src_load, orig_dst_load;
1476 long src_capacity, dst_capacity;
1477
1478 /*
1479 * The load is corrected for the CPU capacity available on each node.
1480 *
1481 * src_load dst_load
1482 * ------------ vs ---------
1483 * src_capacity dst_capacity
1484 */
1485 src_capacity = env->src_stats.compute_capacity;
1486 dst_capacity = env->dst_stats.compute_capacity;
1487
1488 /* We care about the slope of the imbalance, not the direction. */
1489 if (dst_load < src_load)
1490 swap(dst_load, src_load);
1491
1492 /* Is the difference below the threshold? */
1493 imb = dst_load * src_capacity * 100 -
1494 src_load * dst_capacity * env->imbalance_pct;
1495 if (imb <= 0)
1496 return false;
1497
1498 /*
1499 * The imbalance is above the allowed threshold.
1500 * Compare it with the old imbalance.
1501 */
1502 orig_src_load = env->src_stats.load;
1503 orig_dst_load = env->dst_stats.load;
1504
1505 if (orig_dst_load < orig_src_load)
1506 swap(orig_dst_load, orig_src_load);
1507
1508 old_imb = orig_dst_load * src_capacity * 100 -
1509 orig_src_load * dst_capacity * env->imbalance_pct;
1510
1511 /* Would this change make things worse? */
1512 return (imb > old_imb);
1513}
1514
1515/*
1516 * This checks if the overall compute and NUMA accesses of the system would
1517 * be improved if the source tasks was migrated to the target dst_cpu taking
1518 * into account that it might be best if task running on the dst_cpu should
1519 * be exchanged with the source task
1520 */
1521static void task_numa_compare(struct task_numa_env *env,
1522 long taskimp, long groupimp)
1523{
1524 struct rq *src_rq = cpu_rq(env->src_cpu);
1525 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1526 struct task_struct *cur;
1527 long src_load, dst_load;
1528 long load;
1529 long imp = env->p->numa_group ? groupimp : taskimp;
1530 long moveimp = imp;
1531 int dist = env->dist;
1532
1533 rcu_read_lock();
1534 cur = task_rcu_dereference(&dst_rq->curr);
1535 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1536 cur = NULL;
1537
1538 /*
1539 * Because we have preemption enabled we can get migrated around and
1540 * end try selecting ourselves (current == env->p) as a swap candidate.
1541 */
1542 if (cur == env->p)
1543 goto unlock;
1544
1545 /*
1546 * "imp" is the fault differential for the source task between the
1547 * source and destination node. Calculate the total differential for
1548 * the source task and potential destination task. The more negative
1549 * the value is, the more rmeote accesses that would be expected to
1550 * be incurred if the tasks were swapped.
1551 */
1552 if (cur) {
1553 /* Skip this swap candidate if cannot move to the source cpu */
1554 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1555 goto unlock;
1556
1557 /*
1558 * If dst and source tasks are in the same NUMA group, or not
1559 * in any group then look only at task weights.
1560 */
1561 if (cur->numa_group == env->p->numa_group) {
1562 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1563 task_weight(cur, env->dst_nid, dist);
1564 /*
1565 * Add some hysteresis to prevent swapping the
1566 * tasks within a group over tiny differences.
1567 */
1568 if (cur->numa_group)
1569 imp -= imp/16;
1570 } else {
1571 /*
1572 * Compare the group weights. If a task is all by
1573 * itself (not part of a group), use the task weight
1574 * instead.
1575 */
1576 if (cur->numa_group)
1577 imp += group_weight(cur, env->src_nid, dist) -
1578 group_weight(cur, env->dst_nid, dist);
1579 else
1580 imp += task_weight(cur, env->src_nid, dist) -
1581 task_weight(cur, env->dst_nid, dist);
1582 }
1583 }
1584
1585 if (imp <= env->best_imp && moveimp <= env->best_imp)
1586 goto unlock;
1587
1588 if (!cur) {
1589 /* Is there capacity at our destination? */
1590 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1591 !env->dst_stats.has_free_capacity)
1592 goto unlock;
1593
1594 goto balance;
1595 }
1596
1597 /* Balance doesn't matter much if we're running a task per cpu */
1598 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1599 dst_rq->nr_running == 1)
1600 goto assign;
1601
1602 /*
1603 * In the overloaded case, try and keep the load balanced.
1604 */
1605balance:
1606 load = task_h_load(env->p);
1607 dst_load = env->dst_stats.load + load;
1608 src_load = env->src_stats.load - load;
1609
1610 if (moveimp > imp && moveimp > env->best_imp) {
1611 /*
1612 * If the improvement from just moving env->p direction is
1613 * better than swapping tasks around, check if a move is
1614 * possible. Store a slightly smaller score than moveimp,
1615 * so an actually idle CPU will win.
1616 */
1617 if (!load_too_imbalanced(src_load, dst_load, env)) {
1618 imp = moveimp - 1;
1619 cur = NULL;
1620 goto assign;
1621 }
1622 }
1623
1624 if (imp <= env->best_imp)
1625 goto unlock;
1626
1627 if (cur) {
1628 load = task_h_load(cur);
1629 dst_load -= load;
1630 src_load += load;
1631 }
1632
1633 if (load_too_imbalanced(src_load, dst_load, env))
1634 goto unlock;
1635
1636 /*
1637 * One idle CPU per node is evaluated for a task numa move.
1638 * Call select_idle_sibling to maybe find a better one.
1639 */
1640 if (!cur) {
1641 /*
1642 * select_idle_siblings() uses an per-cpu cpumask that
1643 * can be used from IRQ context.
1644 */
1645 local_irq_disable();
1646 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1647 env->dst_cpu);
1648 local_irq_enable();
1649 }
1650
1651assign:
1652 task_numa_assign(env, cur, imp);
1653unlock:
1654 rcu_read_unlock();
1655}
1656
1657static void task_numa_find_cpu(struct task_numa_env *env,
1658 long taskimp, long groupimp)
1659{
1660 int cpu;
1661
1662 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1663 /* Skip this CPU if the source task cannot migrate */
1664 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1665 continue;
1666
1667 env->dst_cpu = cpu;
1668 task_numa_compare(env, taskimp, groupimp);
1669 }
1670}
1671
1672/* Only move tasks to a NUMA node less busy than the current node. */
1673static bool numa_has_capacity(struct task_numa_env *env)
1674{
1675 struct numa_stats *src = &env->src_stats;
1676 struct numa_stats *dst = &env->dst_stats;
1677
1678 if (src->has_free_capacity && !dst->has_free_capacity)
1679 return false;
1680
1681 /*
1682 * Only consider a task move if the source has a higher load
1683 * than the destination, corrected for CPU capacity on each node.
1684 *
1685 * src->load dst->load
1686 * --------------------- vs ---------------------
1687 * src->compute_capacity dst->compute_capacity
1688 */
1689 if (src->load * dst->compute_capacity * env->imbalance_pct >
1690
1691 dst->load * src->compute_capacity * 100)
1692 return true;
1693
1694 return false;
1695}
1696
1697static int task_numa_migrate(struct task_struct *p)
1698{
1699 struct task_numa_env env = {
1700 .p = p,
1701
1702 .src_cpu = task_cpu(p),
1703 .src_nid = task_node(p),
1704
1705 .imbalance_pct = 112,
1706
1707 .best_task = NULL,
1708 .best_imp = 0,
1709 .best_cpu = -1,
1710 };
1711 struct sched_domain *sd;
1712 unsigned long taskweight, groupweight;
1713 int nid, ret, dist;
1714 long taskimp, groupimp;
1715
1716 /*
1717 * Pick the lowest SD_NUMA domain, as that would have the smallest
1718 * imbalance and would be the first to start moving tasks about.
1719 *
1720 * And we want to avoid any moving of tasks about, as that would create
1721 * random movement of tasks -- counter the numa conditions we're trying
1722 * to satisfy here.
1723 */
1724 rcu_read_lock();
1725 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1726 if (sd)
1727 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1728 rcu_read_unlock();
1729
1730 /*
1731 * Cpusets can break the scheduler domain tree into smaller
1732 * balance domains, some of which do not cross NUMA boundaries.
1733 * Tasks that are "trapped" in such domains cannot be migrated
1734 * elsewhere, so there is no point in (re)trying.
1735 */
1736 if (unlikely(!sd)) {
1737 p->numa_preferred_nid = task_node(p);
1738 return -EINVAL;
1739 }
1740
1741 env.dst_nid = p->numa_preferred_nid;
1742 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1743 taskweight = task_weight(p, env.src_nid, dist);
1744 groupweight = group_weight(p, env.src_nid, dist);
1745 update_numa_stats(&env.src_stats, env.src_nid);
1746 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1747 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1748 update_numa_stats(&env.dst_stats, env.dst_nid);
1749
1750 /* Try to find a spot on the preferred nid. */
1751 if (numa_has_capacity(&env))
1752 task_numa_find_cpu(&env, taskimp, groupimp);
1753
1754 /*
1755 * Look at other nodes in these cases:
1756 * - there is no space available on the preferred_nid
1757 * - the task is part of a numa_group that is interleaved across
1758 * multiple NUMA nodes; in order to better consolidate the group,
1759 * we need to check other locations.
1760 */
1761 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1762 for_each_online_node(nid) {
1763 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1764 continue;
1765
1766 dist = node_distance(env.src_nid, env.dst_nid);
1767 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1768 dist != env.dist) {
1769 taskweight = task_weight(p, env.src_nid, dist);
1770 groupweight = group_weight(p, env.src_nid, dist);
1771 }
1772
1773 /* Only consider nodes where both task and groups benefit */
1774 taskimp = task_weight(p, nid, dist) - taskweight;
1775 groupimp = group_weight(p, nid, dist) - groupweight;
1776 if (taskimp < 0 && groupimp < 0)
1777 continue;
1778
1779 env.dist = dist;
1780 env.dst_nid = nid;
1781 update_numa_stats(&env.dst_stats, env.dst_nid);
1782 if (numa_has_capacity(&env))
1783 task_numa_find_cpu(&env, taskimp, groupimp);
1784 }
1785 }
1786
1787 /*
1788 * If the task is part of a workload that spans multiple NUMA nodes,
1789 * and is migrating into one of the workload's active nodes, remember
1790 * this node as the task's preferred numa node, so the workload can
1791 * settle down.
1792 * A task that migrated to a second choice node will be better off
1793 * trying for a better one later. Do not set the preferred node here.
1794 */
1795 if (p->numa_group) {
1796 struct numa_group *ng = p->numa_group;
1797
1798 if (env.best_cpu == -1)
1799 nid = env.src_nid;
1800 else
1801 nid = env.dst_nid;
1802
1803 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1804 sched_setnuma(p, env.dst_nid);
1805 }
1806
1807 /* No better CPU than the current one was found. */
1808 if (env.best_cpu == -1)
1809 return -EAGAIN;
1810
1811 /*
1812 * Reset the scan period if the task is being rescheduled on an
1813 * alternative node to recheck if the tasks is now properly placed.
1814 */
1815 p->numa_scan_period = task_scan_min(p);
1816
1817 if (env.best_task == NULL) {
1818 ret = migrate_task_to(p, env.best_cpu);
1819 if (ret != 0)
1820 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1821 return ret;
1822 }
1823
1824 ret = migrate_swap(p, env.best_task);
1825 if (ret != 0)
1826 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1827 put_task_struct(env.best_task);
1828 return ret;
1829}
1830
1831/* Attempt to migrate a task to a CPU on the preferred node. */
1832static void numa_migrate_preferred(struct task_struct *p)
1833{
1834 unsigned long interval = HZ;
1835
1836 /* This task has no NUMA fault statistics yet */
1837 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1838 return;
1839
1840 /* Periodically retry migrating the task to the preferred node */
1841 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1842 p->numa_migrate_retry = jiffies + interval;
1843
1844 /* Success if task is already running on preferred CPU */
1845 if (task_node(p) == p->numa_preferred_nid)
1846 return;
1847
1848 /* Otherwise, try migrate to a CPU on the preferred node */
1849 task_numa_migrate(p);
1850}
1851
1852/*
1853 * Find out how many nodes on the workload is actively running on. Do this by
1854 * tracking the nodes from which NUMA hinting faults are triggered. This can
1855 * be different from the set of nodes where the workload's memory is currently
1856 * located.
1857 */
1858static void numa_group_count_active_nodes(struct numa_group *numa_group)
1859{
1860 unsigned long faults, max_faults = 0;
1861 int nid, active_nodes = 0;
1862
1863 for_each_online_node(nid) {
1864 faults = group_faults_cpu(numa_group, nid);
1865 if (faults > max_faults)
1866 max_faults = faults;
1867 }
1868
1869 for_each_online_node(nid) {
1870 faults = group_faults_cpu(numa_group, nid);
1871 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1872 active_nodes++;
1873 }
1874
1875 numa_group->max_faults_cpu = max_faults;
1876 numa_group->active_nodes = active_nodes;
1877}
1878
1879/*
1880 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1881 * increments. The more local the fault statistics are, the higher the scan
1882 * period will be for the next scan window. If local/(local+remote) ratio is
1883 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1884 * the scan period will decrease. Aim for 70% local accesses.
1885 */
1886#define NUMA_PERIOD_SLOTS 10
1887#define NUMA_PERIOD_THRESHOLD 7
1888
1889/*
1890 * Increase the scan period (slow down scanning) if the majority of
1891 * our memory is already on our local node, or if the majority of
1892 * the page accesses are shared with other processes.
1893 * Otherwise, decrease the scan period.
1894 */
1895static void update_task_scan_period(struct task_struct *p,
1896 unsigned long shared, unsigned long private)
1897{
1898 unsigned int period_slot;
1899 int ratio;
1900 int diff;
1901
1902 unsigned long remote = p->numa_faults_locality[0];
1903 unsigned long local = p->numa_faults_locality[1];
1904
1905 /*
1906 * If there were no record hinting faults then either the task is
1907 * completely idle or all activity is areas that are not of interest
1908 * to automatic numa balancing. Related to that, if there were failed
1909 * migration then it implies we are migrating too quickly or the local
1910 * node is overloaded. In either case, scan slower
1911 */
1912 if (local + shared == 0 || p->numa_faults_locality[2]) {
1913 p->numa_scan_period = min(p->numa_scan_period_max,
1914 p->numa_scan_period << 1);
1915
1916 p->mm->numa_next_scan = jiffies +
1917 msecs_to_jiffies(p->numa_scan_period);
1918
1919 return;
1920 }
1921
1922 /*
1923 * Prepare to scale scan period relative to the current period.
1924 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1925 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1926 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1927 */
1928 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1929 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1930 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1931 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1932 if (!slot)
1933 slot = 1;
1934 diff = slot * period_slot;
1935 } else {
1936 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1937
1938 /*
1939 * Scale scan rate increases based on sharing. There is an
1940 * inverse relationship between the degree of sharing and
1941 * the adjustment made to the scanning period. Broadly
1942 * speaking the intent is that there is little point
1943 * scanning faster if shared accesses dominate as it may
1944 * simply bounce migrations uselessly
1945 */
1946 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1947 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1948 }
1949
1950 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1951 task_scan_min(p), task_scan_max(p));
1952 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1953}
1954
1955/*
1956 * Get the fraction of time the task has been running since the last
1957 * NUMA placement cycle. The scheduler keeps similar statistics, but
1958 * decays those on a 32ms period, which is orders of magnitude off
1959 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1960 * stats only if the task is so new there are no NUMA statistics yet.
1961 */
1962static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1963{
1964 u64 runtime, delta, now;
1965 /* Use the start of this time slice to avoid calculations. */
1966 now = p->se.exec_start;
1967 runtime = p->se.sum_exec_runtime;
1968
1969 if (p->last_task_numa_placement) {
1970 delta = runtime - p->last_sum_exec_runtime;
1971 *period = now - p->last_task_numa_placement;
1972 } else {
1973 delta = p->se.avg.load_sum / p->se.load.weight;
1974 *period = LOAD_AVG_MAX;
1975 }
1976
1977 p->last_sum_exec_runtime = runtime;
1978 p->last_task_numa_placement = now;
1979
1980 return delta;
1981}
1982
1983/*
1984 * Determine the preferred nid for a task in a numa_group. This needs to
1985 * be done in a way that produces consistent results with group_weight,
1986 * otherwise workloads might not converge.
1987 */
1988static int preferred_group_nid(struct task_struct *p, int nid)
1989{
1990 nodemask_t nodes;
1991 int dist;
1992
1993 /* Direct connections between all NUMA nodes. */
1994 if (sched_numa_topology_type == NUMA_DIRECT)
1995 return nid;
1996
1997 /*
1998 * On a system with glueless mesh NUMA topology, group_weight
1999 * scores nodes according to the number of NUMA hinting faults on
2000 * both the node itself, and on nearby nodes.
2001 */
2002 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2003 unsigned long score, max_score = 0;
2004 int node, max_node = nid;
2005
2006 dist = sched_max_numa_distance;
2007
2008 for_each_online_node(node) {
2009 score = group_weight(p, node, dist);
2010 if (score > max_score) {
2011 max_score = score;
2012 max_node = node;
2013 }
2014 }
2015 return max_node;
2016 }
2017
2018 /*
2019 * Finding the preferred nid in a system with NUMA backplane
2020 * interconnect topology is more involved. The goal is to locate
2021 * tasks from numa_groups near each other in the system, and
2022 * untangle workloads from different sides of the system. This requires
2023 * searching down the hierarchy of node groups, recursively searching
2024 * inside the highest scoring group of nodes. The nodemask tricks
2025 * keep the complexity of the search down.
2026 */
2027 nodes = node_online_map;
2028 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2029 unsigned long max_faults = 0;
2030 nodemask_t max_group = NODE_MASK_NONE;
2031 int a, b;
2032
2033 /* Are there nodes at this distance from each other? */
2034 if (!find_numa_distance(dist))
2035 continue;
2036
2037 for_each_node_mask(a, nodes) {
2038 unsigned long faults = 0;
2039 nodemask_t this_group;
2040 nodes_clear(this_group);
2041
2042 /* Sum group's NUMA faults; includes a==b case. */
2043 for_each_node_mask(b, nodes) {
2044 if (node_distance(a, b) < dist) {
2045 faults += group_faults(p, b);
2046 node_set(b, this_group);
2047 node_clear(b, nodes);
2048 }
2049 }
2050
2051 /* Remember the top group. */
2052 if (faults > max_faults) {
2053 max_faults = faults;
2054 max_group = this_group;
2055 /*
2056 * subtle: at the smallest distance there is
2057 * just one node left in each "group", the
2058 * winner is the preferred nid.
2059 */
2060 nid = a;
2061 }
2062 }
2063 /* Next round, evaluate the nodes within max_group. */
2064 if (!max_faults)
2065 break;
2066 nodes = max_group;
2067 }
2068 return nid;
2069}
2070
2071static void task_numa_placement(struct task_struct *p)
2072{
2073 int seq, nid, max_nid = -1, max_group_nid = -1;
2074 unsigned long max_faults = 0, max_group_faults = 0;
2075 unsigned long fault_types[2] = { 0, 0 };
2076 unsigned long total_faults;
2077 u64 runtime, period;
2078 spinlock_t *group_lock = NULL;
2079
2080 /*
2081 * The p->mm->numa_scan_seq field gets updated without
2082 * exclusive access. Use READ_ONCE() here to ensure
2083 * that the field is read in a single access:
2084 */
2085 seq = READ_ONCE(p->mm->numa_scan_seq);
2086 if (p->numa_scan_seq == seq)
2087 return;
2088 p->numa_scan_seq = seq;
2089 p->numa_scan_period_max = task_scan_max(p);
2090
2091 total_faults = p->numa_faults_locality[0] +
2092 p->numa_faults_locality[1];
2093 runtime = numa_get_avg_runtime(p, &period);
2094
2095 /* If the task is part of a group prevent parallel updates to group stats */
2096 if (p->numa_group) {
2097 group_lock = &p->numa_group->lock;
2098 spin_lock_irq(group_lock);
2099 }
2100
2101 /* Find the node with the highest number of faults */
2102 for_each_online_node(nid) {
2103 /* Keep track of the offsets in numa_faults array */
2104 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2105 unsigned long faults = 0, group_faults = 0;
2106 int priv;
2107
2108 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2109 long diff, f_diff, f_weight;
2110
2111 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2112 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2113 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2114 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2115
2116 /* Decay existing window, copy faults since last scan */
2117 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2118 fault_types[priv] += p->numa_faults[membuf_idx];
2119 p->numa_faults[membuf_idx] = 0;
2120
2121 /*
2122 * Normalize the faults_from, so all tasks in a group
2123 * count according to CPU use, instead of by the raw
2124 * number of faults. Tasks with little runtime have
2125 * little over-all impact on throughput, and thus their
2126 * faults are less important.
2127 */
2128 f_weight = div64_u64(runtime << 16, period + 1);
2129 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2130 (total_faults + 1);
2131 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2132 p->numa_faults[cpubuf_idx] = 0;
2133
2134 p->numa_faults[mem_idx] += diff;
2135 p->numa_faults[cpu_idx] += f_diff;
2136 faults += p->numa_faults[mem_idx];
2137 p->total_numa_faults += diff;
2138 if (p->numa_group) {
2139 /*
2140 * safe because we can only change our own group
2141 *
2142 * mem_idx represents the offset for a given
2143 * nid and priv in a specific region because it
2144 * is at the beginning of the numa_faults array.
2145 */
2146 p->numa_group->faults[mem_idx] += diff;
2147 p->numa_group->faults_cpu[mem_idx] += f_diff;
2148 p->numa_group->total_faults += diff;
2149 group_faults += p->numa_group->faults[mem_idx];
2150 }
2151 }
2152
2153 if (faults > max_faults) {
2154 max_faults = faults;
2155 max_nid = nid;
2156 }
2157
2158 if (group_faults > max_group_faults) {
2159 max_group_faults = group_faults;
2160 max_group_nid = nid;
2161 }
2162 }
2163
2164 update_task_scan_period(p, fault_types[0], fault_types[1]);
2165
2166 if (p->numa_group) {
2167 numa_group_count_active_nodes(p->numa_group);
2168 spin_unlock_irq(group_lock);
2169 max_nid = preferred_group_nid(p, max_group_nid);
2170 }
2171
2172 if (max_faults) {
2173 /* Set the new preferred node */
2174 if (max_nid != p->numa_preferred_nid)
2175 sched_setnuma(p, max_nid);
2176
2177 if (task_node(p) != p->numa_preferred_nid)
2178 numa_migrate_preferred(p);
2179 }
2180}
2181
2182static inline int get_numa_group(struct numa_group *grp)
2183{
2184 return atomic_inc_not_zero(&grp->refcount);
2185}
2186
2187static inline void put_numa_group(struct numa_group *grp)
2188{
2189 if (atomic_dec_and_test(&grp->refcount))
2190 kfree_rcu(grp, rcu);
2191}
2192
2193static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2194 int *priv)
2195{
2196 struct numa_group *grp, *my_grp;
2197 struct task_struct *tsk;
2198 bool join = false;
2199 int cpu = cpupid_to_cpu(cpupid);
2200 int i;
2201
2202 if (unlikely(!p->numa_group)) {
2203 unsigned int size = sizeof(struct numa_group) +
2204 4*nr_node_ids*sizeof(unsigned long);
2205
2206 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2207 if (!grp)
2208 return;
2209
2210 atomic_set(&grp->refcount, 1);
2211 grp->active_nodes = 1;
2212 grp->max_faults_cpu = 0;
2213 spin_lock_init(&grp->lock);
2214 grp->gid = p->pid;
2215 /* Second half of the array tracks nids where faults happen */
2216 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2217 nr_node_ids;
2218
2219 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2220 grp->faults[i] = p->numa_faults[i];
2221
2222 grp->total_faults = p->total_numa_faults;
2223
2224 grp->nr_tasks++;
2225 rcu_assign_pointer(p->numa_group, grp);
2226 }
2227
2228 rcu_read_lock();
2229 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2230
2231 if (!cpupid_match_pid(tsk, cpupid))
2232 goto no_join;
2233
2234 grp = rcu_dereference(tsk->numa_group);
2235 if (!grp)
2236 goto no_join;
2237
2238 my_grp = p->numa_group;
2239 if (grp == my_grp)
2240 goto no_join;
2241
2242 /*
2243 * Only join the other group if its bigger; if we're the bigger group,
2244 * the other task will join us.
2245 */
2246 if (my_grp->nr_tasks > grp->nr_tasks)
2247 goto no_join;
2248
2249 /*
2250 * Tie-break on the grp address.
2251 */
2252 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2253 goto no_join;
2254
2255 /* Always join threads in the same process. */
2256 if (tsk->mm == current->mm)
2257 join = true;
2258
2259 /* Simple filter to avoid false positives due to PID collisions */
2260 if (flags & TNF_SHARED)
2261 join = true;
2262
2263 /* Update priv based on whether false sharing was detected */
2264 *priv = !join;
2265
2266 if (join && !get_numa_group(grp))
2267 goto no_join;
2268
2269 rcu_read_unlock();
2270
2271 if (!join)
2272 return;
2273
2274 BUG_ON(irqs_disabled());
2275 double_lock_irq(&my_grp->lock, &grp->lock);
2276
2277 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2278 my_grp->faults[i] -= p->numa_faults[i];
2279 grp->faults[i] += p->numa_faults[i];
2280 }
2281 my_grp->total_faults -= p->total_numa_faults;
2282 grp->total_faults += p->total_numa_faults;
2283
2284 my_grp->nr_tasks--;
2285 grp->nr_tasks++;
2286
2287 spin_unlock(&my_grp->lock);
2288 spin_unlock_irq(&grp->lock);
2289
2290 rcu_assign_pointer(p->numa_group, grp);
2291
2292 put_numa_group(my_grp);
2293 return;
2294
2295no_join:
2296 rcu_read_unlock();
2297 return;
2298}
2299
2300void task_numa_free(struct task_struct *p)
2301{
2302 struct numa_group *grp = p->numa_group;
2303 void *numa_faults = p->numa_faults;
2304 unsigned long flags;
2305 int i;
2306
2307 if (grp) {
2308 spin_lock_irqsave(&grp->lock, flags);
2309 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2310 grp->faults[i] -= p->numa_faults[i];
2311 grp->total_faults -= p->total_numa_faults;
2312
2313 grp->nr_tasks--;
2314 spin_unlock_irqrestore(&grp->lock, flags);
2315 RCU_INIT_POINTER(p->numa_group, NULL);
2316 put_numa_group(grp);
2317 }
2318
2319 p->numa_faults = NULL;
2320 kfree(numa_faults);
2321}
2322
2323/*
2324 * Got a PROT_NONE fault for a page on @node.
2325 */
2326void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2327{
2328 struct task_struct *p = current;
2329 bool migrated = flags & TNF_MIGRATED;
2330 int cpu_node = task_node(current);
2331 int local = !!(flags & TNF_FAULT_LOCAL);
2332 struct numa_group *ng;
2333 int priv;
2334
2335 if (!static_branch_likely(&sched_numa_balancing))
2336 return;
2337
2338 /* for example, ksmd faulting in a user's mm */
2339 if (!p->mm)
2340 return;
2341
2342 /* Allocate buffer to track faults on a per-node basis */
2343 if (unlikely(!p->numa_faults)) {
2344 int size = sizeof(*p->numa_faults) *
2345 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2346
2347 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2348 if (!p->numa_faults)
2349 return;
2350
2351 p->total_numa_faults = 0;
2352 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2353 }
2354
2355 /*
2356 * First accesses are treated as private, otherwise consider accesses
2357 * to be private if the accessing pid has not changed
2358 */
2359 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2360 priv = 1;
2361 } else {
2362 priv = cpupid_match_pid(p, last_cpupid);
2363 if (!priv && !(flags & TNF_NO_GROUP))
2364 task_numa_group(p, last_cpupid, flags, &priv);
2365 }
2366
2367 /*
2368 * If a workload spans multiple NUMA nodes, a shared fault that
2369 * occurs wholly within the set of nodes that the workload is
2370 * actively using should be counted as local. This allows the
2371 * scan rate to slow down when a workload has settled down.
2372 */
2373 ng = p->numa_group;
2374 if (!priv && !local && ng && ng->active_nodes > 1 &&
2375 numa_is_active_node(cpu_node, ng) &&
2376 numa_is_active_node(mem_node, ng))
2377 local = 1;
2378
2379 task_numa_placement(p);
2380
2381 /*
2382 * Retry task to preferred node migration periodically, in case it
2383 * case it previously failed, or the scheduler moved us.
2384 */
2385 if (time_after(jiffies, p->numa_migrate_retry))
2386 numa_migrate_preferred(p);
2387
2388 if (migrated)
2389 p->numa_pages_migrated += pages;
2390 if (flags & TNF_MIGRATE_FAIL)
2391 p->numa_faults_locality[2] += pages;
2392
2393 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2394 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2395 p->numa_faults_locality[local] += pages;
2396}
2397
2398static void reset_ptenuma_scan(struct task_struct *p)
2399{
2400 /*
2401 * We only did a read acquisition of the mmap sem, so
2402 * p->mm->numa_scan_seq is written to without exclusive access
2403 * and the update is not guaranteed to be atomic. That's not
2404 * much of an issue though, since this is just used for
2405 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2406 * expensive, to avoid any form of compiler optimizations:
2407 */
2408 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2409 p->mm->numa_scan_offset = 0;
2410}
2411
2412/*
2413 * The expensive part of numa migration is done from task_work context.
2414 * Triggered from task_tick_numa().
2415 */
2416void task_numa_work(struct callback_head *work)
2417{
2418 unsigned long migrate, next_scan, now = jiffies;
2419 struct task_struct *p = current;
2420 struct mm_struct *mm = p->mm;
2421 u64 runtime = p->se.sum_exec_runtime;
2422 struct vm_area_struct *vma;
2423 unsigned long start, end;
2424 unsigned long nr_pte_updates = 0;
2425 long pages, virtpages;
2426
2427 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2428
2429 work->next = work; /* protect against double add */
2430 /*
2431 * Who cares about NUMA placement when they're dying.
2432 *
2433 * NOTE: make sure not to dereference p->mm before this check,
2434 * exit_task_work() happens _after_ exit_mm() so we could be called
2435 * without p->mm even though we still had it when we enqueued this
2436 * work.
2437 */
2438 if (p->flags & PF_EXITING)
2439 return;
2440
2441 if (!mm->numa_next_scan) {
2442 mm->numa_next_scan = now +
2443 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2444 }
2445
2446 /*
2447 * Enforce maximal scan/migration frequency..
2448 */
2449 migrate = mm->numa_next_scan;
2450 if (time_before(now, migrate))
2451 return;
2452
2453 if (p->numa_scan_period == 0) {
2454 p->numa_scan_period_max = task_scan_max(p);
2455 p->numa_scan_period = task_scan_min(p);
2456 }
2457
2458 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2459 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2460 return;
2461
2462 /*
2463 * Delay this task enough that another task of this mm will likely win
2464 * the next time around.
2465 */
2466 p->node_stamp += 2 * TICK_NSEC;
2467
2468 start = mm->numa_scan_offset;
2469 pages = sysctl_numa_balancing_scan_size;
2470 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2471 virtpages = pages * 8; /* Scan up to this much virtual space */
2472 if (!pages)
2473 return;
2474
2475
2476 down_read(&mm->mmap_sem);
2477 vma = find_vma(mm, start);
2478 if (!vma) {
2479 reset_ptenuma_scan(p);
2480 start = 0;
2481 vma = mm->mmap;
2482 }
2483 for (; vma; vma = vma->vm_next) {
2484 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2485 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2486 continue;
2487 }
2488
2489 /*
2490 * Shared library pages mapped by multiple processes are not
2491 * migrated as it is expected they are cache replicated. Avoid
2492 * hinting faults in read-only file-backed mappings or the vdso
2493 * as migrating the pages will be of marginal benefit.
2494 */
2495 if (!vma->vm_mm ||
2496 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2497 continue;
2498
2499 /*
2500 * Skip inaccessible VMAs to avoid any confusion between
2501 * PROT_NONE and NUMA hinting ptes
2502 */
2503 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2504 continue;
2505
2506 do {
2507 start = max(start, vma->vm_start);
2508 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2509 end = min(end, vma->vm_end);
2510 nr_pte_updates = change_prot_numa(vma, start, end);
2511
2512 /*
2513 * Try to scan sysctl_numa_balancing_size worth of
2514 * hpages that have at least one present PTE that
2515 * is not already pte-numa. If the VMA contains
2516 * areas that are unused or already full of prot_numa
2517 * PTEs, scan up to virtpages, to skip through those
2518 * areas faster.
2519 */
2520 if (nr_pte_updates)
2521 pages -= (end - start) >> PAGE_SHIFT;
2522 virtpages -= (end - start) >> PAGE_SHIFT;
2523
2524 start = end;
2525 if (pages <= 0 || virtpages <= 0)
2526 goto out;
2527
2528 cond_resched();
2529 } while (end != vma->vm_end);
2530 }
2531
2532out:
2533 /*
2534 * It is possible to reach the end of the VMA list but the last few
2535 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2536 * would find the !migratable VMA on the next scan but not reset the
2537 * scanner to the start so check it now.
2538 */
2539 if (vma)
2540 mm->numa_scan_offset = start;
2541 else
2542 reset_ptenuma_scan(p);
2543 up_read(&mm->mmap_sem);
2544
2545 /*
2546 * Make sure tasks use at least 32x as much time to run other code
2547 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2548 * Usually update_task_scan_period slows down scanning enough; on an
2549 * overloaded system we need to limit overhead on a per task basis.
2550 */
2551 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2552 u64 diff = p->se.sum_exec_runtime - runtime;
2553 p->node_stamp += 32 * diff;
2554 }
2555}
2556
2557/*
2558 * Drive the periodic memory faults..
2559 */
2560void task_tick_numa(struct rq *rq, struct task_struct *curr)
2561{
2562 struct callback_head *work = &curr->numa_work;
2563 u64 period, now;
2564
2565 /*
2566 * We don't care about NUMA placement if we don't have memory.
2567 */
2568 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2569 return;
2570
2571 /*
2572 * Using runtime rather than walltime has the dual advantage that
2573 * we (mostly) drive the selection from busy threads and that the
2574 * task needs to have done some actual work before we bother with
2575 * NUMA placement.
2576 */
2577 now = curr->se.sum_exec_runtime;
2578 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2579
2580 if (now > curr->node_stamp + period) {
2581 if (!curr->node_stamp)
2582 curr->numa_scan_period = task_scan_min(curr);
2583 curr->node_stamp += period;
2584
2585 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2586 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2587 task_work_add(curr, work, true);
2588 }
2589 }
2590}
2591#else
2592static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2593{
2594}
2595
2596static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2597{
2598}
2599
2600static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2601{
2602}
2603#endif /* CONFIG_NUMA_BALANCING */
2604
2605static void
2606account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2607{
2608 update_load_add(&cfs_rq->load, se->load.weight);
2609 if (!parent_entity(se))
2610 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2611#ifdef CONFIG_SMP
2612 if (entity_is_task(se)) {
2613 struct rq *rq = rq_of(cfs_rq);
2614
2615 account_numa_enqueue(rq, task_of(se));
2616 list_add(&se->group_node, &rq->cfs_tasks);
2617 }
2618#endif
2619 cfs_rq->nr_running++;
2620}
2621
2622static void
2623account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2624{
2625 update_load_sub(&cfs_rq->load, se->load.weight);
2626 if (!parent_entity(se))
2627 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2628#ifdef CONFIG_SMP
2629 if (entity_is_task(se)) {
2630 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2631 list_del_init(&se->group_node);
2632 }
2633#endif
2634 cfs_rq->nr_running--;
2635}
2636
2637#ifdef CONFIG_FAIR_GROUP_SCHED
2638# ifdef CONFIG_SMP
2639static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2640{
2641 long tg_weight, load, shares;
2642
2643 /*
2644 * This really should be: cfs_rq->avg.load_avg, but instead we use
2645 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2646 * the shares for small weight interactive tasks.
2647 */
2648 load = scale_load_down(cfs_rq->load.weight);
2649
2650 tg_weight = atomic_long_read(&tg->load_avg);
2651
2652 /* Ensure tg_weight >= load */
2653 tg_weight -= cfs_rq->tg_load_avg_contrib;
2654 tg_weight += load;
2655
2656 shares = (tg->shares * load);
2657 if (tg_weight)
2658 shares /= tg_weight;
2659
2660 if (shares < MIN_SHARES)
2661 shares = MIN_SHARES;
2662 if (shares > tg->shares)
2663 shares = tg->shares;
2664
2665 return shares;
2666}
2667# else /* CONFIG_SMP */
2668static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2669{
2670 return tg->shares;
2671}
2672# endif /* CONFIG_SMP */
2673
2674static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2675 unsigned long weight)
2676{
2677 if (se->on_rq) {
2678 /* commit outstanding execution time */
2679 if (cfs_rq->curr == se)
2680 update_curr(cfs_rq);
2681 account_entity_dequeue(cfs_rq, se);
2682 }
2683
2684 update_load_set(&se->load, weight);
2685
2686 if (se->on_rq)
2687 account_entity_enqueue(cfs_rq, se);
2688}
2689
2690static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2691
2692static void update_cfs_shares(struct cfs_rq *cfs_rq)
2693{
2694 struct task_group *tg;
2695 struct sched_entity *se;
2696 long shares;
2697
2698 tg = cfs_rq->tg;
2699 se = tg->se[cpu_of(rq_of(cfs_rq))];
2700 if (!se || throttled_hierarchy(cfs_rq))
2701 return;
2702#ifndef CONFIG_SMP
2703 if (likely(se->load.weight == tg->shares))
2704 return;
2705#endif
2706 shares = calc_cfs_shares(cfs_rq, tg);
2707
2708 reweight_entity(cfs_rq_of(se), se, shares);
2709}
2710#else /* CONFIG_FAIR_GROUP_SCHED */
2711static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2712{
2713}
2714#endif /* CONFIG_FAIR_GROUP_SCHED */
2715
2716#ifdef CONFIG_SMP
2717/* Precomputed fixed inverse multiplies for multiplication by y^n */
2718static const u32 runnable_avg_yN_inv[] = {
2719 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2720 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2721 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2722 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2723 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2724 0x85aac367, 0x82cd8698,
2725};
2726
2727/*
2728 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2729 * over-estimates when re-combining.
2730 */
2731static const u32 runnable_avg_yN_sum[] = {
2732 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2733 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2734 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2735};
2736
2737/*
2738 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2739 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2740 * were generated:
2741 */
2742static const u32 __accumulated_sum_N32[] = {
2743 0, 23371, 35056, 40899, 43820, 45281,
2744 46011, 46376, 46559, 46650, 46696, 46719,
2745};
2746
2747/*
2748 * Approximate:
2749 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2750 */
2751static __always_inline u64 decay_load(u64 val, u64 n)
2752{
2753 unsigned int local_n;
2754
2755 if (!n)
2756 return val;
2757 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2758 return 0;
2759
2760 /* after bounds checking we can collapse to 32-bit */
2761 local_n = n;
2762
2763 /*
2764 * As y^PERIOD = 1/2, we can combine
2765 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2766 * With a look-up table which covers y^n (n<PERIOD)
2767 *
2768 * To achieve constant time decay_load.
2769 */
2770 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2771 val >>= local_n / LOAD_AVG_PERIOD;
2772 local_n %= LOAD_AVG_PERIOD;
2773 }
2774
2775 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2776 return val;
2777}
2778
2779/*
2780 * For updates fully spanning n periods, the contribution to runnable
2781 * average will be: \Sum 1024*y^n
2782 *
2783 * We can compute this reasonably efficiently by combining:
2784 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2785 */
2786static u32 __compute_runnable_contrib(u64 n)
2787{
2788 u32 contrib = 0;
2789
2790 if (likely(n <= LOAD_AVG_PERIOD))
2791 return runnable_avg_yN_sum[n];
2792 else if (unlikely(n >= LOAD_AVG_MAX_N))
2793 return LOAD_AVG_MAX;
2794
2795 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2796 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2797 n %= LOAD_AVG_PERIOD;
2798 contrib = decay_load(contrib, n);
2799 return contrib + runnable_avg_yN_sum[n];
2800}
2801
2802#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2803
2804/*
2805 * We can represent the historical contribution to runnable average as the
2806 * coefficients of a geometric series. To do this we sub-divide our runnable
2807 * history into segments of approximately 1ms (1024us); label the segment that
2808 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2809 *
2810 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2811 * p0 p1 p2
2812 * (now) (~1ms ago) (~2ms ago)
2813 *
2814 * Let u_i denote the fraction of p_i that the entity was runnable.
2815 *
2816 * We then designate the fractions u_i as our co-efficients, yielding the
2817 * following representation of historical load:
2818 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2819 *
2820 * We choose y based on the with of a reasonably scheduling period, fixing:
2821 * y^32 = 0.5
2822 *
2823 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2824 * approximately half as much as the contribution to load within the last ms
2825 * (u_0).
2826 *
2827 * When a period "rolls over" and we have new u_0`, multiplying the previous
2828 * sum again by y is sufficient to update:
2829 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2830 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2831 */
2832static __always_inline int
2833__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2834 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2835{
2836 u64 delta, scaled_delta, periods;
2837 u32 contrib;
2838 unsigned int delta_w, scaled_delta_w, decayed = 0;
2839 unsigned long scale_freq, scale_cpu;
2840
2841 delta = now - sa->last_update_time;
2842 /*
2843 * This should only happen when time goes backwards, which it
2844 * unfortunately does during sched clock init when we swap over to TSC.
2845 */
2846 if ((s64)delta < 0) {
2847 sa->last_update_time = now;
2848 return 0;
2849 }
2850
2851 /*
2852 * Use 1024ns as the unit of measurement since it's a reasonable
2853 * approximation of 1us and fast to compute.
2854 */
2855 delta >>= 10;
2856 if (!delta)
2857 return 0;
2858 sa->last_update_time = now;
2859
2860 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2861 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2862
2863 /* delta_w is the amount already accumulated against our next period */
2864 delta_w = sa->period_contrib;
2865 if (delta + delta_w >= 1024) {
2866 decayed = 1;
2867
2868 /* how much left for next period will start over, we don't know yet */
2869 sa->period_contrib = 0;
2870
2871 /*
2872 * Now that we know we're crossing a period boundary, figure
2873 * out how much from delta we need to complete the current
2874 * period and accrue it.
2875 */
2876 delta_w = 1024 - delta_w;
2877 scaled_delta_w = cap_scale(delta_w, scale_freq);
2878 if (weight) {
2879 sa->load_sum += weight * scaled_delta_w;
2880 if (cfs_rq) {
2881 cfs_rq->runnable_load_sum +=
2882 weight * scaled_delta_w;
2883 }
2884 }
2885 if (running)
2886 sa->util_sum += scaled_delta_w * scale_cpu;
2887
2888 delta -= delta_w;
2889
2890 /* Figure out how many additional periods this update spans */
2891 periods = delta / 1024;
2892 delta %= 1024;
2893
2894 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2895 if (cfs_rq) {
2896 cfs_rq->runnable_load_sum =
2897 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2898 }
2899 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2900
2901 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2902 contrib = __compute_runnable_contrib(periods);
2903 contrib = cap_scale(contrib, scale_freq);
2904 if (weight) {
2905 sa->load_sum += weight * contrib;
2906 if (cfs_rq)
2907 cfs_rq->runnable_load_sum += weight * contrib;
2908 }
2909 if (running)
2910 sa->util_sum += contrib * scale_cpu;
2911 }
2912
2913 /* Remainder of delta accrued against u_0` */
2914 scaled_delta = cap_scale(delta, scale_freq);
2915 if (weight) {
2916 sa->load_sum += weight * scaled_delta;
2917 if (cfs_rq)
2918 cfs_rq->runnable_load_sum += weight * scaled_delta;
2919 }
2920 if (running)
2921 sa->util_sum += scaled_delta * scale_cpu;
2922
2923 sa->period_contrib += delta;
2924
2925 if (decayed) {
2926 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2927 if (cfs_rq) {
2928 cfs_rq->runnable_load_avg =
2929 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2930 }
2931 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2932 }
2933
2934 return decayed;
2935}
2936
2937/*
2938 * Signed add and clamp on underflow.
2939 *
2940 * Explicitly do a load-store to ensure the intermediate value never hits
2941 * memory. This allows lockless observations without ever seeing the negative
2942 * values.
2943 */
2944#define add_positive(_ptr, _val) do { \
2945 typeof(_ptr) ptr = (_ptr); \
2946 typeof(_val) val = (_val); \
2947 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2948 \
2949 res = var + val; \
2950 \
2951 if (val < 0 && res > var) \
2952 res = 0; \
2953 \
2954 WRITE_ONCE(*ptr, res); \
2955} while (0)
2956
2957#ifdef CONFIG_FAIR_GROUP_SCHED
2958/**
2959 * update_tg_load_avg - update the tg's load avg
2960 * @cfs_rq: the cfs_rq whose avg changed
2961 * @force: update regardless of how small the difference
2962 *
2963 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2964 * However, because tg->load_avg is a global value there are performance
2965 * considerations.
2966 *
2967 * In order to avoid having to look at the other cfs_rq's, we use a
2968 * differential update where we store the last value we propagated. This in
2969 * turn allows skipping updates if the differential is 'small'.
2970 *
2971 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2972 * done) and effective_load() (which is not done because it is too costly).
2973 */
2974static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2975{
2976 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2977
2978 /*
2979 * No need to update load_avg for root_task_group as it is not used.
2980 */
2981 if (cfs_rq->tg == &root_task_group)
2982 return;
2983
2984 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2985 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2986 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2987 }
2988}
2989
2990/*
2991 * Called within set_task_rq() right before setting a task's cpu. The
2992 * caller only guarantees p->pi_lock is held; no other assumptions,
2993 * including the state of rq->lock, should be made.
2994 */
2995void set_task_rq_fair(struct sched_entity *se,
2996 struct cfs_rq *prev, struct cfs_rq *next)
2997{
2998 if (!sched_feat(ATTACH_AGE_LOAD))
2999 return;
3000
3001 /*
3002 * We are supposed to update the task to "current" time, then its up to
3003 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3004 * getting what current time is, so simply throw away the out-of-date
3005 * time. This will result in the wakee task is less decayed, but giving
3006 * the wakee more load sounds not bad.
3007 */
3008 if (se->avg.last_update_time && prev) {
3009 u64 p_last_update_time;
3010 u64 n_last_update_time;
3011
3012#ifndef CONFIG_64BIT
3013 u64 p_last_update_time_copy;
3014 u64 n_last_update_time_copy;
3015
3016 do {
3017 p_last_update_time_copy = prev->load_last_update_time_copy;
3018 n_last_update_time_copy = next->load_last_update_time_copy;
3019
3020 smp_rmb();
3021
3022 p_last_update_time = prev->avg.last_update_time;
3023 n_last_update_time = next->avg.last_update_time;
3024
3025 } while (p_last_update_time != p_last_update_time_copy ||
3026 n_last_update_time != n_last_update_time_copy);
3027#else
3028 p_last_update_time = prev->avg.last_update_time;
3029 n_last_update_time = next->avg.last_update_time;
3030#endif
3031 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
3032 &se->avg, 0, 0, NULL);
3033 se->avg.last_update_time = n_last_update_time;
3034 }
3035}
3036
3037/* Take into account change of utilization of a child task group */
3038static inline void
3039update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3040{
3041 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3042 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3043
3044 /* Nothing to update */
3045 if (!delta)
3046 return;
3047
3048 /* Set new sched_entity's utilization */
3049 se->avg.util_avg = gcfs_rq->avg.util_avg;
3050 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3051
3052 /* Update parent cfs_rq utilization */
3053 add_positive(&cfs_rq->avg.util_avg, delta);
3054 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3055}
3056
3057/* Take into account change of load of a child task group */
3058static inline void
3059update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3060{
3061 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3062 long delta, load = gcfs_rq->avg.load_avg;
3063
3064 /*
3065 * If the load of group cfs_rq is null, the load of the
3066 * sched_entity will also be null so we can skip the formula
3067 */
3068 if (load) {
3069 long tg_load;
3070
3071 /* Get tg's load and ensure tg_load > 0 */
3072 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3073
3074 /* Ensure tg_load >= load and updated with current load*/
3075 tg_load -= gcfs_rq->tg_load_avg_contrib;
3076 tg_load += load;
3077
3078 /*
3079 * We need to compute a correction term in the case that the
3080 * task group is consuming more CPU than a task of equal
3081 * weight. A task with a weight equals to tg->shares will have
3082 * a load less or equal to scale_load_down(tg->shares).
3083 * Similarly, the sched_entities that represent the task group
3084 * at parent level, can't have a load higher than
3085 * scale_load_down(tg->shares). And the Sum of sched_entities'
3086 * load must be <= scale_load_down(tg->shares).
3087 */
3088 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3089 /* scale gcfs_rq's load into tg's shares*/
3090 load *= scale_load_down(gcfs_rq->tg->shares);
3091 load /= tg_load;
3092 }
3093 }
3094
3095 delta = load - se->avg.load_avg;
3096
3097 /* Nothing to update */
3098 if (!delta)
3099 return;
3100
3101 /* Set new sched_entity's load */
3102 se->avg.load_avg = load;
3103 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3104
3105 /* Update parent cfs_rq load */
3106 add_positive(&cfs_rq->avg.load_avg, delta);
3107 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3108
3109 /*
3110 * If the sched_entity is already enqueued, we also have to update the
3111 * runnable load avg.
3112 */
3113 if (se->on_rq) {
3114 /* Update parent cfs_rq runnable_load_avg */
3115 add_positive(&cfs_rq->runnable_load_avg, delta);
3116 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3117 }
3118}
3119
3120static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3121{
3122 cfs_rq->propagate_avg = 1;
3123}
3124
3125static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3126{
3127 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3128
3129 if (!cfs_rq->propagate_avg)
3130 return 0;
3131
3132 cfs_rq->propagate_avg = 0;
3133 return 1;
3134}
3135
3136/* Update task and its cfs_rq load average */
3137static inline int propagate_entity_load_avg(struct sched_entity *se)
3138{
3139 struct cfs_rq *cfs_rq;
3140
3141 if (entity_is_task(se))
3142 return 0;
3143
3144 if (!test_and_clear_tg_cfs_propagate(se))
3145 return 0;
3146
3147 cfs_rq = cfs_rq_of(se);
3148
3149 set_tg_cfs_propagate(cfs_rq);
3150
3151 update_tg_cfs_util(cfs_rq, se);
3152 update_tg_cfs_load(cfs_rq, se);
3153
3154 return 1;
3155}
3156
3157#else /* CONFIG_FAIR_GROUP_SCHED */
3158
3159static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3160
3161static inline int propagate_entity_load_avg(struct sched_entity *se)
3162{
3163 return 0;
3164}
3165
3166static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3167
3168#endif /* CONFIG_FAIR_GROUP_SCHED */
3169
3170static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3171{
3172 if (&this_rq()->cfs == cfs_rq) {
3173 /*
3174 * There are a few boundary cases this might miss but it should
3175 * get called often enough that that should (hopefully) not be
3176 * a real problem -- added to that it only calls on the local
3177 * CPU, so if we enqueue remotely we'll miss an update, but
3178 * the next tick/schedule should update.
3179 *
3180 * It will not get called when we go idle, because the idle
3181 * thread is a different class (!fair), nor will the utilization
3182 * number include things like RT tasks.
3183 *
3184 * As is, the util number is not freq-invariant (we'd have to
3185 * implement arch_scale_freq_capacity() for that).
3186 *
3187 * See cpu_util().
3188 */
3189 cpufreq_update_util(rq_of(cfs_rq), 0);
3190 }
3191}
3192
3193/*
3194 * Unsigned subtract and clamp on underflow.
3195 *
3196 * Explicitly do a load-store to ensure the intermediate value never hits
3197 * memory. This allows lockless observations without ever seeing the negative
3198 * values.
3199 */
3200#define sub_positive(_ptr, _val) do { \
3201 typeof(_ptr) ptr = (_ptr); \
3202 typeof(*ptr) val = (_val); \
3203 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3204 res = var - val; \
3205 if (res > var) \
3206 res = 0; \
3207 WRITE_ONCE(*ptr, res); \
3208} while (0)
3209
3210/**
3211 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3212 * @now: current time, as per cfs_rq_clock_task()
3213 * @cfs_rq: cfs_rq to update
3214 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3215 *
3216 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3217 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3218 * post_init_entity_util_avg().
3219 *
3220 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3221 *
3222 * Returns true if the load decayed or we removed load.
3223 *
3224 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3225 * call update_tg_load_avg() when this function returns true.
3226 */
3227static inline int
3228update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3229{
3230 struct sched_avg *sa = &cfs_rq->avg;
3231 int decayed, removed_load = 0, removed_util = 0;
3232
3233 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3234 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3235 sub_positive(&sa->load_avg, r);
3236 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3237 removed_load = 1;
3238 set_tg_cfs_propagate(cfs_rq);
3239 }
3240
3241 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3242 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3243 sub_positive(&sa->util_avg, r);
3244 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3245 removed_util = 1;
3246 set_tg_cfs_propagate(cfs_rq);
3247 }
3248
3249 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3250 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
3251
3252#ifndef CONFIG_64BIT
3253 smp_wmb();
3254 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3255#endif
3256
3257 if (update_freq && (decayed || removed_util))
3258 cfs_rq_util_change(cfs_rq);
3259
3260 return decayed || removed_load;
3261}
3262
3263/*
3264 * Optional action to be done while updating the load average
3265 */
3266#define UPDATE_TG 0x1
3267#define SKIP_AGE_LOAD 0x2
3268
3269/* Update task and its cfs_rq load average */
3270static inline void update_load_avg(struct sched_entity *se, int flags)
3271{
3272 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3273 u64 now = cfs_rq_clock_task(cfs_rq);
3274 struct rq *rq = rq_of(cfs_rq);
3275 int cpu = cpu_of(rq);
3276 int decayed;
3277
3278 /*
3279 * Track task load average for carrying it to new CPU after migrated, and
3280 * track group sched_entity load average for task_h_load calc in migration
3281 */
3282 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
3283 __update_load_avg(now, cpu, &se->avg,
3284 se->on_rq * scale_load_down(se->load.weight),
3285 cfs_rq->curr == se, NULL);
3286 }
3287
3288 decayed = update_cfs_rq_load_avg(now, cfs_rq, true);
3289 decayed |= propagate_entity_load_avg(se);
3290
3291 if (decayed && (flags & UPDATE_TG))
3292 update_tg_load_avg(cfs_rq, 0);
3293}
3294
3295/**
3296 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3297 * @cfs_rq: cfs_rq to attach to
3298 * @se: sched_entity to attach
3299 *
3300 * Must call update_cfs_rq_load_avg() before this, since we rely on
3301 * cfs_rq->avg.last_update_time being current.
3302 */
3303static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3304{
3305 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3306 cfs_rq->avg.load_avg += se->avg.load_avg;
3307 cfs_rq->avg.load_sum += se->avg.load_sum;
3308 cfs_rq->avg.util_avg += se->avg.util_avg;
3309 cfs_rq->avg.util_sum += se->avg.util_sum;
3310 set_tg_cfs_propagate(cfs_rq);
3311
3312 cfs_rq_util_change(cfs_rq);
3313}
3314
3315/**
3316 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3317 * @cfs_rq: cfs_rq to detach from
3318 * @se: sched_entity to detach
3319 *
3320 * Must call update_cfs_rq_load_avg() before this, since we rely on
3321 * cfs_rq->avg.last_update_time being current.
3322 */
3323static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3324{
3325
3326 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3327 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3328 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3329 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3330 set_tg_cfs_propagate(cfs_rq);
3331
3332 cfs_rq_util_change(cfs_rq);
3333}
3334
3335/* Add the load generated by se into cfs_rq's load average */
3336static inline void
3337enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3338{
3339 struct sched_avg *sa = &se->avg;
3340
3341 cfs_rq->runnable_load_avg += sa->load_avg;
3342 cfs_rq->runnable_load_sum += sa->load_sum;
3343
3344 if (!sa->last_update_time) {
3345 attach_entity_load_avg(cfs_rq, se);
3346 update_tg_load_avg(cfs_rq, 0);
3347 }
3348}
3349
3350/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3351static inline void
3352dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3353{
3354 cfs_rq->runnable_load_avg =
3355 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3356 cfs_rq->runnable_load_sum =
3357 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3358}
3359
3360#ifndef CONFIG_64BIT
3361static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3362{
3363 u64 last_update_time_copy;
3364 u64 last_update_time;
3365
3366 do {
3367 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3368 smp_rmb();
3369 last_update_time = cfs_rq->avg.last_update_time;
3370 } while (last_update_time != last_update_time_copy);
3371
3372 return last_update_time;
3373}
3374#else
3375static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3376{
3377 return cfs_rq->avg.last_update_time;
3378}
3379#endif
3380
3381/*
3382 * Synchronize entity load avg of dequeued entity without locking
3383 * the previous rq.
3384 */
3385void sync_entity_load_avg(struct sched_entity *se)
3386{
3387 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3388 u64 last_update_time;
3389
3390 last_update_time = cfs_rq_last_update_time(cfs_rq);
3391 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3392}
3393
3394/*
3395 * Task first catches up with cfs_rq, and then subtract
3396 * itself from the cfs_rq (task must be off the queue now).
3397 */
3398void remove_entity_load_avg(struct sched_entity *se)
3399{
3400 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3401
3402 /*
3403 * tasks cannot exit without having gone through wake_up_new_task() ->
3404 * post_init_entity_util_avg() which will have added things to the
3405 * cfs_rq, so we can remove unconditionally.
3406 *
3407 * Similarly for groups, they will have passed through
3408 * post_init_entity_util_avg() before unregister_sched_fair_group()
3409 * calls this.
3410 */
3411
3412 sync_entity_load_avg(se);
3413 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3414 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3415}
3416
3417static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3418{
3419 return cfs_rq->runnable_load_avg;
3420}
3421
3422static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3423{
3424 return cfs_rq->avg.load_avg;
3425}
3426
3427static int idle_balance(struct rq *this_rq);
3428
3429#else /* CONFIG_SMP */
3430
3431static inline int
3432update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3433{
3434 return 0;
3435}
3436
3437#define UPDATE_TG 0x0
3438#define SKIP_AGE_LOAD 0x0
3439
3440static inline void update_load_avg(struct sched_entity *se, int not_used1)
3441{
3442 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3443}
3444
3445static inline void
3446enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3447static inline void
3448dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3449static inline void remove_entity_load_avg(struct sched_entity *se) {}
3450
3451static inline void
3452attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3453static inline void
3454detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3455
3456static inline int idle_balance(struct rq *rq)
3457{
3458 return 0;
3459}
3460
3461#endif /* CONFIG_SMP */
3462
3463static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3464{
3465#ifdef CONFIG_SCHED_DEBUG
3466 s64 d = se->vruntime - cfs_rq->min_vruntime;
3467
3468 if (d < 0)
3469 d = -d;
3470
3471 if (d > 3*sysctl_sched_latency)
3472 schedstat_inc(cfs_rq->nr_spread_over);
3473#endif
3474}
3475
3476static void
3477place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3478{
3479 u64 vruntime = cfs_rq->min_vruntime;
3480
3481 /*
3482 * The 'current' period is already promised to the current tasks,
3483 * however the extra weight of the new task will slow them down a
3484 * little, place the new task so that it fits in the slot that
3485 * stays open at the end.
3486 */
3487 if (initial && sched_feat(START_DEBIT))
3488 vruntime += sched_vslice(cfs_rq, se);
3489
3490 /* sleeps up to a single latency don't count. */
3491 if (!initial) {
3492 unsigned long thresh = sysctl_sched_latency;
3493
3494 /*
3495 * Halve their sleep time's effect, to allow
3496 * for a gentler effect of sleepers:
3497 */
3498 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3499 thresh >>= 1;
3500
3501 vruntime -= thresh;
3502 }
3503
3504 /* ensure we never gain time by being placed backwards. */
3505 se->vruntime = max_vruntime(se->vruntime, vruntime);
3506}
3507
3508static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3509
3510static inline void check_schedstat_required(void)
3511{
3512#ifdef CONFIG_SCHEDSTATS
3513 if (schedstat_enabled())
3514 return;
3515
3516 /* Force schedstat enabled if a dependent tracepoint is active */
3517 if (trace_sched_stat_wait_enabled() ||
3518 trace_sched_stat_sleep_enabled() ||
3519 trace_sched_stat_iowait_enabled() ||
3520 trace_sched_stat_blocked_enabled() ||
3521 trace_sched_stat_runtime_enabled()) {
3522 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3523 "stat_blocked and stat_runtime require the "
3524 "kernel parameter schedstats=enabled or "
3525 "kernel.sched_schedstats=1\n");
3526 }
3527#endif
3528}
3529
3530
3531/*
3532 * MIGRATION
3533 *
3534 * dequeue
3535 * update_curr()
3536 * update_min_vruntime()
3537 * vruntime -= min_vruntime
3538 *
3539 * enqueue
3540 * update_curr()
3541 * update_min_vruntime()
3542 * vruntime += min_vruntime
3543 *
3544 * this way the vruntime transition between RQs is done when both
3545 * min_vruntime are up-to-date.
3546 *
3547 * WAKEUP (remote)
3548 *
3549 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3550 * vruntime -= min_vruntime
3551 *
3552 * enqueue
3553 * update_curr()
3554 * update_min_vruntime()
3555 * vruntime += min_vruntime
3556 *
3557 * this way we don't have the most up-to-date min_vruntime on the originating
3558 * CPU and an up-to-date min_vruntime on the destination CPU.
3559 */
3560
3561static void
3562enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3563{
3564 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3565 bool curr = cfs_rq->curr == se;
3566
3567 /*
3568 * If we're the current task, we must renormalise before calling
3569 * update_curr().
3570 */
3571 if (renorm && curr)
3572 se->vruntime += cfs_rq->min_vruntime;
3573
3574 update_curr(cfs_rq);
3575
3576 /*
3577 * Otherwise, renormalise after, such that we're placed at the current
3578 * moment in time, instead of some random moment in the past. Being
3579 * placed in the past could significantly boost this task to the
3580 * fairness detriment of existing tasks.
3581 */
3582 if (renorm && !curr)
3583 se->vruntime += cfs_rq->min_vruntime;
3584
3585 update_load_avg(se, UPDATE_TG);
3586 enqueue_entity_load_avg(cfs_rq, se);
3587 account_entity_enqueue(cfs_rq, se);
3588 update_cfs_shares(cfs_rq);
3589
3590 if (flags & ENQUEUE_WAKEUP)
3591 place_entity(cfs_rq, se, 0);
3592
3593 check_schedstat_required();
3594 update_stats_enqueue(cfs_rq, se, flags);
3595 check_spread(cfs_rq, se);
3596 if (!curr)
3597 __enqueue_entity(cfs_rq, se);
3598 se->on_rq = 1;
3599
3600 if (cfs_rq->nr_running == 1) {
3601 list_add_leaf_cfs_rq(cfs_rq);
3602 check_enqueue_throttle(cfs_rq);
3603 }
3604}
3605
3606static void __clear_buddies_last(struct sched_entity *se)
3607{
3608 for_each_sched_entity(se) {
3609 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3610 if (cfs_rq->last != se)
3611 break;
3612
3613 cfs_rq->last = NULL;
3614 }
3615}
3616
3617static void __clear_buddies_next(struct sched_entity *se)
3618{
3619 for_each_sched_entity(se) {
3620 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3621 if (cfs_rq->next != se)
3622 break;
3623
3624 cfs_rq->next = NULL;
3625 }
3626}
3627
3628static void __clear_buddies_skip(struct sched_entity *se)
3629{
3630 for_each_sched_entity(se) {
3631 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3632 if (cfs_rq->skip != se)
3633 break;
3634
3635 cfs_rq->skip = NULL;
3636 }
3637}
3638
3639static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3640{
3641 if (cfs_rq->last == se)
3642 __clear_buddies_last(se);
3643
3644 if (cfs_rq->next == se)
3645 __clear_buddies_next(se);
3646
3647 if (cfs_rq->skip == se)
3648 __clear_buddies_skip(se);
3649}
3650
3651static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3652
3653static void
3654dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3655{
3656 /*
3657 * Update run-time statistics of the 'current'.
3658 */
3659 update_curr(cfs_rq);
3660 update_load_avg(se, UPDATE_TG);
3661 dequeue_entity_load_avg(cfs_rq, se);
3662
3663 update_stats_dequeue(cfs_rq, se, flags);
3664
3665 clear_buddies(cfs_rq, se);
3666
3667 if (se != cfs_rq->curr)
3668 __dequeue_entity(cfs_rq, se);
3669 se->on_rq = 0;
3670 account_entity_dequeue(cfs_rq, se);
3671
3672 /*
3673 * Normalize after update_curr(); which will also have moved
3674 * min_vruntime if @se is the one holding it back. But before doing
3675 * update_min_vruntime() again, which will discount @se's position and
3676 * can move min_vruntime forward still more.
3677 */
3678 if (!(flags & DEQUEUE_SLEEP))
3679 se->vruntime -= cfs_rq->min_vruntime;
3680
3681 /* return excess runtime on last dequeue */
3682 return_cfs_rq_runtime(cfs_rq);
3683
3684 update_cfs_shares(cfs_rq);
3685
3686 /*
3687 * Now advance min_vruntime if @se was the entity holding it back,
3688 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3689 * put back on, and if we advance min_vruntime, we'll be placed back
3690 * further than we started -- ie. we'll be penalized.
3691 */
3692 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3693 update_min_vruntime(cfs_rq);
3694}
3695
3696/*
3697 * Preempt the current task with a newly woken task if needed:
3698 */
3699static void
3700check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3701{
3702 unsigned long ideal_runtime, delta_exec;
3703 struct sched_entity *se;
3704 s64 delta;
3705
3706 ideal_runtime = sched_slice(cfs_rq, curr);
3707 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3708 if (delta_exec > ideal_runtime) {
3709 resched_curr(rq_of(cfs_rq));
3710 /*
3711 * The current task ran long enough, ensure it doesn't get
3712 * re-elected due to buddy favours.
3713 */
3714 clear_buddies(cfs_rq, curr);
3715 return;
3716 }
3717
3718 /*
3719 * Ensure that a task that missed wakeup preemption by a
3720 * narrow margin doesn't have to wait for a full slice.
3721 * This also mitigates buddy induced latencies under load.
3722 */
3723 if (delta_exec < sysctl_sched_min_granularity)
3724 return;
3725
3726 se = __pick_first_entity(cfs_rq);
3727 delta = curr->vruntime - se->vruntime;
3728
3729 if (delta < 0)
3730 return;
3731
3732 if (delta > ideal_runtime)
3733 resched_curr(rq_of(cfs_rq));
3734}
3735
3736static void
3737set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3738{
3739 /* 'current' is not kept within the tree. */
3740 if (se->on_rq) {
3741 /*
3742 * Any task has to be enqueued before it get to execute on
3743 * a CPU. So account for the time it spent waiting on the
3744 * runqueue.
3745 */
3746 update_stats_wait_end(cfs_rq, se);
3747 __dequeue_entity(cfs_rq, se);
3748 update_load_avg(se, UPDATE_TG);
3749 }
3750
3751 update_stats_curr_start(cfs_rq, se);
3752 cfs_rq->curr = se;
3753
3754 /*
3755 * Track our maximum slice length, if the CPU's load is at
3756 * least twice that of our own weight (i.e. dont track it
3757 * when there are only lesser-weight tasks around):
3758 */
3759 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3760 schedstat_set(se->statistics.slice_max,
3761 max((u64)schedstat_val(se->statistics.slice_max),
3762 se->sum_exec_runtime - se->prev_sum_exec_runtime));
3763 }
3764
3765 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3766}
3767
3768static int
3769wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3770
3771/*
3772 * Pick the next process, keeping these things in mind, in this order:
3773 * 1) keep things fair between processes/task groups
3774 * 2) pick the "next" process, since someone really wants that to run
3775 * 3) pick the "last" process, for cache locality
3776 * 4) do not run the "skip" process, if something else is available
3777 */
3778static struct sched_entity *
3779pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3780{
3781 struct sched_entity *left = __pick_first_entity(cfs_rq);
3782 struct sched_entity *se;
3783
3784 /*
3785 * If curr is set we have to see if its left of the leftmost entity
3786 * still in the tree, provided there was anything in the tree at all.
3787 */
3788 if (!left || (curr && entity_before(curr, left)))
3789 left = curr;
3790
3791 se = left; /* ideally we run the leftmost entity */
3792
3793 /*
3794 * Avoid running the skip buddy, if running something else can
3795 * be done without getting too unfair.
3796 */
3797 if (cfs_rq->skip == se) {
3798 struct sched_entity *second;
3799
3800 if (se == curr) {
3801 second = __pick_first_entity(cfs_rq);
3802 } else {
3803 second = __pick_next_entity(se);
3804 if (!second || (curr && entity_before(curr, second)))
3805 second = curr;
3806 }
3807
3808 if (second && wakeup_preempt_entity(second, left) < 1)
3809 se = second;
3810 }
3811
3812 /*
3813 * Prefer last buddy, try to return the CPU to a preempted task.
3814 */
3815 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3816 se = cfs_rq->last;
3817
3818 /*
3819 * Someone really wants this to run. If it's not unfair, run it.
