Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 *  linux/kernel/panic.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7/*
  8 * This function is used through-out the kernel (including mm and fs)
  9 * to indicate a major problem.
 10 */
 11#include <linux/debug_locks.h>
 
 12#include <linux/interrupt.h>
 
 13#include <linux/kmsg_dump.h>
 14#include <linux/kallsyms.h>
 15#include <linux/notifier.h>
 
 16#include <linux/module.h>
 17#include <linux/random.h>
 18#include <linux/ftrace.h>
 19#include <linux/reboot.h>
 20#include <linux/delay.h>
 21#include <linux/kexec.h>
 22#include <linux/sched.h>
 23#include <linux/sysrq.h>
 24#include <linux/init.h>
 25#include <linux/nmi.h>
 26#include <linux/console.h>
 27#include <linux/bug.h>
 
 
 
 28
 29#define PANIC_TIMER_STEP 100
 30#define PANIC_BLINK_SPD 18
 31
 
 
 
 
 
 
 
 
 32int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 33static unsigned long tainted_mask;
 
 34static int pause_on_oops;
 35static int pause_on_oops_flag;
 36static DEFINE_SPINLOCK(pause_on_oops_lock);
 37bool crash_kexec_post_notifiers;
 38int panic_on_warn __read_mostly;
 
 
 39
 40int panic_timeout = CONFIG_PANIC_TIMEOUT;
 41EXPORT_SYMBOL_GPL(panic_timeout);
 42
 
 
 
 
 
 
 
 
 43ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 44
 45EXPORT_SYMBOL(panic_notifier_list);
 46
 47static long no_blink(int state)
 48{
 49	return 0;
 50}
 51
 52/* Returns how long it waited in ms */
 53long (*panic_blink)(int state);
 54EXPORT_SYMBOL(panic_blink);
 55
 56/*
 57 * Stop ourself in panic -- architecture code may override this
 58 */
 59void __weak panic_smp_self_stop(void)
 60{
 61	while (1)
 62		cpu_relax();
 63}
 64
 65/*
 66 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
 67 * may override this to prepare for crash dumping, e.g. save regs info.
 68 */
 69void __weak nmi_panic_self_stop(struct pt_regs *regs)
 70{
 71	panic_smp_self_stop();
 72}
 73
 74/*
 75 * Stop other CPUs in panic.  Architecture dependent code may override this
 76 * with more suitable version.  For example, if the architecture supports
 77 * crash dump, it should save registers of each stopped CPU and disable
 78 * per-CPU features such as virtualization extensions.
 79 */
 80void __weak crash_smp_send_stop(void)
 81{
 82	static int cpus_stopped;
 83
 84	/*
 85	 * This function can be called twice in panic path, but obviously
 86	 * we execute this only once.
 87	 */
 88	if (cpus_stopped)
 89		return;
 90
 91	/*
 92	 * Note smp_send_stop is the usual smp shutdown function, which
 93	 * unfortunately means it may not be hardened to work in a panic
 94	 * situation.
 95	 */
 96	smp_send_stop();
 97	cpus_stopped = 1;
 98}
 99
100atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
101
102/*
103 * A variant of panic() called from NMI context. We return if we've already
104 * panicked on this CPU. If another CPU already panicked, loop in
105 * nmi_panic_self_stop() which can provide architecture dependent code such
106 * as saving register state for crash dump.
107 */
108void nmi_panic(struct pt_regs *regs, const char *msg)
109{
110	int old_cpu, cpu;
111
112	cpu = raw_smp_processor_id();
113	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
114
115	if (old_cpu == PANIC_CPU_INVALID)
116		panic("%s", msg);
117	else if (old_cpu != cpu)
118		nmi_panic_self_stop(regs);
119}
120EXPORT_SYMBOL(nmi_panic);
121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122/**
123 *	panic - halt the system
124 *	@fmt: The text string to print
125 *
126 *	Display a message, then perform cleanups.
127 *
128 *	This function never returns.
129 */
130void panic(const char *fmt, ...)
131{
132	static char buf[1024];
133	va_list args;
134	long i, i_next = 0;
135	int state = 0;
136	int old_cpu, this_cpu;
137	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
138
139	/*
140	 * Disable local interrupts. This will prevent panic_smp_self_stop
141	 * from deadlocking the first cpu that invokes the panic, since
142	 * there is nothing to prevent an interrupt handler (that runs
143	 * after setting panic_cpu) from invoking panic() again.
144	 */
145	local_irq_disable();
 
146
147	/*
148	 * It's possible to come here directly from a panic-assertion and
149	 * not have preempt disabled. Some functions called from here want
150	 * preempt to be disabled. No point enabling it later though...
151	 *
152	 * Only one CPU is allowed to execute the panic code from here. For
153	 * multiple parallel invocations of panic, all other CPUs either
154	 * stop themself or will wait until they are stopped by the 1st CPU
155	 * with smp_send_stop().
156	 *
157	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
158	 * comes here, so go ahead.
159	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
160	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
161	 */
162	this_cpu = raw_smp_processor_id();
163	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
164
165	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
166		panic_smp_self_stop();
167
168	console_verbose();
169	bust_spinlocks(1);
170	va_start(args, fmt);
171	vsnprintf(buf, sizeof(buf), fmt, args);
172	va_end(args);
 
 
 
