Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  linux/fs/ext4/super.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Big-endian to little-endian byte-swapping/bitmaps by
  16 *        David S. Miller (davem@caip.rutgers.edu), 1995
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/string.h>
  21#include <linux/fs.h>
  22#include <linux/time.h>
  23#include <linux/vmalloc.h>
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/parser.h>
  29#include <linux/buffer_head.h>
  30#include <linux/exportfs.h>
  31#include <linux/vfs.h>
  32#include <linux/random.h>
  33#include <linux/mount.h>
  34#include <linux/namei.h>
  35#include <linux/quotaops.h>
  36#include <linux/seq_file.h>
  37#include <linux/ctype.h>
  38#include <linux/log2.h>
  39#include <linux/crc16.h>
 
  40#include <linux/cleancache.h>
  41#include <linux/uaccess.h>
  42
 
 
  43#include <linux/kthread.h>
  44#include <linux/freezer.h>
  45
  46#include "ext4.h"
  47#include "ext4_extents.h"	/* Needed for trace points definition */
  48#include "ext4_jbd2.h"
  49#include "xattr.h"
  50#include "acl.h"
  51#include "mballoc.h"
 
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/ext4.h>
  55
  56static struct ext4_lazy_init *ext4_li_info;
  57static struct mutex ext4_li_mtx;
  58static struct ratelimit_state ext4_mount_msg_ratelimit;
  59
  60static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
  61			     unsigned long journal_devnum);
  62static int ext4_show_options(struct seq_file *seq, struct dentry *root);
  63static int ext4_commit_super(struct super_block *sb, int sync);
  64static void ext4_mark_recovery_complete(struct super_block *sb,
  65					struct ext4_super_block *es);
  66static void ext4_clear_journal_err(struct super_block *sb,
  67				   struct ext4_super_block *es);
  68static int ext4_sync_fs(struct super_block *sb, int wait);
  69static int ext4_remount(struct super_block *sb, int *flags, char *data);
  70static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
  71static int ext4_unfreeze(struct super_block *sb);
  72static int ext4_freeze(struct super_block *sb);
  73static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
  74		       const char *dev_name, void *data);
  75static inline int ext2_feature_set_ok(struct super_block *sb);
  76static inline int ext3_feature_set_ok(struct super_block *sb);
  77static int ext4_feature_set_ok(struct super_block *sb, int readonly);
  78static void ext4_destroy_lazyinit_thread(void);
  79static void ext4_unregister_li_request(struct super_block *sb);
  80static void ext4_clear_request_list(void);
  81static struct inode *ext4_get_journal_inode(struct super_block *sb,
  82					    unsigned int journal_inum);
  83
  84/*
  85 * Lock ordering
  86 *
  87 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
  88 * i_mmap_rwsem (inode->i_mmap_rwsem)!
  89 *
  90 * page fault path:
  91 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
  92 *   page lock -> i_data_sem (rw)
  93 *
  94 * buffered write path:
  95 * sb_start_write -> i_mutex -> mmap_sem
  96 * sb_start_write -> i_mutex -> transaction start -> page lock ->
  97 *   i_data_sem (rw)
  98 *
  99 * truncate:
 100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
 101 *   i_mmap_rwsem (w) -> page lock
 102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
 103 *   transaction start -> i_data_sem (rw)
 104 *
 105 * direct IO:
 106 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
 107 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
 108 *   transaction start -> i_data_sem (rw)
 109 *
 110 * writepages:
 111 * transaction start -> page lock(s) -> i_data_sem (rw)
 112 */
 113
 114#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
 115static struct file_system_type ext2_fs_type = {
 116	.owner		= THIS_MODULE,
 117	.name		= "ext2",
 118	.mount		= ext4_mount,
 119	.kill_sb	= kill_block_super,
 120	.fs_flags	= FS_REQUIRES_DEV,
 121};
 122MODULE_ALIAS_FS("ext2");
 123MODULE_ALIAS("ext2");
 124#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
 125#else
 126#define IS_EXT2_SB(sb) (0)
 127#endif
 128
 129
 130static struct file_system_type ext3_fs_type = {
 131	.owner		= THIS_MODULE,
 132	.name		= "ext3",
 133	.mount		= ext4_mount,
 134	.kill_sb	= kill_block_super,
 135	.fs_flags	= FS_REQUIRES_DEV,
 136};
 137MODULE_ALIAS_FS("ext3");
 138MODULE_ALIAS("ext3");
 139#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
 140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141static int ext4_verify_csum_type(struct super_block *sb,
 142				 struct ext4_super_block *es)
 143{
 144	if (!ext4_has_feature_metadata_csum(sb))
 145		return 1;
 146
 147	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
 148}
 149
 150static __le32 ext4_superblock_csum(struct super_block *sb,
 151				   struct ext4_super_block *es)
 152{
 153	struct ext4_sb_info *sbi = EXT4_SB(sb);
 154	int offset = offsetof(struct ext4_super_block, s_checksum);
 155	__u32 csum;
 156
 157	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
 158
 159	return cpu_to_le32(csum);
 160}
 161
 162static int ext4_superblock_csum_verify(struct super_block *sb,
 163				       struct ext4_super_block *es)
 164{
 165	if (!ext4_has_metadata_csum(sb))
 166		return 1;
 167
 168	return es->s_checksum == ext4_superblock_csum(sb, es);
 169}
 170
 171void ext4_superblock_csum_set(struct super_block *sb)
 172{
 173	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 174
 175	if (!ext4_has_metadata_csum(sb))
 176		return;
 177
 178	es->s_checksum = ext4_superblock_csum(sb, es);
 179}
 180
 181void *ext4_kvmalloc(size_t size, gfp_t flags)
 182{
 183	void *ret;
 184
 185	ret = kmalloc(size, flags | __GFP_NOWARN);
 186	if (!ret)
 187		ret = __vmalloc(size, flags, PAGE_KERNEL);
 188	return ret;
 189}
 190
 191void *ext4_kvzalloc(size_t size, gfp_t flags)
 192{
 193	void *ret;
 194
 195	ret = kzalloc(size, flags | __GFP_NOWARN);
 196	if (!ret)
 197		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
 198	return ret;
 199}
 200
 201ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
 202			       struct ext4_group_desc *bg)
 203{
 204	return le32_to_cpu(bg->bg_block_bitmap_lo) |
 205		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 206		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
 207}
 208
 209ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
 210			       struct ext4_group_desc *bg)
 211{
 212	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
 213		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 214		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
 215}
 216
 217ext4_fsblk_t ext4_inode_table(struct super_block *sb,
 218			      struct ext4_group_desc *bg)
 219{
 220	return le32_to_cpu(bg->bg_inode_table_lo) |
 221		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 222		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
 223}
 224
 225__u32 ext4_free_group_clusters(struct super_block *sb,
 226			       struct ext4_group_desc *bg)
 227{
 228	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
 229		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 230		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
 231}
 232
 233__u32 ext4_free_inodes_count(struct super_block *sb,
 234			      struct ext4_group_desc *bg)
 235{
 236	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
 237		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 238		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
 239}
 240
 241__u32 ext4_used_dirs_count(struct super_block *sb,
 242			      struct ext4_group_desc *bg)
 243{
 244	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
 245		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 246		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
 247}
 248
 249__u32 ext4_itable_unused_count(struct super_block *sb,
 250			      struct ext4_group_desc *bg)
 251{
 252	return le16_to_cpu(bg->bg_itable_unused_lo) |
 253		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 254		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
 255}
 256
 257void ext4_block_bitmap_set(struct super_block *sb,
 258			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 259{
 260	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
 261	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 262		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
 263}
 264
 265void ext4_inode_bitmap_set(struct super_block *sb,
 266			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 267{
 268	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
 269	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 270		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
 271}
 272
 273void ext4_inode_table_set(struct super_block *sb,
 274			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
 275{
 276	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
 277	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 278		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
 279}
 280
 281void ext4_free_group_clusters_set(struct super_block *sb,
 282				  struct ext4_group_desc *bg, __u32 count)
 283{
 284	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
 285	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 286		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
 287}
 288
 289void ext4_free_inodes_set(struct super_block *sb,
 290			  struct ext4_group_desc *bg, __u32 count)
 291{
 292	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
 293	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 294		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
 295}
 296
 297void ext4_used_dirs_set(struct super_block *sb,
 298			  struct ext4_group_desc *bg, __u32 count)
 299{
 300	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
 301	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 302		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
 303}
 304
 305void ext4_itable_unused_set(struct super_block *sb,
 306			  struct ext4_group_desc *bg, __u32 count)
 307{
 308	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
 309	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 310		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
 311}
 312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313
 314static void __save_error_info(struct super_block *sb, const char *func,
 315			    unsigned int line)
 
 316{
 317	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 
 318
 319	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
 320	if (bdev_read_only(sb->s_bdev))
 321		return;
 322	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
 323	es->s_last_error_time = cpu_to_le32(get_seconds());
 324	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
 325	es->s_last_error_line = cpu_to_le32(line);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326	if (!es->s_first_error_time) {
 327		es->s_first_error_time = es->s_last_error_time;
 
 328		strncpy(es->s_first_error_func, func,
 329			sizeof(es->s_first_error_func));
 330		es->s_first_error_line = cpu_to_le32(line);
 331		es->s_first_error_ino = es->s_last_error_ino;
 332		es->s_first_error_block = es->s_last_error_block;
 
 333	}
 334	/*
 335	 * Start the daily error reporting function if it hasn't been
 336	 * started already
 337	 */
 338	if (!es->s_error_count)
 339		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
 340	le32_add_cpu(&es->s_error_count, 1);
 341}
 342
 343static void save_error_info(struct super_block *sb, const char *func,
 344			    unsigned int line)
 
 345{
 346	__save_error_info(sb, func, line);
 347	ext4_commit_super(sb, 1);
 
 348}
 349
 350/*
 351 * The del_gendisk() function uninitializes the disk-specific data
 352 * structures, including the bdi structure, without telling anyone
 353 * else.  Once this happens, any attempt to call mark_buffer_dirty()
 354 * (for example, by ext4_commit_super), will cause a kernel OOPS.
 355 * This is a kludge to prevent these oops until we can put in a proper
 356 * hook in del_gendisk() to inform the VFS and file system layers.
 357 */
 358static int block_device_ejected(struct super_block *sb)
 359{
 360	struct inode *bd_inode = sb->s_bdev->bd_inode;
 361	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
 362
 363	return bdi->dev == NULL;
 364}
 365
 366static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
 367{
 368	struct super_block		*sb = journal->j_private;
 369	struct ext4_sb_info		*sbi = EXT4_SB(sb);
 370	int				error = is_journal_aborted(journal);
 371	struct ext4_journal_cb_entry	*jce;
 372
 373	BUG_ON(txn->t_state == T_FINISHED);
 
 
 
 374	spin_lock(&sbi->s_md_lock);
 375	while (!list_empty(&txn->t_private_list)) {
 376		jce = list_entry(txn->t_private_list.next,
 377				 struct ext4_journal_cb_entry, jce_list);
 378		list_del_init(&jce->jce_list);
 379		spin_unlock(&sbi->s_md_lock);
 380		jce->jce_func(sb, jce, error);
 381		spin_lock(&sbi->s_md_lock);
 382	}
 383	spin_unlock(&sbi->s_md_lock);
 384}
 385
 
 
 
 
 
 
 386/* Deal with the reporting of failure conditions on a filesystem such as
 387 * inconsistencies detected or read IO failures.
 388 *
 389 * On ext2, we can store the error state of the filesystem in the
 390 * superblock.  That is not possible on ext4, because we may have other
 391 * write ordering constraints on the superblock which prevent us from
 392 * writing it out straight away; and given that the journal is about to
 393 * be aborted, we can't rely on the current, or future, transactions to
 394 * write out the superblock safely.
 395 *
 396 * We'll just use the jbd2_journal_abort() error code to record an error in
 397 * the journal instead.  On recovery, the journal will complain about
 398 * that error until we've noted it down and cleared it.
 399 */
 400
 401static void ext4_handle_error(struct super_block *sb)
 402{
 403	if (sb->s_flags & MS_RDONLY)
 
 
 
 404		return;
 405
 406	if (!test_opt(sb, ERRORS_CONT)) {
 407		journal_t *journal = EXT4_SB(sb)->s_journal;
 408
 409		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
 410		if (journal)
 411			jbd2_journal_abort(journal, -EIO);
 412	}
 413	if (test_opt(sb, ERRORS_RO)) {
 
 
 
 
 
 414		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 415		/*
 416		 * Make sure updated value of ->s_mount_flags will be visible
 417		 * before ->s_flags update
 418		 */
 419		smp_wmb();
 420		sb->s_flags |= MS_RDONLY;
 421	}
 422	if (test_opt(sb, ERRORS_PANIC)) {
 423		if (EXT4_SB(sb)->s_journal &&
 424		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
 425			return;
 426		panic("EXT4-fs (device %s): panic forced after error\n",
 427			sb->s_id);
 428	}
 429}
 430
 431#define ext4_error_ratelimit(sb)					\
 432		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
 433			     "EXT4-fs error")
 434
 435void __ext4_error(struct super_block *sb, const char *function,
 436		  unsigned int line, const char *fmt, ...)
 
 437{
 438	struct va_format vaf;
 439	va_list args;
 440
 
 
 
 
 441	if (ext4_error_ratelimit(sb)) {
 442		va_start(args, fmt);
 443		vaf.fmt = fmt;
 444		vaf.va = &args;
 445		printk(KERN_CRIT
 446		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
 447		       sb->s_id, function, line, current->comm, &vaf);
 448		va_end(args);
 449	}
 450	save_error_info(sb, function, line);
 451	ext4_handle_error(sb);
 452}
 453
 454void __ext4_error_inode(struct inode *inode, const char *function,
 455			unsigned int line, ext4_fsblk_t block,
 456			const char *fmt, ...)
 457{
 458	va_list args;
 459	struct va_format vaf;
 460	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
 461
 462	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
 463	es->s_last_error_block = cpu_to_le64(block);
 
 
 464	if (ext4_error_ratelimit(inode->i_sb)) {
 465		va_start(args, fmt);
 466		vaf.fmt = fmt;
 467		vaf.va = &args;
 468		if (block)
 469			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 470			       "inode #%lu: block %llu: comm %s: %pV\n",
 471			       inode->i_sb->s_id, function, line, inode->i_ino,
 472			       block, current->comm, &vaf);
 473		else
 474			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 475			       "inode #%lu: comm %s: %pV\n",
 476			       inode->i_sb->s_id, function, line, inode->i_ino,
 477			       current->comm, &vaf);
 478		va_end(args);
 479	}
 480	save_error_info(inode->i_sb, function, line);
 
 481	ext4_handle_error(inode->i_sb);
 482}
 483
 484void __ext4_error_file(struct file *file, const char *function,
 485		       unsigned int line, ext4_fsblk_t block,
 486		       const char *fmt, ...)
 487{
 488	va_list args;
 489	struct va_format vaf;
 490	struct ext4_super_block *es;
 491	struct inode *inode = file_inode(file);
 492	char pathname[80], *path;
 493
 494	es = EXT4_SB(inode->i_sb)->s_es;
 495	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
 
 
 496	if (ext4_error_ratelimit(inode->i_sb)) {
 497		path = file_path(file, pathname, sizeof(pathname));
 498		if (IS_ERR(path))
 499			path = "(unknown)";
 500		va_start(args, fmt);
 501		vaf.fmt = fmt;
 502		vaf.va = &args;
 503		if (block)
 504			printk(KERN_CRIT
 505			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 506			       "block %llu: comm %s: path %s: %pV\n",
 507			       inode->i_sb->s_id, function, line, inode->i_ino,
 508			       block, current->comm, path, &vaf);
 509		else
 510			printk(KERN_CRIT
 511			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 512			       "comm %s: path %s: %pV\n",
 513			       inode->i_sb->s_id, function, line, inode->i_ino,
 514			       current->comm, path, &vaf);
 515		va_end(args);
 516	}
 517	save_error_info(inode->i_sb, function, line);
 
 518	ext4_handle_error(inode->i_sb);
 519}
 520
 521const char *ext4_decode_error(struct super_block *sb, int errno,
 522			      char nbuf[16])
 523{
 524	char *errstr = NULL;
 525
 526	switch (errno) {
 527	case -EFSCORRUPTED:
 528		errstr = "Corrupt filesystem";
 529		break;
 530	case -EFSBADCRC:
 531		errstr = "Filesystem failed CRC";
 532		break;
 533	case -EIO:
 534		errstr = "IO failure";
 535		break;
 536	case -ENOMEM:
 537		errstr = "Out of memory";
 538		break;
 539	case -EROFS:
 540		if (!sb || (EXT4_SB(sb)->s_journal &&
 541			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
 542			errstr = "Journal has aborted";
 543		else
 544			errstr = "Readonly filesystem";
 545		break;
 546	default:
 547		/* If the caller passed in an extra buffer for unknown
 548		 * errors, textualise them now.  Else we just return
 549		 * NULL. */
 550		if (nbuf) {
 551			/* Check for truncated error codes... */
 552			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
 553				errstr = nbuf;
 554		}
 555		break;
 556	}
 557
 558	return errstr;
 559}
 560
 561/* __ext4_std_error decodes expected errors from journaling functions
 562 * automatically and invokes the appropriate error response.  */
 563
 564void __ext4_std_error(struct super_block *sb, const char *function,
 565		      unsigned int line, int errno)
 566{
 567	char nbuf[16];
 568	const char *errstr;
 569
 
 
 
 570	/* Special case: if the error is EROFS, and we're not already
 571	 * inside a transaction, then there's really no point in logging
 572	 * an error. */
 573	if (errno == -EROFS && journal_current_handle() == NULL &&
 574	    (sb->s_flags & MS_RDONLY))
 575		return;
 576
 577	if (ext4_error_ratelimit(sb)) {
 578		errstr = ext4_decode_error(sb, errno, nbuf);
 579		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
 580		       sb->s_id, function, line, errstr);
 581	}
 582
 583	save_error_info(sb, function, line);
 584	ext4_handle_error(sb);
 585}
 586
 587/*
 588 * ext4_abort is a much stronger failure handler than ext4_error.  The
 589 * abort function may be used to deal with unrecoverable failures such
 590 * as journal IO errors or ENOMEM at a critical moment in log management.
 591 *
 592 * We unconditionally force the filesystem into an ABORT|READONLY state,
 593 * unless the error response on the fs has been set to panic in which
 594 * case we take the easy way out and panic immediately.
 595 */
 596
 597void __ext4_abort(struct super_block *sb, const char *function,
 598		unsigned int line, const char *fmt, ...)
 599{
 600	struct va_format vaf;
 601	va_list args;
 602
 603	save_error_info(sb, function, line);
 
 
 
 604	va_start(args, fmt);
 605	vaf.fmt = fmt;
 606	vaf.va = &args;
 607	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
 608	       sb->s_id, function, line, &vaf);
 609	va_end(args);
 610
 611	if ((sb->s_flags & MS_RDONLY) == 0) {
 612		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 613		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
 
 
 
 
 614		/*
 615		 * Make sure updated value of ->s_mount_flags will be visible
 616		 * before ->s_flags update
 617		 */
 618		smp_wmb();
 619		sb->s_flags |= MS_RDONLY;
 620		if (EXT4_SB(sb)->s_journal)
 621			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
 622		save_error_info(sb, function, line);
 623	}
 624	if (test_opt(sb, ERRORS_PANIC)) {
 625		if (EXT4_SB(sb)->s_journal &&
 626		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
 627			return;
 628		panic("EXT4-fs panic from previous error\n");
 629	}
 630}
 631
 632void __ext4_msg(struct super_block *sb,
 633		const char *prefix, const char *fmt, ...)
 634{
 635	struct va_format vaf;
 636	va_list args;
 637
 
 638	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
 639		return;
 640
 641	va_start(args, fmt);
 642	vaf.fmt = fmt;
 643	vaf.va = &args;
 644	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
 645	va_end(args);
 646}
 647
 648#define ext4_warning_ratelimit(sb)					\
 649		___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),	\
 650			     "EXT4-fs warning")
 
 
 
 651
 652void __ext4_warning(struct super_block *sb, const char *function,
 653		    unsigned int line, const char *fmt, ...)
 654{
 655	struct va_format vaf;
 656	va_list args;
 657
 658	if (!ext4_warning_ratelimit(sb))
 659		return;
 660
 661	va_start(args, fmt);
 662	vaf.fmt = fmt;
 663	vaf.va = &args;
 664	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
 665	       sb->s_id, function, line, &vaf);
 666	va_end(args);
 667}
 668
 669void __ext4_warning_inode(const struct inode *inode, const char *function,
 670			  unsigned int line, const char *fmt, ...)
 671{
 672	struct va_format vaf;
 673	va_list args;
 674
 675	if (!ext4_warning_ratelimit(inode->i_sb))
 676		return;
 677
 678	va_start(args, fmt);
 679	vaf.fmt = fmt;
 680	vaf.va = &args;
 681	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
 682	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
 683	       function, line, inode->i_ino, current->comm, &vaf);
 684	va_end(args);
 685}
 686
 687void __ext4_grp_locked_error(const char *function, unsigned int line,
 688			     struct super_block *sb, ext4_group_t grp,
 689			     unsigned long ino, ext4_fsblk_t block,
 690			     const char *fmt, ...)
 691__releases(bitlock)
 692__acquires(bitlock)
 693{
 694	struct va_format vaf;
 695	va_list args;
 696	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 697
 698	es->s_last_error_ino = cpu_to_le32(ino);
 699	es->s_last_error_block = cpu_to_le64(block);
 700	__save_error_info(sb, function, line);
 