3820 */
3821 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3822 se = cfs_rq->next;
3823
3824 clear_buddies(cfs_rq, se);
3825
3826 return se;
3827}
3828
3829static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3830
3831static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3832{
3833 /*
3834 * If still on the runqueue then deactivate_task()
3835 * was not called and update_curr() has to be done:
3836 */
3837 if (prev->on_rq)
3838 update_curr(cfs_rq);
3839
3840 /* throttle cfs_rqs exceeding runtime */
3841 check_cfs_rq_runtime(cfs_rq);
3842
3843 check_spread(cfs_rq, prev);
3844
3845 if (prev->on_rq) {
3846 update_stats_wait_start(cfs_rq, prev);
3847 /* Put 'current' back into the tree. */
3848 __enqueue_entity(cfs_rq, prev);
3849 /* in !on_rq case, update occurred at dequeue */
3850 update_load_avg(prev, 0);
3851 }
3852 cfs_rq->curr = NULL;
3853}
3854
3855static void
3856entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3857{
3858 /*
3859 * Update run-time statistics of the 'current'.
3860 */
3861 update_curr(cfs_rq);
3862
3863 /*
3864 * Ensure that runnable average is periodically updated.
3865 */
3866 update_load_avg(curr, UPDATE_TG);
3867 update_cfs_shares(cfs_rq);
3868
3869#ifdef CONFIG_SCHED_HRTICK
3870 /*
3871 * queued ticks are scheduled to match the slice, so don't bother
3872 * validating it and just reschedule.
3873 */
3874 if (queued) {
3875 resched_curr(rq_of(cfs_rq));
3876 return;
3877 }
3878 /*
3879 * don't let the period tick interfere with the hrtick preemption
3880 */
3881 if (!sched_feat(DOUBLE_TICK) &&
3882 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3883 return;
3884#endif
3885
3886 if (cfs_rq->nr_running > 1)
3887 check_preempt_tick(cfs_rq, curr);
3888}
3889
3890
3891/**************************************************
3892 * CFS bandwidth control machinery
3893 */
3894
3895#ifdef CONFIG_CFS_BANDWIDTH
3896
3897#ifdef HAVE_JUMP_LABEL
3898static struct static_key __cfs_bandwidth_used;
3899
3900static inline bool cfs_bandwidth_used(void)
3901{
3902 return static_key_false(&__cfs_bandwidth_used);
3903}
3904
3905void cfs_bandwidth_usage_inc(void)
3906{
3907 static_key_slow_inc(&__cfs_bandwidth_used);
3908}
3909
3910void cfs_bandwidth_usage_dec(void)
3911{
3912 static_key_slow_dec(&__cfs_bandwidth_used);
3913}
3914#else /* HAVE_JUMP_LABEL */
3915static bool cfs_bandwidth_used(void)
3916{
3917 return true;
3918}
3919
3920void cfs_bandwidth_usage_inc(void) {}
3921void cfs_bandwidth_usage_dec(void) {}
3922#endif /* HAVE_JUMP_LABEL */
3923
3924/*
3925 * default period for cfs group bandwidth.
3926 * default: 0.1s, units: nanoseconds
3927 */
3928static inline u64 default_cfs_period(void)
3929{
3930 return 100000000ULL;
3931}
3932
3933static inline u64 sched_cfs_bandwidth_slice(void)
3934{
3935 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3936}
3937
3938/*
3939 * Replenish runtime according to assigned quota and update expiration time.
3940 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3941 * additional synchronization around rq->lock.
3942 *
3943 * requires cfs_b->lock
3944 */
3945void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3946{
3947 u64 now;
3948
3949 if (cfs_b->quota == RUNTIME_INF)
3950 return;
3951
3952 now = sched_clock_cpu(smp_processor_id());
3953 cfs_b->runtime = cfs_b->quota;
3954 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3955}
3956
3957static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3958{
3959 return &tg->cfs_bandwidth;
3960}
3961
3962/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3963static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3964{
3965 if (unlikely(cfs_rq->throttle_count))
3966 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
3967
3968 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3969}
3970
3971/* returns 0 on failure to allocate runtime */
3972static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3973{
3974 struct task_group *tg = cfs_rq->tg;
3975 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3976 u64 amount = 0, min_amount, expires;
3977
3978 /* note: this is a positive sum as runtime_remaining <= 0 */
3979 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3980
3981 raw_spin_lock(&cfs_b->lock);
3982 if (cfs_b->quota == RUNTIME_INF)
3983 amount = min_amount;
3984 else {
3985 start_cfs_bandwidth(cfs_b);
3986
3987 if (cfs_b->runtime > 0) {
3988 amount = min(cfs_b->runtime, min_amount);
3989 cfs_b->runtime -= amount;
3990 cfs_b->idle = 0;
3991 }
3992 }
3993 expires = cfs_b->runtime_expires;
3994 raw_spin_unlock(&cfs_b->lock);
3995
3996 cfs_rq->runtime_remaining += amount;
3997 /*
3998 * we may have advanced our local expiration to account for allowed
3999 * spread between our sched_clock and the one on which runtime was
4000 * issued.
4001 */
4002 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4003 cfs_rq->runtime_expires = expires;
4004
4005 return cfs_rq->runtime_remaining > 0;
4006}
4007
4008/*
4009 * Note: This depends on the synchronization provided by sched_clock and the
4010 * fact that rq->clock snapshots this value.
4011 */
4012static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4013{
4014 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4015
4016 /* if the deadline is ahead of our clock, nothing to do */
4017 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4018 return;
4019
4020 if (cfs_rq->runtime_remaining < 0)
4021 return;
4022
4023 /*
4024 * If the local deadline has passed we have to consider the
4025 * possibility that our sched_clock is 'fast' and the global deadline
4026 * has not truly expired.
4027 *
4028 * Fortunately we can check determine whether this the case by checking
4029 * whether the global deadline has advanced. It is valid to compare
4030 * cfs_b->runtime_expires without any locks since we only care about
4031 * exact equality, so a partial write will still work.
4032 */
4033
4034 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4035 /* extend local deadline, drift is bounded above by 2 ticks */
4036 cfs_rq->runtime_expires += TICK_NSEC;
4037 } else {
4038 /* global deadline is ahead, expiration has passed */
4039 cfs_rq->runtime_remaining = 0;
4040 }
4041}
4042
4043static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4044{
4045 /* dock delta_exec before expiring quota (as it could span periods) */
4046 cfs_rq->runtime_remaining -= delta_exec;
4047 expire_cfs_rq_runtime(cfs_rq);
4048
4049 if (likely(cfs_rq->runtime_remaining > 0))
4050 return;
4051
4052 /*
4053 * if we're unable to extend our runtime we resched so that the active
4054 * hierarchy can be throttled
4055 */
4056 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4057 resched_curr(rq_of(cfs_rq));
4058}
4059
4060static __always_inline
4061void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4062{
4063 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4064 return;
4065
4066 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4067}
4068
4069static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4070{
4071 return cfs_bandwidth_used() && cfs_rq->throttled;
4072}
4073
4074/* check whether cfs_rq, or any parent, is throttled */
4075static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4076{
4077 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4078}
4079
4080/*
4081 * Ensure that neither of the group entities corresponding to src_cpu or
4082 * dest_cpu are members of a throttled hierarchy when performing group
4083 * load-balance operations.
4084 */
4085static inline int throttled_lb_pair(struct task_group *tg,
4086 int src_cpu, int dest_cpu)
4087{
4088 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4089
4090 src_cfs_rq = tg->cfs_rq[src_cpu];
4091 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4092
4093 return throttled_hierarchy(src_cfs_rq) ||
4094 throttled_hierarchy(dest_cfs_rq);
4095}
4096
4097/* updated child weight may affect parent so we have to do this bottom up */
4098static int tg_unthrottle_up(struct task_group *tg, void *data)
4099{
4100 struct rq *rq = data;
4101 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4102
4103 cfs_rq->throttle_count--;
4104 if (!cfs_rq->throttle_count) {
4105 /* adjust cfs_rq_clock_task() */
4106 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4107 cfs_rq->throttled_clock_task;
4108 }
4109
4110 return 0;
4111}
4112
4113static int tg_throttle_down(struct task_group *tg, void *data)
4114{
4115 struct rq *rq = data;
4116 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4117
4118 /* group is entering throttled state, stop time */
4119 if (!cfs_rq->throttle_count)
4120 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4121 cfs_rq->throttle_count++;
4122
4123 return 0;
4124}
4125
4126static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4127{
4128 struct rq *rq = rq_of(cfs_rq);
4129 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4130 struct sched_entity *se;
4131 long task_delta, dequeue = 1;
4132 bool empty;
4133
4134 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4135
4136 /* freeze hierarchy runnable averages while throttled */
4137 rcu_read_lock();
4138 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4139 rcu_read_unlock();
4140
4141 task_delta = cfs_rq->h_nr_running;
4142 for_each_sched_entity(se) {
4143 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4144 /* throttled entity or throttle-on-deactivate */
4145 if (!se->on_rq)
4146 break;
4147
4148 if (dequeue)
4149 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4150 qcfs_rq->h_nr_running -= task_delta;
4151
4152 if (qcfs_rq->load.weight)
4153 dequeue = 0;
4154 }
4155
4156 if (!se)
4157 sub_nr_running(rq, task_delta);
4158
4159 cfs_rq->throttled = 1;
4160 cfs_rq->throttled_clock = rq_clock(rq);
4161 raw_spin_lock(&cfs_b->lock);
4162 empty = list_empty(&cfs_b->throttled_cfs_rq);
4163
4164 /*
4165 * Add to the _head_ of the list, so that an already-started
4166 * distribute_cfs_runtime will not see us
4167 */
4168 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4169
4170 /*
4171 * If we're the first throttled task, make sure the bandwidth
4172 * timer is running.
4173 */
4174 if (empty)
4175 start_cfs_bandwidth(cfs_b);
4176
4177 raw_spin_unlock(&cfs_b->lock);
4178}
4179
4180void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4181{
4182 struct rq *rq = rq_of(cfs_rq);
4183 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4184 struct sched_entity *se;
4185 int enqueue = 1;
4186 long task_delta;
4187
4188 se = cfs_rq->tg->se[cpu_of(rq)];
4189
4190 cfs_rq->throttled = 0;
4191
4192 update_rq_clock(rq);
4193
4194 raw_spin_lock(&cfs_b->lock);
4195 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4196 list_del_rcu(&cfs_rq->throttled_list);
4197 raw_spin_unlock(&cfs_b->lock);
4198
4199 /* update hierarchical throttle state */
4200 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4201
4202 if (!cfs_rq->load.weight)
4203 return;
4204
4205 task_delta = cfs_rq->h_nr_running;
4206 for_each_sched_entity(se) {
4207 if (se->on_rq)
4208 enqueue = 0;
4209
4210 cfs_rq = cfs_rq_of(se);
4211 if (enqueue)
4212 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4213 cfs_rq->h_nr_running += task_delta;
4214
4215 if (cfs_rq_throttled(cfs_rq))
4216 break;
4217 }
4218
4219 if (!se)
4220 add_nr_running(rq, task_delta);
4221
4222 /* determine whether we need to wake up potentially idle cpu */
4223 if (rq->curr == rq->idle && rq->cfs.nr_running)
4224 resched_curr(rq);
4225}
4226
4227static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4228 u64 remaining, u64 expires)
4229{
4230 struct cfs_rq *cfs_rq;
4231 u64 runtime;
4232 u64 starting_runtime = remaining;
4233
4234 rcu_read_lock();
4235 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4236 throttled_list) {
4237 struct rq *rq = rq_of(cfs_rq);
4238
4239 raw_spin_lock(&rq->lock);
4240 if (!cfs_rq_throttled(cfs_rq))
4241 goto next;
4242
4243 runtime = -cfs_rq->runtime_remaining + 1;
4244 if (runtime > remaining)
4245 runtime = remaining;
4246 remaining -= runtime;
4247
4248 cfs_rq->runtime_remaining += runtime;
4249 cfs_rq->runtime_expires = expires;
4250
4251 /* we check whether we're throttled above */
4252 if (cfs_rq->runtime_remaining > 0)
4253 unthrottle_cfs_rq(cfs_rq);
4254
4255next:
4256 raw_spin_unlock(&rq->lock);
4257
4258 if (!remaining)
4259 break;
4260 }
4261 rcu_read_unlock();
4262
4263 return starting_runtime - remaining;
4264}
4265
4266/*
4267 * Responsible for refilling a task_group's bandwidth and unthrottling its
4268 * cfs_rqs as appropriate. If there has been no activity within the last
4269 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4270 * used to track this state.
4271 */
4272static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4273{
4274 u64 runtime, runtime_expires;
4275 int throttled;
4276
4277 /* no need to continue the timer with no bandwidth constraint */
4278 if (cfs_b->quota == RUNTIME_INF)
4279 goto out_deactivate;
4280
4281 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4282 cfs_b->nr_periods += overrun;
4283
4284 /*
4285 * idle depends on !throttled (for the case of a large deficit), and if
4286 * we're going inactive then everything else can be deferred
4287 */
4288 if (cfs_b->idle && !throttled)
4289 goto out_deactivate;
4290
4291 __refill_cfs_bandwidth_runtime(cfs_b);
4292
4293 if (!throttled) {
4294 /* mark as potentially idle for the upcoming period */
4295 cfs_b->idle = 1;
4296 return 0;
4297 }
4298
4299 /* account preceding periods in which throttling occurred */
4300 cfs_b->nr_throttled += overrun;
4301
4302 runtime_expires = cfs_b->runtime_expires;
4303
4304 /*
4305 * This check is repeated as we are holding onto the new bandwidth while
4306 * we unthrottle. This can potentially race with an unthrottled group
4307 * trying to acquire new bandwidth from the global pool. This can result
4308 * in us over-using our runtime if it is all used during this loop, but
4309 * only by limited amounts in that extreme case.
4310 */
4311 while (throttled && cfs_b->runtime > 0) {
4312 runtime = cfs_b->runtime;
4313 raw_spin_unlock(&cfs_b->lock);
4314 /* we can't nest cfs_b->lock while distributing bandwidth */
4315 runtime = distribute_cfs_runtime(cfs_b, runtime,
4316 runtime_expires);
4317 raw_spin_lock(&cfs_b->lock);
4318
4319 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4320
4321 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4322 }
4323
4324 /*
4325 * While we are ensured activity in the period following an
4326 * unthrottle, this also covers the case in which the new bandwidth is
4327 * insufficient to cover the existing bandwidth deficit. (Forcing the
4328 * timer to remain active while there are any throttled entities.)
4329 */
4330 cfs_b->idle = 0;
4331
4332 return 0;
4333
4334out_deactivate:
4335 return 1;
4336}
4337
4338/* a cfs_rq won't donate quota below this amount */
4339static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4340/* minimum remaining period time to redistribute slack quota */
4341static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4342/* how long we wait to gather additional slack before distributing */
4343static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4344
4345/*
4346 * Are we near the end of the current quota period?
4347 *
4348 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4349 * hrtimer base being cleared by hrtimer_start. In the case of
4350 * migrate_hrtimers, base is never cleared, so we are fine.
4351 */
4352static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4353{
4354 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4355 u64 remaining;
4356
4357 /* if the call-back is running a quota refresh is already occurring */
4358 if (hrtimer_callback_running(refresh_timer))
4359 return 1;
4360
4361 /* is a quota refresh about to occur? */
4362 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4363 if (remaining < min_expire)
4364 return 1;
4365
4366 return 0;
4367}
4368
4369static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4370{
4371 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4372
4373 /* if there's a quota refresh soon don't bother with slack */
4374 if (runtime_refresh_within(cfs_b, min_left))
4375 return;
4376
4377 hrtimer_start(&cfs_b->slack_timer,
4378 ns_to_ktime(cfs_bandwidth_slack_period),
4379 HRTIMER_MODE_REL);
4380}
4381
4382/* we know any runtime found here is valid as update_curr() precedes return */
4383static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4384{
4385 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4386 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4387
4388 if (slack_runtime <= 0)
4389 return;
4390
4391 raw_spin_lock(&cfs_b->lock);
4392 if (cfs_b->quota != RUNTIME_INF &&
4393 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4394 cfs_b->runtime += slack_runtime;
4395
4396 /* we are under rq->lock, defer unthrottling using a timer */
4397 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4398 !list_empty(&cfs_b->throttled_cfs_rq))
4399 start_cfs_slack_bandwidth(cfs_b);
4400 }
4401 raw_spin_unlock(&cfs_b->lock);
4402
4403 /* even if it's not valid for return we don't want to try again */
4404 cfs_rq->runtime_remaining -= slack_runtime;
4405}
4406
4407static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4408{
4409 if (!cfs_bandwidth_used())
4410 return;
4411
4412 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4413 return;
4414
4415 __return_cfs_rq_runtime(cfs_rq);
4416}
4417
4418/*
4419 * This is done with a timer (instead of inline with bandwidth return) since
4420 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4421 */
4422static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4423{
4424 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4425 u64 expires;
4426
4427 /* confirm we're still not at a refresh boundary */
4428 raw_spin_lock(&cfs_b->lock);
4429 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4430 raw_spin_unlock(&cfs_b->lock);
4431 return;
4432 }
4433
4434 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4435 runtime = cfs_b->runtime;
4436
4437 expires = cfs_b->runtime_expires;
4438 raw_spin_unlock(&cfs_b->lock);
4439
4440 if (!runtime)
4441 return;
4442
4443 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4444
4445 raw_spin_lock(&cfs_b->lock);
4446 if (expires == cfs_b->runtime_expires)
4447 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4448 raw_spin_unlock(&cfs_b->lock);
4449}
4450
4451/*
4452 * When a group wakes up we want to make sure that its quota is not already
4453 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4454 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4455 */
4456static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4457{
4458 if (!cfs_bandwidth_used())
4459 return;
4460
4461 /* an active group must be handled by the update_curr()->put() path */
4462 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4463 return;
4464
4465 /* ensure the group is not already throttled */
4466 if (cfs_rq_throttled(cfs_rq))
4467 return;
4468
4469 /* update runtime allocation */
4470 account_cfs_rq_runtime(cfs_rq, 0);
4471 if (cfs_rq->runtime_remaining <= 0)
4472 throttle_cfs_rq(cfs_rq);
4473}
4474
4475static void sync_throttle(struct task_group *tg, int cpu)
4476{
4477 struct cfs_rq *pcfs_rq, *cfs_rq;
4478
4479 if (!cfs_bandwidth_used())
4480 return;
4481
4482 if (!tg->parent)
4483 return;
4484
4485 cfs_rq = tg->cfs_rq[cpu];
4486 pcfs_rq = tg->parent->cfs_rq[cpu];
4487
4488 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4489 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4490}
4491
4492/* conditionally throttle active cfs_rq's from put_prev_entity() */
4493static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4494{
4495 if (!cfs_bandwidth_used())
4496 return false;
4497
4498 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4499 return false;
4500
4501 /*
4502 * it's possible for a throttled entity to be forced into a running
4503 * state (e.g. set_curr_task), in this case we're finished.
4504 */
4505 if (cfs_rq_throttled(cfs_rq))
4506 return true;
4507
4508 throttle_cfs_rq(cfs_rq);
4509 return true;
4510}
4511
4512static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4513{
4514 struct cfs_bandwidth *cfs_b =
4515 container_of(timer, struct cfs_bandwidth, slack_timer);
4516
4517 do_sched_cfs_slack_timer(cfs_b);
4518
4519 return HRTIMER_NORESTART;
4520}
4521
4522static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4523{
4524 struct cfs_bandwidth *cfs_b =
4525 container_of(timer, struct cfs_bandwidth, period_timer);
4526 int overrun;
4527 int idle = 0;
4528
4529 raw_spin_lock(&cfs_b->lock);
4530 for (;;) {
4531 overrun = hrtimer_forward_now(timer, cfs_b->period);
4532 if (!overrun)
4533 break;
4534
4535 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4536 }
4537 if (idle)
4538 cfs_b->period_active = 0;
4539 raw_spin_unlock(&cfs_b->lock);
4540
4541 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4542}
4543
4544void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4545{
4546 raw_spin_lock_init(&cfs_b->lock);
4547 cfs_b->runtime = 0;
4548 cfs_b->quota = RUNTIME_INF;
4549 cfs_b->period = ns_to_ktime(default_cfs_period());
4550
4551 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4552 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4553 cfs_b->period_timer.function = sched_cfs_period_timer;
4554 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4555 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4556}
4557
4558static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4559{
4560 cfs_rq->runtime_enabled = 0;
4561 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4562}
4563
4564void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4565{
4566 lockdep_assert_held(&cfs_b->lock);
4567
4568 if (!cfs_b->period_active) {
4569 cfs_b->period_active = 1;
4570 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4571 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4572 }
4573}
4574
4575static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4576{
4577 /* init_cfs_bandwidth() was not called */
4578 if (!cfs_b->throttled_cfs_rq.next)
4579 return;
4580
4581 hrtimer_cancel(&cfs_b->period_timer);
4582 hrtimer_cancel(&cfs_b->slack_timer);
4583}
4584
4585static void __maybe_unused update_runtime_enabled(struct rq *rq)
4586{
4587 struct cfs_rq *cfs_rq;
4588
4589 for_each_leaf_cfs_rq(rq, cfs_rq) {
4590 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4591
4592 raw_spin_lock(&cfs_b->lock);
4593 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4594 raw_spin_unlock(&cfs_b->lock);
4595 }
4596}
4597
4598static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4599{
4600 struct cfs_rq *cfs_rq;
4601
4602 for_each_leaf_cfs_rq(rq, cfs_rq) {
4603 if (!cfs_rq->runtime_enabled)
4604 continue;
4605
4606 /*
4607 * clock_task is not advancing so we just need to make sure
4608 * there's some valid quota amount
4609 */
4610 cfs_rq->runtime_remaining = 1;
4611 /*
4612 * Offline rq is schedulable till cpu is completely disabled
4613 * in take_cpu_down(), so we prevent new cfs throttling here.
4614 */
4615 cfs_rq->runtime_enabled = 0;
4616
4617 if (cfs_rq_throttled(cfs_rq))
4618 unthrottle_cfs_rq(cfs_rq);
4619 }
4620}
4621
4622#else /* CONFIG_CFS_BANDWIDTH */
4623static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4624{
4625 return rq_clock_task(rq_of(cfs_rq));
4626}
4627
4628static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4629static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4630static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4631static inline void sync_throttle(struct task_group *tg, int cpu) {}
4632static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4633
4634static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4635{
4636 return 0;
4637}
4638
4639static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4640{
4641 return 0;
4642}
4643
4644static inline int throttled_lb_pair(struct task_group *tg,
4645 int src_cpu, int dest_cpu)
4646{
4647 return 0;
4648}
4649
4650void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4651
4652#ifdef CONFIG_FAIR_GROUP_SCHED
4653static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4654#endif
4655
4656static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4657{
4658 return NULL;
4659}
4660static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4661static inline void update_runtime_enabled(struct rq *rq) {}
4662static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4663
4664#endif /* CONFIG_CFS_BANDWIDTH */
4665
4666/**************************************************
4667 * CFS operations on tasks:
4668 */
4669
4670#ifdef CONFIG_SCHED_HRTICK
4671static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4672{
4673 struct sched_entity *se = &p->se;
4674 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4675
4676 SCHED_WARN_ON(task_rq(p) != rq);
4677
4678 if (rq->cfs.h_nr_running > 1) {
4679 u64 slice = sched_slice(cfs_rq, se);
4680 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4681 s64 delta = slice - ran;
4682
4683 if (delta < 0) {
4684 if (rq->curr == p)
4685 resched_curr(rq);
4686 return;
4687 }
4688 hrtick_start(rq, delta);
4689 }
4690}
4691
4692/*
4693 * called from enqueue/dequeue and updates the hrtick when the
4694 * current task is from our class and nr_running is low enough
4695 * to matter.
4696 */
4697static void hrtick_update(struct rq *rq)
4698{
4699 struct task_struct *curr = rq->curr;
4700
4701 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4702 return;
4703
4704 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4705 hrtick_start_fair(rq, curr);
4706}
4707#else /* !CONFIG_SCHED_HRTICK */
4708static inline void
4709hrtick_start_fair(struct rq *rq, struct task_struct *p)
4710{
4711}
4712
4713static inline void hrtick_update(struct rq *rq)
4714{
4715}
4716#endif
4717
4718/*
4719 * The enqueue_task method is called before nr_running is
4720 * increased. Here we update the fair scheduling stats and
4721 * then put the task into the rbtree:
4722 */
4723static void
4724enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4725{
4726 struct cfs_rq *cfs_rq;
4727 struct sched_entity *se = &p->se;
4728
4729 /*
4730 * If in_iowait is set, the code below may not trigger any cpufreq
4731 * utilization updates, so do it here explicitly with the IOWAIT flag
4732 * passed.
4733 */
4734 if (p->in_iowait)
4735 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4736
4737 for_each_sched_entity(se) {
4738 if (se->on_rq)
4739 break;
4740 cfs_rq = cfs_rq_of(se);
4741 enqueue_entity(cfs_rq, se, flags);
4742
4743 /*
4744 * end evaluation on encountering a throttled cfs_rq
4745 *
4746 * note: in the case of encountering a throttled cfs_rq we will
4747 * post the final h_nr_running increment below.
4748 */
4749 if (cfs_rq_throttled(cfs_rq))
4750 break;
4751 cfs_rq->h_nr_running++;
4752
4753 flags = ENQUEUE_WAKEUP;
4754 }
4755
4756 for_each_sched_entity(se) {
4757 cfs_rq = cfs_rq_of(se);
4758 cfs_rq->h_nr_running++;
4759
4760 if (cfs_rq_throttled(cfs_rq))
4761 break;
4762
4763 update_load_avg(se, UPDATE_TG);
4764 update_cfs_shares(cfs_rq);
4765 }
4766
4767 if (!se)
4768 add_nr_running(rq, 1);
4769
4770 hrtick_update(rq);
4771}
4772
4773static void set_next_buddy(struct sched_entity *se);
4774
4775/*
4776 * The dequeue_task method is called before nr_running is
4777 * decreased. We remove the task from the rbtree and
4778 * update the fair scheduling stats:
4779 */
4780static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4781{
4782 struct cfs_rq *cfs_rq;
4783 struct sched_entity *se = &p->se;
4784 int task_sleep = flags & DEQUEUE_SLEEP;
4785
4786 for_each_sched_entity(se) {
4787 cfs_rq = cfs_rq_of(se);
4788 dequeue_entity(cfs_rq, se, flags);
4789
4790 /*
4791 * end evaluation on encountering a throttled cfs_rq
4792 *
4793 * note: in the case of encountering a throttled cfs_rq we will
4794 * post the final h_nr_running decrement below.
4795 */
4796 if (cfs_rq_throttled(cfs_rq))
4797 break;
4798 cfs_rq->h_nr_running--;
4799
4800 /* Don't dequeue parent if it has other entities besides us */
4801 if (cfs_rq->load.weight) {
4802 /* Avoid re-evaluating load for this entity: */
4803 se = parent_entity(se);
4804 /*
4805 * Bias pick_next to pick a task from this cfs_rq, as
4806 * p is sleeping when it is within its sched_slice.
4807 */
4808 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4809 set_next_buddy(se);
4810 break;
4811 }
4812 flags |= DEQUEUE_SLEEP;
4813 }
4814
4815 for_each_sched_entity(se) {
4816 cfs_rq = cfs_rq_of(se);
4817 cfs_rq->h_nr_running--;
4818
4819 if (cfs_rq_throttled(cfs_rq))
4820 break;
4821
4822 update_load_avg(se, UPDATE_TG);
4823 update_cfs_shares(cfs_rq);
4824 }
4825
4826 if (!se)
4827 sub_nr_running(rq, 1);
4828
4829 hrtick_update(rq);
4830}
4831
4832#ifdef CONFIG_SMP
4833
4834/* Working cpumask for: load_balance, load_balance_newidle. */
4835DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4836DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4837
4838#ifdef CONFIG_NO_HZ_COMMON
4839/*
4840 * per rq 'load' arrray crap; XXX kill this.
4841 */
4842
4843/*
4844 * The exact cpuload calculated at every tick would be:
4845 *
4846 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4847 *
4848 * If a cpu misses updates for n ticks (as it was idle) and update gets
4849 * called on the n+1-th tick when cpu may be busy, then we have:
4850 *
4851 * load_n = (1 - 1/2^i)^n * load_0
4852 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4853 *
4854 * decay_load_missed() below does efficient calculation of
4855 *
4856 * load' = (1 - 1/2^i)^n * load
4857 *
4858 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4859 * This allows us to precompute the above in said factors, thereby allowing the
4860 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4861 * fixed_power_int())
4862 *
4863 * The calculation is approximated on a 128 point scale.
4864 */
4865#define DEGRADE_SHIFT 7
4866
4867static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4868static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4869 { 0, 0, 0, 0, 0, 0, 0, 0 },
4870 { 64, 32, 8, 0, 0, 0, 0, 0 },
4871 { 96, 72, 40, 12, 1, 0, 0, 0 },
4872 { 112, 98, 75, 43, 15, 1, 0, 0 },
4873 { 120, 112, 98, 76, 45, 16, 2, 0 }
4874};
4875
4876/*
4877 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4878 * would be when CPU is idle and so we just decay the old load without
4879 * adding any new load.
4880 */
4881static unsigned long
4882decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4883{
4884 int j = 0;
4885
4886 if (!missed_updates)
4887 return load;
4888
4889 if (missed_updates >= degrade_zero_ticks[idx])
4890 return 0;
4891
4892 if (idx == 1)
4893 return load >> missed_updates;
4894
4895 while (missed_updates) {
4896 if (missed_updates % 2)
4897 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4898
4899 missed_updates >>= 1;
4900 j++;
4901 }
4902 return load;
4903}
4904#endif /* CONFIG_NO_HZ_COMMON */
4905
4906/**
4907 * __cpu_load_update - update the rq->cpu_load[] statistics
4908 * @this_rq: The rq to update statistics for
4909 * @this_load: The current load
4910 * @pending_updates: The number of missed updates
4911 *
4912 * Update rq->cpu_load[] statistics. This function is usually called every
4913 * scheduler tick (TICK_NSEC).
4914 *
4915 * This function computes a decaying average:
4916 *
4917 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4918 *
4919 * Because of NOHZ it might not get called on every tick which gives need for
4920 * the @pending_updates argument.
4921 *
4922 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4923 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4924 * = A * (A * load[i]_n-2 + B) + B
4925 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4926 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4927 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4928 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4929 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4930 *
4931 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4932 * any change in load would have resulted in the tick being turned back on.
4933 *
4934 * For regular NOHZ, this reduces to:
4935 *
4936 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4937 *
4938 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4939 * term.
4940 */
4941static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4942 unsigned long pending_updates)
4943{
4944 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4945 int i, scale;
4946
4947 this_rq->nr_load_updates++;
4948
4949 /* Update our load: */
4950 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4951 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4952 unsigned long old_load, new_load;
4953
4954 /* scale is effectively 1 << i now, and >> i divides by scale */
4955
4956 old_load = this_rq->cpu_load[i];
4957#ifdef CONFIG_NO_HZ_COMMON
4958 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4959 if (tickless_load) {
4960 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4961 /*
4962 * old_load can never be a negative value because a
4963 * decayed tickless_load cannot be greater than the
4964 * original tickless_load.
4965 */
4966 old_load += tickless_load;
4967 }
4968#endif
4969 new_load = this_load;
4970 /*
4971 * Round up the averaging division if load is increasing. This
4972 * prevents us from getting stuck on 9 if the load is 10, for
4973 * example.
4974 */
4975 if (new_load > old_load)
4976 new_load += scale - 1;
4977
4978 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4979 }
4980
4981 sched_avg_update(this_rq);
4982}
4983
4984/* Used instead of source_load when we know the type == 0 */
4985static unsigned long weighted_cpuload(const int cpu)
4986{
4987 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4988}
4989
4990#ifdef CONFIG_NO_HZ_COMMON
4991/*
4992 * There is no sane way to deal with nohz on smp when using jiffies because the
4993 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4994 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4995 *
4996 * Therefore we need to avoid the delta approach from the regular tick when
4997 * possible since that would seriously skew the load calculation. This is why we
4998 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4999 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5000 * loop exit, nohz_idle_balance, nohz full exit...)
5001 *
5002 * This means we might still be one tick off for nohz periods.
5003 */
5004
5005static void cpu_load_update_nohz(struct rq *this_rq,
5006 unsigned long curr_jiffies,
5007 unsigned long load)
5008{
5009 unsigned long pending_updates;
5010
5011 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5012 if (pending_updates) {
5013 this_rq->last_load_update_tick = curr_jiffies;
5014 /*
5015 * In the regular NOHZ case, we were idle, this means load 0.
5016 * In the NOHZ_FULL case, we were non-idle, we should consider
5017 * its weighted load.
5018 */
5019 cpu_load_update(this_rq, load, pending_updates);
5020 }
5021}
5022
5023/*
5024 * Called from nohz_idle_balance() to update the load ratings before doing the
5025 * idle balance.
5026 */
5027static void cpu_load_update_idle(struct rq *this_rq)
5028{
5029 /*
5030 * bail if there's load or we're actually up-to-date.
5031 */
5032 if (weighted_cpuload(cpu_of(this_rq)))
5033 return;
5034
5035 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5036}
5037
5038/*
5039 * Record CPU load on nohz entry so we know the tickless load to account
5040 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5041 * than other cpu_load[idx] but it should be fine as cpu_load readers
5042 * shouldn't rely into synchronized cpu_load[*] updates.
5043 */
5044void cpu_load_update_nohz_start(void)
5045{
5046 struct rq *this_rq = this_rq();
5047
5048 /*
5049 * This is all lockless but should be fine. If weighted_cpuload changes
5050 * concurrently we'll exit nohz. And cpu_load write can race with
5051 * cpu_load_update_idle() but both updater would be writing the same.
5052 */
5053 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
5054}
5055
5056/*
5057 * Account the tickless load in the end of a nohz frame.
5058 */
5059void cpu_load_update_nohz_stop(void)
5060{
5061 unsigned long curr_jiffies = READ_ONCE(jiffies);
5062 struct rq *this_rq = this_rq();
5063 unsigned long load;
5064
5065 if (curr_jiffies == this_rq->last_load_update_tick)
5066 return;
5067
5068 load = weighted_cpuload(cpu_of(this_rq));
5069 raw_spin_lock(&this_rq->lock);
5070 update_rq_clock(this_rq);
5071 cpu_load_update_nohz(this_rq, curr_jiffies, load);
5072 raw_spin_unlock(&this_rq->lock);
5073}
5074#else /* !CONFIG_NO_HZ_COMMON */
5075static inline void cpu_load_update_nohz(struct rq *this_rq,
5076 unsigned long curr_jiffies,
5077 unsigned long load) { }
5078#endif /* CONFIG_NO_HZ_COMMON */
5079
5080static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5081{
5082#ifdef CONFIG_NO_HZ_COMMON
5083 /* See the mess around cpu_load_update_nohz(). */
5084 this_rq->last_load_update_tick = READ_ONCE(jiffies);
5085#endif
5086 cpu_load_update(this_rq, load, 1);
5087}
5088
5089/*
5090 * Called from scheduler_tick()
5091 */
5092void cpu_load_update_active(struct rq *this_rq)
5093{
5094 unsigned long load = weighted_cpuload(cpu_of(this_rq));
5095
5096 if (tick_nohz_tick_stopped())
5097 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5098 else
5099 cpu_load_update_periodic(this_rq, load);
5100}
5101
5102/*
5103 * Return a low guess at the load of a migration-source cpu weighted
5104 * according to the scheduling class and "nice" value.
5105 *
5106 * We want to under-estimate the load of migration sources, to
5107 * balance conservatively.
5108 */
5109static unsigned long source_load(int cpu, int type)
5110{
5111 struct rq *rq = cpu_rq(cpu);
5112 unsigned long total = weighted_cpuload(cpu);
5113
5114 if (type == 0 || !sched_feat(LB_BIAS))
5115 return total;
5116
5117 return min(rq->cpu_load[type-1], total);
5118}
5119
5120/*
5121 * Return a high guess at the load of a migration-target cpu weighted
5122 * according to the scheduling class and "nice" value.
5123 */
5124static unsigned long target_load(int cpu, int type)
5125{
5126 struct rq *rq = cpu_rq(cpu);
5127 unsigned long total = weighted_cpuload(cpu);
5128
5129 if (type == 0 || !sched_feat(LB_BIAS))
5130 return total;
5131
5132 return max(rq->cpu_load[type-1], total);
5133}
5134
5135static unsigned long capacity_of(int cpu)
5136{
5137 return cpu_rq(cpu)->cpu_capacity;
5138}
5139
5140static unsigned long capacity_orig_of(int cpu)
5141{
5142 return cpu_rq(cpu)->cpu_capacity_orig;
5143}
5144
5145static unsigned long cpu_avg_load_per_task(int cpu)
5146{
5147 struct rq *rq = cpu_rq(cpu);
5148 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5149 unsigned long load_avg = weighted_cpuload(cpu);
5150
5151 if (nr_running)
5152 return load_avg / nr_running;
5153
5154 return 0;
5155}
5156
5157#ifdef CONFIG_FAIR_GROUP_SCHED
5158/*
5159 * effective_load() calculates the load change as seen from the root_task_group
5160 *
5161 * Adding load to a group doesn't make a group heavier, but can cause movement
5162 * of group shares between cpus. Assuming the shares were perfectly aligned one
5163 * can calculate the shift in shares.
5164 *
5165 * Calculate the effective load difference if @wl is added (subtracted) to @tg
5166 * on this @cpu and results in a total addition (subtraction) of @wg to the
5167 * total group weight.
5168 *
5169 * Given a runqueue weight distribution (rw_i) we can compute a shares
5170 * distribution (s_i) using:
5171 *
5172 * s_i = rw_i / \Sum rw_j (1)
5173 *
5174 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5175 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5176 * shares distribution (s_i):
5177 *
5178 * rw_i = { 2, 4, 1, 0 }
5179 * s_i = { 2/7, 4/7, 1/7, 0 }
5180 *
5181 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5182 * task used to run on and the CPU the waker is running on), we need to
5183 * compute the effect of waking a task on either CPU and, in case of a sync
5184 * wakeup, compute the effect of the current task going to sleep.
5185 *
5186 * So for a change of @wl to the local @cpu with an overall group weight change
5187 * of @wl we can compute the new shares distribution (s'_i) using:
5188 *
5189 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
5190 *
5191 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5192 * differences in waking a task to CPU 0. The additional task changes the
5193 * weight and shares distributions like:
5194 *
5195 * rw'_i = { 3, 4, 1, 0 }
5196 * s'_i = { 3/8, 4/8, 1/8, 0 }
5197 *
5198 * We can then compute the difference in effective weight by using:
5199 *
5200 * dw_i = S * (s'_i - s_i) (3)
5201 *
5202 * Where 'S' is the group weight as seen by its parent.
5203 *
5204 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5205 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5206 * 4/7) times the weight of the group.
5207 */
5208static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5209{
5210 struct sched_entity *se = tg->se[cpu];
5211
5212 if (!tg->parent) /* the trivial, non-cgroup case */
5213 return wl;
5214
5215 for_each_sched_entity(se) {
5216 struct cfs_rq *cfs_rq = se->my_q;
5217 long W, w = cfs_rq_load_avg(cfs_rq);
5218
5219 tg = cfs_rq->tg;
5220
5221 /*
5222 * W = @wg + \Sum rw_j
5223 */
5224 W = wg + atomic_long_read(&tg->load_avg);
5225
5226 /* Ensure \Sum rw_j >= rw_i */
5227 W -= cfs_rq->tg_load_avg_contrib;
5228 W += w;
5229
5230 /*
5231 * w = rw_i + @wl
5232 */
5233 w += wl;
5234
5235 /*
5236 * wl = S * s'_i; see (2)
5237 */
5238 if (W > 0 && w < W)
5239 wl = (w * (long)scale_load_down(tg->shares)) / W;
5240 else
5241 wl = scale_load_down(tg->shares);
5242
5243 /*
5244 * Per the above, wl is the new se->load.weight value; since
5245 * those are clipped to [MIN_SHARES, ...) do so now. See
5246 * calc_cfs_shares().
5247 */
5248 if (wl < MIN_SHARES)
5249 wl = MIN_SHARES;
5250
5251 /*
5252 * wl = dw_i = S * (s'_i - s_i); see (3)
5253 */
5254 wl -= se->avg.load_avg;
5255
5256 /*
5257 * Recursively apply this logic to all parent groups to compute
5258 * the final effective load change on the root group. Since
5259 * only the @tg group gets extra weight, all parent groups can
5260 * only redistribute existing shares. @wl is the shift in shares
5261 * resulting from this level per the above.
5262 */
5263 wg = 0;
5264 }
5265
5266 return wl;
5267}
5268#else
5269
5270static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5271{
5272 return wl;
5273}
5274
5275#endif
5276
5277static void record_wakee(struct task_struct *p)
5278{
5279 /*
5280 * Only decay a single time; tasks that have less then 1 wakeup per
5281 * jiffy will not have built up many flips.
5282 */
5283 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5284 current->wakee_flips >>= 1;
5285 current->wakee_flip_decay_ts = jiffies;
5286 }
5287
5288 if (current->last_wakee != p) {
5289 current->last_wakee = p;
5290 current->wakee_flips++;
5291 }
5292}
5293
5294/*
5295 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5296 *
5297 * A waker of many should wake a different task than the one last awakened
5298 * at a frequency roughly N times higher than one of its wakees.
5299 *
5300 * In order to determine whether we should let the load spread vs consolidating
5301 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5302 * partner, and a factor of lls_size higher frequency in the other.
5303 *
5304 * With both conditions met, we can be relatively sure that the relationship is
5305 * non-monogamous, with partner count exceeding socket size.
5306 *
5307 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5308 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5309 * socket size.
5310 */
5311static int wake_wide(struct task_struct *p)
5312{
5313 unsigned int master = current->wakee_flips;
5314 unsigned int slave = p->wakee_flips;
5315 int factor = this_cpu_read(sd_llc_size);
5316
5317 if (master < slave)
5318 swap(master, slave);
5319 if (slave < factor || master < slave * factor)
5320 return 0;
5321 return 1;
5322}
5323
5324static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5325 int prev_cpu, int sync)
5326{
5327 s64 this_load, load;
5328 s64 this_eff_load, prev_eff_load;
5329 int idx, this_cpu;
5330 struct task_group *tg;
5331 unsigned long weight;
5332 int balanced;
5333
5334 idx = sd->wake_idx;
5335 this_cpu = smp_processor_id();
5336 load = source_load(prev_cpu, idx);
5337 this_load = target_load(this_cpu, idx);
5338
5339 /*
5340 * If sync wakeup then subtract the (maximum possible)
5341 * effect of the currently running task from the load
5342 * of the current CPU:
5343 */
5344 if (sync) {
5345 tg = task_group(current);
5346 weight = current->se.avg.load_avg;
5347
5348 this_load += effective_load(tg, this_cpu, -weight, -weight);
5349 load += effective_load(tg, prev_cpu, 0, -weight);
5350 }
5351
5352 tg = task_group(p);
5353 weight = p->se.avg.load_avg;
5354
5355 /*
5356 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5357 * due to the sync cause above having dropped this_load to 0, we'll
5358 * always have an imbalance, but there's really nothing you can do
5359 * about that, so that's good too.
5360 *
5361 * Otherwise check if either cpus are near enough in load to allow this
5362 * task to be woken on this_cpu.
5363 */
5364 this_eff_load = 100;
5365 this_eff_load *= capacity_of(prev_cpu);
5366
5367 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5368 prev_eff_load *= capacity_of(this_cpu);
5369
5370 if (this_load > 0) {
5371 this_eff_load *= this_load +
5372 effective_load(tg, this_cpu, weight, weight);
5373
5374 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5375 }
5376
5377 balanced = this_eff_load <= prev_eff_load;
5378
5379 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5380
5381 if (!balanced)
5382 return 0;
5383
5384 schedstat_inc(sd->ttwu_move_affine);
5385 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5386
5387 return 1;
5388}
5389
5390static inline int task_util(struct task_struct *p);
5391static int cpu_util_wake(int cpu, struct task_struct *p);
5392
5393static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5394{
5395 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5396}
5397
5398/*
5399 * find_idlest_group finds and returns the least busy CPU group within the
5400 * domain.
5401 */
5402static struct sched_group *
5403find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5404 int this_cpu, int sd_flag)
5405{
5406 struct sched_group *idlest = NULL, *group = sd->groups;
5407 struct sched_group *most_spare_sg = NULL;
5408 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5409 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5410 unsigned long most_spare = 0, this_spare = 0;
5411 int load_idx = sd->forkexec_idx;
5412 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5413 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5414 (sd->imbalance_pct-100) / 100;
5415
5416 if (sd_flag & SD_BALANCE_WAKE)
5417 load_idx = sd->wake_idx;
5418
5419 do {
5420 unsigned long load, avg_load, runnable_load;
5421 unsigned long spare_cap, max_spare_cap;
5422 int local_group;
5423 int i;
5424
5425 /* Skip over this group if it has no CPUs allowed */
5426 if (!cpumask_intersects(sched_group_cpus(group),
5427 tsk_cpus_allowed(p)))
5428 continue;
5429
5430 local_group = cpumask_test_cpu(this_cpu,
5431 sched_group_cpus(group));
5432
5433 /*
5434 * Tally up the load of all CPUs in the group and find
5435 * the group containing the CPU with most spare capacity.
5436 */
5437 avg_load = 0;
5438 runnable_load = 0;
5439 max_spare_cap = 0;
5440
5441 for_each_cpu(i, sched_group_cpus(group)) {
5442 /* Bias balancing toward cpus of our domain */
5443 if (local_group)
5444 load = source_load(i, load_idx);
5445 else
5446 load = target_load(i, load_idx);
5447
5448 runnable_load += load;
5449
5450 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5451
5452 spare_cap = capacity_spare_wake(i, p);
5453
5454 if (spare_cap > max_spare_cap)
5455 max_spare_cap = spare_cap;
5456 }
5457
5458 /* Adjust by relative CPU capacity of the group */
5459 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5460 group->sgc->capacity;
5461 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5462 group->sgc->capacity;
5463
5464 if (local_group) {
5465 this_runnable_load = runnable_load;
5466 this_avg_load = avg_load;
5467 this_spare = max_spare_cap;
5468 } else {
5469 if (min_runnable_load > (runnable_load + imbalance)) {
5470 /*
5471 * The runnable load is significantly smaller
5472 * so we can pick this new cpu
5473 */
5474 min_runnable_load = runnable_load;
5475 min_avg_load = avg_load;
5476 idlest = group;
5477 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5478 (100*min_avg_load > imbalance_scale*avg_load)) {
5479 /*
5480 * The runnable loads are close so take the
5481 * blocked load into account through avg_load.
5482 */
5483 min_avg_load = avg_load;
5484 idlest = group;
5485 }
5486
5487 if (most_spare < max_spare_cap) {
5488 most_spare = max_spare_cap;
5489 most_spare_sg = group;
5490 }
5491 }
5492 } while (group = group->next, group != sd->groups);
5493
5494 /*
5495 * The cross-over point between using spare capacity or least load
5496 * is too conservative for high utilization tasks on partially
5497 * utilized systems if we require spare_capacity > task_util(p),
5498 * so we allow for some task stuffing by using
5499 * spare_capacity > task_util(p)/2.
5500 *
5501 * Spare capacity can't be used for fork because the utilization has
5502 * not been set yet, we must first select a rq to compute the initial
5503 * utilization.
5504 */
5505 if (sd_flag & SD_BALANCE_FORK)
5506 goto skip_spare;
5507
5508 if (this_spare > task_util(p) / 2 &&
5509 imbalance_scale*this_spare > 100*most_spare)
5510 return NULL;
5511
5512 if (most_spare > task_util(p) / 2)
5513 return most_spare_sg;
5514
5515skip_spare:
5516 if (!idlest)
5517 return NULL;
5518
5519 if (min_runnable_load > (this_runnable_load + imbalance))
5520 return NULL;
5521
5522 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5523 (100*this_avg_load < imbalance_scale*min_avg_load))
5524 return NULL;
5525
5526 return idlest;
5527}
5528
5529/*
5530 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5531 */
5532static int
5533find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5534{
5535 unsigned long load, min_load = ULONG_MAX;
5536 unsigned int min_exit_latency = UINT_MAX;
5537 u64 latest_idle_timestamp = 0;
5538 int least_loaded_cpu = this_cpu;
5539 int shallowest_idle_cpu = -1;
5540 int i;
5541
5542 /* Check if we have any choice: */
5543 if (group->group_weight == 1)
5544 return cpumask_first(sched_group_cpus(group));
5545
5546 /* Traverse only the allowed CPUs */
5547 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5548 if (idle_cpu(i)) {
5549 struct rq *rq = cpu_rq(i);
5550 struct cpuidle_state *idle = idle_get_state(rq);
5551 if (idle && idle->exit_latency < min_exit_latency) {
5552 /*
5553 * We give priority to a CPU whose idle state
5554 * has the smallest exit latency irrespective
5555 * of any idle timestamp.
5556 */
5557 min_exit_latency = idle->exit_latency;
5558 latest_idle_timestamp = rq->idle_stamp;
5559 shallowest_idle_cpu = i;
5560 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5561 rq->idle_stamp > latest_idle_timestamp) {
5562 /*
5563 * If equal or no active idle state, then
5564 * the most recently idled CPU might have
5565 * a warmer cache.
5566 */
5567 latest_idle_timestamp = rq->idle_stamp;
5568 shallowest_idle_cpu = i;
5569 }
5570 } else if (shallowest_idle_cpu == -1) {
5571 load = weighted_cpuload(i);
5572 if (load < min_load || (load == min_load && i == this_cpu)) {
5573 min_load = load;
5574 least_loaded_cpu = i;
5575 }
5576 }
5577 }
5578
5579 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5580}
5581
5582/*
5583 * Implement a for_each_cpu() variant that starts the scan at a given cpu
5584 * (@start), and wraps around.
5585 *
5586 * This is used to scan for idle CPUs; such that not all CPUs looking for an
5587 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5588 * through the LLC domain.
5589 *
5590 * Especially tbench is found sensitive to this.
5591 */
5592
5593static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
5594{
5595 int next;
5596
5597again:
5598 next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
5599
5600 if (*wrapped) {
5601 if (next >= start)
5602 return nr_cpumask_bits;
5603 } else {
5604 if (next >= nr_cpumask_bits) {
5605 *wrapped = 1;
5606 n = -1;
5607 goto again;
5608 }
5609 }
5610
5611 return next;
5612}
5613
5614#define for_each_cpu_wrap(cpu, mask, start, wrap) \
5615 for ((wrap) = 0, (cpu) = (start)-1; \
5616 (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \
5617 (cpu) < nr_cpumask_bits; )
5618
5619#ifdef CONFIG_SCHED_SMT
5620
5621static inline void set_idle_cores(int cpu, int val)
5622{
5623 struct sched_domain_shared *sds;
5624
5625 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5626 if (sds)
5627 WRITE_ONCE(sds->has_idle_cores, val);
5628}
5629
5630static inline bool test_idle_cores(int cpu, bool def)
5631{
5632 struct sched_domain_shared *sds;
5633
5634 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5635 if (sds)
5636 return READ_ONCE(sds->has_idle_cores);
5637
5638 return def;
5639}
5640
5641/*
5642 * Scans the local SMT mask to see if the entire core is idle, and records this
5643 * information in sd_llc_shared->has_idle_cores.
5644 *
5645 * Since SMT siblings share all cache levels, inspecting this limited remote
5646 * state should be fairly cheap.
5647 */
5648void __update_idle_core(struct rq *rq)
5649{
5650 int core = cpu_of(rq);
5651 int cpu;
5652
5653 rcu_read_lock();
5654 if (test_idle_cores(core, true))
5655 goto unlock;
5656
5657 for_each_cpu(cpu, cpu_smt_mask(core)) {
5658 if (cpu == core)
5659 continue;
5660
5661 if (!idle_cpu(cpu))
5662 goto unlock;
5663 }
5664
5665 set_idle_cores(core, 1);
5666unlock:
5667 rcu_read_unlock();
5668}
5669
5670/*
5671 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5672 * there are no idle cores left in the system; tracked through
5673 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5674 */
5675static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5676{
5677 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5678 int core, cpu, wrap;
5679
5680 if (!static_branch_likely(&sched_smt_present))
5681 return -1;
5682
5683 if (!test_idle_cores(target, false))
5684 return -1;
5685
5686 cpumask_and(cpus, sched_domain_span(sd), tsk_cpus_allowed(p));
5687
5688 for_each_cpu_wrap(core, cpus, target, wrap) {
5689 bool idle = true;
5690
5691 for_each_cpu(cpu, cpu_smt_mask(core)) {
5692 cpumask_clear_cpu(cpu, cpus);
5693 if (!idle_cpu(cpu))
5694 idle = false;
5695 }
5696
5697 if (idle)
5698 return core;
5699 }
5700
5701 /*
5702 * Failed to find an idle core; stop looking for one.
5703 */
5704 set_idle_cores(target, 0);
5705
5706 return -1;
5707}
5708
5709/*
5710 * Scan the local SMT mask for idle CPUs.
5711 */
5712static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5713{
5714 int cpu;
5715
5716 if (!static_branch_likely(&sched_smt_present))
5717 return -1;
5718
5719 for_each_cpu(cpu, cpu_smt_mask(target)) {
5720 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5721 continue;
5722 if (idle_cpu(cpu))
5723 return cpu;
5724 }
5725
5726 return -1;
5727}
5728
5729#else /* CONFIG_SCHED_SMT */
5730
5731static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5732{
5733 return -1;
5734}
5735
5736static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5737{
5738 return -1;
5739}
5740
5741#endif /* CONFIG_SCHED_SMT */
5742
5743/*
5744 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5745 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5746 * average idle time for this rq (as found in rq->avg_idle).
5747 */
5748static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5749{
5750 struct sched_domain *this_sd;
5751 u64 avg_cost, avg_idle = this_rq()->avg_idle;
5752 u64 time, cost;
5753 s64 delta;
5754 int cpu, wrap;
5755
5756 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5757 if (!this_sd)
5758 return -1;
5759
5760 avg_cost = this_sd->avg_scan_cost;
5761
5762 /*
5763 * Due to large variance we need a large fuzz factor; hackbench in
5764 * particularly is sensitive here.
5765 */
5766 if ((avg_idle / 512) < avg_cost)
5767 return -1;
5768
5769 time = local_clock();
5770
5771 for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5772 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5773 continue;
5774 if (idle_cpu(cpu))
5775 break;
5776 }
5777
5778 time = local_clock() - time;
5779 cost = this_sd->avg_scan_cost;
5780 delta = (s64)(time - cost) / 8;
5781 this_sd->avg_scan_cost += delta;
5782
5783 return cpu;
5784}
5785
5786/*
5787 * Try and locate an idle core/thread in the LLC cache domain.
5788 */
5789static int select_idle_sibling(struct task_struct *p, int prev, int target)
5790{
5791 struct sched_domain *sd;
5792 int i;
5793
5794 if (idle_cpu(target))
5795 return target;
5796
5797 /*
5798 * If the previous cpu is cache affine and idle, don't be stupid.
5799 */
5800 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5801 return prev;
5802
5803 sd = rcu_dereference(per_cpu(sd_llc, target));
5804 if (!sd)
5805 return target;
5806
5807 i = select_idle_core(p, sd, target);
5808 if ((unsigned)i < nr_cpumask_bits)
5809 return i;
5810
5811 i = select_idle_cpu(p, sd, target);
5812 if ((unsigned)i < nr_cpumask_bits)
5813 return i;
5814
5815 i = select_idle_smt(p, sd, target);
5816 if ((unsigned)i < nr_cpumask_bits)
5817 return i;
5818
5819 return target;
5820}
5821
5822/*
5823 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5824 * tasks. The unit of the return value must be the one of capacity so we can
5825 * compare the utilization with the capacity of the CPU that is available for
5826 * CFS task (ie cpu_capacity).
5827 *
5828 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5829 * recent utilization of currently non-runnable tasks on a CPU. It represents
5830 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5831 * capacity_orig is the cpu_capacity available at the highest frequency
5832 * (arch_scale_freq_capacity()).
5833 * The utilization of a CPU converges towards a sum equal to or less than the
5834 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5835 * the running time on this CPU scaled by capacity_curr.
5836 *
5837 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5838 * higher than capacity_orig because of unfortunate rounding in
5839 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5840 * the average stabilizes with the new running time. We need to check that the
5841 * utilization stays within the range of [0..capacity_orig] and cap it if
5842 * necessary. Without utilization capping, a group could be seen as overloaded
5843 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5844 * available capacity. We allow utilization to overshoot capacity_curr (but not
5845 * capacity_orig) as it useful for predicting the capacity required after task
5846 * migrations (scheduler-driven DVFS).
5847 */
5848static int cpu_util(int cpu)
5849{
5850 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5851 unsigned long capacity = capacity_orig_of(cpu);
5852
5853 return (util >= capacity) ? capacity : util;
5854}
5855
5856static inline int task_util(struct task_struct *p)
5857{
5858 return p->se.avg.util_avg;
5859}
5860
5861/*
5862 * cpu_util_wake: Compute cpu utilization with any contributions from
5863 * the waking task p removed.
5864 */
5865static int cpu_util_wake(int cpu, struct task_struct *p)
5866{
5867 unsigned long util, capacity;
5868
5869 /* Task has no contribution or is new */
5870 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5871 return cpu_util(cpu);
5872
5873 capacity = capacity_orig_of(cpu);
5874 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5875
5876 return (util >= capacity) ? capacity : util;
5877}
5878
5879/*
5880 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5881 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5882 *
5883 * In that case WAKE_AFFINE doesn't make sense and we'll let
5884 * BALANCE_WAKE sort things out.
5885 */
5886static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5887{
5888 long min_cap, max_cap;
5889
5890 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5891 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5892
5893 /* Minimum capacity is close to max, no need to abort wake_affine */
5894 if (max_cap - min_cap < max_cap >> 3)
5895 return 0;
5896
5897 /* Bring task utilization in sync with prev_cpu */
5898 sync_entity_load_avg(&p->se);
5899
5900 return min_cap * 1024 < task_util(p) * capacity_margin;
5901}
5902
5903/*
5904 * select_task_rq_fair: Select target runqueue for the waking task in domains
5905 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5906 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5907 *
5908 * Balances load by selecting the idlest cpu in the idlest group, or under
5909 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5910 *
5911 * Returns the target cpu number.
5912 *
5913 * preempt must be disabled.
5914 */
5915static int
5916select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5917{
5918 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5919 int cpu = smp_processor_id();
5920 int new_cpu = prev_cpu;
5921 int want_affine = 0;
5922 int sync = wake_flags & WF_SYNC;
5923
5924 if (sd_flag & SD_BALANCE_WAKE) {
5925 record_wakee(p);
5926 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5927 && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5928 }
5929
5930 rcu_read_lock();
5931 for_each_domain(cpu, tmp) {
5932 if (!(tmp->flags & SD_LOAD_BALANCE))
5933 break;
5934
5935 /*
5936 * If both cpu and prev_cpu are part of this domain,
5937 * cpu is a valid SD_WAKE_AFFINE target.
5938 */
5939 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5940 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5941 affine_sd = tmp;
5942 break;
5943 }
5944
5945 if (tmp->flags & sd_flag)
5946 sd = tmp;
5947 else if (!want_affine)
5948 break;
5949 }
5950
5951 if (affine_sd) {
5952 sd = NULL; /* Prefer wake_affine over balance flags */
5953 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
5954 new_cpu = cpu;
5955 }
5956
5957 if (!sd) {
5958 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5959 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
5960
5961 } else while (sd) {
5962 struct sched_group *group;
5963 int weight;
5964
5965 if (!(sd->flags & sd_flag)) {
5966 sd = sd->child;
5967 continue;
5968 }
5969
5970 group = find_idlest_group(sd, p, cpu, sd_flag);
5971 if (!group) {
5972 sd = sd->child;
5973 continue;
5974 }
5975
5976 new_cpu = find_idlest_cpu(group, p, cpu);
5977 if (new_cpu == -1 || new_cpu == cpu) {
5978 /* Now try balancing at a lower domain level of cpu */
5979 sd = sd->child;
5980 continue;
5981 }
5982
5983 /* Now try balancing at a lower domain level of new_cpu */
5984 cpu = new_cpu;
5985 weight = sd->span_weight;
5986 sd = NULL;
5987 for_each_domain(cpu, tmp) {
5988 if (weight <= tmp->span_weight)
5989 break;
5990 if (tmp->flags & sd_flag)
5991 sd = tmp;
5992 }
5993 /* while loop will break here if sd == NULL */
5994 }
5995 rcu_read_unlock();
5996
5997 return new_cpu;
5998}
5999
6000/*
6001 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6002 * cfs_rq_of(p) references at time of call are still valid and identify the
6003 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6004 */
6005static void migrate_task_rq_fair(struct task_struct *p)
6006{
6007 /*
6008 * As blocked tasks retain absolute vruntime the migration needs to
6009 * deal with this by subtracting the old and adding the new
6010 * min_vruntime -- the latter is done by enqueue_entity() when placing
6011 * the task on the new runqueue.
6012 */
6013 if (p->state == TASK_WAKING) {
6014 struct sched_entity *se = &p->se;
6015 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6016 u64 min_vruntime;
6017
6018#ifndef CONFIG_64BIT
6019 u64 min_vruntime_copy;
6020
6021 do {
6022 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6023 smp_rmb();
6024 min_vruntime = cfs_rq->min_vruntime;
6025 } while (min_vruntime != min_vruntime_copy);
6026#else
6027 min_vruntime = cfs_rq->min_vruntime;
6028#endif
6029
6030 se->vruntime -= min_vruntime;
6031 }
6032
6033 /*
6034 * We are supposed to update the task to "current" time, then its up to date
6035 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6036 * what current time is, so simply throw away the out-of-date time. This
6037 * will result in the wakee task is less decayed, but giving the wakee more
6038 * load sounds not bad.
6039 */
6040 remove_entity_load_avg(&p->se);
6041
6042 /* Tell new CPU we are migrated */
6043 p->se.avg.last_update_time = 0;
6044
6045 /* We have migrated, no longer consider this task hot */
6046 p->se.exec_start = 0;
6047}
6048
6049static void task_dead_fair(struct task_struct *p)
6050{
6051 remove_entity_load_avg(&p->se);
6052}
6053#endif /* CONFIG_SMP */
6054
6055static unsigned long
6056wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6057{
6058 unsigned long gran = sysctl_sched_wakeup_granularity;
6059
6060 /*
6061 * Since its curr running now, convert the gran from real-time
6062 * to virtual-time in his units.
6063 *
6064 * By using 'se' instead of 'curr' we penalize light tasks, so
6065 * they get preempted easier. That is, if 'se' < 'curr' then
6066 * the resulting gran will be larger, therefore penalizing the
6067 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6068 * be smaller, again penalizing the lighter task.
6069 *
6070 * This is especially important for buddies when the leftmost
6071 * task is higher priority than the buddy.
6072 */
6073 return calc_delta_fair(gran, se);
6074}
6075
6076/*
6077 * Should 'se' preempt 'curr'.
6078 *
6079 * |s1
6080 * |s2
6081 * |s3
6082 * g
6083 * |<--->|c
6084 *
6085 * w(c, s1) = -1
6086 * w(c, s2) = 0
6087 * w(c, s3) = 1
6088 *
6089 */
6090static int
6091wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6092{
6093 s64 gran, vdiff = curr->vruntime - se->vruntime;
6094
6095 if (vdiff <= 0)
6096 return -1;
6097
6098 gran = wakeup_gran(curr, se);
6099 if (vdiff > gran)
6100 return 1;
6101
6102 return 0;
6103}
6104
6105static void set_last_buddy(struct sched_entity *se)
6106{
6107 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6108 return;
6109
6110 for_each_sched_entity(se)
6111 cfs_rq_of(se)->last = se;
6112}
6113
6114static void set_next_buddy(struct sched_entity *se)
6115{
6116 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6117 return;
6118
6119 for_each_sched_entity(se)
6120 cfs_rq_of(se)->next = se;
6121}
6122
6123static void set_skip_buddy(struct sched_entity *se)
6124{
6125 for_each_sched_entity(se)
6126 cfs_rq_of(se)->skip = se;
6127}
6128
6129/*
6130 * Preempt the current task with a newly woken task if needed:
6131 */
6132static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6133{
6134 struct task_struct *curr = rq->curr;
6135 struct sched_entity *se = &curr->se, *pse = &p->se;
6136 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6137 int scale = cfs_rq->nr_running >= sched_nr_latency;
6138 int next_buddy_marked = 0;
6139
6140 if (unlikely(se == pse))
6141 return;
6142
6143 /*
6144 * This is possible from callers such as attach_tasks(), in which we
6145 * unconditionally check_prempt_curr() after an enqueue (which may have
6146 * lead to a throttle). This both saves work and prevents false
6147 * next-buddy nomination below.
6148 */
6149 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6150 return;
6151
6152 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6153 set_next_buddy(pse);
6154 next_buddy_marked = 1;
6155 }
6156
6157 /*
6158 * We can come here with TIF_NEED_RESCHED already set from new task
6159 * wake up path.
6160 *
6161 * Note: this also catches the edge-case of curr being in a throttled
6162 * group (e.g. via set_curr_task), since update_curr() (in the
6163 * enqueue of curr) will have resulted in resched being set. This
6164 * prevents us from potentially nominating it as a false LAST_BUDDY
6165 * below.
6166 */
6167 if (test_tsk_need_resched(curr))
6168 return;
6169
6170 /* Idle tasks are by definition preempted by non-idle tasks. */
6171 if (unlikely(curr->policy == SCHED_IDLE) &&
6172 likely(p->policy != SCHED_IDLE))
6173 goto preempt;
6174
6175 /*
6176 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6177 * is driven by the tick):
6178 */
6179 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6180 return;
6181
6182 find_matching_se(&se, &pse);
6183 update_curr(cfs_rq_of(se));
6184 BUG_ON(!pse);
6185 if (wakeup_preempt_entity(se, pse) == 1) {
6186 /*
6187 * Bias pick_next to pick the sched entity that is
6188 * triggering this preemption.
6189 */
6190 if (!next_buddy_marked)
6191 set_next_buddy(pse);
6192 goto preempt;
6193 }
6194
6195 return;
6196
6197preempt:
6198 resched_curr(rq);
6199 /*
6200 * Only set the backward buddy when the current task is still
6201 * on the rq. This can happen when a wakeup gets interleaved
6202 * with schedule on the ->pre_schedule() or idle_balance()
6203 * point, either of which can * drop the rq lock.
6204 *
6205 * Also, during early boot the idle thread is in the fair class,
6206 * for obvious reasons its a bad idea to schedule back to it.
6207 */
6208 if (unlikely(!se->on_rq || curr == rq->idle))
6209 return;
6210
6211 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6212 set_last_buddy(se);
6213}
6214
6215static struct task_struct *
6216pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
6217{
6218 struct cfs_rq *cfs_rq = &rq->cfs;
6219 struct sched_entity *se;
6220 struct task_struct *p;
6221 int new_tasks;
6222
6223again:
6224#ifdef CONFIG_FAIR_GROUP_SCHED
6225 if (!cfs_rq->nr_running)
6226 goto idle;
6227
6228 if (prev->sched_class != &fair_sched_class)
6229 goto simple;
6230
6231 /*
6232 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6233 * likely that a next task is from the same cgroup as the current.
6234 *
6235 * Therefore attempt to avoid putting and setting the entire cgroup
6236 * hierarchy, only change the part that actually changes.
6237 */
6238
6239 do {
6240 struct sched_entity *curr = cfs_rq->curr;
6241
6242 /*
6243 * Since we got here without doing put_prev_entity() we also
6244 * have to consider cfs_rq->curr. If it is still a runnable
6245 * entity, update_curr() will update its vruntime, otherwise
6246 * forget we've ever seen it.
6247 */
6248 if (curr) {
6249 if (curr->on_rq)
6250 update_curr(cfs_rq);
6251 else
6252 curr = NULL;
6253
6254 /*
6255 * This call to check_cfs_rq_runtime() will do the
6256 * throttle and dequeue its entity in the parent(s).
6257 * Therefore the 'simple' nr_running test will indeed
6258 * be correct.
6259 */
6260 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
6261 goto simple;
6262 }
6263
6264 se = pick_next_entity(cfs_rq, curr);
6265 cfs_rq = group_cfs_rq(se);
6266 } while (cfs_rq);
6267
6268 p = task_of(se);
6269
6270 /*
6271 * Since we haven't yet done put_prev_entity and if the selected task
6272 * is a different task than we started out with, try and touch the
6273 * least amount of cfs_rqs.
6274 */
6275 if (prev != p) {
6276 struct sched_entity *pse = &prev->se;
6277
6278 while (!(cfs_rq = is_same_group(se, pse))) {
6279 int se_depth = se->depth;
6280 int pse_depth = pse->depth;
6281
6282 if (se_depth <= pse_depth) {
6283 put_prev_entity(cfs_rq_of(pse), pse);
6284 pse = parent_entity(pse);
6285 }
6286 if (se_depth >= pse_depth) {
6287 set_next_entity(cfs_rq_of(se), se);
6288 se = parent_entity(se);
6289 }
6290 }
6291
6292 put_prev_entity(cfs_rq, pse);
6293 set_next_entity(cfs_rq, se);
6294 }
6295
6296 if (hrtick_enabled(rq))
6297 hrtick_start_fair(rq, p);
6298
6299 return p;
6300simple:
6301 cfs_rq = &rq->cfs;
6302#endif
6303
6304 if (!cfs_rq->nr_running)
6305 goto idle;
6306
6307 put_prev_task(rq, prev);
6308
6309 do {
6310 se = pick_next_entity(cfs_rq, NULL);
6311 set_next_entity(cfs_rq, se);
6312 cfs_rq = group_cfs_rq(se);
6313 } while (cfs_rq);
6314
6315 p = task_of(se);
6316
6317 if (hrtick_enabled(rq))
6318 hrtick_start_fair(rq, p);
6319
6320 return p;
6321
6322idle:
6323 /*
6324 * This is OK, because current is on_cpu, which avoids it being picked
6325 * for load-balance and preemption/IRQs are still disabled avoiding
6326 * further scheduler activity on it and we're being very careful to
6327 * re-start the picking loop.