 
173	pr_emerg("Kernel panic - not syncing: %s\n", buf);
174#ifdef CONFIG_DEBUG_BUGVERBOSE
175	/*
176	 * Avoid nested stack-dumping if a panic occurs during oops processing
177	 */
178	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
179		dump_stack();
180#endif
181
182	/*
 
 
 
 
 
 
 
183	 * If we have crashed and we have a crash kernel loaded let it handle
184	 * everything else.
185	 * If we want to run this after calling panic_notifiers, pass
186	 * the "crash_kexec_post_notifiers" option to the kernel.
187	 *
188	 * Bypass the panic_cpu check and call __crash_kexec directly.
189	 */
190	if (!_crash_kexec_post_notifiers) {
191		printk_nmi_flush_on_panic();
192		__crash_kexec(NULL);
193
194		/*
195		 * Note smp_send_stop is the usual smp shutdown function, which
196		 * unfortunately means it may not be hardened to work in a
197		 * panic situation.
198		 */
199		smp_send_stop();
200	} else {
201		/*
202		 * If we want to do crash dump after notifier calls and
203		 * kmsg_dump, we will need architecture dependent extra
204		 * works in addition to stopping other CPUs.
205		 */
206		crash_smp_send_stop();
207	}
208
209	/*
210	 * Run any panic handlers, including those that might need to
211	 * add information to the kmsg dump output.
212	 */
213	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
214
215	/* Call flush even twice. It tries harder with a single online CPU */
216	printk_nmi_flush_on_panic();
217	kmsg_dump(KMSG_DUMP_PANIC);
218
219	/*
220	 * If you doubt kdump always works fine in any situation,
221	 * "crash_kexec_post_notifiers" offers you a chance to run
222	 * panic_notifiers and dumping kmsg before kdump.
223	 * Note: since some panic_notifiers can make crashed kernel
224	 * more unstable, it can increase risks of the kdump failure too.
225	 *
226	 * Bypass the panic_cpu check and call __crash_kexec directly.
227	 */
228	if (_crash_kexec_post_notifiers)
229		__crash_kexec(NULL);
230
231	bust_spinlocks(0);
 
 
 
232
233	/*
234	 * We may have ended up stopping the CPU holding the lock (in
235	 * smp_send_stop()) while still having some valuable data in the console
236	 * buffer.  Try to acquire the lock then release it regardless of the
237	 * result.  The release will also print the buffers out.  Locks debug
238	 * should be disabled to avoid reporting bad unlock balance when
239	 * panic() is not being callled from OOPS.
240	 */
241	debug_locks_off();
242	console_flush_on_panic();
 
 
243
244	if (!panic_blink)
245		panic_blink = no_blink;
246
247	if (panic_timeout > 0) {
248		/*
249		 * Delay timeout seconds before rebooting the machine.
250		 * We can't use the "normal" timers since we just panicked.
251		 */
252		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
253
254		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
255			touch_nmi_watchdog();
256			if (i >= i_next) {
257				i += panic_blink(state ^= 1);
258				i_next = i + 3600 / PANIC_BLINK_SPD;
259			}
260			mdelay(PANIC_TIMER_STEP);
261		}
262	}
263	if (panic_timeout != 0) {
264		/*
265		 * This will not be a clean reboot, with everything
266		 * shutting down.  But if there is a chance of
267		 * rebooting the system it will be rebooted.
268		 */
 
 
269		emergency_restart();
270	}
271#ifdef __sparc__
272	{
273		extern int stop_a_enabled;
274		/* Make sure the user can actually press Stop-A (L1-A) */
275		stop_a_enabled = 1;
276		pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
 
277	}
278#endif
279#if defined(CONFIG_S390)
280	{
281		unsigned long caller;
282
283		caller = (unsigned long)__builtin_return_address(0);
284		disabled_wait(caller);
285	}
286#endif
287	pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
 
 
 
288	local_irq_enable();
289	for (i = 0; ; i += PANIC_TIMER_STEP) {
290		touch_softlockup_watchdog();
291		if (i >= i_next) {
292			i += panic_blink(state ^= 1);
293			i_next = i + 3600 / PANIC_BLINK_SPD;
294		}
295		mdelay(PANIC_TIMER_STEP);
296	}
297}
298
299EXPORT_SYMBOL(panic);
300
301/*
302 * TAINT_FORCED_RMMOD could be a per-module flag but the module
303 * is being removed anyway.
304 */
305const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
306	{ 'P', 'G', true },	/* TAINT_PROPRIETARY_MODULE */
307	{ 'F', ' ', true },	/* TAINT_FORCED_MODULE */
308	{ 'S', ' ', false },	/* TAINT_CPU_OUT_OF_SPEC */
309	{ 'R', ' ', false },	/* TAINT_FORCED_RMMOD */
310	{ 'M', ' ', false },	/* TAINT_MACHINE_CHECK */
311	{ 'B', ' ', false },	/* TAINT_BAD_PAGE */
312	{ 'U', ' ', false },	/* TAINT_USER */
313	{ 'D', ' ', false },	/* TAINT_DIE */
314	{ 'A', ' ', false },	/* TAINT_OVERRIDDEN_ACPI_TABLE */
315	{ 'W', ' ', false },	/* TAINT_WARN */
316	{ 'C', ' ', true },	/* TAINT_CRAP */
317	{ 'I', ' ', false },	/* TAINT_FIRMWARE_WORKAROUND */
318	{ 'O', ' ', true },	/* TAINT_OOT_MODULE */
319	{ 'E', ' ', true },	/* TAINT_UNSIGNED_MODULE */
320	{ 'L', ' ', false },	/* TAINT_SOFTLOCKUP */
321	{ 'K', ' ', true },	/* TAINT_LIVEPATCH */
 