 
 701
 702	if (ext4_error_ratelimit(sb)) {
 703		va_start(args, fmt);
 704		vaf.fmt = fmt;
 705		vaf.va = &args;
 706		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
 707		       sb->s_id, function, line, grp);
 708		if (ino)
 709			printk(KERN_CONT "inode %lu: ", ino);
 710		if (block)
 711			printk(KERN_CONT "block %llu:",
 712			       (unsigned long long) block);
 713		printk(KERN_CONT "%pV\n", &vaf);
 714		va_end(args);
 715	}
 716
 
 
 
 717	if (test_opt(sb, ERRORS_CONT)) {
 718		ext4_commit_super(sb, 0);
 719		return;
 720	}
 721
 722	ext4_unlock_group(sb, grp);
 
 723	ext4_handle_error(sb);
 724	/*
 725	 * We only get here in the ERRORS_RO case; relocking the group
 726	 * may be dangerous, but nothing bad will happen since the
 727	 * filesystem will have already been marked read/only and the
 728	 * journal has been aborted.  We return 1 as a hint to callers
 729	 * who might what to use the return value from
 730	 * ext4_grp_locked_error() to distinguish between the
 731	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
 732	 * aggressively from the ext4 function in question, with a
 733	 * more appropriate error code.
 734	 */
 735	ext4_lock_group(sb, grp);
 736	return;
 737}
 738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 739void ext4_update_dynamic_rev(struct super_block *sb)
 740{
 741	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 742
 743	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
 744		return;
 745
 746	ext4_warning(sb,
 747		     "updating to rev %d because of new feature flag, "
 748		     "running e2fsck is recommended",
 749		     EXT4_DYNAMIC_REV);
 750
 751	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
 752	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
 753	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
 754	/* leave es->s_feature_*compat flags alone */
 755	/* es->s_uuid will be set by e2fsck if empty */
 756
 757	/*
 758	 * The rest of the superblock fields should be zero, and if not it
 759	 * means they are likely already in use, so leave them alone.  We
 760	 * can leave it up to e2fsck to clean up any inconsistencies there.
 761	 */
 762}
 763
 764/*
 765 * Open the external journal device
 766 */
 767static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
 768{
 769	struct block_device *bdev;
 770	char b[BDEVNAME_SIZE];
 771
 772	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
 773	if (IS_ERR(bdev))
 774		goto fail;
 775	return bdev;
 776
 777fail:
 778	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
 779			__bdevname(dev, b), PTR_ERR(bdev));
 
 780	return NULL;
 781}
 782
 783/*
 784 * Release the journal device
 785 */
 786static void ext4_blkdev_put(struct block_device *bdev)
 787{
 788	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
 789}
 790
 791static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
 792{
 793	struct block_device *bdev;
 794	bdev = sbi->journal_bdev;
 795	if (bdev) {
 796		ext4_blkdev_put(bdev);
 797		sbi->journal_bdev = NULL;
 798	}
 799}
 800
 801static inline struct inode *orphan_list_entry(struct list_head *l)
 802{
 803	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
 804}
 805
 806static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
 807{
 808	struct list_head *l;
 809
 810	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
 811		 le32_to_cpu(sbi->s_es->s_last_orphan));
 812
 813	printk(KERN_ERR "sb_info orphan list:\n");
 814	list_for_each(l, &sbi->s_orphan) {
 815		struct inode *inode = orphan_list_entry(l);
 816		printk(KERN_ERR "  "
 817		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
 818		       inode->i_sb->s_id, inode->i_ino, inode,
 819		       inode->i_mode, inode->i_nlink,
 820		       NEXT_ORPHAN(inode));
 821	}
 822}
 823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824static void ext4_put_super(struct super_block *sb)
 825{
 826	struct ext4_sb_info *sbi = EXT4_SB(sb);
 827	struct ext4_super_block *es = sbi->s_es;
 
 
 828	int aborted = 0;
 829	int i, err;
 830
 831	ext4_unregister_li_request(sb);
 832	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
 833
 834	flush_workqueue(sbi->rsv_conversion_wq);
 835	destroy_workqueue(sbi->rsv_conversion_wq);
 836
 
 
 
 
 
 
 
 837	if (sbi->s_journal) {
 838		aborted = is_journal_aborted(sbi->s_journal);
 839		err = jbd2_journal_destroy(sbi->s_journal);
 840		sbi->s_journal = NULL;
 841		if ((err < 0) && !aborted)
 842			ext4_abort(sb, "Couldn't clean up the journal");
 
 843	}
 844
 845	ext4_unregister_sysfs(sb);
 846	ext4_es_unregister_shrinker(sbi);
 847	del_timer_sync(&sbi->s_err_report);
 848	ext4_release_system_zone(sb);
 849	ext4_mb_release(sb);
 850	ext4_ext_release(sb);
 851
 852	if (!(sb->s_flags & MS_RDONLY) && !aborted) {
 853		ext4_clear_feature_journal_needs_recovery(sb);
 854		es->s_state = cpu_to_le16(sbi->s_mount_state);
 855	}
 856	if (!(sb->s_flags & MS_RDONLY))
 857		ext4_commit_super(sb, 1);
 858
 
 
 859	for (i = 0; i < sbi->s_gdb_count; i++)
 860		brelse(sbi->s_group_desc[i]);
 861	kvfree(sbi->s_group_desc);
 862	kvfree(sbi->s_flex_groups);
 
 
 
 
 
 
 863	percpu_counter_destroy(&sbi->s_freeclusters_counter);
 864	percpu_counter_destroy(&sbi->s_freeinodes_counter);
 865	percpu_counter_destroy(&sbi->s_dirs_counter);
 866	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
 867	percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
 868#ifdef CONFIG_QUOTA
 869	for (i = 0; i < EXT4_MAXQUOTAS; i++)
 870		kfree(sbi->s_qf_names[i]);
 871#endif
 872
 873	/* Debugging code just in case the in-memory inode orphan list
 874	 * isn't empty.  The on-disk one can be non-empty if we've
 875	 * detected an error and taken the fs readonly, but the
 876	 * in-memory list had better be clean by this point. */
 877	if (!list_empty(&sbi->s_orphan))
 878		dump_orphan_list(sb, sbi);
 879	J_ASSERT(list_empty(&sbi->s_orphan));
 880
 881	sync_blockdev(sb->s_bdev);
 882	invalidate_bdev(sb->s_bdev);
 883	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
 884		/*
 885		 * Invalidate the journal device's buffers.  We don't want them
 886		 * floating about in memory - the physical journal device may
 887		 * hotswapped, and it breaks the `ro-after' testing code.
 888		 */
 889		sync_blockdev(sbi->journal_bdev);
 890		invalidate_bdev(sbi->journal_bdev);
 891		ext4_blkdev_remove(sbi);
 892	}
 893	if (sbi->s_mb_cache) {
 894		ext4_xattr_destroy_cache(sbi->s_mb_cache);
 895		sbi->s_mb_cache = NULL;
 896	}
 
 
 
 897	if (sbi->s_mmp_tsk)
 898		kthread_stop(sbi->s_mmp_tsk);
 899	brelse(sbi->s_sbh);
 900	sb->s_fs_info = NULL;
 901	/*
 902	 * Now that we are completely done shutting down the
 903	 * superblock, we need to actually destroy the kobject.
 904	 */
 905	kobject_put(&sbi->s_kobj);
 906	wait_for_completion(&sbi->s_kobj_unregister);
 907	if (sbi->s_chksum_driver)
 908		crypto_free_shash(sbi->s_chksum_driver);
 909	kfree(sbi->s_blockgroup_lock);
 
 
 
 
 
 910	kfree(sbi);
 911}
 912
 913static struct kmem_cache *ext4_inode_cachep;
 914
 915/*
 916 * Called inside transaction, so use GFP_NOFS
 917 */
 918static struct inode *ext4_alloc_inode(struct super_block *sb)
 919{
 920	struct ext4_inode_info *ei;
 921
 922	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
 923	if (!ei)
 924		return NULL;
 925
 926	ei->vfs_inode.i_version = 1;
 927	spin_lock_init(&ei->i_raw_lock);
 928	INIT_LIST_HEAD(&ei->i_prealloc_list);
 
 929	spin_lock_init(&ei->i_prealloc_lock);
 930	ext4_es_init_tree(&ei->i_es_tree);
 931	rwlock_init(&ei->i_es_lock);
 932	INIT_LIST_HEAD(&ei->i_es_list);
 933	ei->i_es_all_nr = 0;
 934	ei->i_es_shk_nr = 0;
 935	ei->i_es_shrink_lblk = 0;
 936	ei->i_reserved_data_blocks = 0;
 937	ei->i_reserved_meta_blocks = 0;
 938	ei->i_allocated_meta_blocks = 0;
 939	ei->i_da_metadata_calc_len = 0;
 940	ei->i_da_metadata_calc_last_lblock = 0;
 941	spin_lock_init(&(ei->i_block_reservation_lock));
 
 942#ifdef CONFIG_QUOTA
 943	ei->i_reserved_quota = 0;
 944	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
 945#endif
 946	ei->jinode = NULL;
 947	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
 948	spin_lock_init(&ei->i_completed_io_lock);
 949	ei->i_sync_tid = 0;
 950	ei->i_datasync_tid = 0;
 951	atomic_set(&ei->i_unwritten, 0);
 952	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
 953	return &ei->vfs_inode;
 954}
 955
 956static int ext4_drop_inode(struct inode *inode)
 957{
 958	int drop = generic_drop_inode(inode);
 959
 
 
 
 960	trace_ext4_drop_inode(inode, drop);
 961	return drop;
 962}
 963
 964static void ext4_i_callback(struct rcu_head *head)
 965{
 966	struct inode *inode = container_of(head, struct inode, i_rcu);
 967	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
 968}
 969
 970static void ext4_destroy_inode(struct inode *inode)
 971{
 972	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
 973		ext4_msg(inode->i_sb, KERN_ERR,
 974			 "Inode %lu (%p): orphan list check failed!",
 975			 inode->i_ino, EXT4_I(inode));
 976		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
 977				EXT4_I(inode), sizeof(struct ext4_inode_info),
 978				true);
 979		dump_stack();
 980	}
 981	call_rcu(&inode->i_rcu, ext4_i_callback);
 982}
 983
 984static void init_once(void *foo)
 985{
 986	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
 987
 988	INIT_LIST_HEAD(&ei->i_orphan);
 989	init_rwsem(&ei->xattr_sem);
 990	init_rwsem(&ei->i_data_sem);
 991	init_rwsem(&ei->i_mmap_sem);
 992	inode_init_once(&ei->vfs_inode);
 993}
 994
 995static int __init init_inodecache(void)
 996{
 997	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
 998					     sizeof(struct ext4_inode_info),
 999					     0, (SLAB_RECLAIM_ACCOUNT|
1000						SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1001					     init_once);
 
 
1002	if (ext4_inode_cachep == NULL)
1003		return -ENOMEM;
1004	return 0;
1005}
1006
1007static void destroy_inodecache(void)
1008{
1009	/*
1010	 * Make sure all delayed rcu free inodes are flushed before we
1011	 * destroy cache.
1012	 */
1013	rcu_barrier();
1014	kmem_cache_destroy(ext4_inode_cachep);
1015}
1016
1017void ext4_clear_inode(struct inode *inode)
1018{
1019	invalidate_inode_buffers(inode);
1020	clear_inode(inode);
1021	dquot_drop(inode);
1022	ext4_discard_preallocations(inode);
1023	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
 
1024	if (EXT4_I(inode)->jinode) {
1025		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1026					       EXT4_I(inode)->jinode);
1027		jbd2_free_inode(EXT4_I(inode)->jinode);
1028		EXT4_I(inode)->jinode = NULL;
1029	}
1030#ifdef CONFIG_EXT4_FS_ENCRYPTION
1031	fscrypt_put_encryption_info(inode, NULL);
1032#endif
1033}
1034
1035static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1036					u64 ino, u32 generation)
1037{
1038	struct inode *inode;
1039
1040	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1041		return ERR_PTR(-ESTALE);
1042	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1043		return ERR_PTR(-ESTALE);
1044
1045	/* iget isn't really right if the inode is currently unallocated!!
1046	 *
1047	 * ext4_read_inode will return a bad_inode if the inode had been
1048	 * deleted, so we should be safe.
1049	 *
1050	 * Currently we don't know the generation for parent directory, so
1051	 * a generation of 0 means "accept any"
1052	 */
1053	inode = ext4_iget_normal(sb, ino);
1054	if (IS_ERR(inode))
1055		return ERR_CAST(inode);
1056	if (generation && inode->i_generation != generation) {
1057		iput(inode);
1058		return ERR_PTR(-ESTALE);
1059	}
1060
1061	return inode;
1062}
1063
1064static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1065					int fh_len, int fh_type)
1066{
1067	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1068				    ext4_nfs_get_inode);
1069}
1070
1071static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1072					int fh_len, int fh_type)
1073{
1074	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1075				    ext4_nfs_get_inode);
1076}
1077
 
 
 
 
 
 
 
 
 
 
1078/*
1079 * Try to release metadata pages (indirect blocks, directories) which are
1080 * mapped via the block device.  Since these pages could have journal heads
1081 * which would prevent try_to_free_buffers() from freeing them, we must use
1082 * jbd2 layer's try_to_free_buffers() function to release them.
1083 */
1084static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1085				 gfp_t wait)
1086{
1087	journal_t *journal = EXT4_SB(sb)->s_journal;
1088
1089	WARN_ON(PageChecked(page));
1090	if (!page_has_buffers(page))
1091		return 0;
1092	if (journal)
1093		return jbd2_journal_try_to_free_buffers(journal, page,
1094						wait & ~__GFP_DIRECT_RECLAIM);
1095	return try_to_free_buffers(page);
1096}
1097
1098#ifdef CONFIG_EXT4_FS_ENCRYPTION
1099static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1100{
1101	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1102				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1103}
1104
1105static int ext4_key_prefix(struct inode *inode, u8 **key)
1106{
1107	*key = EXT4_SB(inode->i_sb)->key_prefix;
1108	return EXT4_SB(inode->i_sb)->key_prefix_size;
1109}
1110
1111static int ext4_prepare_context(struct inode *inode)
1112{
1113	return ext4_convert_inline_data(inode);
1114}
1115
1116static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1117							void *fs_data)
1118{
1119	handle_t *handle = fs_data;
1120	int res, res2, retries = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121
1122	/*
1123	 * If a journal handle was specified, then the encryption context is
1124	 * being set on a new inode via inheritance and is part of a larger
1125	 * transaction to create the inode.  Otherwise the encryption context is
1126	 * being set on an existing inode in its own transaction.  Only in the
1127	 * latter case should the "retry on ENOSPC" logic be used.
1128	 */
1129
1130	if (handle) {
1131		res = ext4_xattr_set_handle(handle, inode,
1132					    EXT4_XATTR_INDEX_ENCRYPTION,
1133					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1134					    ctx, len, 0);
1135		if (!res) {
1136			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1137			ext4_clear_inode_state(inode,
1138					EXT4_STATE_MAY_INLINE_DATA);
1139			/*
1140			 * Update inode->i_flags - e.g. S_DAX may get disabled
 
1141			 */
1142			ext4_set_inode_flags(inode);
1143		}
1144		return res;
1145	}
1146
 
 
 
1147retry:
1148	handle = ext4_journal_start(inode, EXT4_HT_MISC,
1149			ext4_jbd2_credits_xattr(inode));
 
 
 
 
1150	if (IS_ERR(handle))
1151		return PTR_ERR(handle);
1152
1153	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1154				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1155				    ctx, len, 0);
1156	if (!res) {
1157		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1158		/* Update inode->i_flags - e.g. S_DAX may get disabled */
1159		ext4_set_inode_flags(inode);
 
 
 
1160		res = ext4_mark_inode_dirty(handle, inode);
1161		if (res)
1162			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1163	}
1164	res2 = ext4_journal_stop(handle);
1165
1166	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1167		goto retry;
1168	if (!res)
1169		res = res2;
1170	return res;
1171}
1172
1173static int ext4_dummy_context(struct inode *inode)
 
1174{
1175	return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1176}
1177
1178static unsigned ext4_max_namelen(struct inode *inode)
1179{
1180	return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1181		EXT4_NAME_LEN;
1182}
1183
1184static struct fscrypt_operations ext4_cryptops = {
 
 
 
 
 
 
 
 
1185	.get_context		= ext4_get_context,
1186	.key_prefix		= ext4_key_prefix,
1187	.prepare_context	= ext4_prepare_context,
1188	.set_context		= ext4_set_context,
1189	.dummy_context		= ext4_dummy_context,
1190	.is_encrypted		= ext4_encrypted_inode,
1191	.empty_dir		= ext4_empty_dir,
1192	.max_namelen		= ext4_max_namelen,
1193};
1194#else
1195static struct fscrypt_operations ext4_cryptops = {
1196	.is_encrypted		= ext4_encrypted_inode,
1197};
1198#endif
1199
1200#ifdef CONFIG_QUOTA
1201static char *quotatypes[] = INITQFNAMES;
1202#define QTYPE2NAME(t) (quotatypes[t])
1203
1204static int ext4_write_dquot(struct dquot *dquot);
1205static int ext4_acquire_dquot(struct dquot *dquot);
1206static int ext4_release_dquot(struct dquot *dquot);
1207static int ext4_mark_dquot_dirty(struct dquot *dquot);
1208static int ext4_write_info(struct super_block *sb, int type);
1209static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1210			 const struct path *path);
1211static int ext4_quota_off(struct super_block *sb, int type);
1212static int ext4_quota_on_mount(struct super_block *sb, int type);
1213static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1214			       size_t len, loff_t off);
1215static ssize_t ext4_quota_write(struct super_block *sb, int type,
1216				const char *data, size_t len, loff_t off);
1217static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1218			     unsigned int flags);
1219static int ext4_enable_quotas(struct super_block *sb);
1220static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1221
1222static struct dquot **ext4_get_dquots(struct inode *inode)
1223{
1224	return EXT4_I(inode)->i_dquot;
1225}
1226
1227static const struct dquot_operations ext4_quota_operations = {
1228	.get_reserved_space = ext4_get_reserved_space,
1229	.write_dquot	= ext4_write_dquot,
1230	.acquire_dquot	= ext4_acquire_dquot,
1231	.release_dquot	= ext4_release_dquot,
1232	.mark_dirty	= ext4_mark_dquot_dirty,
1233	.write_info	= ext4_write_info,
1234	.alloc_dquot	= dquot_alloc,
1235	.destroy_dquot	= dquot_destroy,
1236	.get_projid	= ext4_get_projid,
1237	.get_next_id	= ext4_get_next_id,
 
1238};
1239
1240static const struct quotactl_ops ext4_qctl_operations = {
1241	.quota_on	= ext4_quota_on,
1242	.quota_off	= ext4_quota_off,
1243	.quota_sync	= dquot_quota_sync,
1244	.get_state	= dquot_get_state,
1245	.set_info	= dquot_set_dqinfo,
1246	.get_dqblk	= dquot_get_dqblk,
1247	.set_dqblk	= dquot_set_dqblk,
1248	.get_nextdqblk	= dquot_get_next_dqblk,
1249};
1250#endif
1251
1252static const struct super_operations ext4_sops = {
1253	.alloc_inode	= ext4_alloc_inode,
 
1254	.destroy_inode	= ext4_destroy_inode,
1255	.write_inode	= ext4_write_inode,
1256	.dirty_inode	= ext4_dirty_inode,
1257	.drop_inode	= ext4_drop_inode,
1258	.evict_inode	= ext4_evict_inode,
1259	.put_super	= ext4_put_super,
1260	.sync_fs	= ext4_sync_fs,
1261	.freeze_fs	= ext4_freeze,
1262	.unfreeze_fs	= ext4_unfreeze,
1263	.statfs		= ext4_statfs,
1264	.remount_fs	= ext4_remount,
1265	.show_options	= ext4_show_options,
1266#ifdef CONFIG_QUOTA
1267	.quota_read	= ext4_quota_read,
1268	.quota_write	= ext4_quota_write,
1269	.get_dquots	= ext4_get_dquots,
1270#endif
1271	.bdev_try_to_free_page = bdev_try_to_free_page,
1272};
1273
1274static const struct export_operations ext4_export_ops = {
1275	.fh_to_dentry = ext4_fh_to_dentry,
1276	.fh_to_parent = ext4_fh_to_parent,
1277	.get_parent = ext4_get_parent,
 