6328 */
6329 lockdep_unpin_lock(&rq->lock, cookie);
6330 new_tasks = idle_balance(rq);
6331 lockdep_repin_lock(&rq->lock, cookie);
6332 /*
6333 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6334 * possible for any higher priority task to appear. In that case we
6335 * must re-start the pick_next_entity() loop.
6336 */
6337 if (new_tasks < 0)
6338 return RETRY_TASK;
6339
6340 if (new_tasks > 0)
6341 goto again;
6342
6343 return NULL;
6344}
6345
6346/*
6347 * Account for a descheduled task:
6348 */
6349static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6350{
6351 struct sched_entity *se = &prev->se;
6352 struct cfs_rq *cfs_rq;
6353
6354 for_each_sched_entity(se) {
6355 cfs_rq = cfs_rq_of(se);
6356 put_prev_entity(cfs_rq, se);
6357 }
6358}
6359
6360/*
6361 * sched_yield() is very simple
6362 *
6363 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6364 */
6365static void yield_task_fair(struct rq *rq)
6366{
6367 struct task_struct *curr = rq->curr;
6368 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6369 struct sched_entity *se = &curr->se;
6370
6371 /*
6372 * Are we the only task in the tree?
6373 */
6374 if (unlikely(rq->nr_running == 1))
6375 return;
6376
6377 clear_buddies(cfs_rq, se);
6378
6379 if (curr->policy != SCHED_BATCH) {
6380 update_rq_clock(rq);
6381 /*
6382 * Update run-time statistics of the 'current'.
6383 */
6384 update_curr(cfs_rq);
6385 /*
6386 * Tell update_rq_clock() that we've just updated,
6387 * so we don't do microscopic update in schedule()
6388 * and double the fastpath cost.
6389 */
6390 rq_clock_skip_update(rq, true);
6391 }
6392
6393 set_skip_buddy(se);
6394}
6395
6396static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6397{
6398 struct sched_entity *se = &p->se;
6399
6400 /* throttled hierarchies are not runnable */
6401 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6402 return false;
6403
6404 /* Tell the scheduler that we'd really like pse to run next. */
6405 set_next_buddy(se);
6406
6407 yield_task_fair(rq);
6408
6409 return true;
6410}
6411
6412#ifdef CONFIG_SMP
6413/**************************************************
6414 * Fair scheduling class load-balancing methods.
6415 *
6416 * BASICS
6417 *
6418 * The purpose of load-balancing is to achieve the same basic fairness the
6419 * per-cpu scheduler provides, namely provide a proportional amount of compute
6420 * time to each task. This is expressed in the following equation:
6421 *
6422 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6423 *
6424 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6425 * W_i,0 is defined as:
6426 *
6427 * W_i,0 = \Sum_j w_i,j (2)
6428 *
6429 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6430 * is derived from the nice value as per sched_prio_to_weight[].
6431 *
6432 * The weight average is an exponential decay average of the instantaneous
6433 * weight:
6434 *
6435 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6436 *
6437 * C_i is the compute capacity of cpu i, typically it is the
6438 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6439 * can also include other factors [XXX].
6440 *
6441 * To achieve this balance we define a measure of imbalance which follows
6442 * directly from (1):
6443 *
6444 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6445 *
6446 * We them move tasks around to minimize the imbalance. In the continuous
6447 * function space it is obvious this converges, in the discrete case we get
6448 * a few fun cases generally called infeasible weight scenarios.
6449 *
6450 * [XXX expand on:
6451 * - infeasible weights;
6452 * - local vs global optima in the discrete case. ]
6453 *
6454 *
6455 * SCHED DOMAINS
6456 *
6457 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6458 * for all i,j solution, we create a tree of cpus that follows the hardware
6459 * topology where each level pairs two lower groups (or better). This results
6460 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6461 * tree to only the first of the previous level and we decrease the frequency
6462 * of load-balance at each level inv. proportional to the number of cpus in
6463 * the groups.
6464 *
6465 * This yields:
6466 *
6467 * log_2 n 1 n
6468 * \Sum { --- * --- * 2^i } = O(n) (5)
6469 * i = 0 2^i 2^i
6470 * `- size of each group
6471 * | | `- number of cpus doing load-balance
6472 * | `- freq
6473 * `- sum over all levels
6474 *
6475 * Coupled with a limit on how many tasks we can migrate every balance pass,
6476 * this makes (5) the runtime complexity of the balancer.
6477 *
6478 * An important property here is that each CPU is still (indirectly) connected
6479 * to every other cpu in at most O(log n) steps:
6480 *
6481 * The adjacency matrix of the resulting graph is given by:
6482 *
6483 * log_2 n
6484 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6485 * k = 0
6486 *
6487 * And you'll find that:
6488 *
6489 * A^(log_2 n)_i,j != 0 for all i,j (7)
6490 *
6491 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6492 * The task movement gives a factor of O(m), giving a convergence complexity
6493 * of:
6494 *
6495 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6496 *
6497 *
6498 * WORK CONSERVING
6499 *
6500 * In order to avoid CPUs going idle while there's still work to do, new idle
6501 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6502 * tree itself instead of relying on other CPUs to bring it work.
6503 *
6504 * This adds some complexity to both (5) and (8) but it reduces the total idle
6505 * time.
6506 *
6507 * [XXX more?]
6508 *
6509 *
6510 * CGROUPS
6511 *
6512 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6513 *
6514 * s_k,i
6515 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6516 * S_k
6517 *
6518 * Where
6519 *
6520 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6521 *
6522 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6523 *
6524 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6525 * property.
6526 *
6527 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6528 * rewrite all of this once again.]
6529 */
6530
6531static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6532
6533enum fbq_type { regular, remote, all };
6534
6535#define LBF_ALL_PINNED 0x01
6536#define LBF_NEED_BREAK 0x02
6537#define LBF_DST_PINNED 0x04
6538#define LBF_SOME_PINNED 0x08
6539
6540struct lb_env {
6541 struct sched_domain *sd;
6542
6543 struct rq *src_rq;
6544 int src_cpu;
6545
6546 int dst_cpu;
6547 struct rq *dst_rq;
6548
6549 struct cpumask *dst_grpmask;
6550 int new_dst_cpu;
6551 enum cpu_idle_type idle;
6552 long imbalance;
6553 /* The set of CPUs under consideration for load-balancing */
6554 struct cpumask *cpus;
6555
6556 unsigned int flags;
6557
6558 unsigned int loop;
6559 unsigned int loop_break;
6560 unsigned int loop_max;
6561
6562 enum fbq_type fbq_type;
6563 struct list_head tasks;
6564};
6565
6566/*
6567 * Is this task likely cache-hot:
6568 */
6569static int task_hot(struct task_struct *p, struct lb_env *env)
6570{
6571 s64 delta;
6572
6573 lockdep_assert_held(&env->src_rq->lock);
6574
6575 if (p->sched_class != &fair_sched_class)
6576 return 0;
6577
6578 if (unlikely(p->policy == SCHED_IDLE))
6579 return 0;
6580
6581 /*
6582 * Buddy candidates are cache hot:
6583 */
6584 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6585 (&p->se == cfs_rq_of(&p->se)->next ||
6586 &p->se == cfs_rq_of(&p->se)->last))
6587 return 1;
6588
6589 if (sysctl_sched_migration_cost == -1)
6590 return 1;
6591 if (sysctl_sched_migration_cost == 0)
6592 return 0;
6593
6594 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6595
6596 return delta < (s64)sysctl_sched_migration_cost;
6597}
6598
6599#ifdef CONFIG_NUMA_BALANCING
6600/*
6601 * Returns 1, if task migration degrades locality
6602 * Returns 0, if task migration improves locality i.e migration preferred.
6603 * Returns -1, if task migration is not affected by locality.
6604 */
6605static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6606{
6607 struct numa_group *numa_group = rcu_dereference(p->numa_group);
6608 unsigned long src_faults, dst_faults;
6609 int src_nid, dst_nid;
6610
6611 if (!static_branch_likely(&sched_numa_balancing))
6612 return -1;
6613
6614 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6615 return -1;
6616
6617 src_nid = cpu_to_node(env->src_cpu);
6618 dst_nid = cpu_to_node(env->dst_cpu);
6619
6620 if (src_nid == dst_nid)
6621 return -1;
6622
6623 /* Migrating away from the preferred node is always bad. */
6624 if (src_nid == p->numa_preferred_nid) {
6625 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6626 return 1;
6627 else
6628 return -1;
6629 }
6630
6631 /* Encourage migration to the preferred node. */
6632 if (dst_nid == p->numa_preferred_nid)
6633 return 0;
6634
6635 if (numa_group) {
6636 src_faults = group_faults(p, src_nid);
6637 dst_faults = group_faults(p, dst_nid);
6638 } else {
6639 src_faults = task_faults(p, src_nid);
6640 dst_faults = task_faults(p, dst_nid);
6641 }
6642
6643 return dst_faults < src_faults;
6644}
6645
6646#else
6647static inline int migrate_degrades_locality(struct task_struct *p,
6648 struct lb_env *env)
6649{
6650 return -1;
6651}
6652#endif
6653
6654/*
6655 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6656 */
6657static
6658int can_migrate_task(struct task_struct *p, struct lb_env *env)
6659{
6660 int tsk_cache_hot;
6661
6662 lockdep_assert_held(&env->src_rq->lock);
6663
6664 /*
6665 * We do not migrate tasks that are:
6666 * 1) throttled_lb_pair, or
6667 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6668 * 3) running (obviously), or
6669 * 4) are cache-hot on their current CPU.
6670 */
6671 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6672 return 0;
6673
6674 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6675 int cpu;
6676
6677 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6678
6679 env->flags |= LBF_SOME_PINNED;
6680
6681 /*
6682 * Remember if this task can be migrated to any other cpu in
6683 * our sched_group. We may want to revisit it if we couldn't
6684 * meet load balance goals by pulling other tasks on src_cpu.
6685 *
6686 * Also avoid computing new_dst_cpu if we have already computed
6687 * one in current iteration.
6688 */
6689 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6690 return 0;
6691
6692 /* Prevent to re-select dst_cpu via env's cpus */
6693 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6694 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6695 env->flags |= LBF_DST_PINNED;
6696 env->new_dst_cpu = cpu;
6697 break;
6698 }
6699 }
6700
6701 return 0;
6702 }
6703
6704 /* Record that we found atleast one task that could run on dst_cpu */
6705 env->flags &= ~LBF_ALL_PINNED;
6706
6707 if (task_running(env->src_rq, p)) {
6708 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6709 return 0;
6710 }
6711
6712 /*
6713 * Aggressive migration if:
6714 * 1) destination numa is preferred
6715 * 2) task is cache cold, or
6716 * 3) too many balance attempts have failed.
6717 */
6718 tsk_cache_hot = migrate_degrades_locality(p, env);
6719 if (tsk_cache_hot == -1)
6720 tsk_cache_hot = task_hot(p, env);
6721
6722 if (tsk_cache_hot <= 0 ||
6723 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6724 if (tsk_cache_hot == 1) {
6725 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6726 schedstat_inc(p->se.statistics.nr_forced_migrations);
6727 }
6728 return 1;
6729 }
6730
6731 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
6732 return 0;
6733}
6734
6735/*
6736 * detach_task() -- detach the task for the migration specified in env
6737 */
6738static void detach_task(struct task_struct *p, struct lb_env *env)
6739{
6740 lockdep_assert_held(&env->src_rq->lock);
6741
6742 p->on_rq = TASK_ON_RQ_MIGRATING;
6743 deactivate_task(env->src_rq, p, 0);
6744 set_task_cpu(p, env->dst_cpu);
6745}
6746
6747/*
6748 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6749 * part of active balancing operations within "domain".
6750 *
6751 * Returns a task if successful and NULL otherwise.
6752 */
6753static struct task_struct *detach_one_task(struct lb_env *env)
6754{
6755 struct task_struct *p, *n;
6756
6757 lockdep_assert_held(&env->src_rq->lock);
6758
6759 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6760 if (!can_migrate_task(p, env))
6761 continue;
6762
6763 detach_task(p, env);
6764
6765 /*
6766 * Right now, this is only the second place where
6767 * lb_gained[env->idle] is updated (other is detach_tasks)
6768 * so we can safely collect stats here rather than
6769 * inside detach_tasks().
6770 */
6771 schedstat_inc(env->sd->lb_gained[env->idle]);
6772 return p;
6773 }
6774 return NULL;
6775}
6776
6777static const unsigned int sched_nr_migrate_break = 32;
6778
6779/*
6780 * detach_tasks() -- tries to detach up to imbalance weighted load from
6781 * busiest_rq, as part of a balancing operation within domain "sd".
6782 *
6783 * Returns number of detached tasks if successful and 0 otherwise.
6784 */
6785static int detach_tasks(struct lb_env *env)
6786{
6787 struct list_head *tasks = &env->src_rq->cfs_tasks;
6788 struct task_struct *p;
6789 unsigned long load;
6790 int detached = 0;
6791
6792 lockdep_assert_held(&env->src_rq->lock);
6793
6794 if (env->imbalance <= 0)
6795 return 0;
6796
6797 while (!list_empty(tasks)) {
6798 /*
6799 * We don't want to steal all, otherwise we may be treated likewise,
6800 * which could at worst lead to a livelock crash.
6801 */
6802 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6803 break;
6804
6805 p = list_first_entry(tasks, struct task_struct, se.group_node);
6806
6807 env->loop++;
6808 /* We've more or less seen every task there is, call it quits */
6809 if (env->loop > env->loop_max)
6810 break;
6811
6812 /* take a breather every nr_migrate tasks */
6813 if (env->loop > env->loop_break) {
6814 env->loop_break += sched_nr_migrate_break;
6815 env->flags |= LBF_NEED_BREAK;
6816 break;
6817 }
6818
6819 if (!can_migrate_task(p, env))
6820 goto next;
6821
6822 load = task_h_load(p);
6823
6824 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6825 goto next;
6826
6827 if ((load / 2) > env->imbalance)
6828 goto next;
6829
6830 detach_task(p, env);
6831 list_add(&p->se.group_node, &env->tasks);
6832
6833 detached++;
6834 env->imbalance -= load;
6835
6836#ifdef CONFIG_PREEMPT
6837 /*
6838 * NEWIDLE balancing is a source of latency, so preemptible
6839 * kernels will stop after the first task is detached to minimize
6840 * the critical section.
6841 */
6842 if (env->idle == CPU_NEWLY_IDLE)
6843 break;
6844#endif
6845
6846 /*
6847 * We only want to steal up to the prescribed amount of
6848 * weighted load.
6849 */
6850 if (env->imbalance <= 0)
6851 break;
6852
6853 continue;
6854next:
6855 list_move_tail(&p->se.group_node, tasks);
6856 }
6857
6858 /*
6859 * Right now, this is one of only two places we collect this stat
6860 * so we can safely collect detach_one_task() stats here rather
6861 * than inside detach_one_task().
6862 */
6863 schedstat_add(env->sd->lb_gained[env->idle], detached);
6864
6865 return detached;
6866}
6867
6868/*
6869 * attach_task() -- attach the task detached by detach_task() to its new rq.
6870 */
6871static void attach_task(struct rq *rq, struct task_struct *p)
6872{
6873 lockdep_assert_held(&rq->lock);
6874
6875 BUG_ON(task_rq(p) != rq);
6876 activate_task(rq, p, 0);
6877 p->on_rq = TASK_ON_RQ_QUEUED;
6878 check_preempt_curr(rq, p, 0);
6879}
6880
6881/*
6882 * attach_one_task() -- attaches the task returned from detach_one_task() to
6883 * its new rq.
6884 */
6885static void attach_one_task(struct rq *rq, struct task_struct *p)
6886{
6887 raw_spin_lock(&rq->lock);
6888 attach_task(rq, p);
6889 raw_spin_unlock(&rq->lock);
6890}
6891
6892/*
6893 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6894 * new rq.
6895 */
6896static void attach_tasks(struct lb_env *env)
6897{
6898 struct list_head *tasks = &env->tasks;
6899 struct task_struct *p;
6900
6901 raw_spin_lock(&env->dst_rq->lock);
6902
6903 while (!list_empty(tasks)) {
6904 p = list_first_entry(tasks, struct task_struct, se.group_node);
6905 list_del_init(&p->se.group_node);
6906
6907 attach_task(env->dst_rq, p);
6908 }
6909
6910 raw_spin_unlock(&env->dst_rq->lock);
6911}
6912
6913#ifdef CONFIG_FAIR_GROUP_SCHED
6914static void update_blocked_averages(int cpu)
6915{
6916 struct rq *rq = cpu_rq(cpu);
6917 struct cfs_rq *cfs_rq;
6918 unsigned long flags;
6919
6920 raw_spin_lock_irqsave(&rq->lock, flags);
6921 update_rq_clock(rq);
6922
6923 /*
6924 * Iterates the task_group tree in a bottom up fashion, see
6925 * list_add_leaf_cfs_rq() for details.
6926 */
6927 for_each_leaf_cfs_rq(rq, cfs_rq) {
6928 /* throttled entities do not contribute to load */
6929 if (throttled_hierarchy(cfs_rq))
6930 continue;
6931
6932 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6933 update_tg_load_avg(cfs_rq, 0);
6934
6935 /* Propagate pending load changes to the parent */
6936 if (cfs_rq->tg->se[cpu])
6937 update_load_avg(cfs_rq->tg->se[cpu], 0);
6938 }
6939 raw_spin_unlock_irqrestore(&rq->lock, flags);
6940}
6941
6942/*
6943 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6944 * This needs to be done in a top-down fashion because the load of a child
6945 * group is a fraction of its parents load.
6946 */
6947static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6948{
6949 struct rq *rq = rq_of(cfs_rq);
6950 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6951 unsigned long now = jiffies;
6952 unsigned long load;
6953
6954 if (cfs_rq->last_h_load_update == now)
6955 return;
6956
6957 cfs_rq->h_load_next = NULL;
6958 for_each_sched_entity(se) {
6959 cfs_rq = cfs_rq_of(se);
6960 cfs_rq->h_load_next = se;
6961 if (cfs_rq->last_h_load_update == now)
6962 break;
6963 }
6964
6965 if (!se) {
6966 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6967 cfs_rq->last_h_load_update = now;
6968 }
6969
6970 while ((se = cfs_rq->h_load_next) != NULL) {
6971 load = cfs_rq->h_load;
6972 load = div64_ul(load * se->avg.load_avg,
6973 cfs_rq_load_avg(cfs_rq) + 1);
6974 cfs_rq = group_cfs_rq(se);
6975 cfs_rq->h_load = load;
6976 cfs_rq->last_h_load_update = now;
6977 }
6978}
6979
6980static unsigned long task_h_load(struct task_struct *p)
6981{
6982 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6983
6984 update_cfs_rq_h_load(cfs_rq);
6985 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6986 cfs_rq_load_avg(cfs_rq) + 1);
6987}
6988#else
6989static inline void update_blocked_averages(int cpu)
6990{
6991 struct rq *rq = cpu_rq(cpu);
6992 struct cfs_rq *cfs_rq = &rq->cfs;
6993 unsigned long flags;
6994
6995 raw_spin_lock_irqsave(&rq->lock, flags);
6996 update_rq_clock(rq);
6997 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6998 raw_spin_unlock_irqrestore(&rq->lock, flags);
6999}
7000
7001static unsigned long task_h_load(struct task_struct *p)
7002{
7003 return p->se.avg.load_avg;
7004}
7005#endif
7006
7007/********** Helpers for find_busiest_group ************************/
7008
7009enum group_type {
7010 group_other = 0,
7011 group_imbalanced,
7012 group_overloaded,
7013};
7014
7015/*
7016 * sg_lb_stats - stats of a sched_group required for load_balancing
7017 */
7018struct sg_lb_stats {
7019 unsigned long avg_load; /*Avg load across the CPUs of the group */
7020 unsigned long group_load; /* Total load over the CPUs of the group */
7021 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7022 unsigned long load_per_task;
7023 unsigned long group_capacity;
7024 unsigned long group_util; /* Total utilization of the group */
7025 unsigned int sum_nr_running; /* Nr tasks running in the group */
7026 unsigned int idle_cpus;
7027 unsigned int group_weight;
7028 enum group_type group_type;
7029 int group_no_capacity;
7030#ifdef CONFIG_NUMA_BALANCING
7031 unsigned int nr_numa_running;
7032 unsigned int nr_preferred_running;
7033#endif
7034};
7035
7036/*
7037 * sd_lb_stats - Structure to store the statistics of a sched_domain
7038 * during load balancing.
7039 */
7040struct sd_lb_stats {
7041 struct sched_group *busiest; /* Busiest group in this sd */
7042 struct sched_group *local; /* Local group in this sd */
7043 unsigned long total_load; /* Total load of all groups in sd */
7044 unsigned long total_capacity; /* Total capacity of all groups in sd */
7045 unsigned long avg_load; /* Average load across all groups in sd */
7046
7047 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7048 struct sg_lb_stats local_stat; /* Statistics of the local group */
7049};
7050
7051static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7052{
7053 /*
7054 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7055 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7056 * We must however clear busiest_stat::avg_load because
7057 * update_sd_pick_busiest() reads this before assignment.
7058 */
7059 *sds = (struct sd_lb_stats){
7060 .busiest = NULL,
7061 .local = NULL,
7062 .total_load = 0UL,
7063 .total_capacity = 0UL,
7064 .busiest_stat = {
7065 .avg_load = 0UL,
7066 .sum_nr_running = 0,
7067 .group_type = group_other,
7068 },
7069 };
7070}
7071
7072/**
7073 * get_sd_load_idx - Obtain the load index for a given sched domain.
7074 * @sd: The sched_domain whose load_idx is to be obtained.
7075 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7076 *
7077 * Return: The load index.
7078 */
7079static inline int get_sd_load_idx(struct sched_domain *sd,
7080 enum cpu_idle_type idle)
7081{
7082 int load_idx;
7083
7084 switch (idle) {
7085 case CPU_NOT_IDLE:
7086 load_idx = sd->busy_idx;
7087 break;
7088
7089 case CPU_NEWLY_IDLE:
7090 load_idx = sd->newidle_idx;
7091 break;
7092 default:
7093 load_idx = sd->idle_idx;
7094 break;
7095 }
7096
7097 return load_idx;
7098}
7099
7100static unsigned long scale_rt_capacity(int cpu)
7101{
7102 struct rq *rq = cpu_rq(cpu);
7103 u64 total, used, age_stamp, avg;
7104 s64 delta;
7105
7106 /*
7107 * Since we're reading these variables without serialization make sure
7108 * we read them once before doing sanity checks on them.
7109 */
7110 age_stamp = READ_ONCE(rq->age_stamp);
7111 avg = READ_ONCE(rq->rt_avg);
7112 delta = __rq_clock_broken(rq) - age_stamp;
7113
7114 if (unlikely(delta < 0))
7115 delta = 0;
7116
7117 total = sched_avg_period() + delta;
7118
7119 used = div_u64(avg, total);
7120
7121 if (likely(used < SCHED_CAPACITY_SCALE))
7122 return SCHED_CAPACITY_SCALE - used;
7123
7124 return 1;
7125}
7126
7127static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7128{
7129 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7130 struct sched_group *sdg = sd->groups;
7131
7132 cpu_rq(cpu)->cpu_capacity_orig = capacity;
7133
7134 capacity *= scale_rt_capacity(cpu);
7135 capacity >>= SCHED_CAPACITY_SHIFT;
7136
7137 if (!capacity)
7138 capacity = 1;
7139
7140 cpu_rq(cpu)->cpu_capacity = capacity;
7141 sdg->sgc->capacity = capacity;
7142 sdg->sgc->min_capacity = capacity;
7143}
7144
7145void update_group_capacity(struct sched_domain *sd, int cpu)
7146{
7147 struct sched_domain *child = sd->child;
7148 struct sched_group *group, *sdg = sd->groups;
7149 unsigned long capacity, min_capacity;
7150 unsigned long interval;
7151
7152 interval = msecs_to_jiffies(sd->balance_interval);
7153 interval = clamp(interval, 1UL, max_load_balance_interval);
7154 sdg->sgc->next_update = jiffies + interval;
7155
7156 if (!child) {
7157 update_cpu_capacity(sd, cpu);
7158 return;
7159 }
7160
7161 capacity = 0;
7162 min_capacity = ULONG_MAX;
7163
7164 if (child->flags & SD_OVERLAP) {
7165 /*
7166 * SD_OVERLAP domains cannot assume that child groups
7167 * span the current group.
7168 */
7169
7170 for_each_cpu(cpu, sched_group_cpus(sdg)) {
7171 struct sched_group_capacity *sgc;
7172 struct rq *rq = cpu_rq(cpu);
7173
7174 /*
7175 * build_sched_domains() -> init_sched_groups_capacity()
7176 * gets here before we've attached the domains to the
7177 * runqueues.
7178 *
7179 * Use capacity_of(), which is set irrespective of domains
7180 * in update_cpu_capacity().
7181 *
7182 * This avoids capacity from being 0 and
7183 * causing divide-by-zero issues on boot.
7184 */
7185 if (unlikely(!rq->sd)) {
7186 capacity += capacity_of(cpu);
7187 } else {
7188 sgc = rq->sd->groups->sgc;
7189 capacity += sgc->capacity;
7190 }
7191
7192 min_capacity = min(capacity, min_capacity);
7193 }
7194 } else {
7195 /*
7196 * !SD_OVERLAP domains can assume that child groups
7197 * span the current group.
7198 */
7199
7200 group = child->groups;
7201 do {
7202 struct sched_group_capacity *sgc = group->sgc;
7203
7204 capacity += sgc->capacity;
7205 min_capacity = min(sgc->min_capacity, min_capacity);
7206 group = group->next;
7207 } while (group != child->groups);
7208 }
7209
7210 sdg->sgc->capacity = capacity;
7211 sdg->sgc->min_capacity = min_capacity;
7212}
7213
7214/*
7215 * Check whether the capacity of the rq has been noticeably reduced by side
7216 * activity. The imbalance_pct is used for the threshold.
7217 * Return true is the capacity is reduced
7218 */
7219static inline int
7220check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7221{
7222 return ((rq->cpu_capacity * sd->imbalance_pct) <
7223 (rq->cpu_capacity_orig * 100));
7224}
7225
7226/*
7227 * Group imbalance indicates (and tries to solve) the problem where balancing
7228 * groups is inadequate due to tsk_cpus_allowed() constraints.
7229 *
7230 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7231 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7232 * Something like:
7233 *
7234 * { 0 1 2 3 } { 4 5 6 7 }
7235 * * * * *
7236 *
7237 * If we were to balance group-wise we'd place two tasks in the first group and
7238 * two tasks in the second group. Clearly this is undesired as it will overload
7239 * cpu 3 and leave one of the cpus in the second group unused.
7240 *
7241 * The current solution to this issue is detecting the skew in the first group
7242 * by noticing the lower domain failed to reach balance and had difficulty
7243 * moving tasks due to affinity constraints.
7244 *
7245 * When this is so detected; this group becomes a candidate for busiest; see
7246 * update_sd_pick_busiest(). And calculate_imbalance() and
7247 * find_busiest_group() avoid some of the usual balance conditions to allow it
7248 * to create an effective group imbalance.
7249 *
7250 * This is a somewhat tricky proposition since the next run might not find the
7251 * group imbalance and decide the groups need to be balanced again. A most
7252 * subtle and fragile situation.
7253 */
7254
7255static inline int sg_imbalanced(struct sched_group *group)
7256{
7257 return group->sgc->imbalance;
7258}
7259
7260/*
7261 * group_has_capacity returns true if the group has spare capacity that could
7262 * be used by some tasks.
7263 * We consider that a group has spare capacity if the * number of task is
7264 * smaller than the number of CPUs or if the utilization is lower than the
7265 * available capacity for CFS tasks.
7266 * For the latter, we use a threshold to stabilize the state, to take into
7267 * account the variance of the tasks' load and to return true if the available
7268 * capacity in meaningful for the load balancer.
7269 * As an example, an available capacity of 1% can appear but it doesn't make
7270 * any benefit for the load balance.
7271 */
7272static inline bool
7273group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7274{
7275 if (sgs->sum_nr_running < sgs->group_weight)
7276 return true;
7277
7278 if ((sgs->group_capacity * 100) >
7279 (sgs->group_util * env->sd->imbalance_pct))
7280 return true;
7281
7282 return false;
7283}
7284
7285/*
7286 * group_is_overloaded returns true if the group has more tasks than it can
7287 * handle.
7288 * group_is_overloaded is not equals to !group_has_capacity because a group
7289 * with the exact right number of tasks, has no more spare capacity but is not
7290 * overloaded so both group_has_capacity and group_is_overloaded return
7291 * false.
7292 */
7293static inline bool
7294group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7295{
7296 if (sgs->sum_nr_running <= sgs->group_weight)
7297 return false;
7298
7299 if ((sgs->group_capacity * 100) <
7300 (sgs->group_util * env->sd->imbalance_pct))
7301 return true;
7302
7303 return false;
7304}
7305
7306/*
7307 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7308 * per-CPU capacity than sched_group ref.
7309 */
7310static inline bool
7311group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7312{
7313 return sg->sgc->min_capacity * capacity_margin <
7314 ref->sgc->min_capacity * 1024;
7315}
7316
7317static inline enum
7318group_type group_classify(struct sched_group *group,
7319 struct sg_lb_stats *sgs)
7320{
7321 if (sgs->group_no_capacity)
7322 return group_overloaded;
7323
7324 if (sg_imbalanced(group))
7325 return group_imbalanced;
7326
7327 return group_other;
7328}
7329
7330/**
7331 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7332 * @env: The load balancing environment.
7333 * @group: sched_group whose statistics are to be updated.
7334 * @load_idx: Load index of sched_domain of this_cpu for load calc.
7335 * @local_group: Does group contain this_cpu.
7336 * @sgs: variable to hold the statistics for this group.
7337 * @overload: Indicate more than one runnable task for any CPU.
7338 */
7339static inline void update_sg_lb_stats(struct lb_env *env,
7340 struct sched_group *group, int load_idx,
7341 int local_group, struct sg_lb_stats *sgs,
7342 bool *overload)
7343{
7344 unsigned long load;
7345 int i, nr_running;
7346
7347 memset(sgs, 0, sizeof(*sgs));
7348
7349 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7350 struct rq *rq = cpu_rq(i);
7351
7352 /* Bias balancing toward cpus of our domain */
7353 if (local_group)
7354 load = target_load(i, load_idx);
7355 else
7356 load = source_load(i, load_idx);
7357
7358 sgs->group_load += load;
7359 sgs->group_util += cpu_util(i);
7360 sgs->sum_nr_running += rq->cfs.h_nr_running;
7361
7362 nr_running = rq->nr_running;
7363 if (nr_running > 1)
7364 *overload = true;
7365
7366#ifdef CONFIG_NUMA_BALANCING
7367 sgs->nr_numa_running += rq->nr_numa_running;
7368 sgs->nr_preferred_running += rq->nr_preferred_running;
7369#endif
7370 sgs->sum_weighted_load += weighted_cpuload(i);
7371 /*
7372 * No need to call idle_cpu() if nr_running is not 0
7373 */
7374 if (!nr_running && idle_cpu(i))
7375 sgs->idle_cpus++;
7376 }
7377
7378 /* Adjust by relative CPU capacity of the group */
7379 sgs->group_capacity = group->sgc->capacity;
7380 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7381
7382 if (sgs->sum_nr_running)
7383 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7384
7385 sgs->group_weight = group->group_weight;
7386
7387 sgs->group_no_capacity = group_is_overloaded(env, sgs);
7388 sgs->group_type = group_classify(group, sgs);
7389}
7390
7391/**
7392 * update_sd_pick_busiest - return 1 on busiest group
7393 * @env: The load balancing environment.
7394 * @sds: sched_domain statistics
7395 * @sg: sched_group candidate to be checked for being the busiest
7396 * @sgs: sched_group statistics
7397 *
7398 * Determine if @sg is a busier group than the previously selected
7399 * busiest group.
7400 *
7401 * Return: %true if @sg is a busier group than the previously selected
7402 * busiest group. %false otherwise.
7403 */
7404static bool update_sd_pick_busiest(struct lb_env *env,
7405 struct sd_lb_stats *sds,
7406 struct sched_group *sg,
7407 struct sg_lb_stats *sgs)
7408{
7409 struct sg_lb_stats *busiest = &sds->busiest_stat;
7410
7411 if (sgs->group_type > busiest->group_type)
7412 return true;
7413
7414 if (sgs->group_type < busiest->group_type)
7415 return false;
7416
7417 if (sgs->avg_load <= busiest->avg_load)
7418 return false;
7419
7420 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7421 goto asym_packing;
7422
7423 /*
7424 * Candidate sg has no more than one task per CPU and
7425 * has higher per-CPU capacity. Migrating tasks to less
7426 * capable CPUs may harm throughput. Maximize throughput,
7427 * power/energy consequences are not considered.
7428 */
7429 if (sgs->sum_nr_running <= sgs->group_weight &&
7430 group_smaller_cpu_capacity(sds->local, sg))
7431 return false;
7432
7433asym_packing:
7434 /* This is the busiest node in its class. */
7435 if (!(env->sd->flags & SD_ASYM_PACKING))
7436 return true;
7437
7438 /* No ASYM_PACKING if target cpu is already busy */
7439 if (env->idle == CPU_NOT_IDLE)
7440 return true;
7441 /*
7442 * ASYM_PACKING needs to move all the work to the highest
7443 * prority CPUs in the group, therefore mark all groups
7444 * of lower priority than ourself as busy.
7445 */
7446 if (sgs->sum_nr_running &&
7447 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7448 if (!sds->busiest)
7449 return true;
7450
7451 /* Prefer to move from lowest priority cpu's work */
7452 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7453 sg->asym_prefer_cpu))
7454 return true;
7455 }
7456
7457 return false;
7458}
7459
7460#ifdef CONFIG_NUMA_BALANCING
7461static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7462{
7463 if (sgs->sum_nr_running > sgs->nr_numa_running)
7464 return regular;
7465 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7466 return remote;
7467 return all;
7468}
7469
7470static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7471{
7472 if (rq->nr_running > rq->nr_numa_running)
7473 return regular;
7474 if (rq->nr_running > rq->nr_preferred_running)
7475 return remote;
7476 return all;
7477}
7478#else
7479static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7480{
7481 return all;
7482}
7483
7484static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7485{
7486 return regular;
7487}
7488#endif /* CONFIG_NUMA_BALANCING */
7489
7490/**
7491 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7492 * @env: The load balancing environment.
7493 * @sds: variable to hold the statistics for this sched_domain.
7494 */
7495static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7496{
7497 struct sched_domain *child = env->sd->child;
7498 struct sched_group *sg = env->sd->groups;
7499 struct sg_lb_stats tmp_sgs;
7500 int load_idx, prefer_sibling = 0;
7501 bool overload = false;
7502
7503 if (child && child->flags & SD_PREFER_SIBLING)
7504 prefer_sibling = 1;
7505
7506 load_idx = get_sd_load_idx(env->sd, env->idle);
7507
7508 do {
7509 struct sg_lb_stats *sgs = &tmp_sgs;
7510 int local_group;
7511
7512 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
7513 if (local_group) {
7514 sds->local = sg;
7515 sgs = &sds->local_stat;
7516
7517 if (env->idle != CPU_NEWLY_IDLE ||
7518 time_after_eq(jiffies, sg->sgc->next_update))
7519 update_group_capacity(env->sd, env->dst_cpu);
7520 }
7521
7522 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7523 &overload);
7524
7525 if (local_group)
7526 goto next_group;
7527
7528 /*
7529 * In case the child domain prefers tasks go to siblings
7530 * first, lower the sg capacity so that we'll try
7531 * and move all the excess tasks away. We lower the capacity
7532 * of a group only if the local group has the capacity to fit
7533 * these excess tasks. The extra check prevents the case where
7534 * you always pull from the heaviest group when it is already
7535 * under-utilized (possible with a large weight task outweighs
7536 * the tasks on the system).
7537 */
7538 if (prefer_sibling && sds->local &&
7539 group_has_capacity(env, &sds->local_stat) &&
7540 (sgs->sum_nr_running > 1)) {
7541 sgs->group_no_capacity = 1;
7542 sgs->group_type = group_classify(sg, sgs);
7543 }
7544
7545 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7546 sds->busiest = sg;
7547 sds->busiest_stat = *sgs;
7548 }
7549
7550next_group:
7551 /* Now, start updating sd_lb_stats */
7552 sds->total_load += sgs->group_load;
7553 sds->total_capacity += sgs->group_capacity;
7554
7555 sg = sg->next;
7556 } while (sg != env->sd->groups);
7557
7558 if (env->sd->flags & SD_NUMA)
7559 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7560
7561 if (!env->sd->parent) {
7562 /* update overload indicator if we are at root domain */
7563 if (env->dst_rq->rd->overload != overload)
7564 env->dst_rq->rd->overload = overload;
7565 }
7566
7567}
7568
7569/**
7570 * check_asym_packing - Check to see if the group is packed into the
7571 * sched doman.
7572 *
7573 * This is primarily intended to used at the sibling level. Some
7574 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7575 * case of POWER7, it can move to lower SMT modes only when higher
7576 * threads are idle. When in lower SMT modes, the threads will
7577 * perform better since they share less core resources. Hence when we
7578 * have idle threads, we want them to be the higher ones.
7579 *
7580 * This packing function is run on idle threads. It checks to see if
7581 * the busiest CPU in this domain (core in the P7 case) has a higher
7582 * CPU number than the packing function is being run on. Here we are
7583 * assuming lower CPU number will be equivalent to lower a SMT thread
7584 * number.
7585 *
7586 * Return: 1 when packing is required and a task should be moved to
7587 * this CPU. The amount of the imbalance is returned in *imbalance.
7588 *
7589 * @env: The load balancing environment.
7590 * @sds: Statistics of the sched_domain which is to be packed
7591 */
7592static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7593{
7594 int busiest_cpu;
7595
7596 if (!(env->sd->flags & SD_ASYM_PACKING))
7597 return 0;
7598
7599 if (env->idle == CPU_NOT_IDLE)
7600 return 0;
7601
7602 if (!sds->busiest)
7603 return 0;
7604
7605 busiest_cpu = sds->busiest->asym_prefer_cpu;
7606 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7607 return 0;
7608
7609 env->imbalance = DIV_ROUND_CLOSEST(
7610 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7611 SCHED_CAPACITY_SCALE);
7612
7613 return 1;
7614}
7615
7616/**
7617 * fix_small_imbalance - Calculate the minor imbalance that exists
7618 * amongst the groups of a sched_domain, during
7619 * load balancing.
7620 * @env: The load balancing environment.
7621 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7622 */
7623static inline
7624void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7625{
7626 unsigned long tmp, capa_now = 0, capa_move = 0;
7627 unsigned int imbn = 2;
7628 unsigned long scaled_busy_load_per_task;
7629 struct sg_lb_stats *local, *busiest;
7630
7631 local = &sds->local_stat;
7632 busiest = &sds->busiest_stat;
7633
7634 if (!local->sum_nr_running)
7635 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7636 else if (busiest->load_per_task > local->load_per_task)
7637 imbn = 1;
7638
7639 scaled_busy_load_per_task =
7640 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7641 busiest->group_capacity;
7642
7643 if (busiest->avg_load + scaled_busy_load_per_task >=
7644 local->avg_load + (scaled_busy_load_per_task * imbn)) {
7645 env->imbalance = busiest->load_per_task;
7646 return;
7647 }
7648
7649 /*
7650 * OK, we don't have enough imbalance to justify moving tasks,
7651 * however we may be able to increase total CPU capacity used by
7652 * moving them.
7653 */
7654
7655 capa_now += busiest->group_capacity *
7656 min(busiest->load_per_task, busiest->avg_load);
7657 capa_now += local->group_capacity *
7658 min(local->load_per_task, local->avg_load);
7659 capa_now /= SCHED_CAPACITY_SCALE;
7660
7661 /* Amount of load we'd subtract */
7662 if (busiest->avg_load > scaled_busy_load_per_task) {
7663 capa_move += busiest->group_capacity *
7664 min(busiest->load_per_task,
7665 busiest->avg_load - scaled_busy_load_per_task);
7666 }
7667
7668 /* Amount of load we'd add */
7669 if (busiest->avg_load * busiest->group_capacity <
7670 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7671 tmp = (busiest->avg_load * busiest->group_capacity) /
7672 local->group_capacity;
7673 } else {
7674 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7675 local->group_capacity;
7676 }
7677 capa_move += local->group_capacity *
7678 min(local->load_per_task, local->avg_load + tmp);
7679 capa_move /= SCHED_CAPACITY_SCALE;
7680
7681 /* Move if we gain throughput */
7682 if (capa_move > capa_now)
7683 env->imbalance = busiest->load_per_task;
7684}
7685
7686/**
7687 * calculate_imbalance - Calculate the amount of imbalance present within the
7688 * groups of a given sched_domain during load balance.
7689 * @env: load balance environment
7690 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7691 */
7692static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7693{
7694 unsigned long max_pull, load_above_capacity = ~0UL;
7695 struct sg_lb_stats *local, *busiest;
7696
7697 local = &sds->local_stat;
7698 busiest = &sds->busiest_stat;
7699
7700 if (busiest->group_type == group_imbalanced) {
7701 /*
7702 * In the group_imb case we cannot rely on group-wide averages
7703 * to ensure cpu-load equilibrium, look at wider averages. XXX
7704 */
7705 busiest->load_per_task =
7706 min(busiest->load_per_task, sds->avg_load);
7707 }
7708
7709 /*
7710 * Avg load of busiest sg can be less and avg load of local sg can
7711 * be greater than avg load across all sgs of sd because avg load
7712 * factors in sg capacity and sgs with smaller group_type are
7713 * skipped when updating the busiest sg:
7714 */
7715 if (busiest->avg_load <= sds->avg_load ||
7716 local->avg_load >= sds->avg_load) {
7717 env->imbalance = 0;
7718 return fix_small_imbalance(env, sds);
7719 }
7720
7721 /*
7722 * If there aren't any idle cpus, avoid creating some.
7723 */
7724 if (busiest->group_type == group_overloaded &&
7725 local->group_type == group_overloaded) {
7726 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7727 if (load_above_capacity > busiest->group_capacity) {
7728 load_above_capacity -= busiest->group_capacity;
7729 load_above_capacity *= scale_load_down(NICE_0_LOAD);
7730 load_above_capacity /= busiest->group_capacity;
7731 } else
7732 load_above_capacity = ~0UL;
7733 }
7734
7735 /*
7736 * We're trying to get all the cpus to the average_load, so we don't
7737 * want to push ourselves above the average load, nor do we wish to
7738 * reduce the max loaded cpu below the average load. At the same time,
7739 * we also don't want to reduce the group load below the group
7740 * capacity. Thus we look for the minimum possible imbalance.
7741 */
7742 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7743
7744 /* How much load to actually move to equalise the imbalance */
7745 env->imbalance = min(
7746 max_pull * busiest->group_capacity,
7747 (sds->avg_load - local->avg_load) * local->group_capacity
7748 ) / SCHED_CAPACITY_SCALE;
7749
7750 /*
7751 * if *imbalance is less than the average load per runnable task
7752 * there is no guarantee that any tasks will be moved so we'll have
7753 * a think about bumping its value to force at least one task to be
7754 * moved
7755 */
7756 if (env->imbalance < busiest->load_per_task)
7757 return fix_small_imbalance(env, sds);
7758}
7759
7760/******* find_busiest_group() helpers end here *********************/
7761
7762/**
7763 * find_busiest_group - Returns the busiest group within the sched_domain
7764 * if there is an imbalance.
7765 *
7766 * Also calculates the amount of weighted load which should be moved
7767 * to restore balance.
7768 *
7769 * @env: The load balancing environment.
7770 *
7771 * Return: - The busiest group if imbalance exists.
7772 */
7773static struct sched_group *find_busiest_group(struct lb_env *env)
7774{
7775 struct sg_lb_stats *local, *busiest;
7776 struct sd_lb_stats sds;
7777
7778 init_sd_lb_stats(&sds);
7779
7780 /*
7781 * Compute the various statistics relavent for load balancing at
7782 * this level.
7783 */
7784 update_sd_lb_stats(env, &sds);
7785 local = &sds.local_stat;
7786 busiest = &sds.busiest_stat;
7787
7788 /* ASYM feature bypasses nice load balance check */
7789 if (check_asym_packing(env, &sds))
7790 return sds.busiest;
7791
7792 /* There is no busy sibling group to pull tasks from */
7793 if (!sds.busiest || busiest->sum_nr_running == 0)
7794 goto out_balanced;
7795
7796 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7797 / sds.total_capacity;
7798
7799 /*
7800 * If the busiest group is imbalanced the below checks don't
7801 * work because they assume all things are equal, which typically
7802 * isn't true due to cpus_allowed constraints and the like.
7803 */
7804 if (busiest->group_type == group_imbalanced)
7805 goto force_balance;
7806
7807 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7808 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7809 busiest->group_no_capacity)
7810 goto force_balance;
7811
7812 /*
7813 * If the local group is busier than the selected busiest group
7814 * don't try and pull any tasks.
7815 */
7816 if (local->avg_load >= busiest->avg_load)
7817 goto out_balanced;
7818
7819 /*
7820 * Don't pull any tasks if this group is already above the domain
7821 * average load.
7822 */
7823 if (local->avg_load >= sds.avg_load)
7824 goto out_balanced;
7825
7826 if (env->idle == CPU_IDLE) {
7827 /*
7828 * This cpu is idle. If the busiest group is not overloaded
7829 * and there is no imbalance between this and busiest group
7830 * wrt idle cpus, it is balanced. The imbalance becomes
7831 * significant if the diff is greater than 1 otherwise we
7832 * might end up to just move the imbalance on another group
7833 */
7834 if ((busiest->group_type != group_overloaded) &&
7835 (local->idle_cpus <= (busiest->idle_cpus + 1)))
7836 goto out_balanced;
7837 } else {
7838 /*
7839 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7840 * imbalance_pct to be conservative.
7841 */
7842 if (100 * busiest->avg_load <=
7843 env->sd->imbalance_pct * local->avg_load)
7844 goto out_balanced;
7845 }
7846
7847force_balance:
7848 /* Looks like there is an imbalance. Compute it */
7849 calculate_imbalance(env, &sds);
7850 return sds.busiest;
7851
7852out_balanced:
7853 env->imbalance = 0;
7854 return NULL;
7855}
7856
7857/*
7858 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7859 */
7860static struct rq *find_busiest_queue(struct lb_env *env,
7861 struct sched_group *group)
7862{
7863 struct rq *busiest = NULL, *rq;
7864 unsigned long busiest_load = 0, busiest_capacity = 1;
7865 int i;
7866
7867 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7868 unsigned long capacity, wl;
7869 enum fbq_type rt;
7870
7871 rq = cpu_rq(i);
7872 rt = fbq_classify_rq(rq);
7873
7874 /*
7875 * We classify groups/runqueues into three groups:
7876 * - regular: there are !numa tasks
7877 * - remote: there are numa tasks that run on the 'wrong' node
7878 * - all: there is no distinction
7879 *
7880 * In order to avoid migrating ideally placed numa tasks,
7881 * ignore those when there's better options.
7882 *
7883 * If we ignore the actual busiest queue to migrate another
7884 * task, the next balance pass can still reduce the busiest
7885 * queue by moving tasks around inside the node.
7886 *
7887 * If we cannot move enough load due to this classification
7888 * the next pass will adjust the group classification and
7889 * allow migration of more tasks.
7890 *
7891 * Both cases only affect the total convergence complexity.
7892 */
7893 if (rt > env->fbq_type)
7894 continue;
7895
7896 capacity = capacity_of(i);
7897
7898 wl = weighted_cpuload(i);
7899
7900 /*
7901 * When comparing with imbalance, use weighted_cpuload()
7902 * which is not scaled with the cpu capacity.
7903 */
7904
7905 if (rq->nr_running == 1 && wl > env->imbalance &&
7906 !check_cpu_capacity(rq, env->sd))
7907 continue;
7908
7909 /*
7910 * For the load comparisons with the other cpu's, consider
7911 * the weighted_cpuload() scaled with the cpu capacity, so
7912 * that the load can be moved away from the cpu that is
7913 * potentially running at a lower capacity.
7914 *
7915 * Thus we're looking for max(wl_i / capacity_i), crosswise
7916 * multiplication to rid ourselves of the division works out
7917 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7918 * our previous maximum.
7919 */
7920 if (wl * busiest_capacity > busiest_load * capacity) {
7921 busiest_load = wl;
7922 busiest_capacity = capacity;
7923 busiest = rq;
7924 }
7925 }
7926
7927 return busiest;
7928}
7929
7930/*
7931 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7932 * so long as it is large enough.
7933 */
7934#define MAX_PINNED_INTERVAL 512
7935
7936static int need_active_balance(struct lb_env *env)
7937{
7938 struct sched_domain *sd = env->sd;
7939
7940 if (env->idle == CPU_NEWLY_IDLE) {
7941
7942 /*
7943 * ASYM_PACKING needs to force migrate tasks from busy but
7944 * lower priority CPUs in order to pack all tasks in the
7945 * highest priority CPUs.
7946 */
7947 if ((sd->flags & SD_ASYM_PACKING) &&
7948 sched_asym_prefer(env->dst_cpu, env->src_cpu))
7949 return 1;
7950 }
7951
7952 /*
7953 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7954 * It's worth migrating the task if the src_cpu's capacity is reduced
7955 * because of other sched_class or IRQs if more capacity stays
7956 * available on dst_cpu.
7957 */
7958 if ((env->idle != CPU_NOT_IDLE) &&
7959 (env->src_rq->cfs.h_nr_running == 1)) {
7960 if ((check_cpu_capacity(env->src_rq, sd)) &&
7961 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7962 return 1;
7963 }
7964
7965 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7966}
7967
7968static int active_load_balance_cpu_stop(void *data);
7969
7970static int should_we_balance(struct lb_env *env)
7971{
7972 struct sched_group *sg = env->sd->groups;
7973 struct cpumask *sg_cpus, *sg_mask;
7974 int cpu, balance_cpu = -1;
7975
7976 /*
7977 * In the newly idle case, we will allow all the cpu's
7978 * to do the newly idle load balance.
7979 */
7980 if (env->idle == CPU_NEWLY_IDLE)
7981 return 1;
7982
7983 sg_cpus = sched_group_cpus(sg);
7984 sg_mask = sched_group_mask(sg);
7985 /* Try to find first idle cpu */
7986 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7987 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7988 continue;
7989
7990 balance_cpu = cpu;
7991 break;
7992 }
7993
7994 if (balance_cpu == -1)
7995 balance_cpu = group_balance_cpu(sg);
7996
7997 /*
7998 * First idle cpu or the first cpu(busiest) in this sched group
7999 * is eligible for doing load balancing at this and above domains.
8000 */
8001 return balance_cpu == env->dst_cpu;
8002}
8003
8004/*
8005 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8006 * tasks if there is an imbalance.
8007 */
8008static int load_balance(int this_cpu, struct rq *this_rq,
8009 struct sched_domain *sd, enum cpu_idle_type idle,
8010 int *continue_balancing)
8011{
8012 int ld_moved, cur_ld_moved, active_balance = 0;
8013 struct sched_domain *sd_parent = sd->parent;
8014 struct sched_group *group;
8015 struct rq *busiest;
8016 unsigned long flags;
8017 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8018
8019 struct lb_env env = {
8020 .sd = sd,
8021 .dst_cpu = this_cpu,
8022 .dst_rq = this_rq,
8023 .dst_grpmask = sched_group_cpus(sd->groups),
8024 .idle = idle,
8025 .loop_break = sched_nr_migrate_break,
8026 .cpus = cpus,
8027 .fbq_type = all,
8028 .tasks = LIST_HEAD_INIT(env.tasks),
8029 };
8030
8031 /*
8032 * For NEWLY_IDLE load_balancing, we don't need to consider
8033 * other cpus in our group
8034 */
8035 if (idle == CPU_NEWLY_IDLE)
8036 env.dst_grpmask = NULL;
8037
8038 cpumask_copy(cpus, cpu_active_mask);
8039
8040 schedstat_inc(sd->lb_count[idle]);
8041
8042redo:
8043 if (!should_we_balance(&env)) {
8044 *continue_balancing = 0;
8045 goto out_balanced;
8046 }
8047
8048 group = find_busiest_group(&env);
8049 if (!group) {
8050 schedstat_inc(sd->lb_nobusyg[idle]);
8051 goto out_balanced;
8052 }
8053
8054 busiest = find_busiest_queue(&env, group);
8055 if (!busiest) {
8056 schedstat_inc(sd->lb_nobusyq[idle]);
8057 goto out_balanced;
8058 }
8059
8060 BUG_ON(busiest == env.dst_rq);
8061
8062 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8063
8064 env.src_cpu = busiest->cpu;
8065 env.src_rq = busiest;
8066
8067 ld_moved = 0;
8068 if (busiest->nr_running > 1) {
8069 /*
8070 * Attempt to move tasks. If find_busiest_group has found
8071 * an imbalance but busiest->nr_running <= 1, the group is
8072 * still unbalanced. ld_moved simply stays zero, so it is
8073 * correctly treated as an imbalance.
8074 */
8075 env.flags |= LBF_ALL_PINNED;
8076 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8077
8078more_balance:
8079 raw_spin_lock_irqsave(&busiest->lock, flags);
8080
8081 /*
8082 * cur_ld_moved - load moved in current iteration
8083 * ld_moved - cumulative load moved across iterations
8084 */
8085 cur_ld_moved = detach_tasks(&env);
8086
8087 /*
8088 * We've detached some tasks from busiest_rq. Every
8089 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8090 * unlock busiest->lock, and we are able to be sure
8091 * that nobody can manipulate the tasks in parallel.
8092 * See task_rq_lock() family for the details.
8093 */
8094
8095 raw_spin_unlock(&busiest->lock);
8096
8097 if (cur_ld_moved) {
8098 attach_tasks(&env);
8099 ld_moved += cur_ld_moved;
8100 }
8101
8102 local_irq_restore(flags);
8103
8104 if (env.flags & LBF_NEED_BREAK) {
8105 env.flags &= ~LBF_NEED_BREAK;
8106 goto more_balance;
8107 }
8108
8109 /*
8110 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8111 * us and move them to an alternate dst_cpu in our sched_group
8112 * where they can run. The upper limit on how many times we
8113 * iterate on same src_cpu is dependent on number of cpus in our
8114 * sched_group.
8115 *
8116 * This changes load balance semantics a bit on who can move
8117 * load to a given_cpu. In addition to the given_cpu itself
8118 * (or a ilb_cpu acting on its behalf where given_cpu is
8119 * nohz-idle), we now have balance_cpu in a position to move
8120 * load to given_cpu. In rare situations, this may cause
8121 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8122 * _independently_ and at _same_ time to move some load to
8123 * given_cpu) causing exceess load to be moved to given_cpu.
8124 * This however should not happen so much in practice and
8125 * moreover subsequent load balance cycles should correct the
8126 * excess load moved.
8127 */
8128 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8129
8130 /* Prevent to re-select dst_cpu via env's cpus */
8131 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8132
8133 env.dst_rq = cpu_rq(env.new_dst_cpu);
8134 env.dst_cpu = env.new_dst_cpu;
8135 env.flags &= ~LBF_DST_PINNED;
8136 env.loop = 0;
8137 env.loop_break = sched_nr_migrate_break;
8138
8139 /*
8140 * Go back to "more_balance" rather than "redo" since we
8141 * need to continue with same src_cpu.
8142 */
8143 goto more_balance;
8144 }
8145
8146 /*
8147 * We failed to reach balance because of affinity.
8148 */
8149 if (sd_parent) {
8150 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8151
8152 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8153 *group_imbalance = 1;
8154 }
8155
8156 /* All tasks on this runqueue were pinned by CPU affinity */
8157 if (unlikely(env.flags & LBF_ALL_PINNED)) {
8158 cpumask_clear_cpu(cpu_of(busiest), cpus);
8159 if (!cpumask_empty(cpus)) {
8160 env.loop = 0;
8161 env.loop_break = sched_nr_migrate_break;
8162 goto redo;
8163 }
8164 goto out_all_pinned;
8165 }
8166 }
8167
8168 if (!ld_moved) {
8169 schedstat_inc(sd->lb_failed[idle]);
8170 /*
8171 * Increment the failure counter only on periodic balance.
8172 * We do not want newidle balance, which can be very
8173 * frequent, pollute the failure counter causing
8174 * excessive cache_hot migrations and active balances.
8175 */
8176 if (idle != CPU_NEWLY_IDLE)
8177 sd->nr_balance_failed++;
8178
8179 if (need_active_balance(&env)) {
8180 raw_spin_lock_irqsave(&busiest->lock, flags);
8181
8182 /* don't kick the active_load_balance_cpu_stop,
8183 * if the curr task on busiest cpu can't be
8184 * moved to this_cpu
8185 */
8186 if (!cpumask_test_cpu(this_cpu,
8187 tsk_cpus_allowed(busiest->curr))) {
8188 raw_spin_unlock_irqrestore(&busiest->lock,
8189 flags);
8190 env.flags |= LBF_ALL_PINNED;
8191 goto out_one_pinned;
8192 }
8193
8194 /*
8195 * ->active_balance synchronizes accesses to
8196 * ->active_balance_work. Once set, it's cleared
8197 * only after active load balance is finished.
8198 */
8199 if (!busiest->active_balance) {
8200 busiest->active_balance = 1;
8201 busiest->push_cpu = this_cpu;
8202 active_balance = 1;
8203 }
8204 raw_spin_unlock_irqrestore(&busiest->lock, flags);
8205
8206 if (active_balance) {
8207 stop_one_cpu_nowait(cpu_of(busiest),
8208 active_load_balance_cpu_stop, busiest,
8209 &busiest->active_balance_work);
8210 }
8211
8212 /* We've kicked active balancing, force task migration. */
8213 sd->nr_balance_failed = sd->cache_nice_tries+1;
8214 }
8215 } else
8216 sd->nr_balance_failed = 0;
8217
8218 if (likely(!active_balance)) {
8219 /* We were unbalanced, so reset the balancing interval */
8220 sd->balance_interval = sd->min_interval;
8221 } else {
8222 /*
8223 * If we've begun active balancing, start to back off. This
8224 * case may not be covered by the all_pinned logic if there
8225 * is only 1 task on the busy runqueue (because we don't call
8226 * detach_tasks).
8227 */
8228 if (sd->balance_interval < sd->max_interval)
8229 sd->balance_interval *= 2;
8230 }
8231
8232 goto out;
8233
8234out_balanced:
8235 /*
8236 * We reach balance although we may have faced some affinity
8237 * constraints. Clear the imbalance flag if it was set.
8238 */
8239 if (sd_parent) {
8240 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8241
8242 if (*group_imbalance)
8243 *group_imbalance = 0;
8244 }
8245
8246out_all_pinned:
8247 /*
8248 * We reach balance because all tasks are pinned at this level so
8249 * we can't migrate them. Let the imbalance flag set so parent level
8250 * can try to migrate them.
8251 */
8252 schedstat_inc(sd->lb_balanced[idle]);
8253
8254 sd->nr_balance_failed = 0;
8255
8256out_one_pinned:
8257 /* tune up the balancing interval */
8258 if (((env.flags & LBF_ALL_PINNED) &&
8259 sd->balance_interval < MAX_PINNED_INTERVAL) ||
8260 (sd->balance_interval < sd->max_interval))
8261 sd->balance_interval *= 2;
8262
8263 ld_moved = 0;
8264out:
8265 return ld_moved;
8266}
8267
8268static inline unsigned long
8269get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8270{
8271 unsigned long interval = sd->balance_interval;
8272
8273 if (cpu_busy)
8274 interval *= sd->busy_factor;
8275
8276 /* scale ms to jiffies */
8277 interval = msecs_to_jiffies(interval);
8278 interval = clamp(interval, 1UL, max_load_balance_interval);
8279
8280 return interval;
8281}
8282
8283static inline void
8284update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8285{
8286 unsigned long interval, next;
8287
8288 /* used by idle balance, so cpu_busy = 0 */
8289 interval = get_sd_balance_interval(sd, 0);
8290 next = sd->last_balance + interval;
8291
8292 if (time_after(*next_balance, next))
8293 *next_balance = next;
8294}
8295
8296/*
8297 * idle_balance is called by schedule() if this_cpu is about to become
8298 * idle. Attempts to pull tasks from other CPUs.
8299 */
8300static int idle_balance(struct rq *this_rq)
8301{
8302 unsigned long next_balance = jiffies + HZ;
8303 int this_cpu = this_rq->cpu;
8304 struct sched_domain *sd;
8305 int pulled_task = 0;
8306 u64 curr_cost = 0;
8307
8308 /*
8309 * We must set idle_stamp _before_ calling idle_balance(), such that we
8310 * measure the duration of idle_balance() as idle time.
8311 */
8312 this_rq->idle_stamp = rq_clock(this_rq);
8313
8314 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8315 !this_rq->rd->overload) {
8316 rcu_read_lock();
8317 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8318 if (sd)
8319 update_next_balance(sd, &next_balance);
8320 rcu_read_unlock();
8321
8322 goto out;
8323 }
8324
8325 raw_spin_unlock(&this_rq->lock);
8326
8327 update_blocked_averages(this_cpu);
8328 rcu_read_lock();
8329 for_each_domain(this_cpu, sd) {
8330 int continue_balancing = 1;
8331 u64 t0, domain_cost;
8332
8333 if (!(sd->flags & SD_LOAD_BALANCE))
8334 continue;
8335
8336 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8337 update_next_balance(sd, &next_balance);
8338 break;
8339 }
8340
8341 if (sd->flags & SD_BALANCE_NEWIDLE) {
8342 t0 = sched_clock_cpu(this_cpu);
8343
8344 pulled_task = load_balance(this_cpu, this_rq,
8345 sd, CPU_NEWLY_IDLE,
8346 &continue_balancing);
8347
8348 domain_cost = sched_clock_cpu(this_cpu) - t0;
8349 if (domain_cost > sd->max_newidle_lb_cost)
8350 sd->max_newidle_lb_cost = domain_cost;
8351
8352 curr_cost += domain_cost;
8353 }
8354
8355 update_next_balance(sd, &next_balance);
8356
8357 /*
8358 * Stop searching for tasks to pull if there are
8359 * now runnable tasks on this rq.
8360 */
8361 if (pulled_task || this_rq->nr_running > 0)
8362 break;
8363 }
8364 rcu_read_unlock();
8365
8366 raw_spin_lock(&this_rq->lock);
8367
8368 if (curr_cost > this_rq->max_idle_balance_cost)
8369 this_rq->max_idle_balance_cost = curr_cost;
8370
8371 /*
8372 * While browsing the domains, we released the rq lock, a task could
8373 * have been enqueued in the meantime. Since we're not going idle,
8374 * pretend we pulled a task.
8375 */
8376 if (this_rq->cfs.h_nr_running && !pulled_task)
8377 pulled_task = 1;
8378
8379out:
8380 /* Move the next balance forward */
8381 if (time_after(this_rq->next_balance, next_balance))
8382 this_rq->next_balance = next_balance;
8383
8384 /* Is there a task of a high priority class? */
8385 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8386 pulled_task = -1;
8387
8388 if (pulled_task)
8389 this_rq->idle_stamp = 0;
8390
8391 return pulled_task;
8392}
8393
8394/*
8395 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8396 * running tasks off the busiest CPU onto idle CPUs. It requires at
8397 * least 1 task to be running on each physical CPU where possible, and
8398 * avoids physical / logical imbalances.
8399 */
8400static int active_load_balance_cpu_stop(void *data)
8401{
8402 struct rq *busiest_rq = data;
8403 int busiest_cpu = cpu_of(busiest_rq);
8404 int target_cpu = busiest_rq->push_cpu;
8405 struct rq *target_rq = cpu_rq(target_cpu);
8406 struct sched_domain *sd;
8407 struct task_struct *p = NULL;
8408
8409 raw_spin_lock_irq(&busiest_rq->lock);
8410
8411 /* make sure the requested cpu hasn't gone down in the meantime */
8412 if (unlikely(busiest_cpu != smp_processor_id() ||
8413 !busiest_rq->active_balance))
8414 goto out_unlock;
8415
8416 /* Is there any task to move? */
8417 if (busiest_rq->nr_running <= 1)
8418 goto out_unlock;
8419
8420 /*
8421 * This condition is "impossible", if it occurs
8422 * we need to fix it. Originally reported by
8423 * Bjorn Helgaas on a 128-cpu setup.
8424 */
8425 BUG_ON(busiest_rq == target_rq);
8426
8427 /* Search for an sd spanning us and the target CPU. */
8428 rcu_read_lock();
8429 for_each_domain(target_cpu, sd) {
8430 if ((sd->flags & SD_LOAD_BALANCE) &&
8431 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8432 break;
8433 }
8434
8435 if (likely(sd)) {
8436 struct lb_env env = {
8437 .sd = sd,
8438 .dst_cpu = target_cpu,
8439 .dst_rq = target_rq,
8440 .src_cpu = busiest_rq->cpu,
8441 .src_rq = busiest_rq,
8442 .idle = CPU_IDLE,
8443 };
8444
8445 schedstat_inc(sd->alb_count);
8446
8447 p = detach_one_task(&env);
8448 if (p) {
8449 schedstat_inc(sd->alb_pushed);
8450 /* Active balancing done, reset the failure counter. */
8451 sd->nr_balance_failed = 0;
8452 } else {
8453 schedstat_inc(sd->alb_failed);
8454 }
8455 }
8456 rcu_read_unlock();
8457out_unlock:
8458 busiest_rq->active_balance = 0;
8459 raw_spin_unlock(&busiest_rq->lock);
8460
8461 if (p)
8462 attach_one_task(target_rq, p);
8463
8464 local_irq_enable();
8465
8466 return 0;
8467}
8468
8469static inline int on_null_domain(struct rq *rq)
8470{
8471 return unlikely(!rcu_dereference_sched(rq->sd));
8472}
8473
8474#ifdef CONFIG_NO_HZ_COMMON
8475/*
8476 * idle load balancing details
8477 * - When one of the busy CPUs notice that there may be an idle rebalancing
8478 * needed, they will kick the idle load balancer, which then does idle
8479 * load balancing for all the idle CPUs.
8480 */
8481static struct {
8482 cpumask_var_t idle_cpus_mask;
8483 atomic_t nr_cpus;
8484 unsigned long next_balance; /* in jiffy units */
8485} nohz ____cacheline_aligned;
8486
8487static inline int find_new_ilb(void)
8488{
8489 int ilb = cpumask_first(nohz.idle_cpus_mask);
8490
8491 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8492 return ilb;
8493
8494 return nr_cpu_ids;
8495}
8496
8497/*
8498 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8499 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8500 * CPU (if there is one).
8501 */
8502static void nohz_balancer_kick(void)
8503{
8504 int ilb_cpu;
8505
8506 nohz.next_balance++;
8507
8508 ilb_cpu = find_new_ilb();
8509
8510 if (ilb_cpu >= nr_cpu_ids)
8511 return;
8512
8513 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8514 return;
8515 /*
8516 * Use smp_send_reschedule() instead of resched_cpu().
8517 * This way we generate a sched IPI on the target cpu which
8518 * is idle. And the softirq performing nohz idle load balance
8519 * will be run before returning from the IPI.
8520 */
8521 smp_send_reschedule(ilb_cpu);
8522 return;
8523}
8524
8525void nohz_balance_exit_idle(unsigned int cpu)
8526{
8527 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8528 /*
8529 * Completely isolated CPUs don't ever set, so we must test.
8530 */
8531 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8532 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8533 atomic_dec(&nohz.nr_cpus);
8534 }
8535 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8536 }
8537}
8538
8539static inline void set_cpu_sd_state_busy(void)
8540{
8541 struct sched_domain *sd;
8542 int cpu = smp_processor_id();
8543
8544 rcu_read_lock();
8545 sd = rcu_dereference(per_cpu(sd_llc, cpu));
8546
8547 if (!sd || !sd->nohz_idle)
8548 goto unlock;
8549 sd->nohz_idle = 0;
8550
8551 atomic_inc(&sd->shared->nr_busy_cpus);
8552unlock:
8553 rcu_read_unlock();
8554}
8555
8556void set_cpu_sd_state_idle(void)
8557{
8558 struct sched_domain *sd;
8559 int cpu = smp_processor_id();
8560
8561 rcu_read_lock();
8562 sd = rcu_dereference(per_cpu(sd_llc, cpu));
8563
8564 if (!sd || sd->nohz_idle)
8565 goto unlock;
8566 sd->nohz_idle = 1;
8567
8568 atomic_dec(&sd->shared->nr_busy_cpus);
8569unlock:
8570 rcu_read_unlock();
8571}
8572
8573/*
8574 * This routine will record that the cpu is going idle with tick stopped.
8575 * This info will be used in performing idle load balancing in the future.