 
322};
323
324/**
325 *	print_tainted - return a string to represent the kernel taint state.
326 *
327 *  'P' - Proprietary module has been loaded.
328 *  'F' - Module has been forcibly loaded.
329 *  'S' - SMP with CPUs not designed for SMP.
330 *  'R' - User forced a module unload.
331 *  'M' - System experienced a machine check exception.
332 *  'B' - System has hit bad_page.
333 *  'U' - Userspace-defined naughtiness.
334 *  'D' - Kernel has oopsed before
335 *  'A' - ACPI table overridden.
336 *  'W' - Taint on warning.
337 *  'C' - modules from drivers/staging are loaded.
338 *  'I' - Working around severe firmware bug.
339 *  'O' - Out-of-tree module has been loaded.
340 *  'E' - Unsigned module has been loaded.
341 *  'L' - A soft lockup has previously occurred.
342 *  'K' - Kernel has been live patched.
343 *
344 *	The string is overwritten by the next call to print_tainted().
 
345 */
346const char *print_tainted(void)
347{
348	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
349
 
 
350	if (tainted_mask) {
351		char *s;
352		int i;
353
354		s = buf + sprintf(buf, "Tainted: ");
355		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
356			const struct taint_flag *t = &taint_flags[i];
357			*s++ = test_bit(i, &tainted_mask) ?
358					t->c_true : t->c_false;
359		}
360		*s = 0;
361	} else
362		snprintf(buf, sizeof(buf), "Not tainted");
363
364	return buf;
365}
366
367int test_taint(unsigned flag)
368{
369	return test_bit(flag, &tainted_mask);
370}
371EXPORT_SYMBOL(test_taint);
372
373unsigned long get_taint(void)
374{
375	return tainted_mask;
376}
377
378/**
379 * add_taint: add a taint flag if not already set.
380 * @flag: one of the TAINT_* constants.
381 * @lockdep_ok: whether lock debugging is still OK.
382 *
383 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
384 * some notewortht-but-not-corrupting cases, it can be set to true.
385 */
386void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
387{
388	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
389		pr_warn("Disabling lock debugging due to kernel taint\n");
390
391	set_bit(flag, &tainted_mask);
 
 
 
 
 
392}
393EXPORT_SYMBOL(add_taint);
394
395static void spin_msec(int msecs)
396{
397	int i;
398
399	for (i = 0; i < msecs; i++) {
400		touch_nmi_watchdog();
401		mdelay(1);
402	}
403}
404
405/*
406 * It just happens that oops_enter() and oops_exit() are identically
407 * implemented...
408 */
409static void do_oops_enter_exit(void)
410{
411	unsigned long flags;
412	static int spin_counter;
413
414	if (!pause_on_oops)
415		return;
416
417	spin_lock_irqsave(&pause_on_oops_lock, flags);
418	if (pause_on_oops_flag == 0) {
419		/* This CPU may now print the oops message */
420		pause_on_oops_flag = 1;
421	} else {
422		/* We need to stall this CPU */
423		if (!spin_counter) {
424			/* This CPU gets to do the counting */
425			spin_counter = pause_on_oops;
426			do {
427				spin_unlock(&pause_on_oops_lock);
428				spin_msec(MSEC_PER_SEC);
429				spin_lock(&pause_on_oops_lock);
430			} while (--spin_counter);
431			pause_on_oops_flag = 0;
432		} else {
433			/* This CPU waits for a different one */
434			while (spin_counter) {
435				spin_unlock(&pause_on_oops_lock);
436				spin_msec(1);
437				spin_lock(&pause_on_oops_lock);
438			}
439		}
440	}
441	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
442}
443
444/*
445 * Return true if the calling CPU is allowed to print oops-related info.
446 * This is a bit racy..
447 */
448int oops_may_print(void)
449{
450	return pause_on_oops_flag == 0;
451}
452
453/*
454 * Called when the architecture enters its oops handler, before it prints
455 * anything.  If this is the first CPU to oops, and it's oopsing the first
456 * time then let it proceed.
457 *
458 * This is all enabled by the pause_on_oops kernel boot option.  We do all
459 * this to ensure that oopses don't scroll off the screen.  It has the
460 * side-effect of preventing later-oopsing CPUs from mucking up the display,
461 * too.
462 *
463 * It turns out that the CPU which is allowed to print ends up pausing for
464 * the right duration, whereas all the other CPUs pause for twice as long:
465 * once in oops_enter(), once in oops_exit().
466 */
467void oops_enter(void)
468{
469	tracing_off();
470	/* can't trust the integrity of the kernel anymore: */
471	debug_locks_off();
472	do_oops_enter_exit();
 
 
 