1278};
1279
1280enum {
1281	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1282	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1283	Opt_nouid32, Opt_debug, Opt_removed,
1284	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1285	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1286	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1287	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1288	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1289	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
 
1290	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1291	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1292	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1293	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1294	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1295	Opt_lazytime, Opt_nolazytime,
 
 
1296	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1297	Opt_inode_readahead_blks, Opt_journal_ioprio,
1298	Opt_dioread_nolock, Opt_dioread_lock,
1299	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1300	Opt_max_dir_size_kb, Opt_nojournal_checksum,
 
1301};
1302
1303static const match_table_t tokens = {
1304	{Opt_bsd_df, "bsddf"},
1305	{Opt_minix_df, "minixdf"},
1306	{Opt_grpid, "grpid"},
1307	{Opt_grpid, "bsdgroups"},
1308	{Opt_nogrpid, "nogrpid"},
1309	{Opt_nogrpid, "sysvgroups"},
1310	{Opt_resgid, "resgid=%u"},
1311	{Opt_resuid, "resuid=%u"},
1312	{Opt_sb, "sb=%u"},
1313	{Opt_err_cont, "errors=continue"},
1314	{Opt_err_panic, "errors=panic"},
1315	{Opt_err_ro, "errors=remount-ro"},
1316	{Opt_nouid32, "nouid32"},
1317	{Opt_debug, "debug"},
1318	{Opt_removed, "oldalloc"},
1319	{Opt_removed, "orlov"},
1320	{Opt_user_xattr, "user_xattr"},
1321	{Opt_nouser_xattr, "nouser_xattr"},
1322	{Opt_acl, "acl"},
1323	{Opt_noacl, "noacl"},
1324	{Opt_noload, "norecovery"},
1325	{Opt_noload, "noload"},
1326	{Opt_removed, "nobh"},
1327	{Opt_removed, "bh"},
1328	{Opt_commit, "commit=%u"},
1329	{Opt_min_batch_time, "min_batch_time=%u"},
1330	{Opt_max_batch_time, "max_batch_time=%u"},
1331	{Opt_journal_dev, "journal_dev=%u"},
1332	{Opt_journal_path, "journal_path=%s"},
1333	{Opt_journal_checksum, "journal_checksum"},
1334	{Opt_nojournal_checksum, "nojournal_checksum"},
1335	{Opt_journal_async_commit, "journal_async_commit"},
1336	{Opt_abort, "abort"},
1337	{Opt_data_journal, "data=journal"},
1338	{Opt_data_ordered, "data=ordered"},
1339	{Opt_data_writeback, "data=writeback"},
1340	{Opt_data_err_abort, "data_err=abort"},
1341	{Opt_data_err_ignore, "data_err=ignore"},
1342	{Opt_offusrjquota, "usrjquota="},
1343	{Opt_usrjquota, "usrjquota=%s"},
1344	{Opt_offgrpjquota, "grpjquota="},
1345	{Opt_grpjquota, "grpjquota=%s"},
1346	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1347	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1348	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1349	{Opt_grpquota, "grpquota"},
1350	{Opt_noquota, "noquota"},
1351	{Opt_quota, "quota"},
1352	{Opt_usrquota, "usrquota"},
1353	{Opt_prjquota, "prjquota"},
1354	{Opt_barrier, "barrier=%u"},
1355	{Opt_barrier, "barrier"},
1356	{Opt_nobarrier, "nobarrier"},
1357	{Opt_i_version, "i_version"},
1358	{Opt_dax, "dax"},
 
 
 
1359	{Opt_stripe, "stripe=%u"},
1360	{Opt_delalloc, "delalloc"},
 
 
1361	{Opt_lazytime, "lazytime"},
1362	{Opt_nolazytime, "nolazytime"},
 
1363	{Opt_nodelalloc, "nodelalloc"},
1364	{Opt_removed, "mblk_io_submit"},
1365	{Opt_removed, "nomblk_io_submit"},
1366	{Opt_block_validity, "block_validity"},
1367	{Opt_noblock_validity, "noblock_validity"},
1368	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1369	{Opt_journal_ioprio, "journal_ioprio=%u"},
1370	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1371	{Opt_auto_da_alloc, "auto_da_alloc"},
1372	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1373	{Opt_dioread_nolock, "dioread_nolock"},
 
1374	{Opt_dioread_lock, "dioread_lock"},
1375	{Opt_discard, "discard"},
1376	{Opt_nodiscard, "nodiscard"},
1377	{Opt_init_itable, "init_itable=%u"},
1378	{Opt_init_itable, "init_itable"},
1379	{Opt_noinit_itable, "noinit_itable"},
1380	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
 
1381	{Opt_test_dummy_encryption, "test_dummy_encryption"},
 
 
 
 
1382	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1383	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1384	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1385	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1386	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1387	{Opt_err, NULL},
1388};
1389
1390static ext4_fsblk_t get_sb_block(void **data)
1391{
1392	ext4_fsblk_t	sb_block;
1393	char		*options = (char *) *data;
1394
1395	if (!options || strncmp(options, "sb=", 3) != 0)
1396		return 1;	/* Default location */
1397
1398	options += 3;
1399	/* TODO: use simple_strtoll with >32bit ext4 */
1400	sb_block = simple_strtoul(options, &options, 0);
1401	if (*options && *options != ',') {
1402		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1403		       (char *) *data);
1404		return 1;
1405	}
1406	if (*options == ',')
1407		options++;
1408	*data = (void *) options;
1409
1410	return sb_block;
1411}
1412
1413#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1414static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
 
1415	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1416
1417#ifdef CONFIG_QUOTA
1418static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1419{
1420	struct ext4_sb_info *sbi = EXT4_SB(sb);
1421	char *qname;
1422	int ret = -1;
1423
1424	if (sb_any_quota_loaded(sb) &&
1425		!sbi->s_qf_names[qtype]) {
1426		ext4_msg(sb, KERN_ERR,
1427			"Cannot change journaled "
1428			"quota options when quota turned on");
1429		return -1;
1430	}
1431	if (ext4_has_feature_quota(sb)) {
1432		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1433			 "ignored when QUOTA feature is enabled");
1434		return 1;
1435	}
1436	qname = match_strdup(args);
1437	if (!qname) {
1438		ext4_msg(sb, KERN_ERR,
1439			"Not enough memory for storing quotafile name");
1440		return -1;
1441	}
1442	if (sbi->s_qf_names[qtype]) {
1443		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1444			ret = 1;
1445		else
1446			ext4_msg(sb, KERN_ERR,
1447				 "%s quota file already specified",
1448				 QTYPE2NAME(qtype));
1449		goto errout;
1450	}
1451	if (strchr(qname, '/')) {
1452		ext4_msg(sb, KERN_ERR,
1453			"quotafile must be on filesystem root");
1454		goto errout;
1455	}
1456	sbi->s_qf_names[qtype] = qname;
1457	set_opt(sb, QUOTA);
1458	return 1;
1459errout:
1460	kfree(qname);
1461	return ret;
1462}
1463
1464static int clear_qf_name(struct super_block *sb, int qtype)
1465{
1466
1467	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
1468
1469	if (sb_any_quota_loaded(sb) &&
1470		sbi->s_qf_names[qtype]) {
1471		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1472			" when quota turned on");
1473		return -1;
1474	}
1475	kfree(sbi->s_qf_names[qtype]);
1476	sbi->s_qf_names[qtype] = NULL;
 
1477	return 1;
1478}
1479#endif
1480
1481#define MOPT_SET	0x0001
1482#define MOPT_CLEAR	0x0002
1483#define MOPT_NOSUPPORT	0x0004
1484#define MOPT_EXPLICIT	0x0008
1485#define MOPT_CLEAR_ERR	0x0010
1486#define MOPT_GTE0	0x0020
1487#ifdef CONFIG_QUOTA
1488#define MOPT_Q		0
1489#define MOPT_QFMT	0x0040
1490#else
1491#define MOPT_Q		MOPT_NOSUPPORT
1492#define MOPT_QFMT	MOPT_NOSUPPORT
1493#endif
1494#define MOPT_DATAJ	0x0080
1495#define MOPT_NO_EXT2	0x0100
1496#define MOPT_NO_EXT3	0x0200
1497#define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1498#define MOPT_STRING	0x0400
 
1499
1500static const struct mount_opts {
1501	int	token;
1502	int	mount_opt;
1503	int	flags;
1504} ext4_mount_opts[] = {
1505	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1506	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1507	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1508	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1509	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1510	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1511	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1512	 MOPT_EXT4_ONLY | MOPT_SET},
1513	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1514	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1515	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1516	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1517	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1518	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1519	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1520	 MOPT_EXT4_ONLY | MOPT_CLEAR},
 
 
1521	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1522	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1523	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1524	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1525	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1526				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1527	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1528	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1529	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1530	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1531	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1532	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1533	 MOPT_NO_EXT2},
1534	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1535	 MOPT_NO_EXT2},
1536	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1537	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1538	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1539	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1540	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1541	{Opt_commit, 0, MOPT_GTE0},
1542	{Opt_max_batch_time, 0, MOPT_GTE0},
1543	{Opt_min_batch_time, 0, MOPT_GTE0},
1544	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1545	{Opt_init_itable, 0, MOPT_GTE0},
1546	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
 
 
 
 
 
 
1547	{Opt_stripe, 0, MOPT_GTE0},
1548	{Opt_resuid, 0, MOPT_GTE0},
1549	{Opt_resgid, 0, MOPT_GTE0},
1550	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1551	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1552	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1553	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1554	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1555	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1556	 MOPT_NO_EXT2 | MOPT_DATAJ},
1557	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1558	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1559#ifdef CONFIG_EXT4_FS_POSIX_ACL
1560	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1561	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1562#else
1563	{Opt_acl, 0, MOPT_NOSUPPORT},
1564	{Opt_noacl, 0, MOPT_NOSUPPORT},
1565#endif
1566	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1567	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
 
1568	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1569	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1570							MOPT_SET | MOPT_Q},
1571	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1572							MOPT_SET | MOPT_Q},
1573	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1574							MOPT_SET | MOPT_Q},
1575	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1576		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1577							MOPT_CLEAR | MOPT_Q},
1578	{Opt_usrjquota, 0, MOPT_Q},
1579	{Opt_grpjquota, 0, MOPT_Q},
1580	{Opt_offusrjquota, 0, MOPT_Q},
1581	{Opt_offgrpjquota, 0, MOPT_Q},
1582	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1583	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1584	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1585	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1586	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
 
 
 
1587	{Opt_err, 0, 0}
1588};
1589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1590static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1591			    substring_t *args, unsigned long *journal_devnum,
1592			    unsigned int *journal_ioprio, int is_remount)
1593{
1594	struct ext4_sb_info *sbi = EXT4_SB(sb);
1595	const struct mount_opts *m;
1596	kuid_t uid;
1597	kgid_t gid;
1598	int arg = 0;
1599
1600#ifdef CONFIG_QUOTA
1601	if (token == Opt_usrjquota)
1602		return set_qf_name(sb, USRQUOTA, &args[0]);
1603	else if (token == Opt_grpjquota)
1604		return set_qf_name(sb, GRPQUOTA, &args[0]);
1605	else if (token == Opt_offusrjquota)
1606		return clear_qf_name(sb, USRQUOTA);
1607	else if (token == Opt_offgrpjquota)
1608		return clear_qf_name(sb, GRPQUOTA);
1609#endif
1610	switch (token) {
1611	case Opt_noacl:
1612	case Opt_nouser_xattr:
1613		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1614		break;
1615	case Opt_sb:
1616		return 1;	/* handled by get_sb_block() */
1617	case Opt_removed:
1618		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1619		return 1;
1620	case Opt_abort:
1621		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1622		return 1;
1623	case Opt_i_version:
1624		sb->s_flags |= MS_I_VERSION;
1625		return 1;
1626	case Opt_lazytime:
1627		sb->s_flags |= MS_LAZYTIME;
1628		return 1;
1629	case Opt_nolazytime:
1630		sb->s_flags &= ~MS_LAZYTIME;
 
 
 
 
 
 
 
1631		return 1;
1632	}
1633
1634	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1635		if (token == m->token)
1636			break;
1637
1638	if (m->token == Opt_err) {
1639		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1640			 "or missing value", opt);
1641		return -1;
1642	}
1643
1644	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1645		ext4_msg(sb, KERN_ERR,
1646			 "Mount option \"%s\" incompatible with ext2", opt);
1647		return -1;
1648	}
1649	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1650		ext4_msg(sb, KERN_ERR,
1651			 "Mount option \"%s\" incompatible with ext3", opt);
1652		return -1;
1653	}
1654
1655	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1656		return -1;
1657	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1658		return -1;
1659	if (m->flags & MOPT_EXPLICIT) {
1660		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1661			set_opt2(sb, EXPLICIT_DELALLOC);
1662		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1663			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1664		} else
1665			return -1;
1666	}
1667	if (m->flags & MOPT_CLEAR_ERR)
1668		clear_opt(sb, ERRORS_MASK);
1669	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1670		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1671			 "options when quota turned on");
1672		return -1;
1673	}
1674
1675	if (m->flags & MOPT_NOSUPPORT) {
1676		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1677	} else if (token == Opt_commit) {
1678		if (arg == 0)
1679			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
 
 
 
 
 
 
 
1680		sbi->s_commit_interval = HZ * arg;
 
 
 
 
 
 
 
 
 
1681	} else if (token == Opt_max_batch_time) {
1682		sbi->s_max_batch_time = arg;
1683	} else if (token == Opt_min_batch_time) {
1684		sbi->s_min_batch_time = arg;
1685	} else if (token == Opt_inode_readahead_blks) {
1686		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1687			ext4_msg(sb, KERN_ERR,
1688				 "EXT4-fs: inode_readahead_blks must be "
1689				 "0 or a power of 2 smaller than 2^31");
1690			return -1;
1691		}
1692		sbi->s_inode_readahead_blks = arg;
1693	} else if (token == Opt_init_itable) {
1694		set_opt(sb, INIT_INODE_TABLE);
1695		if (!args->from)
1696			arg = EXT4_DEF_LI_WAIT_MULT;
1697		sbi->s_li_wait_mult = arg;
1698	} else if (token == Opt_max_dir_size_kb) {
1699		sbi->s_max_dir_size_kb = arg;
1700	} else if (token == Opt_stripe) {
1701		sbi->s_stripe = arg;
1702	} else if (token == Opt_resuid) {
1703		uid = make_kuid(current_user_ns(), arg);
1704		if (!uid_valid(uid)) {
1705			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1706			return -1;
1707		}
1708		sbi->s_resuid = uid;
1709	} else if (token == Opt_resgid) {
1710		gid = make_kgid(current_user_ns(), arg);
1711		if (!gid_valid(gid)) {
1712			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1713			return -1;
1714		}
1715		sbi->s_resgid = gid;
1716	} else if (token == Opt_journal_dev) {
1717		if (is_remount) {
1718			ext4_msg(sb, KERN_ERR,
1719				 "Cannot specify journal on remount");
1720			return -1;
1721		}
1722		*journal_devnum = arg;
1723	} else if (token == Opt_journal_path) {
1724		char *journal_path;
1725		struct inode *journal_inode;
1726		struct path path;
1727		int error;
1728
1729		if (is_remount) {
1730			ext4_msg(sb, KERN_ERR,
1731				 "Cannot specify journal on remount");
1732			return -1;
1733		}
1734		journal_path = match_strdup(&args[0]);
1735		if (!journal_path) {
1736			ext4_msg(sb, KERN_ERR, "error: could not dup "
1737				"journal device string");
1738			return -1;
1739		}
1740
1741		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1742		if (error) {
1743			ext4_msg(sb, KERN_ERR, "error: could not find "
1744				"journal device path: error %d", error);
1745			kfree(journal_path);
1746			return -1;
1747		}
1748
1749		journal_inode = d_inode(path.dentry);
1750		if (!S_ISBLK(journal_inode->i_mode)) {
1751			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1752				"is not a block device", journal_path);
1753			path_put(&path);
1754			kfree(journal_path);
1755			return -1;
1756		}
1757
1758		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1759		path_put(&path);
1760		kfree(journal_path);
1761	} else if (token == Opt_journal_ioprio) {
1762		if (arg > 7) {
1763			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1764				 " (must be 0-7)");
1765			return -1;
1766		}
1767		*journal_ioprio =
1768			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1769	} else if (token == Opt_test_dummy_encryption) {
1770#ifdef CONFIG_EXT4_FS_ENCRYPTION
1771		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1772		ext4_msg(sb, KERN_WARNING,
1773			 "Test dummy encryption mode enabled");
1774#else
1775		ext4_msg(sb, KERN_WARNING,
1776			 "Test dummy encryption mount option ignored");
1777#endif
1778	} else if (m->flags & MOPT_DATAJ) {
1779		if (is_remount) {
1780			if (!sbi->s_journal)
1781				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1782			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1783				ext4_msg(sb, KERN_ERR,
1784					 "Cannot change data mode on remount");
1785				return -1;
1786			}
1787		} else {
1788			clear_opt(sb, DATA_FLAGS);
1789			sbi->s_mount_opt |= m->mount_opt;
1790		}
1791#ifdef CONFIG_QUOTA
1792	} else if (m->flags & MOPT_QFMT) {
1793		if (sb_any_quota_loaded(sb) &&
1794		    sbi->s_jquota_fmt != m->mount_opt) {
1795			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1796				 "quota options when quota turned on");
1797			return -1;
1798		}
1799		if (ext4_has_feature_quota(sb)) {
1800			ext4_msg(sb, KERN_INFO,
1801				 "Quota format mount options ignored "
1802				 "when QUOTA feature is enabled");
1803			return 1;
1804		}
1805		sbi->s_jquota_fmt = m->mount_opt;
1806#endif
1807	} else if (token == Opt_dax) {
 
1808#ifdef CONFIG_FS_DAX
1809		ext4_msg(sb, KERN_WARNING,
1810		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1811			sbi->s_mount_opt |= m->mount_opt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1812#else
1813		ext4_msg(sb, KERN_INFO, "dax option not supported");
 
 
1814		return -1;
1815#endif
1816	} else if (token == Opt_data_err_abort) {
1817		sbi->s_mount_opt |= m->mount_opt;
1818	} else if (token == Opt_data_err_ignore) {
1819		sbi->s_mount_opt &= ~m->mount_opt;
1820	} else {
1821		if (!args->from)
1822			arg = 1;
1823		if (m->flags & MOPT_CLEAR)
1824			arg = !arg;
1825		else if (unlikely(!(m->flags & MOPT_SET))) {
1826			ext4_msg(sb, KERN_WARNING,
1827				 "buggy handling of option %s", opt);
1828			WARN_ON(1);
1829			return -1;
1830		}
1831		if (arg != 0)
1832			sbi->s_mount_opt |= m->mount_opt;
1833		else
1834			sbi->s_mount_opt &= ~m->mount_opt;
1835	}
1836	return 1;
1837}
1838
1839static int parse_options(char *options, struct super_block *sb,
1840			 unsigned long *journal_devnum,
1841			 unsigned int *journal_ioprio,
1842			 int is_remount)
1843{
1844	struct ext4_sb_info *sbi = EXT4_SB(sb);
1845	char *p;
1846	substring_t args[MAX_OPT_ARGS];
1847	int token;
1848
1849	if (!options)
1850		return 1;
1851
1852	while ((p = strsep(&options, ",")) != NULL) {
1853		if (!*p)
1854			continue;
1855		/*
1856		 * Initialize args struct so we know whether arg was
1857		 * found; some options take optional arguments.
1858		 */
1859		args[0].to = args[0].from = NULL;
1860		token = match_token(p, tokens, args);
1861		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1862				     journal_ioprio, is_remount) < 0)
1863			return 0;
1864	}
1865#ifdef CONFIG_QUOTA
1866	/*
1867	 * We do the test below only for project quotas. 'usrquota' and
1868	 * 'grpquota' mount options are allowed even without quota feature
1869	 * to support legacy quotas in quota files.
1870	 */
1871	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1872		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1873			 "Cannot enable project quota enforcement.");
1874		return 0;
1875	}
1876	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1877		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
 
