Loading...
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_mount.h"
25#include "xfs_da_format.h"
26#include "xfs_da_btree.h"
27#include "xfs_inode.h"
28#include "xfs_trans.h"
29#include "xfs_inode_item.h"
30#include "xfs_bmap.h"
31#include "xfs_bmap_util.h"
32#include "xfs_error.h"
33#include "xfs_dir2.h"
34#include "xfs_dir2_priv.h"
35#include "xfs_ioctl.h"
36#include "xfs_trace.h"
37#include "xfs_log.h"
38#include "xfs_icache.h"
39#include "xfs_pnfs.h"
40#include "xfs_iomap.h"
41#include "xfs_reflink.h"
42
43#include <linux/dcache.h>
44#include <linux/falloc.h>
45#include <linux/pagevec.h>
46#include <linux/backing-dev.h>
47
48static const struct vm_operations_struct xfs_file_vm_ops;
49
50/*
51 * Clear the specified ranges to zero through either the pagecache or DAX.
52 * Holes and unwritten extents will be left as-is as they already are zeroed.
53 */
54int
55xfs_zero_range(
56 struct xfs_inode *ip,
57 xfs_off_t pos,
58 xfs_off_t count,
59 bool *did_zero)
60{
61 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
62}
63
64int
65xfs_update_prealloc_flags(
66 struct xfs_inode *ip,
67 enum xfs_prealloc_flags flags)
68{
69 struct xfs_trans *tp;
70 int error;
71
72 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
73 0, 0, 0, &tp);
74 if (error)
75 return error;
76
77 xfs_ilock(ip, XFS_ILOCK_EXCL);
78 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
79
80 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
81 VFS_I(ip)->i_mode &= ~S_ISUID;
82 if (VFS_I(ip)->i_mode & S_IXGRP)
83 VFS_I(ip)->i_mode &= ~S_ISGID;
84 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
85 }
86
87 if (flags & XFS_PREALLOC_SET)
88 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
89 if (flags & XFS_PREALLOC_CLEAR)
90 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
91
92 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
93 if (flags & XFS_PREALLOC_SYNC)
94 xfs_trans_set_sync(tp);
95 return xfs_trans_commit(tp);
96}
97
98/*
99 * Fsync operations on directories are much simpler than on regular files,
100 * as there is no file data to flush, and thus also no need for explicit
101 * cache flush operations, and there are no non-transaction metadata updates
102 * on directories either.
103 */
104STATIC int
105xfs_dir_fsync(
106 struct file *file,
107 loff_t start,
108 loff_t end,
109 int datasync)
110{
111 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
112 struct xfs_mount *mp = ip->i_mount;
113 xfs_lsn_t lsn = 0;
114
115 trace_xfs_dir_fsync(ip);
116
117 xfs_ilock(ip, XFS_ILOCK_SHARED);
118 if (xfs_ipincount(ip))
119 lsn = ip->i_itemp->ili_last_lsn;
120 xfs_iunlock(ip, XFS_ILOCK_SHARED);
121
122 if (!lsn)
123 return 0;
124 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
125}
126
127STATIC int
128xfs_file_fsync(
129 struct file *file,
130 loff_t start,
131 loff_t end,
132 int datasync)
133{
134 struct inode *inode = file->f_mapping->host;
135 struct xfs_inode *ip = XFS_I(inode);
136 struct xfs_mount *mp = ip->i_mount;
137 int error = 0;
138 int log_flushed = 0;
139 xfs_lsn_t lsn = 0;
140
141 trace_xfs_file_fsync(ip);
142
143 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
144 if (error)
145 return error;
146
147 if (XFS_FORCED_SHUTDOWN(mp))
148 return -EIO;
149
150 xfs_iflags_clear(ip, XFS_ITRUNCATED);
151
152 /*
153 * If we have an RT and/or log subvolume we need to make sure to flush
154 * the write cache the device used for file data first. This is to
155 * ensure newly written file data make it to disk before logging the new
156 * inode size in case of an extending write.
157 */
158 if (XFS_IS_REALTIME_INODE(ip))
159 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
160 else if (mp->m_logdev_targp != mp->m_ddev_targp)
161 xfs_blkdev_issue_flush(mp->m_ddev_targp);
162
163 /*
164 * All metadata updates are logged, which means that we just have to
165 * flush the log up to the latest LSN that touched the inode. If we have
166 * concurrent fsync/fdatasync() calls, we need them to all block on the
167 * log force before we clear the ili_fsync_fields field. This ensures
168 * that we don't get a racing sync operation that does not wait for the
169 * metadata to hit the journal before returning. If we race with
170 * clearing the ili_fsync_fields, then all that will happen is the log
171 * force will do nothing as the lsn will already be on disk. We can't
172 * race with setting ili_fsync_fields because that is done under
173 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
174 * until after the ili_fsync_fields is cleared.
175 */
176 xfs_ilock(ip, XFS_ILOCK_SHARED);
177 if (xfs_ipincount(ip)) {
178 if (!datasync ||
179 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
180 lsn = ip->i_itemp->ili_last_lsn;
181 }
182
183 if (lsn) {
184 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
185 ip->i_itemp->ili_fsync_fields = 0;
186 }
187 xfs_iunlock(ip, XFS_ILOCK_SHARED);
188
189 /*
190 * If we only have a single device, and the log force about was
191 * a no-op we might have to flush the data device cache here.
192 * This can only happen for fdatasync/O_DSYNC if we were overwriting
193 * an already allocated file and thus do not have any metadata to
194 * commit.
195 */
196 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
197 mp->m_logdev_targp == mp->m_ddev_targp)
198 xfs_blkdev_issue_flush(mp->m_ddev_targp);
199
200 return error;
201}
202
203STATIC ssize_t
204xfs_file_dio_aio_read(
205 struct kiocb *iocb,
206 struct iov_iter *to)
207{
208 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
209 size_t count = iov_iter_count(to);
210 ssize_t ret;
211
212 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
213
214 if (!count)
215 return 0; /* skip atime */
216
217 file_accessed(iocb->ki_filp);
218
219 xfs_ilock(ip, XFS_IOLOCK_SHARED);
220 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
221 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
222
223 return ret;
224}
225
226static noinline ssize_t
227xfs_file_dax_read(
228 struct kiocb *iocb,
229 struct iov_iter *to)
230{
231 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
232 size_t count = iov_iter_count(to);
233 ssize_t ret = 0;
234
235 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
236
237 if (!count)
238 return 0; /* skip atime */
239
240 xfs_ilock(ip, XFS_IOLOCK_SHARED);
241 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
242 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
243
244 file_accessed(iocb->ki_filp);
245 return ret;
246}
247
248STATIC ssize_t
249xfs_file_buffered_aio_read(
250 struct kiocb *iocb,
251 struct iov_iter *to)
252{
253 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
254 ssize_t ret;
255
256 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
257
258 xfs_ilock(ip, XFS_IOLOCK_SHARED);
259 ret = generic_file_read_iter(iocb, to);
260 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
261
262 return ret;
263}
264
265STATIC ssize_t
266xfs_file_read_iter(
267 struct kiocb *iocb,
268 struct iov_iter *to)
269{
270 struct inode *inode = file_inode(iocb->ki_filp);
271 struct xfs_mount *mp = XFS_I(inode)->i_mount;
272 ssize_t ret = 0;
273
274 XFS_STATS_INC(mp, xs_read_calls);
275
276 if (XFS_FORCED_SHUTDOWN(mp))
277 return -EIO;
278
279 if (IS_DAX(inode))
280 ret = xfs_file_dax_read(iocb, to);
281 else if (iocb->ki_flags & IOCB_DIRECT)
282 ret = xfs_file_dio_aio_read(iocb, to);
283 else
284 ret = xfs_file_buffered_aio_read(iocb, to);
285
286 if (ret > 0)
287 XFS_STATS_ADD(mp, xs_read_bytes, ret);
288 return ret;
289}
290
291/*
292 * Zero any on disk space between the current EOF and the new, larger EOF.
293 *
294 * This handles the normal case of zeroing the remainder of the last block in
295 * the file and the unusual case of zeroing blocks out beyond the size of the
296 * file. This second case only happens with fixed size extents and when the
297 * system crashes before the inode size was updated but after blocks were
298 * allocated.
299 *
300 * Expects the iolock to be held exclusive, and will take the ilock internally.
301 */
302int /* error (positive) */
303xfs_zero_eof(
304 struct xfs_inode *ip,
305 xfs_off_t offset, /* starting I/O offset */
306 xfs_fsize_t isize, /* current inode size */
307 bool *did_zeroing)
308{
309 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
310 ASSERT(offset > isize);
311
312 trace_xfs_zero_eof(ip, isize, offset - isize);
313 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
314}
315
316/*
317 * Common pre-write limit and setup checks.
318 *
319 * Called with the iolocked held either shared and exclusive according to
320 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
321 * if called for a direct write beyond i_size.
322 */
323STATIC ssize_t
324xfs_file_aio_write_checks(
325 struct kiocb *iocb,
326 struct iov_iter *from,
327 int *iolock)
328{
329 struct file *file = iocb->ki_filp;
330 struct inode *inode = file->f_mapping->host;
331 struct xfs_inode *ip = XFS_I(inode);
332 ssize_t error = 0;
333 size_t count = iov_iter_count(from);
334 bool drained_dio = false;
335
336restart:
337 error = generic_write_checks(iocb, from);
338 if (error <= 0)
339 return error;
340
341 error = xfs_break_layouts(inode, iolock);
342 if (error)
343 return error;
344
345 /*
346 * For changing security info in file_remove_privs() we need i_rwsem
347 * exclusively.
348 */
349 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
350 xfs_iunlock(ip, *iolock);
351 *iolock = XFS_IOLOCK_EXCL;
352 xfs_ilock(ip, *iolock);
353 goto restart;
354 }
355 /*
356 * If the offset is beyond the size of the file, we need to zero any
357 * blocks that fall between the existing EOF and the start of this
358 * write. If zeroing is needed and we are currently holding the
359 * iolock shared, we need to update it to exclusive which implies
360 * having to redo all checks before.
361 *
362 * We need to serialise against EOF updates that occur in IO
363 * completions here. We want to make sure that nobody is changing the
364 * size while we do this check until we have placed an IO barrier (i.e.
365 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
366 * The spinlock effectively forms a memory barrier once we have the
367 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
368 * and hence be able to correctly determine if we need to run zeroing.
369 */
370 spin_lock(&ip->i_flags_lock);
371 if (iocb->ki_pos > i_size_read(inode)) {
372 bool zero = false;
373
374 spin_unlock(&ip->i_flags_lock);
375 if (!drained_dio) {
376 if (*iolock == XFS_IOLOCK_SHARED) {
377 xfs_iunlock(ip, *iolock);
378 *iolock = XFS_IOLOCK_EXCL;
379 xfs_ilock(ip, *iolock);
380 iov_iter_reexpand(from, count);
381 }
382 /*
383 * We now have an IO submission barrier in place, but
384 * AIO can do EOF updates during IO completion and hence
385 * we now need to wait for all of them to drain. Non-AIO
386 * DIO will have drained before we are given the
387 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
388 * no-op.