473}
474
475/*
476 * 64-bit random ID for oopses:
477 */
478static u64 oops_id;
479
480static int init_oops_id(void)
481{
482	if (!oops_id)
483		get_random_bytes(&oops_id, sizeof(oops_id));
484	else
485		oops_id++;
486
487	return 0;
488}
489late_initcall(init_oops_id);
490
491void print_oops_end_marker(void)
492{
493	init_oops_id();
494	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
495}
496
497/*
498 * Called when the architecture exits its oops handler, after printing
499 * everything.
500 */
501void oops_exit(void)
502{
503	do_oops_enter_exit();
504	print_oops_end_marker();
505	kmsg_dump(KMSG_DUMP_OOPS);
506}
507
508struct warn_args {
509	const char *fmt;
510	va_list args;
511};
512
513void __warn(const char *file, int line, void *caller, unsigned taint,
514	    struct pt_regs *regs, struct warn_args *args)
515{
516	disable_trace_on_warning();
517
518	pr_warn("------------[ cut here ]------------\n");
519
520	if (file)
521		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
522			raw_smp_processor_id(), current->pid, file, line,
523			caller);
524	else
525		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
526			raw_smp_processor_id(), current->pid, caller);
527
528	if (args)
529		vprintk(args->fmt, args->args);
530
531	if (panic_on_warn) {
532		/*
533		 * This thread may hit another WARN() in the panic path.
534		 * Resetting this prevents additional WARN() from panicking the
535		 * system on this thread.  Other threads are blocked by the
536		 * panic_mutex in panic().
537		 */
538		panic_on_warn = 0;
539		panic("panic_on_warn set ...\n");
540	}
541
542	print_modules();
543
544	if (regs)
545		show_regs(regs);
546	else
547		dump_stack();
548
 
 
549	print_oops_end_marker();
550
551	/* Just a warning, don't kill lockdep. */
552	add_taint(taint, LOCKDEP_STILL_OK);
553}
554
555#ifdef WANT_WARN_ON_SLOWPATH
556void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
 
557{
558	struct warn_args args;
559
 
 
 
 
 
 
 
 
560	args.fmt = fmt;
561	va_start(args.args, fmt);
562	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
563	       &args);
564	va_end(args.args);
565}
566EXPORT_SYMBOL(warn_slowpath_fmt);
567
568void warn_slowpath_fmt_taint(const char *file, int line,
569			     unsigned taint, const char *fmt, ...)
570{
571	struct warn_args args;
572
573	args.fmt = fmt;
574	va_start(args.args, fmt);
575	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
576	va_end(args.args);
 
577}
578EXPORT_SYMBOL(warn_slowpath_fmt_taint);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
579
580void warn_slowpath_null(const char *file, int line)
581{
582	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
 
 
 
583}
584EXPORT_SYMBOL(warn_slowpath_null);
 
585#endif
586
587#ifdef CONFIG_CC_STACKPROTECTOR
588
589/*
590 * Called when gcc's -fstack-protector feature is used, and
591 * gcc detects corruption of the on-stack canary value
592 */
593__visible void __stack_chk_fail(void)
594{
595	panic("stack-protector: Kernel stack is corrupted in: %p\n",
 
596		__builtin_return_address(0));
 
597}
598EXPORT_SYMBOL(__stack_chk_fail);
599
600#endif
601
602core_param(panic, panic_timeout, int, 0644);
 