 
1878			clear_opt(sb, USRQUOTA);
1879
1880		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1881			clear_opt(sb, GRPQUOTA);
1882
1883		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1884			ext4_msg(sb, KERN_ERR, "old and new quota "
1885					"format mixing");
1886			return 0;
1887		}
1888
1889		if (!sbi->s_jquota_fmt) {
1890			ext4_msg(sb, KERN_ERR, "journaled quota format "
1891					"not specified");
1892			return 0;
1893		}
1894	}
1895#endif
1896	if (test_opt(sb, DIOREAD_NOLOCK)) {
1897		int blocksize =
1898			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1899
1900		if (blocksize < PAGE_SIZE) {
1901			ext4_msg(sb, KERN_ERR, "can't mount with "
1902				 "dioread_nolock if block size != PAGE_SIZE");
1903			return 0;
1904		}
1905	}
1906	return 1;
1907}
1908
1909static inline void ext4_show_quota_options(struct seq_file *seq,
1910					   struct super_block *sb)
1911{
1912#if defined(CONFIG_QUOTA)
1913	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
1914
1915	if (sbi->s_jquota_fmt) {
1916		char *fmtname = "";
1917
1918		switch (sbi->s_jquota_fmt) {
1919		case QFMT_VFS_OLD:
1920			fmtname = "vfsold";
1921			break;
1922		case QFMT_VFS_V0:
1923			fmtname = "vfsv0";
1924			break;
1925		case QFMT_VFS_V1:
1926			fmtname = "vfsv1";
1927			break;
1928		}
1929		seq_printf(seq, ",jqfmt=%s", fmtname);
1930	}
1931
1932	if (sbi->s_qf_names[USRQUOTA])
1933		seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1934
1935	if (sbi->s_qf_names[GRPQUOTA])
1936		seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
 
 
 
1937#endif
1938}
1939
1940static const char *token2str(int token)
1941{
1942	const struct match_token *t;
1943
1944	for (t = tokens; t->token != Opt_err; t++)
1945		if (t->token == token && !strchr(t->pattern, '='))
1946			break;
1947	return t->pattern;
1948}
1949
1950/*
1951 * Show an option if
1952 *  - it's set to a non-default value OR
1953 *  - if the per-sb default is different from the global default
1954 */
1955static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1956			      int nodefs)
1957{
1958	struct ext4_sb_info *sbi = EXT4_SB(sb);
1959	struct ext4_super_block *es = sbi->s_es;
1960	int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1961	const struct mount_opts *m;
1962	char sep = nodefs ? '\n' : ',';
1963
1964#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1965#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1966
1967	if (sbi->s_sb_block != 1)
1968		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1969
1970	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1971		int want_set = m->flags & MOPT_SET;
1972		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1973		    (m->flags & MOPT_CLEAR_ERR))
1974			continue;
1975		if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1976			continue; /* skip if same as the default */
1977		if ((want_set &&
1978		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1979		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1980			continue; /* select Opt_noFoo vs Opt_Foo */
1981		SEQ_OPTS_PRINT("%s", token2str(m->token));
1982	}
1983
1984	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1985	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1986		SEQ_OPTS_PRINT("resuid=%u",
1987				from_kuid_munged(&init_user_ns, sbi->s_resuid));
1988	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1989	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1990		SEQ_OPTS_PRINT("resgid=%u",
1991				from_kgid_munged(&init_user_ns, sbi->s_resgid));
1992	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1993	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1994		SEQ_OPTS_PUTS("errors=remount-ro");
1995	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1996		SEQ_OPTS_PUTS("errors=continue");
1997	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1998		SEQ_OPTS_PUTS("errors=panic");
1999	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2000		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2001	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2002		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2003	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2004		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2005	if (sb->s_flags & MS_I_VERSION)
2006		SEQ_OPTS_PUTS("i_version");
2007	if (nodefs || sbi->s_stripe)
2008		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2009	if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
 
2010		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2011			SEQ_OPTS_PUTS("data=journal");
2012		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2013			SEQ_OPTS_PUTS("data=ordered");
2014		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2015			SEQ_OPTS_PUTS("data=writeback");
2016	}
2017	if (nodefs ||
2018	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2019		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2020			       sbi->s_inode_readahead_blks);
2021
2022	if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2023		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2024		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2025	if (nodefs || sbi->s_max_dir_size_kb)
2026		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2027	if (test_opt(sb, DATA_ERR_ABORT))
2028		SEQ_OPTS_PUTS("data_err=abort");
2029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2030	ext4_show_quota_options(seq, sb);
2031	return 0;
2032}
2033
2034static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2035{
2036	return _ext4_show_options(seq, root->d_sb, 0);
2037}
2038
2039int ext4_seq_options_show(struct seq_file *seq, void *offset)
2040{
2041	struct super_block *sb = seq->private;
2042	int rc;
2043
2044	seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2045	rc = _ext4_show_options(seq, sb, 1);
2046	seq_puts(seq, "\n");
2047	return rc;
2048}
2049
2050static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2051			    int read_only)
2052{
2053	struct ext4_sb_info *sbi = EXT4_SB(sb);
2054	int res = 0;
2055
2056	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2057		ext4_msg(sb, KERN_ERR, "revision level too high, "
2058			 "forcing read-only mode");
2059		res = MS_RDONLY;
 
2060	}
2061	if (read_only)
2062		goto done;
2063	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2064		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2065			 "running e2fsck is recommended");
2066	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2067		ext4_msg(sb, KERN_WARNING,
2068			 "warning: mounting fs with errors, "
2069			 "running e2fsck is recommended");
2070	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2071		 le16_to_cpu(es->s_mnt_count) >=
2072		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2073		ext4_msg(sb, KERN_WARNING,
2074			 "warning: maximal mount count reached, "
2075			 "running e2fsck is recommended");
2076	else if (le32_to_cpu(es->s_checkinterval) &&
2077		(le32_to_cpu(es->s_lastcheck) +
2078			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2079		ext4_msg(sb, KERN_WARNING,
2080			 "warning: checktime reached, "
2081			 "running e2fsck is recommended");
2082	if (!sbi->s_journal)
2083		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2084	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2085		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2086	le16_add_cpu(&es->s_mnt_count, 1);
2087	es->s_mtime = cpu_to_le32(get_seconds());
2088	ext4_update_dynamic_rev(sb);
2089	if (sbi->s_journal)
2090		ext4_set_feature_journal_needs_recovery(sb);
2091
2092	ext4_commit_super(sb, 1);
2093done:
2094	if (test_opt(sb, DEBUG))
2095		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2096				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2097			sb->s_blocksize,
2098			sbi->s_groups_count,
2099			EXT4_BLOCKS_PER_GROUP(sb),
2100			EXT4_INODES_PER_GROUP(sb),
2101			sbi->s_mount_opt, sbi->s_mount_opt2);
2102
2103	cleancache_init_fs(sb);
2104	return res;
2105}
2106
2107int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2108{
2109	struct ext4_sb_info *sbi = EXT4_SB(sb);
2110	struct flex_groups *new_groups;
2111	int size;
2112
2113	if (!sbi->s_log_groups_per_flex)
2114		return 0;
2115
2116	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2117	if (size <= sbi->s_flex_groups_allocated)
2118		return 0;
2119
2120	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2121	new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2122	if (!new_groups) {
2123		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2124			 size / (int) sizeof(struct flex_groups));
2125		return -ENOMEM;
2126	}
2127
2128	if (sbi->s_flex_groups) {
2129		memcpy(new_groups, sbi->s_flex_groups,
2130		       (sbi->s_flex_groups_allocated *
2131			sizeof(struct flex_groups)));
2132		kvfree(sbi->s_flex_groups);
 
 
 
 
 
 
2133	}
2134	sbi->s_flex_groups = new_groups;
2135	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
 
 
 
 
 
 
 
 
 
2136	return 0;
2137}
2138
2139static int ext4_fill_flex_info(struct super_block *sb)
2140{
2141	struct ext4_sb_info *sbi = EXT4_SB(sb);
2142	struct ext4_group_desc *gdp = NULL;
 
2143	ext4_group_t flex_group;
2144	int i, err;
2145
2146	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2147	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2148		sbi->s_log_groups_per_flex = 0;
2149		return 1;
2150	}
2151
2152	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2153	if (err)
2154		goto failed;
2155
2156	for (i = 0; i < sbi->s_groups_count; i++) {
2157		gdp = ext4_get_group_desc(sb, i, NULL);
2158
2159		flex_group = ext4_flex_group(sbi, i);
2160		atomic_add(ext4_free_inodes_count(sb, gdp),
2161			   &sbi->s_flex_groups[flex_group].free_inodes);
2162		atomic64_add(ext4_free_group_clusters(sb, gdp),
2163			     &sbi->s_flex_groups[flex_group].free_clusters);
2164		atomic_add(ext4_used_dirs_count(sb, gdp),
2165			   &sbi->s_flex_groups[flex_group].used_dirs);
2166	}
2167
2168	return 1;
2169failed:
2170	return 0;
2171}
2172
2173static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2174				   struct ext4_group_desc *gdp)
2175{
2176	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2177	__u16 crc = 0;
2178	__le32 le_group = cpu_to_le32(block_group);
2179	struct ext4_sb_info *sbi = EXT4_SB(sb);
2180
2181	if (ext4_has_metadata_csum(sbi->s_sb)) {
2182		/* Use new metadata_csum algorithm */
2183		__u32 csum32;
2184		__u16 dummy_csum = 0;
2185
2186		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2187				     sizeof(le_group));
2188		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2189		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2190				     sizeof(dummy_csum));
2191		offset += sizeof(dummy_csum);
2192		if (offset < sbi->s_desc_size)
2193			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2194					     sbi->s_desc_size - offset);
2195
2196		crc = csum32 & 0xFFFF;
2197		goto out;
2198	}
2199
2200	/* old crc16 code */
2201	if (!ext4_has_feature_gdt_csum(sb))
2202		return 0;
2203
2204	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2205	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2206	crc = crc16(crc, (__u8 *)gdp, offset);
2207	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2208	/* for checksum of struct ext4_group_desc do the rest...*/
2209	if (ext4_has_feature_64bit(sb) &&
2210	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2211		crc = crc16(crc, (__u8 *)gdp + offset,
2212			    le16_to_cpu(sbi->s_es->s_desc_size) -
2213				offset);
2214
2215out:
2216	return cpu_to_le16(crc);
2217}
2218
2219int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2220				struct ext4_group_desc *gdp)
2221{
2222	if (ext4_has_group_desc_csum(sb) &&
2223	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2224		return 0;
2225
2226	return 1;
2227}
2228
2229void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2230			      struct ext4_group_desc *gdp)
2231{
2232	if (!ext4_has_group_desc_csum(sb))
2233		return;
2234	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2235}
2236
2237/* Called at mount-time, super-block is locked */
2238static int ext4_check_descriptors(struct super_block *sb,
2239				  ext4_fsblk_t sb_block,
2240				  ext4_group_t *first_not_zeroed)
2241{
2242	struct ext4_sb_info *sbi = EXT4_SB(sb);
2243	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2244	ext4_fsblk_t last_block;
 
2245	ext4_fsblk_t block_bitmap;
2246	ext4_fsblk_t inode_bitmap;
2247	ext4_fsblk_t inode_table;
2248	int flexbg_flag = 0;
2249	ext4_group_t i, grp = sbi->s_groups_count;
2250
2251	if (ext4_has_feature_flex_bg(sb))
2252		flexbg_flag = 1;
2253
2254	ext4_debug("Checking group descriptors");
2255
2256	for (i = 0; i < sbi->s_groups_count; i++) {
2257		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2258
2259		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2260			last_block = ext4_blocks_count(sbi->s_es) - 1;
2261		else
2262			last_block = first_block +
2263				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2264
2265		if ((grp == sbi->s_groups_count) &&
2266		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2267			grp = i;
2268
2269		block_bitmap = ext4_block_bitmap(sb, gdp);
2270		if (block_bitmap == sb_block) {
2271			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2272				 "Block bitmap for group %u overlaps "
2273				 "superblock", i);
 
 
 
 
 
 
 
 
 
 
2274		}
2275		if (block_bitmap < first_block || block_bitmap > last_block) {
2276			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2277			       "Block bitmap for group %u not in group "
2278			       "(block %llu)!", i, block_bitmap);
2279			return 0;
2280		}
2281		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2282		if (inode_bitmap == sb_block) {
2283			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2284				 "Inode bitmap for group %u overlaps "
2285				 "superblock", i);
 
 
 
 
 
 
 
 
 
 
2286		}
2287		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2288			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2289			       "Inode bitmap for group %u not in group "
2290			       "(block %llu)!", i, inode_bitmap);
2291			return 0;
2292		}
2293		inode_table = ext4_inode_table(sb, gdp);
2294		if (inode_table == sb_block) {
2295			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2296				 "Inode table for group %u overlaps "
2297				 "superblock", i);
 
 
 
 
 
 
 
 
 
 
2298		}
2299		if (inode_table < first_block ||
2300		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2301			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2302			       "Inode table for group %u not in group "
2303			       "(block %llu)!", i, inode_table);
2304			return 0;
2305		}
2306		ext4_lock_group(sb, i);
2307		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2308			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2309				 "Checksum for group %u failed (%u!=%u)",
2310				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2311				     gdp)), le16_to_cpu(gdp->bg_checksum));
2312			if (!(sb->s_flags & MS_RDONLY)) {
2313				ext4_unlock_group(sb, i);
2314				return 0;
2315			}
2316		}
2317		ext4_unlock_group(sb, i);
2318		if (!flexbg_flag)
2319			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2320	}
2321	if (NULL != first_not_zeroed)
2322		*first_not_zeroed = grp;
2323	return 1;
2324}
2325
2326/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2327 * the superblock) which were deleted from all directories, but held open by
2328 * a process at the time of a crash.  We walk the list and try to delete these
2329 * inodes at recovery time (only with a read-write filesystem).
2330 *
2331 * In order to keep the orphan inode chain consistent during traversal (in
2332 * case of crash during recovery), we link each inode into the superblock
2333 * orphan list_head and handle it the same way as an inode deletion during
2334 * normal operation (which journals the operations for us).
2335 *
2336 * We only do an iget() and an iput() on each inode, which is very safe if we
2337 * accidentally point at an in-use or already deleted inode.  The worst that
2338 * can happen in this case is that we get a "bit already cleared" message from
2339 * ext4_free_inode().  The only reason we would point at a wrong inode is if
2340 * e2fsck was run on this filesystem, and it must have already done the orphan
2341 * inode cleanup for us, so we can safely abort without any further action.
2342 */
2343static void ext4_orphan_cleanup(struct super_block *sb,
2344				struct ext4_super_block *es)
2345{
2346	unsigned int s_flags = sb->s_flags;
2347	int ret, nr_orphans = 0, nr_truncates = 0;
2348#ifdef CONFIG_QUOTA
 
2349	int i;
2350#endif
2351	if (!es->s_last_orphan) {
2352		jbd_debug(4, "no orphan inodes to clean up\n");
2353		return;
2354	}
2355
2356	if (bdev_read_only(sb->s_bdev)) {
2357		ext4_msg(sb, KERN_ERR, "write access "
2358			"unavailable, skipping orphan cleanup");
2359		return;
2360	}
2361
2362	/* Check if feature set would not allow a r/w mount */
2363	if (!ext4_feature_set_ok(sb, 0)) {
2364		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2365			 "unknown ROCOMPAT features");
2366		return;
2367	}
2368
2369	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2370		/* don't clear list on RO mount w/ errors */
2371		if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2372			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2373				  "clearing orphan list.\n");
2374			es->s_last_orphan = 0;
2375		}
2376		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2377		return;
2378	}
2379
2380	if (s_flags & MS_RDONLY) {
2381		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2382		sb->s_flags &= ~MS_RDONLY;
2383	}
2384#ifdef CONFIG_QUOTA
2385	/* Needed for iput() to work correctly and not trash data */
2386	sb->s_flags |= MS_ACTIVE;
2387	/* Turn on quotas so that they are updated correctly */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2388	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2389		if (EXT4_SB(sb)->s_qf_names[i]) {
2390			int ret = ext4_quota_on_mount(sb, i);
2391			if (ret < 0)
 
 
 
2392				ext4_msg(sb, KERN_ERR,
2393					"Cannot turn on journaled "
2394					"quota: error %d", ret);
2395		}
2396	}
2397#endif
2398
2399	while (es->s_last_orphan) {
2400		struct inode *inode;
2401
2402		/*
2403		 * We may have encountered an error during cleanup; if
2404		 * so, skip the rest.
2405		 */
2406		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2407			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2408			es->s_last_orphan = 0;
2409			break;
2410		}
2411
2412		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2413		if (IS_ERR(inode)) {
2414			es->s_last_orphan = 0;
2415			break;
2416		}
2417
2418		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2419		dquot_initialize(inode);
2420		if (inode->i_nlink) {
2421			if (test_opt(sb, DEBUG))
2422				ext4_msg(sb, KERN_DEBUG,
2423					"%s: truncating inode %lu to %lld bytes",
2424					__func__, inode->i_ino, inode->i_size);
2425			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2426				  inode->i_ino, inode->i_size);
2427			inode_lock(inode);
2428			truncate_inode_pages(inode->i_mapping, inode->i_size);
2429			ret = ext4_truncate(inode);
2430			if (ret)
2431				ext4_std_error(inode->i_sb, ret);
2432			inode_unlock(inode);
2433			nr_truncates++;
2434		} else {
2435			if (test_opt(sb, DEBUG))
2436				ext4_msg(sb, KERN_DEBUG,
2437					"%s: deleting unreferenced inode %lu",
2438					__func__, inode->i_ino);
2439			jbd_debug(2, "deleting unreferenced inode %lu\n",
2440				  inode->i_ino);
2441			nr_orphans++;
2442		}
2443		iput(inode);  /* The delete magic happens here! */
2444	}
2445
2446#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2447
2448	if (nr_orphans)
2449		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2450		       PLURAL(nr_orphans));
2451	if (nr_truncates)
2452		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2453		       PLURAL(nr_truncates));
2454#ifdef CONFIG_QUOTA
2455	/* Turn quotas off */
2456	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2457		if (sb_dqopt(sb)->files[i])
2458			dquot_quota_off(sb, i);
 
 
2459	}
2460#endif
2461	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2462}
2463
2464/*
2465 * Maximal extent format file size.
2466 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2467 * extent format containers, within a sector_t, and within i_blocks
2468 * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2469 * so that won't be a limiting factor.
2470 *
2471 * However there is other limiting factor. We do store extents in the form
2472 * of starting block and length, hence the resulting length of the extent
2473 * covering maximum file size must fit into on-disk format containers as
2474 * well. Given that length is always by 1 unit bigger than max unit (because
2475 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2476 *
2477 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2478 */
2479static loff_t ext4_max_size(int blkbits, int has_huge_files)
2480{
2481	loff_t res;
2482	loff_t upper_limit = MAX_LFS_FILESIZE;
2483
2484	/* small i_blocks in vfs inode? */
2485	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2486		/*
2487		 * CONFIG_LBDAF is not enabled implies the inode
2488		 * i_block represent total blocks in 512 bytes
2489		 * 32 == size of vfs inode i_blocks * 8
2490		 */
2491		upper_limit = (1LL << 32) - 1;
2492
2493		/* total blocks in file system block size */
2494		upper_limit >>= (blkbits - 9);
2495		upper_limit <<= blkbits;
2496	}
2497
2498	/*
2499	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2500	 * by one fs block, so ee_len can cover the extent of maximum file
2501	 * size
2502	 */
2503	res = (1LL << 32) - 1;
2504	res <<= blkbits;
2505
2506	/* Sanity check against vm- & vfs- imposed limits */
2507	if (res > upper_limit)
2508		res = upper_limit;
2509
2510	return res;
2511}
2512
2513/*
2514 * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2515 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2516 * We need to be 1 filesystem block less than the 2^48 sector limit.
2517 */
2518static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2519{
2520	loff_t res = EXT4_NDIR_BLOCKS;
2521	int meta_blocks;
2522	loff_t upper_limit;
2523	/* This is calculated to be the largest file size for a dense, block
2524	 * mapped file such that the file's total number of 512-byte sectors,
2525	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2526	 *
2527	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2528	 * number of 512-byte sectors of the file.
2529	 */
2530
2531	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2532		/*
2533		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2534		 * the inode i_block field represents total file blocks in
2535		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2536		 */
2537		upper_limit = (1LL << 32) - 1;
2538
2539		/* total blocks in file system block size */
2540		upper_limit >>= (bits - 9);
2541
2542	} else {
2543		/*
2544		 * We use 48 bit ext4_inode i_blocks
2545		 * With EXT4_HUGE_FILE_FL set the i_blocks
2546		 * represent total number of blocks in
2547		 * file system block size
2548		 */
2549		upper_limit = (1LL << 48) - 1;
2550
2551	}
2552
2553	/* indirect blocks */
2554	meta_blocks = 1;
2555	/* double indirect blocks */
2556	meta_blocks += 1 + (1LL << (bits-2));
2557	/* tripple indirect blocks */
2558	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2559
2560	upper_limit -= meta_blocks;
2561	upper_limit <<= bits;
2562
2563	res += 1LL << (bits-2);
2564	res += 1LL << (2*(bits-2));
2565	res += 1LL << (3*(bits-2));
2566	res <<= bits;
2567	if (res > upper_limit)
2568		res = upper_limit;
2569
2570	if (res > MAX_LFS_FILESIZE)
2571		res = MAX_LFS_FILESIZE;
2572
2573	return res;
2574}
2575
2576static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2577				   ext4_fsblk_t logical_sb_block, int nr)
2578{
2579	struct ext4_sb_info *sbi = EXT4_SB(sb);
2580	ext4_group_t bg, first_meta_bg;
2581	int has_super = 0;
2582
2583	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2584
2585	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2586		return logical_sb_block + nr + 1;
2587	bg = sbi->s_desc_per_block * nr;
2588	if (ext4_bg_has_super(sb, bg))
2589		has_super = 1;
2590
2591	/*
2592	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2593	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2594	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2595	 * compensate.
2596	 */
2597	if (sb->s_blocksize == 1024 && nr == 0 &&
2598	    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2599		has_super++;
2600
2601	return (has_super + ext4_group_first_block_no(sb, bg));
2602}
2603
2604/**
2605 * ext4_get_stripe_size: Get the stripe size.
2606 * @sbi: In memory super block info
2607 *
2608 * If we have specified it via mount option, then
2609 * use the mount option value. If the value specified at mount time is
2610 * greater than the blocks per group use the super block value.
2611 * If the super block value is greater than blocks per group return 0.
2612 * Allocator needs it be less than blocks per group.
2613 *
2614 */
2615static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2616{
2617	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2618	unsigned long stripe_width =
2619			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2620	int ret;
2621
2622	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2623		ret = sbi->s_stripe;
2624	else if (stripe_width <= sbi->s_blocks_per_group)
2625		ret = stripe_width;
2626	else if (stride <= sbi->s_blocks_per_group)
2627		ret = stride;
2628	else
2629		ret = 0;
2630
2631	/*
2632	 * If the stripe width is 1, this makes no sense and
2633	 * we set it to 0 to turn off stripe handling code.
2634	 */
2635	if (ret <= 1)
2636		ret = 0;
2637
2638	return ret;
2639}
2640
2641/*
2642 * Check whether this filesystem can be mounted based on
2643 * the features present and the RDONLY/RDWR mount requested.
2644 * Returns 1 if this filesystem can be mounted as requested,
2645 * 0 if it cannot be.
2646 */
2647static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2648{
2649	if (ext4_has_unknown_ext4_incompat_features(sb)) {
2650		ext4_msg(sb, KERN_ERR,
2651			"Couldn't mount because of "
2652			"unsupported optional features (%x)",
2653			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2654			~EXT4_FEATURE_INCOMPAT_SUPP));
2655		return 0;
2656	}
2657
 