389 */
390 inode_dio_wait(inode);
391 drained_dio = true;
392 goto restart;
393 }
394 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
395 if (error)
396 return error;
397 } else
398 spin_unlock(&ip->i_flags_lock);
399
400 /*
401 * Updating the timestamps will grab the ilock again from
402 * xfs_fs_dirty_inode, so we have to call it after dropping the
403 * lock above. Eventually we should look into a way to avoid
404 * the pointless lock roundtrip.
405 */
406 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
407 error = file_update_time(file);
408 if (error)
409 return error;
410 }
411
412 /*
413 * If we're writing the file then make sure to clear the setuid and
414 * setgid bits if the process is not being run by root. This keeps
415 * people from modifying setuid and setgid binaries.
416 */
417 if (!IS_NOSEC(inode))
418 return file_remove_privs(file);
419 return 0;
420}
421
422static int
423xfs_dio_write_end_io(
424 struct kiocb *iocb,
425 ssize_t size,
426 unsigned flags)
427{
428 struct inode *inode = file_inode(iocb->ki_filp);
429 struct xfs_inode *ip = XFS_I(inode);
430 loff_t offset = iocb->ki_pos;
431 bool update_size = false;
432 int error = 0;
433
434 trace_xfs_end_io_direct_write(ip, offset, size);
435
436 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
437 return -EIO;
438
439 if (size <= 0)
440 return size;
441
442 /*
443 * We need to update the in-core inode size here so that we don't end up
444 * with the on-disk inode size being outside the in-core inode size. We
445 * have no other method of updating EOF for AIO, so always do it here
446 * if necessary.
447 *
448 * We need to lock the test/set EOF update as we can be racing with
449 * other IO completions here to update the EOF. Failing to serialise
450 * here can result in EOF moving backwards and Bad Things Happen when
451 * that occurs.
452 */
453 spin_lock(&ip->i_flags_lock);
454 if (offset + size > i_size_read(inode)) {
455 i_size_write(inode, offset + size);
456 update_size = true;
457 }
458 spin_unlock(&ip->i_flags_lock);
459
460 if (flags & IOMAP_DIO_COW) {
461 error = xfs_reflink_end_cow(ip, offset, size);
462 if (error)
463 return error;
464 }
465
466 if (flags & IOMAP_DIO_UNWRITTEN)
467 error = xfs_iomap_write_unwritten(ip, offset, size);
468 else if (update_size)
469 error = xfs_setfilesize(ip, offset, size);
470
471 return error;
472}
473
474/*
475 * xfs_file_dio_aio_write - handle direct IO writes
476 *
477 * Lock the inode appropriately to prepare for and issue a direct IO write.
478 * By separating it from the buffered write path we remove all the tricky to
479 * follow locking changes and looping.
480 *
481 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
482 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
483 * pages are flushed out.
484 *
485 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
486 * allowing them to be done in parallel with reads and other direct IO writes.
487 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
488 * needs to do sub-block zeroing and that requires serialisation against other
489 * direct IOs to the same block. In this case we need to serialise the
490 * submission of the unaligned IOs so that we don't get racing block zeroing in
491 * the dio layer. To avoid the problem with aio, we also need to wait for
492 * outstanding IOs to complete so that unwritten extent conversion is completed
493 * before we try to map the overlapping block. This is currently implemented by
494 * hitting it with a big hammer (i.e. inode_dio_wait()).
495 *
496 * Returns with locks held indicated by @iolock and errors indicated by
497 * negative return values.
498 */
499STATIC ssize_t
500xfs_file_dio_aio_write(
501 struct kiocb *iocb,
502 struct iov_iter *from)
503{
504 struct file *file = iocb->ki_filp;
505 struct address_space *mapping = file->f_mapping;
506 struct inode *inode = mapping->host;
507 struct xfs_inode *ip = XFS_I(inode);
508 struct xfs_mount *mp = ip->i_mount;
509 ssize_t ret = 0;
510 int unaligned_io = 0;
511 int iolock;
512 size_t count = iov_iter_count(from);
513 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
514 mp->m_rtdev_targp : mp->m_ddev_targp;
515
516 /* DIO must be aligned to device logical sector size */
517 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
518 return -EINVAL;
519
520 /*
521 * Don't take the exclusive iolock here unless the I/O is unaligned to
522 * the file system block size. We don't need to consider the EOF
523 * extension case here because xfs_file_aio_write_checks() will relock
524 * the inode as necessary for EOF zeroing cases and fill out the new
525 * inode size as appropriate.
526 */
527 if ((iocb->ki_pos & mp->m_blockmask) ||
528 ((iocb->ki_pos + count) & mp->m_blockmask)) {
529 unaligned_io = 1;
530
531 /*
532 * We can't properly handle unaligned direct I/O to reflink
533 * files yet, as we can't unshare a partial block.
534 */
535 if (xfs_is_reflink_inode(ip)) {
536 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
537 return -EREMCHG;
538 }
539 iolock = XFS_IOLOCK_EXCL;
540 } else {
541 iolock = XFS_IOLOCK_SHARED;
542 }
543
544 xfs_ilock(ip, iolock);
545
546 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
547 if (ret)
548 goto out;
549 count = iov_iter_count(from);
550
551 /*
552 * If we are doing unaligned IO, wait for all other IO to drain,
553 * otherwise demote the lock if we had to take the exclusive lock
554 * for other reasons in xfs_file_aio_write_checks.
555 */
556 if (unaligned_io)
557 inode_dio_wait(inode);
558 else if (iolock == XFS_IOLOCK_EXCL) {
559 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
560 iolock = XFS_IOLOCK_SHARED;
561 }
562
563 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
564
565 /* If this is a block-aligned directio CoW, remap immediately. */
566 if (xfs_is_reflink_inode(ip) && !unaligned_io) {
567 ret = xfs_reflink_allocate_cow_range(ip, iocb->ki_pos, count);
568 if (ret)
569 goto out;
570 }
571
572 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
573out:
574 xfs_iunlock(ip, iolock);
575
576 /*
577 * No fallback to buffered IO on errors for XFS, direct IO will either
578 * complete fully or fail.
579 */
580 ASSERT(ret < 0 || ret == count);
581 return ret;
582}
583
584static noinline ssize_t
585xfs_file_dax_write(
586 struct kiocb *iocb,
587 struct iov_iter *from)
588{
589 struct inode *inode = iocb->ki_filp->f_mapping->host;
590 struct xfs_inode *ip = XFS_I(inode);
591 int iolock = XFS_IOLOCK_EXCL;
592 ssize_t ret, error = 0;
593 size_t count;
594 loff_t pos;
595
596 xfs_ilock(ip, iolock);
597 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
598 if (ret)
599 goto out;
600
601 pos = iocb->ki_pos;
602 count = iov_iter_count(from);
603
604 trace_xfs_file_dax_write(ip, count, pos);
605 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
606 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
607 i_size_write(inode, iocb->ki_pos);
608 error = xfs_setfilesize(ip, pos, ret);
609 }
610out:
611 xfs_iunlock(ip, iolock);
612 return error ? error : ret;
613}
614
615STATIC ssize_t
616xfs_file_buffered_aio_write(
617 struct kiocb *iocb,
618 struct iov_iter *from)
619{
620 struct file *file = iocb->ki_filp;
621 struct address_space *mapping = file->f_mapping;
622 struct inode *inode = mapping->host;
623 struct xfs_inode *ip = XFS_I(inode);
624 ssize_t ret;
625 int enospc = 0;
626 int iolock;
627
628write_retry:
629 iolock = XFS_IOLOCK_EXCL;
630 xfs_ilock(ip, iolock);
631
632 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
633 if (ret)
634 goto out;
635
636 /* We can write back this queue in page reclaim */
637 current->backing_dev_info = inode_to_bdi(inode);
638
639 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
640 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
641 if (likely(ret >= 0))
642 iocb->ki_pos += ret;
643
644 /*
645 * If we hit a space limit, try to free up some lingering preallocated
646 * space before returning an error. In the case of ENOSPC, first try to
647 * write back all dirty inodes to free up some of the excess reserved
648 * metadata space. This reduces the chances that the eofblocks scan
649 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
650 * also behaves as a filter to prevent too many eofblocks scans from
651 * running at the same time.
652 */
653 if (ret == -EDQUOT && !enospc) {
654 xfs_iunlock(ip, iolock);
655 enospc = xfs_inode_free_quota_eofblocks(ip);
656 if (enospc)
657 goto write_retry;
658 enospc = xfs_inode_free_quota_cowblocks(ip);
659 if (enospc)
660 goto write_retry;
661 iolock = 0;
662 } else if (ret == -ENOSPC && !enospc) {
663 struct xfs_eofblocks eofb = {0};
664
665 enospc = 1;
666 xfs_flush_inodes(ip->i_mount);
667
668 xfs_iunlock(ip, iolock);
669 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
670 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
671 goto write_retry;
672 }
673
674 current->backing_dev_info = NULL;
675out:
676 if (iolock)
677 xfs_iunlock(ip, iolock);
678 return ret;
679}
680
681STATIC ssize_t
682xfs_file_write_iter(
683 struct kiocb *iocb,
684 struct iov_iter *from)
685{
686 struct file *file = iocb->ki_filp;
687 struct address_space *mapping = file->f_mapping;
688 struct inode *inode = mapping->host;
689 struct xfs_inode *ip = XFS_I(inode);
690 ssize_t ret;
691 size_t ocount = iov_iter_count(from);
692
693 XFS_STATS_INC(ip->i_mount, xs_write_calls);
694
695 if (ocount == 0)
696 return 0;
697
698 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
699 return -EIO;
700
701 if (IS_DAX(inode))
702 ret = xfs_file_dax_write(iocb, from);
703 else if (iocb->ki_flags & IOCB_DIRECT) {
704 /*
705 * Allow a directio write to fall back to a buffered
706 * write *only* in the case that we're doing a reflink
707 * CoW. In all other directio scenarios we do not
708 * allow an operation to fall back to buffered mode.