603core_param(pause_on_oops, pause_on_oops, int, 0644);
604core_param(panic_on_warn, panic_on_warn, int, 0644);
605core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
606
607static int __init oops_setup(char *s)
608{
609	if (!s)
610		return -EINVAL;
611	if (!strcmp(s, "panic"))
612		panic_on_oops = 1;
613	return 0;
614}
615early_param("oops", oops_setup);
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/kernel/panic.c
  4 *
  5 *  Copyright (C) 1991, 1992  Linus Torvalds
  6 */
  7
  8/*
  9 * This function is used through-out the kernel (including mm and fs)
 10 * to indicate a major problem.
 11 */
 12#include <linux/debug_locks.h>
 13#include <linux/sched/debug.h>
 14#include <linux/interrupt.h>
 15#include <linux/kgdb.h>
 16#include <linux/kmsg_dump.h>
 17#include <linux/kallsyms.h>
 18#include <linux/notifier.h>
 19#include <linux/vt_kern.h>
 20#include <linux/module.h>
 21#include <linux/random.h>
 22#include <linux/ftrace.h>
 23#include <linux/reboot.h>
 24#include <linux/delay.h>
 25#include <linux/kexec.h>
 26#include <linux/sched.h>
 27#include <linux/sysrq.h>
 28#include <linux/init.h>
 29#include <linux/nmi.h>
 30#include <linux/console.h>
 31#include <linux/bug.h>
 32#include <linux/ratelimit.h>
 33#include <linux/debugfs.h>
 34#include <asm/sections.h>
 35
 36#define PANIC_TIMER_STEP 100
 37#define PANIC_BLINK_SPD 18
 38
 39#ifdef CONFIG_SMP
 40/*
 41 * Should we dump all CPUs backtraces in an oops event?
 42 * Defaults to 0, can be changed via sysctl.
 43 */
 44unsigned int __read_mostly sysctl_oops_all_cpu_backtrace;
 45#endif /* CONFIG_SMP */
 46
 47int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 48static unsigned long tainted_mask =
 49	IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0;
 50static int pause_on_oops;
 51static int pause_on_oops_flag;
 52static DEFINE_SPINLOCK(pause_on_oops_lock);
 53bool crash_kexec_post_notifiers;
 54int panic_on_warn __read_mostly;
 55unsigned long panic_on_taint;
 56bool panic_on_taint_nousertaint = false;
 57
 58int panic_timeout = CONFIG_PANIC_TIMEOUT;
 59EXPORT_SYMBOL_GPL(panic_timeout);
 60
 61#define PANIC_PRINT_TASK_INFO		0x00000001
 62#define PANIC_PRINT_MEM_INFO		0x00000002
 63#define PANIC_PRINT_TIMER_INFO		0x00000004
 64#define PANIC_PRINT_LOCK_INFO		0x00000008
 65#define PANIC_PRINT_FTRACE_INFO		0x00000010
 66#define PANIC_PRINT_ALL_PRINTK_MSG	0x00000020
 67unsigned long panic_print;
 68
 69ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 70
 71EXPORT_SYMBOL(panic_notifier_list);
 72
 73static long no_blink(int state)
 74{
 75	return 0;
 76}
 77
 78/* Returns how long it waited in ms */
 79long (*panic_blink)(int state);
 80EXPORT_SYMBOL(panic_blink);
 81
 82/*
 83 * Stop ourself in panic -- architecture code may override this
 84 */
 85void __weak panic_smp_self_stop(void)
 86{
 87	while (1)
 88		cpu_relax();
 89}
 90
 91/*
 92 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
 93 * may override this to prepare for crash dumping, e.g. save regs info.
 94 */
 95void __weak nmi_panic_self_stop(struct pt_regs *regs)
 96{
 97	panic_smp_self_stop();
 98}
 99
100/*
101 * Stop other CPUs in panic.  Architecture dependent code may override this
102 * with more suitable version.  For example, if the architecture supports
103 * crash dump, it should save registers of each stopped CPU and disable
104 * per-CPU features such as virtualization extensions.
105 */
106void __weak crash_smp_send_stop(void)
107{
108	static int cpus_stopped;
109
110	/*
111	 * This function can be called twice in panic path, but obviously
112	 * we execute this only once.
113	 */
114	if (cpus_stopped)
115		return;
116
117	/*
118	 * Note smp_send_stop is the usual smp shutdown function, which
119	 * unfortunately means it may not be hardened to work in a panic
120	 * situation.
121	 */
122	smp_send_stop();
123	cpus_stopped = 1;
124}
125
126atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
127
128/*
129 * A variant of panic() called from NMI context. We return if we've already
130 * panicked on this CPU. If another CPU already panicked, loop in
131 * nmi_panic_self_stop() which can provide architecture dependent code such
132 * as saving register state for crash dump.
133 */
134void nmi_panic(struct pt_regs *regs, const char *msg)
135{
136	int old_cpu, cpu;
137
138	cpu = raw_smp_processor_id();
139	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
140
141	if (old_cpu == PANIC_CPU_INVALID)
142		panic("%s", msg);
143	else if (old_cpu != cpu)
144		nmi_panic_self_stop(regs);
145}
146EXPORT_SYMBOL(nmi_panic);
147
148static void panic_print_sys_info(void)
149{
150	if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG)
151		console_flush_on_panic(CONSOLE_REPLAY_ALL);
152
153	if (panic_print & PANIC_PRINT_TASK_INFO)
154		show_state();
155
156	if (panic_print & PANIC_PRINT_MEM_INFO)
157		show_mem(0, NULL);
158
159	if (panic_print & PANIC_PRINT_TIMER_INFO)
160		sysrq_timer_list_show();
161
162	if (panic_print & PANIC_PRINT_LOCK_INFO)
163		debug_show_all_locks();
164
165	if (panic_print & PANIC_PRINT_FTRACE_INFO)
166		ftrace_dump(DUMP_ALL);
167}
168
169/**
170 *	panic - halt the system
171 *	@fmt: The text string to print
172 *
173 *	Display a message, then perform cleanups.
174 *
175 *	This function never returns.
176 */
177void panic(const char *fmt, ...)
178{
179	static char buf[1024];
180	va_list args;
181	long i, i_next = 0, len;
182	int state = 0;
183	int old_cpu, this_cpu;