 
 
 
 
 
 
 
 
2658	if (readonly)
2659		return 1;
2660
2661	if (ext4_has_feature_readonly(sb)) {
2662		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2663		sb->s_flags |= MS_RDONLY;
2664		return 1;
2665	}
2666
2667	/* Check that feature set is OK for a read-write mount */
2668	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2669		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2670			 "unsupported optional features (%x)",
2671			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2672				~EXT4_FEATURE_RO_COMPAT_SUPP));
2673		return 0;
2674	}
2675	/*
2676	 * Large file size enabled file system can only be mounted
2677	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2678	 */
2679	if (ext4_has_feature_huge_file(sb)) {
2680		if (sizeof(blkcnt_t) < sizeof(u64)) {
2681			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2682				 "cannot be mounted RDWR without "
2683				 "CONFIG_LBDAF");
2684			return 0;
2685		}
2686	}
2687	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2688		ext4_msg(sb, KERN_ERR,
2689			 "Can't support bigalloc feature without "
2690			 "extents feature\n");
2691		return 0;
2692	}
2693
2694#ifndef CONFIG_QUOTA
2695	if (ext4_has_feature_quota(sb) && !readonly) {
 
2696		ext4_msg(sb, KERN_ERR,
2697			 "Filesystem with quota feature cannot be mounted RDWR "
2698			 "without CONFIG_QUOTA");
2699		return 0;
2700	}
2701	if (ext4_has_feature_project(sb) && !readonly) {
2702		ext4_msg(sb, KERN_ERR,
2703			 "Filesystem with project quota feature cannot be mounted RDWR "
2704			 "without CONFIG_QUOTA");
2705		return 0;
2706	}
2707#endif  /* CONFIG_QUOTA */
2708	return 1;
2709}
2710
2711/*
2712 * This function is called once a day if we have errors logged
2713 * on the file system
2714 */
2715static void print_daily_error_info(unsigned long arg)
2716{
2717	struct super_block *sb = (struct super_block *) arg;
2718	struct ext4_sb_info *sbi;
2719	struct ext4_super_block *es;
2720
2721	sbi = EXT4_SB(sb);
2722	es = sbi->s_es;
2723
2724	if (es->s_error_count)
2725		/* fsck newer than v1.41.13 is needed to clean this condition. */
2726		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2727			 le32_to_cpu(es->s_error_count));
2728	if (es->s_first_error_time) {
2729		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2730		       sb->s_id, le32_to_cpu(es->s_first_error_time),
 
2731		       (int) sizeof(es->s_first_error_func),
2732		       es->s_first_error_func,
2733		       le32_to_cpu(es->s_first_error_line));
2734		if (es->s_first_error_ino)
2735			printk(KERN_CONT ": inode %u",
2736			       le32_to_cpu(es->s_first_error_ino));
2737		if (es->s_first_error_block)
2738			printk(KERN_CONT ": block %llu", (unsigned long long)
2739			       le64_to_cpu(es->s_first_error_block));
2740		printk(KERN_CONT "\n");
2741	}
2742	if (es->s_last_error_time) {
2743		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2744		       sb->s_id, le32_to_cpu(es->s_last_error_time),
 
2745		       (int) sizeof(es->s_last_error_func),
2746		       es->s_last_error_func,
2747		       le32_to_cpu(es->s_last_error_line));
2748		if (es->s_last_error_ino)
2749			printk(KERN_CONT ": inode %u",
2750			       le32_to_cpu(es->s_last_error_ino));
2751		if (es->s_last_error_block)
2752			printk(KERN_CONT ": block %llu", (unsigned long long)
2753			       le64_to_cpu(es->s_last_error_block));
2754		printk(KERN_CONT "\n");
2755	}
2756	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2757}
2758
2759/* Find next suitable group and run ext4_init_inode_table */
2760static int ext4_run_li_request(struct ext4_li_request *elr)
2761{
2762	struct ext4_group_desc *gdp = NULL;
2763	ext4_group_t group, ngroups;
2764	struct super_block *sb;
 
2765	unsigned long timeout = 0;
 
2766	int ret = 0;
2767
2768	sb = elr->lr_super;
2769	ngroups = EXT4_SB(sb)->s_groups_count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2770
2771	for (group = elr->lr_next_group; group < ngroups; group++) {
2772		gdp = ext4_get_group_desc(sb, group, NULL);
2773		if (!gdp) {
2774			ret = 1;
2775			break;
2776		}
2777
2778		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2779			break;
2780	}
2781
2782	if (group >= ngroups)
2783		ret = 1;
2784
2785	if (!ret) {
2786		timeout = jiffies;
2787		ret = ext4_init_inode_table(sb, group,
2788					    elr->lr_timeout ? 0 : 1);
 
2789		if (elr->lr_timeout == 0) {
2790			timeout = (jiffies - timeout) *
2791				  elr->lr_sbi->s_li_wait_mult;
2792			elr->lr_timeout = timeout;
2793		}
2794		elr->lr_next_sched = jiffies + elr->lr_timeout;
2795		elr->lr_next_group = group + 1;
2796	}
2797	return ret;
2798}
2799
2800/*
2801 * Remove lr_request from the list_request and free the
2802 * request structure. Should be called with li_list_mtx held
2803 */
2804static void ext4_remove_li_request(struct ext4_li_request *elr)
2805{
2806	struct ext4_sb_info *sbi;
2807
2808	if (!elr)
2809		return;
2810
2811	sbi = elr->lr_sbi;
2812
2813	list_del(&elr->lr_request);
2814	sbi->s_li_request = NULL;
2815	kfree(elr);
2816}
2817
2818static void ext4_unregister_li_request(struct super_block *sb)
2819{
2820	mutex_lock(&ext4_li_mtx);
2821	if (!ext4_li_info) {
2822		mutex_unlock(&ext4_li_mtx);
2823		return;
2824	}
2825
2826	mutex_lock(&ext4_li_info->li_list_mtx);
2827	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2828	mutex_unlock(&ext4_li_info->li_list_mtx);
2829	mutex_unlock(&ext4_li_mtx);
2830}
2831
2832static struct task_struct *ext4_lazyinit_task;
2833
2834/*
2835 * This is the function where ext4lazyinit thread lives. It walks
2836 * through the request list searching for next scheduled filesystem.
2837 * When such a fs is found, run the lazy initialization request
2838 * (ext4_rn_li_request) and keep track of the time spend in this
2839 * function. Based on that time we compute next schedule time of
2840 * the request. When walking through the list is complete, compute
2841 * next waking time and put itself into sleep.
2842 */
2843static int ext4_lazyinit_thread(void *arg)
2844{
2845	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2846	struct list_head *pos, *n;
2847	struct ext4_li_request *elr;
2848	unsigned long next_wakeup, cur;
2849
2850	BUG_ON(NULL == eli);
2851
2852cont_thread:
2853	while (true) {
2854		next_wakeup = MAX_JIFFY_OFFSET;
2855
2856		mutex_lock(&eli->li_list_mtx);
2857		if (list_empty(&eli->li_request_list)) {
2858			mutex_unlock(&eli->li_list_mtx);
2859			goto exit_thread;
2860		}
2861		list_for_each_safe(pos, n, &eli->li_request_list) {
2862			int err = 0;
2863			int progress = 0;
2864			elr = list_entry(pos, struct ext4_li_request,
2865					 lr_request);
2866
2867			if (time_before(jiffies, elr->lr_next_sched)) {
2868				if (time_before(elr->lr_next_sched, next_wakeup))
2869					next_wakeup = elr->lr_next_sched;
2870				continue;
2871			}
2872			if (down_read_trylock(&elr->lr_super->s_umount)) {
2873				if (sb_start_write_trylock(elr->lr_super)) {
2874					progress = 1;
2875					/*
2876					 * We hold sb->s_umount, sb can not
2877					 * be removed from the list, it is
2878					 * now safe to drop li_list_mtx
2879					 */
2880					mutex_unlock(&eli->li_list_mtx);
2881					err = ext4_run_li_request(elr);
2882					sb_end_write(elr->lr_super);
2883					mutex_lock(&eli->li_list_mtx);
2884					n = pos->next;
2885				}
2886				up_read((&elr->lr_super->s_umount));
2887			}
2888			/* error, remove the lazy_init job */
2889			if (err) {
2890				ext4_remove_li_request(elr);
2891				continue;
2892			}
2893			if (!progress) {
2894				elr->lr_next_sched = jiffies +
2895					(prandom_u32()
2896					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2897			}
2898			if (time_before(elr->lr_next_sched, next_wakeup))
2899				next_wakeup = elr->lr_next_sched;
2900		}
2901		mutex_unlock(&eli->li_list_mtx);
2902
2903		try_to_freeze();
2904
2905		cur = jiffies;
2906		if ((time_after_eq(cur, next_wakeup)) ||
2907		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2908			cond_resched();
2909			continue;
2910		}
2911
2912		schedule_timeout_interruptible(next_wakeup - cur);
2913
2914		if (kthread_should_stop()) {
2915			ext4_clear_request_list();
2916			goto exit_thread;
2917		}
2918	}
2919
2920exit_thread:
2921	/*
2922	 * It looks like the request list is empty, but we need
2923	 * to check it under the li_list_mtx lock, to prevent any
2924	 * additions into it, and of course we should lock ext4_li_mtx
2925	 * to atomically free the list and ext4_li_info, because at
2926	 * this point another ext4 filesystem could be registering
2927	 * new one.
2928	 */
2929	mutex_lock(&ext4_li_mtx);
2930	mutex_lock(&eli->li_list_mtx);
2931	if (!list_empty(&eli->li_request_list)) {
2932		mutex_unlock(&eli->li_list_mtx);
2933		mutex_unlock(&ext4_li_mtx);
2934		goto cont_thread;
2935	}
2936	mutex_unlock(&eli->li_list_mtx);
2937	kfree(ext4_li_info);
2938	ext4_li_info = NULL;
2939	mutex_unlock(&ext4_li_mtx);
2940
2941	return 0;
2942}
2943
2944static void ext4_clear_request_list(void)
2945{
2946	struct list_head *pos, *n;
2947	struct ext4_li_request *elr;
2948
2949	mutex_lock(&ext4_li_info->li_list_mtx);
2950	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2951		elr = list_entry(pos, struct ext4_li_request,
2952				 lr_request);
2953		ext4_remove_li_request(elr);
2954	}
2955	mutex_unlock(&ext4_li_info->li_list_mtx);
2956}
2957
2958static int ext4_run_lazyinit_thread(void)
2959{
2960	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2961					 ext4_li_info, "ext4lazyinit");
2962	if (IS_ERR(ext4_lazyinit_task)) {
2963		int err = PTR_ERR(ext4_lazyinit_task);
2964		ext4_clear_request_list();
2965		kfree(ext4_li_info);
2966		ext4_li_info = NULL;
2967		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2968				 "initialization thread\n",
2969				 err);
2970		return err;
2971	}
2972	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2973	return 0;
2974}
2975
2976/*
2977 * Check whether it make sense to run itable init. thread or not.
2978 * If there is at least one uninitialized inode table, return
2979 * corresponding group number, else the loop goes through all
2980 * groups and return total number of groups.
2981 */
2982static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2983{
2984	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2985	struct ext4_group_desc *gdp = NULL;
2986
 
 
 
2987	for (group = 0; group < ngroups; group++) {
2988		gdp = ext4_get_group_desc(sb, group, NULL);
2989		if (!gdp)
2990			continue;
2991
2992		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2993			break;
2994	}
2995
2996	return group;
2997}
2998
2999static int ext4_li_info_new(void)
3000{
3001	struct ext4_lazy_init *eli = NULL;
3002
3003	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3004	if (!eli)
3005		return -ENOMEM;
3006
3007	INIT_LIST_HEAD(&eli->li_request_list);
3008	mutex_init(&eli->li_list_mtx);
3009
3010	eli->li_state |= EXT4_LAZYINIT_QUIT;
3011
3012	ext4_li_info = eli;
3013
3014	return 0;
3015}
3016
3017static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3018					    ext4_group_t start)
3019{
3020	struct ext4_sb_info *sbi = EXT4_SB(sb);
3021	struct ext4_li_request *elr;
3022
3023	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3024	if (!elr)
3025		return NULL;
3026
3027	elr->lr_super = sb;
3028	elr->lr_sbi = sbi;
3029	elr->lr_next_group = start;
 
 
 
 
 
3030
3031	/*
3032	 * Randomize first schedule time of the request to
3033	 * spread the inode table initialization requests
3034	 * better.
3035	 */
3036	elr->lr_next_sched = jiffies + (prandom_u32() %
3037				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3038	return elr;
3039}
3040
3041int ext4_register_li_request(struct super_block *sb,
3042			     ext4_group_t first_not_zeroed)
3043{
3044	struct ext4_sb_info *sbi = EXT4_SB(sb);
3045	struct ext4_li_request *elr = NULL;
3046	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3047	int ret = 0;
3048
3049	mutex_lock(&ext4_li_mtx);
3050	if (sbi->s_li_request != NULL) {
3051		/*
3052		 * Reset timeout so it can be computed again, because
3053		 * s_li_wait_mult might have changed.
3054		 */
3055		sbi->s_li_request->lr_timeout = 0;
3056		goto out;
3057	}
3058
3059	if (first_not_zeroed == ngroups ||
3060	    (sb->s_flags & MS_RDONLY) ||
3061	    !test_opt(sb, INIT_INODE_TABLE))
3062		goto out;
3063
3064	elr = ext4_li_request_new(sb, first_not_zeroed);
3065	if (!elr) {
3066		ret = -ENOMEM;
3067		goto out;
3068	}
3069
3070	if (NULL == ext4_li_info) {
3071		ret = ext4_li_info_new();
3072		if (ret)
3073			goto out;
3074	}
3075
3076	mutex_lock(&ext4_li_info->li_list_mtx);
3077	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3078	mutex_unlock(&ext4_li_info->li_list_mtx);
3079
3080	sbi->s_li_request = elr;
3081	/*
3082	 * set elr to NULL here since it has been inserted to
3083	 * the request_list and the removal and free of it is
3084	 * handled by ext4_clear_request_list from now on.
3085	 */
3086	elr = NULL;
3087
3088	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3089		ret = ext4_run_lazyinit_thread();
3090		if (ret)
3091			goto out;
3092	}
3093out:
3094	mutex_unlock(&ext4_li_mtx);
3095	if (ret)
3096		kfree(elr);
3097	return ret;
3098}
3099
3100/*
3101 * We do not need to lock anything since this is called on
3102 * module unload.
3103 */
3104static void ext4_destroy_lazyinit_thread(void)
3105{
3106	/*
3107	 * If thread exited earlier
3108	 * there's nothing to be done.
3109	 */
3110	if (!ext4_li_info || !ext4_lazyinit_task)
3111		return;
3112
3113	kthread_stop(ext4_lazyinit_task);
3114}
3115
3116static int set_journal_csum_feature_set(struct super_block *sb)
3117{
3118	int ret = 1;
3119	int compat, incompat;
3120	struct ext4_sb_info *sbi = EXT4_SB(sb);
3121
3122	if (ext4_has_metadata_csum(sb)) {
3123		/* journal checksum v3 */
3124		compat = 0;
3125		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3126	} else {
3127		/* journal checksum v1 */
3128		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3129		incompat = 0;
3130	}
3131
3132	jbd2_journal_clear_features(sbi->s_journal,
3133			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3134			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3135			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3136	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3137		ret = jbd2_journal_set_features(sbi->s_journal,
3138				compat, 0,
3139				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3140				incompat);
3141	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3142		ret = jbd2_journal_set_features(sbi->s_journal,
3143				compat, 0,
3144				incompat);
3145		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3146				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3147	} else {
3148		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3149				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3150	}
3151
3152	return ret;
3153}
3154
3155/*
3156 * Note: calculating the overhead so we can be compatible with
3157 * historical BSD practice is quite difficult in the face of
3158 * clusters/bigalloc.  This is because multiple metadata blocks from
3159 * different block group can end up in the same allocation cluster.
3160 * Calculating the exact overhead in the face of clustered allocation
3161 * requires either O(all block bitmaps) in memory or O(number of block
3162 * groups**2) in time.  We will still calculate the superblock for
3163 * older file systems --- and if we come across with a bigalloc file
3164 * system with zero in s_overhead_clusters the estimate will be close to
3165 * correct especially for very large cluster sizes --- but for newer
3166 * file systems, it's better to calculate this figure once at mkfs
3167 * time, and store it in the superblock.  If the superblock value is
3168 * present (even for non-bigalloc file systems), we will use it.
3169 */
3170static int count_overhead(struct super_block *sb, ext4_group_t grp,
3171			  char *buf)
3172{
3173	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3174	struct ext4_group_desc	*gdp;
3175	ext4_fsblk_t		first_block, last_block, b;
3176	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3177	int			s, j, count = 0;
3178
3179	if (!ext4_has_feature_bigalloc(sb))
3180		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3181			sbi->s_itb_per_group + 2);
3182
3183	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3184		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3185	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3186	for (i = 0; i < ngroups; i++) {
3187		gdp = ext4_get_group_desc(sb, i, NULL);
3188		b = ext4_block_bitmap(sb, gdp);
3189		if (b >= first_block && b <= last_block) {
3190			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3191			count++;
3192		}
3193		b = ext4_inode_bitmap(sb, gdp);
3194		if (b >= first_block && b <= last_block) {
3195			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3196			count++;
3197		}
3198		b = ext4_inode_table(sb, gdp);
3199		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3200			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3201				int c = EXT4_B2C(sbi, b - first_block);
3202				ext4_set_bit(c, buf);
3203				count++;
3204			}
3205		if (i != grp)
3206			continue;
3207		s = 0;
3208		if (ext4_bg_has_super(sb, grp)) {
3209			ext4_set_bit(s++, buf);
3210			count++;
3211		}
3212		j = ext4_bg_num_gdb(sb, grp);
3213		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3214			ext4_error(sb, "Invalid number of block group "
3215				   "descriptor blocks: %d", j);
3216			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3217		}
3218		count += j;
3219		for (; j > 0; j--)
3220			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3221	}
3222	if (!count)
3223		return 0;
3224	return EXT4_CLUSTERS_PER_GROUP(sb) -
3225		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3226}
3227
3228/*
3229 * Compute the overhead and stash it in sbi->s_overhead
3230 */
3231int ext4_calculate_overhead(struct super_block *sb)
3232{
3233	struct ext4_sb_info *sbi = EXT4_SB(sb);
3234	struct ext4_super_block *es = sbi->s_es;
3235	struct inode *j_inode;
3236	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3237	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3238	ext4_fsblk_t overhead = 0;
3239	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3240
3241	if (!buf)
3242		return -ENOMEM;
3243
3244	/*
3245	 * Compute the overhead (FS structures).  This is constant
3246	 * for a given filesystem unless the number of block groups
3247	 * changes so we cache the previous value until it does.
3248	 */
3249
3250	/*
3251	 * All of the blocks before first_data_block are overhead
3252	 */
3253	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3254
3255	/*
3256	 * Add the overhead found in each block group
3257	 */
3258	for (i = 0; i < ngroups; i++) {
3259		int blks;
3260
3261		blks = count_overhead(sb, i, buf);
3262		overhead += blks;
3263		if (blks)
3264			memset(buf, 0, PAGE_SIZE);
3265		cond_resched();
3266	}
3267
3268	/*
3269	 * Add the internal journal blocks whether the journal has been
3270	 * loaded or not
3271	 */
3272	if (sbi->s_journal && !sbi->journal_bdev)
3273		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3274	else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
 