709 */
710 ret = xfs_file_dio_aio_write(iocb, from);
711 if (ret == -EREMCHG)
712 goto buffered;
713 } else {
714buffered:
715 ret = xfs_file_buffered_aio_write(iocb, from);
716 }
717
718 if (ret > 0) {
719 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
720
721 /* Handle various SYNC-type writes */
722 ret = generic_write_sync(iocb, ret);
723 }
724 return ret;
725}
726
727#define XFS_FALLOC_FL_SUPPORTED \
728 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
729 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
730 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
731
732STATIC long
733xfs_file_fallocate(
734 struct file *file,
735 int mode,
736 loff_t offset,
737 loff_t len)
738{
739 struct inode *inode = file_inode(file);
740 struct xfs_inode *ip = XFS_I(inode);
741 long error;
742 enum xfs_prealloc_flags flags = 0;
743 uint iolock = XFS_IOLOCK_EXCL;
744 loff_t new_size = 0;
745 bool do_file_insert = 0;
746
747 if (!S_ISREG(inode->i_mode))
748 return -EINVAL;
749 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
750 return -EOPNOTSUPP;
751
752 xfs_ilock(ip, iolock);
753 error = xfs_break_layouts(inode, &iolock);
754 if (error)
755 goto out_unlock;
756
757 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
758 iolock |= XFS_MMAPLOCK_EXCL;
759
760 if (mode & FALLOC_FL_PUNCH_HOLE) {
761 error = xfs_free_file_space(ip, offset, len);
762 if (error)
763 goto out_unlock;
764 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
765 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
766
767 if (offset & blksize_mask || len & blksize_mask) {
768 error = -EINVAL;
769 goto out_unlock;
770 }
771
772 /*
773 * There is no need to overlap collapse range with EOF,
774 * in which case it is effectively a truncate operation
775 */
776 if (offset + len >= i_size_read(inode)) {
777 error = -EINVAL;
778 goto out_unlock;
779 }
780
781 new_size = i_size_read(inode) - len;
782
783 error = xfs_collapse_file_space(ip, offset, len);
784 if (error)
785 goto out_unlock;
786 } else if (mode & FALLOC_FL_INSERT_RANGE) {
787 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
788
789 new_size = i_size_read(inode) + len;
790 if (offset & blksize_mask || len & blksize_mask) {
791 error = -EINVAL;
792 goto out_unlock;
793 }
794
795 /* check the new inode size does not wrap through zero */
796 if (new_size > inode->i_sb->s_maxbytes) {
797 error = -EFBIG;
798 goto out_unlock;
799 }
800
801 /* Offset should be less than i_size */
802 if (offset >= i_size_read(inode)) {
803 error = -EINVAL;
804 goto out_unlock;
805 }
806 do_file_insert = 1;
807 } else {
808 flags |= XFS_PREALLOC_SET;
809
810 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
811 offset + len > i_size_read(inode)) {
812 new_size = offset + len;
813 error = inode_newsize_ok(inode, new_size);
814 if (error)
815 goto out_unlock;
816 }
817
818 if (mode & FALLOC_FL_ZERO_RANGE)
819 error = xfs_zero_file_space(ip, offset, len);
820 else {
821 if (mode & FALLOC_FL_UNSHARE_RANGE) {
822 error = xfs_reflink_unshare(ip, offset, len);
823 if (error)
824 goto out_unlock;
825 }
826 error = xfs_alloc_file_space(ip, offset, len,
827 XFS_BMAPI_PREALLOC);
828 }
829 if (error)
830 goto out_unlock;
831 }
832
833 if (file->f_flags & O_DSYNC)
834 flags |= XFS_PREALLOC_SYNC;
835
836 error = xfs_update_prealloc_flags(ip, flags);
837 if (error)
838 goto out_unlock;
839
840 /* Change file size if needed */
841 if (new_size) {
842 struct iattr iattr;
843
844 iattr.ia_valid = ATTR_SIZE;
845 iattr.ia_size = new_size;
846 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
847 if (error)
848 goto out_unlock;
849 }
850
851 /*
852 * Perform hole insertion now that the file size has been
853 * updated so that if we crash during the operation we don't
854 * leave shifted extents past EOF and hence losing access to
855 * the data that is contained within them.
856 */
857 if (do_file_insert)
858 error = xfs_insert_file_space(ip, offset, len);
859
860out_unlock:
861 xfs_iunlock(ip, iolock);
862 return error;
863}
864
865STATIC int
866xfs_file_clone_range(
867 struct file *file_in,
868 loff_t pos_in,
869 struct file *file_out,
870 loff_t pos_out,
871 u64 len)
872{
873 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
874 len, false);
875}
876
877STATIC ssize_t
878xfs_file_dedupe_range(
879 struct file *src_file,
880 u64 loff,
881 u64 len,
882 struct file *dst_file,
883 u64 dst_loff)
884{
885 int error;
886
887 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
888 len, true);
889 if (error)
890 return error;
891 return len;
892}
893
894STATIC int
895xfs_file_open(
896 struct inode *inode,
897 struct file *file)
898{
899 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
900 return -EFBIG;
901 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
902 return -EIO;
903 return 0;
904}
905
906STATIC int
907xfs_dir_open(
908 struct inode *inode,
909 struct file *file)
910{
911 struct xfs_inode *ip = XFS_I(inode);
912 int mode;
913 int error;
914
915 error = xfs_file_open(inode, file);
916 if (error)
917 return error;
918
919 /*
920 * If there are any blocks, read-ahead block 0 as we're almost
921 * certain to have the next operation be a read there.
922 */
923 mode = xfs_ilock_data_map_shared(ip);
924 if (ip->i_d.di_nextents > 0)
925 error = xfs_dir3_data_readahead(ip, 0, -1);
926 xfs_iunlock(ip, mode);
927 return error;
928}
929
930STATIC int
931xfs_file_release(
932 struct inode *inode,
933 struct file *filp)
934{
935 return xfs_release(XFS_I(inode));
936}
937
938STATIC int
939xfs_file_readdir(
940 struct file *file,
941 struct dir_context *ctx)
942{
943 struct inode *inode = file_inode(file);
944 xfs_inode_t *ip = XFS_I(inode);
945 size_t bufsize;
946
947 /*
948 * The Linux API doesn't pass down the total size of the buffer
949 * we read into down to the filesystem. With the filldir concept
950 * it's not needed for correct information, but the XFS dir2 leaf
951 * code wants an estimate of the buffer size to calculate it's
952 * readahead window and size the buffers used for mapping to
953 * physical blocks.
954 *
955 * Try to give it an estimate that's good enough, maybe at some
956 * point we can change the ->readdir prototype to include the
957 * buffer size. For now we use the current glibc buffer size.
958 */
959 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
960
961 return xfs_readdir(ip, ctx, bufsize);
962}
963
964/*
965 * This type is designed to indicate the type of offset we would like
966 * to search from page cache for xfs_seek_hole_data().
967 */
968enum {
969 HOLE_OFF = 0,
970 DATA_OFF,
971};
972
973/*
974 * Lookup the desired type of offset from the given page.
975 *
976 * On success, return true and the offset argument will point to the
977 * start of the region that was found. Otherwise this function will
978 * return false and keep the offset argument unchanged.
979 */
980STATIC bool
981xfs_lookup_buffer_offset(
982 struct page *page,
983 loff_t *offset,
984 unsigned int type)
985{
986 loff_t lastoff = page_offset(page);
987 bool found = false;
988 struct buffer_head *bh, *head;
989
990 bh = head = page_buffers(page);
991 do {
992 /*
993 * Unwritten extents that have data in the page
994 * cache covering them can be identified by the
995 * BH_Unwritten state flag. Pages with multiple
996 * buffers might have a mix of holes, data and
997 * unwritten extents - any buffer with valid
998 * data in it should have BH_Uptodate flag set
999 * on it.
1000 */
1001 if (buffer_unwritten(bh) ||
1002 buffer_uptodate(bh)) {
1003 if (type == DATA_OFF)
1004 found = true;
1005 } else {
1006 if (type == HOLE_OFF)
1007 found = true;
1008 }
1009
1010 if (found) {
1011 *offset = lastoff;
1012 break;
1013 }
1014 lastoff += bh->b_size;
1015 } while ((bh = bh->b_this_page) != head);
1016
1017 return found;
1018}
1019
1020/*
1021 * This routine is called to find out and return a data or hole offset
1022 * from the page cache for unwritten extents according to the desired
1023 * type for xfs_seek_hole_data().
1024 *
1025 * The argument offset is used to tell where we start to search from the
1026 * page cache. Map is used to figure out the end points of the range to
1027 * lookup pages.
1028 *
1029 * Return true if the desired type of offset was found, and the argument
1030 * offset is filled with that address. Otherwise, return false and keep
1031 * offset unchanged.
1032 */
1033STATIC bool
1034xfs_find_get_desired_pgoff(
1035 struct inode *inode,
1036 struct xfs_bmbt_irec *map,
1037 unsigned int type,
1038 loff_t *offset)
1039{
1040 struct xfs_inode *ip = XFS_I(inode);
1041 struct xfs_mount *mp = ip->i_mount;
1042 struct pagevec pvec;
1043 pgoff_t index;
1044 pgoff_t end;
1045 loff_t endoff;
1046 loff_t startoff = *offset;
1047 loff_t lastoff = startoff;
1048 bool found = false;
1049
1050 pagevec_init(&pvec, 0);
1051
1052 index = startoff >> PAGE_SHIFT;
1053 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1054 end = endoff >> PAGE_SHIFT;
1055 do {
1056 int want;
1057 unsigned nr_pages;
1058 unsigned int i;
1059
1060 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1061 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1062 want);
1063 /*
1064 * No page mapped into given range. If we are searching holes
1065 * and if this is the first time we got into the loop, it means
1066 * that the given offset is landed in a hole, return it.
1067 *
1068 * If we have already stepped through some block buffers to find
1069 * holes but they all contains data. In this case, the last
1070 * offset is already updated and pointed to the end of the last
1071 * mapped page, if it does not reach the endpoint to search,
1072 * that means there should be a hole between them.
1073 */
1074 if (nr_pages == 0) {
1075 /* Data search found nothing */
1076 if (type == DATA_OFF)
1077 break;
1078
1079 ASSERT(type == HOLE_OFF);
1080 if (lastoff == startoff || lastoff < endoff) {
1081 found = true;
1082 *offset = lastoff;
1083 }
1084 break;
1085 }
1086
1087 /*
1088 * At lease we found one page. If this is the first time we
1089 * step into the loop, and if the first page index offset is
1090 * greater than the given search offset, a hole was found.
1091 */
1092 if (type == HOLE_OFF && lastoff == startoff &&
1093 lastoff < page_offset(pvec.pages[0])) {
1094 found = true;
1095 break;
1096 }
1097
1098 for (i = 0; i < nr_pages; i++) {
1099 struct page *page = pvec.pages[i];
1100 loff_t b_offset;
1101
1102 /*
1103 * At this point, the page may be truncated or
1104 * invalidated (changing page->mapping to NULL),
1105 * or even swizzled back from swapper_space to tmpfs
1106 * file mapping. However, page->index will not change
1107 * because we have a reference on the page.
1108 *
1109 * Searching done if the page index is out of range.
1110 * If the current offset is not reaches the end of
1111 * the specified search range, there should be a hole
1112 * between them.