184	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
185
186	/*
187	 * Disable local interrupts. This will prevent panic_smp_self_stop
188	 * from deadlocking the first cpu that invokes the panic, since
189	 * there is nothing to prevent an interrupt handler (that runs
190	 * after setting panic_cpu) from invoking panic() again.
191	 */
192	local_irq_disable();
193	preempt_disable_notrace();
194
195	/*
196	 * It's possible to come here directly from a panic-assertion and
197	 * not have preempt disabled. Some functions called from here want
198	 * preempt to be disabled. No point enabling it later though...
199	 *
200	 * Only one CPU is allowed to execute the panic code from here. For
201	 * multiple parallel invocations of panic, all other CPUs either
202	 * stop themself or will wait until they are stopped by the 1st CPU
203	 * with smp_send_stop().
204	 *
205	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
206	 * comes here, so go ahead.
207	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
208	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
209	 */
210	this_cpu = raw_smp_processor_id();
211	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
212
213	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
214		panic_smp_self_stop();
215
216	console_verbose();
217	bust_spinlocks(1);
218	va_start(args, fmt);
219	len = vscnprintf(buf, sizeof(buf), fmt, args);
220	va_end(args);
221
222	if (len && buf[len - 1] == '\n')
223		buf[len - 1] = '\0';
224
225	pr_emerg("Kernel panic - not syncing: %s\n", buf);
226#ifdef CONFIG_DEBUG_BUGVERBOSE
227	/*
228	 * Avoid nested stack-dumping if a panic occurs during oops processing
229	 */
230	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
231		dump_stack();
232#endif
233
234	/*
235	 * If kgdb is enabled, give it a chance to run before we stop all
236	 * the other CPUs or else we won't be able to debug processes left
237	 * running on them.
238	 */
239	kgdb_panic(buf);
240
241	/*
242	 * If we have crashed and we have a crash kernel loaded let it handle
243	 * everything else.
244	 * If we want to run this after calling panic_notifiers, pass
245	 * the "crash_kexec_post_notifiers" option to the kernel.
246	 *
247	 * Bypass the panic_cpu check and call __crash_kexec directly.
248	 */
249	if (!_crash_kexec_post_notifiers) {
250		printk_safe_flush_on_panic();
251		__crash_kexec(NULL);
252
253		/*
254		 * Note smp_send_stop is the usual smp shutdown function, which
255		 * unfortunately means it may not be hardened to work in a
256		 * panic situation.
257		 */
258		smp_send_stop();
259	} else {
260		/*
261		 * If we want to do crash dump after notifier calls and
262		 * kmsg_dump, we will need architecture dependent extra
263		 * works in addition to stopping other CPUs.
264		 */
265		crash_smp_send_stop();
266	}
267
268	/*
269	 * Run any panic handlers, including those that might need to
270	 * add information to the kmsg dump output.
271	 */
272	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
273
274	/* Call flush even twice. It tries harder with a single online CPU */
275	printk_safe_flush_on_panic();
276	kmsg_dump(KMSG_DUMP_PANIC);
277
278	/*
279	 * If you doubt kdump always works fine in any situation,
280	 * "crash_kexec_post_notifiers" offers you a chance to run
281	 * panic_notifiers and dumping kmsg before kdump.
282	 * Note: since some panic_notifiers can make crashed kernel
283	 * more unstable, it can increase risks of the kdump failure too.
284	 *
285	 * Bypass the panic_cpu check and call __crash_kexec directly.
286	 */
287	if (_crash_kexec_post_notifiers)
288		__crash_kexec(NULL);
289
290#ifdef CONFIG_VT
291	unblank_screen();
292#endif
293	console_unblank();
294
295	/*
296	 * We may have ended up stopping the CPU holding the lock (in
297	 * smp_send_stop()) while still having some valuable data in the console
298	 * buffer.  Try to acquire the lock then release it regardless of the
299	 * result.  The release will also print the buffers out.  Locks debug
300	 * should be disabled to avoid reporting bad unlock balance when
301	 * panic() is not being callled from OOPS.
302	 */
303	debug_locks_off();
304	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
305
306	panic_print_sys_info();
307
308	if (!panic_blink)
309		panic_blink = no_blink;
310
311	if (panic_timeout > 0) {
312		/*
313		 * Delay timeout seconds before rebooting the machine.
314		 * We can't use the "normal" timers since we just panicked.
315		 */
316		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
317
318		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
319			touch_nmi_watchdog();
320			if (i >= i_next) {
321				i += panic_blink(state ^= 1);
322				i_next = i + 3600 / PANIC_BLINK_SPD;
323			}
324			mdelay(PANIC_TIMER_STEP);
325		}
326	}
327	if (panic_timeout != 0) {
328		/*
329		 * This will not be a clean reboot, with everything
330		 * shutting down.  But if there is a chance of
331		 * rebooting the system it will be rebooted.
332		 */
333		if (panic_reboot_mode != REBOOT_UNDEFINED)
334			reboot_mode = panic_reboot_mode;
335		emergency_restart();
336	}
337#ifdef __sparc__
338	{
339		extern int stop_a_enabled;
340		/* Make sure the user can actually press Stop-A (L1-A) */
341		stop_a_enabled = 1;
342		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
343			 "twice on console to return to the boot prom\n");
344	}
345#endif
346#if defined(CONFIG_S390)
347	disabled_wait();
 