3275		j_inode = ext4_get_journal_inode(sb, j_inum);
3276		if (j_inode) {
3277			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3278			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3279			iput(j_inode);
3280		} else {
3281			ext4_msg(sb, KERN_ERR, "can't get journal size");
3282		}
3283	}
3284	sbi->s_overhead = overhead;
3285	smp_wmb();
3286	free_page((unsigned long) buf);
3287	return 0;
3288}
3289
3290static void ext4_set_resv_clusters(struct super_block *sb)
3291{
3292	ext4_fsblk_t resv_clusters;
3293	struct ext4_sb_info *sbi = EXT4_SB(sb);
3294
3295	/*
3296	 * There's no need to reserve anything when we aren't using extents.
3297	 * The space estimates are exact, there are no unwritten extents,
3298	 * hole punching doesn't need new metadata... This is needed especially
3299	 * to keep ext2/3 backward compatibility.
3300	 */
3301	if (!ext4_has_feature_extents(sb))
3302		return;
3303	/*
3304	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3305	 * This should cover the situations where we can not afford to run
3306	 * out of space like for example punch hole, or converting
3307	 * unwritten extents in delalloc path. In most cases such
3308	 * allocation would require 1, or 2 blocks, higher numbers are
3309	 * very rare.
3310	 */
3311	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3312			 sbi->s_cluster_bits);
3313
3314	do_div(resv_clusters, 50);
3315	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3316
3317	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3318}
3319
3320static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3321{
 
3322	char *orig_data = kstrdup(data, GFP_KERNEL);
3323	struct buffer_head *bh;
3324	struct ext4_super_block *es = NULL;
3325	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
 
3326	ext4_fsblk_t block;
3327	ext4_fsblk_t sb_block = get_sb_block(&data);
3328	ext4_fsblk_t logical_sb_block;
3329	unsigned long offset = 0;
3330	unsigned long journal_devnum = 0;
3331	unsigned long def_mount_opts;
3332	struct inode *root;
3333	const char *descr;
3334	int ret = -ENOMEM;
3335	int blocksize, clustersize;
3336	unsigned int db_count;
3337	unsigned int i;
3338	int needs_recovery, has_huge_files, has_bigalloc;
3339	__u64 blocks_count;
3340	int err = 0;
3341	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3342	ext4_group_t first_not_zeroed;
3343
3344	if ((data && !orig_data) || !sbi)
3345		goto out_free_base;
3346
 
3347	sbi->s_blockgroup_lock =
3348		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3349	if (!sbi->s_blockgroup_lock)
3350		goto out_free_base;
3351
3352	sb->s_fs_info = sbi;
3353	sbi->s_sb = sb;
3354	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3355	sbi->s_sb_block = sb_block;
3356	if (sb->s_bdev->bd_part)
3357		sbi->s_sectors_written_start =
3358			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3359
3360	/* Cleanup superblock name */
3361	strreplace(sb->s_id, '/', '!');
3362
3363	/* -EINVAL is default */
3364	ret = -EINVAL;
3365	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3366	if (!blocksize) {
3367		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3368		goto out_fail;
3369	}
3370
3371	/*
3372	 * The ext4 superblock will not be buffer aligned for other than 1kB
3373	 * block sizes.  We need to calculate the offset from buffer start.
3374	 */
3375	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3376		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3377		offset = do_div(logical_sb_block, blocksize);
3378	} else {
3379		logical_sb_block = sb_block;
3380	}
3381
3382	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3383		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3384		goto out_fail;
3385	}
3386	/*
3387	 * Note: s_es must be initialized as soon as possible because
3388	 *       some ext4 macro-instructions depend on its value
3389	 */
3390	es = (struct ext4_super_block *) (bh->b_data + offset);
3391	sbi->s_es = es;
3392	sb->s_magic = le16_to_cpu(es->s_magic);
3393	if (sb->s_magic != EXT4_SUPER_MAGIC)
3394		goto cantfind_ext4;
3395	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3396
3397	/* Warn if metadata_csum and gdt_csum are both set. */
3398	if (ext4_has_feature_metadata_csum(sb) &&
3399	    ext4_has_feature_gdt_csum(sb))
3400		ext4_warning(sb, "metadata_csum and uninit_bg are "
3401			     "redundant flags; please run fsck.");
3402
3403	/* Check for a known checksum algorithm */
3404	if (!ext4_verify_csum_type(sb, es)) {
3405		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3406			 "unknown checksum algorithm.");
3407		silent = 1;
3408		goto cantfind_ext4;
3409	}
3410
3411	/* Load the checksum driver */
3412	if (ext4_has_feature_metadata_csum(sb)) {
3413		sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3414		if (IS_ERR(sbi->s_chksum_driver)) {
3415			ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3416			ret = PTR_ERR(sbi->s_chksum_driver);
3417			sbi->s_chksum_driver = NULL;
3418			goto failed_mount;
3419		}
3420	}
3421
3422	/* Check superblock checksum */
3423	if (!ext4_superblock_csum_verify(sb, es)) {
3424		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3425			 "invalid superblock checksum.  Run e2fsck?");
3426		silent = 1;
3427		ret = -EFSBADCRC;
3428		goto cantfind_ext4;
3429	}
3430
3431	/* Precompute checksum seed for all metadata */
3432	if (ext4_has_feature_csum_seed(sb))
3433		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3434	else if (ext4_has_metadata_csum(sb))
3435		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3436					       sizeof(es->s_uuid));
3437
3438	/* Set defaults before we parse the mount options */
3439	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3440	set_opt(sb, INIT_INODE_TABLE);
3441	if (def_mount_opts & EXT4_DEFM_DEBUG)
3442		set_opt(sb, DEBUG);
3443	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3444		set_opt(sb, GRPID);
3445	if (def_mount_opts & EXT4_DEFM_UID16)
3446		set_opt(sb, NO_UID32);
3447	/* xattr user namespace & acls are now defaulted on */
3448	set_opt(sb, XATTR_USER);
3449#ifdef CONFIG_EXT4_FS_POSIX_ACL
3450	set_opt(sb, POSIX_ACL);
3451#endif
3452	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3453	if (ext4_has_metadata_csum(sb))
3454		set_opt(sb, JOURNAL_CHECKSUM);
3455
3456	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3457		set_opt(sb, JOURNAL_DATA);
3458	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3459		set_opt(sb, ORDERED_DATA);
3460	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3461		set_opt(sb, WRITEBACK_DATA);
3462
3463	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3464		set_opt(sb, ERRORS_PANIC);
3465	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3466		set_opt(sb, ERRORS_CONT);
3467	else
3468		set_opt(sb, ERRORS_RO);
3469	/* block_validity enabled by default; disable with noblock_validity */
3470	set_opt(sb, BLOCK_VALIDITY);
3471	if (def_mount_opts & EXT4_DEFM_DISCARD)
3472		set_opt(sb, DISCARD);
3473
3474	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3475	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3476	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3477	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3478	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3479
3480	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3481		set_opt(sb, BARRIER);
3482
3483	/*
3484	 * enable delayed allocation by default
3485	 * Use -o nodelalloc to turn it off
3486	 */
3487	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3488	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3489		set_opt(sb, DELALLOC);
3490
3491	/*
3492	 * set default s_li_wait_mult for lazyinit, for the case there is
3493	 * no mount option specified.
3494	 */
3495	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3497	if (sbi->s_es->s_mount_opts[0]) {
3498		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3499					      sizeof(sbi->s_es->s_mount_opts),
3500					      GFP_KERNEL);
3501		if (!s_mount_opts)
3502			goto failed_mount;
3503		if (!parse_options(s_mount_opts, sb, &journal_devnum,
3504				   &journal_ioprio, 0)) {
3505			ext4_msg(sb, KERN_WARNING,
3506				 "failed to parse options in superblock: %s",
3507				 s_mount_opts);
3508		}
3509		kfree(s_mount_opts);
3510	}
3511	sbi->s_def_mount_opt = sbi->s_mount_opt;
3512	if (!parse_options((char *) data, sb, &journal_devnum,
3513			   &journal_ioprio, 0))
3514		goto failed_mount;
3515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3516	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3517		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3518			    "with data=journal disables delayed "
3519			    "allocation and O_DIRECT support!\n");
3520		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3521			ext4_msg(sb, KERN_ERR, "can't mount with "
3522				 "both data=journal and delalloc");
3523			goto failed_mount;
3524		}
3525		if (test_opt(sb, DIOREAD_NOLOCK)) {
3526			ext4_msg(sb, KERN_ERR, "can't mount with "
3527				 "both data=journal and dioread_nolock");
3528			goto failed_mount;
3529		}
3530		if (test_opt(sb, DAX)) {
3531			ext4_msg(sb, KERN_ERR, "can't mount with "
3532				 "both data=journal and dax");
3533			goto failed_mount;
3534		}
3535		if (ext4_has_feature_encrypt(sb)) {
3536			ext4_msg(sb, KERN_WARNING,
3537				 "encrypted files will use data=ordered "
3538				 "instead of data journaling mode");
3539		}
3540		if (test_opt(sb, DELALLOC))
3541			clear_opt(sb, DELALLOC);
3542	} else {
3543		sb->s_iflags |= SB_I_CGROUPWB;
3544	}
3545
3546	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3547		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3548
3549	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3550	    (ext4_has_compat_features(sb) ||
3551	     ext4_has_ro_compat_features(sb) ||
3552	     ext4_has_incompat_features(sb)))
3553		ext4_msg(sb, KERN_WARNING,
3554		       "feature flags set on rev 0 fs, "
3555		       "running e2fsck is recommended");
3556
3557	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3558		set_opt2(sb, HURD_COMPAT);
3559		if (ext4_has_feature_64bit(sb)) {
3560			ext4_msg(sb, KERN_ERR,
3561				 "The Hurd can't support 64-bit file systems");
3562			goto failed_mount;
3563		}
 
 
 
 
 
 
 
 
 
 
3564	}
3565
3566	if (IS_EXT2_SB(sb)) {
3567		if (ext2_feature_set_ok(sb))
3568			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3569				 "using the ext4 subsystem");
3570		else {
 
 
 
 
 
 
3571			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3572				 "to feature incompatibilities");
3573			goto failed_mount;
3574		}
3575	}
3576
3577	if (IS_EXT3_SB(sb)) {
3578		if (ext3_feature_set_ok(sb))
3579			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3580				 "using the ext4 subsystem");
3581		else {
 
 
 
 
 
 
3582			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3583				 "to feature incompatibilities");
3584			goto failed_mount;
3585		}
3586	}
3587
3588	/*
3589	 * Check feature flags regardless of the revision level, since we
3590	 * previously didn't change the revision level when setting the flags,
3591	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3592	 */
3593	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3594		goto failed_mount;
3595
3596	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3597	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3598	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3599		ext4_msg(sb, KERN_ERR,
3600		       "Unsupported filesystem blocksize %d (%d log_block_size)",
3601			 blocksize, le32_to_cpu(es->s_log_block_size));
3602		goto failed_mount;
3603	}
3604	if (le32_to_cpu(es->s_log_block_size) >
3605	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3606		ext4_msg(sb, KERN_ERR,
3607			 "Invalid log block size: %u",
3608			 le32_to_cpu(es->s_log_block_size));
3609		goto failed_mount;
3610	}
 
 
 
 
 
 
 
3611
3612	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3613		ext4_msg(sb, KERN_ERR,
3614			 "Number of reserved GDT blocks insanely large: %d",
3615			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3616		goto failed_mount;
3617	}
3618
3619	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3620		err = bdev_dax_supported(sb, blocksize);
3621		if (err)
 
 
 
 
3622			goto failed_mount;
 
 
 
 
 
 
3623	}
3624
3625	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3626		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3627			 es->s_encryption_level);
3628		goto failed_mount;
3629	}
3630
3631	if (sb->s_blocksize != blocksize) {
3632		/* Validate the filesystem blocksize */
3633		if (!sb_set_blocksize(sb, blocksize)) {
3634			ext4_msg(sb, KERN_ERR, "bad block size %d",
3635					blocksize);
3636			goto failed_mount;
3637		}
3638
3639		brelse(bh);
3640		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3641		offset = do_div(logical_sb_block, blocksize);
3642		bh = sb_bread_unmovable(sb, logical_sb_block);
3643		if (!bh) {
3644			ext4_msg(sb, KERN_ERR,
3645			       "Can't read superblock on 2nd try");
3646			goto failed_mount;
3647		}
3648		es = (struct ext4_super_block *)(bh->b_data + offset);
3649		sbi->s_es = es;
3650		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3651			ext4_msg(sb, KERN_ERR,
3652			       "Magic mismatch, very weird!");
3653			goto failed_mount;
3654		}
3655	}
3656
3657	has_huge_files = ext4_has_feature_huge_file(sb);
3658	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3659						      has_huge_files);
3660	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3661
3662	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3663		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3664		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3665	} else {
3666		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3667		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3668		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3669		    (!is_power_of_2(sbi->s_inode_size)) ||
3670		    (sbi->s_inode_size > blocksize)) {
3671			ext4_msg(sb, KERN_ERR,
3672			       "unsupported inode size: %d",
3673			       sbi->s_inode_size);
3674			goto failed_mount;
3675		}
3676		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3677			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3678	}
3679
3680	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3681	if (ext4_has_feature_64bit(sb)) {
3682		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3683		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3684		    !is_power_of_2(sbi->s_desc_size)) {
3685			ext4_msg(sb, KERN_ERR,
3686			       "unsupported descriptor size %lu",
3687			       sbi->s_desc_size);
3688			goto failed_mount;
3689		}
3690	} else
3691		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3692
3693	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3694	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3695
3696	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3697	if (sbi->s_inodes_per_block == 0)
3698		goto cantfind_ext4;
3699	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3700	    sbi->s_inodes_per_group > blocksize * 8) {
3701		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3702			 sbi->s_blocks_per_group);
3703		goto failed_mount;
3704	}
3705	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3706					sbi->s_inodes_per_block;
3707	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3708	sbi->s_sbh = bh;
3709	sbi->s_mount_state = le16_to_cpu(es->s_state);
3710	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3711	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3712
3713	for (i = 0; i < 4; i++)
3714		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3715	sbi->s_def_hash_version = es->s_def_hash_version;
3716	if (ext4_has_feature_dir_index(sb)) {
3717		i = le32_to_cpu(es->s_flags);
3718		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3719			sbi->s_hash_unsigned = 3;
3720		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3721#ifdef __CHAR_UNSIGNED__
3722			if (!(sb->s_flags & MS_RDONLY))
3723				es->s_flags |=
3724					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3725			sbi->s_hash_unsigned = 3;
3726#else
3727			if (!(sb->s_flags & MS_RDONLY))
3728				es->s_flags |=
3729					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3730#endif
3731		}
3732	}
3733
3734	/* Handle clustersize */
3735	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3736	has_bigalloc = ext4_has_feature_bigalloc(sb);
3737	if (has_bigalloc) {
3738		if (clustersize < blocksize) {
3739			ext4_msg(sb, KERN_ERR,
3740				 "cluster size (%d) smaller than "
3741				 "block size (%d)", clustersize, blocksize);
3742			goto failed_mount;
3743		}
3744		if (le32_to_cpu(es->s_log_cluster_size) >
3745		    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3746			ext4_msg(sb, KERN_ERR,
3747				 "Invalid log cluster size: %u",
3748				 le32_to_cpu(es->s_log_cluster_size));
3749			goto failed_mount;
3750		}
3751		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3752			le32_to_cpu(es->s_log_block_size);
3753		sbi->s_clusters_per_group =
3754			le32_to_cpu(es->s_clusters_per_group);
3755		if (sbi->s_clusters_per_group > blocksize * 8) {
3756			ext4_msg(sb, KERN_ERR,
3757				 "#clusters per group too big: %lu",
3758				 sbi->s_clusters_per_group);
3759			goto failed_mount;
3760		}
3761		if (sbi->s_blocks_per_group !=
3762		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3763			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3764				 "clusters per group (%lu) inconsistent",
3765				 sbi->s_blocks_per_group,
3766				 sbi->s_clusters_per_group);
3767			goto failed_mount;
3768		}
3769	} else {
3770		if (clustersize != blocksize) {
3771			ext4_warning(sb, "fragment/cluster size (%d) != "
3772				     "block size (%d)", clustersize,
3773				     blocksize);
3774			clustersize = blocksize;
3775		}
3776		if (sbi->s_blocks_per_group > blocksize * 8) {
3777			ext4_msg(sb, KERN_ERR,
3778				 "#blocks per group too big: %lu",
3779				 sbi->s_blocks_per_group);
3780			goto failed_mount;
3781		}
3782		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3783		sbi->s_cluster_bits = 0;
3784	}
3785	sbi->s_cluster_ratio = clustersize / blocksize;
3786
3787	/* Do we have standard group size of clustersize * 8 blocks ? */
3788	if (sbi->s_blocks_per_group == clustersize << 3)
3789		set_opt2(sb, STD_GROUP_SIZE);
3790
3791	/*
3792	 * Test whether we have more sectors than will fit in sector_t,
3793	 * and whether the max offset is addressable by the page cache.
3794	 */
3795	err = generic_check_addressable(sb->s_blocksize_bits,
3796					ext4_blocks_count(es));
3797	if (err) {
3798		ext4_msg(sb, KERN_ERR, "filesystem"
3799			 " too large to mount safely on this system");
3800		if (sizeof(sector_t) < 8)
3801			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3802		goto failed_mount;
3803	}
3804
3805	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3806		goto cantfind_ext4;
3807
3808	/* check blocks count against device size */
3809	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3810	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3811		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3812		       "exceeds size of device (%llu blocks)",
3813		       ext4_blocks_count(es), blocks_count);
3814		goto failed_mount;
3815	}
3816
3817	/*
3818	 * It makes no sense for the first data block to be beyond the end
3819	 * of the filesystem.
3820	 */
3821	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3822		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3823			 "block %u is beyond end of filesystem (%llu)",
3824			 le32_to_cpu(es->s_first_data_block),
3825			 ext4_blocks_count(es));
3826		goto failed_mount;
3827	}
 
 
 
 
 
 
 
3828	blocks_count = (ext4_blocks_count(es) -
3829			le32_to_cpu(es->s_first_data_block) +
3830			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3831	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3832	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3833		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3834		       "(block count %llu, first data block %u, "
3835		       "blocks per group %lu)", sbi->s_groups_count,
3836		       ext4_blocks_count(es),
3837		       le32_to_cpu(es->s_first_data_block),
3838		       EXT4_BLOCKS_PER_GROUP(sb));
3839		goto failed_mount;
3840	}
3841	sbi->s_groups_count = blocks_count;
3842	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3843			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
 
 
 
 
 
 
 
 
3844	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3845		   EXT4_DESC_PER_BLOCK(sb);
3846	if (ext4_has_feature_meta_bg(sb)) {
3847		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3848			ext4_msg(sb, KERN_WARNING,
3849				 "first meta block group too large: %u "
3850				 "(group descriptor block count %u)",
3851				 le32_to_cpu(es->s_first_meta_bg), db_count);
3852			goto failed_mount;
3853		}
3854	}
3855	sbi->s_group_desc = ext4_kvmalloc(db_count *
 
3856					  sizeof(struct buffer_head *),
3857					  GFP_KERNEL);
3858	if (sbi->s_group_desc == NULL) {
3859		ext4_msg(sb, KERN_ERR, "not enough memory");
3860		ret = -ENOMEM;
3861		goto failed_mount;
3862	}
3863
3864	bgl_lock_init(sbi->s_blockgroup_lock);
3865
 
3866	for (i = 0; i < db_count; i++) {
3867		block = descriptor_loc(sb, logical_sb_block, i);
3868		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3869		if (!sbi->s_group_desc[i]) {
 
 
 
 
 
 
 
3870			ext4_msg(sb, KERN_ERR,
3871			       "can't read group descriptor %d", i);
3872			db_count = i;
3873			goto failed_mount2;
3874		}
 