8576 */
8577void nohz_balance_enter_idle(int cpu)
8578{
8579 /*
8580 * If this cpu is going down, then nothing needs to be done.
8581 */
8582 if (!cpu_active(cpu))
8583 return;
8584
8585 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8586 return;
8587
8588 /*
8589 * If we're a completely isolated CPU, we don't play.
8590 */
8591 if (on_null_domain(cpu_rq(cpu)))
8592 return;
8593
8594 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8595 atomic_inc(&nohz.nr_cpus);
8596 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8597}
8598#endif
8599
8600static DEFINE_SPINLOCK(balancing);
8601
8602/*
8603 * Scale the max load_balance interval with the number of CPUs in the system.
8604 * This trades load-balance latency on larger machines for less cross talk.
8605 */
8606void update_max_interval(void)
8607{
8608 max_load_balance_interval = HZ*num_online_cpus()/10;
8609}
8610
8611/*
8612 * It checks each scheduling domain to see if it is due to be balanced,
8613 * and initiates a balancing operation if so.
8614 *
8615 * Balancing parameters are set up in init_sched_domains.
8616 */
8617static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8618{
8619 int continue_balancing = 1;
8620 int cpu = rq->cpu;
8621 unsigned long interval;
8622 struct sched_domain *sd;
8623 /* Earliest time when we have to do rebalance again */
8624 unsigned long next_balance = jiffies + 60*HZ;
8625 int update_next_balance = 0;
8626 int need_serialize, need_decay = 0;
8627 u64 max_cost = 0;
8628
8629 update_blocked_averages(cpu);
8630
8631 rcu_read_lock();
8632 for_each_domain(cpu, sd) {
8633 /*
8634 * Decay the newidle max times here because this is a regular
8635 * visit to all the domains. Decay ~1% per second.
8636 */
8637 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8638 sd->max_newidle_lb_cost =
8639 (sd->max_newidle_lb_cost * 253) / 256;
8640 sd->next_decay_max_lb_cost = jiffies + HZ;
8641 need_decay = 1;
8642 }
8643 max_cost += sd->max_newidle_lb_cost;
8644
8645 if (!(sd->flags & SD_LOAD_BALANCE))
8646 continue;
8647
8648 /*
8649 * Stop the load balance at this level. There is another
8650 * CPU in our sched group which is doing load balancing more
8651 * actively.
8652 */
8653 if (!continue_balancing) {
8654 if (need_decay)
8655 continue;
8656 break;
8657 }
8658
8659 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8660
8661 need_serialize = sd->flags & SD_SERIALIZE;
8662 if (need_serialize) {
8663 if (!spin_trylock(&balancing))
8664 goto out;
8665 }
8666
8667 if (time_after_eq(jiffies, sd->last_balance + interval)) {
8668 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8669 /*
8670 * The LBF_DST_PINNED logic could have changed
8671 * env->dst_cpu, so we can't know our idle
8672 * state even if we migrated tasks. Update it.
8673 */
8674 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8675 }
8676 sd->last_balance = jiffies;
8677 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8678 }
8679 if (need_serialize)
8680 spin_unlock(&balancing);
8681out:
8682 if (time_after(next_balance, sd->last_balance + interval)) {
8683 next_balance = sd->last_balance + interval;
8684 update_next_balance = 1;
8685 }
8686 }
8687 if (need_decay) {
8688 /*
8689 * Ensure the rq-wide value also decays but keep it at a
8690 * reasonable floor to avoid funnies with rq->avg_idle.
8691 */
8692 rq->max_idle_balance_cost =
8693 max((u64)sysctl_sched_migration_cost, max_cost);
8694 }
8695 rcu_read_unlock();
8696
8697 /*
8698 * next_balance will be updated only when there is a need.
8699 * When the cpu is attached to null domain for ex, it will not be
8700 * updated.
8701 */
8702 if (likely(update_next_balance)) {
8703 rq->next_balance = next_balance;
8704
8705#ifdef CONFIG_NO_HZ_COMMON
8706 /*
8707 * If this CPU has been elected to perform the nohz idle
8708 * balance. Other idle CPUs have already rebalanced with
8709 * nohz_idle_balance() and nohz.next_balance has been
8710 * updated accordingly. This CPU is now running the idle load
8711 * balance for itself and we need to update the
8712 * nohz.next_balance accordingly.
8713 */
8714 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8715 nohz.next_balance = rq->next_balance;
8716#endif
8717 }
8718}
8719
8720#ifdef CONFIG_NO_HZ_COMMON
8721/*
8722 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8723 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8724 */
8725static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8726{
8727 int this_cpu = this_rq->cpu;
8728 struct rq *rq;
8729 int balance_cpu;
8730 /* Earliest time when we have to do rebalance again */
8731 unsigned long next_balance = jiffies + 60*HZ;
8732 int update_next_balance = 0;
8733
8734 if (idle != CPU_IDLE ||
8735 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8736 goto end;
8737
8738 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8739 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8740 continue;
8741
8742 /*
8743 * If this cpu gets work to do, stop the load balancing
8744 * work being done for other cpus. Next load
8745 * balancing owner will pick it up.
8746 */
8747 if (need_resched())
8748 break;
8749
8750 rq = cpu_rq(balance_cpu);
8751
8752 /*
8753 * If time for next balance is due,
8754 * do the balance.
8755 */
8756 if (time_after_eq(jiffies, rq->next_balance)) {
8757 raw_spin_lock_irq(&rq->lock);
8758 update_rq_clock(rq);
8759 cpu_load_update_idle(rq);
8760 raw_spin_unlock_irq(&rq->lock);
8761 rebalance_domains(rq, CPU_IDLE);
8762 }
8763
8764 if (time_after(next_balance, rq->next_balance)) {
8765 next_balance = rq->next_balance;
8766 update_next_balance = 1;
8767 }
8768 }
8769
8770 /*
8771 * next_balance will be updated only when there is a need.
8772 * When the CPU is attached to null domain for ex, it will not be
8773 * updated.
8774 */
8775 if (likely(update_next_balance))
8776 nohz.next_balance = next_balance;
8777end:
8778 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8779}
8780
8781/*
8782 * Current heuristic for kicking the idle load balancer in the presence
8783 * of an idle cpu in the system.
8784 * - This rq has more than one task.
8785 * - This rq has at least one CFS task and the capacity of the CPU is
8786 * significantly reduced because of RT tasks or IRQs.
8787 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8788 * multiple busy cpu.
8789 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8790 * domain span are idle.
8791 */
8792static inline bool nohz_kick_needed(struct rq *rq)
8793{
8794 unsigned long now = jiffies;
8795 struct sched_domain_shared *sds;
8796 struct sched_domain *sd;
8797 int nr_busy, i, cpu = rq->cpu;
8798 bool kick = false;
8799
8800 if (unlikely(rq->idle_balance))
8801 return false;
8802
8803 /*
8804 * We may be recently in ticked or tickless idle mode. At the first
8805 * busy tick after returning from idle, we will update the busy stats.
8806 */
8807 set_cpu_sd_state_busy();
8808 nohz_balance_exit_idle(cpu);
8809
8810 /*
8811 * None are in tickless mode and hence no need for NOHZ idle load
8812 * balancing.
8813 */
8814 if (likely(!atomic_read(&nohz.nr_cpus)))
8815 return false;
8816
8817 if (time_before(now, nohz.next_balance))
8818 return false;
8819
8820 if (rq->nr_running >= 2)
8821 return true;
8822
8823 rcu_read_lock();
8824 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8825 if (sds) {
8826 /*
8827 * XXX: write a coherent comment on why we do this.
8828 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8829 */
8830 nr_busy = atomic_read(&sds->nr_busy_cpus);
8831 if (nr_busy > 1) {
8832 kick = true;
8833 goto unlock;
8834 }
8835
8836 }
8837
8838 sd = rcu_dereference(rq->sd);
8839 if (sd) {
8840 if ((rq->cfs.h_nr_running >= 1) &&
8841 check_cpu_capacity(rq, sd)) {
8842 kick = true;
8843 goto unlock;
8844 }
8845 }
8846
8847 sd = rcu_dereference(per_cpu(sd_asym, cpu));
8848 if (sd) {
8849 for_each_cpu(i, sched_domain_span(sd)) {
8850 if (i == cpu ||
8851 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8852 continue;
8853
8854 if (sched_asym_prefer(i, cpu)) {
8855 kick = true;
8856 goto unlock;
8857 }
8858 }
8859 }
8860unlock:
8861 rcu_read_unlock();
8862 return kick;
8863}
8864#else
8865static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8866#endif
8867
8868/*
8869 * run_rebalance_domains is triggered when needed from the scheduler tick.
8870 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8871 */
8872static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8873{
8874 struct rq *this_rq = this_rq();
8875 enum cpu_idle_type idle = this_rq->idle_balance ?
8876 CPU_IDLE : CPU_NOT_IDLE;
8877
8878 /*
8879 * If this cpu has a pending nohz_balance_kick, then do the
8880 * balancing on behalf of the other idle cpus whose ticks are
8881 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8882 * give the idle cpus a chance to load balance. Else we may
8883 * load balance only within the local sched_domain hierarchy
8884 * and abort nohz_idle_balance altogether if we pull some load.
8885 */
8886 nohz_idle_balance(this_rq, idle);
8887 rebalance_domains(this_rq, idle);
8888}
8889
8890/*
8891 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8892 */
8893void trigger_load_balance(struct rq *rq)
8894{
8895 /* Don't need to rebalance while attached to NULL domain */
8896 if (unlikely(on_null_domain(rq)))
8897 return;
8898
8899 if (time_after_eq(jiffies, rq->next_balance))
8900 raise_softirq(SCHED_SOFTIRQ);
8901#ifdef CONFIG_NO_HZ_COMMON
8902 if (nohz_kick_needed(rq))
8903 nohz_balancer_kick();
8904#endif
8905}
8906
8907static void rq_online_fair(struct rq *rq)
8908{
8909 update_sysctl();
8910
8911 update_runtime_enabled(rq);
8912}
8913
8914static void rq_offline_fair(struct rq *rq)
8915{
8916 update_sysctl();
8917
8918 /* Ensure any throttled groups are reachable by pick_next_task */
8919 unthrottle_offline_cfs_rqs(rq);
8920}
8921
8922#endif /* CONFIG_SMP */
8923
8924/*
8925 * scheduler tick hitting a task of our scheduling class:
8926 */
8927static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8928{
8929 struct cfs_rq *cfs_rq;
8930 struct sched_entity *se = &curr->se;
8931
8932 for_each_sched_entity(se) {
8933 cfs_rq = cfs_rq_of(se);
8934 entity_tick(cfs_rq, se, queued);
8935 }
8936
8937 if (static_branch_unlikely(&sched_numa_balancing))
8938 task_tick_numa(rq, curr);
8939}
8940
8941/*
8942 * called on fork with the child task as argument from the parent's context
8943 * - child not yet on the tasklist
8944 * - preemption disabled
8945 */
8946static void task_fork_fair(struct task_struct *p)
8947{
8948 struct cfs_rq *cfs_rq;
8949 struct sched_entity *se = &p->se, *curr;
8950 struct rq *rq = this_rq();
8951
8952 raw_spin_lock(&rq->lock);
8953 update_rq_clock(rq);
8954
8955 cfs_rq = task_cfs_rq(current);
8956 curr = cfs_rq->curr;
8957 if (curr) {
8958 update_curr(cfs_rq);
8959 se->vruntime = curr->vruntime;
8960 }
8961 place_entity(cfs_rq, se, 1);
8962
8963 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8964 /*
8965 * Upon rescheduling, sched_class::put_prev_task() will place
8966 * 'current' within the tree based on its new key value.
8967 */
8968 swap(curr->vruntime, se->vruntime);
8969 resched_curr(rq);
8970 }
8971
8972 se->vruntime -= cfs_rq->min_vruntime;
8973 raw_spin_unlock(&rq->lock);
8974}
8975
8976/*
8977 * Priority of the task has changed. Check to see if we preempt
8978 * the current task.
8979 */
8980static void
8981prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8982{
8983 if (!task_on_rq_queued(p))
8984 return;
8985
8986 /*
8987 * Reschedule if we are currently running on this runqueue and
8988 * our priority decreased, or if we are not currently running on
8989 * this runqueue and our priority is higher than the current's
8990 */
8991 if (rq->curr == p) {
8992 if (p->prio > oldprio)
8993 resched_curr(rq);
8994 } else
8995 check_preempt_curr(rq, p, 0);
8996}
8997
8998static inline bool vruntime_normalized(struct task_struct *p)
8999{
9000 struct sched_entity *se = &p->se;
9001
9002 /*
9003 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9004 * the dequeue_entity(.flags=0) will already have normalized the
9005 * vruntime.
9006 */
9007 if (p->on_rq)
9008 return true;
9009
9010 /*
9011 * When !on_rq, vruntime of the task has usually NOT been normalized.
9012 * But there are some cases where it has already been normalized:
9013 *
9014 * - A forked child which is waiting for being woken up by
9015 * wake_up_new_task().
9016 * - A task which has been woken up by try_to_wake_up() and
9017 * waiting for actually being woken up by sched_ttwu_pending().
9018 */
9019 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9020 return true;
9021
9022 return false;
9023}
9024
9025#ifdef CONFIG_FAIR_GROUP_SCHED
9026/*
9027 * Propagate the changes of the sched_entity across the tg tree to make it
9028 * visible to the root
9029 */
9030static void propagate_entity_cfs_rq(struct sched_entity *se)
9031{
9032 struct cfs_rq *cfs_rq;
9033
9034 /* Start to propagate at parent */
9035 se = se->parent;
9036
9037 for_each_sched_entity(se) {
9038 cfs_rq = cfs_rq_of(se);
9039
9040 if (cfs_rq_throttled(cfs_rq))
9041 break;
9042
9043 update_load_avg(se, UPDATE_TG);
9044 }
9045}
9046#else
9047static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9048#endif
9049
9050static void detach_entity_cfs_rq(struct sched_entity *se)
9051{
9052 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9053
9054 /* Catch up with the cfs_rq and remove our load when we leave */
9055 update_load_avg(se, 0);
9056 detach_entity_load_avg(cfs_rq, se);
9057 update_tg_load_avg(cfs_rq, false);
9058 propagate_entity_cfs_rq(se);
9059}
9060
9061static void attach_entity_cfs_rq(struct sched_entity *se)
9062{
9063 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9064
9065#ifdef CONFIG_FAIR_GROUP_SCHED
9066 /*
9067 * Since the real-depth could have been changed (only FAIR
9068 * class maintain depth value), reset depth properly.
9069 */
9070 se->depth = se->parent ? se->parent->depth + 1 : 0;
9071#endif
9072
9073 /* Synchronize entity with its cfs_rq */
9074 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9075 attach_entity_load_avg(cfs_rq, se);
9076 update_tg_load_avg(cfs_rq, false);
9077 propagate_entity_cfs_rq(se);
9078}
9079
9080static void detach_task_cfs_rq(struct task_struct *p)
9081{
9082 struct sched_entity *se = &p->se;
9083 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9084
9085 if (!vruntime_normalized(p)) {
9086 /*
9087 * Fix up our vruntime so that the current sleep doesn't
9088 * cause 'unlimited' sleep bonus.
9089 */
9090 place_entity(cfs_rq, se, 0);
9091 se->vruntime -= cfs_rq->min_vruntime;
9092 }
9093
9094 detach_entity_cfs_rq(se);
9095}
9096
9097static void attach_task_cfs_rq(struct task_struct *p)
9098{
9099 struct sched_entity *se = &p->se;
9100 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9101
9102 attach_entity_cfs_rq(se);
9103
9104 if (!vruntime_normalized(p))
9105 se->vruntime += cfs_rq->min_vruntime;
9106}
9107
9108static void switched_from_fair(struct rq *rq, struct task_struct *p)
9109{
9110 detach_task_cfs_rq(p);
9111}
9112
9113static void switched_to_fair(struct rq *rq, struct task_struct *p)
9114{
9115 attach_task_cfs_rq(p);
9116
9117 if (task_on_rq_queued(p)) {
9118 /*
9119 * We were most likely switched from sched_rt, so
9120 * kick off the schedule if running, otherwise just see
9121 * if we can still preempt the current task.
9122 */
9123 if (rq->curr == p)
9124 resched_curr(rq);
9125 else
9126 check_preempt_curr(rq, p, 0);
9127 }
9128}
9129
9130/* Account for a task changing its policy or group.
9131 *
9132 * This routine is mostly called to set cfs_rq->curr field when a task
9133 * migrates between groups/classes.
9134 */
9135static void set_curr_task_fair(struct rq *rq)
9136{
9137 struct sched_entity *se = &rq->curr->se;
9138
9139 for_each_sched_entity(se) {
9140 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9141
9142 set_next_entity(cfs_rq, se);
9143 /* ensure bandwidth has been allocated on our new cfs_rq */
9144 account_cfs_rq_runtime(cfs_rq, 0);
9145 }
9146}
9147
9148void init_cfs_rq(struct cfs_rq *cfs_rq)
9149{
9150 cfs_rq->tasks_timeline = RB_ROOT;
9151 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9152#ifndef CONFIG_64BIT
9153 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9154#endif
9155#ifdef CONFIG_SMP
9156#ifdef CONFIG_FAIR_GROUP_SCHED
9157 cfs_rq->propagate_avg = 0;
9158#endif
9159 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9160 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9161#endif
9162}
9163
9164#ifdef CONFIG_FAIR_GROUP_SCHED
9165static void task_set_group_fair(struct task_struct *p)
9166{
9167 struct sched_entity *se = &p->se;
9168
9169 set_task_rq(p, task_cpu(p));
9170 se->depth = se->parent ? se->parent->depth + 1 : 0;
9171}
9172
9173static void task_move_group_fair(struct task_struct *p)
9174{
9175 detach_task_cfs_rq(p);
9176 set_task_rq(p, task_cpu(p));
9177
9178#ifdef CONFIG_SMP
9179 /* Tell se's cfs_rq has been changed -- migrated */
9180 p->se.avg.last_update_time = 0;
9181#endif
9182 attach_task_cfs_rq(p);
9183}
9184
9185static void task_change_group_fair(struct task_struct *p, int type)
9186{
9187 switch (type) {
9188 case TASK_SET_GROUP:
9189 task_set_group_fair(p);
9190 break;
9191
9192 case TASK_MOVE_GROUP:
9193 task_move_group_fair(p);
9194 break;
9195 }
9196}
9197
9198void free_fair_sched_group(struct task_group *tg)
9199{
9200 int i;
9201
9202 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9203
9204 for_each_possible_cpu(i) {
9205 if (tg->cfs_rq)
9206 kfree(tg->cfs_rq[i]);
9207 if (tg->se)
9208 kfree(tg->se[i]);
9209 }
9210
9211 kfree(tg->cfs_rq);
9212 kfree(tg->se);
9213}
9214
9215int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9216{
9217 struct sched_entity *se;
9218 struct cfs_rq *cfs_rq;
9219 int i;
9220
9221 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9222 if (!tg->cfs_rq)
9223 goto err;
9224 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9225 if (!tg->se)
9226 goto err;
9227
9228 tg->shares = NICE_0_LOAD;
9229
9230 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9231
9232 for_each_possible_cpu(i) {
9233 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9234 GFP_KERNEL, cpu_to_node(i));
9235 if (!cfs_rq)
9236 goto err;
9237
9238 se = kzalloc_node(sizeof(struct sched_entity),
9239 GFP_KERNEL, cpu_to_node(i));
9240 if (!se)
9241 goto err_free_rq;
9242
9243 init_cfs_rq(cfs_rq);
9244 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9245 init_entity_runnable_average(se);
9246 }
9247
9248 return 1;
9249
9250err_free_rq:
9251 kfree(cfs_rq);
9252err:
9253 return 0;
9254}
9255
9256void online_fair_sched_group(struct task_group *tg)
9257{
9258 struct sched_entity *se;
9259 struct rq *rq;
9260 int i;
9261
9262 for_each_possible_cpu(i) {
9263 rq = cpu_rq(i);
9264 se = tg->se[i];
9265
9266 raw_spin_lock_irq(&rq->lock);
9267 attach_entity_cfs_rq(se);
9268 sync_throttle(tg, i);
9269 raw_spin_unlock_irq(&rq->lock);
9270 }
9271}
9272
9273void unregister_fair_sched_group(struct task_group *tg)
9274{
9275 unsigned long flags;
9276 struct rq *rq;
9277 int cpu;
9278
9279 for_each_possible_cpu(cpu) {
9280 if (tg->se[cpu])
9281 remove_entity_load_avg(tg->se[cpu]);
9282
9283 /*
9284 * Only empty task groups can be destroyed; so we can speculatively
9285 * check on_list without danger of it being re-added.
9286 */
9287 if (!tg->cfs_rq[cpu]->on_list)
9288 continue;
9289
9290 rq = cpu_rq(cpu);
9291
9292 raw_spin_lock_irqsave(&rq->lock, flags);
9293 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9294 raw_spin_unlock_irqrestore(&rq->lock, flags);
9295 }
9296}
9297
9298void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9299 struct sched_entity *se, int cpu,
9300 struct sched_entity *parent)
9301{
9302 struct rq *rq = cpu_rq(cpu);
9303
9304 cfs_rq->tg = tg;
9305 cfs_rq->rq = rq;
9306 init_cfs_rq_runtime(cfs_rq);
9307
9308 tg->cfs_rq[cpu] = cfs_rq;
9309 tg->se[cpu] = se;
9310
9311 /* se could be NULL for root_task_group */
9312 if (!se)
9313 return;
9314
9315 if (!parent) {
9316 se->cfs_rq = &rq->cfs;
9317 se->depth = 0;
9318 } else {
9319 se->cfs_rq = parent->my_q;
9320 se->depth = parent->depth + 1;
9321 }
9322
9323 se->my_q = cfs_rq;
9324 /* guarantee group entities always have weight */
9325 update_load_set(&se->load, NICE_0_LOAD);
9326 se->parent = parent;
9327}
9328
9329static DEFINE_MUTEX(shares_mutex);
9330
9331int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9332{
9333 int i;
9334 unsigned long flags;
9335
9336 /*
9337 * We can't change the weight of the root cgroup.
9338 */
9339 if (!tg->se[0])
9340 return -EINVAL;
9341
9342 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9343
9344 mutex_lock(&shares_mutex);
9345 if (tg->shares == shares)
9346 goto done;
9347
9348 tg->shares = shares;
9349 for_each_possible_cpu(i) {
9350 struct rq *rq = cpu_rq(i);
9351 struct sched_entity *se;
9352
9353 se = tg->se[i];
9354 /* Propagate contribution to hierarchy */
9355 raw_spin_lock_irqsave(&rq->lock, flags);
9356
9357 /* Possible calls to update_curr() need rq clock */
9358 update_rq_clock(rq);
9359 for_each_sched_entity(se)
9360 update_cfs_shares(group_cfs_rq(se));
9361 raw_spin_unlock_irqrestore(&rq->lock, flags);
9362 }
9363
9364done:
9365 mutex_unlock(&shares_mutex);
9366 return 0;
9367}
9368#else /* CONFIG_FAIR_GROUP_SCHED */
9369
9370void free_fair_sched_group(struct task_group *tg) { }
9371
9372int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9373{
9374 return 1;
9375}
9376
9377void online_fair_sched_group(struct task_group *tg) { }
9378
9379void unregister_fair_sched_group(struct task_group *tg) { }
9380
9381#endif /* CONFIG_FAIR_GROUP_SCHED */
9382
9383
9384static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9385{
9386 struct sched_entity *se = &task->se;
9387 unsigned int rr_interval = 0;
9388
9389 /*
9390 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9391 * idle runqueue:
9392 */
9393 if (rq->cfs.load.weight)
9394 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9395
9396 return rr_interval;
9397}
9398
9399/*
9400 * All the scheduling class methods:
9401 */
9402const struct sched_class fair_sched_class = {
9403 .next = &idle_sched_class,
9404 .enqueue_task = enqueue_task_fair,
9405 .dequeue_task = dequeue_task_fair,
9406 .yield_task = yield_task_fair,
9407 .yield_to_task = yield_to_task_fair,
9408
9409 .check_preempt_curr = check_preempt_wakeup,
9410
9411 .pick_next_task = pick_next_task_fair,
9412 .put_prev_task = put_prev_task_fair,
9413
9414#ifdef CONFIG_SMP
9415 .select_task_rq = select_task_rq_fair,
9416 .migrate_task_rq = migrate_task_rq_fair,
9417
9418 .rq_online = rq_online_fair,
9419 .rq_offline = rq_offline_fair,
9420
9421 .task_dead = task_dead_fair,
9422 .set_cpus_allowed = set_cpus_allowed_common,
9423#endif
9424
9425 .set_curr_task = set_curr_task_fair,
9426 .task_tick = task_tick_fair,
9427 .task_fork = task_fork_fair,
9428
9429 .prio_changed = prio_changed_fair,
9430 .switched_from = switched_from_fair,
9431 .switched_to = switched_to_fair,
9432
9433 .get_rr_interval = get_rr_interval_fair,
9434
9435 .update_curr = update_curr_fair,
9436
9437#ifdef CONFIG_FAIR_GROUP_SCHED
9438 .task_change_group = task_change_group_fair,
9439#endif
9440};
9441
9442#ifdef CONFIG_SCHED_DEBUG
9443void print_cfs_stats(struct seq_file *m, int cpu)
9444{
9445 struct cfs_rq *cfs_rq;
9446
9447 rcu_read_lock();
9448 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9449 print_cfs_rq(m, cpu, cfs_rq);
9450 rcu_read_unlock();
9451}
9452
9453#ifdef CONFIG_NUMA_BALANCING
9454void show_numa_stats(struct task_struct *p, struct seq_file *m)
9455{
9456 int node;
9457 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9458
9459 for_each_online_node(node) {
9460 if (p->numa_faults) {
9461 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9462 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9463 }
9464 if (p->numa_group) {
9465 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9466 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9467 }
9468 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9469 }
9470}
9471#endif /* CONFIG_NUMA_BALANCING */
9472#endif /* CONFIG_SCHED_DEBUG */
9473
9474__init void init_sched_fair_class(void)
9475{
9476#ifdef CONFIG_SMP
9477 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9478
9479#ifdef CONFIG_NO_HZ_COMMON
9480 nohz.next_balance = jiffies;
9481 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9482#endif
9483#endif /* SMP */
9484
9485}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23#include "sched.h"
24
25/*
26 * Targeted preemption latency for CPU-bound tasks:
27 *
28 * NOTE: this latency value is not the same as the concept of
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
32 *
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37 */
38unsigned int sysctl_sched_latency = 6000000ULL;
39static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40
41/*
42 * The initial- and re-scaling of tunables is configurable
43 *
44 * Options are:
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51 */
52enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53
54/*
55 * Minimal preemption granularity for CPU-bound tasks:
56 *
57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58 */
59unsigned int sysctl_sched_min_granularity = 750000ULL;
60static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
61
62/*
63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
64 */
65static unsigned int sched_nr_latency = 8;
66
67/*
68 * After fork, child runs first. If set to 0 (default) then
69 * parent will (try to) run first.
70 */
71unsigned int sysctl_sched_child_runs_first __read_mostly;
72
73/*
74 * SCHED_OTHER wake-up granularity.
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 *
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
81 */
82unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
84
85const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
86
87int sched_thermal_decay_shift;
88static int __init setup_sched_thermal_decay_shift(char *str)
89{
90 int _shift = 0;
91
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 return 1;
97}
98__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99
100#ifdef CONFIG_SMP
101/*
102 * For asym packing, by default the lower numbered CPU has higher priority.
103 */
104int __weak arch_asym_cpu_priority(int cpu)
105{
106 return -cpu;
107}
108
109/*
110 * The margin used when comparing utilization with CPU capacity.
111 *
112 * (default: ~20%)
113 */
114#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
115
116#endif
117
118#ifdef CONFIG_CFS_BANDWIDTH
119/*
120 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
121 * each time a cfs_rq requests quota.
122 *
123 * Note: in the case that the slice exceeds the runtime remaining (either due
124 * to consumption or the quota being specified to be smaller than the slice)
125 * we will always only issue the remaining available time.
126 *
127 * (default: 5 msec, units: microseconds)
128 */
129unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
130#endif
131
132static inline void update_load_add(struct load_weight *lw, unsigned long inc)
133{
134 lw->weight += inc;
135 lw->inv_weight = 0;
136}
137
138static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
139{
140 lw->weight -= dec;
141 lw->inv_weight = 0;
142}
143
144static inline void update_load_set(struct load_weight *lw, unsigned long w)
145{
146 lw->weight = w;
147 lw->inv_weight = 0;
148}
149
150/*
151 * Increase the granularity value when there are more CPUs,
152 * because with more CPUs the 'effective latency' as visible
153 * to users decreases. But the relationship is not linear,
154 * so pick a second-best guess by going with the log2 of the
155 * number of CPUs.
156 *
157 * This idea comes from the SD scheduler of Con Kolivas:
158 */
159static unsigned int get_update_sysctl_factor(void)
160{
161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
162 unsigned int factor;
163
164 switch (sysctl_sched_tunable_scaling) {
165 case SCHED_TUNABLESCALING_NONE:
166 factor = 1;
167 break;
168 case SCHED_TUNABLESCALING_LINEAR:
169 factor = cpus;
170 break;
171 case SCHED_TUNABLESCALING_LOG:
172 default:
173 factor = 1 + ilog2(cpus);
174 break;
175 }
176
177 return factor;
178}
179
180static void update_sysctl(void)
181{
182 unsigned int factor = get_update_sysctl_factor();
183
184#define SET_SYSCTL(name) \
185 (sysctl_##name = (factor) * normalized_sysctl_##name)
186 SET_SYSCTL(sched_min_granularity);
187 SET_SYSCTL(sched_latency);
188 SET_SYSCTL(sched_wakeup_granularity);
189#undef SET_SYSCTL
190}
191
192void __init sched_init_granularity(void)
193{
194 update_sysctl();
195}
196
197#define WMULT_CONST (~0U)
198#define WMULT_SHIFT 32
199
200static void __update_inv_weight(struct load_weight *lw)
201{
202 unsigned long w;
203
204 if (likely(lw->inv_weight))
205 return;
206
207 w = scale_load_down(lw->weight);
208
209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 lw->inv_weight = 1;
211 else if (unlikely(!w))
212 lw->inv_weight = WMULT_CONST;
213 else
214 lw->inv_weight = WMULT_CONST / w;
215}
216
217/*
218 * delta_exec * weight / lw.weight
219 * OR
220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
221 *
222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
225 *
226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
228 */
229static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
230{
231 u64 fact = scale_load_down(weight);
232 int shift = WMULT_SHIFT;
233
234 __update_inv_weight(lw);
235
236 if (unlikely(fact >> 32)) {
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
241 }
242
243 fact = mul_u32_u32(fact, lw->inv_weight);
244
245 while (fact >> 32) {
246 fact >>= 1;
247 shift--;
248 }
249
250 return mul_u64_u32_shr(delta_exec, fact, shift);
251}
252
253
254const struct sched_class fair_sched_class;
255
256/**************************************************************
257 * CFS operations on generic schedulable entities:
258 */
259
260#ifdef CONFIG_FAIR_GROUP_SCHED
261static inline struct task_struct *task_of(struct sched_entity *se)
262{
263 SCHED_WARN_ON(!entity_is_task(se));
264 return container_of(se, struct task_struct, se);
265}
266
267/* Walk up scheduling entities hierarchy */
268#define for_each_sched_entity(se) \
269 for (; se; se = se->parent)
270
271static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
272{
273 return p->se.cfs_rq;
274}
275
276/* runqueue on which this entity is (to be) queued */
277static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
278{
279 return se->cfs_rq;
280}
281
282/* runqueue "owned" by this group */
283static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
284{
285 return grp->my_q;
286}
287
288static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
289{
290 if (!path)
291 return;
292
293 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
294 autogroup_path(cfs_rq->tg, path, len);
295 else if (cfs_rq && cfs_rq->tg->css.cgroup)
296 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
297 else
298 strlcpy(path, "(null)", len);
299}
300
301static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302{
303 struct rq *rq = rq_of(cfs_rq);
304 int cpu = cpu_of(rq);
305
306 if (cfs_rq->on_list)
307 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
308
309 cfs_rq->on_list = 1;
310
311 /*
312 * Ensure we either appear before our parent (if already
313 * enqueued) or force our parent to appear after us when it is
314 * enqueued. The fact that we always enqueue bottom-up
315 * reduces this to two cases and a special case for the root
316 * cfs_rq. Furthermore, it also means that we will always reset
317 * tmp_alone_branch either when the branch is connected
318 * to a tree or when we reach the top of the tree
319 */
320 if (cfs_rq->tg->parent &&
321 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
322 /*
323 * If parent is already on the list, we add the child
324 * just before. Thanks to circular linked property of
325 * the list, this means to put the child at the tail
326 * of the list that starts by parent.
327 */
328 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
329 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
330 /*
331 * The branch is now connected to its tree so we can
332 * reset tmp_alone_branch to the beginning of the
333 * list.
334 */
335 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
336 return true;
337 }
338
339 if (!cfs_rq->tg->parent) {
340 /*
341 * cfs rq without parent should be put
342 * at the tail of the list.
343 */
344 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
345 &rq->leaf_cfs_rq_list);
346 /*
347 * We have reach the top of a tree so we can reset
348 * tmp_alone_branch to the beginning of the list.
349 */
350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351 return true;
352 }
353
354 /*
355 * The parent has not already been added so we want to
356 * make sure that it will be put after us.
357 * tmp_alone_branch points to the begin of the branch
358 * where we will add parent.
359 */
360 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
361 /*
362 * update tmp_alone_branch to points to the new begin
363 * of the branch
364 */
365 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
366 return false;
367}
368
369static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
370{
371 if (cfs_rq->on_list) {
372 struct rq *rq = rq_of(cfs_rq);
373
374 /*
375 * With cfs_rq being unthrottled/throttled during an enqueue,
376 * it can happen the tmp_alone_branch points the a leaf that
377 * we finally want to del. In this case, tmp_alone_branch moves
378 * to the prev element but it will point to rq->leaf_cfs_rq_list
379 * at the end of the enqueue.
380 */
381 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
382 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
383
384 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
385 cfs_rq->on_list = 0;
386 }
387}
388
389static inline void assert_list_leaf_cfs_rq(struct rq *rq)
390{
391 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
392}
393
394/* Iterate thr' all leaf cfs_rq's on a runqueue */
395#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
396 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
397 leaf_cfs_rq_list)
398
399/* Do the two (enqueued) entities belong to the same group ? */
400static inline struct cfs_rq *
401is_same_group(struct sched_entity *se, struct sched_entity *pse)
402{
403 if (se->cfs_rq == pse->cfs_rq)
404 return se->cfs_rq;
405
406 return NULL;
407}
408
409static inline struct sched_entity *parent_entity(struct sched_entity *se)
410{
411 return se->parent;
412}
413
414static void
415find_matching_se(struct sched_entity **se, struct sched_entity **pse)
416{
417 int se_depth, pse_depth;
418
419 /*
420 * preemption test can be made between sibling entities who are in the
421 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
422 * both tasks until we find their ancestors who are siblings of common
423 * parent.
424 */
425
426 /* First walk up until both entities are at same depth */
427 se_depth = (*se)->depth;
428 pse_depth = (*pse)->depth;
429
430 while (se_depth > pse_depth) {
431 se_depth--;
432 *se = parent_entity(*se);
433 }
434
435 while (pse_depth > se_depth) {
436 pse_depth--;
437 *pse = parent_entity(*pse);
438 }
439
440 while (!is_same_group(*se, *pse)) {
441 *se = parent_entity(*se);
442 *pse = parent_entity(*pse);
443 }
444}
445
446#else /* !CONFIG_FAIR_GROUP_SCHED */
447
448static inline struct task_struct *task_of(struct sched_entity *se)
449{
450 return container_of(se, struct task_struct, se);
451}
452
453#define for_each_sched_entity(se) \
454 for (; se; se = NULL)
455
456static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
457{
458 return &task_rq(p)->cfs;
459}
460
461static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
462{
463 struct task_struct *p = task_of(se);
464 struct rq *rq = task_rq(p);
465
466 return &rq->cfs;
467}
468
469/* runqueue "owned" by this group */
470static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
471{
472 return NULL;
473}
474
475static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
476{
477 if (path)
478 strlcpy(path, "(null)", len);
479}
480
481static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482{
483 return true;
484}
485
486static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
487{
488}
489
490static inline void assert_list_leaf_cfs_rq(struct rq *rq)
491{
492}
493
494#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
495 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
496
497static inline struct sched_entity *parent_entity(struct sched_entity *se)
498{
499 return NULL;
500}
501
502static inline void
503find_matching_se(struct sched_entity **se, struct sched_entity **pse)
504{
505}
506
507#endif /* CONFIG_FAIR_GROUP_SCHED */
508
509static __always_inline
510void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
511
512/**************************************************************
513 * Scheduling class tree data structure manipulation methods:
514 */
515
516static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
517{
518 s64 delta = (s64)(vruntime - max_vruntime);
519 if (delta > 0)
520 max_vruntime = vruntime;
521
522 return max_vruntime;
523}
524
525static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
526{
527 s64 delta = (s64)(vruntime - min_vruntime);
528 if (delta < 0)
529 min_vruntime = vruntime;
530
531 return min_vruntime;
532}
533
534static inline int entity_before(struct sched_entity *a,
535 struct sched_entity *b)
536{
537 return (s64)(a->vruntime - b->vruntime) < 0;
538}
539
540static void update_min_vruntime(struct cfs_rq *cfs_rq)
541{
542 struct sched_entity *curr = cfs_rq->curr;
543 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
544
545 u64 vruntime = cfs_rq->min_vruntime;
546
547 if (curr) {
548 if (curr->on_rq)
549 vruntime = curr->vruntime;
550 else
551 curr = NULL;
552 }
553
554 if (leftmost) { /* non-empty tree */
555 struct sched_entity *se;
556 se = rb_entry(leftmost, struct sched_entity, run_node);
557
558 if (!curr)
559 vruntime = se->vruntime;
560 else
561 vruntime = min_vruntime(vruntime, se->vruntime);
562 }
563
564 /* ensure we never gain time by being placed backwards. */
565 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
566#ifndef CONFIG_64BIT
567 smp_wmb();
568 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
569#endif
570}
571
572/*
573 * Enqueue an entity into the rb-tree:
574 */
575static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
576{
577 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
578 struct rb_node *parent = NULL;
579 struct sched_entity *entry;
580 bool leftmost = true;
581
582 /*
583 * Find the right place in the rbtree:
584 */
585 while (*link) {
586 parent = *link;
587 entry = rb_entry(parent, struct sched_entity, run_node);
588 /*
589 * We dont care about collisions. Nodes with
590 * the same key stay together.
591 */
592 if (entity_before(se, entry)) {
593 link = &parent->rb_left;
594 } else {
595 link = &parent->rb_right;
596 leftmost = false;
597 }
598 }
599
600 rb_link_node(&se->run_node, parent, link);
601 rb_insert_color_cached(&se->run_node,
602 &cfs_rq->tasks_timeline, leftmost);
603}
604
605static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
606{
607 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
608}
609
610struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
611{
612 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
613
614 if (!left)
615 return NULL;
616
617 return rb_entry(left, struct sched_entity, run_node);
618}
619
620static struct sched_entity *__pick_next_entity(struct sched_entity *se)
621{
622 struct rb_node *next = rb_next(&se->run_node);
623
624 if (!next)
625 return NULL;
626
627 return rb_entry(next, struct sched_entity, run_node);
628}
629
630#ifdef CONFIG_SCHED_DEBUG
631struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
632{
633 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
634
635 if (!last)
636 return NULL;
637
638 return rb_entry(last, struct sched_entity, run_node);
639}
640
641/**************************************************************
642 * Scheduling class statistics methods:
643 */
644
645int sched_proc_update_handler(struct ctl_table *table, int write,
646 void *buffer, size_t *lenp, loff_t *ppos)
647{
648 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
649 unsigned int factor = get_update_sysctl_factor();
650
651 if (ret || !write)
652 return ret;
653
654 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
655 sysctl_sched_min_granularity);
656
657#define WRT_SYSCTL(name) \
658 (normalized_sysctl_##name = sysctl_##name / (factor))
659 WRT_SYSCTL(sched_min_granularity);
660 WRT_SYSCTL(sched_latency);
661 WRT_SYSCTL(sched_wakeup_granularity);
662#undef WRT_SYSCTL
663
664 return 0;
665}
666#endif
667
668/*
669 * delta /= w
670 */
671static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
672{
673 if (unlikely(se->load.weight != NICE_0_LOAD))
674 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
675
676 return delta;
677}
678
679/*
680 * The idea is to set a period in which each task runs once.
681 *
682 * When there are too many tasks (sched_nr_latency) we have to stretch
683 * this period because otherwise the slices get too small.
684 *
685 * p = (nr <= nl) ? l : l*nr/nl
686 */
687static u64 __sched_period(unsigned long nr_running)
688{
689 if (unlikely(nr_running > sched_nr_latency))
690 return nr_running * sysctl_sched_min_granularity;
691 else
692 return sysctl_sched_latency;
693}
694
695/*
696 * We calculate the wall-time slice from the period by taking a part
697 * proportional to the weight.
698 *
699 * s = p*P[w/rw]
700 */
701static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
702{
703 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
704
705 for_each_sched_entity(se) {
706 struct load_weight *load;
707 struct load_weight lw;
708
709 cfs_rq = cfs_rq_of(se);
710 load = &cfs_rq->load;
711
712 if (unlikely(!se->on_rq)) {
713 lw = cfs_rq->load;
714
715 update_load_add(&lw, se->load.weight);
716 load = &lw;
717 }
718 slice = __calc_delta(slice, se->load.weight, load);
719 }
720 return slice;
721}
722
723/*
724 * We calculate the vruntime slice of a to-be-inserted task.
725 *
726 * vs = s/w
727 */
728static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
729{
730 return calc_delta_fair(sched_slice(cfs_rq, se), se);
731}
732
733#include "pelt.h"
734#ifdef CONFIG_SMP
735
736static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
737static unsigned long task_h_load(struct task_struct *p);
738static unsigned long capacity_of(int cpu);
739
740/* Give new sched_entity start runnable values to heavy its load in infant time */
741void init_entity_runnable_average(struct sched_entity *se)
742{
743 struct sched_avg *sa = &se->avg;
744
745 memset(sa, 0, sizeof(*sa));
746
747 /*
748 * Tasks are initialized with full load to be seen as heavy tasks until
749 * they get a chance to stabilize to their real load level.
750 * Group entities are initialized with zero load to reflect the fact that
751 * nothing has been attached to the task group yet.
752 */
753 if (entity_is_task(se))
754 sa->load_avg = scale_load_down(se->load.weight);
755
756 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
757}
758
759static void attach_entity_cfs_rq(struct sched_entity *se);
760
761/*
762 * With new tasks being created, their initial util_avgs are extrapolated
763 * based on the cfs_rq's current util_avg:
764 *
765 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
766 *
767 * However, in many cases, the above util_avg does not give a desired
768 * value. Moreover, the sum of the util_avgs may be divergent, such
769 * as when the series is a harmonic series.
770 *
771 * To solve this problem, we also cap the util_avg of successive tasks to
772 * only 1/2 of the left utilization budget:
773 *
774 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
775 *
776 * where n denotes the nth task and cpu_scale the CPU capacity.
777 *
778 * For example, for a CPU with 1024 of capacity, a simplest series from
779 * the beginning would be like:
780 *
781 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
783 *
784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
785 * if util_avg > util_avg_cap.
786 */
787void post_init_entity_util_avg(struct task_struct *p)
788{
789 struct sched_entity *se = &p->se;
790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
791 struct sched_avg *sa = &se->avg;
792 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
793 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
794
795 if (cap > 0) {
796 if (cfs_rq->avg.util_avg != 0) {
797 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
798 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
799
800 if (sa->util_avg > cap)
801 sa->util_avg = cap;
802 } else {
803 sa->util_avg = cap;
804 }
805 }
806
807 sa->runnable_avg = sa->util_avg;
808
809 if (p->sched_class != &fair_sched_class) {
810 /*
811 * For !fair tasks do:
812 *
813 update_cfs_rq_load_avg(now, cfs_rq);
814 attach_entity_load_avg(cfs_rq, se);
815 switched_from_fair(rq, p);
816 *
817 * such that the next switched_to_fair() has the
818 * expected state.
819 */
820 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
821 return;
822 }
823
824 attach_entity_cfs_rq(se);
825}
826
827#else /* !CONFIG_SMP */
828void init_entity_runnable_average(struct sched_entity *se)
829{
830}
831void post_init_entity_util_avg(struct task_struct *p)
832{
833}
834static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
835{
836}
837#endif /* CONFIG_SMP */
838
839/*
840 * Update the current task's runtime statistics.
841 */
842static void update_curr(struct cfs_rq *cfs_rq)
843{
844 struct sched_entity *curr = cfs_rq->curr;
845 u64 now = rq_clock_task(rq_of(cfs_rq));
846 u64 delta_exec;
847
848 if (unlikely(!curr))
849 return;
850
851 delta_exec = now - curr->exec_start;
852 if (unlikely((s64)delta_exec <= 0))
853 return;
854
855 curr->exec_start = now;
856
857 schedstat_set(curr->statistics.exec_max,
858 max(delta_exec, curr->statistics.exec_max));
859
860 curr->sum_exec_runtime += delta_exec;
861 schedstat_add(cfs_rq->exec_clock, delta_exec);
862
863 curr->vruntime += calc_delta_fair(delta_exec, curr);
864 update_min_vruntime(cfs_rq);
865
866 if (entity_is_task(curr)) {
867 struct task_struct *curtask = task_of(curr);
868
869 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
870 cgroup_account_cputime(curtask, delta_exec);
871 account_group_exec_runtime(curtask, delta_exec);
872 }
873
874 account_cfs_rq_runtime(cfs_rq, delta_exec);
875}
876
877static void update_curr_fair(struct rq *rq)
878{
879 update_curr(cfs_rq_of(&rq->curr->se));
880}
881
882static inline void
883update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
884{
885 u64 wait_start, prev_wait_start;
886
887 if (!schedstat_enabled())
888 return;
889
890 wait_start = rq_clock(rq_of(cfs_rq));
891 prev_wait_start = schedstat_val(se->statistics.wait_start);
892
893 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
894 likely(wait_start > prev_wait_start))
895 wait_start -= prev_wait_start;
896
897 __schedstat_set(se->statistics.wait_start, wait_start);
898}
899
900static inline void
901update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
902{
903 struct task_struct *p;
904 u64 delta;
905
906 if (!schedstat_enabled())
907 return;
908
909 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
910
911 if (entity_is_task(se)) {
912 p = task_of(se);
913 if (task_on_rq_migrating(p)) {
914 /*
915 * Preserve migrating task's wait time so wait_start
916 * time stamp can be adjusted to accumulate wait time
917 * prior to migration.
918 */
919 __schedstat_set(se->statistics.wait_start, delta);
920 return;
921 }
922 trace_sched_stat_wait(p, delta);
923 }
924
925 __schedstat_set(se->statistics.wait_max,
926 max(schedstat_val(se->statistics.wait_max), delta));
927 __schedstat_inc(se->statistics.wait_count);
928 __schedstat_add(se->statistics.wait_sum, delta);
929 __schedstat_set(se->statistics.wait_start, 0);
930}
931
932static inline void
933update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
934{
935 struct task_struct *tsk = NULL;
936 u64 sleep_start, block_start;
937
938 if (!schedstat_enabled())
939 return;
940
941 sleep_start = schedstat_val(se->statistics.sleep_start);
942 block_start = schedstat_val(se->statistics.block_start);
943
944 if (entity_is_task(se))
945 tsk = task_of(se);
946
947 if (sleep_start) {
948 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
949
950 if ((s64)delta < 0)
951 delta = 0;
952
953 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
954 __schedstat_set(se->statistics.sleep_max, delta);
955
956 __schedstat_set(se->statistics.sleep_start, 0);
957 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
958
959 if (tsk) {
960 account_scheduler_latency(tsk, delta >> 10, 1);
961 trace_sched_stat_sleep(tsk, delta);
962 }
963 }
964 if (block_start) {
965 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
966
967 if ((s64)delta < 0)
968 delta = 0;
969
970 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
971 __schedstat_set(se->statistics.block_max, delta);
972
973 __schedstat_set(se->statistics.block_start, 0);
974 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
975
976 if (tsk) {
977 if (tsk->in_iowait) {
978 __schedstat_add(se->statistics.iowait_sum, delta);
979 __schedstat_inc(se->statistics.iowait_count);
980 trace_sched_stat_iowait(tsk, delta);
981 }
982
983 trace_sched_stat_blocked(tsk, delta);
984
985 /*
986 * Blocking time is in units of nanosecs, so shift by
987 * 20 to get a milliseconds-range estimation of the
988 * amount of time that the task spent sleeping:
989 */
990 if (unlikely(prof_on == SLEEP_PROFILING)) {
991 profile_hits(SLEEP_PROFILING,
992 (void *)get_wchan(tsk),
993 delta >> 20);
994 }
995 account_scheduler_latency(tsk, delta >> 10, 0);
996 }
997 }
998}
999
1000/*
1001 * Task is being enqueued - update stats:
1002 */
1003static inline void
1004update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1005{
1006 if (!schedstat_enabled())
1007 return;
1008
1009 /*
1010 * Are we enqueueing a waiting task? (for current tasks
1011 * a dequeue/enqueue event is a NOP)
1012 */
1013 if (se != cfs_rq->curr)
1014 update_stats_wait_start(cfs_rq, se);
1015
1016 if (flags & ENQUEUE_WAKEUP)
1017 update_stats_enqueue_sleeper(cfs_rq, se);
1018}
1019
1020static inline void
1021update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1022{
1023
1024 if (!schedstat_enabled())
1025 return;
1026
1027 /*
1028 * Mark the end of the wait period if dequeueing a
1029 * waiting task:
1030 */
1031 if (se != cfs_rq->curr)
1032 update_stats_wait_end(cfs_rq, se);
1033
1034 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1035 struct task_struct *tsk = task_of(se);
1036
1037 if (tsk->state & TASK_INTERRUPTIBLE)
1038 __schedstat_set(se->statistics.sleep_start,
1039 rq_clock(rq_of(cfs_rq)));
1040 if (tsk->state & TASK_UNINTERRUPTIBLE)
1041 __schedstat_set(se->statistics.block_start,
1042 rq_clock(rq_of(cfs_rq)));
1043 }
1044}
1045
1046/*
1047 * We are picking a new current task - update its stats:
1048 */
1049static inline void
1050update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1051{
1052 /*
1053 * We are starting a new run period:
1054 */
1055 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1056}
1057
1058/**************************************************
1059 * Scheduling class queueing methods:
1060 */
1061
1062#ifdef CONFIG_NUMA_BALANCING
1063/*
1064 * Approximate time to scan a full NUMA task in ms. The task scan period is
1065 * calculated based on the tasks virtual memory size and
1066 * numa_balancing_scan_size.
1067 */
1068unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1069unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1070
1071/* Portion of address space to scan in MB */
1072unsigned int sysctl_numa_balancing_scan_size = 256;
1073
1074/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1075unsigned int sysctl_numa_balancing_scan_delay = 1000;
1076
1077struct numa_group {
1078 refcount_t refcount;
1079
1080 spinlock_t lock; /* nr_tasks, tasks */
1081 int nr_tasks;
1082 pid_t gid;
1083 int active_nodes;
1084
1085 struct rcu_head rcu;
1086 unsigned long total_faults;
1087 unsigned long max_faults_cpu;
1088 /*
1089 * Faults_cpu is used to decide whether memory should move
1090 * towards the CPU. As a consequence, these stats are weighted
1091 * more by CPU use than by memory faults.
1092 */
1093 unsigned long *faults_cpu;
1094 unsigned long faults[];
1095};
1096
1097/*
1098 * For functions that can be called in multiple contexts that permit reading
1099 * ->numa_group (see struct task_struct for locking rules).
1100 */
1101static struct numa_group *deref_task_numa_group(struct task_struct *p)
1102{
1103 return rcu_dereference_check(p->numa_group, p == current ||
1104 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1105}
1106
1107static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1108{
1109 return rcu_dereference_protected(p->numa_group, p == current);
1110}
1111
1112static inline unsigned long group_faults_priv(struct numa_group *ng);
1113static inline unsigned long group_faults_shared(struct numa_group *ng);
1114
1115static unsigned int task_nr_scan_windows(struct task_struct *p)
1116{
1117 unsigned long rss = 0;
1118 unsigned long nr_scan_pages;
1119
1120 /*
1121 * Calculations based on RSS as non-present and empty pages are skipped
1122 * by the PTE scanner and NUMA hinting faults should be trapped based
1123 * on resident pages
1124 */
1125 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1126 rss = get_mm_rss(p->mm);
1127 if (!rss)
1128 rss = nr_scan_pages;
1129
1130 rss = round_up(rss, nr_scan_pages);
1131 return rss / nr_scan_pages;
1132}
1133
1134/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1135#define MAX_SCAN_WINDOW 2560
1136
1137static unsigned int task_scan_min(struct task_struct *p)
1138{
1139 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1140 unsigned int scan, floor;
1141 unsigned int windows = 1;
1142
1143 if (scan_size < MAX_SCAN_WINDOW)
1144 windows = MAX_SCAN_WINDOW / scan_size;
1145 floor = 1000 / windows;
1146
1147 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1148 return max_t(unsigned int, floor, scan);
1149}
1150
1151static unsigned int task_scan_start(struct task_struct *p)
1152{
1153 unsigned long smin = task_scan_min(p);
1154 unsigned long period = smin;
1155 struct numa_group *ng;
1156
1157 /* Scale the maximum scan period with the amount of shared memory. */
1158 rcu_read_lock();
1159 ng = rcu_dereference(p->numa_group);
1160 if (ng) {
1161 unsigned long shared = group_faults_shared(ng);
1162 unsigned long private = group_faults_priv(ng);
1163
1164 period *= refcount_read(&ng->refcount);
1165 period *= shared + 1;
1166 period /= private + shared + 1;
1167 }
1168 rcu_read_unlock();
1169
1170 return max(smin, period);
1171}
1172
1173static unsigned int task_scan_max(struct task_struct *p)
1174{
1175 unsigned long smin = task_scan_min(p);
1176 unsigned long smax;
1177 struct numa_group *ng;
1178
1179 /* Watch for min being lower than max due to floor calculations */
1180 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1181
1182 /* Scale the maximum scan period with the amount of shared memory. */
1183 ng = deref_curr_numa_group(p);
1184 if (ng) {
1185 unsigned long shared = group_faults_shared(ng);
1186 unsigned long private = group_faults_priv(ng);
1187 unsigned long period = smax;
1188
1189 period *= refcount_read(&ng->refcount);
1190 period *= shared + 1;
1191 period /= private + shared + 1;
1192
1193 smax = max(smax, period);
1194 }
1195
1196 return max(smin, smax);
1197}
1198
1199static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1200{
1201 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1202 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1203}
1204
1205static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1206{
1207 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1208 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1209}
1210
1211/* Shared or private faults. */
1212#define NR_NUMA_HINT_FAULT_TYPES 2
1213
1214/* Memory and CPU locality */
1215#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1216
1217/* Averaged statistics, and temporary buffers. */
1218#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1219
1220pid_t task_numa_group_id(struct task_struct *p)
1221{
1222 struct numa_group *ng;
1223 pid_t gid = 0;
1224
1225 rcu_read_lock();
1226 ng = rcu_dereference(p->numa_group);
1227 if (ng)
1228 gid = ng->gid;
1229 rcu_read_unlock();
1230
1231 return gid;
1232}
1233
1234/*
1235 * The averaged statistics, shared & private, memory & CPU,
1236 * occupy the first half of the array. The second half of the
1237 * array is for current counters, which are averaged into the
1238 * first set by task_numa_placement.
1239 */
1240static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1241{
1242 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1243}
1244
1245static inline unsigned long task_faults(struct task_struct *p, int nid)
1246{
1247 if (!p->numa_faults)
1248 return 0;
1249
1250 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1251 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1252}
1253
1254static inline unsigned long group_faults(struct task_struct *p, int nid)
1255{
1256 struct numa_group *ng = deref_task_numa_group(p);
1257
1258 if (!ng)
1259 return 0;
1260
1261 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1262 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1263}
1264
1265static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1266{
1267 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1268 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1269}
1270
1271static inline unsigned long group_faults_priv(struct numa_group *ng)
1272{
1273 unsigned long faults = 0;
1274 int node;
1275
1276 for_each_online_node(node) {
1277 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1278 }
1279
1280 return faults;
1281}
1282
1283static inline unsigned long group_faults_shared(struct numa_group *ng)
1284{
1285 unsigned long faults = 0;
1286 int node;
1287
1288 for_each_online_node(node) {
1289 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1290 }
1291
1292 return faults;
1293}
1294
1295/*
1296 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1297 * considered part of a numa group's pseudo-interleaving set. Migrations
1298 * between these nodes are slowed down, to allow things to settle down.
1299 */
1300#define ACTIVE_NODE_FRACTION 3
1301
1302static bool numa_is_active_node(int nid, struct numa_group *ng)
1303{
1304 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1305}
1306
1307/* Handle placement on systems where not all nodes are directly connected. */
1308static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1309 int maxdist, bool task)
1310{
1311 unsigned long score = 0;
1312 int node;
1313
1314 /*
1315 * All nodes are directly connected, and the same distance
1316 * from each other. No need for fancy placement algorithms.
1317 */
1318 if (sched_numa_topology_type == NUMA_DIRECT)
1319 return 0;
1320
1321 /*
1322 * This code is called for each node, introducing N^2 complexity,
1323 * which should be ok given the number of nodes rarely exceeds 8.
1324 */
1325 for_each_online_node(node) {
1326 unsigned long faults;
1327 int dist = node_distance(nid, node);
1328
1329 /*
1330 * The furthest away nodes in the system are not interesting
1331 * for placement; nid was already counted.
1332 */
1333 if (dist == sched_max_numa_distance || node == nid)
1334 continue;
1335
1336 /*
1337 * On systems with a backplane NUMA topology, compare groups
1338 * of nodes, and move tasks towards the group with the most
1339 * memory accesses. When comparing two nodes at distance
1340 * "hoplimit", only nodes closer by than "hoplimit" are part
1341 * of each group. Skip other nodes.
1342 */
1343 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1344 dist >= maxdist)
1345 continue;
1346
1347 /* Add up the faults from nearby nodes. */
1348 if (task)
1349 faults = task_faults(p, node);
1350 else
1351 faults = group_faults(p, node);
1352
1353 /*
1354 * On systems with a glueless mesh NUMA topology, there are
1355 * no fixed "groups of nodes". Instead, nodes that are not
1356 * directly connected bounce traffic through intermediate
1357 * nodes; a numa_group can occupy any set of nodes.
1358 * The further away a node is, the less the faults count.
1359 * This seems to result in good task placement.
1360 */
1361 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1362 faults *= (sched_max_numa_distance - dist);
1363 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1364 }
1365
1366 score += faults;
1367 }
1368
1369 return score;
1370}
1371
1372/*
1373 * These return the fraction of accesses done by a particular task, or
1374 * task group, on a particular numa node. The group weight is given a
1375 * larger multiplier, in order to group tasks together that are almost
1376 * evenly spread out between numa nodes.
1377 */
1378static inline unsigned long task_weight(struct task_struct *p, int nid,
1379 int dist)
1380{
1381 unsigned long faults, total_faults;
1382
1383 if (!p->numa_faults)
1384 return 0;
1385
1386 total_faults = p->total_numa_faults;
1387
1388 if (!total_faults)
1389 return 0;
1390
1391 faults = task_faults(p, nid);
1392 faults += score_nearby_nodes(p, nid, dist, true);
1393
1394 return 1000 * faults / total_faults;
1395}
1396
1397static inline unsigned long group_weight(struct task_struct *p, int nid,
1398 int dist)
1399{
1400 struct numa_group *ng = deref_task_numa_group(p);
1401 unsigned long faults, total_faults;
1402
1403 if (!ng)
1404 return 0;
1405
1406 total_faults = ng->total_faults;
1407
1408 if (!total_faults)
1409 return 0;
1410
1411 faults = group_faults(p, nid);
1412 faults += score_nearby_nodes(p, nid, dist, false);
1413
1414 return 1000 * faults / total_faults;
1415}
1416
1417bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1418 int src_nid, int dst_cpu)
1419{
1420 struct numa_group *ng = deref_curr_numa_group(p);
1421 int dst_nid = cpu_to_node(dst_cpu);
1422 int last_cpupid, this_cpupid;
1423
1424 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1425 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1426
1427 /*
1428 * Allow first faults or private faults to migrate immediately early in
1429 * the lifetime of a task. The magic number 4 is based on waiting for
1430 * two full passes of the "multi-stage node selection" test that is
1431 * executed below.
1432 */
1433 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1434 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1435 return true;
1436
1437 /*
1438 * Multi-stage node selection is used in conjunction with a periodic
1439 * migration fault to build a temporal task<->page relation. By using
1440 * a two-stage filter we remove short/unlikely relations.
1441 *
1442 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1443 * a task's usage of a particular page (n_p) per total usage of this
1444 * page (n_t) (in a given time-span) to a probability.
1445 *
1446 * Our periodic faults will sample this probability and getting the
1447 * same result twice in a row, given these samples are fully
1448 * independent, is then given by P(n)^2, provided our sample period
1449 * is sufficiently short compared to the usage pattern.
1450 *
1451 * This quadric squishes small probabilities, making it less likely we
1452 * act on an unlikely task<->page relation.
1453 */
1454 if (!cpupid_pid_unset(last_cpupid) &&
1455 cpupid_to_nid(last_cpupid) != dst_nid)
1456 return false;
1457
1458 /* Always allow migrate on private faults */
1459 if (cpupid_match_pid(p, last_cpupid))
1460 return true;
1461
1462 /* A shared fault, but p->numa_group has not been set up yet. */
1463 if (!ng)
1464 return true;
1465
1466 /*
1467 * Destination node is much more heavily used than the source
1468 * node? Allow migration.
1469 */
1470 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1471 ACTIVE_NODE_FRACTION)
1472 return true;
1473
1474 /*
1475 * Distribute memory according to CPU & memory use on each node,
1476 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1477 *
1478 * faults_cpu(dst) 3 faults_cpu(src)
1479 * --------------- * - > ---------------
1480 * faults_mem(dst) 4 faults_mem(src)
1481 */
1482 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1483 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1484}
1485
1486/*
1487 * 'numa_type' describes the node at the moment of load balancing.
1488 */
1489enum numa_type {
1490 /* The node has spare capacity that can be used to run more tasks. */
1491 node_has_spare = 0,
1492 /*
1493 * The node is fully used and the tasks don't compete for more CPU
1494 * cycles. Nevertheless, some tasks might wait before running.
1495 */
1496 node_fully_busy,
1497 /*
1498 * The node is overloaded and can't provide expected CPU cycles to all
1499 * tasks.
1500 */
1501 node_overloaded
1502};
1503
1504/* Cached statistics for all CPUs within a node */
1505struct numa_stats {
1506 unsigned long load;
1507 unsigned long util;
1508 /* Total compute capacity of CPUs on a node */
1509 unsigned long compute_capacity;
1510 unsigned int nr_running;
1511 unsigned int weight;
1512 enum numa_type node_type;
1513 int idle_cpu;
1514};
1515
1516static inline bool is_core_idle(int cpu)
1517{
1518#ifdef CONFIG_SCHED_SMT
1519 int sibling;
1520
1521 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1522 if (cpu == sibling)
1523 continue;
1524
1525 if (!idle_cpu(cpu))
1526 return false;
1527 }
1528#endif
1529
1530 return true;
1531}
1532
1533struct task_numa_env {
1534 struct task_struct *p;
1535
1536 int src_cpu, src_nid;
1537 int dst_cpu, dst_nid;
1538
1539 struct numa_stats src_stats, dst_stats;
1540
1541 int imbalance_pct;
1542 int dist;
1543
1544 struct task_struct *best_task;
1545 long best_imp;
1546 int best_cpu;
1547};
1548
1549static unsigned long cpu_load(struct rq *rq);
1550static unsigned long cpu_util(int cpu);
1551static inline long adjust_numa_imbalance(int imbalance, int src_nr_running);
1552
1553static inline enum
1554numa_type numa_classify(unsigned int imbalance_pct,
1555 struct numa_stats *ns)
1556{
1557 if ((ns->nr_running > ns->weight) &&
1558 ((ns->compute_capacity * 100) < (ns->util * imbalance_pct)))
1559 return node_overloaded;
1560
1561 if ((ns->nr_running < ns->weight) ||
1562 ((ns->compute_capacity * 100) > (ns->util * imbalance_pct)))
1563 return node_has_spare;
1564
1565 return node_fully_busy;
1566}
1567
1568#ifdef CONFIG_SCHED_SMT
1569/* Forward declarations of select_idle_sibling helpers */
1570static inline bool test_idle_cores(int cpu, bool def);
1571static inline int numa_idle_core(int idle_core, int cpu)
1572{
1573 if (!static_branch_likely(&sched_smt_present) ||
1574 idle_core >= 0 || !test_idle_cores(cpu, false))
1575 return idle_core;
1576
1577 /*
1578 * Prefer cores instead of packing HT siblings
1579 * and triggering future load balancing.
1580 */
1581 if (is_core_idle(cpu))
1582 idle_core = cpu;
1583
1584 return idle_core;
1585}
1586#else
1587static inline int numa_idle_core(int idle_core, int cpu)
1588{
1589 return idle_core;
1590}
1591#endif
1592
1593/*
1594 * Gather all necessary information to make NUMA balancing placement
1595 * decisions that are compatible with standard load balancer. This
1596 * borrows code and logic from update_sg_lb_stats but sharing a
1597 * common implementation is impractical.
1598 */
1599static void update_numa_stats(struct task_numa_env *env,
1600 struct numa_stats *ns, int nid,
1601 bool find_idle)
1602{
1603 int cpu, idle_core = -1;
1604
1605 memset(ns, 0, sizeof(*ns));
1606 ns->idle_cpu = -1;
1607
1608 rcu_read_lock();
1609 for_each_cpu(cpu, cpumask_of_node(nid)) {
1610 struct rq *rq = cpu_rq(cpu);
1611
1612 ns->load += cpu_load(rq);
1613 ns->util += cpu_util(cpu);
1614 ns->nr_running += rq->cfs.h_nr_running;
1615 ns->compute_capacity += capacity_of(cpu);
1616
1617 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1618 if (READ_ONCE(rq->numa_migrate_on) ||
1619 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1620 continue;
1621
1622 if (ns->idle_cpu == -1)
1623 ns->idle_cpu = cpu;
1624
1625 idle_core = numa_idle_core(idle_core, cpu);
1626 }
1627 }
1628 rcu_read_unlock();
1629
1630 ns->weight = cpumask_weight(cpumask_of_node(nid));
1631
1632 ns->node_type = numa_classify(env->imbalance_pct, ns);
1633
1634 if (idle_core >= 0)
1635 ns->idle_cpu = idle_core;
1636}
1637
1638static void task_numa_assign(struct task_numa_env *env,
1639 struct task_struct *p, long imp)
1640{
1641 struct rq *rq = cpu_rq(env->dst_cpu);
1642
1643 /* Check if run-queue part of active NUMA balance. */
1644 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1645 int cpu;
1646 int start = env->dst_cpu;
1647
1648 /* Find alternative idle CPU. */
1649 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1650 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1651 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1652 continue;
1653 }
1654
1655 env->dst_cpu = cpu;
1656 rq = cpu_rq(env->dst_cpu);
1657 if (!xchg(&rq->numa_migrate_on, 1))
1658 goto assign;
1659 }
1660
1661 /* Failed to find an alternative idle CPU */
1662 return;
1663 }
1664
1665assign:
1666 /*
1667 * Clear previous best_cpu/rq numa-migrate flag, since task now
1668 * found a better CPU to move/swap.
1669 */
1670 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1671 rq = cpu_rq(env->best_cpu);
1672 WRITE_ONCE(rq->numa_migrate_on, 0);
1673 }
1674
1675 if (env->best_task)
1676 put_task_struct(env->best_task);
1677 if (p)
1678 get_task_struct(p);
1679
1680 env->best_task = p;
1681 env->best_imp = imp;
1682 env->best_cpu = env->dst_cpu;
1683}
1684
1685static bool load_too_imbalanced(long src_load, long dst_load,
1686 struct task_numa_env *env)
1687{
1688 long imb, old_imb;
1689 long orig_src_load, orig_dst_load;
1690 long src_capacity, dst_capacity;
1691
1692 /*
1693 * The load is corrected for the CPU capacity available on each node.
1694 *
1695 * src_load dst_load
1696 * ------------ vs ---------
1697 * src_capacity dst_capacity
1698 */
1699 src_capacity = env->src_stats.compute_capacity;
1700 dst_capacity = env->dst_stats.compute_capacity;
1701
1702 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1703
1704 orig_src_load = env->src_stats.load;
1705 orig_dst_load = env->dst_stats.load;
1706
1707 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1708
1709 /* Would this change make things worse? */
1710 return (imb > old_imb);
1711}
1712
1713/*
1714 * Maximum NUMA importance can be 1998 (2*999);
1715 * SMALLIMP @ 30 would be close to 1998/64.
1716 * Used to deter task migration.