1113 */
1114 if (page->index > end) {
1115 if (type == HOLE_OFF && lastoff < endoff) {
1116 *offset = lastoff;
1117 found = true;
1118 }
1119 goto out;
1120 }
1121
1122 lock_page(page);
1123 /*
1124 * Page truncated or invalidated(page->mapping == NULL).
1125 * We can freely skip it and proceed to check the next
1126 * page.
1127 */
1128 if (unlikely(page->mapping != inode->i_mapping)) {
1129 unlock_page(page);
1130 continue;
1131 }
1132
1133 if (!page_has_buffers(page)) {
1134 unlock_page(page);
1135 continue;
1136 }
1137
1138 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1139 if (found) {
1140 /*
1141 * The found offset may be less than the start
1142 * point to search if this is the first time to
1143 * come here.
1144 */
1145 *offset = max_t(loff_t, startoff, b_offset);
1146 unlock_page(page);
1147 goto out;
1148 }
1149
1150 /*
1151 * We either searching data but nothing was found, or
1152 * searching hole but found a data buffer. In either
1153 * case, probably the next page contains the desired
1154 * things, update the last offset to it so.
1155 */
1156 lastoff = page_offset(page) + PAGE_SIZE;
1157 unlock_page(page);
1158 }
1159
1160 /*
1161 * The number of returned pages less than our desired, search
1162 * done. In this case, nothing was found for searching data,
1163 * but we found a hole behind the last offset.
1164 */
1165 if (nr_pages < want) {
1166 if (type == HOLE_OFF) {
1167 *offset = lastoff;
1168 found = true;
1169 }
1170 break;
1171 }
1172
1173 index = pvec.pages[i - 1]->index + 1;
1174 pagevec_release(&pvec);
1175 } while (index <= end);
1176
1177out:
1178 pagevec_release(&pvec);
1179 return found;
1180}
1181
1182/*
1183 * caller must lock inode with xfs_ilock_data_map_shared,
1184 * can we craft an appropriate ASSERT?
1185 *
1186 * end is because the VFS-level lseek interface is defined such that any
1187 * offset past i_size shall return -ENXIO, but we use this for quota code
1188 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1189 */
1190loff_t
1191__xfs_seek_hole_data(
1192 struct inode *inode,
1193 loff_t start,
1194 loff_t end,
1195 int whence)
1196{
1197 struct xfs_inode *ip = XFS_I(inode);
1198 struct xfs_mount *mp = ip->i_mount;
1199 loff_t uninitialized_var(offset);
1200 xfs_fileoff_t fsbno;
1201 xfs_filblks_t lastbno;
1202 int error;
1203
1204 if (start >= end) {
1205 error = -ENXIO;
1206 goto out_error;
1207 }
1208
1209 /*
1210 * Try to read extents from the first block indicated
1211 * by fsbno to the end block of the file.
1212 */
1213 fsbno = XFS_B_TO_FSBT(mp, start);
1214 lastbno = XFS_B_TO_FSB(mp, end);
1215
1216 for (;;) {
1217 struct xfs_bmbt_irec map[2];
1218 int nmap = 2;
1219 unsigned int i;
1220
1221 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1222 XFS_BMAPI_ENTIRE);
1223 if (error)
1224 goto out_error;
1225
1226 /* No extents at given offset, must be beyond EOF */
1227 if (nmap == 0) {
1228 error = -ENXIO;
1229 goto out_error;
1230 }
1231
1232 for (i = 0; i < nmap; i++) {
1233 offset = max_t(loff_t, start,
1234 XFS_FSB_TO_B(mp, map[i].br_startoff));
1235
1236 /* Landed in the hole we wanted? */
1237 if (whence == SEEK_HOLE &&
1238 map[i].br_startblock == HOLESTARTBLOCK)
1239 goto out;
1240
1241 /* Landed in the data extent we wanted? */
1242 if (whence == SEEK_DATA &&
1243 (map[i].br_startblock == DELAYSTARTBLOCK ||
1244 (map[i].br_state == XFS_EXT_NORM &&
1245 !isnullstartblock(map[i].br_startblock))))
1246 goto out;
1247
1248 /*
1249 * Landed in an unwritten extent, try to search
1250 * for hole or data from page cache.
1251 */
1252 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1253 if (xfs_find_get_desired_pgoff(inode, &map[i],
1254 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1255 &offset))
1256 goto out;
1257 }
1258 }
1259
1260 /*
1261 * We only received one extent out of the two requested. This
1262 * means we've hit EOF and didn't find what we are looking for.
1263 */
1264 if (nmap == 1) {
1265 /*
1266 * If we were looking for a hole, set offset to
1267 * the end of the file (i.e., there is an implicit
1268 * hole at the end of any file).
1269 */
1270 if (whence == SEEK_HOLE) {
1271 offset = end;
1272 break;
1273 }
1274 /*
1275 * If we were looking for data, it's nowhere to be found
1276 */
1277 ASSERT(whence == SEEK_DATA);
1278 error = -ENXIO;
1279 goto out_error;
1280 }
1281
1282 ASSERT(i > 1);
1283
1284 /*
1285 * Nothing was found, proceed to the next round of search
1286 * if the next reading offset is not at or beyond EOF.
1287 */
1288 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1289 start = XFS_FSB_TO_B(mp, fsbno);
1290 if (start >= end) {
1291 if (whence == SEEK_HOLE) {
1292 offset = end;
1293 break;
1294 }
1295 ASSERT(whence == SEEK_DATA);
1296 error = -ENXIO;
1297 goto out_error;
1298 }
1299 }
1300
1301out:
1302 /*
1303 * If at this point we have found the hole we wanted, the returned
1304 * offset may be bigger than the file size as it may be aligned to
1305 * page boundary for unwritten extents. We need to deal with this
1306 * situation in particular.
1307 */
1308 if (whence == SEEK_HOLE)
1309 offset = min_t(loff_t, offset, end);
1310
1311 return offset;
1312
1313out_error:
1314 return error;
1315}
1316
1317STATIC loff_t
1318xfs_seek_hole_data(
1319 struct file *file,
1320 loff_t start,
1321 int whence)
1322{
1323 struct inode *inode = file->f_mapping->host;
1324 struct xfs_inode *ip = XFS_I(inode);
1325 struct xfs_mount *mp = ip->i_mount;
1326 uint lock;
1327 loff_t offset, end;
1328 int error = 0;
1329
1330 if (XFS_FORCED_SHUTDOWN(mp))
1331 return -EIO;
1332
1333 lock = xfs_ilock_data_map_shared(ip);
1334
1335 end = i_size_read(inode);
1336 offset = __xfs_seek_hole_data(inode, start, end, whence);
1337 if (offset < 0) {
1338 error = offset;
1339 goto out_unlock;
1340 }
1341
1342 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1343
1344out_unlock:
1345 xfs_iunlock(ip, lock);
1346
1347 if (error)
1348 return error;
1349 return offset;
1350}
1351
1352STATIC loff_t
1353xfs_file_llseek(
1354 struct file *file,
1355 loff_t offset,
1356 int whence)
1357{
1358 switch (whence) {
1359 case SEEK_END:
1360 case SEEK_CUR:
1361 case SEEK_SET:
1362 return generic_file_llseek(file, offset, whence);
1363 case SEEK_HOLE:
1364 case SEEK_DATA:
1365 return xfs_seek_hole_data(file, offset, whence);
1366 default:
1367 return -EINVAL;
1368 }
1369}
1370
1371/*
1372 * Locking for serialisation of IO during page faults. This results in a lock
1373 * ordering of:
1374 *
1375 * mmap_sem (MM)
1376 * sb_start_pagefault(vfs, freeze)
1377 * i_mmaplock (XFS - truncate serialisation)
1378 * page_lock (MM)
1379 * i_lock (XFS - extent map serialisation)
1380 */
1381
1382/*
1383 * mmap()d file has taken write protection fault and is being made writable. We
1384 * can set the page state up correctly for a writable page, which means we can
1385 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1386 * mapping.
1387 */
1388STATIC int
1389xfs_filemap_page_mkwrite(
1390 struct vm_area_struct *vma,
1391 struct vm_fault *vmf)
1392{
1393 struct inode *inode = file_inode(vma->vm_file);
1394 int ret;
1395
1396 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1397
1398 sb_start_pagefault(inode->i_sb);
1399 file_update_time(vma->vm_file);
1400 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1401
1402 if (IS_DAX(inode)) {
1403 ret = dax_iomap_fault(vma, vmf, &xfs_iomap_ops);
1404 } else {
1405 ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
1406 ret = block_page_mkwrite_return(ret);
1407 }
1408
1409 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1410 sb_end_pagefault(inode->i_sb);
1411
1412 return ret;
1413}
1414
1415STATIC int
1416xfs_filemap_fault(
1417 struct vm_area_struct *vma,
1418 struct vm_fault *vmf)
1419{
1420 struct inode *inode = file_inode(vma->vm_file);
1421 int ret;
1422
1423 trace_xfs_filemap_fault(XFS_I(inode));
1424
1425 /* DAX can shortcut the normal fault path on write faults! */
1426 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1427 return xfs_filemap_page_mkwrite(vma, vmf);
1428
1429 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1430 if (IS_DAX(inode))
1431 ret = dax_iomap_fault(vma, vmf, &xfs_iomap_ops);
1432 else
1433 ret = filemap_fault(vma, vmf);
1434 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1435
1436 return ret;
1437}
1438
1439/*
1440 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1441 * both read and write faults. Hence we need to handle both cases. There is no
1442 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1443 * handle both cases here. @flags carries the information on the type of fault
1444 * occuring.
1445 */
1446STATIC int
1447xfs_filemap_pmd_fault(
1448 struct vm_area_struct *vma,
1449 unsigned long addr,
1450 pmd_t *pmd,
1451 unsigned int flags)
1452{
1453 struct inode *inode = file_inode(vma->vm_file);
1454 struct xfs_inode *ip = XFS_I(inode);
1455 int ret;
1456
1457 if (!IS_DAX(inode))
1458 return VM_FAULT_FALLBACK;
1459
1460 trace_xfs_filemap_pmd_fault(ip);
1461
1462 if (flags & FAULT_FLAG_WRITE) {
1463 sb_start_pagefault(inode->i_sb);
1464 file_update_time(vma->vm_file);
1465 }
1466
1467 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1468 ret = dax_iomap_pmd_fault(vma, addr, pmd, flags, &xfs_iomap_ops);
1469 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1470
1471 if (flags & FAULT_FLAG_WRITE)
1472 sb_end_pagefault(inode->i_sb);
1473
1474 return ret;
1475}
1476
1477/*
1478 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1479 * updates on write faults. In reality, it's need to serialise against
1480 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1481 * to ensure we serialise the fault barrier in place.