 
 
 
 
348#endif
349	pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf);
350
351	/* Do not scroll important messages printed above */
352	suppress_printk = 1;
353	local_irq_enable();
354	for (i = 0; ; i += PANIC_TIMER_STEP) {
355		touch_softlockup_watchdog();
356		if (i >= i_next) {
357			i += panic_blink(state ^= 1);
358			i_next = i + 3600 / PANIC_BLINK_SPD;
359		}
360		mdelay(PANIC_TIMER_STEP);
361	}
362}
363
364EXPORT_SYMBOL(panic);
365
366/*
367 * TAINT_FORCED_RMMOD could be a per-module flag but the module
368 * is being removed anyway.
369 */
370const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
371	[ TAINT_PROPRIETARY_MODULE ]	= { 'P', 'G', true },
372	[ TAINT_FORCED_MODULE ]		= { 'F', ' ', true },
373	[ TAINT_CPU_OUT_OF_SPEC ]	= { 'S', ' ', false },
374	[ TAINT_FORCED_RMMOD ]		= { 'R', ' ', false },
375	[ TAINT_MACHINE_CHECK ]		= { 'M', ' ', false },
376	[ TAINT_BAD_PAGE ]		= { 'B', ' ', false },
377	[ TAINT_USER ]			= { 'U', ' ', false },
378	[ TAINT_DIE ]			= { 'D', ' ', false },
379	[ TAINT_OVERRIDDEN_ACPI_TABLE ]	= { 'A', ' ', false },
380	[ TAINT_WARN ]			= { 'W', ' ', false },
381	[ TAINT_CRAP ]			= { 'C', ' ', true },
382	[ TAINT_FIRMWARE_WORKAROUND ]	= { 'I', ' ', false },
383	[ TAINT_OOT_MODULE ]		= { 'O', ' ', true },
384	[ TAINT_UNSIGNED_MODULE ]	= { 'E', ' ', true },
385	[ TAINT_SOFTLOCKUP ]		= { 'L', ' ', false },
386	[ TAINT_LIVEPATCH ]		= { 'K', ' ', true },
387	[ TAINT_AUX ]			= { 'X', ' ', true },
388	[ TAINT_RANDSTRUCT ]		= { 'T', ' ', true },
389};
390
391/**
392 * print_tainted - return a string to represent the kernel taint state.
393 *
394 * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395 *
396 * The string is overwritten by the next call to print_tainted(),
397 * but is always NULL terminated.
398 */
399const char *print_tainted(void)
400{
401	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
402
403	BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
404
405	if (tainted_mask) {
406		char *s;
407		int i;
408
409		s = buf + sprintf(buf, "Tainted: ");
410		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
411			const struct taint_flag *t = &taint_flags[i];
412			*s++ = test_bit(i, &tainted_mask) ?
413					t->c_true : t->c_false;
414		}
415		*s = 0;
416	} else
417		snprintf(buf, sizeof(buf), "Not tainted");
418
419	return buf;
420}
421
422int test_taint(unsigned flag)
423{
424	return test_bit(flag, &tainted_mask);
425}
426EXPORT_SYMBOL(test_taint);
427
428unsigned long get_taint(void)
429{
430	return tainted_mask;
431}
432
433/**
434 * add_taint: add a taint flag if not already set.
435 * @flag: one of the TAINT_* constants.
436 * @lockdep_ok: whether lock debugging is still OK.
437 *
438 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
439 * some notewortht-but-not-corrupting cases, it can be set to true.
440 */
441void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
442{
443	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
444		pr_warn("Disabling lock debugging due to kernel taint\n");
445
446	set_bit(flag, &tainted_mask);
447
448	if (tainted_mask & panic_on_taint) {
449		panic_on_taint = 0;
450		panic("panic_on_taint set ...");
451	}
452}
453EXPORT_SYMBOL(add_taint);
454
455static void spin_msec(int msecs)
456{
457	int i;
458
459	for (i = 0; i < msecs; i++) {
460		touch_nmi_watchdog();
461		mdelay(1);
462	}
463}
464
465/*
466 * It just happens that oops_enter() and oops_exit() are identically
467 * implemented...
468 */
469static void do_oops_enter_exit(void)
470{
471	unsigned long flags;
472	static int spin_counter;
473
474	if (!pause_on_oops)
475		return;
476
477	spin_lock_irqsave(&pause_on_oops_lock, flags);
478	if (pause_on_oops_flag == 0) {
479		/* This CPU may now print the oops message */
480		pause_on_oops_flag = 1;
481	} else {
482		/* We need to stall this CPU */
483		if (!spin_counter) {
484			/* This CPU gets to do the counting */
485			spin_counter = pause_on_oops;
486			do {
487				spin_unlock(&pause_on_oops_lock);
488				spin_msec(MSEC_PER_SEC);
489				spin_lock(&pause_on_oops_lock);
490			} while (--spin_counter);
491			pause_on_oops_flag = 0;
492		} else {
493			/* This CPU waits for a different one */
494			while (spin_counter) {
495				spin_unlock(&pause_on_oops_lock);
496				spin_msec(1);
497				spin_lock(&pause_on_oops_lock);
498			}
499		}
500	}
501	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
502}
503
504/*
505 * Return true if the calling CPU is allowed to print oops-related info.
506 * This is a bit racy..
507 */
508bool oops_may_print(void)
509{
510	return pause_on_oops_flag == 0;
511}
512
513/*
514 * Called when the architecture enters its oops handler, before it prints
515 * anything.  If this is the first CPU to oops, and it's oopsing the first
516 * time then let it proceed.
517 *
518 * This is all enabled by the pause_on_oops kernel boot option.  We do all
519 * this to ensure that oopses don't scroll off the screen.  It has the
520 * side-effect of preventing later-oopsing CPUs from mucking up the display,
521 * too.
522 *
523 * It turns out that the CPU which is allowed to print ends up pausing for
524 * the right duration, whereas all the other CPUs pause for twice as long:
525 * once in oops_enter(), once in oops_exit().
526 */
527void oops_enter(void)
528{
529	tracing_off();
530	/* can't trust the integrity of the kernel anymore: */
531	debug_locks_off();
532	do_oops_enter_exit();
533
534	if (sysctl_oops_all_cpu_backtrace)
535		trigger_all_cpu_backtrace();
536}
537
538/*
539 * 64-bit random ID for oopses:
540 */
541static u64 oops_id;
542
543static int init_oops_id(void)
544{
545	if (!oops_id)
546		get_random_bytes(&oops_id, sizeof(oops_id));
547	else
548		oops_id++;
549
550	return 0;
551}
552late_initcall(init_oops_id);
553
554static void print_oops_end_marker(void)
555{
556	init_oops_id();
557	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
558}
559
560/*
561 * Called when the architecture exits its oops handler, after printing
562 * everything.
563 */
564void oops_exit(void)
565{
566	do_oops_enter_exit();
567	print_oops_end_marker();
568	kmsg_dump(KMSG_DUMP_OOPS);
569}
570
571struct warn_args {
572	const char *fmt;
573	va_list args;
574};
575
576void __warn(const char *file, int line, void *caller, unsigned taint,
577	    struct pt_regs *regs, struct warn_args *args)
578{
579	disable_trace_on_warning();
580
 