1717 */
1718#define SMALLIMP 30
1719
1720/*
1721 * This checks if the overall compute and NUMA accesses of the system would
1722 * be improved if the source tasks was migrated to the target dst_cpu taking
1723 * into account that it might be best if task running on the dst_cpu should
1724 * be exchanged with the source task
1725 */
1726static bool task_numa_compare(struct task_numa_env *env,
1727 long taskimp, long groupimp, bool maymove)
1728{
1729 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1730 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1731 long imp = p_ng ? groupimp : taskimp;
1732 struct task_struct *cur;
1733 long src_load, dst_load;
1734 int dist = env->dist;
1735 long moveimp = imp;
1736 long load;
1737 bool stopsearch = false;
1738
1739 if (READ_ONCE(dst_rq->numa_migrate_on))
1740 return false;
1741
1742 rcu_read_lock();
1743 cur = rcu_dereference(dst_rq->curr);
1744 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1745 cur = NULL;
1746
1747 /*
1748 * Because we have preemption enabled we can get migrated around and
1749 * end try selecting ourselves (current == env->p) as a swap candidate.
1750 */
1751 if (cur == env->p) {
1752 stopsearch = true;
1753 goto unlock;
1754 }
1755
1756 if (!cur) {
1757 if (maymove && moveimp >= env->best_imp)
1758 goto assign;
1759 else
1760 goto unlock;
1761 }
1762
1763 /* Skip this swap candidate if cannot move to the source cpu. */
1764 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1765 goto unlock;
1766
1767 /*
1768 * Skip this swap candidate if it is not moving to its preferred
1769 * node and the best task is.
1770 */
1771 if (env->best_task &&
1772 env->best_task->numa_preferred_nid == env->src_nid &&
1773 cur->numa_preferred_nid != env->src_nid) {
1774 goto unlock;
1775 }
1776
1777 /*
1778 * "imp" is the fault differential for the source task between the
1779 * source and destination node. Calculate the total differential for
1780 * the source task and potential destination task. The more negative
1781 * the value is, the more remote accesses that would be expected to
1782 * be incurred if the tasks were swapped.
1783 *
1784 * If dst and source tasks are in the same NUMA group, or not
1785 * in any group then look only at task weights.
1786 */
1787 cur_ng = rcu_dereference(cur->numa_group);
1788 if (cur_ng == p_ng) {
1789 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1790 task_weight(cur, env->dst_nid, dist);
1791 /*
1792 * Add some hysteresis to prevent swapping the
1793 * tasks within a group over tiny differences.
1794 */
1795 if (cur_ng)
1796 imp -= imp / 16;
1797 } else {
1798 /*
1799 * Compare the group weights. If a task is all by itself
1800 * (not part of a group), use the task weight instead.
1801 */
1802 if (cur_ng && p_ng)
1803 imp += group_weight(cur, env->src_nid, dist) -
1804 group_weight(cur, env->dst_nid, dist);
1805 else
1806 imp += task_weight(cur, env->src_nid, dist) -
1807 task_weight(cur, env->dst_nid, dist);
1808 }
1809
1810 /* Discourage picking a task already on its preferred node */
1811 if (cur->numa_preferred_nid == env->dst_nid)
1812 imp -= imp / 16;
1813
1814 /*
1815 * Encourage picking a task that moves to its preferred node.
1816 * This potentially makes imp larger than it's maximum of
1817 * 1998 (see SMALLIMP and task_weight for why) but in this
1818 * case, it does not matter.
1819 */
1820 if (cur->numa_preferred_nid == env->src_nid)
1821 imp += imp / 8;
1822
1823 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1824 imp = moveimp;
1825 cur = NULL;
1826 goto assign;
1827 }
1828
1829 /*
1830 * Prefer swapping with a task moving to its preferred node over a
1831 * task that is not.
1832 */
1833 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1834 env->best_task->numa_preferred_nid != env->src_nid) {
1835 goto assign;
1836 }
1837
1838 /*
1839 * If the NUMA importance is less than SMALLIMP,
1840 * task migration might only result in ping pong
1841 * of tasks and also hurt performance due to cache
1842 * misses.
1843 */
1844 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1845 goto unlock;
1846
1847 /*
1848 * In the overloaded case, try and keep the load balanced.
1849 */
1850 load = task_h_load(env->p) - task_h_load(cur);
1851 if (!load)
1852 goto assign;
1853
1854 dst_load = env->dst_stats.load + load;
1855 src_load = env->src_stats.load - load;
1856
1857 if (load_too_imbalanced(src_load, dst_load, env))
1858 goto unlock;
1859
1860assign:
1861 /* Evaluate an idle CPU for a task numa move. */
1862 if (!cur) {
1863 int cpu = env->dst_stats.idle_cpu;
1864
1865 /* Nothing cached so current CPU went idle since the search. */
1866 if (cpu < 0)
1867 cpu = env->dst_cpu;
1868
1869 /*
1870 * If the CPU is no longer truly idle and the previous best CPU
1871 * is, keep using it.
1872 */
1873 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1874 idle_cpu(env->best_cpu)) {
1875 cpu = env->best_cpu;
1876 }
1877
1878 env->dst_cpu = cpu;
1879 }
1880
1881 task_numa_assign(env, cur, imp);
1882
1883 /*
1884 * If a move to idle is allowed because there is capacity or load
1885 * balance improves then stop the search. While a better swap
1886 * candidate may exist, a search is not free.
1887 */
1888 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1889 stopsearch = true;
1890
1891 /*
1892 * If a swap candidate must be identified and the current best task
1893 * moves its preferred node then stop the search.
1894 */
1895 if (!maymove && env->best_task &&
1896 env->best_task->numa_preferred_nid == env->src_nid) {
1897 stopsearch = true;
1898 }
1899unlock:
1900 rcu_read_unlock();
1901
1902 return stopsearch;
1903}
1904
1905static void task_numa_find_cpu(struct task_numa_env *env,
1906 long taskimp, long groupimp)
1907{
1908 bool maymove = false;
1909 int cpu;
1910
1911 /*
1912 * If dst node has spare capacity, then check if there is an
1913 * imbalance that would be overruled by the load balancer.
1914 */
1915 if (env->dst_stats.node_type == node_has_spare) {
1916 unsigned int imbalance;
1917 int src_running, dst_running;
1918
1919 /*
1920 * Would movement cause an imbalance? Note that if src has
1921 * more running tasks that the imbalance is ignored as the
1922 * move improves the imbalance from the perspective of the
1923 * CPU load balancer.
1924 * */
1925 src_running = env->src_stats.nr_running - 1;
1926 dst_running = env->dst_stats.nr_running + 1;
1927 imbalance = max(0, dst_running - src_running);
1928 imbalance = adjust_numa_imbalance(imbalance, src_running);
1929
1930 /* Use idle CPU if there is no imbalance */
1931 if (!imbalance) {
1932 maymove = true;
1933 if (env->dst_stats.idle_cpu >= 0) {
1934 env->dst_cpu = env->dst_stats.idle_cpu;
1935 task_numa_assign(env, NULL, 0);
1936 return;
1937 }
1938 }
1939 } else {
1940 long src_load, dst_load, load;
1941 /*
1942 * If the improvement from just moving env->p direction is better
1943 * than swapping tasks around, check if a move is possible.
1944 */
1945 load = task_h_load(env->p);
1946 dst_load = env->dst_stats.load + load;
1947 src_load = env->src_stats.load - load;
1948 maymove = !load_too_imbalanced(src_load, dst_load, env);
1949 }
1950
1951 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1952 /* Skip this CPU if the source task cannot migrate */
1953 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1954 continue;
1955
1956 env->dst_cpu = cpu;
1957 if (task_numa_compare(env, taskimp, groupimp, maymove))
1958 break;
1959 }
1960}
1961
1962static int task_numa_migrate(struct task_struct *p)
1963{
1964 struct task_numa_env env = {
1965 .p = p,
1966
1967 .src_cpu = task_cpu(p),
1968 .src_nid = task_node(p),
1969
1970 .imbalance_pct = 112,
1971
1972 .best_task = NULL,
1973 .best_imp = 0,
1974 .best_cpu = -1,
1975 };
1976 unsigned long taskweight, groupweight;
1977 struct sched_domain *sd;
1978 long taskimp, groupimp;
1979 struct numa_group *ng;
1980 struct rq *best_rq;
1981 int nid, ret, dist;
1982
1983 /*
1984 * Pick the lowest SD_NUMA domain, as that would have the smallest
1985 * imbalance and would be the first to start moving tasks about.
1986 *
1987 * And we want to avoid any moving of tasks about, as that would create
1988 * random movement of tasks -- counter the numa conditions we're trying
1989 * to satisfy here.
1990 */
1991 rcu_read_lock();
1992 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1993 if (sd)
1994 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1995 rcu_read_unlock();
1996
1997 /*
1998 * Cpusets can break the scheduler domain tree into smaller
1999 * balance domains, some of which do not cross NUMA boundaries.
2000 * Tasks that are "trapped" in such domains cannot be migrated
2001 * elsewhere, so there is no point in (re)trying.
2002 */
2003 if (unlikely(!sd)) {
2004 sched_setnuma(p, task_node(p));
2005 return -EINVAL;
2006 }
2007
2008 env.dst_nid = p->numa_preferred_nid;
2009 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2010 taskweight = task_weight(p, env.src_nid, dist);
2011 groupweight = group_weight(p, env.src_nid, dist);
2012 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2013 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2014 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2015 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2016
2017 /* Try to find a spot on the preferred nid. */
2018 task_numa_find_cpu(&env, taskimp, groupimp);
2019
2020 /*
2021 * Look at other nodes in these cases:
2022 * - there is no space available on the preferred_nid
2023 * - the task is part of a numa_group that is interleaved across
2024 * multiple NUMA nodes; in order to better consolidate the group,
2025 * we need to check other locations.
2026 */
2027 ng = deref_curr_numa_group(p);
2028 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2029 for_each_online_node(nid) {
2030 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2031 continue;
2032
2033 dist = node_distance(env.src_nid, env.dst_nid);
2034 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2035 dist != env.dist) {
2036 taskweight = task_weight(p, env.src_nid, dist);
2037 groupweight = group_weight(p, env.src_nid, dist);
2038 }
2039
2040 /* Only consider nodes where both task and groups benefit */
2041 taskimp = task_weight(p, nid, dist) - taskweight;
2042 groupimp = group_weight(p, nid, dist) - groupweight;
2043 if (taskimp < 0 && groupimp < 0)
2044 continue;
2045
2046 env.dist = dist;
2047 env.dst_nid = nid;
2048 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2049 task_numa_find_cpu(&env, taskimp, groupimp);
2050 }
2051 }
2052
2053 /*
2054 * If the task is part of a workload that spans multiple NUMA nodes,
2055 * and is migrating into one of the workload's active nodes, remember
2056 * this node as the task's preferred numa node, so the workload can
2057 * settle down.
2058 * A task that migrated to a second choice node will be better off
2059 * trying for a better one later. Do not set the preferred node here.
2060 */
2061 if (ng) {
2062 if (env.best_cpu == -1)
2063 nid = env.src_nid;
2064 else
2065 nid = cpu_to_node(env.best_cpu);
2066
2067 if (nid != p->numa_preferred_nid)
2068 sched_setnuma(p, nid);
2069 }
2070
2071 /* No better CPU than the current one was found. */
2072 if (env.best_cpu == -1) {
2073 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2074 return -EAGAIN;
2075 }
2076
2077 best_rq = cpu_rq(env.best_cpu);
2078 if (env.best_task == NULL) {
2079 ret = migrate_task_to(p, env.best_cpu);
2080 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2081 if (ret != 0)
2082 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2083 return ret;
2084 }
2085
2086 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2087 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2088
2089 if (ret != 0)
2090 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2091 put_task_struct(env.best_task);
2092 return ret;
2093}
2094
2095/* Attempt to migrate a task to a CPU on the preferred node. */
2096static void numa_migrate_preferred(struct task_struct *p)
2097{
2098 unsigned long interval = HZ;
2099
2100 /* This task has no NUMA fault statistics yet */
2101 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2102 return;
2103
2104 /* Periodically retry migrating the task to the preferred node */
2105 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2106 p->numa_migrate_retry = jiffies + interval;
2107
2108 /* Success if task is already running on preferred CPU */
2109 if (task_node(p) == p->numa_preferred_nid)
2110 return;
2111
2112 /* Otherwise, try migrate to a CPU on the preferred node */
2113 task_numa_migrate(p);
2114}
2115
2116/*
2117 * Find out how many nodes on the workload is actively running on. Do this by
2118 * tracking the nodes from which NUMA hinting faults are triggered. This can
2119 * be different from the set of nodes where the workload's memory is currently
2120 * located.
2121 */
2122static void numa_group_count_active_nodes(struct numa_group *numa_group)
2123{
2124 unsigned long faults, max_faults = 0;
2125 int nid, active_nodes = 0;
2126
2127 for_each_online_node(nid) {
2128 faults = group_faults_cpu(numa_group, nid);
2129 if (faults > max_faults)
2130 max_faults = faults;
2131 }
2132
2133 for_each_online_node(nid) {
2134 faults = group_faults_cpu(numa_group, nid);
2135 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2136 active_nodes++;
2137 }
2138
2139 numa_group->max_faults_cpu = max_faults;
2140 numa_group->active_nodes = active_nodes;
2141}
2142
2143/*
2144 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2145 * increments. The more local the fault statistics are, the higher the scan
2146 * period will be for the next scan window. If local/(local+remote) ratio is
2147 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2148 * the scan period will decrease. Aim for 70% local accesses.
2149 */
2150#define NUMA_PERIOD_SLOTS 10
2151#define NUMA_PERIOD_THRESHOLD 7
2152
2153/*
2154 * Increase the scan period (slow down scanning) if the majority of
2155 * our memory is already on our local node, or if the majority of
2156 * the page accesses are shared with other processes.
2157 * Otherwise, decrease the scan period.
2158 */
2159static void update_task_scan_period(struct task_struct *p,
2160 unsigned long shared, unsigned long private)
2161{
2162 unsigned int period_slot;
2163 int lr_ratio, ps_ratio;
2164 int diff;
2165
2166 unsigned long remote = p->numa_faults_locality[0];
2167 unsigned long local = p->numa_faults_locality[1];
2168
2169 /*
2170 * If there were no record hinting faults then either the task is
2171 * completely idle or all activity is areas that are not of interest
2172 * to automatic numa balancing. Related to that, if there were failed
2173 * migration then it implies we are migrating too quickly or the local
2174 * node is overloaded. In either case, scan slower
2175 */
2176 if (local + shared == 0 || p->numa_faults_locality[2]) {
2177 p->numa_scan_period = min(p->numa_scan_period_max,
2178 p->numa_scan_period << 1);
2179
2180 p->mm->numa_next_scan = jiffies +
2181 msecs_to_jiffies(p->numa_scan_period);
2182
2183 return;
2184 }
2185
2186 /*
2187 * Prepare to scale scan period relative to the current period.
2188 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2189 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2190 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2191 */
2192 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2193 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2194 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2195
2196 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2197 /*
2198 * Most memory accesses are local. There is no need to
2199 * do fast NUMA scanning, since memory is already local.
2200 */
2201 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2202 if (!slot)
2203 slot = 1;
2204 diff = slot * period_slot;
2205 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2206 /*
2207 * Most memory accesses are shared with other tasks.
2208 * There is no point in continuing fast NUMA scanning,
2209 * since other tasks may just move the memory elsewhere.
2210 */
2211 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2212 if (!slot)
2213 slot = 1;
2214 diff = slot * period_slot;
2215 } else {
2216 /*
2217 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2218 * yet they are not on the local NUMA node. Speed up
2219 * NUMA scanning to get the memory moved over.
2220 */
2221 int ratio = max(lr_ratio, ps_ratio);
2222 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2223 }
2224
2225 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2226 task_scan_min(p), task_scan_max(p));
2227 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2228}
2229
2230/*
2231 * Get the fraction of time the task has been running since the last
2232 * NUMA placement cycle. The scheduler keeps similar statistics, but
2233 * decays those on a 32ms period, which is orders of magnitude off
2234 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2235 * stats only if the task is so new there are no NUMA statistics yet.
2236 */
2237static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2238{
2239 u64 runtime, delta, now;
2240 /* Use the start of this time slice to avoid calculations. */
2241 now = p->se.exec_start;
2242 runtime = p->se.sum_exec_runtime;
2243
2244 if (p->last_task_numa_placement) {
2245 delta = runtime - p->last_sum_exec_runtime;
2246 *period = now - p->last_task_numa_placement;
2247
2248 /* Avoid time going backwards, prevent potential divide error: */
2249 if (unlikely((s64)*period < 0))
2250 *period = 0;
2251 } else {
2252 delta = p->se.avg.load_sum;
2253 *period = LOAD_AVG_MAX;
2254 }
2255
2256 p->last_sum_exec_runtime = runtime;
2257 p->last_task_numa_placement = now;
2258
2259 return delta;
2260}
2261
2262/*
2263 * Determine the preferred nid for a task in a numa_group. This needs to
2264 * be done in a way that produces consistent results with group_weight,
2265 * otherwise workloads might not converge.
2266 */
2267static int preferred_group_nid(struct task_struct *p, int nid)
2268{
2269 nodemask_t nodes;
2270 int dist;
2271
2272 /* Direct connections between all NUMA nodes. */
2273 if (sched_numa_topology_type == NUMA_DIRECT)
2274 return nid;
2275
2276 /*
2277 * On a system with glueless mesh NUMA topology, group_weight
2278 * scores nodes according to the number of NUMA hinting faults on
2279 * both the node itself, and on nearby nodes.
2280 */
2281 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2282 unsigned long score, max_score = 0;
2283 int node, max_node = nid;
2284
2285 dist = sched_max_numa_distance;
2286
2287 for_each_online_node(node) {
2288 score = group_weight(p, node, dist);
2289 if (score > max_score) {
2290 max_score = score;
2291 max_node = node;
2292 }
2293 }
2294 return max_node;
2295 }
2296
2297 /*
2298 * Finding the preferred nid in a system with NUMA backplane
2299 * interconnect topology is more involved. The goal is to locate
2300 * tasks from numa_groups near each other in the system, and
2301 * untangle workloads from different sides of the system. This requires
2302 * searching down the hierarchy of node groups, recursively searching
2303 * inside the highest scoring group of nodes. The nodemask tricks
2304 * keep the complexity of the search down.
2305 */
2306 nodes = node_online_map;
2307 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2308 unsigned long max_faults = 0;
2309 nodemask_t max_group = NODE_MASK_NONE;
2310 int a, b;
2311
2312 /* Are there nodes at this distance from each other? */
2313 if (!find_numa_distance(dist))
2314 continue;
2315
2316 for_each_node_mask(a, nodes) {
2317 unsigned long faults = 0;
2318 nodemask_t this_group;
2319 nodes_clear(this_group);
2320
2321 /* Sum group's NUMA faults; includes a==b case. */
2322 for_each_node_mask(b, nodes) {
2323 if (node_distance(a, b) < dist) {
2324 faults += group_faults(p, b);
2325 node_set(b, this_group);
2326 node_clear(b, nodes);
2327 }
2328 }
2329
2330 /* Remember the top group. */
2331 if (faults > max_faults) {
2332 max_faults = faults;
2333 max_group = this_group;
2334 /*
2335 * subtle: at the smallest distance there is
2336 * just one node left in each "group", the
2337 * winner is the preferred nid.
2338 */
2339 nid = a;
2340 }
2341 }
2342 /* Next round, evaluate the nodes within max_group. */
2343 if (!max_faults)
2344 break;
2345 nodes = max_group;
2346 }
2347 return nid;
2348}
2349
2350static void task_numa_placement(struct task_struct *p)
2351{
2352 int seq, nid, max_nid = NUMA_NO_NODE;
2353 unsigned long max_faults = 0;
2354 unsigned long fault_types[2] = { 0, 0 };
2355 unsigned long total_faults;
2356 u64 runtime, period;
2357 spinlock_t *group_lock = NULL;
2358 struct numa_group *ng;
2359
2360 /*
2361 * The p->mm->numa_scan_seq field gets updated without
2362 * exclusive access. Use READ_ONCE() here to ensure
2363 * that the field is read in a single access:
2364 */
2365 seq = READ_ONCE(p->mm->numa_scan_seq);
2366 if (p->numa_scan_seq == seq)
2367 return;
2368 p->numa_scan_seq = seq;
2369 p->numa_scan_period_max = task_scan_max(p);
2370
2371 total_faults = p->numa_faults_locality[0] +
2372 p->numa_faults_locality[1];
2373 runtime = numa_get_avg_runtime(p, &period);
2374
2375 /* If the task is part of a group prevent parallel updates to group stats */
2376 ng = deref_curr_numa_group(p);
2377 if (ng) {
2378 group_lock = &ng->lock;
2379 spin_lock_irq(group_lock);
2380 }
2381
2382 /* Find the node with the highest number of faults */
2383 for_each_online_node(nid) {
2384 /* Keep track of the offsets in numa_faults array */
2385 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2386 unsigned long faults = 0, group_faults = 0;
2387 int priv;
2388
2389 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2390 long diff, f_diff, f_weight;
2391
2392 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2393 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2394 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2395 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2396
2397 /* Decay existing window, copy faults since last scan */
2398 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2399 fault_types[priv] += p->numa_faults[membuf_idx];
2400 p->numa_faults[membuf_idx] = 0;
2401
2402 /*
2403 * Normalize the faults_from, so all tasks in a group
2404 * count according to CPU use, instead of by the raw
2405 * number of faults. Tasks with little runtime have
2406 * little over-all impact on throughput, and thus their
2407 * faults are less important.
2408 */
2409 f_weight = div64_u64(runtime << 16, period + 1);
2410 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2411 (total_faults + 1);
2412 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2413 p->numa_faults[cpubuf_idx] = 0;
2414
2415 p->numa_faults[mem_idx] += diff;
2416 p->numa_faults[cpu_idx] += f_diff;
2417 faults += p->numa_faults[mem_idx];
2418 p->total_numa_faults += diff;
2419 if (ng) {
2420 /*
2421 * safe because we can only change our own group
2422 *
2423 * mem_idx represents the offset for a given
2424 * nid and priv in a specific region because it
2425 * is at the beginning of the numa_faults array.
2426 */
2427 ng->faults[mem_idx] += diff;
2428 ng->faults_cpu[mem_idx] += f_diff;
2429 ng->total_faults += diff;
2430 group_faults += ng->faults[mem_idx];
2431 }
2432 }
2433
2434 if (!ng) {
2435 if (faults > max_faults) {
2436 max_faults = faults;
2437 max_nid = nid;
2438 }
2439 } else if (group_faults > max_faults) {
2440 max_faults = group_faults;
2441 max_nid = nid;
2442 }
2443 }
2444
2445 if (ng) {
2446 numa_group_count_active_nodes(ng);
2447 spin_unlock_irq(group_lock);
2448 max_nid = preferred_group_nid(p, max_nid);
2449 }
2450
2451 if (max_faults) {
2452 /* Set the new preferred node */
2453 if (max_nid != p->numa_preferred_nid)
2454 sched_setnuma(p, max_nid);
2455 }
2456
2457 update_task_scan_period(p, fault_types[0], fault_types[1]);
2458}
2459
2460static inline int get_numa_group(struct numa_group *grp)
2461{
2462 return refcount_inc_not_zero(&grp->refcount);
2463}
2464
2465static inline void put_numa_group(struct numa_group *grp)
2466{
2467 if (refcount_dec_and_test(&grp->refcount))
2468 kfree_rcu(grp, rcu);
2469}
2470
2471static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2472 int *priv)
2473{
2474 struct numa_group *grp, *my_grp;
2475 struct task_struct *tsk;
2476 bool join = false;
2477 int cpu = cpupid_to_cpu(cpupid);
2478 int i;
2479
2480 if (unlikely(!deref_curr_numa_group(p))) {
2481 unsigned int size = sizeof(struct numa_group) +
2482 4*nr_node_ids*sizeof(unsigned long);
2483
2484 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2485 if (!grp)
2486 return;
2487
2488 refcount_set(&grp->refcount, 1);
2489 grp->active_nodes = 1;
2490 grp->max_faults_cpu = 0;
2491 spin_lock_init(&grp->lock);
2492 grp->gid = p->pid;
2493 /* Second half of the array tracks nids where faults happen */
2494 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2495 nr_node_ids;
2496
2497 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2498 grp->faults[i] = p->numa_faults[i];
2499
2500 grp->total_faults = p->total_numa_faults;
2501
2502 grp->nr_tasks++;
2503 rcu_assign_pointer(p->numa_group, grp);
2504 }
2505
2506 rcu_read_lock();
2507 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2508
2509 if (!cpupid_match_pid(tsk, cpupid))
2510 goto no_join;
2511
2512 grp = rcu_dereference(tsk->numa_group);
2513 if (!grp)
2514 goto no_join;
2515
2516 my_grp = deref_curr_numa_group(p);
2517 if (grp == my_grp)
2518 goto no_join;
2519
2520 /*
2521 * Only join the other group if its bigger; if we're the bigger group,
2522 * the other task will join us.
2523 */
2524 if (my_grp->nr_tasks > grp->nr_tasks)
2525 goto no_join;
2526
2527 /*
2528 * Tie-break on the grp address.
2529 */
2530 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2531 goto no_join;
2532
2533 /* Always join threads in the same process. */
2534 if (tsk->mm == current->mm)
2535 join = true;
2536
2537 /* Simple filter to avoid false positives due to PID collisions */
2538 if (flags & TNF_SHARED)
2539 join = true;
2540
2541 /* Update priv based on whether false sharing was detected */
2542 *priv = !join;
2543
2544 if (join && !get_numa_group(grp))
2545 goto no_join;
2546
2547 rcu_read_unlock();
2548
2549 if (!join)
2550 return;
2551
2552 BUG_ON(irqs_disabled());
2553 double_lock_irq(&my_grp->lock, &grp->lock);
2554
2555 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2556 my_grp->faults[i] -= p->numa_faults[i];
2557 grp->faults[i] += p->numa_faults[i];
2558 }
2559 my_grp->total_faults -= p->total_numa_faults;
2560 grp->total_faults += p->total_numa_faults;
2561
2562 my_grp->nr_tasks--;
2563 grp->nr_tasks++;
2564
2565 spin_unlock(&my_grp->lock);
2566 spin_unlock_irq(&grp->lock);
2567
2568 rcu_assign_pointer(p->numa_group, grp);
2569
2570 put_numa_group(my_grp);
2571 return;
2572
2573no_join:
2574 rcu_read_unlock();
2575 return;
2576}
2577
2578/*
2579 * Get rid of NUMA staticstics associated with a task (either current or dead).
2580 * If @final is set, the task is dead and has reached refcount zero, so we can
2581 * safely free all relevant data structures. Otherwise, there might be
2582 * concurrent reads from places like load balancing and procfs, and we should
2583 * reset the data back to default state without freeing ->numa_faults.
2584 */
2585void task_numa_free(struct task_struct *p, bool final)
2586{
2587 /* safe: p either is current or is being freed by current */
2588 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2589 unsigned long *numa_faults = p->numa_faults;
2590 unsigned long flags;
2591 int i;
2592
2593 if (!numa_faults)
2594 return;
2595
2596 if (grp) {
2597 spin_lock_irqsave(&grp->lock, flags);
2598 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2599 grp->faults[i] -= p->numa_faults[i];
2600 grp->total_faults -= p->total_numa_faults;
2601
2602 grp->nr_tasks--;
2603 spin_unlock_irqrestore(&grp->lock, flags);
2604 RCU_INIT_POINTER(p->numa_group, NULL);
2605 put_numa_group(grp);
2606 }
2607
2608 if (final) {
2609 p->numa_faults = NULL;
2610 kfree(numa_faults);
2611 } else {
2612 p->total_numa_faults = 0;
2613 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2614 numa_faults[i] = 0;
2615 }
2616}
2617
2618/*
2619 * Got a PROT_NONE fault for a page on @node.
2620 */
2621void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2622{
2623 struct task_struct *p = current;
2624 bool migrated = flags & TNF_MIGRATED;
2625 int cpu_node = task_node(current);
2626 int local = !!(flags & TNF_FAULT_LOCAL);
2627 struct numa_group *ng;
2628 int priv;
2629
2630 if (!static_branch_likely(&sched_numa_balancing))
2631 return;
2632
2633 /* for example, ksmd faulting in a user's mm */
2634 if (!p->mm)
2635 return;
2636
2637 /* Allocate buffer to track faults on a per-node basis */
2638 if (unlikely(!p->numa_faults)) {
2639 int size = sizeof(*p->numa_faults) *
2640 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2641
2642 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2643 if (!p->numa_faults)
2644 return;
2645
2646 p->total_numa_faults = 0;
2647 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2648 }
2649
2650 /*
2651 * First accesses are treated as private, otherwise consider accesses
2652 * to be private if the accessing pid has not changed
2653 */
2654 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2655 priv = 1;
2656 } else {
2657 priv = cpupid_match_pid(p, last_cpupid);
2658 if (!priv && !(flags & TNF_NO_GROUP))
2659 task_numa_group(p, last_cpupid, flags, &priv);
2660 }
2661
2662 /*
2663 * If a workload spans multiple NUMA nodes, a shared fault that
2664 * occurs wholly within the set of nodes that the workload is
2665 * actively using should be counted as local. This allows the
2666 * scan rate to slow down when a workload has settled down.
2667 */
2668 ng = deref_curr_numa_group(p);
2669 if (!priv && !local && ng && ng->active_nodes > 1 &&
2670 numa_is_active_node(cpu_node, ng) &&
2671 numa_is_active_node(mem_node, ng))
2672 local = 1;
2673
2674 /*
2675 * Retry to migrate task to preferred node periodically, in case it
2676 * previously failed, or the scheduler moved us.
2677 */
2678 if (time_after(jiffies, p->numa_migrate_retry)) {
2679 task_numa_placement(p);
2680 numa_migrate_preferred(p);
2681 }
2682
2683 if (migrated)
2684 p->numa_pages_migrated += pages;
2685 if (flags & TNF_MIGRATE_FAIL)
2686 p->numa_faults_locality[2] += pages;
2687
2688 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2689 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2690 p->numa_faults_locality[local] += pages;
2691}
2692
2693static void reset_ptenuma_scan(struct task_struct *p)
2694{
2695 /*
2696 * We only did a read acquisition of the mmap sem, so
2697 * p->mm->numa_scan_seq is written to without exclusive access
2698 * and the update is not guaranteed to be atomic. That's not
2699 * much of an issue though, since this is just used for
2700 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2701 * expensive, to avoid any form of compiler optimizations:
2702 */
2703 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2704 p->mm->numa_scan_offset = 0;
2705}
2706
2707/*
2708 * The expensive part of numa migration is done from task_work context.
2709 * Triggered from task_tick_numa().
2710 */
2711static void task_numa_work(struct callback_head *work)
2712{
2713 unsigned long migrate, next_scan, now = jiffies;
2714 struct task_struct *p = current;
2715 struct mm_struct *mm = p->mm;
2716 u64 runtime = p->se.sum_exec_runtime;
2717 struct vm_area_struct *vma;
2718 unsigned long start, end;
2719 unsigned long nr_pte_updates = 0;
2720 long pages, virtpages;
2721
2722 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2723
2724 work->next = work;
2725 /*
2726 * Who cares about NUMA placement when they're dying.
2727 *
2728 * NOTE: make sure not to dereference p->mm before this check,
2729 * exit_task_work() happens _after_ exit_mm() so we could be called
2730 * without p->mm even though we still had it when we enqueued this
2731 * work.
2732 */
2733 if (p->flags & PF_EXITING)
2734 return;
2735
2736 if (!mm->numa_next_scan) {
2737 mm->numa_next_scan = now +
2738 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2739 }
2740
2741 /*
2742 * Enforce maximal scan/migration frequency..
2743 */
2744 migrate = mm->numa_next_scan;
2745 if (time_before(now, migrate))
2746 return;
2747
2748 if (p->numa_scan_period == 0) {
2749 p->numa_scan_period_max = task_scan_max(p);
2750 p->numa_scan_period = task_scan_start(p);
2751 }
2752
2753 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2754 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2755 return;
2756
2757 /*
2758 * Delay this task enough that another task of this mm will likely win
2759 * the next time around.
2760 */
2761 p->node_stamp += 2 * TICK_NSEC;
2762
2763 start = mm->numa_scan_offset;
2764 pages = sysctl_numa_balancing_scan_size;
2765 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2766 virtpages = pages * 8; /* Scan up to this much virtual space */
2767 if (!pages)
2768 return;
2769
2770
2771 if (!mmap_read_trylock(mm))
2772 return;
2773 vma = find_vma(mm, start);
2774 if (!vma) {
2775 reset_ptenuma_scan(p);
2776 start = 0;
2777 vma = mm->mmap;
2778 }
2779 for (; vma; vma = vma->vm_next) {
2780 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2781 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2782 continue;
2783 }
2784
2785 /*
2786 * Shared library pages mapped by multiple processes are not
2787 * migrated as it is expected they are cache replicated. Avoid
2788 * hinting faults in read-only file-backed mappings or the vdso
2789 * as migrating the pages will be of marginal benefit.
2790 */
2791 if (!vma->vm_mm ||
2792 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2793 continue;
2794
2795 /*
2796 * Skip inaccessible VMAs to avoid any confusion between
2797 * PROT_NONE and NUMA hinting ptes
2798 */
2799 if (!vma_is_accessible(vma))
2800 continue;
2801
2802 do {
2803 start = max(start, vma->vm_start);
2804 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2805 end = min(end, vma->vm_end);
2806 nr_pte_updates = change_prot_numa(vma, start, end);
2807
2808 /*
2809 * Try to scan sysctl_numa_balancing_size worth of
2810 * hpages that have at least one present PTE that
2811 * is not already pte-numa. If the VMA contains
2812 * areas that are unused or already full of prot_numa
2813 * PTEs, scan up to virtpages, to skip through those
2814 * areas faster.
2815 */
2816 if (nr_pte_updates)
2817 pages -= (end - start) >> PAGE_SHIFT;
2818 virtpages -= (end - start) >> PAGE_SHIFT;
2819
2820 start = end;
2821 if (pages <= 0 || virtpages <= 0)
2822 goto out;
2823
2824 cond_resched();
2825 } while (end != vma->vm_end);
2826 }
2827
2828out:
2829 /*
2830 * It is possible to reach the end of the VMA list but the last few
2831 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2832 * would find the !migratable VMA on the next scan but not reset the
2833 * scanner to the start so check it now.
2834 */
2835 if (vma)
2836 mm->numa_scan_offset = start;
2837 else
2838 reset_ptenuma_scan(p);
2839 mmap_read_unlock(mm);
2840
2841 /*
2842 * Make sure tasks use at least 32x as much time to run other code
2843 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2844 * Usually update_task_scan_period slows down scanning enough; on an
2845 * overloaded system we need to limit overhead on a per task basis.
2846 */
2847 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2848 u64 diff = p->se.sum_exec_runtime - runtime;
2849 p->node_stamp += 32 * diff;
2850 }
2851}
2852
2853void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2854{
2855 int mm_users = 0;
2856 struct mm_struct *mm = p->mm;
2857
2858 if (mm) {
2859 mm_users = atomic_read(&mm->mm_users);
2860 if (mm_users == 1) {
2861 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2862 mm->numa_scan_seq = 0;
2863 }
2864 }
2865 p->node_stamp = 0;
2866 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2867 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2868 /* Protect against double add, see task_tick_numa and task_numa_work */
2869 p->numa_work.next = &p->numa_work;
2870 p->numa_faults = NULL;
2871 RCU_INIT_POINTER(p->numa_group, NULL);
2872 p->last_task_numa_placement = 0;
2873 p->last_sum_exec_runtime = 0;
2874
2875 init_task_work(&p->numa_work, task_numa_work);
2876
2877 /* New address space, reset the preferred nid */
2878 if (!(clone_flags & CLONE_VM)) {
2879 p->numa_preferred_nid = NUMA_NO_NODE;
2880 return;
2881 }
2882
2883 /*
2884 * New thread, keep existing numa_preferred_nid which should be copied
2885 * already by arch_dup_task_struct but stagger when scans start.
2886 */
2887 if (mm) {
2888 unsigned int delay;
2889
2890 delay = min_t(unsigned int, task_scan_max(current),
2891 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2892 delay += 2 * TICK_NSEC;
2893 p->node_stamp = delay;
2894 }
2895}
2896
2897/*
2898 * Drive the periodic memory faults..
2899 */
2900static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2901{
2902 struct callback_head *work = &curr->numa_work;
2903 u64 period, now;
2904
2905 /*
2906 * We don't care about NUMA placement if we don't have memory.
2907 */
2908 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2909 return;
2910
2911 /*
2912 * Using runtime rather than walltime has the dual advantage that
2913 * we (mostly) drive the selection from busy threads and that the
2914 * task needs to have done some actual work before we bother with
2915 * NUMA placement.
2916 */
2917 now = curr->se.sum_exec_runtime;
2918 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2919
2920 if (now > curr->node_stamp + period) {
2921 if (!curr->node_stamp)
2922 curr->numa_scan_period = task_scan_start(curr);
2923 curr->node_stamp += period;
2924
2925 if (!time_before(jiffies, curr->mm->numa_next_scan))
2926 task_work_add(curr, work, true);
2927 }
2928}
2929
2930static void update_scan_period(struct task_struct *p, int new_cpu)
2931{
2932 int src_nid = cpu_to_node(task_cpu(p));
2933 int dst_nid = cpu_to_node(new_cpu);
2934
2935 if (!static_branch_likely(&sched_numa_balancing))
2936 return;
2937
2938 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2939 return;
2940
2941 if (src_nid == dst_nid)
2942 return;
2943
2944 /*
2945 * Allow resets if faults have been trapped before one scan
2946 * has completed. This is most likely due to a new task that
2947 * is pulled cross-node due to wakeups or load balancing.
2948 */
2949 if (p->numa_scan_seq) {
2950 /*
2951 * Avoid scan adjustments if moving to the preferred
2952 * node or if the task was not previously running on
2953 * the preferred node.
2954 */
2955 if (dst_nid == p->numa_preferred_nid ||
2956 (p->numa_preferred_nid != NUMA_NO_NODE &&
2957 src_nid != p->numa_preferred_nid))
2958 return;
2959 }
2960
2961 p->numa_scan_period = task_scan_start(p);
2962}
2963
2964#else
2965static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2966{
2967}
2968
2969static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2970{
2971}
2972
2973static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2974{
2975}
2976
2977static inline void update_scan_period(struct task_struct *p, int new_cpu)
2978{
2979}
2980
2981#endif /* CONFIG_NUMA_BALANCING */
2982
2983static void
2984account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2985{
2986 update_load_add(&cfs_rq->load, se->load.weight);
2987#ifdef CONFIG_SMP
2988 if (entity_is_task(se)) {
2989 struct rq *rq = rq_of(cfs_rq);
2990
2991 account_numa_enqueue(rq, task_of(se));
2992 list_add(&se->group_node, &rq->cfs_tasks);
2993 }
2994#endif
2995 cfs_rq->nr_running++;
2996}
2997
2998static void
2999account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3000{
3001 update_load_sub(&cfs_rq->load, se->load.weight);
3002#ifdef CONFIG_SMP
3003 if (entity_is_task(se)) {
3004 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3005 list_del_init(&se->group_node);
3006 }
3007#endif
3008 cfs_rq->nr_running--;
3009}
3010
3011/*
3012 * Signed add and clamp on underflow.
3013 *
3014 * Explicitly do a load-store to ensure the intermediate value never hits
3015 * memory. This allows lockless observations without ever seeing the negative
3016 * values.
3017 */
3018#define add_positive(_ptr, _val) do { \
3019 typeof(_ptr) ptr = (_ptr); \
3020 typeof(_val) val = (_val); \
3021 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3022 \
3023 res = var + val; \
3024 \
3025 if (val < 0 && res > var) \
3026 res = 0; \
3027 \
3028 WRITE_ONCE(*ptr, res); \
3029} while (0)
3030
3031/*
3032 * Unsigned subtract and clamp on underflow.
3033 *
3034 * Explicitly do a load-store to ensure the intermediate value never hits
3035 * memory. This allows lockless observations without ever seeing the negative
3036 * values.
3037 */
3038#define sub_positive(_ptr, _val) do { \
3039 typeof(_ptr) ptr = (_ptr); \
3040 typeof(*ptr) val = (_val); \
3041 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3042 res = var - val; \
3043 if (res > var) \
3044 res = 0; \
3045 WRITE_ONCE(*ptr, res); \
3046} while (0)
3047
3048/*
3049 * Remove and clamp on negative, from a local variable.
3050 *
3051 * A variant of sub_positive(), which does not use explicit load-store
3052 * and is thus optimized for local variable updates.
3053 */
3054#define lsub_positive(_ptr, _val) do { \
3055 typeof(_ptr) ptr = (_ptr); \
3056 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3057} while (0)
3058
3059#ifdef CONFIG_SMP
3060static inline void
3061enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3062{
3063 cfs_rq->avg.load_avg += se->avg.load_avg;
3064 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3065}
3066
3067static inline void
3068dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3069{
3070 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3071 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3072}
3073#else
3074static inline void
3075enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3076static inline void
3077dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3078#endif
3079
3080static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3081 unsigned long weight)
3082{
3083 if (se->on_rq) {
3084 /* commit outstanding execution time */
3085 if (cfs_rq->curr == se)
3086 update_curr(cfs_rq);
3087 account_entity_dequeue(cfs_rq, se);
3088 }
3089 dequeue_load_avg(cfs_rq, se);
3090
3091 update_load_set(&se->load, weight);
3092
3093#ifdef CONFIG_SMP
3094 do {
3095 u32 divider = get_pelt_divider(&se->avg);
3096
3097 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3098 } while (0);
3099#endif
3100
3101 enqueue_load_avg(cfs_rq, se);
3102 if (se->on_rq)
3103 account_entity_enqueue(cfs_rq, se);
3104
3105}
3106
3107void reweight_task(struct task_struct *p, int prio)
3108{
3109 struct sched_entity *se = &p->se;
3110 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3111 struct load_weight *load = &se->load;
3112 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3113
3114 reweight_entity(cfs_rq, se, weight);
3115 load->inv_weight = sched_prio_to_wmult[prio];
3116}
3117
3118#ifdef CONFIG_FAIR_GROUP_SCHED
3119#ifdef CONFIG_SMP
3120/*
3121 * All this does is approximate the hierarchical proportion which includes that
3122 * global sum we all love to hate.
3123 *
3124 * That is, the weight of a group entity, is the proportional share of the
3125 * group weight based on the group runqueue weights. That is:
3126 *
3127 * tg->weight * grq->load.weight
3128 * ge->load.weight = ----------------------------- (1)
3129 * \Sum grq->load.weight
3130 *
3131 * Now, because computing that sum is prohibitively expensive to compute (been
3132 * there, done that) we approximate it with this average stuff. The average
3133 * moves slower and therefore the approximation is cheaper and more stable.
3134 *
3135 * So instead of the above, we substitute:
3136 *
3137 * grq->load.weight -> grq->avg.load_avg (2)
3138 *
3139 * which yields the following:
3140 *
3141 * tg->weight * grq->avg.load_avg
3142 * ge->load.weight = ------------------------------ (3)
3143 * tg->load_avg
3144 *
3145 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3146 *
3147 * That is shares_avg, and it is right (given the approximation (2)).
3148 *
3149 * The problem with it is that because the average is slow -- it was designed
3150 * to be exactly that of course -- this leads to transients in boundary
3151 * conditions. In specific, the case where the group was idle and we start the
3152 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3153 * yielding bad latency etc..
3154 *
3155 * Now, in that special case (1) reduces to:
3156 *
3157 * tg->weight * grq->load.weight
3158 * ge->load.weight = ----------------------------- = tg->weight (4)
3159 * grp->load.weight
3160 *
3161 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3162 *
3163 * So what we do is modify our approximation (3) to approach (4) in the (near)
3164 * UP case, like:
3165 *
3166 * ge->load.weight =
3167 *
3168 * tg->weight * grq->load.weight
3169 * --------------------------------------------------- (5)
3170 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3171 *
3172 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3173 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3174 *
3175 *
3176 * tg->weight * grq->load.weight
3177 * ge->load.weight = ----------------------------- (6)
3178 * tg_load_avg'
3179 *
3180 * Where:
3181 *
3182 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3183 * max(grq->load.weight, grq->avg.load_avg)
3184 *
3185 * And that is shares_weight and is icky. In the (near) UP case it approaches
3186 * (4) while in the normal case it approaches (3). It consistently
3187 * overestimates the ge->load.weight and therefore:
3188 *
3189 * \Sum ge->load.weight >= tg->weight
3190 *
3191 * hence icky!
3192 */
3193static long calc_group_shares(struct cfs_rq *cfs_rq)
3194{
3195 long tg_weight, tg_shares, load, shares;
3196 struct task_group *tg = cfs_rq->tg;
3197
3198 tg_shares = READ_ONCE(tg->shares);
3199
3200 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3201
3202 tg_weight = atomic_long_read(&tg->load_avg);
3203
3204 /* Ensure tg_weight >= load */
3205 tg_weight -= cfs_rq->tg_load_avg_contrib;
3206 tg_weight += load;
3207
3208 shares = (tg_shares * load);
3209 if (tg_weight)
3210 shares /= tg_weight;
3211
3212 /*
3213 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3214 * of a group with small tg->shares value. It is a floor value which is
3215 * assigned as a minimum load.weight to the sched_entity representing
3216 * the group on a CPU.
3217 *
3218 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3219 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3220 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3221 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3222 * instead of 0.
3223 */
3224 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3225}
3226#endif /* CONFIG_SMP */
3227
3228static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3229
3230/*
3231 * Recomputes the group entity based on the current state of its group
3232 * runqueue.
3233 */
3234static void update_cfs_group(struct sched_entity *se)
3235{
3236 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3237 long shares;
3238
3239 if (!gcfs_rq)
3240 return;
3241
3242 if (throttled_hierarchy(gcfs_rq))
3243 return;
3244
3245#ifndef CONFIG_SMP
3246 shares = READ_ONCE(gcfs_rq->tg->shares);
3247
3248 if (likely(se->load.weight == shares))
3249 return;
3250#else
3251 shares = calc_group_shares(gcfs_rq);
3252#endif
3253
3254 reweight_entity(cfs_rq_of(se), se, shares);
3255}
3256
3257#else /* CONFIG_FAIR_GROUP_SCHED */
3258static inline void update_cfs_group(struct sched_entity *se)
3259{
3260}
3261#endif /* CONFIG_FAIR_GROUP_SCHED */
3262
3263static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3264{
3265 struct rq *rq = rq_of(cfs_rq);
3266
3267 if (&rq->cfs == cfs_rq) {
3268 /*
3269 * There are a few boundary cases this might miss but it should
3270 * get called often enough that that should (hopefully) not be
3271 * a real problem.
3272 *
3273 * It will not get called when we go idle, because the idle
3274 * thread is a different class (!fair), nor will the utilization
3275 * number include things like RT tasks.
3276 *
3277 * As is, the util number is not freq-invariant (we'd have to
3278 * implement arch_scale_freq_capacity() for that).
3279 *
3280 * See cpu_util().
3281 */
3282 cpufreq_update_util(rq, flags);
3283 }
3284}
3285
3286#ifdef CONFIG_SMP
3287#ifdef CONFIG_FAIR_GROUP_SCHED
3288/**
3289 * update_tg_load_avg - update the tg's load avg
3290 * @cfs_rq: the cfs_rq whose avg changed
3291 * @force: update regardless of how small the difference
3292 *
3293 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3294 * However, because tg->load_avg is a global value there are performance
3295 * considerations.
3296 *
3297 * In order to avoid having to look at the other cfs_rq's, we use a
3298 * differential update where we store the last value we propagated. This in
3299 * turn allows skipping updates if the differential is 'small'.
3300 *
3301 * Updating tg's load_avg is necessary before update_cfs_share().
3302 */
3303static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3304{
3305 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3306
3307 /*
3308 * No need to update load_avg for root_task_group as it is not used.
3309 */
3310 if (cfs_rq->tg == &root_task_group)
3311 return;
3312
3313 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3314 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3315 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3316 }
3317}
3318
3319/*
3320 * Called within set_task_rq() right before setting a task's CPU. The
3321 * caller only guarantees p->pi_lock is held; no other assumptions,
3322 * including the state of rq->lock, should be made.
3323 */
3324void set_task_rq_fair(struct sched_entity *se,
3325 struct cfs_rq *prev, struct cfs_rq *next)
3326{
3327 u64 p_last_update_time;
3328 u64 n_last_update_time;
3329
3330 if (!sched_feat(ATTACH_AGE_LOAD))
3331 return;
3332
3333 /*
3334 * We are supposed to update the task to "current" time, then its up to
3335 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3336 * getting what current time is, so simply throw away the out-of-date
3337 * time. This will result in the wakee task is less decayed, but giving
3338 * the wakee more load sounds not bad.
3339 */
3340 if (!(se->avg.last_update_time && prev))
3341 return;
3342
3343#ifndef CONFIG_64BIT
3344 {
3345 u64 p_last_update_time_copy;
3346 u64 n_last_update_time_copy;
3347
3348 do {
3349 p_last_update_time_copy = prev->load_last_update_time_copy;
3350 n_last_update_time_copy = next->load_last_update_time_copy;
3351
3352 smp_rmb();
3353
3354 p_last_update_time = prev->avg.last_update_time;
3355 n_last_update_time = next->avg.last_update_time;
3356
3357 } while (p_last_update_time != p_last_update_time_copy ||
3358 n_last_update_time != n_last_update_time_copy);
3359 }
3360#else
3361 p_last_update_time = prev->avg.last_update_time;
3362 n_last_update_time = next->avg.last_update_time;
3363#endif
3364 __update_load_avg_blocked_se(p_last_update_time, se);
3365 se->avg.last_update_time = n_last_update_time;
3366}
3367
3368
3369/*
3370 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3371 * propagate its contribution. The key to this propagation is the invariant
3372 * that for each group:
3373 *
3374 * ge->avg == grq->avg (1)
3375 *
3376 * _IFF_ we look at the pure running and runnable sums. Because they
3377 * represent the very same entity, just at different points in the hierarchy.
3378 *
3379 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3380 * and simply copies the running/runnable sum over (but still wrong, because
3381 * the group entity and group rq do not have their PELT windows aligned).
3382 *
3383 * However, update_tg_cfs_load() is more complex. So we have:
3384 *
3385 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3386 *
3387 * And since, like util, the runnable part should be directly transferable,
3388 * the following would _appear_ to be the straight forward approach:
3389 *
3390 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3391 *
3392 * And per (1) we have:
3393 *
3394 * ge->avg.runnable_avg == grq->avg.runnable_avg
3395 *
3396 * Which gives:
3397 *
3398 * ge->load.weight * grq->avg.load_avg
3399 * ge->avg.load_avg = ----------------------------------- (4)
3400 * grq->load.weight
3401 *
3402 * Except that is wrong!
3403 *
3404 * Because while for entities historical weight is not important and we
3405 * really only care about our future and therefore can consider a pure
3406 * runnable sum, runqueues can NOT do this.
3407 *
3408 * We specifically want runqueues to have a load_avg that includes
3409 * historical weights. Those represent the blocked load, the load we expect
3410 * to (shortly) return to us. This only works by keeping the weights as
3411 * integral part of the sum. We therefore cannot decompose as per (3).
3412 *
3413 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3414 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3415 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3416 * runnable section of these tasks overlap (or not). If they were to perfectly
3417 * align the rq as a whole would be runnable 2/3 of the time. If however we
3418 * always have at least 1 runnable task, the rq as a whole is always runnable.
3419 *
3420 * So we'll have to approximate.. :/
3421 *
3422 * Given the constraint:
3423 *
3424 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3425 *
3426 * We can construct a rule that adds runnable to a rq by assuming minimal
3427 * overlap.
3428 *
3429 * On removal, we'll assume each task is equally runnable; which yields:
3430 *
3431 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3432 *
3433 * XXX: only do this for the part of runnable > running ?
3434 *
3435 */
3436
3437static inline void
3438update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3439{
3440 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3441 u32 divider;
3442
3443 /* Nothing to update */
3444 if (!delta)
3445 return;
3446
3447 /*
3448 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3449 * See ___update_load_avg() for details.
3450 */
3451 divider = get_pelt_divider(&cfs_rq->avg);
3452
3453 /* Set new sched_entity's utilization */
3454 se->avg.util_avg = gcfs_rq->avg.util_avg;
3455 se->avg.util_sum = se->avg.util_avg * divider;
3456
3457 /* Update parent cfs_rq utilization */
3458 add_positive(&cfs_rq->avg.util_avg, delta);
3459 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3460}
3461
3462static inline void
3463update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3464{
3465 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3466 u32 divider;
3467
3468 /* Nothing to update */
3469 if (!delta)
3470 return;
3471
3472 /*
3473 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3474 * See ___update_load_avg() for details.
3475 */
3476 divider = get_pelt_divider(&cfs_rq->avg);
3477
3478 /* Set new sched_entity's runnable */
3479 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3480 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3481
3482 /* Update parent cfs_rq runnable */
3483 add_positive(&cfs_rq->avg.runnable_avg, delta);
3484 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3485}
3486
3487static inline void
3488update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3489{
3490 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3491 unsigned long load_avg;
3492 u64 load_sum = 0;
3493 s64 delta_sum;
3494 u32 divider;
3495
3496 if (!runnable_sum)
3497 return;
3498
3499 gcfs_rq->prop_runnable_sum = 0;
3500
3501 /*
3502 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3503 * See ___update_load_avg() for details.
3504 */
3505 divider = get_pelt_divider(&cfs_rq->avg);
3506
3507 if (runnable_sum >= 0) {
3508 /*
3509 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3510 * the CPU is saturated running == runnable.
3511 */
3512 runnable_sum += se->avg.load_sum;
3513 runnable_sum = min_t(long, runnable_sum, divider);
3514 } else {
3515 /*
3516 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3517 * assuming all tasks are equally runnable.
3518 */
3519 if (scale_load_down(gcfs_rq->load.weight)) {
3520 load_sum = div_s64(gcfs_rq->avg.load_sum,
3521 scale_load_down(gcfs_rq->load.weight));
3522 }
3523
3524 /* But make sure to not inflate se's runnable */
3525 runnable_sum = min(se->avg.load_sum, load_sum);
3526 }
3527
3528 /*
3529 * runnable_sum can't be lower than running_sum
3530 * Rescale running sum to be in the same range as runnable sum
3531 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3532 * runnable_sum is in [0 : LOAD_AVG_MAX]
3533 */
3534 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3535 runnable_sum = max(runnable_sum, running_sum);
3536
3537 load_sum = (s64)se_weight(se) * runnable_sum;
3538 load_avg = div_s64(load_sum, divider);
3539
3540 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3541 delta_avg = load_avg - se->avg.load_avg;
3542
3543 se->avg.load_sum = runnable_sum;
3544 se->avg.load_avg = load_avg;
3545 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3546 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3547}
3548
3549static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3550{
3551 cfs_rq->propagate = 1;
3552 cfs_rq->prop_runnable_sum += runnable_sum;
3553}
3554
3555/* Update task and its cfs_rq load average */
3556static inline int propagate_entity_load_avg(struct sched_entity *se)
3557{
3558 struct cfs_rq *cfs_rq, *gcfs_rq;
3559
3560 if (entity_is_task(se))
3561 return 0;
3562
3563 gcfs_rq = group_cfs_rq(se);
3564 if (!gcfs_rq->propagate)
3565 return 0;
3566
3567 gcfs_rq->propagate = 0;
3568
3569 cfs_rq = cfs_rq_of(se);
3570
3571 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3572
3573 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3574 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3575 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3576
3577 trace_pelt_cfs_tp(cfs_rq);
3578 trace_pelt_se_tp(se);
3579
3580 return 1;
3581}
3582
3583/*
3584 * Check if we need to update the load and the utilization of a blocked
3585 * group_entity:
3586 */
3587static inline bool skip_blocked_update(struct sched_entity *se)
3588{
3589 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3590
3591 /*
3592 * If sched_entity still have not zero load or utilization, we have to
3593 * decay it:
3594 */
3595 if (se->avg.load_avg || se->avg.util_avg)
3596 return false;
3597
3598 /*
3599 * If there is a pending propagation, we have to update the load and
3600 * the utilization of the sched_entity:
3601 */
3602 if (gcfs_rq->propagate)
3603 return false;
3604
3605 /*
3606 * Otherwise, the load and the utilization of the sched_entity is
3607 * already zero and there is no pending propagation, so it will be a
3608 * waste of time to try to decay it:
3609 */
3610 return true;
3611}
3612
3613#else /* CONFIG_FAIR_GROUP_SCHED */
3614
3615static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3616
3617static inline int propagate_entity_load_avg(struct sched_entity *se)
3618{
3619 return 0;
3620}
3621
3622static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3623
3624#endif /* CONFIG_FAIR_GROUP_SCHED */
3625
3626/**
3627 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3628 * @now: current time, as per cfs_rq_clock_pelt()
3629 * @cfs_rq: cfs_rq to update
3630 *
3631 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3632 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3633 * post_init_entity_util_avg().
3634 *
3635 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3636 *
3637 * Returns true if the load decayed or we removed load.
3638 *
3639 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3640 * call update_tg_load_avg() when this function returns true.
3641 */
3642static inline int
3643update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3644{
3645 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3646 struct sched_avg *sa = &cfs_rq->avg;
3647 int decayed = 0;
3648
3649 if (cfs_rq->removed.nr) {
3650 unsigned long r;
3651 u32 divider = get_pelt_divider(&cfs_rq->avg);
3652
3653 raw_spin_lock(&cfs_rq->removed.lock);
3654 swap(cfs_rq->removed.util_avg, removed_util);
3655 swap(cfs_rq->removed.load_avg, removed_load);
3656 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3657 cfs_rq->removed.nr = 0;
3658 raw_spin_unlock(&cfs_rq->removed.lock);
3659
3660 r = removed_load;
3661 sub_positive(&sa->load_avg, r);
3662 sub_positive(&sa->load_sum, r * divider);
3663
3664 r = removed_util;
3665 sub_positive(&sa->util_avg, r);
3666 sub_positive(&sa->util_sum, r * divider);
3667
3668 r = removed_runnable;
3669 sub_positive(&sa->runnable_avg, r);
3670 sub_positive(&sa->runnable_sum, r * divider);
3671
3672 /*
3673 * removed_runnable is the unweighted version of removed_load so we
3674 * can use it to estimate removed_load_sum.
3675 */
3676 add_tg_cfs_propagate(cfs_rq,
3677 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3678
3679 decayed = 1;
3680 }
3681
3682 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3683
3684#ifndef CONFIG_64BIT
3685 smp_wmb();
3686 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3687#endif
3688
3689 return decayed;
3690}
3691
3692/**
3693 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3694 * @cfs_rq: cfs_rq to attach to
3695 * @se: sched_entity to attach
3696 *
3697 * Must call update_cfs_rq_load_avg() before this, since we rely on
3698 * cfs_rq->avg.last_update_time being current.
3699 */
3700static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3701{
3702 /*
3703 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3704 * See ___update_load_avg() for details.
3705 */
3706 u32 divider = get_pelt_divider(&cfs_rq->avg);
3707
3708 /*
3709 * When we attach the @se to the @cfs_rq, we must align the decay
3710 * window because without that, really weird and wonderful things can
3711 * happen.
3712 *
3713 * XXX illustrate
3714 */
3715 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3716 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3717
3718 /*
3719 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3720 * period_contrib. This isn't strictly correct, but since we're
3721 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3722 * _sum a little.
3723 */
3724 se->avg.util_sum = se->avg.util_avg * divider;
3725
3726 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3727
3728 se->avg.load_sum = divider;
3729 if (se_weight(se)) {
3730 se->avg.load_sum =
3731 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3732 }
3733
3734 enqueue_load_avg(cfs_rq, se);
3735 cfs_rq->avg.util_avg += se->avg.util_avg;
3736 cfs_rq->avg.util_sum += se->avg.util_sum;
3737 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3738 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3739
3740 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3741
3742 cfs_rq_util_change(cfs_rq, 0);
3743
3744 trace_pelt_cfs_tp(cfs_rq);
3745}
3746
3747/**
3748 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3749 * @cfs_rq: cfs_rq to detach from
3750 * @se: sched_entity to detach
3751 *
3752 * Must call update_cfs_rq_load_avg() before this, since we rely on
3753 * cfs_rq->avg.last_update_time being current.
3754 */
3755static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3756{
3757 dequeue_load_avg(cfs_rq, se);
3758 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3759 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3760 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3761 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3762
3763 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3764
3765 cfs_rq_util_change(cfs_rq, 0);
3766
3767 trace_pelt_cfs_tp(cfs_rq);
3768}
3769
3770/*
3771 * Optional action to be done while updating the load average
3772 */
3773#define UPDATE_TG 0x1
3774#define SKIP_AGE_LOAD 0x2
3775#define DO_ATTACH 0x4
3776
3777/* Update task and its cfs_rq load average */
3778static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3779{
3780 u64 now = cfs_rq_clock_pelt(cfs_rq);
3781 int decayed;
3782
3783 /*
3784 * Track task load average for carrying it to new CPU after migrated, and
3785 * track group sched_entity load average for task_h_load calc in migration
3786 */
3787 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3788 __update_load_avg_se(now, cfs_rq, se);
3789
3790 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3791 decayed |= propagate_entity_load_avg(se);
3792
3793 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3794
3795 /*
3796 * DO_ATTACH means we're here from enqueue_entity().
3797 * !last_update_time means we've passed through
3798 * migrate_task_rq_fair() indicating we migrated.
3799 *
3800 * IOW we're enqueueing a task on a new CPU.
3801 */
3802 attach_entity_load_avg(cfs_rq, se);
3803 update_tg_load_avg(cfs_rq, 0);
3804
3805 } else if (decayed) {
3806 cfs_rq_util_change(cfs_rq, 0);
3807
3808 if (flags & UPDATE_TG)
3809 update_tg_load_avg(cfs_rq, 0);
3810 }
3811}
3812
3813#ifndef CONFIG_64BIT
3814static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3815{
3816 u64 last_update_time_copy;
3817 u64 last_update_time;
3818
3819 do {
3820 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3821 smp_rmb();
3822 last_update_time = cfs_rq->avg.last_update_time;
3823 } while (last_update_time != last_update_time_copy);
3824
3825 return last_update_time;
3826}
3827#else
3828static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3829{
3830 return cfs_rq->avg.last_update_time;
3831}
3832#endif
3833
3834/*
3835 * Synchronize entity load avg of dequeued entity without locking
3836 * the previous rq.
3837 */
3838static void sync_entity_load_avg(struct sched_entity *se)
3839{
3840 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3841 u64 last_update_time;
3842
3843 last_update_time = cfs_rq_last_update_time(cfs_rq);
3844 __update_load_avg_blocked_se(last_update_time, se);
3845}
3846
3847/*
3848 * Task first catches up with cfs_rq, and then subtract
3849 * itself from the cfs_rq (task must be off the queue now).
3850 */
3851static void remove_entity_load_avg(struct sched_entity *se)
3852{
3853 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3854 unsigned long flags;
3855
3856 /*
3857 * tasks cannot exit without having gone through wake_up_new_task() ->
3858 * post_init_entity_util_avg() which will have added things to the
3859 * cfs_rq, so we can remove unconditionally.
3860 */
3861
3862 sync_entity_load_avg(se);
3863
3864 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3865 ++cfs_rq->removed.nr;
3866 cfs_rq->removed.util_avg += se->avg.util_avg;
3867 cfs_rq->removed.load_avg += se->avg.load_avg;
3868 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3869 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3870}
3871
3872static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3873{
3874 return cfs_rq->avg.runnable_avg;
3875}
3876
3877static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3878{
3879 return cfs_rq->avg.load_avg;
3880}
3881
3882static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3883
3884static inline unsigned long task_util(struct task_struct *p)
3885{
3886 return READ_ONCE(p->se.avg.util_avg);
3887}
3888
3889static inline unsigned long _task_util_est(struct task_struct *p)
3890{
3891 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3892
3893 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3894}
3895
3896static inline unsigned long task_util_est(struct task_struct *p)
3897{
3898 return max(task_util(p), _task_util_est(p));
3899}
3900
3901#ifdef CONFIG_UCLAMP_TASK
3902static inline unsigned long uclamp_task_util(struct task_struct *p)
3903{
3904 return clamp(task_util_est(p),
3905 uclamp_eff_value(p, UCLAMP_MIN),
3906 uclamp_eff_value(p, UCLAMP_MAX));
3907}
3908#else
3909static inline unsigned long uclamp_task_util(struct task_struct *p)
3910{
3911 return task_util_est(p);
3912}
3913#endif
3914
3915static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3916 struct task_struct *p)
3917{
3918 unsigned int enqueued;
3919
3920 if (!sched_feat(UTIL_EST))
3921 return;
3922
3923 /* Update root cfs_rq's estimated utilization */
3924 enqueued = cfs_rq->avg.util_est.enqueued;
3925 enqueued += _task_util_est(p);
3926 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3927
3928 trace_sched_util_est_cfs_tp(cfs_rq);
3929}
3930
3931/*
3932 * Check if a (signed) value is within a specified (unsigned) margin,
3933 * based on the observation that:
3934 *
3935 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3936 *
3937 * NOTE: this only works when value + maring < INT_MAX.
3938 */
3939static inline bool within_margin(int value, int margin)
3940{
3941 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3942}
3943
3944static void
3945util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3946{
3947 long last_ewma_diff;
3948 struct util_est ue;
3949 int cpu;
3950
3951 if (!sched_feat(UTIL_EST))
3952 return;
3953
3954 /* Update root cfs_rq's estimated utilization */
3955 ue.enqueued = cfs_rq->avg.util_est.enqueued;
3956 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3957 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3958
3959 trace_sched_util_est_cfs_tp(cfs_rq);
3960
3961 /*
3962 * Skip update of task's estimated utilization when the task has not
3963 * yet completed an activation, e.g. being migrated.
3964 */
3965 if (!task_sleep)
3966 return;
3967
3968 /*
3969 * If the PELT values haven't changed since enqueue time,
3970 * skip the util_est update.
3971 */
3972 ue = p->se.avg.util_est;
3973 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3974 return;
3975
3976 /*
3977 * Reset EWMA on utilization increases, the moving average is used only
3978 * to smooth utilization decreases.
3979 */
3980 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3981 if (sched_feat(UTIL_EST_FASTUP)) {
3982 if (ue.ewma < ue.enqueued) {
3983 ue.ewma = ue.enqueued;
3984 goto done;
3985 }
3986 }
3987
3988 /*
3989 * Skip update of task's estimated utilization when its EWMA is
3990 * already ~1% close to its last activation value.
3991 */
3992 last_ewma_diff = ue.enqueued - ue.ewma;
3993 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3994 return;
3995
3996 /*
3997 * To avoid overestimation of actual task utilization, skip updates if
3998 * we cannot grant there is idle time in this CPU.
3999 */
4000 cpu = cpu_of(rq_of(cfs_rq));
4001 if (task_util(p) > capacity_orig_of(cpu))
4002 return;
4003
4004 /*
4005 * Update Task's estimated utilization
4006 *
4007 * When *p completes an activation we can consolidate another sample
4008 * of the task size. This is done by storing the current PELT value
4009 * as ue.enqueued and by using this value to update the Exponential
4010 * Weighted Moving Average (EWMA):
4011 *
4012 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4013 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4014 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4015 * = w * ( last_ewma_diff ) + ewma(t-1)
4016 * = w * (last_ewma_diff + ewma(t-1) / w)
4017 *
4018 * Where 'w' is the weight of new samples, which is configured to be
4019 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4020 */
4021 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4022 ue.ewma += last_ewma_diff;
4023 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4024done:
4025 WRITE_ONCE(p->se.avg.util_est, ue);
4026
4027 trace_sched_util_est_se_tp(&p->se);
4028}
4029
4030static inline int task_fits_capacity(struct task_struct *p, long capacity)
4031{
4032 return fits_capacity(uclamp_task_util(p), capacity);
4033}
4034
4035static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4036{
4037 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4038 return;
4039
4040 if (!p) {
4041 rq->misfit_task_load = 0;
4042 return;
4043 }
4044
4045 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4046 rq->misfit_task_load = 0;
4047 return;
4048 }
4049
4050 /*
4051 * Make sure that misfit_task_load will not be null even if
4052 * task_h_load() returns 0.
4053 */
4054 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4055}
4056
4057#else /* CONFIG_SMP */
4058
4059#define UPDATE_TG 0x0
4060#define SKIP_AGE_LOAD 0x0
4061#define DO_ATTACH 0x0
4062
4063static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4064{
4065 cfs_rq_util_change(cfs_rq, 0);
4066}
4067
4068static inline void remove_entity_load_avg(struct sched_entity *se) {}
4069
4070static inline void
4071attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4072static inline void
4073detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4074
4075static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4076{
4077 return 0;
4078}
4079
4080static inline void
4081util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4082
4083static inline void
4084util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4085 bool task_sleep) {}
4086static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4087
4088#endif /* CONFIG_SMP */
4089
4090static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4091{
4092#ifdef CONFIG_SCHED_DEBUG
4093 s64 d = se->vruntime - cfs_rq->min_vruntime;
4094
4095 if (d < 0)
4096 d = -d;
4097
4098 if (d > 3*sysctl_sched_latency)
4099 schedstat_inc(cfs_rq->nr_spread_over);
4100#endif
4101}
4102
4103static void
4104place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4105{
4106 u64 vruntime = cfs_rq->min_vruntime;
4107
4108 /*
4109 * The 'current' period is already promised to the current tasks,
4110 * however the extra weight of the new task will slow them down a
4111 * little, place the new task so that it fits in the slot that
4112 * stays open at the end.