1482 */
1483static int
1484xfs_filemap_pfn_mkwrite(
1485 struct vm_area_struct *vma,
1486 struct vm_fault *vmf)
1487{
1488
1489 struct inode *inode = file_inode(vma->vm_file);
1490 struct xfs_inode *ip = XFS_I(inode);
1491 int ret = VM_FAULT_NOPAGE;
1492 loff_t size;
1493
1494 trace_xfs_filemap_pfn_mkwrite(ip);
1495
1496 sb_start_pagefault(inode->i_sb);
1497 file_update_time(vma->vm_file);
1498
1499 /* check if the faulting page hasn't raced with truncate */
1500 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1501 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1502 if (vmf->pgoff >= size)
1503 ret = VM_FAULT_SIGBUS;
1504 else if (IS_DAX(inode))
1505 ret = dax_pfn_mkwrite(vma, vmf);
1506 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1507 sb_end_pagefault(inode->i_sb);
1508 return ret;
1509
1510}
1511
1512static const struct vm_operations_struct xfs_file_vm_ops = {
1513 .fault = xfs_filemap_fault,
1514 .pmd_fault = xfs_filemap_pmd_fault,
1515 .map_pages = filemap_map_pages,
1516 .page_mkwrite = xfs_filemap_page_mkwrite,
1517 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1518};
1519
1520STATIC int
1521xfs_file_mmap(
1522 struct file *filp,
1523 struct vm_area_struct *vma)
1524{
1525 file_accessed(filp);
1526 vma->vm_ops = &xfs_file_vm_ops;
1527 if (IS_DAX(file_inode(filp)))
1528 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1529 return 0;
1530}
1531
1532const struct file_operations xfs_file_operations = {
1533 .llseek = xfs_file_llseek,
1534 .read_iter = xfs_file_read_iter,
1535 .write_iter = xfs_file_write_iter,
1536 .splice_read = generic_file_splice_read,
1537 .splice_write = iter_file_splice_write,
1538 .unlocked_ioctl = xfs_file_ioctl,
1539#ifdef CONFIG_COMPAT
1540 .compat_ioctl = xfs_file_compat_ioctl,
1541#endif
1542 .mmap = xfs_file_mmap,
1543 .open = xfs_file_open,
1544 .release = xfs_file_release,
1545 .fsync = xfs_file_fsync,
1546 .get_unmapped_area = thp_get_unmapped_area,
1547 .fallocate = xfs_file_fallocate,
1548 .clone_file_range = xfs_file_clone_range,
1549 .dedupe_file_range = xfs_file_dedupe_range,
1550};
1551
1552const struct file_operations xfs_dir_file_operations = {
1553 .open = xfs_dir_open,
1554 .read = generic_read_dir,
1555 .iterate_shared = xfs_file_readdir,
1556 .llseek = generic_file_llseek,
1557 .unlocked_ioctl = xfs_file_ioctl,
1558#ifdef CONFIG_COMPAT
1559 .compat_ioctl = xfs_file_compat_ioctl,
1560#endif
1561 .fsync = xfs_dir_fsync,
1562};
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_inode_item.h"
16#include "xfs_bmap.h"
17#include "xfs_bmap_util.h"
18#include "xfs_dir2.h"
19#include "xfs_dir2_priv.h"
20#include "xfs_ioctl.h"
21#include "xfs_trace.h"
22#include "xfs_log.h"
23#include "xfs_icache.h"
24#include "xfs_pnfs.h"
25#include "xfs_iomap.h"
26#include "xfs_reflink.h"
27
28#include <linux/falloc.h>
29#include <linux/backing-dev.h>
30#include <linux/mman.h>
31#include <linux/fadvise.h>
32
33static const struct vm_operations_struct xfs_file_vm_ops;
34
35int
36xfs_update_prealloc_flags(
37 struct xfs_inode *ip,
38 enum xfs_prealloc_flags flags)
39{
40 struct xfs_trans *tp;
41 int error;
42
43 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
44 0, 0, 0, &tp);
45 if (error)
46 return error;
47
48 xfs_ilock(ip, XFS_ILOCK_EXCL);
49 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
50
51 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
52 VFS_I(ip)->i_mode &= ~S_ISUID;
53 if (VFS_I(ip)->i_mode & S_IXGRP)
54 VFS_I(ip)->i_mode &= ~S_ISGID;
55 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
56 }
57
58 if (flags & XFS_PREALLOC_SET)
59 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
60 if (flags & XFS_PREALLOC_CLEAR)
61 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
62
63 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
64 if (flags & XFS_PREALLOC_SYNC)
65 xfs_trans_set_sync(tp);
66 return xfs_trans_commit(tp);
67}
68
69/*
70 * Fsync operations on directories are much simpler than on regular files,
71 * as there is no file data to flush, and thus also no need for explicit
72 * cache flush operations, and there are no non-transaction metadata updates
73 * on directories either.
74 */
75STATIC int
76xfs_dir_fsync(
77 struct file *file,
78 loff_t start,
79 loff_t end,
80 int datasync)
81{
82 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
83
84 trace_xfs_dir_fsync(ip);
85 return xfs_log_force_inode(ip);
86}
87
88STATIC int
89xfs_file_fsync(
90 struct file *file,
91 loff_t start,
92 loff_t end,
93 int datasync)
94{
95 struct inode *inode = file->f_mapping->host;
96 struct xfs_inode *ip = XFS_I(inode);
97 struct xfs_inode_log_item *iip = ip->i_itemp;
98 struct xfs_mount *mp = ip->i_mount;
99 int error = 0;
100 int log_flushed = 0;
101 xfs_lsn_t lsn = 0;
102
103 trace_xfs_file_fsync(ip);
104
105 error = file_write_and_wait_range(file, start, end);
106 if (error)
107 return error;
108
109 if (XFS_FORCED_SHUTDOWN(mp))
110 return -EIO;
111
112 xfs_iflags_clear(ip, XFS_ITRUNCATED);
113
114 /*
115 * If we have an RT and/or log subvolume we need to make sure to flush
116 * the write cache the device used for file data first. This is to
117 * ensure newly written file data make it to disk before logging the new
118 * inode size in case of an extending write.
119 */
120 if (XFS_IS_REALTIME_INODE(ip))
121 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
122 else if (mp->m_logdev_targp != mp->m_ddev_targp)
123 xfs_blkdev_issue_flush(mp->m_ddev_targp);
124
125 /*
126 * All metadata updates are logged, which means that we just have to
127 * flush the log up to the latest LSN that touched the inode. If we have
128 * concurrent fsync/fdatasync() calls, we need them to all block on the
129 * log force before we clear the ili_fsync_fields field. This ensures
130 * that we don't get a racing sync operation that does not wait for the
131 * metadata to hit the journal before returning. If we race with
132 * clearing the ili_fsync_fields, then all that will happen is the log
133 * force will do nothing as the lsn will already be on disk. We can't
134 * race with setting ili_fsync_fields because that is done under
135 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
136 * until after the ili_fsync_fields is cleared.
137 */
138 xfs_ilock(ip, XFS_ILOCK_SHARED);
139 if (xfs_ipincount(ip)) {
140 if (!datasync ||
141 (iip->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
142 lsn = iip->ili_last_lsn;
143 }
144
145 if (lsn) {
146 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
147 spin_lock(&iip->ili_lock);
148 iip->ili_fsync_fields = 0;
149 spin_unlock(&iip->ili_lock);
150 }
151 xfs_iunlock(ip, XFS_ILOCK_SHARED);
152
153 /*
154 * If we only have a single device, and the log force about was
155 * a no-op we might have to flush the data device cache here.
156 * This can only happen for fdatasync/O_DSYNC if we were overwriting
157 * an already allocated file and thus do not have any metadata to
158 * commit.
159 */
160 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
161 mp->m_logdev_targp == mp->m_ddev_targp)
162 xfs_blkdev_issue_flush(mp->m_ddev_targp);
163
164 return error;
165}
166
167STATIC ssize_t
168xfs_file_dio_aio_read(
169 struct kiocb *iocb,
170 struct iov_iter *to)
171{
172 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
173 size_t count = iov_iter_count(to);
174 ssize_t ret;
175
176 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
177
178 if (!count)
179 return 0; /* skip atime */
180
181 file_accessed(iocb->ki_filp);
182
183 if (iocb->ki_flags & IOCB_NOWAIT) {
184 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
185 return -EAGAIN;
186 } else {
187 xfs_ilock(ip, XFS_IOLOCK_SHARED);
188 }
189 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
190 is_sync_kiocb(iocb));
191 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
192
193 return ret;
194}
195
196static noinline ssize_t
197xfs_file_dax_read(
198 struct kiocb *iocb,
199 struct iov_iter *to)
200{
201 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
202 size_t count = iov_iter_count(to);
203 ssize_t ret = 0;
204
205 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
206
207 if (!count)
208 return 0; /* skip atime */
209
210 if (iocb->ki_flags & IOCB_NOWAIT) {
211 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
212 return -EAGAIN;
213 } else {
214 xfs_ilock(ip, XFS_IOLOCK_SHARED);
215 }
216
217 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
218 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
219
220 file_accessed(iocb->ki_filp);
221 return ret;
222}
223
224STATIC ssize_t
225xfs_file_buffered_aio_read(
226 struct kiocb *iocb,
227 struct iov_iter *to)
228{
229 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
230 ssize_t ret;
231
232 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
233
234 if (iocb->ki_flags & IOCB_NOWAIT) {
235 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
236 return -EAGAIN;
237 } else {
238 xfs_ilock(ip, XFS_IOLOCK_SHARED);
239 }
240 ret = generic_file_read_iter(iocb, to);
241 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
242
243 return ret;
244}
245
246STATIC ssize_t
247xfs_file_read_iter(
248 struct kiocb *iocb,
249 struct iov_iter *to)
250{
251 struct inode *inode = file_inode(iocb->ki_filp);
252 struct xfs_mount *mp = XFS_I(inode)->i_mount;
253 ssize_t ret = 0;
254
255 XFS_STATS_INC(mp, xs_read_calls);
256
257 if (XFS_FORCED_SHUTDOWN(mp))
258 return -EIO;
259
260 if (IS_DAX(inode))
261 ret = xfs_file_dax_read(iocb, to);
262 else if (iocb->ki_flags & IOCB_DIRECT)
263 ret = xfs_file_dio_aio_read(iocb, to);
264 else
265 ret = xfs_file_buffered_aio_read(iocb, to);
266
267 if (ret > 0)
268 XFS_STATS_ADD(mp, xs_read_bytes, ret);
269 return ret;
270}
271
272/*
273 * Common pre-write limit and setup checks.
274 *
275 * Called with the iolocked held either shared and exclusive according to
276 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
277 * if called for a direct write beyond i_size.