 
 
3875	}
 
3876	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3877		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3878		ret = -EFSCORRUPTED;
3879		goto failed_mount2;
3880	}
3881
3882	sbi->s_gdb_count = db_count;
3883	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3884	spin_lock_init(&sbi->s_next_gen_lock);
3885
3886	setup_timer(&sbi->s_err_report, print_daily_error_info,
3887		(unsigned long) sb);
3888
3889	/* Register extent status tree shrinker */
3890	if (ext4_es_register_shrinker(sbi))
3891		goto failed_mount3;
3892
3893	sbi->s_stripe = ext4_get_stripe_size(sbi);
3894	sbi->s_extent_max_zeroout_kb = 32;
3895
3896	/*
3897	 * set up enough so that it can read an inode
3898	 */
3899	sb->s_op = &ext4_sops;
3900	sb->s_export_op = &ext4_export_ops;
3901	sb->s_xattr = ext4_xattr_handlers;
 
3902	sb->s_cop = &ext4_cryptops;
 
 
 
 
3903#ifdef CONFIG_QUOTA
3904	sb->dq_op = &ext4_quota_operations;
3905	if (ext4_has_feature_quota(sb))
3906		sb->s_qcop = &dquot_quotactl_sysfile_ops;
3907	else
3908		sb->s_qcop = &ext4_qctl_operations;
3909	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3910#endif
3911	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3912
3913	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3914	mutex_init(&sbi->s_orphan_lock);
3915
3916	sb->s_root = NULL;
3917
3918	needs_recovery = (es->s_last_orphan != 0 ||
3919			  ext4_has_feature_journal_needs_recovery(sb));
3920
3921	if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3922		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3923			goto failed_mount3a;
3924
3925	/*
3926	 * The first inode we look at is the journal inode.  Don't try
3927	 * root first: it may be modified in the journal!
3928	 */
3929	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3930		err = ext4_load_journal(sb, es, journal_devnum);
3931		if (err)
3932			goto failed_mount3a;
3933	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3934		   ext4_has_feature_journal_needs_recovery(sb)) {
3935		ext4_msg(sb, KERN_ERR, "required journal recovery "
3936		       "suppressed and not mounted read-only");
3937		goto failed_mount_wq;
3938	} else {
3939		/* Nojournal mode, all journal mount options are illegal */
3940		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3941			ext4_msg(sb, KERN_ERR, "can't mount with "
3942				 "journal_checksum, fs mounted w/o journal");
3943			goto failed_mount_wq;
3944		}
3945		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3946			ext4_msg(sb, KERN_ERR, "can't mount with "
3947				 "journal_async_commit, fs mounted w/o journal");
3948			goto failed_mount_wq;
3949		}
3950		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3951			ext4_msg(sb, KERN_ERR, "can't mount with "
3952				 "commit=%lu, fs mounted w/o journal",
3953				 sbi->s_commit_interval / HZ);
3954			goto failed_mount_wq;
3955		}
3956		if (EXT4_MOUNT_DATA_FLAGS &
3957		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3958			ext4_msg(sb, KERN_ERR, "can't mount with "
3959				 "data=, fs mounted w/o journal");
3960			goto failed_mount_wq;
3961		}
3962		sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3963		clear_opt(sb, JOURNAL_CHECKSUM);
3964		clear_opt(sb, DATA_FLAGS);
3965		sbi->s_journal = NULL;
3966		needs_recovery = 0;
3967		goto no_journal;
3968	}
3969
3970	if (ext4_has_feature_64bit(sb) &&
3971	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3972				       JBD2_FEATURE_INCOMPAT_64BIT)) {
3973		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3974		goto failed_mount_wq;
3975	}
3976
3977	if (!set_journal_csum_feature_set(sb)) {
3978		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3979			 "feature set");
3980		goto failed_mount_wq;
3981	}
3982
3983	/* We have now updated the journal if required, so we can
3984	 * validate the data journaling mode. */
3985	switch (test_opt(sb, DATA_FLAGS)) {
3986	case 0:
3987		/* No mode set, assume a default based on the journal
3988		 * capabilities: ORDERED_DATA if the journal can
3989		 * cope, else JOURNAL_DATA
3990		 */
3991		if (jbd2_journal_check_available_features
3992		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3993			set_opt(sb, ORDERED_DATA);
3994		else
 
3995			set_opt(sb, JOURNAL_DATA);
 
 
3996		break;
3997
3998	case EXT4_MOUNT_ORDERED_DATA:
3999	case EXT4_MOUNT_WRITEBACK_DATA:
4000		if (!jbd2_journal_check_available_features
4001		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4002			ext4_msg(sb, KERN_ERR, "Journal does not support "
4003			       "requested data journaling mode");
4004			goto failed_mount_wq;
4005		}
4006	default:
4007		break;
4008	}
4009
4010	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4011	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4012		ext4_msg(sb, KERN_ERR, "can't mount with "
4013			"journal_async_commit in data=ordered mode");
4014		goto failed_mount_wq;
4015	}
4016
4017	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4018
4019	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4020
4021no_journal:
4022	sbi->s_mb_cache = ext4_xattr_create_cache();
4023	if (!sbi->s_mb_cache) {
4024		ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4025		goto failed_mount_wq;
 
 
 
 
 
 
 
 
 
 
 
 
4026	}
4027
4028	if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4029	    (blocksize != PAGE_SIZE)) {
4030		ext4_msg(sb, KERN_ERR,
4031			 "Unsupported blocksize for fs encryption");
4032		goto failed_mount_wq;
4033	}
4034
4035	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
4036	    !ext4_has_feature_encrypt(sb)) {
4037		ext4_set_feature_encrypt(sb);
4038		ext4_commit_super(sb, 1);
4039	}
4040
4041	/*
4042	 * Get the # of file system overhead blocks from the
4043	 * superblock if present.
4044	 */
4045	if (es->s_overhead_clusters)
4046		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4047	else {
4048		err = ext4_calculate_overhead(sb);
4049		if (err)
4050			goto failed_mount_wq;
4051	}
4052
4053	/*
4054	 * The maximum number of concurrent works can be high and
4055	 * concurrency isn't really necessary.  Limit it to 1.
4056	 */
4057	EXT4_SB(sb)->rsv_conversion_wq =
4058		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4059	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4060		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4061		ret = -ENOMEM;
4062		goto failed_mount4;
4063	}
4064
4065	/*
4066	 * The jbd2_journal_load will have done any necessary log recovery,
4067	 * so we can safely mount the rest of the filesystem now.
4068	 */
4069
4070	root = ext4_iget(sb, EXT4_ROOT_INO);
4071	if (IS_ERR(root)) {
4072		ext4_msg(sb, KERN_ERR, "get root inode failed");
4073		ret = PTR_ERR(root);
4074		root = NULL;
4075		goto failed_mount4;
4076	}
4077	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4078		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4079		iput(root);
4080		goto failed_mount4;
4081	}
 
 
 
 
 
 
4082	sb->s_root = d_make_root(root);
4083	if (!sb->s_root) {
4084		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4085		ret = -ENOMEM;
4086		goto failed_mount4;
4087	}
4088
4089	if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4090		sb->s_flags |= MS_RDONLY;
4091
4092	/* determine the minimum size of new large inodes, if present */
4093	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4094		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4095						     EXT4_GOOD_OLD_INODE_SIZE;
4096		if (ext4_has_feature_extra_isize(sb)) {
4097			if (sbi->s_want_extra_isize <
4098			    le16_to_cpu(es->s_want_extra_isize))
4099				sbi->s_want_extra_isize =
4100					le16_to_cpu(es->s_want_extra_isize);
4101			if (sbi->s_want_extra_isize <
4102			    le16_to_cpu(es->s_min_extra_isize))
4103				sbi->s_want_extra_isize =
4104					le16_to_cpu(es->s_min_extra_isize);
4105		}
4106	}
4107	/* Check if enough inode space is available */
4108	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4109							sbi->s_inode_size) {
4110		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4111						       EXT4_GOOD_OLD_INODE_SIZE;
4112		ext4_msg(sb, KERN_INFO, "required extra inode space not"
4113			 "available");
4114	}
4115
4116	ext4_set_resv_clusters(sb);
4117
4118	err = ext4_setup_system_zone(sb);
4119	if (err) {
4120		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4121			 "zone (%d)", err);
4122		goto failed_mount4a;
 
 
4123	}
4124
4125	ext4_ext_init(sb);
4126	err = ext4_mb_init(sb);
4127	if (err) {
4128		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4129			 err);
4130		goto failed_mount5;
4131	}
4132
4133	block = ext4_count_free_clusters(sb);
4134	ext4_free_blocks_count_set(sbi->s_es, 
4135				   EXT4_C2B(sbi, block));
 
4136	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4137				  GFP_KERNEL);
4138	if (!err) {
4139		unsigned long freei = ext4_count_free_inodes(sb);
4140		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
 
4141		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4142					  GFP_KERNEL);
4143	}
4144	if (!err)
4145		err = percpu_counter_init(&sbi->s_dirs_counter,
4146					  ext4_count_dirs(sb), GFP_KERNEL);
4147	if (!err)
4148		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4149					  GFP_KERNEL);
4150	if (!err)
4151		err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4152
4153	if (err) {
4154		ext4_msg(sb, KERN_ERR, "insufficient memory");
4155		goto failed_mount6;
4156	}
4157
4158	if (ext4_has_feature_flex_bg(sb))
4159		if (!ext4_fill_flex_info(sb)) {
4160			ext4_msg(sb, KERN_ERR,
4161			       "unable to initialize "
4162			       "flex_bg meta info!");
4163			goto failed_mount6;
4164		}
4165
4166	err = ext4_register_li_request(sb, first_not_zeroed);
4167	if (err)
4168		goto failed_mount6;
4169
4170	err = ext4_register_sysfs(sb);
4171	if (err)
4172		goto failed_mount7;
4173
4174#ifdef CONFIG_QUOTA
4175	/* Enable quota usage during mount. */
4176	if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4177		err = ext4_enable_quotas(sb);
4178		if (err)
4179			goto failed_mount8;
4180	}
4181#endif  /* CONFIG_QUOTA */
4182
 
 
 
 
 
 
 
 
 
4183	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4184	ext4_orphan_cleanup(sb, es);
4185	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4186	if (needs_recovery) {
4187		ext4_msg(sb, KERN_INFO, "recovery complete");
4188		ext4_mark_recovery_complete(sb, es);
 
 
4189	}
4190	if (EXT4_SB(sb)->s_journal) {
4191		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4192			descr = " journalled data mode";
4193		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4194			descr = " ordered data mode";
4195		else
4196			descr = " writeback data mode";
4197	} else
4198		descr = "out journal";
4199
4200	if (test_opt(sb, DISCARD)) {
4201		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4202		if (!blk_queue_discard(q))
4203			ext4_msg(sb, KERN_WARNING,
4204				 "mounting with \"discard\" option, but "
4205				 "the device does not support discard");
4206	}
4207
4208	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4209		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4210			 "Opts: %.*s%s%s", descr,
4211			 (int) sizeof(sbi->s_es->s_mount_opts),
4212			 sbi->s_es->s_mount_opts,
4213			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4214
4215	if (es->s_error_count)
4216		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4217
4218	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4219	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4220	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4221	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
 
 
4222
4223	kfree(orig_data);
4224#ifdef CONFIG_EXT4_FS_ENCRYPTION
4225	memcpy(sbi->key_prefix, EXT4_KEY_DESC_PREFIX,
4226				EXT4_KEY_DESC_PREFIX_SIZE);
4227	sbi->key_prefix_size = EXT4_KEY_DESC_PREFIX_SIZE;
4228#endif
4229	return 0;
4230
4231cantfind_ext4:
4232	if (!silent)
4233		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4234	goto failed_mount;
4235
4236#ifdef CONFIG_QUOTA
4237failed_mount8:
4238	ext4_unregister_sysfs(sb);
4239#endif
4240failed_mount7:
4241	ext4_unregister_li_request(sb);
4242failed_mount6:
4243	ext4_mb_release(sb);
4244	if (sbi->s_flex_groups)
4245		kvfree(sbi->s_flex_groups);
 
 
 
 
 
 
4246	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4247	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4248	percpu_counter_destroy(&sbi->s_dirs_counter);
4249	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
 
4250failed_mount5:
4251	ext4_ext_release(sb);
4252	ext4_release_system_zone(sb);
4253failed_mount4a:
4254	dput(sb->s_root);
4255	sb->s_root = NULL;
4256failed_mount4:
4257	ext4_msg(sb, KERN_ERR, "mount failed");
4258	if (EXT4_SB(sb)->rsv_conversion_wq)
4259		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4260failed_mount_wq:
4261	if (sbi->s_mb_cache) {
4262		ext4_xattr_destroy_cache(sbi->s_mb_cache);
4263		sbi->s_mb_cache = NULL;
4264	}
 
 
4265	if (sbi->s_journal) {
4266		jbd2_journal_destroy(sbi->s_journal);
4267		sbi->s_journal = NULL;
4268	}
4269failed_mount3a:
4270	ext4_es_unregister_shrinker(sbi);
4271failed_mount3:
4272	del_timer_sync(&sbi->s_err_report);
4273	if (sbi->s_mmp_tsk)
4274		kthread_stop(sbi->s_mmp_tsk);
4275failed_mount2:
 
 
4276	for (i = 0; i < db_count; i++)
4277		brelse(sbi->s_group_desc[i]);
4278	kvfree(sbi->s_group_desc);
 
4279failed_mount:
4280	if (sbi->s_chksum_driver)
4281		crypto_free_shash(sbi->s_chksum_driver);
 
 
 
 
 
4282#ifdef CONFIG_QUOTA
4283	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4284		kfree(sbi->s_qf_names[i]);
4285#endif
 
4286	ext4_blkdev_remove(sbi);
4287	brelse(bh);
4288out_fail:
4289	sb->s_fs_info = NULL;
4290	kfree(sbi->s_blockgroup_lock);
4291out_free_base:
4292	kfree(sbi);
4293	kfree(orig_data);
 
4294	return err ? err : ret;
4295}
4296
4297/*
4298 * Setup any per-fs journal parameters now.  We'll do this both on
4299 * initial mount, once the journal has been initialised but before we've
4300 * done any recovery; and again on any subsequent remount.
4301 */
4302static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4303{
4304	struct ext4_sb_info *sbi = EXT4_SB(sb);
4305
4306	journal->j_commit_interval = sbi->s_commit_interval;
4307	journal->j_min_batch_time = sbi->s_min_batch_time;
4308	journal->j_max_batch_time = sbi->s_max_batch_time;
4309
4310	write_lock(&journal->j_state_lock);
4311	if (test_opt(sb, BARRIER))
4312		journal->j_flags |= JBD2_BARRIER;
4313	else
4314		journal->j_flags &= ~JBD2_BARRIER;
4315	if (test_opt(sb, DATA_ERR_ABORT))
4316		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4317	else
4318		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4319	write_unlock(&journal->j_state_lock);
4320}
4321
4322static struct inode *ext4_get_journal_inode(struct super_block *sb,
4323					     unsigned int journal_inum)
4324{
4325	struct inode *journal_inode;
4326
4327	/*
4328	 * Test for the existence of a valid inode on disk.  Bad things
4329	 * happen if we iget() an unused inode, as the subsequent iput()
4330	 * will try to delete it.
4331	 */
4332	journal_inode = ext4_iget(sb, journal_inum);
4333	if (IS_ERR(journal_inode)) {
4334		ext4_msg(sb, KERN_ERR, "no journal found");
4335		return NULL;
4336	}
4337	if (!journal_inode->i_nlink) {
4338		make_bad_inode(journal_inode);
4339		iput(journal_inode);
4340		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4341		return NULL;
4342	}
4343
4344	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4345		  journal_inode, journal_inode->i_size);
4346	if (!S_ISREG(journal_inode->i_mode)) {
4347		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4348		iput(journal_inode);
4349		return NULL;
4350	}
4351	return journal_inode;
4352}
4353
4354static journal_t *ext4_get_journal(struct super_block *sb,
4355				   unsigned int journal_inum)
4356{
4357	struct inode *journal_inode;
4358	journal_t *journal;
4359
4360	BUG_ON(!ext4_has_feature_journal(sb));
 
4361
4362	journal_inode = ext4_get_journal_inode(sb, journal_inum);
4363	if (!journal_inode)
4364		return NULL;
4365
4366	journal = jbd2_journal_init_inode(journal_inode);
4367	if (!journal) {
4368		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4369		iput(journal_inode);
4370		return NULL;
4371	}
4372	journal->j_private = sb;
4373	ext4_init_journal_params(sb, journal);
4374	return journal;
4375}
4376
4377static journal_t *ext4_get_dev_journal(struct super_block *sb,
4378				       dev_t j_dev)
4379{
4380	struct buffer_head *bh;
4381	journal_t *journal;
4382	ext4_fsblk_t start;
4383	ext4_fsblk_t len;
4384	int hblock, blocksize;
4385	ext4_fsblk_t sb_block;
4386	unsigned long offset;
4387	struct ext4_super_block *es;
4388	struct block_device *bdev;
4389
4390	BUG_ON(!ext4_has_feature_journal(sb));
 
4391
4392	bdev = ext4_blkdev_get(j_dev, sb);
4393	if (bdev == NULL)
4394		return NULL;
4395
4396	blocksize = sb->s_blocksize;
4397	hblock = bdev_logical_block_size(bdev);
4398	if (blocksize < hblock) {
4399		ext4_msg(sb, KERN_ERR,
4400			"blocksize too small for journal device");
4401		goto out_bdev;
4402	}
4403
4404	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4405	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4406	set_blocksize(bdev, blocksize);
4407	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4408		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4409		       "external journal");
4410		goto out_bdev;
4411	}
4412
4413	es = (struct ext4_super_block *) (bh->b_data + offset);
4414	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4415	    !(le32_to_cpu(es->s_feature_incompat) &
4416	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4417		ext4_msg(sb, KERN_ERR, "external journal has "
4418					"bad superblock");
4419		brelse(bh);
4420		goto out_bdev;
4421	}
4422
4423	if ((le32_to_cpu(es->s_feature_ro_compat) &
4424	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4425	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4426		ext4_msg(sb, KERN_ERR, "external journal has "
4427				       "corrupt superblock");
4428		brelse(bh);
4429		goto out_bdev;
4430	}
4431
4432	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4433		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4434		brelse(bh);
4435		goto out_bdev;
4436	}
4437
4438	len = ext4_blocks_count(es);
4439	start = sb_block + 1;
4440	brelse(bh);	/* we're done with the superblock */
4441
4442	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4443					start, len, blocksize);
4444	if (!journal) {
4445		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4446		goto out_bdev;
4447	}
4448	journal->j_private = sb;
4449	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4450	wait_on_buffer(journal->j_sb_buffer);
4451	if (!buffer_uptodate(journal->j_sb_buffer)) {
4452		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4453		goto out_journal;
4454	}
4455	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4456		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4457					"user (unsupported) - %d",
4458			be32_to_cpu(journal->j_superblock->s_nr_users));
4459		goto out_journal;
4460	}
4461	EXT4_SB(sb)->journal_bdev = bdev;
4462	ext4_init_journal_params(sb, journal);
4463	return journal;
4464
4465out_journal:
4466	jbd2_journal_destroy(journal);
4467out_bdev:
4468	ext4_blkdev_put(bdev);
4469	return NULL;
4470}
4471
4472static int ext4_load_journal(struct super_block *sb,
4473			     struct ext4_super_block *es,
4474			     unsigned long journal_devnum)
4475{
4476	journal_t *journal;
4477	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4478	dev_t journal_dev;
4479	int err = 0;
4480	int really_read_only;
 
4481
4482	BUG_ON(!ext4_has_feature_journal(sb));
 
4483
4484	if (journal_devnum &&
4485	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4486		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4487			"numbers have changed");
4488		journal_dev = new_decode_dev(journal_devnum);
4489	} else
4490		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4491
4492	really_read_only = bdev_read_only(sb->s_bdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4493
4494	/*
4495	 * Are we loading a blank journal or performing recovery after a
4496	 * crash?  For recovery, we need to check in advance whether we
4497	 * can get read-write access to the device.
4498	 */
4499	if (ext4_has_feature_journal_needs_recovery(sb)) {
4500		if (sb->s_flags & MS_RDONLY) {
4501			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4502					"required on readonly filesystem");
4503			if (really_read_only) {
4504				ext4_msg(sb, KERN_ERR, "write access "
4505					"unavailable, cannot proceed");
4506				return -EROFS;
 