4113 */
4114 if (initial && sched_feat(START_DEBIT))
4115 vruntime += sched_vslice(cfs_rq, se);
4116
4117 /* sleeps up to a single latency don't count. */
4118 if (!initial) {
4119 unsigned long thresh = sysctl_sched_latency;
4120
4121 /*
4122 * Halve their sleep time's effect, to allow
4123 * for a gentler effect of sleepers:
4124 */
4125 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4126 thresh >>= 1;
4127
4128 vruntime -= thresh;
4129 }
4130
4131 /* ensure we never gain time by being placed backwards. */
4132 se->vruntime = max_vruntime(se->vruntime, vruntime);
4133}
4134
4135static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4136
4137static inline void check_schedstat_required(void)
4138{
4139#ifdef CONFIG_SCHEDSTATS
4140 if (schedstat_enabled())
4141 return;
4142
4143 /* Force schedstat enabled if a dependent tracepoint is active */
4144 if (trace_sched_stat_wait_enabled() ||
4145 trace_sched_stat_sleep_enabled() ||
4146 trace_sched_stat_iowait_enabled() ||
4147 trace_sched_stat_blocked_enabled() ||
4148 trace_sched_stat_runtime_enabled()) {
4149 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4150 "stat_blocked and stat_runtime require the "
4151 "kernel parameter schedstats=enable or "
4152 "kernel.sched_schedstats=1\n");
4153 }
4154#endif
4155}
4156
4157static inline bool cfs_bandwidth_used(void);
4158
4159/*
4160 * MIGRATION
4161 *
4162 * dequeue
4163 * update_curr()
4164 * update_min_vruntime()
4165 * vruntime -= min_vruntime
4166 *
4167 * enqueue
4168 * update_curr()
4169 * update_min_vruntime()
4170 * vruntime += min_vruntime
4171 *
4172 * this way the vruntime transition between RQs is done when both
4173 * min_vruntime are up-to-date.
4174 *
4175 * WAKEUP (remote)
4176 *
4177 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4178 * vruntime -= min_vruntime
4179 *
4180 * enqueue
4181 * update_curr()
4182 * update_min_vruntime()
4183 * vruntime += min_vruntime
4184 *
4185 * this way we don't have the most up-to-date min_vruntime on the originating
4186 * CPU and an up-to-date min_vruntime on the destination CPU.
4187 */
4188
4189static void
4190enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4191{
4192 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4193 bool curr = cfs_rq->curr == se;
4194
4195 /*
4196 * If we're the current task, we must renormalise before calling
4197 * update_curr().
4198 */
4199 if (renorm && curr)
4200 se->vruntime += cfs_rq->min_vruntime;
4201
4202 update_curr(cfs_rq);
4203
4204 /*
4205 * Otherwise, renormalise after, such that we're placed at the current
4206 * moment in time, instead of some random moment in the past. Being
4207 * placed in the past could significantly boost this task to the
4208 * fairness detriment of existing tasks.
4209 */
4210 if (renorm && !curr)
4211 se->vruntime += cfs_rq->min_vruntime;
4212
4213 /*
4214 * When enqueuing a sched_entity, we must:
4215 * - Update loads to have both entity and cfs_rq synced with now.
4216 * - Add its load to cfs_rq->runnable_avg
4217 * - For group_entity, update its weight to reflect the new share of
4218 * its group cfs_rq
4219 * - Add its new weight to cfs_rq->load.weight
4220 */
4221 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4222 se_update_runnable(se);
4223 update_cfs_group(se);
4224 account_entity_enqueue(cfs_rq, se);
4225
4226 if (flags & ENQUEUE_WAKEUP)
4227 place_entity(cfs_rq, se, 0);
4228
4229 check_schedstat_required();
4230 update_stats_enqueue(cfs_rq, se, flags);
4231 check_spread(cfs_rq, se);
4232 if (!curr)
4233 __enqueue_entity(cfs_rq, se);
4234 se->on_rq = 1;
4235
4236 /*
4237 * When bandwidth control is enabled, cfs might have been removed
4238 * because of a parent been throttled but cfs->nr_running > 1. Try to
4239 * add it unconditionnally.
4240 */
4241 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4242 list_add_leaf_cfs_rq(cfs_rq);
4243
4244 if (cfs_rq->nr_running == 1)
4245 check_enqueue_throttle(cfs_rq);
4246}
4247
4248static void __clear_buddies_last(struct sched_entity *se)
4249{
4250 for_each_sched_entity(se) {
4251 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4252 if (cfs_rq->last != se)
4253 break;
4254
4255 cfs_rq->last = NULL;
4256 }
4257}
4258
4259static void __clear_buddies_next(struct sched_entity *se)
4260{
4261 for_each_sched_entity(se) {
4262 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4263 if (cfs_rq->next != se)
4264 break;
4265
4266 cfs_rq->next = NULL;
4267 }
4268}
4269
4270static void __clear_buddies_skip(struct sched_entity *se)
4271{
4272 for_each_sched_entity(se) {
4273 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4274 if (cfs_rq->skip != se)
4275 break;
4276
4277 cfs_rq->skip = NULL;
4278 }
4279}
4280
4281static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4282{
4283 if (cfs_rq->last == se)
4284 __clear_buddies_last(se);
4285
4286 if (cfs_rq->next == se)
4287 __clear_buddies_next(se);
4288
4289 if (cfs_rq->skip == se)
4290 __clear_buddies_skip(se);
4291}
4292
4293static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4294
4295static void
4296dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4297{
4298 /*
4299 * Update run-time statistics of the 'current'.
4300 */
4301 update_curr(cfs_rq);
4302
4303 /*
4304 * When dequeuing a sched_entity, we must:
4305 * - Update loads to have both entity and cfs_rq synced with now.
4306 * - Subtract its load from the cfs_rq->runnable_avg.
4307 * - Subtract its previous weight from cfs_rq->load.weight.
4308 * - For group entity, update its weight to reflect the new share
4309 * of its group cfs_rq.
4310 */
4311 update_load_avg(cfs_rq, se, UPDATE_TG);
4312 se_update_runnable(se);
4313
4314 update_stats_dequeue(cfs_rq, se, flags);
4315
4316 clear_buddies(cfs_rq, se);
4317
4318 if (se != cfs_rq->curr)
4319 __dequeue_entity(cfs_rq, se);
4320 se->on_rq = 0;
4321 account_entity_dequeue(cfs_rq, se);
4322
4323 /*
4324 * Normalize after update_curr(); which will also have moved
4325 * min_vruntime if @se is the one holding it back. But before doing
4326 * update_min_vruntime() again, which will discount @se's position and
4327 * can move min_vruntime forward still more.
4328 */
4329 if (!(flags & DEQUEUE_SLEEP))
4330 se->vruntime -= cfs_rq->min_vruntime;
4331
4332 /* return excess runtime on last dequeue */
4333 return_cfs_rq_runtime(cfs_rq);
4334
4335 update_cfs_group(se);
4336
4337 /*
4338 * Now advance min_vruntime if @se was the entity holding it back,
4339 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4340 * put back on, and if we advance min_vruntime, we'll be placed back
4341 * further than we started -- ie. we'll be penalized.
4342 */
4343 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4344 update_min_vruntime(cfs_rq);
4345}
4346
4347/*
4348 * Preempt the current task with a newly woken task if needed:
4349 */
4350static void
4351check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4352{
4353 unsigned long ideal_runtime, delta_exec;
4354 struct sched_entity *se;
4355 s64 delta;
4356
4357 ideal_runtime = sched_slice(cfs_rq, curr);
4358 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4359 if (delta_exec > ideal_runtime) {
4360 resched_curr(rq_of(cfs_rq));
4361 /*
4362 * The current task ran long enough, ensure it doesn't get
4363 * re-elected due to buddy favours.
4364 */
4365 clear_buddies(cfs_rq, curr);
4366 return;
4367 }
4368
4369 /*
4370 * Ensure that a task that missed wakeup preemption by a
4371 * narrow margin doesn't have to wait for a full slice.
4372 * This also mitigates buddy induced latencies under load.
4373 */
4374 if (delta_exec < sysctl_sched_min_granularity)
4375 return;
4376
4377 se = __pick_first_entity(cfs_rq);
4378 delta = curr->vruntime - se->vruntime;
4379
4380 if (delta < 0)
4381 return;
4382
4383 if (delta > ideal_runtime)
4384 resched_curr(rq_of(cfs_rq));
4385}
4386
4387static void
4388set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4389{
4390 /* 'current' is not kept within the tree. */
4391 if (se->on_rq) {
4392 /*
4393 * Any task has to be enqueued before it get to execute on
4394 * a CPU. So account for the time it spent waiting on the
4395 * runqueue.
4396 */
4397 update_stats_wait_end(cfs_rq, se);
4398 __dequeue_entity(cfs_rq, se);
4399 update_load_avg(cfs_rq, se, UPDATE_TG);
4400 }
4401
4402 update_stats_curr_start(cfs_rq, se);
4403 cfs_rq->curr = se;
4404
4405 /*
4406 * Track our maximum slice length, if the CPU's load is at
4407 * least twice that of our own weight (i.e. dont track it
4408 * when there are only lesser-weight tasks around):
4409 */
4410 if (schedstat_enabled() &&
4411 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4412 schedstat_set(se->statistics.slice_max,
4413 max((u64)schedstat_val(se->statistics.slice_max),
4414 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4415 }
4416
4417 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4418}
4419
4420static int
4421wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4422
4423/*
4424 * Pick the next process, keeping these things in mind, in this order:
4425 * 1) keep things fair between processes/task groups
4426 * 2) pick the "next" process, since someone really wants that to run
4427 * 3) pick the "last" process, for cache locality
4428 * 4) do not run the "skip" process, if something else is available
4429 */
4430static struct sched_entity *
4431pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4432{
4433 struct sched_entity *left = __pick_first_entity(cfs_rq);
4434 struct sched_entity *se;
4435
4436 /*
4437 * If curr is set we have to see if its left of the leftmost entity
4438 * still in the tree, provided there was anything in the tree at all.
4439 */
4440 if (!left || (curr && entity_before(curr, left)))
4441 left = curr;
4442
4443 se = left; /* ideally we run the leftmost entity */
4444
4445 /*
4446 * Avoid running the skip buddy, if running something else can
4447 * be done without getting too unfair.
4448 */
4449 if (cfs_rq->skip == se) {
4450 struct sched_entity *second;
4451
4452 if (se == curr) {
4453 second = __pick_first_entity(cfs_rq);
4454 } else {
4455 second = __pick_next_entity(se);
4456 if (!second || (curr && entity_before(curr, second)))
4457 second = curr;
4458 }
4459
4460 if (second && wakeup_preempt_entity(second, left) < 1)
4461 se = second;
4462 }
4463
4464 /*
4465 * Prefer last buddy, try to return the CPU to a preempted task.
4466 */
4467 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4468 se = cfs_rq->last;
4469
4470 /*
4471 * Someone really wants this to run. If it's not unfair, run it.
4472 */
4473 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4474 se = cfs_rq->next;
4475
4476 clear_buddies(cfs_rq, se);
4477
4478 return se;
4479}
4480
4481static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4482
4483static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4484{
4485 /*
4486 * If still on the runqueue then deactivate_task()
4487 * was not called and update_curr() has to be done:
4488 */
4489 if (prev->on_rq)
4490 update_curr(cfs_rq);
4491
4492 /* throttle cfs_rqs exceeding runtime */
4493 check_cfs_rq_runtime(cfs_rq);
4494
4495 check_spread(cfs_rq, prev);
4496
4497 if (prev->on_rq) {
4498 update_stats_wait_start(cfs_rq, prev);
4499 /* Put 'current' back into the tree. */
4500 __enqueue_entity(cfs_rq, prev);
4501 /* in !on_rq case, update occurred at dequeue */
4502 update_load_avg(cfs_rq, prev, 0);
4503 }
4504 cfs_rq->curr = NULL;
4505}
4506
4507static void
4508entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4509{
4510 /*
4511 * Update run-time statistics of the 'current'.
4512 */
4513 update_curr(cfs_rq);
4514
4515 /*
4516 * Ensure that runnable average is periodically updated.
4517 */
4518 update_load_avg(cfs_rq, curr, UPDATE_TG);
4519 update_cfs_group(curr);
4520
4521#ifdef CONFIG_SCHED_HRTICK
4522 /*
4523 * queued ticks are scheduled to match the slice, so don't bother
4524 * validating it and just reschedule.
4525 */
4526 if (queued) {
4527 resched_curr(rq_of(cfs_rq));
4528 return;
4529 }
4530 /*
4531 * don't let the period tick interfere with the hrtick preemption
4532 */
4533 if (!sched_feat(DOUBLE_TICK) &&
4534 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4535 return;
4536#endif
4537
4538 if (cfs_rq->nr_running > 1)
4539 check_preempt_tick(cfs_rq, curr);
4540}
4541
4542
4543/**************************************************
4544 * CFS bandwidth control machinery
4545 */
4546
4547#ifdef CONFIG_CFS_BANDWIDTH
4548
4549#ifdef CONFIG_JUMP_LABEL
4550static struct static_key __cfs_bandwidth_used;
4551
4552static inline bool cfs_bandwidth_used(void)
4553{
4554 return static_key_false(&__cfs_bandwidth_used);
4555}
4556
4557void cfs_bandwidth_usage_inc(void)
4558{
4559 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4560}
4561
4562void cfs_bandwidth_usage_dec(void)
4563{
4564 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4565}
4566#else /* CONFIG_JUMP_LABEL */
4567static bool cfs_bandwidth_used(void)
4568{
4569 return true;
4570}
4571
4572void cfs_bandwidth_usage_inc(void) {}
4573void cfs_bandwidth_usage_dec(void) {}
4574#endif /* CONFIG_JUMP_LABEL */
4575
4576/*
4577 * default period for cfs group bandwidth.
4578 * default: 0.1s, units: nanoseconds
4579 */
4580static inline u64 default_cfs_period(void)
4581{
4582 return 100000000ULL;
4583}
4584
4585static inline u64 sched_cfs_bandwidth_slice(void)
4586{
4587 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4588}
4589
4590/*
4591 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4592 * directly instead of rq->clock to avoid adding additional synchronization
4593 * around rq->lock.
4594 *
4595 * requires cfs_b->lock
4596 */
4597void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4598{
4599 if (cfs_b->quota != RUNTIME_INF)
4600 cfs_b->runtime = cfs_b->quota;
4601}
4602
4603static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4604{
4605 return &tg->cfs_bandwidth;
4606}
4607
4608/* returns 0 on failure to allocate runtime */
4609static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4610 struct cfs_rq *cfs_rq, u64 target_runtime)
4611{
4612 u64 min_amount, amount = 0;
4613
4614 lockdep_assert_held(&cfs_b->lock);
4615
4616 /* note: this is a positive sum as runtime_remaining <= 0 */
4617 min_amount = target_runtime - cfs_rq->runtime_remaining;
4618
4619 if (cfs_b->quota == RUNTIME_INF)
4620 amount = min_amount;
4621 else {
4622 start_cfs_bandwidth(cfs_b);
4623
4624 if (cfs_b->runtime > 0) {
4625 amount = min(cfs_b->runtime, min_amount);
4626 cfs_b->runtime -= amount;
4627 cfs_b->idle = 0;
4628 }
4629 }
4630
4631 cfs_rq->runtime_remaining += amount;
4632
4633 return cfs_rq->runtime_remaining > 0;
4634}
4635
4636/* returns 0 on failure to allocate runtime */
4637static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4638{
4639 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4640 int ret;
4641
4642 raw_spin_lock(&cfs_b->lock);
4643 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4644 raw_spin_unlock(&cfs_b->lock);
4645
4646 return ret;
4647}
4648
4649static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4650{
4651 /* dock delta_exec before expiring quota (as it could span periods) */
4652 cfs_rq->runtime_remaining -= delta_exec;
4653
4654 if (likely(cfs_rq->runtime_remaining > 0))
4655 return;
4656
4657 if (cfs_rq->throttled)
4658 return;
4659 /*
4660 * if we're unable to extend our runtime we resched so that the active
4661 * hierarchy can be throttled
4662 */
4663 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4664 resched_curr(rq_of(cfs_rq));
4665}
4666
4667static __always_inline
4668void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4669{
4670 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4671 return;
4672
4673 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4674}
4675
4676static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4677{
4678 return cfs_bandwidth_used() && cfs_rq->throttled;
4679}
4680
4681/* check whether cfs_rq, or any parent, is throttled */
4682static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4683{
4684 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4685}
4686
4687/*
4688 * Ensure that neither of the group entities corresponding to src_cpu or
4689 * dest_cpu are members of a throttled hierarchy when performing group
4690 * load-balance operations.
4691 */
4692static inline int throttled_lb_pair(struct task_group *tg,
4693 int src_cpu, int dest_cpu)
4694{
4695 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4696
4697 src_cfs_rq = tg->cfs_rq[src_cpu];
4698 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4699
4700 return throttled_hierarchy(src_cfs_rq) ||
4701 throttled_hierarchy(dest_cfs_rq);
4702}
4703
4704static int tg_unthrottle_up(struct task_group *tg, void *data)
4705{
4706 struct rq *rq = data;
4707 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4708
4709 cfs_rq->throttle_count--;
4710 if (!cfs_rq->throttle_count) {
4711 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4712 cfs_rq->throttled_clock_task;
4713
4714 /* Add cfs_rq with already running entity in the list */
4715 if (cfs_rq->nr_running >= 1)
4716 list_add_leaf_cfs_rq(cfs_rq);
4717 }
4718
4719 return 0;
4720}
4721
4722static int tg_throttle_down(struct task_group *tg, void *data)
4723{
4724 struct rq *rq = data;
4725 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4726
4727 /* group is entering throttled state, stop time */
4728 if (!cfs_rq->throttle_count) {
4729 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4730 list_del_leaf_cfs_rq(cfs_rq);
4731 }
4732 cfs_rq->throttle_count++;
4733
4734 return 0;
4735}
4736
4737static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4738{
4739 struct rq *rq = rq_of(cfs_rq);
4740 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4741 struct sched_entity *se;
4742 long task_delta, idle_task_delta, dequeue = 1;
4743
4744 raw_spin_lock(&cfs_b->lock);
4745 /* This will start the period timer if necessary */
4746 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4747 /*
4748 * We have raced with bandwidth becoming available, and if we
4749 * actually throttled the timer might not unthrottle us for an
4750 * entire period. We additionally needed to make sure that any
4751 * subsequent check_cfs_rq_runtime calls agree not to throttle
4752 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4753 * for 1ns of runtime rather than just check cfs_b.
4754 */
4755 dequeue = 0;
4756 } else {
4757 list_add_tail_rcu(&cfs_rq->throttled_list,
4758 &cfs_b->throttled_cfs_rq);
4759 }
4760 raw_spin_unlock(&cfs_b->lock);
4761
4762 if (!dequeue)
4763 return false; /* Throttle no longer required. */
4764
4765 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4766
4767 /* freeze hierarchy runnable averages while throttled */
4768 rcu_read_lock();
4769 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4770 rcu_read_unlock();
4771
4772 task_delta = cfs_rq->h_nr_running;
4773 idle_task_delta = cfs_rq->idle_h_nr_running;
4774 for_each_sched_entity(se) {
4775 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4776 /* throttled entity or throttle-on-deactivate */
4777 if (!se->on_rq)
4778 break;
4779
4780 if (dequeue) {
4781 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4782 } else {
4783 update_load_avg(qcfs_rq, se, 0);
4784 se_update_runnable(se);
4785 }
4786
4787 qcfs_rq->h_nr_running -= task_delta;
4788 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4789
4790 if (qcfs_rq->load.weight)
4791 dequeue = 0;
4792 }
4793
4794 if (!se)
4795 sub_nr_running(rq, task_delta);
4796
4797 /*
4798 * Note: distribution will already see us throttled via the
4799 * throttled-list. rq->lock protects completion.
4800 */
4801 cfs_rq->throttled = 1;
4802 cfs_rq->throttled_clock = rq_clock(rq);
4803 return true;
4804}
4805
4806void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4807{
4808 struct rq *rq = rq_of(cfs_rq);
4809 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4810 struct sched_entity *se;
4811 long task_delta, idle_task_delta;
4812
4813 se = cfs_rq->tg->se[cpu_of(rq)];
4814
4815 cfs_rq->throttled = 0;
4816
4817 update_rq_clock(rq);
4818
4819 raw_spin_lock(&cfs_b->lock);
4820 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4821 list_del_rcu(&cfs_rq->throttled_list);
4822 raw_spin_unlock(&cfs_b->lock);
4823
4824 /* update hierarchical throttle state */
4825 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4826
4827 if (!cfs_rq->load.weight)
4828 return;
4829
4830 task_delta = cfs_rq->h_nr_running;
4831 idle_task_delta = cfs_rq->idle_h_nr_running;
4832 for_each_sched_entity(se) {
4833 if (se->on_rq)
4834 break;
4835 cfs_rq = cfs_rq_of(se);
4836 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4837
4838 cfs_rq->h_nr_running += task_delta;
4839 cfs_rq->idle_h_nr_running += idle_task_delta;
4840
4841 /* end evaluation on encountering a throttled cfs_rq */
4842 if (cfs_rq_throttled(cfs_rq))
4843 goto unthrottle_throttle;
4844 }
4845
4846 for_each_sched_entity(se) {
4847 cfs_rq = cfs_rq_of(se);
4848
4849 update_load_avg(cfs_rq, se, UPDATE_TG);
4850 se_update_runnable(se);
4851
4852 cfs_rq->h_nr_running += task_delta;
4853 cfs_rq->idle_h_nr_running += idle_task_delta;
4854
4855
4856 /* end evaluation on encountering a throttled cfs_rq */
4857 if (cfs_rq_throttled(cfs_rq))
4858 goto unthrottle_throttle;
4859
4860 /*
4861 * One parent has been throttled and cfs_rq removed from the
4862 * list. Add it back to not break the leaf list.
4863 */
4864 if (throttled_hierarchy(cfs_rq))
4865 list_add_leaf_cfs_rq(cfs_rq);
4866 }
4867
4868 /* At this point se is NULL and we are at root level*/
4869 add_nr_running(rq, task_delta);
4870
4871unthrottle_throttle:
4872 /*
4873 * The cfs_rq_throttled() breaks in the above iteration can result in
4874 * incomplete leaf list maintenance, resulting in triggering the
4875 * assertion below.
4876 */
4877 for_each_sched_entity(se) {
4878 cfs_rq = cfs_rq_of(se);
4879
4880 if (list_add_leaf_cfs_rq(cfs_rq))
4881 break;
4882 }
4883
4884 assert_list_leaf_cfs_rq(rq);
4885
4886 /* Determine whether we need to wake up potentially idle CPU: */
4887 if (rq->curr == rq->idle && rq->cfs.nr_running)
4888 resched_curr(rq);
4889}
4890
4891static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4892{
4893 struct cfs_rq *cfs_rq;
4894 u64 runtime, remaining = 1;
4895
4896 rcu_read_lock();
4897 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4898 throttled_list) {
4899 struct rq *rq = rq_of(cfs_rq);
4900 struct rq_flags rf;
4901
4902 rq_lock_irqsave(rq, &rf);
4903 if (!cfs_rq_throttled(cfs_rq))
4904 goto next;
4905
4906 /* By the above check, this should never be true */
4907 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4908
4909 raw_spin_lock(&cfs_b->lock);
4910 runtime = -cfs_rq->runtime_remaining + 1;
4911 if (runtime > cfs_b->runtime)
4912 runtime = cfs_b->runtime;
4913 cfs_b->runtime -= runtime;
4914 remaining = cfs_b->runtime;
4915 raw_spin_unlock(&cfs_b->lock);
4916
4917 cfs_rq->runtime_remaining += runtime;
4918
4919 /* we check whether we're throttled above */
4920 if (cfs_rq->runtime_remaining > 0)
4921 unthrottle_cfs_rq(cfs_rq);
4922
4923next:
4924 rq_unlock_irqrestore(rq, &rf);
4925
4926 if (!remaining)
4927 break;
4928 }
4929 rcu_read_unlock();
4930}
4931
4932/*
4933 * Responsible for refilling a task_group's bandwidth and unthrottling its
4934 * cfs_rqs as appropriate. If there has been no activity within the last
4935 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4936 * used to track this state.
4937 */
4938static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4939{
4940 int throttled;
4941
4942 /* no need to continue the timer with no bandwidth constraint */
4943 if (cfs_b->quota == RUNTIME_INF)
4944 goto out_deactivate;
4945
4946 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4947 cfs_b->nr_periods += overrun;
4948
4949 /*
4950 * idle depends on !throttled (for the case of a large deficit), and if
4951 * we're going inactive then everything else can be deferred
4952 */
4953 if (cfs_b->idle && !throttled)
4954 goto out_deactivate;
4955
4956 __refill_cfs_bandwidth_runtime(cfs_b);
4957
4958 if (!throttled) {
4959 /* mark as potentially idle for the upcoming period */
4960 cfs_b->idle = 1;
4961 return 0;
4962 }
4963
4964 /* account preceding periods in which throttling occurred */
4965 cfs_b->nr_throttled += overrun;
4966
4967 /*
4968 * This check is repeated as we release cfs_b->lock while we unthrottle.
4969 */
4970 while (throttled && cfs_b->runtime > 0) {
4971 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4972 /* we can't nest cfs_b->lock while distributing bandwidth */
4973 distribute_cfs_runtime(cfs_b);
4974 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4975
4976 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4977 }
4978
4979 /*
4980 * While we are ensured activity in the period following an
4981 * unthrottle, this also covers the case in which the new bandwidth is
4982 * insufficient to cover the existing bandwidth deficit. (Forcing the
4983 * timer to remain active while there are any throttled entities.)
4984 */
4985 cfs_b->idle = 0;
4986
4987 return 0;
4988
4989out_deactivate:
4990 return 1;
4991}
4992
4993/* a cfs_rq won't donate quota below this amount */
4994static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4995/* minimum remaining period time to redistribute slack quota */
4996static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4997/* how long we wait to gather additional slack before distributing */
4998static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4999
5000/*
5001 * Are we near the end of the current quota period?
5002 *
5003 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5004 * hrtimer base being cleared by hrtimer_start. In the case of
5005 * migrate_hrtimers, base is never cleared, so we are fine.
5006 */
5007static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5008{
5009 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5010 u64 remaining;
5011
5012 /* if the call-back is running a quota refresh is already occurring */
5013 if (hrtimer_callback_running(refresh_timer))
5014 return 1;
5015
5016 /* is a quota refresh about to occur? */
5017 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5018 if (remaining < min_expire)
5019 return 1;
5020
5021 return 0;
5022}
5023
5024static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5025{
5026 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5027
5028 /* if there's a quota refresh soon don't bother with slack */
5029 if (runtime_refresh_within(cfs_b, min_left))
5030 return;
5031
5032 /* don't push forwards an existing deferred unthrottle */
5033 if (cfs_b->slack_started)
5034 return;
5035 cfs_b->slack_started = true;
5036
5037 hrtimer_start(&cfs_b->slack_timer,
5038 ns_to_ktime(cfs_bandwidth_slack_period),
5039 HRTIMER_MODE_REL);
5040}
5041
5042/* we know any runtime found here is valid as update_curr() precedes return */
5043static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5044{
5045 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5046 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5047
5048 if (slack_runtime <= 0)
5049 return;
5050
5051 raw_spin_lock(&cfs_b->lock);
5052 if (cfs_b->quota != RUNTIME_INF) {
5053 cfs_b->runtime += slack_runtime;
5054
5055 /* we are under rq->lock, defer unthrottling using a timer */
5056 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5057 !list_empty(&cfs_b->throttled_cfs_rq))
5058 start_cfs_slack_bandwidth(cfs_b);
5059 }
5060 raw_spin_unlock(&cfs_b->lock);
5061
5062 /* even if it's not valid for return we don't want to try again */
5063 cfs_rq->runtime_remaining -= slack_runtime;
5064}
5065
5066static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5067{
5068 if (!cfs_bandwidth_used())
5069 return;
5070
5071 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5072 return;
5073
5074 __return_cfs_rq_runtime(cfs_rq);
5075}
5076
5077/*
5078 * This is done with a timer (instead of inline with bandwidth return) since
5079 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5080 */
5081static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5082{
5083 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5084 unsigned long flags;
5085
5086 /* confirm we're still not at a refresh boundary */
5087 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5088 cfs_b->slack_started = false;
5089
5090 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5091 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5092 return;
5093 }
5094
5095 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5096 runtime = cfs_b->runtime;
5097
5098 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5099
5100 if (!runtime)
5101 return;
5102
5103 distribute_cfs_runtime(cfs_b);
5104
5105 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5106 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5107}
5108
5109/*
5110 * When a group wakes up we want to make sure that its quota is not already
5111 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5112 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5113 */
5114static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5115{
5116 if (!cfs_bandwidth_used())
5117 return;
5118
5119 /* an active group must be handled by the update_curr()->put() path */
5120 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5121 return;
5122
5123 /* ensure the group is not already throttled */
5124 if (cfs_rq_throttled(cfs_rq))
5125 return;
5126
5127 /* update runtime allocation */
5128 account_cfs_rq_runtime(cfs_rq, 0);
5129 if (cfs_rq->runtime_remaining <= 0)
5130 throttle_cfs_rq(cfs_rq);
5131}
5132
5133static void sync_throttle(struct task_group *tg, int cpu)
5134{
5135 struct cfs_rq *pcfs_rq, *cfs_rq;
5136
5137 if (!cfs_bandwidth_used())
5138 return;
5139
5140 if (!tg->parent)
5141 return;
5142
5143 cfs_rq = tg->cfs_rq[cpu];
5144 pcfs_rq = tg->parent->cfs_rq[cpu];
5145
5146 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5147 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5148}
5149
5150/* conditionally throttle active cfs_rq's from put_prev_entity() */
5151static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5152{
5153 if (!cfs_bandwidth_used())
5154 return false;
5155
5156 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5157 return false;
5158
5159 /*
5160 * it's possible for a throttled entity to be forced into a running
5161 * state (e.g. set_curr_task), in this case we're finished.
5162 */
5163 if (cfs_rq_throttled(cfs_rq))
5164 return true;
5165
5166 return throttle_cfs_rq(cfs_rq);
5167}
5168
5169static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5170{
5171 struct cfs_bandwidth *cfs_b =
5172 container_of(timer, struct cfs_bandwidth, slack_timer);
5173
5174 do_sched_cfs_slack_timer(cfs_b);
5175
5176 return HRTIMER_NORESTART;
5177}
5178
5179extern const u64 max_cfs_quota_period;
5180
5181static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5182{
5183 struct cfs_bandwidth *cfs_b =
5184 container_of(timer, struct cfs_bandwidth, period_timer);
5185 unsigned long flags;
5186 int overrun;
5187 int idle = 0;
5188 int count = 0;
5189
5190 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5191 for (;;) {
5192 overrun = hrtimer_forward_now(timer, cfs_b->period);
5193 if (!overrun)
5194 break;
5195
5196 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5197
5198 if (++count > 3) {
5199 u64 new, old = ktime_to_ns(cfs_b->period);
5200
5201 /*
5202 * Grow period by a factor of 2 to avoid losing precision.
5203 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5204 * to fail.
5205 */
5206 new = old * 2;
5207 if (new < max_cfs_quota_period) {
5208 cfs_b->period = ns_to_ktime(new);
5209 cfs_b->quota *= 2;
5210
5211 pr_warn_ratelimited(
5212 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5213 smp_processor_id(),
5214 div_u64(new, NSEC_PER_USEC),
5215 div_u64(cfs_b->quota, NSEC_PER_USEC));
5216 } else {
5217 pr_warn_ratelimited(
5218 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5219 smp_processor_id(),
5220 div_u64(old, NSEC_PER_USEC),
5221 div_u64(cfs_b->quota, NSEC_PER_USEC));
5222 }
5223
5224 /* reset count so we don't come right back in here */
5225 count = 0;
5226 }
5227 }
5228 if (idle)
5229 cfs_b->period_active = 0;
5230 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5231
5232 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5233}
5234
5235void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5236{
5237 raw_spin_lock_init(&cfs_b->lock);
5238 cfs_b->runtime = 0;
5239 cfs_b->quota = RUNTIME_INF;
5240 cfs_b->period = ns_to_ktime(default_cfs_period());
5241
5242 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5243 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5244 cfs_b->period_timer.function = sched_cfs_period_timer;
5245 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5246 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5247 cfs_b->slack_started = false;
5248}
5249
5250static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5251{
5252 cfs_rq->runtime_enabled = 0;
5253 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5254}
5255
5256void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5257{
5258 lockdep_assert_held(&cfs_b->lock);
5259
5260 if (cfs_b->period_active)
5261 return;
5262
5263 cfs_b->period_active = 1;
5264 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5265 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5266}
5267
5268static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5269{
5270 /* init_cfs_bandwidth() was not called */
5271 if (!cfs_b->throttled_cfs_rq.next)
5272 return;
5273
5274 hrtimer_cancel(&cfs_b->period_timer);
5275 hrtimer_cancel(&cfs_b->slack_timer);
5276}
5277
5278/*
5279 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5280 *
5281 * The race is harmless, since modifying bandwidth settings of unhooked group
5282 * bits doesn't do much.
5283 */
5284
5285/* cpu online calback */
5286static void __maybe_unused update_runtime_enabled(struct rq *rq)
5287{
5288 struct task_group *tg;
5289
5290 lockdep_assert_held(&rq->lock);
5291
5292 rcu_read_lock();
5293 list_for_each_entry_rcu(tg, &task_groups, list) {
5294 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5295 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5296
5297 raw_spin_lock(&cfs_b->lock);
5298 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5299 raw_spin_unlock(&cfs_b->lock);
5300 }
5301 rcu_read_unlock();
5302}
5303
5304/* cpu offline callback */
5305static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5306{
5307 struct task_group *tg;
5308
5309 lockdep_assert_held(&rq->lock);
5310
5311 rcu_read_lock();
5312 list_for_each_entry_rcu(tg, &task_groups, list) {
5313 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5314
5315 if (!cfs_rq->runtime_enabled)
5316 continue;
5317
5318 /*
5319 * clock_task is not advancing so we just need to make sure
5320 * there's some valid quota amount
5321 */
5322 cfs_rq->runtime_remaining = 1;
5323 /*
5324 * Offline rq is schedulable till CPU is completely disabled
5325 * in take_cpu_down(), so we prevent new cfs throttling here.
5326 */
5327 cfs_rq->runtime_enabled = 0;
5328
5329 if (cfs_rq_throttled(cfs_rq))
5330 unthrottle_cfs_rq(cfs_rq);
5331 }
5332 rcu_read_unlock();
5333}
5334
5335#else /* CONFIG_CFS_BANDWIDTH */
5336
5337static inline bool cfs_bandwidth_used(void)
5338{
5339 return false;
5340}
5341
5342static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5343static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5344static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5345static inline void sync_throttle(struct task_group *tg, int cpu) {}
5346static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5347
5348static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5349{
5350 return 0;
5351}
5352
5353static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5354{
5355 return 0;
5356}
5357
5358static inline int throttled_lb_pair(struct task_group *tg,
5359 int src_cpu, int dest_cpu)
5360{
5361 return 0;
5362}
5363
5364void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5365
5366#ifdef CONFIG_FAIR_GROUP_SCHED
5367static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5368#endif
5369
5370static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5371{
5372 return NULL;
5373}
5374static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5375static inline void update_runtime_enabled(struct rq *rq) {}
5376static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5377
5378#endif /* CONFIG_CFS_BANDWIDTH */
5379
5380/**************************************************
5381 * CFS operations on tasks:
5382 */
5383
5384#ifdef CONFIG_SCHED_HRTICK
5385static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5386{
5387 struct sched_entity *se = &p->se;
5388 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5389
5390 SCHED_WARN_ON(task_rq(p) != rq);
5391
5392 if (rq->cfs.h_nr_running > 1) {
5393 u64 slice = sched_slice(cfs_rq, se);
5394 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5395 s64 delta = slice - ran;
5396
5397 if (delta < 0) {
5398 if (rq->curr == p)
5399 resched_curr(rq);
5400 return;
5401 }
5402 hrtick_start(rq, delta);
5403 }
5404}
5405
5406/*
5407 * called from enqueue/dequeue and updates the hrtick when the
5408 * current task is from our class and nr_running is low enough
5409 * to matter.
5410 */
5411static void hrtick_update(struct rq *rq)
5412{
5413 struct task_struct *curr = rq->curr;
5414
5415 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5416 return;
5417
5418 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5419 hrtick_start_fair(rq, curr);
5420}
5421#else /* !CONFIG_SCHED_HRTICK */
5422static inline void
5423hrtick_start_fair(struct rq *rq, struct task_struct *p)
5424{
5425}
5426
5427static inline void hrtick_update(struct rq *rq)
5428{
5429}
5430#endif
5431
5432#ifdef CONFIG_SMP
5433static inline unsigned long cpu_util(int cpu);
5434
5435static inline bool cpu_overutilized(int cpu)
5436{
5437 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5438}
5439
5440static inline void update_overutilized_status(struct rq *rq)
5441{
5442 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5443 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5444 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5445 }
5446}
5447#else
5448static inline void update_overutilized_status(struct rq *rq) { }
5449#endif
5450
5451/* Runqueue only has SCHED_IDLE tasks enqueued */
5452static int sched_idle_rq(struct rq *rq)
5453{
5454 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5455 rq->nr_running);
5456}
5457
5458#ifdef CONFIG_SMP
5459static int sched_idle_cpu(int cpu)
5460{
5461 return sched_idle_rq(cpu_rq(cpu));
5462}
5463#endif
5464
5465/*
5466 * The enqueue_task method is called before nr_running is
5467 * increased. Here we update the fair scheduling stats and
5468 * then put the task into the rbtree:
5469 */
5470static void
5471enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5472{
5473 struct cfs_rq *cfs_rq;
5474 struct sched_entity *se = &p->se;
5475 int idle_h_nr_running = task_has_idle_policy(p);
5476
5477 /*
5478 * The code below (indirectly) updates schedutil which looks at
5479 * the cfs_rq utilization to select a frequency.
5480 * Let's add the task's estimated utilization to the cfs_rq's
5481 * estimated utilization, before we update schedutil.
5482 */
5483 util_est_enqueue(&rq->cfs, p);
5484
5485 /*
5486 * If in_iowait is set, the code below may not trigger any cpufreq
5487 * utilization updates, so do it here explicitly with the IOWAIT flag
5488 * passed.
5489 */
5490 if (p->in_iowait)
5491 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5492
5493 for_each_sched_entity(se) {
5494 if (se->on_rq)
5495 break;
5496 cfs_rq = cfs_rq_of(se);
5497 enqueue_entity(cfs_rq, se, flags);
5498
5499 cfs_rq->h_nr_running++;
5500 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5501
5502 /* end evaluation on encountering a throttled cfs_rq */
5503 if (cfs_rq_throttled(cfs_rq))
5504 goto enqueue_throttle;
5505
5506 flags = ENQUEUE_WAKEUP;
5507 }
5508
5509 for_each_sched_entity(se) {
5510 cfs_rq = cfs_rq_of(se);
5511
5512 update_load_avg(cfs_rq, se, UPDATE_TG);
5513 se_update_runnable(se);
5514 update_cfs_group(se);
5515
5516 cfs_rq->h_nr_running++;
5517 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5518
5519 /* end evaluation on encountering a throttled cfs_rq */
5520 if (cfs_rq_throttled(cfs_rq))
5521 goto enqueue_throttle;
5522
5523 /*
5524 * One parent has been throttled and cfs_rq removed from the
5525 * list. Add it back to not break the leaf list.
5526 */
5527 if (throttled_hierarchy(cfs_rq))
5528 list_add_leaf_cfs_rq(cfs_rq);
5529 }
5530
5531 /* At this point se is NULL and we are at root level*/
5532 add_nr_running(rq, 1);
5533
5534 /*
5535 * Since new tasks are assigned an initial util_avg equal to
5536 * half of the spare capacity of their CPU, tiny tasks have the
5537 * ability to cross the overutilized threshold, which will
5538 * result in the load balancer ruining all the task placement
5539 * done by EAS. As a way to mitigate that effect, do not account
5540 * for the first enqueue operation of new tasks during the
5541 * overutilized flag detection.
5542 *
5543 * A better way of solving this problem would be to wait for
5544 * the PELT signals of tasks to converge before taking them
5545 * into account, but that is not straightforward to implement,
5546 * and the following generally works well enough in practice.
5547 */
5548 if (flags & ENQUEUE_WAKEUP)
5549 update_overutilized_status(rq);
5550
5551enqueue_throttle:
5552 if (cfs_bandwidth_used()) {
5553 /*
5554 * When bandwidth control is enabled; the cfs_rq_throttled()
5555 * breaks in the above iteration can result in incomplete
5556 * leaf list maintenance, resulting in triggering the assertion
5557 * below.
5558 */
5559 for_each_sched_entity(se) {
5560 cfs_rq = cfs_rq_of(se);
5561
5562 if (list_add_leaf_cfs_rq(cfs_rq))
5563 break;
5564 }
5565 }
5566
5567 assert_list_leaf_cfs_rq(rq);
5568
5569 hrtick_update(rq);
5570}
5571
5572static void set_next_buddy(struct sched_entity *se);
5573
5574/*
5575 * The dequeue_task method is called before nr_running is
5576 * decreased. We remove the task from the rbtree and
5577 * update the fair scheduling stats:
5578 */
5579static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5580{
5581 struct cfs_rq *cfs_rq;
5582 struct sched_entity *se = &p->se;
5583 int task_sleep = flags & DEQUEUE_SLEEP;
5584 int idle_h_nr_running = task_has_idle_policy(p);
5585 bool was_sched_idle = sched_idle_rq(rq);
5586
5587 for_each_sched_entity(se) {
5588 cfs_rq = cfs_rq_of(se);
5589 dequeue_entity(cfs_rq, se, flags);
5590
5591 cfs_rq->h_nr_running--;
5592 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5593
5594 /* end evaluation on encountering a throttled cfs_rq */
5595 if (cfs_rq_throttled(cfs_rq))
5596 goto dequeue_throttle;
5597
5598 /* Don't dequeue parent if it has other entities besides us */
5599 if (cfs_rq->load.weight) {
5600 /* Avoid re-evaluating load for this entity: */
5601 se = parent_entity(se);
5602 /*
5603 * Bias pick_next to pick a task from this cfs_rq, as
5604 * p is sleeping when it is within its sched_slice.
5605 */
5606 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5607 set_next_buddy(se);
5608 break;
5609 }
5610 flags |= DEQUEUE_SLEEP;
5611 }
5612
5613 for_each_sched_entity(se) {
5614 cfs_rq = cfs_rq_of(se);
5615
5616 update_load_avg(cfs_rq, se, UPDATE_TG);
5617 se_update_runnable(se);
5618 update_cfs_group(se);
5619
5620 cfs_rq->h_nr_running--;
5621 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5622
5623 /* end evaluation on encountering a throttled cfs_rq */
5624 if (cfs_rq_throttled(cfs_rq))
5625 goto dequeue_throttle;
5626
5627 }
5628
5629 /* At this point se is NULL and we are at root level*/
5630 sub_nr_running(rq, 1);
5631
5632 /* balance early to pull high priority tasks */
5633 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5634 rq->next_balance = jiffies;
5635
5636dequeue_throttle:
5637 util_est_dequeue(&rq->cfs, p, task_sleep);
5638 hrtick_update(rq);
5639}
5640
5641#ifdef CONFIG_SMP
5642
5643/* Working cpumask for: load_balance, load_balance_newidle. */
5644DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5645DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5646
5647#ifdef CONFIG_NO_HZ_COMMON
5648
5649static struct {
5650 cpumask_var_t idle_cpus_mask;
5651 atomic_t nr_cpus;
5652 int has_blocked; /* Idle CPUS has blocked load */
5653 unsigned long next_balance; /* in jiffy units */
5654 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5655} nohz ____cacheline_aligned;
5656
5657#endif /* CONFIG_NO_HZ_COMMON */
5658
5659static unsigned long cpu_load(struct rq *rq)
5660{
5661 return cfs_rq_load_avg(&rq->cfs);
5662}
5663
5664/*
5665 * cpu_load_without - compute CPU load without any contributions from *p
5666 * @cpu: the CPU which load is requested
5667 * @p: the task which load should be discounted
5668 *
5669 * The load of a CPU is defined by the load of tasks currently enqueued on that
5670 * CPU as well as tasks which are currently sleeping after an execution on that
5671 * CPU.
5672 *
5673 * This method returns the load of the specified CPU by discounting the load of
5674 * the specified task, whenever the task is currently contributing to the CPU
5675 * load.
5676 */
5677static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5678{
5679 struct cfs_rq *cfs_rq;
5680 unsigned int load;
5681
5682 /* Task has no contribution or is new */
5683 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5684 return cpu_load(rq);
5685
5686 cfs_rq = &rq->cfs;
5687 load = READ_ONCE(cfs_rq->avg.load_avg);
5688
5689 /* Discount task's util from CPU's util */
5690 lsub_positive(&load, task_h_load(p));
5691
5692 return load;
5693}
5694
5695static unsigned long cpu_runnable(struct rq *rq)
5696{
5697 return cfs_rq_runnable_avg(&rq->cfs);
5698}
5699
5700static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5701{
5702 struct cfs_rq *cfs_rq;
5703 unsigned int runnable;
5704
5705 /* Task has no contribution or is new */
5706 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5707 return cpu_runnable(rq);
5708
5709 cfs_rq = &rq->cfs;
5710 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5711
5712 /* Discount task's runnable from CPU's runnable */
5713 lsub_positive(&runnable, p->se.avg.runnable_avg);
5714
5715 return runnable;
5716}
5717
5718static unsigned long capacity_of(int cpu)
5719{
5720 return cpu_rq(cpu)->cpu_capacity;
5721}
5722
5723static void record_wakee(struct task_struct *p)
5724{
5725 /*
5726 * Only decay a single time; tasks that have less then 1 wakeup per
5727 * jiffy will not have built up many flips.
5728 */
5729 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5730 current->wakee_flips >>= 1;
5731 current->wakee_flip_decay_ts = jiffies;
5732 }
5733
5734 if (current->last_wakee != p) {
5735 current->last_wakee = p;
5736 current->wakee_flips++;
5737 }
5738}
5739
5740/*
5741 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5742 *
5743 * A waker of many should wake a different task than the one last awakened
5744 * at a frequency roughly N times higher than one of its wakees.
5745 *
5746 * In order to determine whether we should let the load spread vs consolidating
5747 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5748 * partner, and a factor of lls_size higher frequency in the other.
5749 *
5750 * With both conditions met, we can be relatively sure that the relationship is
5751 * non-monogamous, with partner count exceeding socket size.
5752 *
5753 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5754 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5755 * socket size.
5756 */
5757static int wake_wide(struct task_struct *p)
5758{
5759 unsigned int master = current->wakee_flips;
5760 unsigned int slave = p->wakee_flips;
5761 int factor = __this_cpu_read(sd_llc_size);
5762
5763 if (master < slave)
5764 swap(master, slave);
5765 if (slave < factor || master < slave * factor)
5766 return 0;
5767 return 1;
5768}
5769
5770/*
5771 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5772 * soonest. For the purpose of speed we only consider the waking and previous
5773 * CPU.
5774 *
5775 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5776 * cache-affine and is (or will be) idle.
5777 *
5778 * wake_affine_weight() - considers the weight to reflect the average
5779 * scheduling latency of the CPUs. This seems to work
5780 * for the overloaded case.
5781 */
5782static int
5783wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5784{
5785 /*
5786 * If this_cpu is idle, it implies the wakeup is from interrupt
5787 * context. Only allow the move if cache is shared. Otherwise an
5788 * interrupt intensive workload could force all tasks onto one
5789 * node depending on the IO topology or IRQ affinity settings.
5790 *
5791 * If the prev_cpu is idle and cache affine then avoid a migration.
5792 * There is no guarantee that the cache hot data from an interrupt
5793 * is more important than cache hot data on the prev_cpu and from
5794 * a cpufreq perspective, it's better to have higher utilisation
5795 * on one CPU.
5796 */
5797 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5798 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5799
5800 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5801 return this_cpu;
5802
5803 return nr_cpumask_bits;
5804}
5805
5806static int
5807wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5808 int this_cpu, int prev_cpu, int sync)
5809{
5810 s64 this_eff_load, prev_eff_load;
5811 unsigned long task_load;
5812
5813 this_eff_load = cpu_load(cpu_rq(this_cpu));
5814
5815 if (sync) {
5816 unsigned long current_load = task_h_load(current);
5817
5818 if (current_load > this_eff_load)
5819 return this_cpu;
5820
5821 this_eff_load -= current_load;
5822 }
5823
5824 task_load = task_h_load(p);
5825
5826 this_eff_load += task_load;
5827 if (sched_feat(WA_BIAS))
5828 this_eff_load *= 100;
5829 this_eff_load *= capacity_of(prev_cpu);
5830
5831 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5832 prev_eff_load -= task_load;
5833 if (sched_feat(WA_BIAS))
5834 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5835 prev_eff_load *= capacity_of(this_cpu);
5836
5837 /*
5838 * If sync, adjust the weight of prev_eff_load such that if
5839 * prev_eff == this_eff that select_idle_sibling() will consider
5840 * stacking the wakee on top of the waker if no other CPU is
5841 * idle.
5842 */
5843 if (sync)
5844 prev_eff_load += 1;
5845
5846 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5847}
5848
5849static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5850 int this_cpu, int prev_cpu, int sync)
5851{
5852 int target = nr_cpumask_bits;
5853
5854 if (sched_feat(WA_IDLE))
5855 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5856
5857 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5858 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5859
5860 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5861 if (target == nr_cpumask_bits)
5862 return prev_cpu;
5863
5864 schedstat_inc(sd->ttwu_move_affine);
5865 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5866 return target;
5867}
5868
5869static struct sched_group *
5870find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5871
5872/*
5873 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5874 */
5875static int
5876find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5877{
5878 unsigned long load, min_load = ULONG_MAX;
5879 unsigned int min_exit_latency = UINT_MAX;
5880 u64 latest_idle_timestamp = 0;
5881 int least_loaded_cpu = this_cpu;
5882 int shallowest_idle_cpu = -1;
5883 int i;
5884
5885 /* Check if we have any choice: */
5886 if (group->group_weight == 1)
5887 return cpumask_first(sched_group_span(group));
5888
5889 /* Traverse only the allowed CPUs */
5890 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5891 if (sched_idle_cpu(i))
5892 return i;
5893
5894 if (available_idle_cpu(i)) {
5895 struct rq *rq = cpu_rq(i);
5896 struct cpuidle_state *idle = idle_get_state(rq);
5897 if (idle && idle->exit_latency < min_exit_latency) {
5898 /*
5899 * We give priority to a CPU whose idle state
5900 * has the smallest exit latency irrespective
5901 * of any idle timestamp.
5902 */
5903 min_exit_latency = idle->exit_latency;
5904 latest_idle_timestamp = rq->idle_stamp;
5905 shallowest_idle_cpu = i;
5906 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5907 rq->idle_stamp > latest_idle_timestamp) {
5908 /*
5909 * If equal or no active idle state, then
5910 * the most recently idled CPU might have
5911 * a warmer cache.
5912 */
5913 latest_idle_timestamp = rq->idle_stamp;
5914 shallowest_idle_cpu = i;
5915 }
5916 } else if (shallowest_idle_cpu == -1) {
5917 load = cpu_load(cpu_rq(i));
5918 if (load < min_load) {
5919 min_load = load;
5920 least_loaded_cpu = i;
5921 }
5922 }
5923 }
5924
5925 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5926}
5927
5928static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5929 int cpu, int prev_cpu, int sd_flag)
5930{
5931 int new_cpu = cpu;
5932
5933 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5934 return prev_cpu;
5935
5936 /*
5937 * We need task's util for cpu_util_without, sync it up to
5938 * prev_cpu's last_update_time.
5939 */
5940 if (!(sd_flag & SD_BALANCE_FORK))
5941 sync_entity_load_avg(&p->se);
5942
5943 while (sd) {
5944 struct sched_group *group;
5945 struct sched_domain *tmp;
5946 int weight;
5947
5948 if (!(sd->flags & sd_flag)) {
5949 sd = sd->child;
5950 continue;
5951 }
5952
5953 group = find_idlest_group(sd, p, cpu);
5954 if (!group) {
5955 sd = sd->child;
5956 continue;
5957 }
5958
5959 new_cpu = find_idlest_group_cpu(group, p, cpu);
5960 if (new_cpu == cpu) {
5961 /* Now try balancing at a lower domain level of 'cpu': */
5962 sd = sd->child;
5963 continue;
5964 }
5965
5966 /* Now try balancing at a lower domain level of 'new_cpu': */
5967 cpu = new_cpu;
5968 weight = sd->span_weight;
5969 sd = NULL;
5970 for_each_domain(cpu, tmp) {
5971 if (weight <= tmp->span_weight)
5972 break;
5973 if (tmp->flags & sd_flag)
5974 sd = tmp;
5975 }
5976 }
5977
5978 return new_cpu;
5979}
5980
5981#ifdef CONFIG_SCHED_SMT
5982DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5983EXPORT_SYMBOL_GPL(sched_smt_present);
5984
5985static inline void set_idle_cores(int cpu, int val)
5986{
5987 struct sched_domain_shared *sds;
5988
5989 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5990 if (sds)
5991 WRITE_ONCE(sds->has_idle_cores, val);
5992}
5993
5994static inline bool test_idle_cores(int cpu, bool def)
5995{
5996 struct sched_domain_shared *sds;
5997
5998 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5999 if (sds)
6000 return READ_ONCE(sds->has_idle_cores);
6001
6002 return def;
6003}
6004
6005/*
6006 * Scans the local SMT mask to see if the entire core is idle, and records this
6007 * information in sd_llc_shared->has_idle_cores.
6008 *
6009 * Since SMT siblings share all cache levels, inspecting this limited remote
6010 * state should be fairly cheap.
6011 */
6012void __update_idle_core(struct rq *rq)
6013{
6014 int core = cpu_of(rq);
6015 int cpu;
6016
6017 rcu_read_lock();
6018 if (test_idle_cores(core, true))
6019 goto unlock;
6020
6021 for_each_cpu(cpu, cpu_smt_mask(core)) {
6022 if (cpu == core)
6023 continue;
6024
6025 if (!available_idle_cpu(cpu))
6026 goto unlock;
6027 }
6028
6029 set_idle_cores(core, 1);
6030unlock:
6031 rcu_read_unlock();
6032}
6033
6034/*
6035 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6036 * there are no idle cores left in the system; tracked through
6037 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6038 */
6039static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6040{
6041 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6042 int core, cpu;
6043
6044 if (!static_branch_likely(&sched_smt_present))
6045 return -1;
6046
6047 if (!test_idle_cores(target, false))
6048 return -1;
6049
6050 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6051
6052 for_each_cpu_wrap(core, cpus, target) {
6053 bool idle = true;
6054
6055 for_each_cpu(cpu, cpu_smt_mask(core)) {
6056 if (!available_idle_cpu(cpu)) {
6057 idle = false;
6058 break;
6059 }
6060 }
6061 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6062
6063 if (idle)
6064 return core;
6065 }
6066
6067 /*
6068 * Failed to find an idle core; stop looking for one.
6069 */
6070 set_idle_cores(target, 0);
6071
6072 return -1;
6073}
6074
6075/*
6076 * Scan the local SMT mask for idle CPUs.
6077 */
6078static int select_idle_smt(struct task_struct *p, int target)
6079{
6080 int cpu;
6081
6082 if (!static_branch_likely(&sched_smt_present))
6083 return -1;
6084
6085 for_each_cpu(cpu, cpu_smt_mask(target)) {
6086 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6087 continue;
6088 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6089 return cpu;
6090 }
6091
6092 return -1;
6093}
6094
6095#else /* CONFIG_SCHED_SMT */
6096
6097static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6098{
6099 return -1;
6100}
6101
6102static inline int select_idle_smt(struct task_struct *p, int target)
6103{
6104 return -1;
6105}
6106
6107#endif /* CONFIG_SCHED_SMT */
6108
6109/*
6110 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6111 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6112 * average idle time for this rq (as found in rq->avg_idle).
6113 */
6114static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6115{
6116 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6117 struct sched_domain *this_sd;
6118 u64 avg_cost, avg_idle;
6119 u64 time;
6120 int this = smp_processor_id();
6121 int cpu, nr = INT_MAX;
6122
6123 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6124 if (!this_sd)
6125 return -1;
6126
6127 /*
6128 * Due to large variance we need a large fuzz factor; hackbench in
6129 * particularly is sensitive here.
6130 */
6131 avg_idle = this_rq()->avg_idle / 512;
6132 avg_cost = this_sd->avg_scan_cost + 1;
6133
6134 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6135 return -1;
6136
6137 if (sched_feat(SIS_PROP)) {
6138 u64 span_avg = sd->span_weight * avg_idle;
6139 if (span_avg > 4*avg_cost)
6140 nr = div_u64(span_avg, avg_cost);
6141 else
6142 nr = 4;
6143 }
6144
6145 time = cpu_clock(this);
6146
6147 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6148
6149 for_each_cpu_wrap(cpu, cpus, target) {
6150 if (!--nr)
6151 return -1;
6152 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6153 break;
6154 }
6155
6156 time = cpu_clock(this) - time;
6157 update_avg(&this_sd->avg_scan_cost, time);
6158
6159 return cpu;
6160}
6161
6162/*
6163 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6164 * the task fits. If no CPU is big enough, but there are idle ones, try to
6165 * maximize capacity.
6166 */
6167static int
6168select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6169{
6170 unsigned long best_cap = 0;
6171 int cpu, best_cpu = -1;
6172 struct cpumask *cpus;
6173
6174 sync_entity_load_avg(&p->se);
6175
6176 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6177 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6178
6179 for_each_cpu_wrap(cpu, cpus, target) {
6180 unsigned long cpu_cap = capacity_of(cpu);
6181
6182 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6183 continue;
6184 if (task_fits_capacity(p, cpu_cap))
6185 return cpu;
6186
6187 if (cpu_cap > best_cap) {
6188 best_cap = cpu_cap;
6189 best_cpu = cpu;
6190 }
6191 }
6192
6193 return best_cpu;
6194}
6195
6196/*
6197 * Try and locate an idle core/thread in the LLC cache domain.
6198 */
6199static int select_idle_sibling(struct task_struct *p, int prev, int target)
6200{
6201 struct sched_domain *sd;
6202 int i, recent_used_cpu;
6203
6204 /*
6205 * For asymmetric CPU capacity systems, our domain of interest is
6206 * sd_asym_cpucapacity rather than sd_llc.
6207 */
6208 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6209 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6210 /*
6211 * On an asymmetric CPU capacity system where an exclusive
6212 * cpuset defines a symmetric island (i.e. one unique
6213 * capacity_orig value through the cpuset), the key will be set
6214 * but the CPUs within that cpuset will not have a domain with
6215 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6216 * capacity path.
6217 */
6218 if (!sd)
6219 goto symmetric;
6220
6221 i = select_idle_capacity(p, sd, target);
6222 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6223 }
6224
6225symmetric:
6226 if (available_idle_cpu(target) || sched_idle_cpu(target))
6227 return target;
6228
6229 /*
6230 * If the previous CPU is cache affine and idle, don't be stupid:
6231 */
6232 if (prev != target && cpus_share_cache(prev, target) &&
6233 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
6234 return prev;
6235
6236 /*
6237 * Allow a per-cpu kthread to stack with the wakee if the
6238 * kworker thread and the tasks previous CPUs are the same.
6239 * The assumption is that the wakee queued work for the
6240 * per-cpu kthread that is now complete and the wakeup is
6241 * essentially a sync wakeup. An obvious example of this
6242 * pattern is IO completions.
6243 */
6244 if (is_per_cpu_kthread(current) &&
6245 prev == smp_processor_id() &&
6246 this_rq()->nr_running <= 1) {
6247 return prev;
6248 }
6249
6250 /* Check a recently used CPU as a potential idle candidate: */
6251 recent_used_cpu = p->recent_used_cpu;
6252 if (recent_used_cpu != prev &&
6253 recent_used_cpu != target &&
6254 cpus_share_cache(recent_used_cpu, target) &&
6255 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6256 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
6257 /*
6258 * Replace recent_used_cpu with prev as it is a potential
6259 * candidate for the next wake:
6260 */
6261 p->recent_used_cpu = prev;
6262 return recent_used_cpu;
6263 }
6264
6265 sd = rcu_dereference(per_cpu(sd_llc, target));
6266 if (!sd)
6267 return target;
6268
6269 i = select_idle_core(p, sd, target);
6270 if ((unsigned)i < nr_cpumask_bits)
6271 return i;
6272
6273 i = select_idle_cpu(p, sd, target);
6274 if ((unsigned)i < nr_cpumask_bits)
6275 return i;
6276
6277 i = select_idle_smt(p, target);
6278 if ((unsigned)i < nr_cpumask_bits)
6279 return i;
6280
6281 return target;
6282}
6283
6284/**
6285 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6286 * @cpu: the CPU to get the utilization of
6287 *
6288 * The unit of the return value must be the one of capacity so we can compare
6289 * the utilization with the capacity of the CPU that is available for CFS task
6290 * (ie cpu_capacity).
6291 *
6292 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6293 * recent utilization of currently non-runnable tasks on a CPU. It represents
6294 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6295 * capacity_orig is the cpu_capacity available at the highest frequency
6296 * (arch_scale_freq_capacity()).
6297 * The utilization of a CPU converges towards a sum equal to or less than the
6298 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6299 * the running time on this CPU scaled by capacity_curr.
6300 *
6301 * The estimated utilization of a CPU is defined to be the maximum between its
6302 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6303 * currently RUNNABLE on that CPU.
6304 * This allows to properly represent the expected utilization of a CPU which
6305 * has just got a big task running since a long sleep period. At the same time
6306 * however it preserves the benefits of the "blocked utilization" in
6307 * describing the potential for other tasks waking up on the same CPU.
6308 *
6309 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6310 * higher than capacity_orig because of unfortunate rounding in
6311 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6312 * the average stabilizes with the new running time. We need to check that the
6313 * utilization stays within the range of [0..capacity_orig] and cap it if
6314 * necessary. Without utilization capping, a group could be seen as overloaded
6315 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6316 * available capacity. We allow utilization to overshoot capacity_curr (but not
6317 * capacity_orig) as it useful for predicting the capacity required after task
6318 * migrations (scheduler-driven DVFS).
6319 *
6320 * Return: the (estimated) utilization for the specified CPU
6321 */
6322static inline unsigned long cpu_util(int cpu)
6323{
6324 struct cfs_rq *cfs_rq;
6325 unsigned int util;
6326
6327 cfs_rq = &cpu_rq(cpu)->cfs;
6328 util = READ_ONCE(cfs_rq->avg.util_avg);
6329
6330 if (sched_feat(UTIL_EST))
6331 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6332
6333 return min_t(unsigned long, util, capacity_orig_of(cpu));
6334}
6335
6336/*
6337 * cpu_util_without: compute cpu utilization without any contributions from *p
6338 * @cpu: the CPU which utilization is requested
6339 * @p: the task which utilization should be discounted
6340 *
6341 * The utilization of a CPU is defined by the utilization of tasks currently
6342 * enqueued on that CPU as well as tasks which are currently sleeping after an
6343 * execution on that CPU.
6344 *
6345 * This method returns the utilization of the specified CPU by discounting the
6346 * utilization of the specified task, whenever the task is currently
6347 * contributing to the CPU utilization.
6348 */
6349static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6350{
6351 struct cfs_rq *cfs_rq;
6352 unsigned int util;
6353
6354 /* Task has no contribution or is new */
6355 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6356 return cpu_util(cpu);
6357
6358 cfs_rq = &cpu_rq(cpu)->cfs;
6359 util = READ_ONCE(cfs_rq->avg.util_avg);
6360
6361 /* Discount task's util from CPU's util */
6362 lsub_positive(&util, task_util(p));
6363
6364 /*
6365 * Covered cases:
6366 *
6367 * a) if *p is the only task sleeping on this CPU, then:
6368 * cpu_util (== task_util) > util_est (== 0)
6369 * and thus we return:
6370 * cpu_util_without = (cpu_util - task_util) = 0
6371 *
6372 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6373 * IDLE, then:
6374 * cpu_util >= task_util
6375 * cpu_util > util_est (== 0)
6376 * and thus we discount *p's blocked utilization to return:
6377 * cpu_util_without = (cpu_util - task_util) >= 0
6378 *
6379 * c) if other tasks are RUNNABLE on that CPU and
6380 * util_est > cpu_util
6381 * then we use util_est since it returns a more restrictive
6382 * estimation of the spare capacity on that CPU, by just
6383 * considering the expected utilization of tasks already
6384 * runnable on that CPU.
6385 *
6386 * Cases a) and b) are covered by the above code, while case c) is
6387 * covered by the following code when estimated utilization is
6388 * enabled.
6389 */
6390 if (sched_feat(UTIL_EST)) {
6391 unsigned int estimated =
6392 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6393
6394 /*
6395 * Despite the following checks we still have a small window
6396 * for a possible race, when an execl's select_task_rq_fair()
6397 * races with LB's detach_task():
6398 *
6399 * detach_task()
6400 * p->on_rq = TASK_ON_RQ_MIGRATING;
6401 * ---------------------------------- A
6402 * deactivate_task() \
6403 * dequeue_task() + RaceTime
6404 * util_est_dequeue() /
6405 * ---------------------------------- B
6406 *
6407 * The additional check on "current == p" it's required to
6408 * properly fix the execl regression and it helps in further
6409 * reducing the chances for the above race.
6410 */
6411 if (unlikely(task_on_rq_queued(p) || current == p))
6412 lsub_positive(&estimated, _task_util_est(p));
6413
6414 util = max(util, estimated);
6415 }
6416
6417 /*
6418 * Utilization (estimated) can exceed the CPU capacity, thus let's
6419 * clamp to the maximum CPU capacity to ensure consistency with
6420 * the cpu_util call.
6421 */
6422 return min_t(unsigned long, util, capacity_orig_of(cpu));
6423}
6424
6425/*
6426 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6427 * to @dst_cpu.
6428 */
6429static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6430{
6431 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6432 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6433
6434 /*
6435 * If @p migrates from @cpu to another, remove its contribution. Or,
6436 * if @p migrates from another CPU to @cpu, add its contribution. In
6437 * the other cases, @cpu is not impacted by the migration, so the
6438 * util_avg should already be correct.
6439 */
6440 if (task_cpu(p) == cpu && dst_cpu != cpu)
6441 sub_positive(&util, task_util(p));
6442 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6443 util += task_util(p);
6444
6445 if (sched_feat(UTIL_EST)) {
6446 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6447
6448 /*
6449 * During wake-up, the task isn't enqueued yet and doesn't
6450 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6451 * so just add it (if needed) to "simulate" what will be
6452 * cpu_util() after the task has been enqueued.
6453 */
6454 if (dst_cpu == cpu)
6455 util_est += _task_util_est(p);
6456
6457 util = max(util, util_est);
6458 }
6459
6460 return min(util, capacity_orig_of(cpu));
6461}
6462
6463/*
6464 * compute_energy(): Estimates the energy that @pd would consume if @p was
6465 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6466 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6467 * to compute what would be the energy if we decided to actually migrate that
6468 * task.
6469 */
6470static long
6471compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6472{
6473 struct cpumask *pd_mask = perf_domain_span(pd);
6474 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6475 unsigned long max_util = 0, sum_util = 0;
6476 int cpu;
6477
6478 /*
6479 * The capacity state of CPUs of the current rd can be driven by CPUs
6480 * of another rd if they belong to the same pd. So, account for the
6481 * utilization of these CPUs too by masking pd with cpu_online_mask
6482 * instead of the rd span.
6483 *
6484 * If an entire pd is outside of the current rd, it will not appear in
6485 * its pd list and will not be accounted by compute_energy().
6486 */
6487 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6488 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6489 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6490
6491 /*
6492 * Busy time computation: utilization clamping is not
6493 * required since the ratio (sum_util / cpu_capacity)
6494 * is already enough to scale the EM reported power
6495 * consumption at the (eventually clamped) cpu_capacity.
6496 */
6497 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6498 ENERGY_UTIL, NULL);
6499
6500 /*
6501 * Performance domain frequency: utilization clamping
6502 * must be considered since it affects the selection
6503 * of the performance domain frequency.
6504 * NOTE: in case RT tasks are running, by default the
6505 * FREQUENCY_UTIL's utilization can be max OPP.
6506 */
6507 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6508 FREQUENCY_UTIL, tsk);
6509 max_util = max(max_util, cpu_util);
6510 }
6511
6512 return em_cpu_energy(pd->em_pd, max_util, sum_util);
6513}
6514
6515/*
6516 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6517 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6518 * spare capacity in each performance domain and uses it as a potential
6519 * candidate to execute the task. Then, it uses the Energy Model to figure
6520 * out which of the CPU candidates is the most energy-efficient.
6521 *
6522 * The rationale for this heuristic is as follows. In a performance domain,
6523 * all the most energy efficient CPU candidates (according to the Energy
6524 * Model) are those for which we'll request a low frequency. When there are
6525 * several CPUs for which the frequency request will be the same, we don't
6526 * have enough data to break the tie between them, because the Energy Model
6527 * only includes active power costs. With this model, if we assume that
6528 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6529 * the maximum spare capacity in a performance domain is guaranteed to be among
6530 * the best candidates of the performance domain.