278 */
279STATIC ssize_t
280xfs_file_aio_write_checks(
281 struct kiocb *iocb,
282 struct iov_iter *from,
283 int *iolock)
284{
285 struct file *file = iocb->ki_filp;
286 struct inode *inode = file->f_mapping->host;
287 struct xfs_inode *ip = XFS_I(inode);
288 ssize_t error = 0;
289 size_t count = iov_iter_count(from);
290 bool drained_dio = false;
291 loff_t isize;
292
293restart:
294 error = generic_write_checks(iocb, from);
295 if (error <= 0)
296 return error;
297
298 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
299 if (error)
300 return error;
301
302 /*
303 * For changing security info in file_remove_privs() we need i_rwsem
304 * exclusively.
305 */
306 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
307 xfs_iunlock(ip, *iolock);
308 *iolock = XFS_IOLOCK_EXCL;
309 xfs_ilock(ip, *iolock);
310 goto restart;
311 }
312 /*
313 * If the offset is beyond the size of the file, we need to zero any
314 * blocks that fall between the existing EOF and the start of this
315 * write. If zeroing is needed and we are currently holding the
316 * iolock shared, we need to update it to exclusive which implies
317 * having to redo all checks before.
318 *
319 * We need to serialise against EOF updates that occur in IO
320 * completions here. We want to make sure that nobody is changing the
321 * size while we do this check until we have placed an IO barrier (i.e.
322 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
323 * The spinlock effectively forms a memory barrier once we have the
324 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
325 * and hence be able to correctly determine if we need to run zeroing.
326 */
327 spin_lock(&ip->i_flags_lock);
328 isize = i_size_read(inode);
329 if (iocb->ki_pos > isize) {
330 spin_unlock(&ip->i_flags_lock);
331 if (!drained_dio) {
332 if (*iolock == XFS_IOLOCK_SHARED) {
333 xfs_iunlock(ip, *iolock);
334 *iolock = XFS_IOLOCK_EXCL;
335 xfs_ilock(ip, *iolock);
336 iov_iter_reexpand(from, count);
337 }
338 /*
339 * We now have an IO submission barrier in place, but
340 * AIO can do EOF updates during IO completion and hence
341 * we now need to wait for all of them to drain. Non-AIO
342 * DIO will have drained before we are given the
343 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
344 * no-op.
345 */
346 inode_dio_wait(inode);
347 drained_dio = true;
348 goto restart;
349 }
350
351 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
352 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
353 NULL, &xfs_buffered_write_iomap_ops);
354 if (error)
355 return error;
356 } else
357 spin_unlock(&ip->i_flags_lock);
358
359 /*
360 * Updating the timestamps will grab the ilock again from
361 * xfs_fs_dirty_inode, so we have to call it after dropping the
362 * lock above. Eventually we should look into a way to avoid
363 * the pointless lock roundtrip.
364 */
365 return file_modified(file);
366}
367
368static int
369xfs_dio_write_end_io(
370 struct kiocb *iocb,
371 ssize_t size,
372 int error,
373 unsigned flags)
374{
375 struct inode *inode = file_inode(iocb->ki_filp);
376 struct xfs_inode *ip = XFS_I(inode);
377 loff_t offset = iocb->ki_pos;
378 unsigned int nofs_flag;
379
380 trace_xfs_end_io_direct_write(ip, offset, size);
381
382 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
383 return -EIO;
384
385 if (error)
386 return error;
387 if (!size)
388 return 0;
389
390 /*
391 * Capture amount written on completion as we can't reliably account
392 * for it on submission.
393 */
394 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
395
396 /*
397 * We can allocate memory here while doing writeback on behalf of
398 * memory reclaim. To avoid memory allocation deadlocks set the
399 * task-wide nofs context for the following operations.
400 */
401 nofs_flag = memalloc_nofs_save();
402
403 if (flags & IOMAP_DIO_COW) {
404 error = xfs_reflink_end_cow(ip, offset, size);
405 if (error)
406 goto out;
407 }
408
409 /*
410 * Unwritten conversion updates the in-core isize after extent
411 * conversion but before updating the on-disk size. Updating isize any
412 * earlier allows a racing dio read to find unwritten extents before
413 * they are converted.
414 */
415 if (flags & IOMAP_DIO_UNWRITTEN) {
416 error = xfs_iomap_write_unwritten(ip, offset, size, true);
417 goto out;
418 }
419
420 /*
421 * We need to update the in-core inode size here so that we don't end up
422 * with the on-disk inode size being outside the in-core inode size. We
423 * have no other method of updating EOF for AIO, so always do it here
424 * if necessary.
425 *
426 * We need to lock the test/set EOF update as we can be racing with
427 * other IO completions here to update the EOF. Failing to serialise
428 * here can result in EOF moving backwards and Bad Things Happen when
429 * that occurs.
430 */
431 spin_lock(&ip->i_flags_lock);
432 if (offset + size > i_size_read(inode)) {
433 i_size_write(inode, offset + size);
434 spin_unlock(&ip->i_flags_lock);
435 error = xfs_setfilesize(ip, offset, size);
436 } else {
437 spin_unlock(&ip->i_flags_lock);
438 }
439
440out:
441 memalloc_nofs_restore(nofs_flag);
442 return error;
443}
444
445static const struct iomap_dio_ops xfs_dio_write_ops = {
446 .end_io = xfs_dio_write_end_io,
447};
448
449/*
450 * xfs_file_dio_aio_write - handle direct IO writes
451 *
452 * Lock the inode appropriately to prepare for and issue a direct IO write.
453 * By separating it from the buffered write path we remove all the tricky to
454 * follow locking changes and looping.
455 *
456 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
457 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
458 * pages are flushed out.
459 *
460 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
461 * allowing them to be done in parallel with reads and other direct IO writes.
462 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
463 * needs to do sub-block zeroing and that requires serialisation against other
464 * direct IOs to the same block. In this case we need to serialise the
465 * submission of the unaligned IOs so that we don't get racing block zeroing in
466 * the dio layer. To avoid the problem with aio, we also need to wait for
467 * outstanding IOs to complete so that unwritten extent conversion is completed
468 * before we try to map the overlapping block. This is currently implemented by
469 * hitting it with a big hammer (i.e. inode_dio_wait()).
470 *
471 * Returns with locks held indicated by @iolock and errors indicated by
472 * negative return values.
473 */
474STATIC ssize_t
475xfs_file_dio_aio_write(
476 struct kiocb *iocb,
477 struct iov_iter *from)
478{
479 struct file *file = iocb->ki_filp;
480 struct address_space *mapping = file->f_mapping;
481 struct inode *inode = mapping->host;
482 struct xfs_inode *ip = XFS_I(inode);
483 struct xfs_mount *mp = ip->i_mount;
484 ssize_t ret = 0;
485 int unaligned_io = 0;
486 int iolock;
487 size_t count = iov_iter_count(from);
488 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
489
490 /* DIO must be aligned to device logical sector size */
491 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
492 return -EINVAL;
493
494 /*
495 * Don't take the exclusive iolock here unless the I/O is unaligned to
496 * the file system block size. We don't need to consider the EOF
497 * extension case here because xfs_file_aio_write_checks() will relock
498 * the inode as necessary for EOF zeroing cases and fill out the new
499 * inode size as appropriate.
500 */
501 if ((iocb->ki_pos & mp->m_blockmask) ||
502 ((iocb->ki_pos + count) & mp->m_blockmask)) {
503 unaligned_io = 1;
504
505 /*
506 * We can't properly handle unaligned direct I/O to reflink
507 * files yet, as we can't unshare a partial block.
508 */
509 if (xfs_is_cow_inode(ip)) {
510 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
511 return -ENOTBLK;
512 }
513 iolock = XFS_IOLOCK_EXCL;
514 } else {
515 iolock = XFS_IOLOCK_SHARED;
516 }
517
518 if (iocb->ki_flags & IOCB_NOWAIT) {
519 /* unaligned dio always waits, bail */
520 if (unaligned_io)
521 return -EAGAIN;
522 if (!xfs_ilock_nowait(ip, iolock))
523 return -EAGAIN;
524 } else {
525 xfs_ilock(ip, iolock);
526 }
527
528 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
529 if (ret)
530 goto out;
531 count = iov_iter_count(from);
532
533 /*
534 * If we are doing unaligned IO, we can't allow any other overlapping IO
535 * in-flight at the same time or we risk data corruption. Wait for all
536 * other IO to drain before we submit. If the IO is aligned, demote the
537 * iolock if we had to take the exclusive lock in
538 * xfs_file_aio_write_checks() for other reasons.
539 */
540 if (unaligned_io) {
541 inode_dio_wait(inode);
542 } else if (iolock == XFS_IOLOCK_EXCL) {
543 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
544 iolock = XFS_IOLOCK_SHARED;
545 }
546
547 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
548 /*
549 * If unaligned, this is the only IO in-flight. Wait on it before we
550 * release the iolock to prevent subsequent overlapping IO.
551 */
552 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
553 &xfs_dio_write_ops,
554 is_sync_kiocb(iocb) || unaligned_io);
555out:
556 xfs_iunlock(ip, iolock);
557
558 /*
559 * No fallback to buffered IO after short writes for XFS, direct I/O
560 * will either complete fully or return an error.
561 */
562 ASSERT(ret < 0 || ret == count);
563 return ret;
564}
565
566static noinline ssize_t
567xfs_file_dax_write(
568 struct kiocb *iocb,
569 struct iov_iter *from)
570{
571 struct inode *inode = iocb->ki_filp->f_mapping->host;
572 struct xfs_inode *ip = XFS_I(inode);
573 int iolock = XFS_IOLOCK_EXCL;
574 ssize_t ret, error = 0;
575 size_t count;
576 loff_t pos;
577
578 if (iocb->ki_flags & IOCB_NOWAIT) {
579 if (!xfs_ilock_nowait(ip, iolock))
580 return -EAGAIN;
581 } else {
582 xfs_ilock(ip, iolock);
583 }
584
585 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
586 if (ret)
587 goto out;
588
589 pos = iocb->ki_pos;
590 count = iov_iter_count(from);
591
592 trace_xfs_file_dax_write(ip, count, pos);
593 ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
594 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
595 i_size_write(inode, iocb->ki_pos);
596 error = xfs_setfilesize(ip, pos, ret);
597 }
598out:
599 xfs_iunlock(ip, iolock);
600 if (error)
601 return error;
602
603 if (ret > 0) {
604 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
605
606 /* Handle various SYNC-type writes */
607 ret = generic_write_sync(iocb, ret);
608 }
609 return ret;
610}
611
612STATIC ssize_t
613xfs_file_buffered_aio_write(
614 struct kiocb *iocb,
615 struct iov_iter *from)
616{
617 struct file *file = iocb->ki_filp;
618 struct address_space *mapping = file->f_mapping;
619 struct inode *inode = mapping->host;
620 struct xfs_inode *ip = XFS_I(inode);
621 ssize_t ret;
622 int enospc = 0;
623 int iolock;
624
625 if (iocb->ki_flags & IOCB_NOWAIT)
626 return -EOPNOTSUPP;
627
628write_retry:
629 iolock = XFS_IOLOCK_EXCL;
630 xfs_ilock(ip, iolock);
631
632 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
633 if (ret)
634 goto out;
635
636 /* We can write back this queue in page reclaim */
637 current->backing_dev_info = inode_to_bdi(inode);
638
639 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
640 ret = iomap_file_buffered_write(iocb, from,
641 &xfs_buffered_write_iomap_ops);
642 if (likely(ret >= 0))
643 iocb->ki_pos += ret;
644
645 /*
646 * If we hit a space limit, try to free up some lingering preallocated
647 * space before returning an error. In the case of ENOSPC, first try to
648 * write back all dirty inodes to free up some of the excess reserved
649 * metadata space. This reduces the chances that the eofblocks scan
650 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
651 * also behaves as a filter to prevent too many eofblocks scans from
652 * running at the same time.