 
581	if (file)
582		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
583			raw_smp_processor_id(), current->pid, file, line,
584			caller);
585	else
586		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
587			raw_smp_processor_id(), current->pid, caller);
588
589	if (args)
590		vprintk(args->fmt, args->args);
591
592	if (panic_on_warn) {
593		/*
594		 * This thread may hit another WARN() in the panic path.
595		 * Resetting this prevents additional WARN() from panicking the
596		 * system on this thread.  Other threads are blocked by the
597		 * panic_mutex in panic().
598		 */
599		panic_on_warn = 0;
600		panic("panic_on_warn set ...\n");
601	}
602
603	print_modules();
604
605	if (regs)
606		show_regs(regs);
607	else
608		dump_stack();
609
610	print_irqtrace_events(current);
611
612	print_oops_end_marker();
613
614	/* Just a warning, don't kill lockdep. */
615	add_taint(taint, LOCKDEP_STILL_OK);
616}
617
618#ifndef __WARN_FLAGS
619void warn_slowpath_fmt(const char *file, int line, unsigned taint,
620		       const char *fmt, ...)
621{
622	struct warn_args args;
623
624	pr_warn(CUT_HERE);
625
626	if (!fmt) {
627		__warn(file, line, __builtin_return_address(0), taint,
628		       NULL, NULL);
629		return;
630	}
631
632	args.fmt = fmt;
633	va_start(args.args, fmt);
634	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
 
635	va_end(args.args);
636}
637EXPORT_SYMBOL(warn_slowpath_fmt);
638#else
639void __warn_printk(const char *fmt, ...)
 
640{
641	va_list args;
642
643	pr_warn(CUT_HERE);
644
645	va_start(args, fmt);
646	vprintk(fmt, args);
647	va_end(args);
648}
649EXPORT_SYMBOL(__warn_printk);
650#endif
651
652#ifdef CONFIG_BUG
653
654/* Support resetting WARN*_ONCE state */
655
656static int clear_warn_once_set(void *data, u64 val)
657{
658	generic_bug_clear_once();
659	memset(__start_once, 0, __end_once - __start_once);
660	return 0;
661}
662
663DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set,
664			 "%lld\n");
665
666static __init int register_warn_debugfs(void)
667{
668	/* Don't care about failure */
669	debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL,
670				   &clear_warn_once_fops);
671	return 0;
672}
673
674device_initcall(register_warn_debugfs);
675#endif
676
677#ifdef CONFIG_STACKPROTECTOR
678
679/*
680 * Called when gcc's -fstack-protector feature is used, and
681 * gcc detects corruption of the on-stack canary value
682 */
683__visible noinstr void __stack_chk_fail(void)
684{
685	instrumentation_begin();
686	panic("stack-protector: Kernel stack is corrupted in: %pB",
687		__builtin_return_address(0));
688	instrumentation_end();
689}
690EXPORT_SYMBOL(__stack_chk_fail);
691
692#endif
693
694core_param(panic, panic_timeout, int, 0644);
695core_param(panic_print, panic_print, ulong, 0644);
696core_param(pause_on_oops, pause_on_oops, int, 0644);
697core_param(panic_on_warn, panic_on_warn, int, 0644);
698core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
699
700static int __init oops_setup(char *s)
701{
702	if (!s)
703		return -EINVAL;
704	if (!strcmp(s, "panic"))
705		panic_on_oops = 1;
706	return 0;
707}
708early_param("oops", oops_setup);
709
710static int __init panic_on_taint_setup(char *s)
711{
712	char *taint_str;
713
714	if (!s)
715		return -EINVAL;
716
717	taint_str = strsep(&s, ",");
718	if (kstrtoul(taint_str, 16, &panic_on_taint))
719		return -EINVAL;
720
721	/* make sure panic_on_taint doesn't hold out-of-range TAINT flags */
722	panic_on_taint &= TAINT_FLAGS_MAX;
723
724	if (!panic_on_taint)
725		return -EINVAL;
726
727	if (s && !strcmp(s, "nousertaint"))
728		panic_on_taint_nousertaint = true;
729
730	pr_info("panic_on_taint: bitmask=0x%lx nousertaint_mode=%sabled\n",
731		panic_on_taint, panic_on_taint_nousertaint ? "en" : "dis");
732
733	return 0;
734}
735early_param("panic_on_taint", panic_on_taint_setup);