6531 *
6532 * In practice, it could be preferable from an energy standpoint to pack
6533 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6534 * but that could also hurt our chances to go cluster idle, and we have no
6535 * ways to tell with the current Energy Model if this is actually a good
6536 * idea or not. So, find_energy_efficient_cpu() basically favors
6537 * cluster-packing, and spreading inside a cluster. That should at least be
6538 * a good thing for latency, and this is consistent with the idea that most
6539 * of the energy savings of EAS come from the asymmetry of the system, and
6540 * not so much from breaking the tie between identical CPUs. That's also the
6541 * reason why EAS is enabled in the topology code only for systems where
6542 * SD_ASYM_CPUCAPACITY is set.
6543 *
6544 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6545 * they don't have any useful utilization data yet and it's not possible to
6546 * forecast their impact on energy consumption. Consequently, they will be
6547 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6548 * to be energy-inefficient in some use-cases. The alternative would be to
6549 * bias new tasks towards specific types of CPUs first, or to try to infer
6550 * their util_avg from the parent task, but those heuristics could hurt
6551 * other use-cases too. So, until someone finds a better way to solve this,
6552 * let's keep things simple by re-using the existing slow path.
6553 */
6554static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6555{
6556 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6557 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6558 unsigned long cpu_cap, util, base_energy = 0;
6559 int cpu, best_energy_cpu = prev_cpu;
6560 struct sched_domain *sd;
6561 struct perf_domain *pd;
6562
6563 rcu_read_lock();
6564 pd = rcu_dereference(rd->pd);
6565 if (!pd || READ_ONCE(rd->overutilized))
6566 goto fail;
6567
6568 /*
6569 * Energy-aware wake-up happens on the lowest sched_domain starting
6570 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6571 */
6572 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6573 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6574 sd = sd->parent;
6575 if (!sd)
6576 goto fail;
6577
6578 sync_entity_load_avg(&p->se);
6579 if (!task_util_est(p))
6580 goto unlock;
6581
6582 for (; pd; pd = pd->next) {
6583 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6584 unsigned long base_energy_pd;
6585 int max_spare_cap_cpu = -1;
6586
6587 /* Compute the 'base' energy of the pd, without @p */
6588 base_energy_pd = compute_energy(p, -1, pd);
6589 base_energy += base_energy_pd;
6590
6591 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6592 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6593 continue;
6594
6595 util = cpu_util_next(cpu, p, cpu);
6596 cpu_cap = capacity_of(cpu);
6597 spare_cap = cpu_cap - util;
6598
6599 /*
6600 * Skip CPUs that cannot satisfy the capacity request.
6601 * IOW, placing the task there would make the CPU
6602 * overutilized. Take uclamp into account to see how
6603 * much capacity we can get out of the CPU; this is
6604 * aligned with schedutil_cpu_util().
6605 */
6606 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6607 if (!fits_capacity(util, cpu_cap))
6608 continue;
6609
6610 /* Always use prev_cpu as a candidate. */
6611 if (cpu == prev_cpu) {
6612 prev_delta = compute_energy(p, prev_cpu, pd);
6613 prev_delta -= base_energy_pd;
6614 best_delta = min(best_delta, prev_delta);
6615 }
6616
6617 /*
6618 * Find the CPU with the maximum spare capacity in
6619 * the performance domain
6620 */
6621 if (spare_cap > max_spare_cap) {
6622 max_spare_cap = spare_cap;
6623 max_spare_cap_cpu = cpu;
6624 }
6625 }
6626
6627 /* Evaluate the energy impact of using this CPU. */
6628 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6629 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6630 cur_delta -= base_energy_pd;
6631 if (cur_delta < best_delta) {
6632 best_delta = cur_delta;
6633 best_energy_cpu = max_spare_cap_cpu;
6634 }
6635 }
6636 }
6637unlock:
6638 rcu_read_unlock();
6639
6640 /*
6641 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6642 * least 6% of the energy used by prev_cpu.
6643 */
6644 if (prev_delta == ULONG_MAX)
6645 return best_energy_cpu;
6646
6647 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6648 return best_energy_cpu;
6649
6650 return prev_cpu;
6651
6652fail:
6653 rcu_read_unlock();
6654
6655 return -1;
6656}
6657
6658/*
6659 * select_task_rq_fair: Select target runqueue for the waking task in domains
6660 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6661 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6662 *
6663 * Balances load by selecting the idlest CPU in the idlest group, or under
6664 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6665 *
6666 * Returns the target CPU number.
6667 *
6668 * preempt must be disabled.
6669 */
6670static int
6671select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6672{
6673 struct sched_domain *tmp, *sd = NULL;
6674 int cpu = smp_processor_id();
6675 int new_cpu = prev_cpu;
6676 int want_affine = 0;
6677 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6678
6679 if (sd_flag & SD_BALANCE_WAKE) {
6680 record_wakee(p);
6681
6682 if (sched_energy_enabled()) {
6683 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6684 if (new_cpu >= 0)
6685 return new_cpu;
6686 new_cpu = prev_cpu;
6687 }
6688
6689 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6690 }
6691
6692 rcu_read_lock();
6693 for_each_domain(cpu, tmp) {
6694 /*
6695 * If both 'cpu' and 'prev_cpu' are part of this domain,
6696 * cpu is a valid SD_WAKE_AFFINE target.
6697 */
6698 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6699 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6700 if (cpu != prev_cpu)
6701 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6702
6703 sd = NULL; /* Prefer wake_affine over balance flags */
6704 break;
6705 }
6706
6707 if (tmp->flags & sd_flag)
6708 sd = tmp;
6709 else if (!want_affine)
6710 break;
6711 }
6712
6713 if (unlikely(sd)) {
6714 /* Slow path */
6715 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6716 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6717 /* Fast path */
6718
6719 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6720
6721 if (want_affine)
6722 current->recent_used_cpu = cpu;
6723 }
6724 rcu_read_unlock();
6725
6726 return new_cpu;
6727}
6728
6729static void detach_entity_cfs_rq(struct sched_entity *se);
6730
6731/*
6732 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6733 * cfs_rq_of(p) references at time of call are still valid and identify the
6734 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6735 */
6736static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6737{
6738 /*
6739 * As blocked tasks retain absolute vruntime the migration needs to
6740 * deal with this by subtracting the old and adding the new
6741 * min_vruntime -- the latter is done by enqueue_entity() when placing
6742 * the task on the new runqueue.
6743 */
6744 if (p->state == TASK_WAKING) {
6745 struct sched_entity *se = &p->se;
6746 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6747 u64 min_vruntime;
6748
6749#ifndef CONFIG_64BIT
6750 u64 min_vruntime_copy;
6751
6752 do {
6753 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6754 smp_rmb();
6755 min_vruntime = cfs_rq->min_vruntime;
6756 } while (min_vruntime != min_vruntime_copy);
6757#else
6758 min_vruntime = cfs_rq->min_vruntime;
6759#endif
6760
6761 se->vruntime -= min_vruntime;
6762 }
6763
6764 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6765 /*
6766 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6767 * rq->lock and can modify state directly.
6768 */
6769 lockdep_assert_held(&task_rq(p)->lock);
6770 detach_entity_cfs_rq(&p->se);
6771
6772 } else {
6773 /*
6774 * We are supposed to update the task to "current" time, then
6775 * its up to date and ready to go to new CPU/cfs_rq. But we
6776 * have difficulty in getting what current time is, so simply
6777 * throw away the out-of-date time. This will result in the
6778 * wakee task is less decayed, but giving the wakee more load
6779 * sounds not bad.
6780 */
6781 remove_entity_load_avg(&p->se);
6782 }
6783
6784 /* Tell new CPU we are migrated */
6785 p->se.avg.last_update_time = 0;
6786
6787 /* We have migrated, no longer consider this task hot */
6788 p->se.exec_start = 0;
6789
6790 update_scan_period(p, new_cpu);
6791}
6792
6793static void task_dead_fair(struct task_struct *p)
6794{
6795 remove_entity_load_avg(&p->se);
6796}
6797
6798static int
6799balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6800{
6801 if (rq->nr_running)
6802 return 1;
6803
6804 return newidle_balance(rq, rf) != 0;
6805}
6806#endif /* CONFIG_SMP */
6807
6808static unsigned long wakeup_gran(struct sched_entity *se)
6809{
6810 unsigned long gran = sysctl_sched_wakeup_granularity;
6811
6812 /*
6813 * Since its curr running now, convert the gran from real-time
6814 * to virtual-time in his units.
6815 *
6816 * By using 'se' instead of 'curr' we penalize light tasks, so
6817 * they get preempted easier. That is, if 'se' < 'curr' then
6818 * the resulting gran will be larger, therefore penalizing the
6819 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6820 * be smaller, again penalizing the lighter task.
6821 *
6822 * This is especially important for buddies when the leftmost
6823 * task is higher priority than the buddy.
6824 */
6825 return calc_delta_fair(gran, se);
6826}
6827
6828/*
6829 * Should 'se' preempt 'curr'.
6830 *
6831 * |s1
6832 * |s2
6833 * |s3
6834 * g
6835 * |<--->|c
6836 *
6837 * w(c, s1) = -1
6838 * w(c, s2) = 0
6839 * w(c, s3) = 1
6840 *
6841 */
6842static int
6843wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6844{
6845 s64 gran, vdiff = curr->vruntime - se->vruntime;
6846
6847 if (vdiff <= 0)
6848 return -1;
6849
6850 gran = wakeup_gran(se);
6851 if (vdiff > gran)
6852 return 1;
6853
6854 return 0;
6855}
6856
6857static void set_last_buddy(struct sched_entity *se)
6858{
6859 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6860 return;
6861
6862 for_each_sched_entity(se) {
6863 if (SCHED_WARN_ON(!se->on_rq))
6864 return;
6865 cfs_rq_of(se)->last = se;
6866 }
6867}
6868
6869static void set_next_buddy(struct sched_entity *se)
6870{
6871 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6872 return;
6873
6874 for_each_sched_entity(se) {
6875 if (SCHED_WARN_ON(!se->on_rq))
6876 return;
6877 cfs_rq_of(se)->next = se;
6878 }
6879}
6880
6881static void set_skip_buddy(struct sched_entity *se)
6882{
6883 for_each_sched_entity(se)
6884 cfs_rq_of(se)->skip = se;
6885}
6886
6887/*
6888 * Preempt the current task with a newly woken task if needed:
6889 */
6890static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6891{
6892 struct task_struct *curr = rq->curr;
6893 struct sched_entity *se = &curr->se, *pse = &p->se;
6894 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6895 int scale = cfs_rq->nr_running >= sched_nr_latency;
6896 int next_buddy_marked = 0;
6897
6898 if (unlikely(se == pse))
6899 return;
6900
6901 /*
6902 * This is possible from callers such as attach_tasks(), in which we
6903 * unconditionally check_prempt_curr() after an enqueue (which may have
6904 * lead to a throttle). This both saves work and prevents false
6905 * next-buddy nomination below.
6906 */
6907 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6908 return;
6909
6910 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6911 set_next_buddy(pse);
6912 next_buddy_marked = 1;
6913 }
6914
6915 /*
6916 * We can come here with TIF_NEED_RESCHED already set from new task
6917 * wake up path.
6918 *
6919 * Note: this also catches the edge-case of curr being in a throttled
6920 * group (e.g. via set_curr_task), since update_curr() (in the
6921 * enqueue of curr) will have resulted in resched being set. This
6922 * prevents us from potentially nominating it as a false LAST_BUDDY
6923 * below.
6924 */
6925 if (test_tsk_need_resched(curr))
6926 return;
6927
6928 /* Idle tasks are by definition preempted by non-idle tasks. */
6929 if (unlikely(task_has_idle_policy(curr)) &&
6930 likely(!task_has_idle_policy(p)))
6931 goto preempt;
6932
6933 /*
6934 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6935 * is driven by the tick):
6936 */
6937 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6938 return;
6939
6940 find_matching_se(&se, &pse);
6941 update_curr(cfs_rq_of(se));
6942 BUG_ON(!pse);
6943 if (wakeup_preempt_entity(se, pse) == 1) {
6944 /*
6945 * Bias pick_next to pick the sched entity that is
6946 * triggering this preemption.
6947 */
6948 if (!next_buddy_marked)
6949 set_next_buddy(pse);
6950 goto preempt;
6951 }
6952
6953 return;
6954
6955preempt:
6956 resched_curr(rq);
6957 /*
6958 * Only set the backward buddy when the current task is still
6959 * on the rq. This can happen when a wakeup gets interleaved
6960 * with schedule on the ->pre_schedule() or idle_balance()
6961 * point, either of which can * drop the rq lock.
6962 *
6963 * Also, during early boot the idle thread is in the fair class,
6964 * for obvious reasons its a bad idea to schedule back to it.
6965 */
6966 if (unlikely(!se->on_rq || curr == rq->idle))
6967 return;
6968
6969 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6970 set_last_buddy(se);
6971}
6972
6973struct task_struct *
6974pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6975{
6976 struct cfs_rq *cfs_rq = &rq->cfs;
6977 struct sched_entity *se;
6978 struct task_struct *p;
6979 int new_tasks;
6980
6981again:
6982 if (!sched_fair_runnable(rq))
6983 goto idle;
6984
6985#ifdef CONFIG_FAIR_GROUP_SCHED
6986 if (!prev || prev->sched_class != &fair_sched_class)
6987 goto simple;
6988
6989 /*
6990 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6991 * likely that a next task is from the same cgroup as the current.
6992 *
6993 * Therefore attempt to avoid putting and setting the entire cgroup
6994 * hierarchy, only change the part that actually changes.
6995 */
6996
6997 do {
6998 struct sched_entity *curr = cfs_rq->curr;
6999
7000 /*
7001 * Since we got here without doing put_prev_entity() we also
7002 * have to consider cfs_rq->curr. If it is still a runnable
7003 * entity, update_curr() will update its vruntime, otherwise
7004 * forget we've ever seen it.
7005 */
7006 if (curr) {
7007 if (curr->on_rq)
7008 update_curr(cfs_rq);
7009 else
7010 curr = NULL;
7011
7012 /*
7013 * This call to check_cfs_rq_runtime() will do the
7014 * throttle and dequeue its entity in the parent(s).
7015 * Therefore the nr_running test will indeed
7016 * be correct.
7017 */
7018 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7019 cfs_rq = &rq->cfs;
7020
7021 if (!cfs_rq->nr_running)
7022 goto idle;
7023
7024 goto simple;
7025 }
7026 }
7027
7028 se = pick_next_entity(cfs_rq, curr);
7029 cfs_rq = group_cfs_rq(se);
7030 } while (cfs_rq);
7031
7032 p = task_of(se);
7033
7034 /*
7035 * Since we haven't yet done put_prev_entity and if the selected task
7036 * is a different task than we started out with, try and touch the
7037 * least amount of cfs_rqs.
7038 */
7039 if (prev != p) {
7040 struct sched_entity *pse = &prev->se;
7041
7042 while (!(cfs_rq = is_same_group(se, pse))) {
7043 int se_depth = se->depth;
7044 int pse_depth = pse->depth;
7045
7046 if (se_depth <= pse_depth) {
7047 put_prev_entity(cfs_rq_of(pse), pse);
7048 pse = parent_entity(pse);
7049 }
7050 if (se_depth >= pse_depth) {
7051 set_next_entity(cfs_rq_of(se), se);
7052 se = parent_entity(se);
7053 }
7054 }
7055
7056 put_prev_entity(cfs_rq, pse);
7057 set_next_entity(cfs_rq, se);
7058 }
7059
7060 goto done;
7061simple:
7062#endif
7063 if (prev)
7064 put_prev_task(rq, prev);
7065
7066 do {
7067 se = pick_next_entity(cfs_rq, NULL);
7068 set_next_entity(cfs_rq, se);
7069 cfs_rq = group_cfs_rq(se);
7070 } while (cfs_rq);
7071
7072 p = task_of(se);
7073
7074done: __maybe_unused;
7075#ifdef CONFIG_SMP
7076 /*
7077 * Move the next running task to the front of
7078 * the list, so our cfs_tasks list becomes MRU
7079 * one.
7080 */
7081 list_move(&p->se.group_node, &rq->cfs_tasks);
7082#endif
7083
7084 if (hrtick_enabled(rq))
7085 hrtick_start_fair(rq, p);
7086
7087 update_misfit_status(p, rq);
7088
7089 return p;
7090
7091idle:
7092 if (!rf)
7093 return NULL;
7094
7095 new_tasks = newidle_balance(rq, rf);
7096
7097 /*
7098 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7099 * possible for any higher priority task to appear. In that case we
7100 * must re-start the pick_next_entity() loop.
7101 */
7102 if (new_tasks < 0)
7103 return RETRY_TASK;
7104
7105 if (new_tasks > 0)
7106 goto again;
7107
7108 /*
7109 * rq is about to be idle, check if we need to update the
7110 * lost_idle_time of clock_pelt
7111 */
7112 update_idle_rq_clock_pelt(rq);
7113
7114 return NULL;
7115}
7116
7117static struct task_struct *__pick_next_task_fair(struct rq *rq)
7118{
7119 return pick_next_task_fair(rq, NULL, NULL);
7120}
7121
7122/*
7123 * Account for a descheduled task:
7124 */
7125static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7126{
7127 struct sched_entity *se = &prev->se;
7128 struct cfs_rq *cfs_rq;
7129
7130 for_each_sched_entity(se) {
7131 cfs_rq = cfs_rq_of(se);
7132 put_prev_entity(cfs_rq, se);
7133 }
7134}
7135
7136/*
7137 * sched_yield() is very simple
7138 *
7139 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7140 */
7141static void yield_task_fair(struct rq *rq)
7142{
7143 struct task_struct *curr = rq->curr;
7144 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7145 struct sched_entity *se = &curr->se;
7146
7147 /*
7148 * Are we the only task in the tree?
7149 */
7150 if (unlikely(rq->nr_running == 1))
7151 return;
7152
7153 clear_buddies(cfs_rq, se);
7154
7155 if (curr->policy != SCHED_BATCH) {
7156 update_rq_clock(rq);
7157 /*
7158 * Update run-time statistics of the 'current'.
7159 */
7160 update_curr(cfs_rq);
7161 /*
7162 * Tell update_rq_clock() that we've just updated,
7163 * so we don't do microscopic update in schedule()
7164 * and double the fastpath cost.
7165 */
7166 rq_clock_skip_update(rq);
7167 }
7168
7169 set_skip_buddy(se);
7170}
7171
7172static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7173{
7174 struct sched_entity *se = &p->se;
7175
7176 /* throttled hierarchies are not runnable */
7177 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7178 return false;
7179
7180 /* Tell the scheduler that we'd really like pse to run next. */
7181 set_next_buddy(se);
7182
7183 yield_task_fair(rq);
7184
7185 return true;
7186}
7187
7188#ifdef CONFIG_SMP
7189/**************************************************
7190 * Fair scheduling class load-balancing methods.
7191 *
7192 * BASICS
7193 *
7194 * The purpose of load-balancing is to achieve the same basic fairness the
7195 * per-CPU scheduler provides, namely provide a proportional amount of compute
7196 * time to each task. This is expressed in the following equation:
7197 *
7198 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7199 *
7200 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7201 * W_i,0 is defined as:
7202 *
7203 * W_i,0 = \Sum_j w_i,j (2)
7204 *
7205 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7206 * is derived from the nice value as per sched_prio_to_weight[].
7207 *
7208 * The weight average is an exponential decay average of the instantaneous
7209 * weight:
7210 *
7211 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7212 *
7213 * C_i is the compute capacity of CPU i, typically it is the
7214 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7215 * can also include other factors [XXX].
7216 *
7217 * To achieve this balance we define a measure of imbalance which follows
7218 * directly from (1):
7219 *
7220 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7221 *
7222 * We them move tasks around to minimize the imbalance. In the continuous
7223 * function space it is obvious this converges, in the discrete case we get
7224 * a few fun cases generally called infeasible weight scenarios.
7225 *
7226 * [XXX expand on:
7227 * - infeasible weights;
7228 * - local vs global optima in the discrete case. ]
7229 *
7230 *
7231 * SCHED DOMAINS
7232 *
7233 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7234 * for all i,j solution, we create a tree of CPUs that follows the hardware
7235 * topology where each level pairs two lower groups (or better). This results
7236 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7237 * tree to only the first of the previous level and we decrease the frequency
7238 * of load-balance at each level inv. proportional to the number of CPUs in
7239 * the groups.
7240 *
7241 * This yields:
7242 *
7243 * log_2 n 1 n
7244 * \Sum { --- * --- * 2^i } = O(n) (5)
7245 * i = 0 2^i 2^i
7246 * `- size of each group
7247 * | | `- number of CPUs doing load-balance
7248 * | `- freq
7249 * `- sum over all levels
7250 *
7251 * Coupled with a limit on how many tasks we can migrate every balance pass,
7252 * this makes (5) the runtime complexity of the balancer.
7253 *
7254 * An important property here is that each CPU is still (indirectly) connected
7255 * to every other CPU in at most O(log n) steps:
7256 *
7257 * The adjacency matrix of the resulting graph is given by:
7258 *
7259 * log_2 n
7260 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7261 * k = 0
7262 *
7263 * And you'll find that:
7264 *
7265 * A^(log_2 n)_i,j != 0 for all i,j (7)
7266 *
7267 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7268 * The task movement gives a factor of O(m), giving a convergence complexity
7269 * of:
7270 *
7271 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7272 *
7273 *
7274 * WORK CONSERVING
7275 *
7276 * In order to avoid CPUs going idle while there's still work to do, new idle
7277 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7278 * tree itself instead of relying on other CPUs to bring it work.
7279 *
7280 * This adds some complexity to both (5) and (8) but it reduces the total idle
7281 * time.
7282 *
7283 * [XXX more?]
7284 *
7285 *
7286 * CGROUPS
7287 *
7288 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7289 *
7290 * s_k,i
7291 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7292 * S_k
7293 *
7294 * Where
7295 *
7296 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7297 *
7298 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7299 *
7300 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7301 * property.
7302 *
7303 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7304 * rewrite all of this once again.]
7305 */
7306
7307static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7308
7309enum fbq_type { regular, remote, all };
7310
7311/*
7312 * 'group_type' describes the group of CPUs at the moment of load balancing.
7313 *
7314 * The enum is ordered by pulling priority, with the group with lowest priority
7315 * first so the group_type can simply be compared when selecting the busiest
7316 * group. See update_sd_pick_busiest().
7317 */
7318enum group_type {
7319 /* The group has spare capacity that can be used to run more tasks. */
7320 group_has_spare = 0,
7321 /*
7322 * The group is fully used and the tasks don't compete for more CPU
7323 * cycles. Nevertheless, some tasks might wait before running.
7324 */
7325 group_fully_busy,
7326 /*
7327 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7328 * and must be migrated to a more powerful CPU.
7329 */
7330 group_misfit_task,
7331 /*
7332 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7333 * and the task should be migrated to it instead of running on the
7334 * current CPU.
7335 */
7336 group_asym_packing,
7337 /*
7338 * The tasks' affinity constraints previously prevented the scheduler
7339 * from balancing the load across the system.
7340 */
7341 group_imbalanced,
7342 /*
7343 * The CPU is overloaded and can't provide expected CPU cycles to all
7344 * tasks.
7345 */
7346 group_overloaded
7347};
7348
7349enum migration_type {
7350 migrate_load = 0,
7351 migrate_util,
7352 migrate_task,
7353 migrate_misfit
7354};
7355
7356#define LBF_ALL_PINNED 0x01
7357#define LBF_NEED_BREAK 0x02
7358#define LBF_DST_PINNED 0x04
7359#define LBF_SOME_PINNED 0x08
7360#define LBF_NOHZ_STATS 0x10
7361#define LBF_NOHZ_AGAIN 0x20
7362
7363struct lb_env {
7364 struct sched_domain *sd;
7365
7366 struct rq *src_rq;
7367 int src_cpu;
7368
7369 int dst_cpu;
7370 struct rq *dst_rq;
7371
7372 struct cpumask *dst_grpmask;
7373 int new_dst_cpu;
7374 enum cpu_idle_type idle;
7375 long imbalance;
7376 /* The set of CPUs under consideration for load-balancing */
7377 struct cpumask *cpus;
7378
7379 unsigned int flags;
7380
7381 unsigned int loop;
7382 unsigned int loop_break;
7383 unsigned int loop_max;
7384
7385 enum fbq_type fbq_type;
7386 enum migration_type migration_type;
7387 struct list_head tasks;
7388};
7389
7390/*
7391 * Is this task likely cache-hot:
7392 */
7393static int task_hot(struct task_struct *p, struct lb_env *env)
7394{
7395 s64 delta;
7396
7397 lockdep_assert_held(&env->src_rq->lock);
7398
7399 if (p->sched_class != &fair_sched_class)
7400 return 0;
7401
7402 if (unlikely(task_has_idle_policy(p)))
7403 return 0;
7404
7405 /*
7406 * Buddy candidates are cache hot:
7407 */
7408 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7409 (&p->se == cfs_rq_of(&p->se)->next ||
7410 &p->se == cfs_rq_of(&p->se)->last))
7411 return 1;
7412
7413 if (sysctl_sched_migration_cost == -1)
7414 return 1;
7415 if (sysctl_sched_migration_cost == 0)
7416 return 0;
7417
7418 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7419
7420 return delta < (s64)sysctl_sched_migration_cost;
7421}
7422
7423#ifdef CONFIG_NUMA_BALANCING
7424/*
7425 * Returns 1, if task migration degrades locality
7426 * Returns 0, if task migration improves locality i.e migration preferred.
7427 * Returns -1, if task migration is not affected by locality.
7428 */
7429static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7430{
7431 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7432 unsigned long src_weight, dst_weight;
7433 int src_nid, dst_nid, dist;
7434
7435 if (!static_branch_likely(&sched_numa_balancing))
7436 return -1;
7437
7438 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7439 return -1;
7440
7441 src_nid = cpu_to_node(env->src_cpu);
7442 dst_nid = cpu_to_node(env->dst_cpu);
7443
7444 if (src_nid == dst_nid)
7445 return -1;
7446
7447 /* Migrating away from the preferred node is always bad. */
7448 if (src_nid == p->numa_preferred_nid) {
7449 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7450 return 1;
7451 else
7452 return -1;
7453 }
7454
7455 /* Encourage migration to the preferred node. */
7456 if (dst_nid == p->numa_preferred_nid)
7457 return 0;
7458
7459 /* Leaving a core idle is often worse than degrading locality. */
7460 if (env->idle == CPU_IDLE)
7461 return -1;
7462
7463 dist = node_distance(src_nid, dst_nid);
7464 if (numa_group) {
7465 src_weight = group_weight(p, src_nid, dist);
7466 dst_weight = group_weight(p, dst_nid, dist);
7467 } else {
7468 src_weight = task_weight(p, src_nid, dist);
7469 dst_weight = task_weight(p, dst_nid, dist);
7470 }
7471
7472 return dst_weight < src_weight;
7473}
7474
7475#else
7476static inline int migrate_degrades_locality(struct task_struct *p,
7477 struct lb_env *env)
7478{
7479 return -1;
7480}
7481#endif
7482
7483/*
7484 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7485 */
7486static
7487int can_migrate_task(struct task_struct *p, struct lb_env *env)
7488{
7489 int tsk_cache_hot;
7490
7491 lockdep_assert_held(&env->src_rq->lock);
7492
7493 /*
7494 * We do not migrate tasks that are:
7495 * 1) throttled_lb_pair, or
7496 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7497 * 3) running (obviously), or
7498 * 4) are cache-hot on their current CPU.
7499 */
7500 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7501 return 0;
7502
7503 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7504 int cpu;
7505
7506 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7507
7508 env->flags |= LBF_SOME_PINNED;
7509
7510 /*
7511 * Remember if this task can be migrated to any other CPU in
7512 * our sched_group. We may want to revisit it if we couldn't
7513 * meet load balance goals by pulling other tasks on src_cpu.
7514 *
7515 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7516 * already computed one in current iteration.
7517 */
7518 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7519 return 0;
7520
7521 /* Prevent to re-select dst_cpu via env's CPUs: */
7522 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7523 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7524 env->flags |= LBF_DST_PINNED;
7525 env->new_dst_cpu = cpu;
7526 break;
7527 }
7528 }
7529
7530 return 0;
7531 }
7532
7533 /* Record that we found atleast one task that could run on dst_cpu */
7534 env->flags &= ~LBF_ALL_PINNED;
7535
7536 if (task_running(env->src_rq, p)) {
7537 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7538 return 0;
7539 }
7540
7541 /*
7542 * Aggressive migration if:
7543 * 1) destination numa is preferred
7544 * 2) task is cache cold, or
7545 * 3) too many balance attempts have failed.
7546 */
7547 tsk_cache_hot = migrate_degrades_locality(p, env);
7548 if (tsk_cache_hot == -1)
7549 tsk_cache_hot = task_hot(p, env);
7550
7551 if (tsk_cache_hot <= 0 ||
7552 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7553 if (tsk_cache_hot == 1) {
7554 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7555 schedstat_inc(p->se.statistics.nr_forced_migrations);
7556 }
7557 return 1;
7558 }
7559
7560 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7561 return 0;
7562}
7563
7564/*
7565 * detach_task() -- detach the task for the migration specified in env
7566 */
7567static void detach_task(struct task_struct *p, struct lb_env *env)
7568{
7569 lockdep_assert_held(&env->src_rq->lock);
7570
7571 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7572 set_task_cpu(p, env->dst_cpu);
7573}
7574
7575/*
7576 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7577 * part of active balancing operations within "domain".
7578 *
7579 * Returns a task if successful and NULL otherwise.
7580 */
7581static struct task_struct *detach_one_task(struct lb_env *env)
7582{
7583 struct task_struct *p;
7584
7585 lockdep_assert_held(&env->src_rq->lock);
7586
7587 list_for_each_entry_reverse(p,
7588 &env->src_rq->cfs_tasks, se.group_node) {
7589 if (!can_migrate_task(p, env))
7590 continue;
7591
7592 detach_task(p, env);
7593
7594 /*
7595 * Right now, this is only the second place where
7596 * lb_gained[env->idle] is updated (other is detach_tasks)
7597 * so we can safely collect stats here rather than
7598 * inside detach_tasks().
7599 */
7600 schedstat_inc(env->sd->lb_gained[env->idle]);
7601 return p;
7602 }
7603 return NULL;
7604}
7605
7606static const unsigned int sched_nr_migrate_break = 32;
7607
7608/*
7609 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7610 * busiest_rq, as part of a balancing operation within domain "sd".
7611 *
7612 * Returns number of detached tasks if successful and 0 otherwise.
7613 */
7614static int detach_tasks(struct lb_env *env)
7615{
7616 struct list_head *tasks = &env->src_rq->cfs_tasks;
7617 unsigned long util, load;
7618 struct task_struct *p;
7619 int detached = 0;
7620
7621 lockdep_assert_held(&env->src_rq->lock);
7622
7623 if (env->imbalance <= 0)
7624 return 0;
7625
7626 while (!list_empty(tasks)) {
7627 /*
7628 * We don't want to steal all, otherwise we may be treated likewise,
7629 * which could at worst lead to a livelock crash.
7630 */
7631 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7632 break;
7633
7634 p = list_last_entry(tasks, struct task_struct, se.group_node);
7635
7636 env->loop++;
7637 /* We've more or less seen every task there is, call it quits */
7638 if (env->loop > env->loop_max)
7639 break;
7640
7641 /* take a breather every nr_migrate tasks */
7642 if (env->loop > env->loop_break) {
7643 env->loop_break += sched_nr_migrate_break;
7644 env->flags |= LBF_NEED_BREAK;
7645 break;
7646 }
7647
7648 if (!can_migrate_task(p, env))
7649 goto next;
7650
7651 switch (env->migration_type) {
7652 case migrate_load:
7653 /*
7654 * Depending of the number of CPUs and tasks and the
7655 * cgroup hierarchy, task_h_load() can return a null
7656 * value. Make sure that env->imbalance decreases
7657 * otherwise detach_tasks() will stop only after
7658 * detaching up to loop_max tasks.
7659 */
7660 load = max_t(unsigned long, task_h_load(p), 1);
7661
7662 if (sched_feat(LB_MIN) &&
7663 load < 16 && !env->sd->nr_balance_failed)
7664 goto next;
7665
7666 /*
7667 * Make sure that we don't migrate too much load.
7668 * Nevertheless, let relax the constraint if
7669 * scheduler fails to find a good waiting task to
7670 * migrate.
7671 */
7672 if (load/2 > env->imbalance &&
7673 env->sd->nr_balance_failed <= env->sd->cache_nice_tries)
7674 goto next;
7675
7676 env->imbalance -= load;
7677 break;
7678
7679 case migrate_util:
7680 util = task_util_est(p);
7681
7682 if (util > env->imbalance)
7683 goto next;
7684
7685 env->imbalance -= util;
7686 break;
7687
7688 case migrate_task:
7689 env->imbalance--;
7690 break;
7691
7692 case migrate_misfit:
7693 /* This is not a misfit task */
7694 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7695 goto next;
7696
7697 env->imbalance = 0;
7698 break;
7699 }
7700
7701 detach_task(p, env);
7702 list_add(&p->se.group_node, &env->tasks);
7703
7704 detached++;
7705
7706#ifdef CONFIG_PREEMPTION
7707 /*
7708 * NEWIDLE balancing is a source of latency, so preemptible
7709 * kernels will stop after the first task is detached to minimize
7710 * the critical section.
7711 */
7712 if (env->idle == CPU_NEWLY_IDLE)
7713 break;
7714#endif
7715
7716 /*
7717 * We only want to steal up to the prescribed amount of
7718 * load/util/tasks.
7719 */
7720 if (env->imbalance <= 0)
7721 break;
7722
7723 continue;
7724next:
7725 list_move(&p->se.group_node, tasks);
7726 }
7727
7728 /*
7729 * Right now, this is one of only two places we collect this stat
7730 * so we can safely collect detach_one_task() stats here rather
7731 * than inside detach_one_task().
7732 */
7733 schedstat_add(env->sd->lb_gained[env->idle], detached);
7734
7735 return detached;
7736}
7737
7738/*
7739 * attach_task() -- attach the task detached by detach_task() to its new rq.
7740 */
7741static void attach_task(struct rq *rq, struct task_struct *p)
7742{
7743 lockdep_assert_held(&rq->lock);
7744
7745 BUG_ON(task_rq(p) != rq);
7746 activate_task(rq, p, ENQUEUE_NOCLOCK);
7747 check_preempt_curr(rq, p, 0);
7748}
7749
7750/*
7751 * attach_one_task() -- attaches the task returned from detach_one_task() to
7752 * its new rq.
7753 */
7754static void attach_one_task(struct rq *rq, struct task_struct *p)
7755{
7756 struct rq_flags rf;
7757
7758 rq_lock(rq, &rf);
7759 update_rq_clock(rq);
7760 attach_task(rq, p);
7761 rq_unlock(rq, &rf);
7762}
7763
7764/*
7765 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7766 * new rq.
7767 */
7768static void attach_tasks(struct lb_env *env)
7769{
7770 struct list_head *tasks = &env->tasks;
7771 struct task_struct *p;
7772 struct rq_flags rf;
7773
7774 rq_lock(env->dst_rq, &rf);
7775 update_rq_clock(env->dst_rq);
7776
7777 while (!list_empty(tasks)) {
7778 p = list_first_entry(tasks, struct task_struct, se.group_node);
7779 list_del_init(&p->se.group_node);
7780
7781 attach_task(env->dst_rq, p);
7782 }
7783
7784 rq_unlock(env->dst_rq, &rf);
7785}
7786
7787#ifdef CONFIG_NO_HZ_COMMON
7788static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7789{
7790 if (cfs_rq->avg.load_avg)
7791 return true;
7792
7793 if (cfs_rq->avg.util_avg)
7794 return true;
7795
7796 return false;
7797}
7798
7799static inline bool others_have_blocked(struct rq *rq)
7800{
7801 if (READ_ONCE(rq->avg_rt.util_avg))
7802 return true;
7803
7804 if (READ_ONCE(rq->avg_dl.util_avg))
7805 return true;
7806
7807 if (thermal_load_avg(rq))
7808 return true;
7809
7810#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7811 if (READ_ONCE(rq->avg_irq.util_avg))
7812 return true;
7813#endif
7814
7815 return false;
7816}
7817
7818static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7819{
7820 rq->last_blocked_load_update_tick = jiffies;
7821
7822 if (!has_blocked)
7823 rq->has_blocked_load = 0;
7824}
7825#else
7826static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7827static inline bool others_have_blocked(struct rq *rq) { return false; }
7828static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7829#endif
7830
7831static bool __update_blocked_others(struct rq *rq, bool *done)
7832{
7833 const struct sched_class *curr_class;
7834 u64 now = rq_clock_pelt(rq);
7835 unsigned long thermal_pressure;
7836 bool decayed;
7837
7838 /*
7839 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7840 * DL and IRQ signals have been updated before updating CFS.
7841 */
7842 curr_class = rq->curr->sched_class;
7843
7844 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7845
7846 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7847 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7848 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
7849 update_irq_load_avg(rq, 0);
7850
7851 if (others_have_blocked(rq))
7852 *done = false;
7853
7854 return decayed;
7855}
7856
7857#ifdef CONFIG_FAIR_GROUP_SCHED
7858
7859static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7860{
7861 if (cfs_rq->load.weight)
7862 return false;
7863
7864 if (cfs_rq->avg.load_sum)
7865 return false;
7866
7867 if (cfs_rq->avg.util_sum)
7868 return false;
7869
7870 if (cfs_rq->avg.runnable_sum)
7871 return false;
7872
7873 return true;
7874}
7875
7876static bool __update_blocked_fair(struct rq *rq, bool *done)
7877{
7878 struct cfs_rq *cfs_rq, *pos;
7879 bool decayed = false;
7880 int cpu = cpu_of(rq);
7881
7882 /*
7883 * Iterates the task_group tree in a bottom up fashion, see
7884 * list_add_leaf_cfs_rq() for details.
7885 */
7886 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7887 struct sched_entity *se;
7888
7889 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7890 update_tg_load_avg(cfs_rq, 0);
7891
7892 if (cfs_rq == &rq->cfs)
7893 decayed = true;
7894 }
7895
7896 /* Propagate pending load changes to the parent, if any: */
7897 se = cfs_rq->tg->se[cpu];
7898 if (se && !skip_blocked_update(se))
7899 update_load_avg(cfs_rq_of(se), se, 0);
7900
7901 /*
7902 * There can be a lot of idle CPU cgroups. Don't let fully
7903 * decayed cfs_rqs linger on the list.
7904 */
7905 if (cfs_rq_is_decayed(cfs_rq))
7906 list_del_leaf_cfs_rq(cfs_rq);
7907
7908 /* Don't need periodic decay once load/util_avg are null */
7909 if (cfs_rq_has_blocked(cfs_rq))
7910 *done = false;
7911 }
7912
7913 return decayed;
7914}
7915
7916/*
7917 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7918 * This needs to be done in a top-down fashion because the load of a child
7919 * group is a fraction of its parents load.
7920 */
7921static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7922{
7923 struct rq *rq = rq_of(cfs_rq);
7924 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7925 unsigned long now = jiffies;
7926 unsigned long load;
7927
7928 if (cfs_rq->last_h_load_update == now)
7929 return;
7930
7931 WRITE_ONCE(cfs_rq->h_load_next, NULL);
7932 for_each_sched_entity(se) {
7933 cfs_rq = cfs_rq_of(se);
7934 WRITE_ONCE(cfs_rq->h_load_next, se);
7935 if (cfs_rq->last_h_load_update == now)
7936 break;
7937 }
7938
7939 if (!se) {
7940 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7941 cfs_rq->last_h_load_update = now;
7942 }
7943
7944 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7945 load = cfs_rq->h_load;
7946 load = div64_ul(load * se->avg.load_avg,
7947 cfs_rq_load_avg(cfs_rq) + 1);
7948 cfs_rq = group_cfs_rq(se);
7949 cfs_rq->h_load = load;
7950 cfs_rq->last_h_load_update = now;
7951 }
7952}
7953
7954static unsigned long task_h_load(struct task_struct *p)
7955{
7956 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7957
7958 update_cfs_rq_h_load(cfs_rq);
7959 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7960 cfs_rq_load_avg(cfs_rq) + 1);
7961}
7962#else
7963static bool __update_blocked_fair(struct rq *rq, bool *done)
7964{
7965 struct cfs_rq *cfs_rq = &rq->cfs;
7966 bool decayed;
7967
7968 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7969 if (cfs_rq_has_blocked(cfs_rq))
7970 *done = false;
7971
7972 return decayed;
7973}
7974
7975static unsigned long task_h_load(struct task_struct *p)
7976{
7977 return p->se.avg.load_avg;
7978}
7979#endif
7980
7981static void update_blocked_averages(int cpu)
7982{
7983 bool decayed = false, done = true;
7984 struct rq *rq = cpu_rq(cpu);
7985 struct rq_flags rf;
7986
7987 rq_lock_irqsave(rq, &rf);
7988 update_rq_clock(rq);
7989
7990 decayed |= __update_blocked_others(rq, &done);
7991 decayed |= __update_blocked_fair(rq, &done);
7992
7993 update_blocked_load_status(rq, !done);
7994 if (decayed)
7995 cpufreq_update_util(rq, 0);
7996 rq_unlock_irqrestore(rq, &rf);
7997}
7998
7999/********** Helpers for find_busiest_group ************************/
8000
8001/*
8002 * sg_lb_stats - stats of a sched_group required for load_balancing
8003 */
8004struct sg_lb_stats {
8005 unsigned long avg_load; /*Avg load across the CPUs of the group */
8006 unsigned long group_load; /* Total load over the CPUs of the group */
8007 unsigned long group_capacity;
8008 unsigned long group_util; /* Total utilization over the CPUs of the group */
8009 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8010 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8011 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8012 unsigned int idle_cpus;
8013 unsigned int group_weight;
8014 enum group_type group_type;
8015 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8016 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8017#ifdef CONFIG_NUMA_BALANCING
8018 unsigned int nr_numa_running;
8019 unsigned int nr_preferred_running;
8020#endif
8021};
8022
8023/*
8024 * sd_lb_stats - Structure to store the statistics of a sched_domain
8025 * during load balancing.
8026 */
8027struct sd_lb_stats {
8028 struct sched_group *busiest; /* Busiest group in this sd */
8029 struct sched_group *local; /* Local group in this sd */
8030 unsigned long total_load; /* Total load of all groups in sd */
8031 unsigned long total_capacity; /* Total capacity of all groups in sd */
8032 unsigned long avg_load; /* Average load across all groups in sd */
8033 unsigned int prefer_sibling; /* tasks should go to sibling first */
8034
8035 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8036 struct sg_lb_stats local_stat; /* Statistics of the local group */
8037};
8038
8039static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8040{
8041 /*
8042 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8043 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8044 * We must however set busiest_stat::group_type and
8045 * busiest_stat::idle_cpus to the worst busiest group because
8046 * update_sd_pick_busiest() reads these before assignment.
8047 */
8048 *sds = (struct sd_lb_stats){
8049 .busiest = NULL,
8050 .local = NULL,
8051 .total_load = 0UL,
8052 .total_capacity = 0UL,
8053 .busiest_stat = {
8054 .idle_cpus = UINT_MAX,
8055 .group_type = group_has_spare,
8056 },
8057 };
8058}
8059
8060static unsigned long scale_rt_capacity(int cpu)
8061{
8062 struct rq *rq = cpu_rq(cpu);
8063 unsigned long max = arch_scale_cpu_capacity(cpu);
8064 unsigned long used, free;
8065 unsigned long irq;
8066
8067 irq = cpu_util_irq(rq);
8068
8069 if (unlikely(irq >= max))
8070 return 1;
8071
8072 /*
8073 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8074 * (running and not running) with weights 0 and 1024 respectively.
8075 * avg_thermal.load_avg tracks thermal pressure and the weighted
8076 * average uses the actual delta max capacity(load).
8077 */
8078 used = READ_ONCE(rq->avg_rt.util_avg);
8079 used += READ_ONCE(rq->avg_dl.util_avg);
8080 used += thermal_load_avg(rq);
8081
8082 if (unlikely(used >= max))
8083 return 1;
8084
8085 free = max - used;
8086
8087 return scale_irq_capacity(free, irq, max);
8088}
8089
8090static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8091{
8092 unsigned long capacity = scale_rt_capacity(cpu);
8093 struct sched_group *sdg = sd->groups;
8094
8095 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8096
8097 if (!capacity)
8098 capacity = 1;
8099
8100 cpu_rq(cpu)->cpu_capacity = capacity;
8101 sdg->sgc->capacity = capacity;
8102 sdg->sgc->min_capacity = capacity;
8103 sdg->sgc->max_capacity = capacity;
8104}
8105
8106void update_group_capacity(struct sched_domain *sd, int cpu)
8107{
8108 struct sched_domain *child = sd->child;
8109 struct sched_group *group, *sdg = sd->groups;
8110 unsigned long capacity, min_capacity, max_capacity;
8111 unsigned long interval;
8112
8113 interval = msecs_to_jiffies(sd->balance_interval);
8114 interval = clamp(interval, 1UL, max_load_balance_interval);
8115 sdg->sgc->next_update = jiffies + interval;
8116
8117 if (!child) {
8118 update_cpu_capacity(sd, cpu);
8119 return;
8120 }
8121
8122 capacity = 0;
8123 min_capacity = ULONG_MAX;
8124 max_capacity = 0;
8125
8126 if (child->flags & SD_OVERLAP) {
8127 /*
8128 * SD_OVERLAP domains cannot assume that child groups
8129 * span the current group.
8130 */
8131
8132 for_each_cpu(cpu, sched_group_span(sdg)) {
8133 unsigned long cpu_cap = capacity_of(cpu);
8134
8135 capacity += cpu_cap;
8136 min_capacity = min(cpu_cap, min_capacity);
8137 max_capacity = max(cpu_cap, max_capacity);
8138 }
8139 } else {
8140 /*
8141 * !SD_OVERLAP domains can assume that child groups
8142 * span the current group.
8143 */
8144
8145 group = child->groups;
8146 do {
8147 struct sched_group_capacity *sgc = group->sgc;
8148
8149 capacity += sgc->capacity;
8150 min_capacity = min(sgc->min_capacity, min_capacity);
8151 max_capacity = max(sgc->max_capacity, max_capacity);
8152 group = group->next;
8153 } while (group != child->groups);
8154 }
8155
8156 sdg->sgc->capacity = capacity;
8157 sdg->sgc->min_capacity = min_capacity;
8158 sdg->sgc->max_capacity = max_capacity;
8159}
8160
8161/*
8162 * Check whether the capacity of the rq has been noticeably reduced by side
8163 * activity. The imbalance_pct is used for the threshold.
8164 * Return true is the capacity is reduced
8165 */
8166static inline int
8167check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8168{
8169 return ((rq->cpu_capacity * sd->imbalance_pct) <
8170 (rq->cpu_capacity_orig * 100));
8171}
8172
8173/*
8174 * Check whether a rq has a misfit task and if it looks like we can actually
8175 * help that task: we can migrate the task to a CPU of higher capacity, or
8176 * the task's current CPU is heavily pressured.
8177 */
8178static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8179{
8180 return rq->misfit_task_load &&
8181 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8182 check_cpu_capacity(rq, sd));
8183}
8184
8185/*
8186 * Group imbalance indicates (and tries to solve) the problem where balancing
8187 * groups is inadequate due to ->cpus_ptr constraints.
8188 *
8189 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8190 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8191 * Something like:
8192 *
8193 * { 0 1 2 3 } { 4 5 6 7 }
8194 * * * * *
8195 *
8196 * If we were to balance group-wise we'd place two tasks in the first group and
8197 * two tasks in the second group. Clearly this is undesired as it will overload
8198 * cpu 3 and leave one of the CPUs in the second group unused.
8199 *
8200 * The current solution to this issue is detecting the skew in the first group
8201 * by noticing the lower domain failed to reach balance and had difficulty
8202 * moving tasks due to affinity constraints.
8203 *
8204 * When this is so detected; this group becomes a candidate for busiest; see
8205 * update_sd_pick_busiest(). And calculate_imbalance() and
8206 * find_busiest_group() avoid some of the usual balance conditions to allow it
8207 * to create an effective group imbalance.
8208 *
8209 * This is a somewhat tricky proposition since the next run might not find the
8210 * group imbalance and decide the groups need to be balanced again. A most
8211 * subtle and fragile situation.
8212 */
8213
8214static inline int sg_imbalanced(struct sched_group *group)
8215{
8216 return group->sgc->imbalance;
8217}
8218
8219/*
8220 * group_has_capacity returns true if the group has spare capacity that could
8221 * be used by some tasks.
8222 * We consider that a group has spare capacity if the * number of task is
8223 * smaller than the number of CPUs or if the utilization is lower than the
8224 * available capacity for CFS tasks.
8225 * For the latter, we use a threshold to stabilize the state, to take into
8226 * account the variance of the tasks' load and to return true if the available
8227 * capacity in meaningful for the load balancer.
8228 * As an example, an available capacity of 1% can appear but it doesn't make
8229 * any benefit for the load balance.
8230 */
8231static inline bool
8232group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8233{
8234 if (sgs->sum_nr_running < sgs->group_weight)
8235 return true;
8236
8237 if ((sgs->group_capacity * imbalance_pct) <
8238 (sgs->group_runnable * 100))
8239 return false;
8240
8241 if ((sgs->group_capacity * 100) >
8242 (sgs->group_util * imbalance_pct))
8243 return true;
8244
8245 return false;
8246}
8247
8248/*
8249 * group_is_overloaded returns true if the group has more tasks than it can
8250 * handle.
8251 * group_is_overloaded is not equals to !group_has_capacity because a group
8252 * with the exact right number of tasks, has no more spare capacity but is not
8253 * overloaded so both group_has_capacity and group_is_overloaded return
8254 * false.
8255 */
8256static inline bool
8257group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8258{
8259 if (sgs->sum_nr_running <= sgs->group_weight)
8260 return false;
8261
8262 if ((sgs->group_capacity * 100) <
8263 (sgs->group_util * imbalance_pct))
8264 return true;
8265
8266 if ((sgs->group_capacity * imbalance_pct) <
8267 (sgs->group_runnable * 100))
8268 return true;
8269
8270 return false;
8271}
8272
8273/*
8274 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8275 * per-CPU capacity than sched_group ref.
8276 */
8277static inline bool
8278group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8279{
8280 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8281}
8282
8283/*
8284 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8285 * per-CPU capacity_orig than sched_group ref.
8286 */
8287static inline bool
8288group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8289{
8290 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8291}
8292
8293static inline enum
8294group_type group_classify(unsigned int imbalance_pct,
8295 struct sched_group *group,
8296 struct sg_lb_stats *sgs)
8297{
8298 if (group_is_overloaded(imbalance_pct, sgs))
8299 return group_overloaded;
8300
8301 if (sg_imbalanced(group))
8302 return group_imbalanced;
8303
8304 if (sgs->group_asym_packing)
8305 return group_asym_packing;
8306
8307 if (sgs->group_misfit_task_load)
8308 return group_misfit_task;
8309
8310 if (!group_has_capacity(imbalance_pct, sgs))
8311 return group_fully_busy;
8312
8313 return group_has_spare;
8314}
8315
8316static bool update_nohz_stats(struct rq *rq, bool force)
8317{
8318#ifdef CONFIG_NO_HZ_COMMON
8319 unsigned int cpu = rq->cpu;
8320
8321 if (!rq->has_blocked_load)
8322 return false;
8323
8324 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8325 return false;
8326
8327 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8328 return true;
8329
8330 update_blocked_averages(cpu);
8331
8332 return rq->has_blocked_load;
8333#else
8334 return false;
8335#endif
8336}
8337
8338/**
8339 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8340 * @env: The load balancing environment.
8341 * @group: sched_group whose statistics are to be updated.
8342 * @sgs: variable to hold the statistics for this group.
8343 * @sg_status: Holds flag indicating the status of the sched_group
8344 */
8345static inline void update_sg_lb_stats(struct lb_env *env,
8346 struct sched_group *group,
8347 struct sg_lb_stats *sgs,
8348 int *sg_status)
8349{
8350 int i, nr_running, local_group;
8351
8352 memset(sgs, 0, sizeof(*sgs));
8353
8354 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8355
8356 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8357 struct rq *rq = cpu_rq(i);
8358
8359 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8360 env->flags |= LBF_NOHZ_AGAIN;
8361
8362 sgs->group_load += cpu_load(rq);
8363 sgs->group_util += cpu_util(i);
8364 sgs->group_runnable += cpu_runnable(rq);
8365 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8366
8367 nr_running = rq->nr_running;
8368 sgs->sum_nr_running += nr_running;
8369
8370 if (nr_running > 1)
8371 *sg_status |= SG_OVERLOAD;
8372
8373 if (cpu_overutilized(i))
8374 *sg_status |= SG_OVERUTILIZED;
8375
8376#ifdef CONFIG_NUMA_BALANCING
8377 sgs->nr_numa_running += rq->nr_numa_running;
8378 sgs->nr_preferred_running += rq->nr_preferred_running;
8379#endif
8380 /*
8381 * No need to call idle_cpu() if nr_running is not 0
8382 */
8383 if (!nr_running && idle_cpu(i)) {
8384 sgs->idle_cpus++;
8385 /* Idle cpu can't have misfit task */
8386 continue;
8387 }
8388
8389 if (local_group)
8390 continue;
8391
8392 /* Check for a misfit task on the cpu */
8393 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8394 sgs->group_misfit_task_load < rq->misfit_task_load) {
8395 sgs->group_misfit_task_load = rq->misfit_task_load;
8396 *sg_status |= SG_OVERLOAD;
8397 }
8398 }
8399
8400 /* Check if dst CPU is idle and preferred to this group */
8401 if (env->sd->flags & SD_ASYM_PACKING &&
8402 env->idle != CPU_NOT_IDLE &&
8403 sgs->sum_h_nr_running &&
8404 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8405 sgs->group_asym_packing = 1;
8406 }
8407
8408 sgs->group_capacity = group->sgc->capacity;
8409
8410 sgs->group_weight = group->group_weight;
8411
8412 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8413
8414 /* Computing avg_load makes sense only when group is overloaded */
8415 if (sgs->group_type == group_overloaded)
8416 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8417 sgs->group_capacity;
8418}
8419
8420/**
8421 * update_sd_pick_busiest - return 1 on busiest group
8422 * @env: The load balancing environment.
8423 * @sds: sched_domain statistics
8424 * @sg: sched_group candidate to be checked for being the busiest
8425 * @sgs: sched_group statistics
8426 *
8427 * Determine if @sg is a busier group than the previously selected
8428 * busiest group.
8429 *
8430 * Return: %true if @sg is a busier group than the previously selected
8431 * busiest group. %false otherwise.
8432 */
8433static bool update_sd_pick_busiest(struct lb_env *env,
8434 struct sd_lb_stats *sds,
8435 struct sched_group *sg,
8436 struct sg_lb_stats *sgs)
8437{
8438 struct sg_lb_stats *busiest = &sds->busiest_stat;
8439
8440 /* Make sure that there is at least one task to pull */
8441 if (!sgs->sum_h_nr_running)
8442 return false;
8443
8444 /*
8445 * Don't try to pull misfit tasks we can't help.
8446 * We can use max_capacity here as reduction in capacity on some
8447 * CPUs in the group should either be possible to resolve
8448 * internally or be covered by avg_load imbalance (eventually).
8449 */
8450 if (sgs->group_type == group_misfit_task &&
8451 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8452 sds->local_stat.group_type != group_has_spare))
8453 return false;
8454
8455 if (sgs->group_type > busiest->group_type)
8456 return true;
8457
8458 if (sgs->group_type < busiest->group_type)
8459 return false;
8460
8461 /*
8462 * The candidate and the current busiest group are the same type of
8463 * group. Let check which one is the busiest according to the type.
8464 */
8465
8466 switch (sgs->group_type) {
8467 case group_overloaded:
8468 /* Select the overloaded group with highest avg_load. */
8469 if (sgs->avg_load <= busiest->avg_load)
8470 return false;
8471 break;
8472
8473 case group_imbalanced:
8474 /*
8475 * Select the 1st imbalanced group as we don't have any way to
8476 * choose one more than another.
8477 */
8478 return false;
8479
8480 case group_asym_packing:
8481 /* Prefer to move from lowest priority CPU's work */
8482 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8483 return false;
8484 break;
8485
8486 case group_misfit_task:
8487 /*
8488 * If we have more than one misfit sg go with the biggest
8489 * misfit.
8490 */
8491 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8492 return false;
8493 break;
8494
8495 case group_fully_busy:
8496 /*
8497 * Select the fully busy group with highest avg_load. In
8498 * theory, there is no need to pull task from such kind of
8499 * group because tasks have all compute capacity that they need
8500 * but we can still improve the overall throughput by reducing
8501 * contention when accessing shared HW resources.
8502 *
8503 * XXX for now avg_load is not computed and always 0 so we
8504 * select the 1st one.
8505 */
8506 if (sgs->avg_load <= busiest->avg_load)
8507 return false;
8508 break;
8509
8510 case group_has_spare:
8511 /*
8512 * Select not overloaded group with lowest number of idle cpus
8513 * and highest number of running tasks. We could also compare
8514 * the spare capacity which is more stable but it can end up
8515 * that the group has less spare capacity but finally more idle
8516 * CPUs which means less opportunity to pull tasks.
8517 */
8518 if (sgs->idle_cpus > busiest->idle_cpus)
8519 return false;
8520 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8521 (sgs->sum_nr_running <= busiest->sum_nr_running))
8522 return false;
8523
8524 break;
8525 }
8526
8527 /*
8528 * Candidate sg has no more than one task per CPU and has higher
8529 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8530 * throughput. Maximize throughput, power/energy consequences are not
8531 * considered.
8532 */
8533 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8534 (sgs->group_type <= group_fully_busy) &&
8535 (group_smaller_min_cpu_capacity(sds->local, sg)))
8536 return false;
8537
8538 return true;
8539}
8540
8541#ifdef CONFIG_NUMA_BALANCING
8542static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8543{
8544 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8545 return regular;
8546 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8547 return remote;
8548 return all;
8549}
8550
8551static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8552{
8553 if (rq->nr_running > rq->nr_numa_running)
8554 return regular;
8555 if (rq->nr_running > rq->nr_preferred_running)
8556 return remote;
8557 return all;
8558}
8559#else
8560static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8561{
8562 return all;
8563}
8564
8565static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8566{
8567 return regular;
8568}
8569#endif /* CONFIG_NUMA_BALANCING */
8570
8571
8572struct sg_lb_stats;
8573
8574/*
8575 * task_running_on_cpu - return 1 if @p is running on @cpu.
8576 */
8577
8578static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8579{
8580 /* Task has no contribution or is new */
8581 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8582 return 0;
8583
8584 if (task_on_rq_queued(p))
8585 return 1;
8586
8587 return 0;
8588}
8589
8590/**
8591 * idle_cpu_without - would a given CPU be idle without p ?
8592 * @cpu: the processor on which idleness is tested.
8593 * @p: task which should be ignored.
8594 *
8595 * Return: 1 if the CPU would be idle. 0 otherwise.
8596 */
8597static int idle_cpu_without(int cpu, struct task_struct *p)
8598{
8599 struct rq *rq = cpu_rq(cpu);
8600
8601 if (rq->curr != rq->idle && rq->curr != p)
8602 return 0;
8603
8604 /*
8605 * rq->nr_running can't be used but an updated version without the
8606 * impact of p on cpu must be used instead. The updated nr_running
8607 * be computed and tested before calling idle_cpu_without().
8608 */
8609
8610#ifdef CONFIG_SMP
8611 if (rq->ttwu_pending)
8612 return 0;
8613#endif
8614
8615 return 1;
8616}
8617
8618/*
8619 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8620 * @sd: The sched_domain level to look for idlest group.
8621 * @group: sched_group whose statistics are to be updated.
8622 * @sgs: variable to hold the statistics for this group.
8623 * @p: The task for which we look for the idlest group/CPU.
8624 */
8625static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8626 struct sched_group *group,
8627 struct sg_lb_stats *sgs,
8628 struct task_struct *p)
8629{
8630 int i, nr_running;
8631
8632 memset(sgs, 0, sizeof(*sgs));
8633
8634 for_each_cpu(i, sched_group_span(group)) {
8635 struct rq *rq = cpu_rq(i);
8636 unsigned int local;
8637
8638 sgs->group_load += cpu_load_without(rq, p);
8639 sgs->group_util += cpu_util_without(i, p);
8640 sgs->group_runnable += cpu_runnable_without(rq, p);
8641 local = task_running_on_cpu(i, p);
8642 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8643
8644 nr_running = rq->nr_running - local;
8645 sgs->sum_nr_running += nr_running;
8646
8647 /*
8648 * No need to call idle_cpu_without() if nr_running is not 0
8649 */
8650 if (!nr_running && idle_cpu_without(i, p))
8651 sgs->idle_cpus++;
8652
8653 }
8654
8655 /* Check if task fits in the group */
8656 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8657 !task_fits_capacity(p, group->sgc->max_capacity)) {
8658 sgs->group_misfit_task_load = 1;
8659 }
8660
8661 sgs->group_capacity = group->sgc->capacity;
8662
8663 sgs->group_weight = group->group_weight;
8664
8665 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8666
8667 /*
8668 * Computing avg_load makes sense only when group is fully busy or
8669 * overloaded
8670 */
8671 if (sgs->group_type == group_fully_busy ||
8672 sgs->group_type == group_overloaded)
8673 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8674 sgs->group_capacity;
8675}
8676
8677static bool update_pick_idlest(struct sched_group *idlest,
8678 struct sg_lb_stats *idlest_sgs,
8679 struct sched_group *group,
8680 struct sg_lb_stats *sgs)
8681{
8682 if (sgs->group_type < idlest_sgs->group_type)
8683 return true;
8684
8685 if (sgs->group_type > idlest_sgs->group_type)
8686 return false;
8687
8688 /*
8689 * The candidate and the current idlest group are the same type of
8690 * group. Let check which one is the idlest according to the type.
8691 */
8692
8693 switch (sgs->group_type) {
8694 case group_overloaded:
8695 case group_fully_busy:
8696 /* Select the group with lowest avg_load. */
8697 if (idlest_sgs->avg_load <= sgs->avg_load)
8698 return false;
8699 break;
8700
8701 case group_imbalanced:
8702 case group_asym_packing:
8703 /* Those types are not used in the slow wakeup path */
8704 return false;
8705
8706 case group_misfit_task:
8707 /* Select group with the highest max capacity */
8708 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8709 return false;
8710 break;
8711
8712 case group_has_spare:
8713 /* Select group with most idle CPUs */
8714 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8715 return false;
8716
8717 /* Select group with lowest group_util */
8718 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8719 idlest_sgs->group_util <= sgs->group_util)
8720 return false;
8721
8722 break;
8723 }
8724
8725 return true;
8726}
8727
8728/*
8729 * find_idlest_group() finds and returns the least busy CPU group within the
8730 * domain.
8731 *
8732 * Assumes p is allowed on at least one CPU in sd.
8733 */
8734static struct sched_group *
8735find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8736{
8737 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8738 struct sg_lb_stats local_sgs, tmp_sgs;
8739 struct sg_lb_stats *sgs;
8740 unsigned long imbalance;
8741 struct sg_lb_stats idlest_sgs = {
8742 .avg_load = UINT_MAX,
8743 .group_type = group_overloaded,
8744 };
8745
8746 imbalance = scale_load_down(NICE_0_LOAD) *
8747 (sd->imbalance_pct-100) / 100;
8748
8749 do {
8750 int local_group;
8751
8752 /* Skip over this group if it has no CPUs allowed */
8753 if (!cpumask_intersects(sched_group_span(group),
8754 p->cpus_ptr))
8755 continue;
8756
8757 local_group = cpumask_test_cpu(this_cpu,
8758 sched_group_span(group));
8759
8760 if (local_group) {
8761 sgs = &local_sgs;
8762 local = group;
8763 } else {
8764 sgs = &tmp_sgs;
8765 }
8766
8767 update_sg_wakeup_stats(sd, group, sgs, p);
8768
8769 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8770 idlest = group;
8771 idlest_sgs = *sgs;
8772 }
8773
8774 } while (group = group->next, group != sd->groups);
8775
8776
8777 /* There is no idlest group to push tasks to */
8778 if (!idlest)
8779 return NULL;
8780
8781 /* The local group has been skipped because of CPU affinity */
8782 if (!local)
8783 return idlest;
8784
8785 /*
8786 * If the local group is idler than the selected idlest group
8787 * don't try and push the task.
8788 */
8789 if (local_sgs.group_type < idlest_sgs.group_type)
8790 return NULL;
8791
8792 /*
8793 * If the local group is busier than the selected idlest group
8794 * try and push the task.
8795 */
8796 if (local_sgs.group_type > idlest_sgs.group_type)
8797 return idlest;
8798
8799 switch (local_sgs.group_type) {
8800 case group_overloaded:
8801 case group_fully_busy:
8802 /*
8803 * When comparing groups across NUMA domains, it's possible for
8804 * the local domain to be very lightly loaded relative to the
8805 * remote domains but "imbalance" skews the comparison making
8806 * remote CPUs look much more favourable. When considering
8807 * cross-domain, add imbalance to the load on the remote node
8808 * and consider staying local.
8809 */
8810
8811 if ((sd->flags & SD_NUMA) &&
8812 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8813 return NULL;
8814
8815 /*
8816 * If the local group is less loaded than the selected
8817 * idlest group don't try and push any tasks.
8818 */
8819 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8820 return NULL;
8821
8822 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8823 return NULL;
8824 break;
8825
8826 case group_imbalanced:
8827 case group_asym_packing:
8828 /* Those type are not used in the slow wakeup path */
8829 return NULL;
8830
8831 case group_misfit_task:
8832 /* Select group with the highest max capacity */
8833 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8834 return NULL;
8835 break;
8836
8837 case group_has_spare:
8838 if (sd->flags & SD_NUMA) {
8839#ifdef CONFIG_NUMA_BALANCING
8840 int idlest_cpu;
8841 /*
8842 * If there is spare capacity at NUMA, try to select
8843 * the preferred node
8844 */
8845 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8846 return NULL;
8847
8848 idlest_cpu = cpumask_first(sched_group_span(idlest));
8849 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8850 return idlest;
8851#endif
8852 /*
8853 * Otherwise, keep the task on this node to stay close
8854 * its wakeup source and improve locality. If there is
8855 * a real need of migration, periodic load balance will
8856 * take care of it.
8857 */
8858 if (local_sgs.idle_cpus)
8859 return NULL;
8860 }
8861
8862 /*
8863 * Select group with highest number of idle CPUs. We could also
8864 * compare the utilization which is more stable but it can end
8865 * up that the group has less spare capacity but finally more
8866 * idle CPUs which means more opportunity to run task.
8867 */
8868 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8869 return NULL;
8870 break;
8871 }
8872
8873 return idlest;
8874}
8875
8876/**
8877 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8878 * @env: The load balancing environment.
8879 * @sds: variable to hold the statistics for this sched_domain.
8880 */
8881
8882static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8883{
8884 struct sched_domain *child = env->sd->child;
8885 struct sched_group *sg = env->sd->groups;
8886 struct sg_lb_stats *local = &sds->local_stat;
8887 struct sg_lb_stats tmp_sgs;
8888 int sg_status = 0;
8889
8890#ifdef CONFIG_NO_HZ_COMMON
8891 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8892 env->flags |= LBF_NOHZ_STATS;
8893#endif
8894
8895 do {
8896 struct sg_lb_stats *sgs = &tmp_sgs;
8897 int local_group;
8898
8899 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8900 if (local_group) {
8901 sds->local = sg;
8902 sgs = local;
8903
8904 if (env->idle != CPU_NEWLY_IDLE ||
8905 time_after_eq(jiffies, sg->sgc->next_update))
8906 update_group_capacity(env->sd, env->dst_cpu);
8907 }
8908
8909 update_sg_lb_stats(env, sg, sgs, &sg_status);
8910
8911 if (local_group)
8912 goto next_group;
8913
8914
8915 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8916 sds->busiest = sg;
8917 sds->busiest_stat = *sgs;
8918 }
8919
8920next_group:
8921 /* Now, start updating sd_lb_stats */
8922 sds->total_load += sgs->group_load;
8923 sds->total_capacity += sgs->group_capacity;
8924
8925 sg = sg->next;
8926 } while (sg != env->sd->groups);
8927
8928 /* Tag domain that child domain prefers tasks go to siblings first */
8929 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8930
8931#ifdef CONFIG_NO_HZ_COMMON
8932 if ((env->flags & LBF_NOHZ_AGAIN) &&
8933 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8934
8935 WRITE_ONCE(nohz.next_blocked,
8936 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8937 }
8938#endif
8939
8940 if (env->sd->flags & SD_NUMA)
8941 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8942
8943 if (!env->sd->parent) {
8944 struct root_domain *rd = env->dst_rq->rd;
8945
8946 /* update overload indicator if we are at root domain */
8947 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8948
8949 /* Update over-utilization (tipping point, U >= 0) indicator */
8950 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8951 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8952 } else if (sg_status & SG_OVERUTILIZED) {
8953 struct root_domain *rd = env->dst_rq->rd;
8954
8955 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8956 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8957 }
8958}
8959
8960static inline long adjust_numa_imbalance(int imbalance, int src_nr_running)
8961{
8962 unsigned int imbalance_min;
8963
8964 /*
8965 * Allow a small imbalance based on a simple pair of communicating
8966 * tasks that remain local when the source domain is almost idle.