653 */
654 if (ret == -EDQUOT && !enospc) {
655 xfs_iunlock(ip, iolock);
656 enospc = xfs_inode_free_quota_eofblocks(ip);
657 if (enospc)
658 goto write_retry;
659 enospc = xfs_inode_free_quota_cowblocks(ip);
660 if (enospc)
661 goto write_retry;
662 iolock = 0;
663 } else if (ret == -ENOSPC && !enospc) {
664 struct xfs_eofblocks eofb = {0};
665
666 enospc = 1;
667 xfs_flush_inodes(ip->i_mount);
668
669 xfs_iunlock(ip, iolock);
670 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
671 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
672 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
673 goto write_retry;
674 }
675
676 current->backing_dev_info = NULL;
677out:
678 if (iolock)
679 xfs_iunlock(ip, iolock);
680
681 if (ret > 0) {
682 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
683 /* Handle various SYNC-type writes */
684 ret = generic_write_sync(iocb, ret);
685 }
686 return ret;
687}
688
689STATIC ssize_t
690xfs_file_write_iter(
691 struct kiocb *iocb,
692 struct iov_iter *from)
693{
694 struct file *file = iocb->ki_filp;
695 struct address_space *mapping = file->f_mapping;
696 struct inode *inode = mapping->host;
697 struct xfs_inode *ip = XFS_I(inode);
698 ssize_t ret;
699 size_t ocount = iov_iter_count(from);
700
701 XFS_STATS_INC(ip->i_mount, xs_write_calls);
702
703 if (ocount == 0)
704 return 0;
705
706 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
707 return -EIO;
708
709 if (IS_DAX(inode))
710 return xfs_file_dax_write(iocb, from);
711
712 if (iocb->ki_flags & IOCB_DIRECT) {
713 /*
714 * Allow a directio write to fall back to a buffered
715 * write *only* in the case that we're doing a reflink
716 * CoW. In all other directio scenarios we do not
717 * allow an operation to fall back to buffered mode.
718 */
719 ret = xfs_file_dio_aio_write(iocb, from);
720 if (ret != -ENOTBLK)
721 return ret;
722 }
723
724 return xfs_file_buffered_aio_write(iocb, from);
725}
726
727static void
728xfs_wait_dax_page(
729 struct inode *inode)
730{
731 struct xfs_inode *ip = XFS_I(inode);
732
733 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
734 schedule();
735 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
736}
737
738static int
739xfs_break_dax_layouts(
740 struct inode *inode,
741 bool *retry)
742{
743 struct page *page;
744
745 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
746
747 page = dax_layout_busy_page(inode->i_mapping);
748 if (!page)
749 return 0;
750
751 *retry = true;
752 return ___wait_var_event(&page->_refcount,
753 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
754 0, 0, xfs_wait_dax_page(inode));
755}
756
757int
758xfs_break_layouts(
759 struct inode *inode,
760 uint *iolock,
761 enum layout_break_reason reason)
762{
763 bool retry;
764 int error;
765
766 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
767
768 do {
769 retry = false;
770 switch (reason) {
771 case BREAK_UNMAP:
772 error = xfs_break_dax_layouts(inode, &retry);
773 if (error || retry)
774 break;
775 /* fall through */
776 case BREAK_WRITE:
777 error = xfs_break_leased_layouts(inode, iolock, &retry);
778 break;
779 default:
780 WARN_ON_ONCE(1);
781 error = -EINVAL;
782 }
783 } while (error == 0 && retry);
784
785 return error;
786}
787
788#define XFS_FALLOC_FL_SUPPORTED \
789 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
790 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
791 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
792
793STATIC long
794xfs_file_fallocate(
795 struct file *file,
796 int mode,
797 loff_t offset,
798 loff_t len)
799{
800 struct inode *inode = file_inode(file);
801 struct xfs_inode *ip = XFS_I(inode);
802 long error;
803 enum xfs_prealloc_flags flags = 0;
804 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
805 loff_t new_size = 0;
806 bool do_file_insert = false;
807
808 if (!S_ISREG(inode->i_mode))
809 return -EINVAL;
810 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
811 return -EOPNOTSUPP;
812
813 xfs_ilock(ip, iolock);
814 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
815 if (error)
816 goto out_unlock;
817
818 /*
819 * Must wait for all AIO to complete before we continue as AIO can
820 * change the file size on completion without holding any locks we
821 * currently hold. We must do this first because AIO can update both
822 * the on disk and in memory inode sizes, and the operations that follow
823 * require the in-memory size to be fully up-to-date.
824 */
825 inode_dio_wait(inode);
826
827 /*
828 * Now AIO and DIO has drained we flush and (if necessary) invalidate
829 * the cached range over the first operation we are about to run.
830 *
831 * We care about zero and collapse here because they both run a hole
832 * punch over the range first. Because that can zero data, and the range
833 * of invalidation for the shift operations is much larger, we still do
834 * the required flush for collapse in xfs_prepare_shift().
835 *
836 * Insert has the same range requirements as collapse, and we extend the
837 * file first which can zero data. Hence insert has the same
838 * flush/invalidate requirements as collapse and so they are both
839 * handled at the right time by xfs_prepare_shift().
840 */
841 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
842 FALLOC_FL_COLLAPSE_RANGE)) {
843 error = xfs_flush_unmap_range(ip, offset, len);
844 if (error)
845 goto out_unlock;
846 }
847
848 if (mode & FALLOC_FL_PUNCH_HOLE) {
849 error = xfs_free_file_space(ip, offset, len);
850 if (error)
851 goto out_unlock;
852 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
853 unsigned int blksize_mask = i_blocksize(inode) - 1;
854
855 if (offset & blksize_mask || len & blksize_mask) {
856 error = -EINVAL;
857 goto out_unlock;
858 }
859
860 /*
861 * There is no need to overlap collapse range with EOF,
862 * in which case it is effectively a truncate operation
863 */
864 if (offset + len >= i_size_read(inode)) {
865 error = -EINVAL;
866 goto out_unlock;
867 }
868
869 new_size = i_size_read(inode) - len;
870
871 error = xfs_collapse_file_space(ip, offset, len);
872 if (error)
873 goto out_unlock;
874 } else if (mode & FALLOC_FL_INSERT_RANGE) {
875 unsigned int blksize_mask = i_blocksize(inode) - 1;
876 loff_t isize = i_size_read(inode);
877
878 if (offset & blksize_mask || len & blksize_mask) {
879 error = -EINVAL;
880 goto out_unlock;
881 }
882
883 /*
884 * New inode size must not exceed ->s_maxbytes, accounting for
885 * possible signed overflow.
886 */
887 if (inode->i_sb->s_maxbytes - isize < len) {
888 error = -EFBIG;
889 goto out_unlock;
890 }
891 new_size = isize + len;
892
893 /* Offset should be less than i_size */
894 if (offset >= isize) {
895 error = -EINVAL;
896 goto out_unlock;
897 }
898 do_file_insert = true;
899 } else {
900 flags |= XFS_PREALLOC_SET;
901
902 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
903 offset + len > i_size_read(inode)) {
904 new_size = offset + len;
905 error = inode_newsize_ok(inode, new_size);
906 if (error)
907 goto out_unlock;
908 }
909
910 if (mode & FALLOC_FL_ZERO_RANGE) {
911 /*
912 * Punch a hole and prealloc the range. We use a hole
913 * punch rather than unwritten extent conversion for two
914 * reasons:
915 *
916 * 1.) Hole punch handles partial block zeroing for us.
917 * 2.) If prealloc returns ENOSPC, the file range is
918 * still zero-valued by virtue of the hole punch.
919 */
920 unsigned int blksize = i_blocksize(inode);
921
922 trace_xfs_zero_file_space(ip);
923
924 error = xfs_free_file_space(ip, offset, len);
925 if (error)
926 goto out_unlock;
927
928 len = round_up(offset + len, blksize) -
929 round_down(offset, blksize);
930 offset = round_down(offset, blksize);
931 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
932 error = xfs_reflink_unshare(ip, offset, len);
933 if (error)
934 goto out_unlock;
935 } else {
936 /*
937 * If always_cow mode we can't use preallocations and
938 * thus should not create them.
939 */
940 if (xfs_is_always_cow_inode(ip)) {
941 error = -EOPNOTSUPP;
942 goto out_unlock;
943 }
944 }
945
946 if (!xfs_is_always_cow_inode(ip)) {
947 error = xfs_alloc_file_space(ip, offset, len,
948 XFS_BMAPI_PREALLOC);
949 if (error)
950 goto out_unlock;
951 }
952 }
953
954 if (file->f_flags & O_DSYNC)
955 flags |= XFS_PREALLOC_SYNC;
956
957 error = xfs_update_prealloc_flags(ip, flags);
958 if (error)
959 goto out_unlock;
960
961 /* Change file size if needed */
962 if (new_size) {
963 struct iattr iattr;
964
965 iattr.ia_valid = ATTR_SIZE;
966 iattr.ia_size = new_size;
967 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
968 if (error)
969 goto out_unlock;
970 }
971
972 /*
973 * Perform hole insertion now that the file size has been
974 * updated so that if we crash during the operation we don't
975 * leave shifted extents past EOF and hence losing access to
976 * the data that is contained within them.