8967 */
8968 imbalance_min = 2;
8969 if (src_nr_running <= imbalance_min)
8970 return 0;
8971
8972 return imbalance;
8973}
8974
8975/**
8976 * calculate_imbalance - Calculate the amount of imbalance present within the
8977 * groups of a given sched_domain during load balance.
8978 * @env: load balance environment
8979 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8980 */
8981static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8982{
8983 struct sg_lb_stats *local, *busiest;
8984
8985 local = &sds->local_stat;
8986 busiest = &sds->busiest_stat;
8987
8988 if (busiest->group_type == group_misfit_task) {
8989 /* Set imbalance to allow misfit tasks to be balanced. */
8990 env->migration_type = migrate_misfit;
8991 env->imbalance = 1;
8992 return;
8993 }
8994
8995 if (busiest->group_type == group_asym_packing) {
8996 /*
8997 * In case of asym capacity, we will try to migrate all load to
8998 * the preferred CPU.
8999 */
9000 env->migration_type = migrate_task;
9001 env->imbalance = busiest->sum_h_nr_running;
9002 return;
9003 }
9004
9005 if (busiest->group_type == group_imbalanced) {
9006 /*
9007 * In the group_imb case we cannot rely on group-wide averages
9008 * to ensure CPU-load equilibrium, try to move any task to fix
9009 * the imbalance. The next load balance will take care of
9010 * balancing back the system.
9011 */
9012 env->migration_type = migrate_task;
9013 env->imbalance = 1;
9014 return;
9015 }
9016
9017 /*
9018 * Try to use spare capacity of local group without overloading it or
9019 * emptying busiest.
9020 */
9021 if (local->group_type == group_has_spare) {
9022 if (busiest->group_type > group_fully_busy) {
9023 /*
9024 * If busiest is overloaded, try to fill spare
9025 * capacity. This might end up creating spare capacity
9026 * in busiest or busiest still being overloaded but
9027 * there is no simple way to directly compute the
9028 * amount of load to migrate in order to balance the
9029 * system.
9030 */
9031 env->migration_type = migrate_util;
9032 env->imbalance = max(local->group_capacity, local->group_util) -
9033 local->group_util;
9034
9035 /*
9036 * In some cases, the group's utilization is max or even
9037 * higher than capacity because of migrations but the
9038 * local CPU is (newly) idle. There is at least one
9039 * waiting task in this overloaded busiest group. Let's
9040 * try to pull it.
9041 */
9042 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9043 env->migration_type = migrate_task;
9044 env->imbalance = 1;
9045 }
9046
9047 return;
9048 }
9049
9050 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9051 unsigned int nr_diff = busiest->sum_nr_running;
9052 /*
9053 * When prefer sibling, evenly spread running tasks on
9054 * groups.
9055 */
9056 env->migration_type = migrate_task;
9057 lsub_positive(&nr_diff, local->sum_nr_running);
9058 env->imbalance = nr_diff >> 1;
9059 } else {
9060
9061 /*
9062 * If there is no overload, we just want to even the number of
9063 * idle cpus.
9064 */
9065 env->migration_type = migrate_task;
9066 env->imbalance = max_t(long, 0, (local->idle_cpus -
9067 busiest->idle_cpus) >> 1);
9068 }
9069
9070 /* Consider allowing a small imbalance between NUMA groups */
9071 if (env->sd->flags & SD_NUMA)
9072 env->imbalance = adjust_numa_imbalance(env->imbalance,
9073 busiest->sum_nr_running);
9074
9075 return;
9076 }
9077
9078 /*
9079 * Local is fully busy but has to take more load to relieve the
9080 * busiest group
9081 */
9082 if (local->group_type < group_overloaded) {
9083 /*
9084 * Local will become overloaded so the avg_load metrics are
9085 * finally needed.
9086 */
9087
9088 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9089 local->group_capacity;
9090
9091 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9092 sds->total_capacity;
9093 /*
9094 * If the local group is more loaded than the selected
9095 * busiest group don't try to pull any tasks.
9096 */
9097 if (local->avg_load >= busiest->avg_load) {
9098 env->imbalance = 0;
9099 return;
9100 }
9101 }
9102
9103 /*
9104 * Both group are or will become overloaded and we're trying to get all
9105 * the CPUs to the average_load, so we don't want to push ourselves
9106 * above the average load, nor do we wish to reduce the max loaded CPU
9107 * below the average load. At the same time, we also don't want to
9108 * reduce the group load below the group capacity. Thus we look for
9109 * the minimum possible imbalance.
9110 */
9111 env->migration_type = migrate_load;
9112 env->imbalance = min(
9113 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9114 (sds->avg_load - local->avg_load) * local->group_capacity
9115 ) / SCHED_CAPACITY_SCALE;
9116}
9117
9118/******* find_busiest_group() helpers end here *********************/
9119
9120/*
9121 * Decision matrix according to the local and busiest group type:
9122 *
9123 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9124 * has_spare nr_idle balanced N/A N/A balanced balanced
9125 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9126 * misfit_task force N/A N/A N/A force force
9127 * asym_packing force force N/A N/A force force
9128 * imbalanced force force N/A N/A force force
9129 * overloaded force force N/A N/A force avg_load
9130 *
9131 * N/A : Not Applicable because already filtered while updating
9132 * statistics.
9133 * balanced : The system is balanced for these 2 groups.
9134 * force : Calculate the imbalance as load migration is probably needed.
9135 * avg_load : Only if imbalance is significant enough.
9136 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9137 * different in groups.
9138 */
9139
9140/**
9141 * find_busiest_group - Returns the busiest group within the sched_domain
9142 * if there is an imbalance.
9143 *
9144 * Also calculates the amount of runnable load which should be moved
9145 * to restore balance.
9146 *
9147 * @env: The load balancing environment.
9148 *
9149 * Return: - The busiest group if imbalance exists.
9150 */
9151static struct sched_group *find_busiest_group(struct lb_env *env)
9152{
9153 struct sg_lb_stats *local, *busiest;
9154 struct sd_lb_stats sds;
9155
9156 init_sd_lb_stats(&sds);
9157
9158 /*
9159 * Compute the various statistics relevant for load balancing at
9160 * this level.
9161 */
9162 update_sd_lb_stats(env, &sds);
9163
9164 if (sched_energy_enabled()) {
9165 struct root_domain *rd = env->dst_rq->rd;
9166
9167 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9168 goto out_balanced;
9169 }
9170
9171 local = &sds.local_stat;
9172 busiest = &sds.busiest_stat;
9173
9174 /* There is no busy sibling group to pull tasks from */
9175 if (!sds.busiest)
9176 goto out_balanced;
9177
9178 /* Misfit tasks should be dealt with regardless of the avg load */
9179 if (busiest->group_type == group_misfit_task)
9180 goto force_balance;
9181
9182 /* ASYM feature bypasses nice load balance check */
9183 if (busiest->group_type == group_asym_packing)
9184 goto force_balance;
9185
9186 /*
9187 * If the busiest group is imbalanced the below checks don't
9188 * work because they assume all things are equal, which typically
9189 * isn't true due to cpus_ptr constraints and the like.
9190 */
9191 if (busiest->group_type == group_imbalanced)
9192 goto force_balance;
9193
9194 /*
9195 * If the local group is busier than the selected busiest group
9196 * don't try and pull any tasks.
9197 */
9198 if (local->group_type > busiest->group_type)
9199 goto out_balanced;
9200
9201 /*
9202 * When groups are overloaded, use the avg_load to ensure fairness
9203 * between tasks.
9204 */
9205 if (local->group_type == group_overloaded) {
9206 /*
9207 * If the local group is more loaded than the selected
9208 * busiest group don't try to pull any tasks.
9209 */
9210 if (local->avg_load >= busiest->avg_load)
9211 goto out_balanced;
9212
9213 /* XXX broken for overlapping NUMA groups */
9214 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9215 sds.total_capacity;
9216
9217 /*
9218 * Don't pull any tasks if this group is already above the
9219 * domain average load.
9220 */
9221 if (local->avg_load >= sds.avg_load)
9222 goto out_balanced;
9223
9224 /*
9225 * If the busiest group is more loaded, use imbalance_pct to be
9226 * conservative.
9227 */
9228 if (100 * busiest->avg_load <=
9229 env->sd->imbalance_pct * local->avg_load)
9230 goto out_balanced;
9231 }
9232
9233 /* Try to move all excess tasks to child's sibling domain */
9234 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9235 busiest->sum_nr_running > local->sum_nr_running + 1)
9236 goto force_balance;
9237
9238 if (busiest->group_type != group_overloaded) {
9239 if (env->idle == CPU_NOT_IDLE)
9240 /*
9241 * If the busiest group is not overloaded (and as a
9242 * result the local one too) but this CPU is already
9243 * busy, let another idle CPU try to pull task.
9244 */
9245 goto out_balanced;
9246
9247 if (busiest->group_weight > 1 &&
9248 local->idle_cpus <= (busiest->idle_cpus + 1))
9249 /*
9250 * If the busiest group is not overloaded
9251 * and there is no imbalance between this and busiest
9252 * group wrt idle CPUs, it is balanced. The imbalance
9253 * becomes significant if the diff is greater than 1
9254 * otherwise we might end up to just move the imbalance
9255 * on another group. Of course this applies only if
9256 * there is more than 1 CPU per group.
9257 */
9258 goto out_balanced;
9259
9260 if (busiest->sum_h_nr_running == 1)
9261 /*
9262 * busiest doesn't have any tasks waiting to run
9263 */
9264 goto out_balanced;
9265 }
9266
9267force_balance:
9268 /* Looks like there is an imbalance. Compute it */
9269 calculate_imbalance(env, &sds);
9270 return env->imbalance ? sds.busiest : NULL;
9271
9272out_balanced:
9273 env->imbalance = 0;
9274 return NULL;
9275}
9276
9277/*
9278 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9279 */
9280static struct rq *find_busiest_queue(struct lb_env *env,
9281 struct sched_group *group)
9282{
9283 struct rq *busiest = NULL, *rq;
9284 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9285 unsigned int busiest_nr = 0;
9286 int i;
9287
9288 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9289 unsigned long capacity, load, util;
9290 unsigned int nr_running;
9291 enum fbq_type rt;
9292
9293 rq = cpu_rq(i);
9294 rt = fbq_classify_rq(rq);
9295
9296 /*
9297 * We classify groups/runqueues into three groups:
9298 * - regular: there are !numa tasks
9299 * - remote: there are numa tasks that run on the 'wrong' node
9300 * - all: there is no distinction
9301 *
9302 * In order to avoid migrating ideally placed numa tasks,
9303 * ignore those when there's better options.
9304 *
9305 * If we ignore the actual busiest queue to migrate another
9306 * task, the next balance pass can still reduce the busiest
9307 * queue by moving tasks around inside the node.
9308 *
9309 * If we cannot move enough load due to this classification
9310 * the next pass will adjust the group classification and
9311 * allow migration of more tasks.
9312 *
9313 * Both cases only affect the total convergence complexity.
9314 */
9315 if (rt > env->fbq_type)
9316 continue;
9317
9318 capacity = capacity_of(i);
9319 nr_running = rq->cfs.h_nr_running;
9320
9321 /*
9322 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9323 * eventually lead to active_balancing high->low capacity.
9324 * Higher per-CPU capacity is considered better than balancing
9325 * average load.
9326 */
9327 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9328 capacity_of(env->dst_cpu) < capacity &&
9329 nr_running == 1)
9330 continue;
9331
9332 switch (env->migration_type) {
9333 case migrate_load:
9334 /*
9335 * When comparing with load imbalance, use cpu_load()
9336 * which is not scaled with the CPU capacity.
9337 */
9338 load = cpu_load(rq);
9339
9340 if (nr_running == 1 && load > env->imbalance &&
9341 !check_cpu_capacity(rq, env->sd))
9342 break;
9343
9344 /*
9345 * For the load comparisons with the other CPUs,
9346 * consider the cpu_load() scaled with the CPU
9347 * capacity, so that the load can be moved away
9348 * from the CPU that is potentially running at a
9349 * lower capacity.
9350 *
9351 * Thus we're looking for max(load_i / capacity_i),
9352 * crosswise multiplication to rid ourselves of the
9353 * division works out to:
9354 * load_i * capacity_j > load_j * capacity_i;
9355 * where j is our previous maximum.
9356 */
9357 if (load * busiest_capacity > busiest_load * capacity) {
9358 busiest_load = load;
9359 busiest_capacity = capacity;
9360 busiest = rq;
9361 }
9362 break;
9363
9364 case migrate_util:
9365 util = cpu_util(cpu_of(rq));
9366
9367 /*
9368 * Don't try to pull utilization from a CPU with one
9369 * running task. Whatever its utilization, we will fail
9370 * detach the task.
9371 */
9372 if (nr_running <= 1)
9373 continue;
9374
9375 if (busiest_util < util) {
9376 busiest_util = util;
9377 busiest = rq;
9378 }
9379 break;
9380
9381 case migrate_task:
9382 if (busiest_nr < nr_running) {
9383 busiest_nr = nr_running;
9384 busiest = rq;
9385 }
9386 break;
9387
9388 case migrate_misfit:
9389 /*
9390 * For ASYM_CPUCAPACITY domains with misfit tasks we
9391 * simply seek the "biggest" misfit task.
9392 */
9393 if (rq->misfit_task_load > busiest_load) {
9394 busiest_load = rq->misfit_task_load;
9395 busiest = rq;
9396 }
9397
9398 break;
9399
9400 }
9401 }
9402
9403 return busiest;
9404}
9405
9406/*
9407 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9408 * so long as it is large enough.
9409 */
9410#define MAX_PINNED_INTERVAL 512
9411
9412static inline bool
9413asym_active_balance(struct lb_env *env)
9414{
9415 /*
9416 * ASYM_PACKING needs to force migrate tasks from busy but
9417 * lower priority CPUs in order to pack all tasks in the
9418 * highest priority CPUs.
9419 */
9420 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9421 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9422}
9423
9424static inline bool
9425voluntary_active_balance(struct lb_env *env)
9426{
9427 struct sched_domain *sd = env->sd;
9428
9429 if (asym_active_balance(env))
9430 return 1;
9431
9432 /*
9433 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9434 * It's worth migrating the task if the src_cpu's capacity is reduced
9435 * because of other sched_class or IRQs if more capacity stays
9436 * available on dst_cpu.
9437 */
9438 if ((env->idle != CPU_NOT_IDLE) &&
9439 (env->src_rq->cfs.h_nr_running == 1)) {
9440 if ((check_cpu_capacity(env->src_rq, sd)) &&
9441 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9442 return 1;
9443 }
9444
9445 if (env->migration_type == migrate_misfit)
9446 return 1;
9447
9448 return 0;
9449}
9450
9451static int need_active_balance(struct lb_env *env)
9452{
9453 struct sched_domain *sd = env->sd;
9454
9455 if (voluntary_active_balance(env))
9456 return 1;
9457
9458 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9459}
9460
9461static int active_load_balance_cpu_stop(void *data);
9462
9463static int should_we_balance(struct lb_env *env)
9464{
9465 struct sched_group *sg = env->sd->groups;
9466 int cpu;
9467
9468 /*
9469 * Ensure the balancing environment is consistent; can happen
9470 * when the softirq triggers 'during' hotplug.
9471 */
9472 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9473 return 0;
9474
9475 /*
9476 * In the newly idle case, we will allow all the CPUs
9477 * to do the newly idle load balance.
9478 */
9479 if (env->idle == CPU_NEWLY_IDLE)
9480 return 1;
9481
9482 /* Try to find first idle CPU */
9483 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9484 if (!idle_cpu(cpu))
9485 continue;
9486
9487 /* Are we the first idle CPU? */
9488 return cpu == env->dst_cpu;
9489 }
9490
9491 /* Are we the first CPU of this group ? */
9492 return group_balance_cpu(sg) == env->dst_cpu;
9493}
9494
9495/*
9496 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9497 * tasks if there is an imbalance.
9498 */
9499static int load_balance(int this_cpu, struct rq *this_rq,
9500 struct sched_domain *sd, enum cpu_idle_type idle,
9501 int *continue_balancing)
9502{
9503 int ld_moved, cur_ld_moved, active_balance = 0;
9504 struct sched_domain *sd_parent = sd->parent;
9505 struct sched_group *group;
9506 struct rq *busiest;
9507 struct rq_flags rf;
9508 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9509
9510 struct lb_env env = {
9511 .sd = sd,
9512 .dst_cpu = this_cpu,
9513 .dst_rq = this_rq,
9514 .dst_grpmask = sched_group_span(sd->groups),
9515 .idle = idle,
9516 .loop_break = sched_nr_migrate_break,
9517 .cpus = cpus,
9518 .fbq_type = all,
9519 .tasks = LIST_HEAD_INIT(env.tasks),
9520 };
9521
9522 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9523
9524 schedstat_inc(sd->lb_count[idle]);
9525
9526redo:
9527 if (!should_we_balance(&env)) {
9528 *continue_balancing = 0;
9529 goto out_balanced;
9530 }
9531
9532 group = find_busiest_group(&env);
9533 if (!group) {
9534 schedstat_inc(sd->lb_nobusyg[idle]);
9535 goto out_balanced;
9536 }
9537
9538 busiest = find_busiest_queue(&env, group);
9539 if (!busiest) {
9540 schedstat_inc(sd->lb_nobusyq[idle]);
9541 goto out_balanced;
9542 }
9543
9544 BUG_ON(busiest == env.dst_rq);
9545
9546 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9547
9548 env.src_cpu = busiest->cpu;
9549 env.src_rq = busiest;
9550
9551 ld_moved = 0;
9552 if (busiest->nr_running > 1) {
9553 /*
9554 * Attempt to move tasks. If find_busiest_group has found
9555 * an imbalance but busiest->nr_running <= 1, the group is
9556 * still unbalanced. ld_moved simply stays zero, so it is
9557 * correctly treated as an imbalance.
9558 */
9559 env.flags |= LBF_ALL_PINNED;
9560 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9561
9562more_balance:
9563 rq_lock_irqsave(busiest, &rf);
9564 update_rq_clock(busiest);
9565
9566 /*
9567 * cur_ld_moved - load moved in current iteration
9568 * ld_moved - cumulative load moved across iterations
9569 */
9570 cur_ld_moved = detach_tasks(&env);
9571
9572 /*
9573 * We've detached some tasks from busiest_rq. Every
9574 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9575 * unlock busiest->lock, and we are able to be sure
9576 * that nobody can manipulate the tasks in parallel.
9577 * See task_rq_lock() family for the details.
9578 */
9579
9580 rq_unlock(busiest, &rf);
9581
9582 if (cur_ld_moved) {
9583 attach_tasks(&env);
9584 ld_moved += cur_ld_moved;
9585 }
9586
9587 local_irq_restore(rf.flags);
9588
9589 if (env.flags & LBF_NEED_BREAK) {
9590 env.flags &= ~LBF_NEED_BREAK;
9591 goto more_balance;
9592 }
9593
9594 /*
9595 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9596 * us and move them to an alternate dst_cpu in our sched_group
9597 * where they can run. The upper limit on how many times we
9598 * iterate on same src_cpu is dependent on number of CPUs in our
9599 * sched_group.
9600 *
9601 * This changes load balance semantics a bit on who can move
9602 * load to a given_cpu. In addition to the given_cpu itself
9603 * (or a ilb_cpu acting on its behalf where given_cpu is
9604 * nohz-idle), we now have balance_cpu in a position to move
9605 * load to given_cpu. In rare situations, this may cause
9606 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9607 * _independently_ and at _same_ time to move some load to
9608 * given_cpu) causing exceess load to be moved to given_cpu.
9609 * This however should not happen so much in practice and
9610 * moreover subsequent load balance cycles should correct the
9611 * excess load moved.
9612 */
9613 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9614
9615 /* Prevent to re-select dst_cpu via env's CPUs */
9616 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9617
9618 env.dst_rq = cpu_rq(env.new_dst_cpu);
9619 env.dst_cpu = env.new_dst_cpu;
9620 env.flags &= ~LBF_DST_PINNED;
9621 env.loop = 0;
9622 env.loop_break = sched_nr_migrate_break;
9623
9624 /*
9625 * Go back to "more_balance" rather than "redo" since we
9626 * need to continue with same src_cpu.
9627 */
9628 goto more_balance;
9629 }
9630
9631 /*
9632 * We failed to reach balance because of affinity.
9633 */
9634 if (sd_parent) {
9635 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9636
9637 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9638 *group_imbalance = 1;
9639 }
9640
9641 /* All tasks on this runqueue were pinned by CPU affinity */
9642 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9643 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9644 /*
9645 * Attempting to continue load balancing at the current
9646 * sched_domain level only makes sense if there are
9647 * active CPUs remaining as possible busiest CPUs to
9648 * pull load from which are not contained within the
9649 * destination group that is receiving any migrated
9650 * load.
9651 */
9652 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9653 env.loop = 0;
9654 env.loop_break = sched_nr_migrate_break;
9655 goto redo;
9656 }
9657 goto out_all_pinned;
9658 }
9659 }
9660
9661 if (!ld_moved) {
9662 schedstat_inc(sd->lb_failed[idle]);
9663 /*
9664 * Increment the failure counter only on periodic balance.
9665 * We do not want newidle balance, which can be very
9666 * frequent, pollute the failure counter causing
9667 * excessive cache_hot migrations and active balances.
9668 */
9669 if (idle != CPU_NEWLY_IDLE)
9670 sd->nr_balance_failed++;
9671
9672 if (need_active_balance(&env)) {
9673 unsigned long flags;
9674
9675 raw_spin_lock_irqsave(&busiest->lock, flags);
9676
9677 /*
9678 * Don't kick the active_load_balance_cpu_stop,
9679 * if the curr task on busiest CPU can't be
9680 * moved to this_cpu:
9681 */
9682 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9683 raw_spin_unlock_irqrestore(&busiest->lock,
9684 flags);
9685 env.flags |= LBF_ALL_PINNED;
9686 goto out_one_pinned;
9687 }
9688
9689 /*
9690 * ->active_balance synchronizes accesses to
9691 * ->active_balance_work. Once set, it's cleared
9692 * only after active load balance is finished.
9693 */
9694 if (!busiest->active_balance) {
9695 busiest->active_balance = 1;
9696 busiest->push_cpu = this_cpu;
9697 active_balance = 1;
9698 }
9699 raw_spin_unlock_irqrestore(&busiest->lock, flags);
9700
9701 if (active_balance) {
9702 stop_one_cpu_nowait(cpu_of(busiest),
9703 active_load_balance_cpu_stop, busiest,
9704 &busiest->active_balance_work);
9705 }
9706
9707 /* We've kicked active balancing, force task migration. */
9708 sd->nr_balance_failed = sd->cache_nice_tries+1;
9709 }
9710 } else
9711 sd->nr_balance_failed = 0;
9712
9713 if (likely(!active_balance) || voluntary_active_balance(&env)) {
9714 /* We were unbalanced, so reset the balancing interval */
9715 sd->balance_interval = sd->min_interval;
9716 } else {
9717 /*
9718 * If we've begun active balancing, start to back off. This
9719 * case may not be covered by the all_pinned logic if there
9720 * is only 1 task on the busy runqueue (because we don't call
9721 * detach_tasks).
9722 */
9723 if (sd->balance_interval < sd->max_interval)
9724 sd->balance_interval *= 2;
9725 }
9726
9727 goto out;
9728
9729out_balanced:
9730 /*
9731 * We reach balance although we may have faced some affinity
9732 * constraints. Clear the imbalance flag only if other tasks got
9733 * a chance to move and fix the imbalance.
9734 */
9735 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9736 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9737
9738 if (*group_imbalance)
9739 *group_imbalance = 0;
9740 }
9741
9742out_all_pinned:
9743 /*
9744 * We reach balance because all tasks are pinned at this level so
9745 * we can't migrate them. Let the imbalance flag set so parent level
9746 * can try to migrate them.
9747 */
9748 schedstat_inc(sd->lb_balanced[idle]);
9749
9750 sd->nr_balance_failed = 0;
9751
9752out_one_pinned:
9753 ld_moved = 0;
9754
9755 /*
9756 * newidle_balance() disregards balance intervals, so we could
9757 * repeatedly reach this code, which would lead to balance_interval
9758 * skyrocketting in a short amount of time. Skip the balance_interval
9759 * increase logic to avoid that.
9760 */
9761 if (env.idle == CPU_NEWLY_IDLE)
9762 goto out;
9763
9764 /* tune up the balancing interval */
9765 if ((env.flags & LBF_ALL_PINNED &&
9766 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9767 sd->balance_interval < sd->max_interval)
9768 sd->balance_interval *= 2;
9769out:
9770 return ld_moved;
9771}
9772
9773static inline unsigned long
9774get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9775{
9776 unsigned long interval = sd->balance_interval;
9777
9778 if (cpu_busy)
9779 interval *= sd->busy_factor;
9780
9781 /* scale ms to jiffies */
9782 interval = msecs_to_jiffies(interval);
9783 interval = clamp(interval, 1UL, max_load_balance_interval);
9784
9785 return interval;
9786}
9787
9788static inline void
9789update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9790{
9791 unsigned long interval, next;
9792
9793 /* used by idle balance, so cpu_busy = 0 */
9794 interval = get_sd_balance_interval(sd, 0);
9795 next = sd->last_balance + interval;
9796
9797 if (time_after(*next_balance, next))
9798 *next_balance = next;
9799}
9800
9801/*
9802 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9803 * running tasks off the busiest CPU onto idle CPUs. It requires at
9804 * least 1 task to be running on each physical CPU where possible, and
9805 * avoids physical / logical imbalances.
9806 */
9807static int active_load_balance_cpu_stop(void *data)
9808{
9809 struct rq *busiest_rq = data;
9810 int busiest_cpu = cpu_of(busiest_rq);
9811 int target_cpu = busiest_rq->push_cpu;
9812 struct rq *target_rq = cpu_rq(target_cpu);
9813 struct sched_domain *sd;
9814 struct task_struct *p = NULL;
9815 struct rq_flags rf;
9816
9817 rq_lock_irq(busiest_rq, &rf);
9818 /*
9819 * Between queueing the stop-work and running it is a hole in which
9820 * CPUs can become inactive. We should not move tasks from or to
9821 * inactive CPUs.
9822 */
9823 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9824 goto out_unlock;
9825
9826 /* Make sure the requested CPU hasn't gone down in the meantime: */
9827 if (unlikely(busiest_cpu != smp_processor_id() ||
9828 !busiest_rq->active_balance))
9829 goto out_unlock;
9830
9831 /* Is there any task to move? */
9832 if (busiest_rq->nr_running <= 1)
9833 goto out_unlock;
9834
9835 /*
9836 * This condition is "impossible", if it occurs
9837 * we need to fix it. Originally reported by
9838 * Bjorn Helgaas on a 128-CPU setup.
9839 */
9840 BUG_ON(busiest_rq == target_rq);
9841
9842 /* Search for an sd spanning us and the target CPU. */
9843 rcu_read_lock();
9844 for_each_domain(target_cpu, sd) {
9845 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9846 break;
9847 }
9848
9849 if (likely(sd)) {
9850 struct lb_env env = {
9851 .sd = sd,
9852 .dst_cpu = target_cpu,
9853 .dst_rq = target_rq,
9854 .src_cpu = busiest_rq->cpu,
9855 .src_rq = busiest_rq,
9856 .idle = CPU_IDLE,
9857 /*
9858 * can_migrate_task() doesn't need to compute new_dst_cpu
9859 * for active balancing. Since we have CPU_IDLE, but no
9860 * @dst_grpmask we need to make that test go away with lying
9861 * about DST_PINNED.
9862 */
9863 .flags = LBF_DST_PINNED,
9864 };
9865
9866 schedstat_inc(sd->alb_count);
9867 update_rq_clock(busiest_rq);
9868
9869 p = detach_one_task(&env);
9870 if (p) {
9871 schedstat_inc(sd->alb_pushed);
9872 /* Active balancing done, reset the failure counter. */
9873 sd->nr_balance_failed = 0;
9874 } else {
9875 schedstat_inc(sd->alb_failed);
9876 }
9877 }
9878 rcu_read_unlock();
9879out_unlock:
9880 busiest_rq->active_balance = 0;
9881 rq_unlock(busiest_rq, &rf);
9882
9883 if (p)
9884 attach_one_task(target_rq, p);
9885
9886 local_irq_enable();
9887
9888 return 0;
9889}
9890
9891static DEFINE_SPINLOCK(balancing);
9892
9893/*
9894 * Scale the max load_balance interval with the number of CPUs in the system.
9895 * This trades load-balance latency on larger machines for less cross talk.
9896 */
9897void update_max_interval(void)
9898{
9899 max_load_balance_interval = HZ*num_online_cpus()/10;
9900}
9901
9902/*
9903 * It checks each scheduling domain to see if it is due to be balanced,
9904 * and initiates a balancing operation if so.
9905 *
9906 * Balancing parameters are set up in init_sched_domains.
9907 */
9908static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9909{
9910 int continue_balancing = 1;
9911 int cpu = rq->cpu;
9912 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9913 unsigned long interval;
9914 struct sched_domain *sd;
9915 /* Earliest time when we have to do rebalance again */
9916 unsigned long next_balance = jiffies + 60*HZ;
9917 int update_next_balance = 0;
9918 int need_serialize, need_decay = 0;
9919 u64 max_cost = 0;
9920
9921 rcu_read_lock();
9922 for_each_domain(cpu, sd) {
9923 /*
9924 * Decay the newidle max times here because this is a regular
9925 * visit to all the domains. Decay ~1% per second.
9926 */
9927 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9928 sd->max_newidle_lb_cost =
9929 (sd->max_newidle_lb_cost * 253) / 256;
9930 sd->next_decay_max_lb_cost = jiffies + HZ;
9931 need_decay = 1;
9932 }
9933 max_cost += sd->max_newidle_lb_cost;
9934
9935 /*
9936 * Stop the load balance at this level. There is another
9937 * CPU in our sched group which is doing load balancing more
9938 * actively.
9939 */
9940 if (!continue_balancing) {
9941 if (need_decay)
9942 continue;
9943 break;
9944 }
9945
9946 interval = get_sd_balance_interval(sd, busy);
9947
9948 need_serialize = sd->flags & SD_SERIALIZE;
9949 if (need_serialize) {
9950 if (!spin_trylock(&balancing))
9951 goto out;
9952 }
9953
9954 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9955 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9956 /*
9957 * The LBF_DST_PINNED logic could have changed
9958 * env->dst_cpu, so we can't know our idle
9959 * state even if we migrated tasks. Update it.
9960 */
9961 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9962 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9963 }
9964 sd->last_balance = jiffies;
9965 interval = get_sd_balance_interval(sd, busy);
9966 }
9967 if (need_serialize)
9968 spin_unlock(&balancing);
9969out:
9970 if (time_after(next_balance, sd->last_balance + interval)) {
9971 next_balance = sd->last_balance + interval;
9972 update_next_balance = 1;
9973 }
9974 }
9975 if (need_decay) {
9976 /*
9977 * Ensure the rq-wide value also decays but keep it at a
9978 * reasonable floor to avoid funnies with rq->avg_idle.
9979 */
9980 rq->max_idle_balance_cost =
9981 max((u64)sysctl_sched_migration_cost, max_cost);
9982 }
9983 rcu_read_unlock();
9984
9985 /*
9986 * next_balance will be updated only when there is a need.
9987 * When the cpu is attached to null domain for ex, it will not be
9988 * updated.
9989 */
9990 if (likely(update_next_balance)) {
9991 rq->next_balance = next_balance;
9992
9993#ifdef CONFIG_NO_HZ_COMMON
9994 /*
9995 * If this CPU has been elected to perform the nohz idle
9996 * balance. Other idle CPUs have already rebalanced with
9997 * nohz_idle_balance() and nohz.next_balance has been
9998 * updated accordingly. This CPU is now running the idle load
9999 * balance for itself and we need to update the
10000 * nohz.next_balance accordingly.
10001 */
10002 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10003 nohz.next_balance = rq->next_balance;
10004#endif
10005 }
10006}
10007
10008static inline int on_null_domain(struct rq *rq)
10009{
10010 return unlikely(!rcu_dereference_sched(rq->sd));
10011}
10012
10013#ifdef CONFIG_NO_HZ_COMMON
10014/*
10015 * idle load balancing details
10016 * - When one of the busy CPUs notice that there may be an idle rebalancing
10017 * needed, they will kick the idle load balancer, which then does idle
10018 * load balancing for all the idle CPUs.
10019 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10020 * anywhere yet.
10021 */
10022
10023static inline int find_new_ilb(void)
10024{
10025 int ilb;
10026
10027 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10028 housekeeping_cpumask(HK_FLAG_MISC)) {
10029 if (idle_cpu(ilb))
10030 return ilb;
10031 }
10032
10033 return nr_cpu_ids;
10034}
10035
10036/*
10037 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10038 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10039 */
10040static void kick_ilb(unsigned int flags)
10041{
10042 int ilb_cpu;
10043
10044 /*
10045 * Increase nohz.next_balance only when if full ilb is triggered but
10046 * not if we only update stats.
10047 */
10048 if (flags & NOHZ_BALANCE_KICK)
10049 nohz.next_balance = jiffies+1;
10050
10051 ilb_cpu = find_new_ilb();
10052
10053 if (ilb_cpu >= nr_cpu_ids)
10054 return;
10055
10056 /*
10057 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10058 * the first flag owns it; cleared by nohz_csd_func().
10059 */
10060 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10061 if (flags & NOHZ_KICK_MASK)
10062 return;
10063
10064 /*
10065 * This way we generate an IPI on the target CPU which
10066 * is idle. And the softirq performing nohz idle load balance
10067 * will be run before returning from the IPI.
10068 */
10069 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10070}
10071
10072/*
10073 * Current decision point for kicking the idle load balancer in the presence
10074 * of idle CPUs in the system.
10075 */
10076static void nohz_balancer_kick(struct rq *rq)
10077{
10078 unsigned long now = jiffies;
10079 struct sched_domain_shared *sds;
10080 struct sched_domain *sd;
10081 int nr_busy, i, cpu = rq->cpu;
10082 unsigned int flags = 0;
10083
10084 if (unlikely(rq->idle_balance))
10085 return;
10086
10087 /*
10088 * We may be recently in ticked or tickless idle mode. At the first
10089 * busy tick after returning from idle, we will update the busy stats.
10090 */
10091 nohz_balance_exit_idle(rq);
10092
10093 /*
10094 * None are in tickless mode and hence no need for NOHZ idle load
10095 * balancing.
10096 */
10097 if (likely(!atomic_read(&nohz.nr_cpus)))
10098 return;
10099
10100 if (READ_ONCE(nohz.has_blocked) &&
10101 time_after(now, READ_ONCE(nohz.next_blocked)))
10102 flags = NOHZ_STATS_KICK;
10103
10104 if (time_before(now, nohz.next_balance))
10105 goto out;
10106
10107 if (rq->nr_running >= 2) {
10108 flags = NOHZ_KICK_MASK;
10109 goto out;
10110 }
10111
10112 rcu_read_lock();
10113
10114 sd = rcu_dereference(rq->sd);
10115 if (sd) {
10116 /*
10117 * If there's a CFS task and the current CPU has reduced
10118 * capacity; kick the ILB to see if there's a better CPU to run
10119 * on.
10120 */
10121 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10122 flags = NOHZ_KICK_MASK;
10123 goto unlock;
10124 }
10125 }
10126
10127 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10128 if (sd) {
10129 /*
10130 * When ASYM_PACKING; see if there's a more preferred CPU
10131 * currently idle; in which case, kick the ILB to move tasks
10132 * around.
10133 */
10134 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10135 if (sched_asym_prefer(i, cpu)) {
10136 flags = NOHZ_KICK_MASK;
10137 goto unlock;
10138 }
10139 }
10140 }
10141
10142 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10143 if (sd) {
10144 /*
10145 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10146 * to run the misfit task on.
10147 */
10148 if (check_misfit_status(rq, sd)) {
10149 flags = NOHZ_KICK_MASK;
10150 goto unlock;
10151 }
10152
10153 /*
10154 * For asymmetric systems, we do not want to nicely balance
10155 * cache use, instead we want to embrace asymmetry and only
10156 * ensure tasks have enough CPU capacity.
10157 *
10158 * Skip the LLC logic because it's not relevant in that case.
10159 */
10160 goto unlock;
10161 }
10162
10163 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10164 if (sds) {
10165 /*
10166 * If there is an imbalance between LLC domains (IOW we could
10167 * increase the overall cache use), we need some less-loaded LLC
10168 * domain to pull some load. Likewise, we may need to spread
10169 * load within the current LLC domain (e.g. packed SMT cores but
10170 * other CPUs are idle). We can't really know from here how busy
10171 * the others are - so just get a nohz balance going if it looks
10172 * like this LLC domain has tasks we could move.
10173 */
10174 nr_busy = atomic_read(&sds->nr_busy_cpus);
10175 if (nr_busy > 1) {
10176 flags = NOHZ_KICK_MASK;
10177 goto unlock;
10178 }
10179 }
10180unlock:
10181 rcu_read_unlock();
10182out:
10183 if (flags)
10184 kick_ilb(flags);
10185}
10186
10187static void set_cpu_sd_state_busy(int cpu)
10188{
10189 struct sched_domain *sd;
10190
10191 rcu_read_lock();
10192 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10193
10194 if (!sd || !sd->nohz_idle)
10195 goto unlock;
10196 sd->nohz_idle = 0;
10197
10198 atomic_inc(&sd->shared->nr_busy_cpus);
10199unlock:
10200 rcu_read_unlock();
10201}
10202
10203void nohz_balance_exit_idle(struct rq *rq)
10204{
10205 SCHED_WARN_ON(rq != this_rq());
10206
10207 if (likely(!rq->nohz_tick_stopped))
10208 return;
10209
10210 rq->nohz_tick_stopped = 0;
10211 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10212 atomic_dec(&nohz.nr_cpus);
10213
10214 set_cpu_sd_state_busy(rq->cpu);
10215}
10216
10217static void set_cpu_sd_state_idle(int cpu)
10218{
10219 struct sched_domain *sd;
10220
10221 rcu_read_lock();
10222 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10223
10224 if (!sd || sd->nohz_idle)
10225 goto unlock;
10226 sd->nohz_idle = 1;
10227
10228 atomic_dec(&sd->shared->nr_busy_cpus);
10229unlock:
10230 rcu_read_unlock();
10231}
10232
10233/*
10234 * This routine will record that the CPU is going idle with tick stopped.
10235 * This info will be used in performing idle load balancing in the future.
10236 */
10237void nohz_balance_enter_idle(int cpu)
10238{
10239 struct rq *rq = cpu_rq(cpu);
10240
10241 SCHED_WARN_ON(cpu != smp_processor_id());
10242
10243 /* If this CPU is going down, then nothing needs to be done: */
10244 if (!cpu_active(cpu))
10245 return;
10246
10247 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10248 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10249 return;
10250
10251 /*
10252 * Can be set safely without rq->lock held
10253 * If a clear happens, it will have evaluated last additions because
10254 * rq->lock is held during the check and the clear
10255 */
10256 rq->has_blocked_load = 1;
10257
10258 /*
10259 * The tick is still stopped but load could have been added in the
10260 * meantime. We set the nohz.has_blocked flag to trig a check of the
10261 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10262 * of nohz.has_blocked can only happen after checking the new load
10263 */
10264 if (rq->nohz_tick_stopped)
10265 goto out;
10266
10267 /* If we're a completely isolated CPU, we don't play: */
10268 if (on_null_domain(rq))
10269 return;
10270
10271 rq->nohz_tick_stopped = 1;
10272
10273 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10274 atomic_inc(&nohz.nr_cpus);
10275
10276 /*
10277 * Ensures that if nohz_idle_balance() fails to observe our
10278 * @idle_cpus_mask store, it must observe the @has_blocked
10279 * store.
10280 */
10281 smp_mb__after_atomic();
10282
10283 set_cpu_sd_state_idle(cpu);
10284
10285out:
10286 /*
10287 * Each time a cpu enter idle, we assume that it has blocked load and
10288 * enable the periodic update of the load of idle cpus
10289 */
10290 WRITE_ONCE(nohz.has_blocked, 1);
10291}
10292
10293/*
10294 * Internal function that runs load balance for all idle cpus. The load balance
10295 * can be a simple update of blocked load or a complete load balance with
10296 * tasks movement depending of flags.
10297 * The function returns false if the loop has stopped before running
10298 * through all idle CPUs.
10299 */
10300static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10301 enum cpu_idle_type idle)
10302{
10303 /* Earliest time when we have to do rebalance again */
10304 unsigned long now = jiffies;
10305 unsigned long next_balance = now + 60*HZ;
10306 bool has_blocked_load = false;
10307 int update_next_balance = 0;
10308 int this_cpu = this_rq->cpu;
10309 int balance_cpu;
10310 int ret = false;
10311 struct rq *rq;
10312
10313 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10314
10315 /*
10316 * We assume there will be no idle load after this update and clear
10317 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10318 * set the has_blocked flag and trig another update of idle load.
10319 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10320 * setting the flag, we are sure to not clear the state and not
10321 * check the load of an idle cpu.
10322 */
10323 WRITE_ONCE(nohz.has_blocked, 0);
10324
10325 /*
10326 * Ensures that if we miss the CPU, we must see the has_blocked
10327 * store from nohz_balance_enter_idle().
10328 */
10329 smp_mb();
10330
10331 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
10332 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10333 continue;
10334
10335 /*
10336 * If this CPU gets work to do, stop the load balancing
10337 * work being done for other CPUs. Next load
10338 * balancing owner will pick it up.
10339 */
10340 if (need_resched()) {
10341 has_blocked_load = true;
10342 goto abort;
10343 }
10344
10345 rq = cpu_rq(balance_cpu);
10346
10347 has_blocked_load |= update_nohz_stats(rq, true);
10348
10349 /*
10350 * If time for next balance is due,
10351 * do the balance.
10352 */
10353 if (time_after_eq(jiffies, rq->next_balance)) {
10354 struct rq_flags rf;
10355
10356 rq_lock_irqsave(rq, &rf);
10357 update_rq_clock(rq);
10358 rq_unlock_irqrestore(rq, &rf);
10359
10360 if (flags & NOHZ_BALANCE_KICK)
10361 rebalance_domains(rq, CPU_IDLE);
10362 }
10363
10364 if (time_after(next_balance, rq->next_balance)) {
10365 next_balance = rq->next_balance;
10366 update_next_balance = 1;
10367 }
10368 }
10369
10370 /*
10371 * next_balance will be updated only when there is a need.
10372 * When the CPU is attached to null domain for ex, it will not be
10373 * updated.
10374 */
10375 if (likely(update_next_balance))
10376 nohz.next_balance = next_balance;
10377
10378 /* Newly idle CPU doesn't need an update */
10379 if (idle != CPU_NEWLY_IDLE) {
10380 update_blocked_averages(this_cpu);
10381 has_blocked_load |= this_rq->has_blocked_load;
10382 }
10383
10384 if (flags & NOHZ_BALANCE_KICK)
10385 rebalance_domains(this_rq, CPU_IDLE);
10386
10387 WRITE_ONCE(nohz.next_blocked,
10388 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10389
10390 /* The full idle balance loop has been done */
10391 ret = true;
10392
10393abort:
10394 /* There is still blocked load, enable periodic update */
10395 if (has_blocked_load)
10396 WRITE_ONCE(nohz.has_blocked, 1);
10397
10398 return ret;
10399}
10400
10401/*
10402 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10403 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10404 */
10405static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10406{
10407 unsigned int flags = this_rq->nohz_idle_balance;
10408
10409 if (!flags)
10410 return false;
10411
10412 this_rq->nohz_idle_balance = 0;
10413
10414 if (idle != CPU_IDLE)
10415 return false;
10416
10417 _nohz_idle_balance(this_rq, flags, idle);
10418
10419 return true;
10420}
10421
10422static void nohz_newidle_balance(struct rq *this_rq)
10423{
10424 int this_cpu = this_rq->cpu;
10425
10426 /*
10427 * This CPU doesn't want to be disturbed by scheduler
10428 * housekeeping
10429 */
10430 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10431 return;
10432
10433 /* Will wake up very soon. No time for doing anything else*/
10434 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10435 return;
10436
10437 /* Don't need to update blocked load of idle CPUs*/
10438 if (!READ_ONCE(nohz.has_blocked) ||
10439 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10440 return;
10441
10442 raw_spin_unlock(&this_rq->lock);
10443 /*
10444 * This CPU is going to be idle and blocked load of idle CPUs
10445 * need to be updated. Run the ilb locally as it is a good
10446 * candidate for ilb instead of waking up another idle CPU.
10447 * Kick an normal ilb if we failed to do the update.
10448 */
10449 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10450 kick_ilb(NOHZ_STATS_KICK);
10451 raw_spin_lock(&this_rq->lock);
10452}
10453
10454#else /* !CONFIG_NO_HZ_COMMON */
10455static inline void nohz_balancer_kick(struct rq *rq) { }
10456
10457static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10458{
10459 return false;
10460}
10461
10462static inline void nohz_newidle_balance(struct rq *this_rq) { }
10463#endif /* CONFIG_NO_HZ_COMMON */
10464
10465/*
10466 * idle_balance is called by schedule() if this_cpu is about to become
10467 * idle. Attempts to pull tasks from other CPUs.
10468 *
10469 * Returns:
10470 * < 0 - we released the lock and there are !fair tasks present
10471 * 0 - failed, no new tasks
10472 * > 0 - success, new (fair) tasks present
10473 */
10474static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10475{
10476 unsigned long next_balance = jiffies + HZ;
10477 int this_cpu = this_rq->cpu;
10478 struct sched_domain *sd;
10479 int pulled_task = 0;
10480 u64 curr_cost = 0;
10481
10482 update_misfit_status(NULL, this_rq);
10483 /*
10484 * We must set idle_stamp _before_ calling idle_balance(), such that we
10485 * measure the duration of idle_balance() as idle time.
10486 */
10487 this_rq->idle_stamp = rq_clock(this_rq);
10488
10489 /*
10490 * Do not pull tasks towards !active CPUs...
10491 */
10492 if (!cpu_active(this_cpu))
10493 return 0;
10494
10495 /*
10496 * This is OK, because current is on_cpu, which avoids it being picked
10497 * for load-balance and preemption/IRQs are still disabled avoiding
10498 * further scheduler activity on it and we're being very careful to
10499 * re-start the picking loop.
10500 */
10501 rq_unpin_lock(this_rq, rf);
10502
10503 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10504 !READ_ONCE(this_rq->rd->overload)) {
10505
10506 rcu_read_lock();
10507 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10508 if (sd)
10509 update_next_balance(sd, &next_balance);
10510 rcu_read_unlock();
10511
10512 nohz_newidle_balance(this_rq);
10513
10514 goto out;
10515 }
10516
10517 raw_spin_unlock(&this_rq->lock);
10518
10519 update_blocked_averages(this_cpu);
10520 rcu_read_lock();
10521 for_each_domain(this_cpu, sd) {
10522 int continue_balancing = 1;
10523 u64 t0, domain_cost;
10524
10525 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10526 update_next_balance(sd, &next_balance);
10527 break;
10528 }
10529
10530 if (sd->flags & SD_BALANCE_NEWIDLE) {
10531 t0 = sched_clock_cpu(this_cpu);
10532
10533 pulled_task = load_balance(this_cpu, this_rq,
10534 sd, CPU_NEWLY_IDLE,
10535 &continue_balancing);
10536
10537 domain_cost = sched_clock_cpu(this_cpu) - t0;
10538 if (domain_cost > sd->max_newidle_lb_cost)
10539 sd->max_newidle_lb_cost = domain_cost;
10540
10541 curr_cost += domain_cost;
10542 }
10543
10544 update_next_balance(sd, &next_balance);
10545
10546 /*
10547 * Stop searching for tasks to pull if there are
10548 * now runnable tasks on this rq.
10549 */
10550 if (pulled_task || this_rq->nr_running > 0)
10551 break;
10552 }
10553 rcu_read_unlock();
10554
10555 raw_spin_lock(&this_rq->lock);
10556
10557 if (curr_cost > this_rq->max_idle_balance_cost)
10558 this_rq->max_idle_balance_cost = curr_cost;
10559
10560out:
10561 /*
10562 * While browsing the domains, we released the rq lock, a task could
10563 * have been enqueued in the meantime. Since we're not going idle,
10564 * pretend we pulled a task.
10565 */
10566 if (this_rq->cfs.h_nr_running && !pulled_task)
10567 pulled_task = 1;
10568
10569 /* Move the next balance forward */
10570 if (time_after(this_rq->next_balance, next_balance))
10571 this_rq->next_balance = next_balance;
10572
10573 /* Is there a task of a high priority class? */
10574 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10575 pulled_task = -1;
10576
10577 if (pulled_task)
10578 this_rq->idle_stamp = 0;
10579
10580 rq_repin_lock(this_rq, rf);
10581
10582 return pulled_task;
10583}
10584
10585/*
10586 * run_rebalance_domains is triggered when needed from the scheduler tick.
10587 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10588 */
10589static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10590{
10591 struct rq *this_rq = this_rq();
10592 enum cpu_idle_type idle = this_rq->idle_balance ?
10593 CPU_IDLE : CPU_NOT_IDLE;
10594
10595 /*
10596 * If this CPU has a pending nohz_balance_kick, then do the
10597 * balancing on behalf of the other idle CPUs whose ticks are
10598 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10599 * give the idle CPUs a chance to load balance. Else we may
10600 * load balance only within the local sched_domain hierarchy
10601 * and abort nohz_idle_balance altogether if we pull some load.
10602 */
10603 if (nohz_idle_balance(this_rq, idle))
10604 return;
10605
10606 /* normal load balance */
10607 update_blocked_averages(this_rq->cpu);
10608 rebalance_domains(this_rq, idle);
10609}
10610
10611/*
10612 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10613 */
10614void trigger_load_balance(struct rq *rq)
10615{
10616 /* Don't need to rebalance while attached to NULL domain */
10617 if (unlikely(on_null_domain(rq)))
10618 return;
10619
10620 if (time_after_eq(jiffies, rq->next_balance))
10621 raise_softirq(SCHED_SOFTIRQ);
10622
10623 nohz_balancer_kick(rq);
10624}
10625
10626static void rq_online_fair(struct rq *rq)
10627{
10628 update_sysctl();
10629
10630 update_runtime_enabled(rq);
10631}
10632
10633static void rq_offline_fair(struct rq *rq)
10634{
10635 update_sysctl();
10636
10637 /* Ensure any throttled groups are reachable by pick_next_task */
10638 unthrottle_offline_cfs_rqs(rq);
10639}
10640
10641#endif /* CONFIG_SMP */
10642
10643/*
10644 * scheduler tick hitting a task of our scheduling class.
10645 *
10646 * NOTE: This function can be called remotely by the tick offload that
10647 * goes along full dynticks. Therefore no local assumption can be made
10648 * and everything must be accessed through the @rq and @curr passed in
10649 * parameters.
10650 */
10651static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10652{
10653 struct cfs_rq *cfs_rq;
10654 struct sched_entity *se = &curr->se;
10655
10656 for_each_sched_entity(se) {
10657 cfs_rq = cfs_rq_of(se);
10658 entity_tick(cfs_rq, se, queued);
10659 }
10660
10661 if (static_branch_unlikely(&sched_numa_balancing))
10662 task_tick_numa(rq, curr);
10663
10664 update_misfit_status(curr, rq);
10665 update_overutilized_status(task_rq(curr));
10666}
10667
10668/*
10669 * called on fork with the child task as argument from the parent's context
10670 * - child not yet on the tasklist
10671 * - preemption disabled
10672 */
10673static void task_fork_fair(struct task_struct *p)
10674{
10675 struct cfs_rq *cfs_rq;
10676 struct sched_entity *se = &p->se, *curr;
10677 struct rq *rq = this_rq();
10678 struct rq_flags rf;
10679
10680 rq_lock(rq, &rf);
10681 update_rq_clock(rq);
10682
10683 cfs_rq = task_cfs_rq(current);
10684 curr = cfs_rq->curr;
10685 if (curr) {
10686 update_curr(cfs_rq);
10687 se->vruntime = curr->vruntime;
10688 }
10689 place_entity(cfs_rq, se, 1);
10690
10691 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10692 /*
10693 * Upon rescheduling, sched_class::put_prev_task() will place
10694 * 'current' within the tree based on its new key value.
10695 */
10696 swap(curr->vruntime, se->vruntime);
10697 resched_curr(rq);
10698 }
10699
10700 se->vruntime -= cfs_rq->min_vruntime;
10701 rq_unlock(rq, &rf);
10702}
10703
10704/*
10705 * Priority of the task has changed. Check to see if we preempt
10706 * the current task.
10707 */
10708static void
10709prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10710{
10711 if (!task_on_rq_queued(p))
10712 return;
10713
10714 if (rq->cfs.nr_running == 1)
10715 return;
10716
10717 /*
10718 * Reschedule if we are currently running on this runqueue and
10719 * our priority decreased, or if we are not currently running on
10720 * this runqueue and our priority is higher than the current's
10721 */
10722 if (rq->curr == p) {
10723 if (p->prio > oldprio)
10724 resched_curr(rq);
10725 } else
10726 check_preempt_curr(rq, p, 0);
10727}
10728
10729static inline bool vruntime_normalized(struct task_struct *p)
10730{
10731 struct sched_entity *se = &p->se;
10732
10733 /*
10734 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10735 * the dequeue_entity(.flags=0) will already have normalized the
10736 * vruntime.
10737 */
10738 if (p->on_rq)
10739 return true;
10740
10741 /*
10742 * When !on_rq, vruntime of the task has usually NOT been normalized.
10743 * But there are some cases where it has already been normalized:
10744 *
10745 * - A forked child which is waiting for being woken up by
10746 * wake_up_new_task().
10747 * - A task which has been woken up by try_to_wake_up() and
10748 * waiting for actually being woken up by sched_ttwu_pending().
10749 */
10750 if (!se->sum_exec_runtime ||
10751 (p->state == TASK_WAKING && p->sched_remote_wakeup))
10752 return true;
10753
10754 return false;
10755}
10756
10757#ifdef CONFIG_FAIR_GROUP_SCHED
10758/*
10759 * Propagate the changes of the sched_entity across the tg tree to make it
10760 * visible to the root
10761 */
10762static void propagate_entity_cfs_rq(struct sched_entity *se)
10763{
10764 struct cfs_rq *cfs_rq;
10765
10766 /* Start to propagate at parent */
10767 se = se->parent;
10768
10769 for_each_sched_entity(se) {
10770 cfs_rq = cfs_rq_of(se);
10771
10772 if (cfs_rq_throttled(cfs_rq))
10773 break;
10774
10775 update_load_avg(cfs_rq, se, UPDATE_TG);
10776 }
10777}
10778#else
10779static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10780#endif
10781
10782static void detach_entity_cfs_rq(struct sched_entity *se)
10783{
10784 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10785
10786 /* Catch up with the cfs_rq and remove our load when we leave */
10787 update_load_avg(cfs_rq, se, 0);
10788 detach_entity_load_avg(cfs_rq, se);
10789 update_tg_load_avg(cfs_rq, false);
10790 propagate_entity_cfs_rq(se);
10791}
10792
10793static void attach_entity_cfs_rq(struct sched_entity *se)
10794{
10795 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10796
10797#ifdef CONFIG_FAIR_GROUP_SCHED
10798 /*
10799 * Since the real-depth could have been changed (only FAIR
10800 * class maintain depth value), reset depth properly.
10801 */
10802 se->depth = se->parent ? se->parent->depth + 1 : 0;
10803#endif
10804
10805 /* Synchronize entity with its cfs_rq */
10806 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10807 attach_entity_load_avg(cfs_rq, se);
10808 update_tg_load_avg(cfs_rq, false);
10809 propagate_entity_cfs_rq(se);
10810}
10811
10812static void detach_task_cfs_rq(struct task_struct *p)
10813{
10814 struct sched_entity *se = &p->se;
10815 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10816
10817 if (!vruntime_normalized(p)) {
10818 /*
10819 * Fix up our vruntime so that the current sleep doesn't
10820 * cause 'unlimited' sleep bonus.
10821 */
10822 place_entity(cfs_rq, se, 0);
10823 se->vruntime -= cfs_rq->min_vruntime;
10824 }
10825
10826 detach_entity_cfs_rq(se);
10827}
10828
10829static void attach_task_cfs_rq(struct task_struct *p)
10830{
10831 struct sched_entity *se = &p->se;
10832 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10833
10834 attach_entity_cfs_rq(se);
10835
10836 if (!vruntime_normalized(p))
10837 se->vruntime += cfs_rq->min_vruntime;
10838}
10839
10840static void switched_from_fair(struct rq *rq, struct task_struct *p)
10841{
10842 detach_task_cfs_rq(p);
10843}
10844
10845static void switched_to_fair(struct rq *rq, struct task_struct *p)
10846{
10847 attach_task_cfs_rq(p);
10848
10849 if (task_on_rq_queued(p)) {
10850 /*
10851 * We were most likely switched from sched_rt, so
10852 * kick off the schedule if running, otherwise just see
10853 * if we can still preempt the current task.
10854 */
10855 if (rq->curr == p)
10856 resched_curr(rq);
10857 else
10858 check_preempt_curr(rq, p, 0);
10859 }
10860}
10861
10862/* Account for a task changing its policy or group.
10863 *
10864 * This routine is mostly called to set cfs_rq->curr field when a task
10865 * migrates between groups/classes.
10866 */
10867static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10868{
10869 struct sched_entity *se = &p->se;
10870
10871#ifdef CONFIG_SMP
10872 if (task_on_rq_queued(p)) {
10873 /*
10874 * Move the next running task to the front of the list, so our
10875 * cfs_tasks list becomes MRU one.
10876 */
10877 list_move(&se->group_node, &rq->cfs_tasks);
10878 }
10879#endif
10880
10881 for_each_sched_entity(se) {
10882 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10883
10884 set_next_entity(cfs_rq, se);
10885 /* ensure bandwidth has been allocated on our new cfs_rq */
10886 account_cfs_rq_runtime(cfs_rq, 0);
10887 }
10888}
10889
10890void init_cfs_rq(struct cfs_rq *cfs_rq)
10891{
10892 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10893 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10894#ifndef CONFIG_64BIT
10895 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10896#endif
10897#ifdef CONFIG_SMP
10898 raw_spin_lock_init(&cfs_rq->removed.lock);
10899#endif
10900}
10901
10902#ifdef CONFIG_FAIR_GROUP_SCHED
10903static void task_set_group_fair(struct task_struct *p)
10904{
10905 struct sched_entity *se = &p->se;
10906
10907 set_task_rq(p, task_cpu(p));
10908 se->depth = se->parent ? se->parent->depth + 1 : 0;
10909}
10910
10911static void task_move_group_fair(struct task_struct *p)
10912{
10913 detach_task_cfs_rq(p);
10914 set_task_rq(p, task_cpu(p));
10915
10916#ifdef CONFIG_SMP
10917 /* Tell se's cfs_rq has been changed -- migrated */
10918 p->se.avg.last_update_time = 0;
10919#endif
10920 attach_task_cfs_rq(p);
10921}
10922
10923static void task_change_group_fair(struct task_struct *p, int type)
10924{
10925 switch (type) {
10926 case TASK_SET_GROUP:
10927 task_set_group_fair(p);
10928 break;
10929
10930 case TASK_MOVE_GROUP:
10931 task_move_group_fair(p);
10932 break;
10933 }
10934}
10935
10936void free_fair_sched_group(struct task_group *tg)
10937{
10938 int i;
10939
10940 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10941
10942 for_each_possible_cpu(i) {
10943 if (tg->cfs_rq)
10944 kfree(tg->cfs_rq[i]);
10945 if (tg->se)
10946 kfree(tg->se[i]);
10947 }
10948
10949 kfree(tg->cfs_rq);
10950 kfree(tg->se);
10951}
10952
10953int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10954{
10955 struct sched_entity *se;
10956 struct cfs_rq *cfs_rq;
10957 int i;
10958
10959 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10960 if (!tg->cfs_rq)
10961 goto err;
10962 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10963 if (!tg->se)
10964 goto err;
10965
10966 tg->shares = NICE_0_LOAD;
10967
10968 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10969
10970 for_each_possible_cpu(i) {
10971 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10972 GFP_KERNEL, cpu_to_node(i));
10973 if (!cfs_rq)
10974 goto err;
10975
10976 se = kzalloc_node(sizeof(struct sched_entity),
10977 GFP_KERNEL, cpu_to_node(i));
10978 if (!se)
10979 goto err_free_rq;
10980
10981 init_cfs_rq(cfs_rq);
10982 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10983 init_entity_runnable_average(se);
10984 }
10985
10986 return 1;
10987
10988err_free_rq:
10989 kfree(cfs_rq);
10990err:
10991 return 0;
10992}
10993
10994void online_fair_sched_group(struct task_group *tg)
10995{
10996 struct sched_entity *se;
10997 struct rq_flags rf;
10998 struct rq *rq;
10999 int i;
11000
11001 for_each_possible_cpu(i) {
11002 rq = cpu_rq(i);
11003 se = tg->se[i];
11004 rq_lock_irq(rq, &rf);
11005 update_rq_clock(rq);
11006 attach_entity_cfs_rq(se);
11007 sync_throttle(tg, i);
11008 rq_unlock_irq(rq, &rf);
11009 }
11010}
11011
11012void unregister_fair_sched_group(struct task_group *tg)
11013{
11014 unsigned long flags;
11015 struct rq *rq;
11016 int cpu;
11017
11018 for_each_possible_cpu(cpu) {
11019 if (tg->se[cpu])
11020 remove_entity_load_avg(tg->se[cpu]);
11021
11022 /*
11023 * Only empty task groups can be destroyed; so we can speculatively
11024 * check on_list without danger of it being re-added.
11025 */
11026 if (!tg->cfs_rq[cpu]->on_list)
11027 continue;
11028
11029 rq = cpu_rq(cpu);
11030
11031 raw_spin_lock_irqsave(&rq->lock, flags);
11032 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11033 raw_spin_unlock_irqrestore(&rq->lock, flags);
11034 }
11035}
11036
11037void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11038 struct sched_entity *se, int cpu,
11039 struct sched_entity *parent)
11040{
11041 struct rq *rq = cpu_rq(cpu);
11042
11043 cfs_rq->tg = tg;
11044 cfs_rq->rq = rq;
11045 init_cfs_rq_runtime(cfs_rq);
11046
11047 tg->cfs_rq[cpu] = cfs_rq;
11048 tg->se[cpu] = se;
11049
11050 /* se could be NULL for root_task_group */
11051 if (!se)
11052 return;
11053
11054 if (!parent) {
11055 se->cfs_rq = &rq->cfs;
11056 se->depth = 0;
11057 } else {
11058 se->cfs_rq = parent->my_q;
11059 se->depth = parent->depth + 1;
11060 }
11061
11062 se->my_q = cfs_rq;
11063 /* guarantee group entities always have weight */
11064 update_load_set(&se->load, NICE_0_LOAD);
11065 se->parent = parent;
11066}
11067
11068static DEFINE_MUTEX(shares_mutex);
11069
11070int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11071{
11072 int i;
11073
11074 /*
11075 * We can't change the weight of the root cgroup.
11076 */
11077 if (!tg->se[0])
11078 return -EINVAL;
11079
11080 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11081
11082 mutex_lock(&shares_mutex);
11083 if (tg->shares == shares)
11084 goto done;
11085
11086 tg->shares = shares;
11087 for_each_possible_cpu(i) {
11088 struct rq *rq = cpu_rq(i);
11089 struct sched_entity *se = tg->se[i];
11090 struct rq_flags rf;
11091
11092 /* Propagate contribution to hierarchy */
11093 rq_lock_irqsave(rq, &rf);
11094 update_rq_clock(rq);
11095 for_each_sched_entity(se) {
11096 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11097 update_cfs_group(se);
11098 }
11099 rq_unlock_irqrestore(rq, &rf);
11100 }
11101
11102done:
11103 mutex_unlock(&shares_mutex);
11104 return 0;
11105}
11106#else /* CONFIG_FAIR_GROUP_SCHED */
11107
11108void free_fair_sched_group(struct task_group *tg) { }
11109
11110int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11111{
11112 return 1;
11113}
11114
11115void online_fair_sched_group(struct task_group *tg) { }
11116
11117void unregister_fair_sched_group(struct task_group *tg) { }
11118
11119#endif /* CONFIG_FAIR_GROUP_SCHED */
11120
11121
11122static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11123{
11124 struct sched_entity *se = &task->se;
11125 unsigned int rr_interval = 0;
11126
11127 /*
11128 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11129 * idle runqueue:
11130 */
11131 if (rq->cfs.load.weight)
11132 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11133
11134 return rr_interval;
11135}
11136
11137/*
11138 * All the scheduling class methods:
11139 */
11140const struct sched_class fair_sched_class
11141 __attribute__((section("__fair_sched_class"))) = {
11142 .enqueue_task = enqueue_task_fair,
11143 .dequeue_task = dequeue_task_fair,
11144 .yield_task = yield_task_fair,
11145 .yield_to_task = yield_to_task_fair,
11146
11147 .check_preempt_curr = check_preempt_wakeup,
11148
11149 .pick_next_task = __pick_next_task_fair,
11150 .put_prev_task = put_prev_task_fair,
11151 .set_next_task = set_next_task_fair,
11152
11153#ifdef CONFIG_SMP
11154 .balance = balance_fair,
11155 .select_task_rq = select_task_rq_fair,
11156 .migrate_task_rq = migrate_task_rq_fair,
11157
11158 .rq_online = rq_online_fair,
11159 .rq_offline = rq_offline_fair,
11160
11161 .task_dead = task_dead_fair,
11162 .set_cpus_allowed = set_cpus_allowed_common,
11163#endif
11164
11165 .task_tick = task_tick_fair,
11166 .task_fork = task_fork_fair,
11167
11168 .prio_changed = prio_changed_fair,
11169 .switched_from = switched_from_fair,
11170 .switched_to = switched_to_fair,
11171
11172 .get_rr_interval = get_rr_interval_fair,
11173
11174 .update_curr = update_curr_fair,
11175
11176#ifdef CONFIG_FAIR_GROUP_SCHED
11177 .task_change_group = task_change_group_fair,
11178#endif
11179
11180#ifdef CONFIG_UCLAMP_TASK
11181 .uclamp_enabled = 1,
11182#endif
11183};
11184
11185#ifdef CONFIG_SCHED_DEBUG
11186void print_cfs_stats(struct seq_file *m, int cpu)
11187{
11188 struct cfs_rq *cfs_rq, *pos;
11189
11190 rcu_read_lock();
11191 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11192 print_cfs_rq(m, cpu, cfs_rq);
11193 rcu_read_unlock();
11194}
11195
11196#ifdef CONFIG_NUMA_BALANCING
11197void show_numa_stats(struct task_struct *p, struct seq_file *m)
11198{
11199 int node;
11200 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11201 struct numa_group *ng;
11202
11203 rcu_read_lock();
11204 ng = rcu_dereference(p->numa_group);
11205 for_each_online_node(node) {
11206 if (p->numa_faults) {
11207 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11208 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11209 }
11210 if (ng) {
11211 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11212 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11213 }
11214 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11215 }
11216 rcu_read_unlock();
11217}
11218#endif /* CONFIG_NUMA_BALANCING */
11219#endif /* CONFIG_SCHED_DEBUG */
11220
11221__init void init_sched_fair_class(void)
11222{
11223#ifdef CONFIG_SMP
11224 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11225
11226#ifdef CONFIG_NO_HZ_COMMON
11227 nohz.next_balance = jiffies;
11228 nohz.next_blocked = jiffies;
11229 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11230#endif
11231#endif /* SMP */
11232
11233}
11234
11235/*
11236 * Helper functions to facilitate extracting info from tracepoints.
11237 */
11238
11239const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11240{
11241#ifdef CONFIG_SMP
11242 return cfs_rq ? &cfs_rq->avg : NULL;
11243#else
11244 return NULL;
11245#endif
11246}
11247EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11248
11249char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11250{
11251 if (!cfs_rq) {
11252 if (str)
11253 strlcpy(str, "(null)", len);
11254 else
11255 return NULL;
11256 }
11257
11258 cfs_rq_tg_path(cfs_rq, str, len);
11259 return str;
11260}
11261EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11262
11263int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11264{
11265 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11266}
11267EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11268
11269const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11270{
11271#ifdef CONFIG_SMP
11272 return rq ? &rq->avg_rt : NULL;
11273#else
11274 return NULL;
11275#endif
11276}
11277EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11278
11279const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11280{
11281#ifdef CONFIG_SMP
11282 return rq ? &rq->avg_dl : NULL;
11283#else
11284 return NULL;
11285#endif
11286}
11287EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11288
11289const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11290{
11291#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11292 return rq ? &rq->avg_irq : NULL;
11293#else
11294 return NULL;
11295#endif
11296}
11297EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11298
11299int sched_trace_rq_cpu(struct rq *rq)
11300{
11301 return rq ? cpu_of(rq) : -1;
11302}
11303EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11304
11305const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11306{
11307#ifdef CONFIG_SMP
11308 return rd ? rd->span : NULL;
11309#else
11310 return NULL;
11311#endif
11312}
11313EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11314
11315int sched_trace_rq_nr_running(struct rq *rq)
11316{
11317 return rq ? rq->nr_running : -1;
11318}
11319EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);