977 */
978 if (do_file_insert)
979 error = xfs_insert_file_space(ip, offset, len);
980
981out_unlock:
982 xfs_iunlock(ip, iolock);
983 return error;
984}
985
986STATIC int
987xfs_file_fadvise(
988 struct file *file,
989 loff_t start,
990 loff_t end,
991 int advice)
992{
993 struct xfs_inode *ip = XFS_I(file_inode(file));
994 int ret;
995 int lockflags = 0;
996
997 /*
998 * Operations creating pages in page cache need protection from hole
999 * punching and similar ops
1000 */
1001 if (advice == POSIX_FADV_WILLNEED) {
1002 lockflags = XFS_IOLOCK_SHARED;
1003 xfs_ilock(ip, lockflags);
1004 }
1005 ret = generic_fadvise(file, start, end, advice);
1006 if (lockflags)
1007 xfs_iunlock(ip, lockflags);
1008 return ret;
1009}
1010
1011STATIC loff_t
1012xfs_file_remap_range(
1013 struct file *file_in,
1014 loff_t pos_in,
1015 struct file *file_out,
1016 loff_t pos_out,
1017 loff_t len,
1018 unsigned int remap_flags)
1019{
1020 struct inode *inode_in = file_inode(file_in);
1021 struct xfs_inode *src = XFS_I(inode_in);
1022 struct inode *inode_out = file_inode(file_out);
1023 struct xfs_inode *dest = XFS_I(inode_out);
1024 struct xfs_mount *mp = src->i_mount;
1025 loff_t remapped = 0;
1026 xfs_extlen_t cowextsize;
1027 int ret;
1028
1029 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1030 return -EINVAL;
1031
1032 if (!xfs_sb_version_hasreflink(&mp->m_sb))
1033 return -EOPNOTSUPP;
1034
1035 if (XFS_FORCED_SHUTDOWN(mp))
1036 return -EIO;
1037
1038 /* Prepare and then clone file data. */
1039 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1040 &len, remap_flags);
1041 if (ret || len == 0)
1042 return ret;
1043
1044 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1045
1046 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1047 &remapped);
1048 if (ret)
1049 goto out_unlock;
1050
1051 /*
1052 * Carry the cowextsize hint from src to dest if we're sharing the
1053 * entire source file to the entire destination file, the source file
1054 * has a cowextsize hint, and the destination file does not.
1055 */
1056 cowextsize = 0;
1057 if (pos_in == 0 && len == i_size_read(inode_in) &&
1058 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1059 pos_out == 0 && len >= i_size_read(inode_out) &&
1060 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1061 cowextsize = src->i_d.di_cowextsize;
1062
1063 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1064 remap_flags);
1065 if (ret)
1066 goto out_unlock;
1067
1068 if (mp->m_flags & XFS_MOUNT_WSYNC)
1069 xfs_log_force_inode(dest);
1070out_unlock:
1071 xfs_iunlock2_io_mmap(src, dest);
1072 if (ret)
1073 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1074 return remapped > 0 ? remapped : ret;
1075}
1076
1077STATIC int
1078xfs_file_open(
1079 struct inode *inode,
1080 struct file *file)
1081{
1082 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1083 return -EFBIG;
1084 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1085 return -EIO;
1086 file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1087 return 0;
1088}
1089
1090STATIC int
1091xfs_dir_open(
1092 struct inode *inode,
1093 struct file *file)
1094{
1095 struct xfs_inode *ip = XFS_I(inode);
1096 int mode;
1097 int error;
1098
1099 error = xfs_file_open(inode, file);
1100 if (error)
1101 return error;
1102
1103 /*
1104 * If there are any blocks, read-ahead block 0 as we're almost
1105 * certain to have the next operation be a read there.
1106 */
1107 mode = xfs_ilock_data_map_shared(ip);
1108 if (ip->i_df.if_nextents > 0)
1109 error = xfs_dir3_data_readahead(ip, 0, 0);
1110 xfs_iunlock(ip, mode);
1111 return error;
1112}
1113
1114STATIC int
1115xfs_file_release(
1116 struct inode *inode,
1117 struct file *filp)
1118{
1119 return xfs_release(XFS_I(inode));
1120}
1121
1122STATIC int
1123xfs_file_readdir(
1124 struct file *file,
1125 struct dir_context *ctx)
1126{
1127 struct inode *inode = file_inode(file);
1128 xfs_inode_t *ip = XFS_I(inode);
1129 size_t bufsize;
1130
1131 /*
1132 * The Linux API doesn't pass down the total size of the buffer
1133 * we read into down to the filesystem. With the filldir concept
1134 * it's not needed for correct information, but the XFS dir2 leaf
1135 * code wants an estimate of the buffer size to calculate it's
1136 * readahead window and size the buffers used for mapping to
1137 * physical blocks.
1138 *
1139 * Try to give it an estimate that's good enough, maybe at some
1140 * point we can change the ->readdir prototype to include the
1141 * buffer size. For now we use the current glibc buffer size.
1142 */
1143 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1144
1145 return xfs_readdir(NULL, ip, ctx, bufsize);
1146}
1147
1148STATIC loff_t
1149xfs_file_llseek(
1150 struct file *file,
1151 loff_t offset,
1152 int whence)
1153{
1154 struct inode *inode = file->f_mapping->host;
1155
1156 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1157 return -EIO;
1158
1159 switch (whence) {
1160 default:
1161 return generic_file_llseek(file, offset, whence);
1162 case SEEK_HOLE:
1163 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1164 break;
1165 case SEEK_DATA:
1166 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1167 break;
1168 }
1169
1170 if (offset < 0)
1171 return offset;
1172 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1173}
1174
1175/*
1176 * Locking for serialisation of IO during page faults. This results in a lock
1177 * ordering of:
1178 *
1179 * mmap_lock (MM)
1180 * sb_start_pagefault(vfs, freeze)
1181 * i_mmaplock (XFS - truncate serialisation)
1182 * page_lock (MM)
1183 * i_lock (XFS - extent map serialisation)
1184 */
1185static vm_fault_t
1186__xfs_filemap_fault(
1187 struct vm_fault *vmf,
1188 enum page_entry_size pe_size,
1189 bool write_fault)
1190{
1191 struct inode *inode = file_inode(vmf->vma->vm_file);
1192 struct xfs_inode *ip = XFS_I(inode);
1193 vm_fault_t ret;
1194
1195 trace_xfs_filemap_fault(ip, pe_size, write_fault);
1196
1197 if (write_fault) {
1198 sb_start_pagefault(inode->i_sb);
1199 file_update_time(vmf->vma->vm_file);
1200 }
1201
1202 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1203 if (IS_DAX(inode)) {
1204 pfn_t pfn;
1205
1206 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1207 (write_fault && !vmf->cow_page) ?
1208 &xfs_direct_write_iomap_ops :
1209 &xfs_read_iomap_ops);
1210 if (ret & VM_FAULT_NEEDDSYNC)
1211 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1212 } else {
1213 if (write_fault)
1214 ret = iomap_page_mkwrite(vmf,
1215 &xfs_buffered_write_iomap_ops);
1216 else
1217 ret = filemap_fault(vmf);
1218 }
1219 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1220
1221 if (write_fault)
1222 sb_end_pagefault(inode->i_sb);
1223 return ret;
1224}
1225
1226static inline bool
1227xfs_is_write_fault(
1228 struct vm_fault *vmf)
1229{
1230 return (vmf->flags & FAULT_FLAG_WRITE) &&
1231 (vmf->vma->vm_flags & VM_SHARED);
1232}
1233
1234static vm_fault_t
1235xfs_filemap_fault(
1236 struct vm_fault *vmf)
1237{
1238 /* DAX can shortcut the normal fault path on write faults! */
1239 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1240 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1241 xfs_is_write_fault(vmf));
1242}
1243
1244static vm_fault_t
1245xfs_filemap_huge_fault(
1246 struct vm_fault *vmf,
1247 enum page_entry_size pe_size)
1248{
1249 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1250 return VM_FAULT_FALLBACK;
1251
1252 /* DAX can shortcut the normal fault path on write faults! */
1253 return __xfs_filemap_fault(vmf, pe_size,
1254 xfs_is_write_fault(vmf));
1255}
1256
1257static vm_fault_t
1258xfs_filemap_page_mkwrite(
1259 struct vm_fault *vmf)
1260{
1261 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1262}
1263
1264/*
1265 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1266 * on write faults. In reality, it needs to serialise against truncate and
1267 * prepare memory for writing so handle is as standard write fault.
1268 */
1269static vm_fault_t
1270xfs_filemap_pfn_mkwrite(
1271 struct vm_fault *vmf)
1272{
1273
1274 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1275}
1276
1277static void
1278xfs_filemap_map_pages(
1279 struct vm_fault *vmf,
1280 pgoff_t start_pgoff,
1281 pgoff_t end_pgoff)
1282{
1283 struct inode *inode = file_inode(vmf->vma->vm_file);
1284
1285 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1286 filemap_map_pages(vmf, start_pgoff, end_pgoff);
1287 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1288}
1289
1290static const struct vm_operations_struct xfs_file_vm_ops = {
1291 .fault = xfs_filemap_fault,
1292 .huge_fault = xfs_filemap_huge_fault,
1293 .map_pages = xfs_filemap_map_pages,
1294 .page_mkwrite = xfs_filemap_page_mkwrite,
1295 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1296};
1297
1298STATIC int
1299xfs_file_mmap(
1300 struct file *file,
1301 struct vm_area_struct *vma)
1302{
1303 struct inode *inode = file_inode(file);
1304 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode));
1305
1306 /*
1307 * We don't support synchronous mappings for non-DAX files and
1308 * for DAX files if underneath dax_device is not synchronous.
1309 */
1310 if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1311 return -EOPNOTSUPP;
1312
1313 file_accessed(file);
1314 vma->vm_ops = &xfs_file_vm_ops;
1315 if (IS_DAX(inode))
1316 vma->vm_flags |= VM_HUGEPAGE;
1317 return 0;
1318}
1319
1320const struct file_operations xfs_file_operations = {
1321 .llseek = xfs_file_llseek,
1322 .read_iter = xfs_file_read_iter,
1323 .write_iter = xfs_file_write_iter,
1324 .splice_read = generic_file_splice_read,
1325 .splice_write = iter_file_splice_write,
1326 .iopoll = iomap_dio_iopoll,
1327 .unlocked_ioctl = xfs_file_ioctl,
1328#ifdef CONFIG_COMPAT
1329 .compat_ioctl = xfs_file_compat_ioctl,
1330#endif
1331 .mmap = xfs_file_mmap,
1332 .mmap_supported_flags = MAP_SYNC,
1333 .open = xfs_file_open,
1334 .release = xfs_file_release,
1335 .fsync = xfs_file_fsync,
1336 .get_unmapped_area = thp_get_unmapped_area,
1337 .fallocate = xfs_file_fallocate,
1338 .fadvise = xfs_file_fadvise,
1339 .remap_file_range = xfs_file_remap_range,
1340};
1341
1342const struct file_operations xfs_dir_file_operations = {
1343 .open = xfs_dir_open,
1344 .read = generic_read_dir,
1345 .iterate_shared = xfs_file_readdir,
1346 .llseek = generic_file_llseek,
1347 .unlocked_ioctl = xfs_file_ioctl,
1348#ifdef CONFIG_COMPAT
1349 .compat_ioctl = xfs_file_compat_ioctl,
1350#endif
1351 .fsync = xfs_dir_fsync,
1352};