 
4507			}
4508			ext4_msg(sb, KERN_INFO, "write access will "
4509			       "be enabled during recovery");
4510		}
4511	}
4512
4513	if (journal_inum && journal_dev) {
4514		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4515		       "and inode journals!");
4516		return -EINVAL;
4517	}
4518
4519	if (journal_inum) {
4520		if (!(journal = ext4_get_journal(sb, journal_inum)))
4521			return -EINVAL;
4522	} else {
4523		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4524			return -EINVAL;
4525	}
4526
4527	if (!(journal->j_flags & JBD2_BARRIER))
4528		ext4_msg(sb, KERN_INFO, "barriers disabled");
4529
4530	if (!ext4_has_feature_journal_needs_recovery(sb))
4531		err = jbd2_journal_wipe(journal, !really_read_only);
4532	if (!err) {
4533		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4534		if (save)
4535			memcpy(save, ((char *) es) +
4536			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4537		err = jbd2_journal_load(journal);
4538		if (save)
4539			memcpy(((char *) es) + EXT4_S_ERR_START,
4540			       save, EXT4_S_ERR_LEN);
4541		kfree(save);
4542	}
4543
4544	if (err) {
4545		ext4_msg(sb, KERN_ERR, "error loading journal");
4546		jbd2_journal_destroy(journal);
4547		return err;
4548	}
4549
4550	EXT4_SB(sb)->s_journal = journal;
4551	ext4_clear_journal_err(sb, es);
 
 
 
 
 
4552
4553	if (!really_read_only && journal_devnum &&
4554	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4555		es->s_journal_dev = cpu_to_le32(journal_devnum);
4556
4557		/* Make sure we flush the recovery flag to disk. */
4558		ext4_commit_super(sb, 1);
4559	}
4560
4561	return 0;
 
 
 
 
4562}
4563
4564static int ext4_commit_super(struct super_block *sb, int sync)
4565{
4566	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4567	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4568	int error = 0;
4569
4570	if (!sbh || block_device_ejected(sb))
4571		return error;
 
4572	/*
4573	 * If the file system is mounted read-only, don't update the
4574	 * superblock write time.  This avoids updating the superblock
4575	 * write time when we are mounting the root file system
4576	 * read/only but we need to replay the journal; at that point,
4577	 * for people who are east of GMT and who make their clock
4578	 * tick in localtime for Windows bug-for-bug compatibility,
4579	 * the clock is set in the future, and this will cause e2fsck
4580	 * to complain and force a full file system check.
4581	 */
4582	if (!(sb->s_flags & MS_RDONLY))
4583		es->s_wtime = cpu_to_le32(get_seconds());
4584	if (sb->s_bdev->bd_part)
4585		es->s_kbytes_written =
4586			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4587			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
 
4588			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4589	else
4590		es->s_kbytes_written =
4591			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4592	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4593		ext4_free_blocks_count_set(es,
4594			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4595				&EXT4_SB(sb)->s_freeclusters_counter)));
4596	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4597		es->s_free_inodes_count =
4598			cpu_to_le32(percpu_counter_sum_positive(
4599				&EXT4_SB(sb)->s_freeinodes_counter));
4600	BUFFER_TRACE(sbh, "marking dirty");
4601	ext4_superblock_csum_set(sb);
4602	if (sync)
4603		lock_buffer(sbh);
4604	if (buffer_write_io_error(sbh)) {
4605		/*
4606		 * Oh, dear.  A previous attempt to write the
4607		 * superblock failed.  This could happen because the
4608		 * USB device was yanked out.  Or it could happen to
4609		 * be a transient write error and maybe the block will
4610		 * be remapped.  Nothing we can do but to retry the
4611		 * write and hope for the best.
4612		 */
4613		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4614		       "superblock detected");
4615		clear_buffer_write_io_error(sbh);
4616		set_buffer_uptodate(sbh);
4617	}
4618	mark_buffer_dirty(sbh);
4619	if (sync) {
4620		unlock_buffer(sbh);
4621		error = __sync_dirty_buffer(sbh,
4622			test_opt(sb, BARRIER) ? REQ_FUA : REQ_SYNC);
4623		if (error)
4624			return error;
4625
4626		error = buffer_write_io_error(sbh);
4627		if (error) {
4628			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4629			       "superblock");
4630			clear_buffer_write_io_error(sbh);
4631			set_buffer_uptodate(sbh);
4632		}
4633	}
4634	return error;
4635}
4636
4637/*
4638 * Have we just finished recovery?  If so, and if we are mounting (or
4639 * remounting) the filesystem readonly, then we will end up with a
4640 * consistent fs on disk.  Record that fact.
4641 */
4642static void ext4_mark_recovery_complete(struct super_block *sb,
4643					struct ext4_super_block *es)
4644{
 
4645	journal_t *journal = EXT4_SB(sb)->s_journal;
4646
4647	if (!ext4_has_feature_journal(sb)) {
4648		BUG_ON(journal != NULL);
4649		return;
 
 
 
 
4650	}
4651	jbd2_journal_lock_updates(journal);
4652	if (jbd2_journal_flush(journal) < 0)
 
4653		goto out;
4654
4655	if (ext4_has_feature_journal_needs_recovery(sb) &&
4656	    sb->s_flags & MS_RDONLY) {
4657		ext4_clear_feature_journal_needs_recovery(sb);
4658		ext4_commit_super(sb, 1);
4659	}
4660
4661out:
4662	jbd2_journal_unlock_updates(journal);
 
4663}
4664
4665/*
4666 * If we are mounting (or read-write remounting) a filesystem whose journal
4667 * has recorded an error from a previous lifetime, move that error to the
4668 * main filesystem now.
4669 */
4670static void ext4_clear_journal_err(struct super_block *sb,
4671				   struct ext4_super_block *es)
4672{
4673	journal_t *journal;
4674	int j_errno;
4675	const char *errstr;
4676
4677	BUG_ON(!ext4_has_feature_journal(sb));
 
 
 
4678
4679	journal = EXT4_SB(sb)->s_journal;
4680
4681	/*
4682	 * Now check for any error status which may have been recorded in the
4683	 * journal by a prior ext4_error() or ext4_abort()
4684	 */
4685
4686	j_errno = jbd2_journal_errno(journal);
4687	if (j_errno) {
4688		char nbuf[16];
4689
4690		errstr = ext4_decode_error(sb, j_errno, nbuf);
4691		ext4_warning(sb, "Filesystem error recorded "
4692			     "from previous mount: %s", errstr);
4693		ext4_warning(sb, "Marking fs in need of filesystem check.");
4694
4695		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4696		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4697		ext4_commit_super(sb, 1);
4698
4699		jbd2_journal_clear_err(journal);
4700		jbd2_journal_update_sb_errno(journal);
4701	}
 
4702}
4703
4704/*
4705 * Force the running and committing transactions to commit,
4706 * and wait on the commit.
4707 */
4708int ext4_force_commit(struct super_block *sb)
4709{
4710	journal_t *journal;
4711
4712	if (sb->s_flags & MS_RDONLY)
4713		return 0;
4714
4715	journal = EXT4_SB(sb)->s_journal;
4716	return ext4_journal_force_commit(journal);
4717}
4718
4719static int ext4_sync_fs(struct super_block *sb, int wait)
4720{
4721	int ret = 0;
4722	tid_t target;
4723	bool needs_barrier = false;
4724	struct ext4_sb_info *sbi = EXT4_SB(sb);
4725
 
 
 
4726	trace_ext4_sync_fs(sb, wait);
4727	flush_workqueue(sbi->rsv_conversion_wq);
4728	/*
4729	 * Writeback quota in non-journalled quota case - journalled quota has
4730	 * no dirty dquots
4731	 */
4732	dquot_writeback_dquots(sb, -1);
4733	/*
4734	 * Data writeback is possible w/o journal transaction, so barrier must
4735	 * being sent at the end of the function. But we can skip it if
4736	 * transaction_commit will do it for us.
4737	 */
4738	if (sbi->s_journal) {
4739		target = jbd2_get_latest_transaction(sbi->s_journal);
4740		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4741		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4742			needs_barrier = true;
4743
4744		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4745			if (wait)
4746				ret = jbd2_log_wait_commit(sbi->s_journal,
4747							   target);
4748		}
4749	} else if (wait && test_opt(sb, BARRIER))
4750		needs_barrier = true;
4751	if (needs_barrier) {
4752		int err;
4753		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4754		if (!ret)
4755			ret = err;
4756	}
4757
4758	return ret;
4759}
4760
4761/*
4762 * LVM calls this function before a (read-only) snapshot is created.  This
4763 * gives us a chance to flush the journal completely and mark the fs clean.
4764 *
4765 * Note that only this function cannot bring a filesystem to be in a clean
4766 * state independently. It relies on upper layer to stop all data & metadata
4767 * modifications.
4768 */
4769static int ext4_freeze(struct super_block *sb)
4770{
4771	int error = 0;
4772	journal_t *journal;
4773
4774	if (sb->s_flags & MS_RDONLY)
4775		return 0;
4776
4777	journal = EXT4_SB(sb)->s_journal;
4778
4779	if (journal) {
4780		/* Now we set up the journal barrier. */
4781		jbd2_journal_lock_updates(journal);
4782
4783		/*
4784		 * Don't clear the needs_recovery flag if we failed to
4785		 * flush the journal.
4786		 */
4787		error = jbd2_journal_flush(journal);
4788		if (error < 0)
4789			goto out;
4790
4791		/* Journal blocked and flushed, clear needs_recovery flag. */
4792		ext4_clear_feature_journal_needs_recovery(sb);
4793	}
4794
4795	error = ext4_commit_super(sb, 1);
4796out:
4797	if (journal)
4798		/* we rely on upper layer to stop further updates */
4799		jbd2_journal_unlock_updates(journal);
4800	return error;
4801}
4802
4803/*
4804 * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4805 * flag here, even though the filesystem is not technically dirty yet.
4806 */
4807static int ext4_unfreeze(struct super_block *sb)
4808{
4809	if (sb->s_flags & MS_RDONLY)
4810		return 0;
4811
4812	if (EXT4_SB(sb)->s_journal) {
4813		/* Reset the needs_recovery flag before the fs is unlocked. */
4814		ext4_set_feature_journal_needs_recovery(sb);
4815	}
4816
4817	ext4_commit_super(sb, 1);
4818	return 0;
4819}
4820
4821/*
4822 * Structure to save mount options for ext4_remount's benefit
4823 */
4824struct ext4_mount_options {
4825	unsigned long s_mount_opt;
4826	unsigned long s_mount_opt2;
4827	kuid_t s_resuid;
4828	kgid_t s_resgid;
4829	unsigned long s_commit_interval;
4830	u32 s_min_batch_time, s_max_batch_time;
4831#ifdef CONFIG_QUOTA
4832	int s_jquota_fmt;
4833	char *s_qf_names[EXT4_MAXQUOTAS];
4834#endif
4835};
4836
4837static int ext4_remount(struct super_block *sb, int *flags, char *data)
4838{
4839	struct ext4_super_block *es;
4840	struct ext4_sb_info *sbi = EXT4_SB(sb);
4841	unsigned long old_sb_flags;
4842	struct ext4_mount_options old_opts;
4843	int enable_quota = 0;
4844	ext4_group_t g;
4845	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4846	int err = 0;
4847#ifdef CONFIG_QUOTA
4848	int i, j;
 
4849#endif
4850	char *orig_data = kstrdup(data, GFP_KERNEL);
4851
 
 
 
4852	/* Store the original options */
4853	old_sb_flags = sb->s_flags;
4854	old_opts.s_mount_opt = sbi->s_mount_opt;
4855	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4856	old_opts.s_resuid = sbi->s_resuid;
4857	old_opts.s_resgid = sbi->s_resgid;
4858	old_opts.s_commit_interval = sbi->s_commit_interval;
4859	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4860	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4861#ifdef CONFIG_QUOTA
4862	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4863	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4864		if (sbi->s_qf_names[i]) {
4865			old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4866							 GFP_KERNEL);
 
4867			if (!old_opts.s_qf_names[i]) {
4868				for (j = 0; j < i; j++)
4869					kfree(old_opts.s_qf_names[j]);
4870				kfree(orig_data);
4871				return -ENOMEM;
4872			}
4873		} else
4874			old_opts.s_qf_names[i] = NULL;
4875#endif
4876	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4877		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4878
 
 
 
 
 
 
 
 
4879	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4880		err = -EINVAL;
4881		goto restore_opts;
4882	}
4883
4884	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4885	    test_opt(sb, JOURNAL_CHECKSUM)) {
4886		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4887			 "during remount not supported; ignoring");
4888		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4889	}
4890
4891	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4892		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4893			ext4_msg(sb, KERN_ERR, "can't mount with "
4894				 "both data=journal and delalloc");
4895			err = -EINVAL;
4896			goto restore_opts;
4897		}
4898		if (test_opt(sb, DIOREAD_NOLOCK)) {
4899			ext4_msg(sb, KERN_ERR, "can't mount with "
4900				 "both data=journal and dioread_nolock");
4901			err = -EINVAL;
4902			goto restore_opts;
4903		}
4904		if (test_opt(sb, DAX)) {
4905			ext4_msg(sb, KERN_ERR, "can't mount with "
4906				 "both data=journal and dax");
4907			err = -EINVAL;
4908			goto restore_opts;
4909		}
4910	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
4911		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4912			ext4_msg(sb, KERN_ERR, "can't mount with "
4913				"journal_async_commit in data=ordered mode");
4914			err = -EINVAL;
4915			goto restore_opts;
4916		}
4917	}
4918
4919	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4920		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4921			"dax flag with busy inodes while remounting");
4922		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4923	}
4924
4925	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4926		ext4_abort(sb, "Abort forced by user");
4927
4928	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4929		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4930
4931	es = sbi->s_es;
4932
4933	if (sbi->s_journal) {
4934		ext4_init_journal_params(sb, sbi->s_journal);
4935		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4936	}
4937
4938	if (*flags & MS_LAZYTIME)
4939		sb->s_flags |= MS_LAZYTIME;
4940
4941	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4942		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4943			err = -EROFS;
4944			goto restore_opts;
4945		}
4946
4947		if (*flags & MS_RDONLY) {
4948			err = sync_filesystem(sb);
4949			if (err < 0)
4950				goto restore_opts;
4951			err = dquot_suspend(sb, -1);
4952			if (err < 0)
4953				goto restore_opts;
4954
4955			/*
4956			 * First of all, the unconditional stuff we have to do
4957			 * to disable replay of the journal when we next remount
4958			 */
4959			sb->s_flags |= MS_RDONLY;
4960
4961			/*
4962			 * OK, test if we are remounting a valid rw partition
4963			 * readonly, and if so set the rdonly flag and then
4964			 * mark the partition as valid again.
4965			 */
4966			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4967			    (sbi->s_mount_state & EXT4_VALID_FS))
4968				es->s_state = cpu_to_le16(sbi->s_mount_state);
4969
4970			if (sbi->s_journal)
 
 
 
 
4971				ext4_mark_recovery_complete(sb, es);
 
 
 
4972		} else {
4973			/* Make sure we can mount this feature set readwrite */
4974			if (ext4_has_feature_readonly(sb) ||
4975			    !ext4_feature_set_ok(sb, 0)) {
4976				err = -EROFS;
4977				goto restore_opts;
4978			}
4979			/*
4980			 * Make sure the group descriptor checksums
4981			 * are sane.  If they aren't, refuse to remount r/w.
4982			 */
4983			for (g = 0; g < sbi->s_groups_count; g++) {
4984				struct ext4_group_desc *gdp =
4985					ext4_get_group_desc(sb, g, NULL);
4986
4987				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4988					ext4_msg(sb, KERN_ERR,
4989	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
4990		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4991					       le16_to_cpu(gdp->bg_checksum));
4992					err = -EFSBADCRC;
4993					goto restore_opts;
4994				}
4995			}
4996
4997			/*
4998			 * If we have an unprocessed orphan list hanging
4999			 * around from a previously readonly bdev mount,
5000			 * require a full umount/remount for now.
5001			 */
5002			if (es->s_last_orphan) {
5003				ext4_msg(sb, KERN_WARNING, "Couldn't "
5004				       "remount RDWR because of unprocessed "
5005				       "orphan inode list.  Please "
5006				       "umount/remount instead");
5007				err = -EINVAL;
5008				goto restore_opts;
5009			}
5010
5011			/*
 
 
 
 
 
 
 
 
5012			 * Mounting a RDONLY partition read-write, so reread
5013			 * and store the current valid flag.  (It may have
5014			 * been changed by e2fsck since we originally mounted
5015			 * the partition.)
5016			 */
5017			if (sbi->s_journal)
5018				ext4_clear_journal_err(sb, es);
 
 
 
5019			sbi->s_mount_state = le16_to_cpu(es->s_state);
5020			if (!ext4_setup_super(sb, es, 0))
5021				sb->s_flags &= ~MS_RDONLY;
 
 
 
 
5022			if (ext4_has_feature_mmp(sb))
5023				if (ext4_multi_mount_protect(sb,
5024						le64_to_cpu(es->s_mmp_block))) {
5025					err = -EROFS;
5026					goto restore_opts;
5027				}
5028			enable_quota = 1;
5029		}
5030	}
5031
5032	/*
5033	 * Reinitialize lazy itable initialization thread based on
5034	 * current settings
5035	 */
5036	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5037		ext4_unregister_li_request(sb);
5038	else {
5039		ext4_group_t first_not_zeroed;
5040		first_not_zeroed = ext4_has_uninit_itable(sb);
5041		ext4_register_li_request(sb, first_not_zeroed);
5042	}
5043
5044	ext4_setup_system_zone(sb);
5045	if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5046		ext4_commit_super(sb, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
5047
5048#ifdef CONFIG_QUOTA
5049	/* Release old quota file names */
5050	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5051		kfree(old_opts.s_qf_names[i]);
5052	if (enable_quota) {
5053		if (sb_any_quota_suspended(sb))
5054			dquot_resume(sb, -1);
5055		else if (ext4_has_feature_quota(sb)) {
5056			err = ext4_enable_quotas(sb);
5057			if (err)
5058				goto restore_opts;
5059		}
5060	}
5061#endif
 
 
 
 
 
 
 
 
 
5062
5063	*flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5064	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5065	kfree(orig_data);
5066	return 0;
5067
5068restore_opts:
5069	sb->s_flags = old_sb_flags;
5070	sbi->s_mount_opt = old_opts.s_mount_opt;
5071	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5072	sbi->s_resuid = old_opts.s_resuid;
5073	sbi->s_resgid = old_opts.s_resgid;
5074	sbi->s_commit_interval = old_opts.s_commit_interval;
5075	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5076	sbi->s_max_batch_time = old_opts.s_max_batch_time;
 
 
5077#ifdef CONFIG_QUOTA
5078	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5079	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5080		kfree(sbi->s_qf_names[i]);
5081		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5082	}
 
 
 
5083#endif
5084	kfree(orig_data);
5085	return err;
5086}
5087
5088#ifdef CONFIG_QUOTA
5089static int ext4_statfs_project(struct super_block *sb,
5090			       kprojid_t projid, struct kstatfs *buf)
5091{
5092	struct kqid qid;
5093	struct dquot *dquot;
5094	u64 limit;
5095	u64 curblock;
5096
5097	qid = make_kqid_projid(projid);
5098	dquot = dqget(sb, qid);
5099	if (IS_ERR(dquot))
5100		return PTR_ERR(dquot);
5101	spin_lock(&dq_data_lock);
 
 
 
 
5102
5103	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5104		 dquot->dq_dqb.dqb_bsoftlimit :
5105		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5106	if (limit && buf->f_blocks > limit) {
5107		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
 
5108		buf->f_blocks = limit;
5109		buf->f_bfree = buf->f_bavail =
5110			(buf->f_blocks > curblock) ?
5111			 (buf->f_blocks - curblock) : 0;
5112	}
5113
5114	limit = dquot->dq_dqb.dqb_isoftlimit ?
5115		dquot->dq_dqb.dqb_isoftlimit :
5116		dquot->dq_dqb.dqb_ihardlimit;
5117	if (limit && buf->f_files > limit) {
5118		buf->f_files = limit;
5119		buf->f_ffree =
5120			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5121			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5122	}
5123
5124	spin_unlock(&dq_data_lock);
5125	dqput(dquot);
5126	return 0;
5127}
5128#endif
5129
5130static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5131{
5132	struct super_block *sb = dentry->d_sb;
5133	struct ext4_sb_info *sbi = EXT4_SB(sb);
5134	struct ext4_super_block *es = sbi->s_es;
5135	ext4_fsblk_t overhead = 0, resv_blocks;
5136	u64 fsid;
5137	s64 bfree;
5138	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5139
5140	if (!test_opt(sb, MINIX_DF))
5141		overhead = sbi->s_overhead;
5142
5143	buf->f_type = EXT4_SUPER_MAGIC;
5144	buf->f_bsize = sb->s_blocksize;
5145	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5146	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5147		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5148	/* prevent underflow in case that few free space is available */
5149	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5150	buf->f_bavail = buf->f_bfree -
5151			(ext4_r_blocks_count(es) + resv_blocks);
5152	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5153		buf->f_bavail = 0;
5154	buf->f_files = le32_to_cpu(es->s_inodes_count);
5155	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5156	buf->f_namelen = EXT4_NAME_LEN;
5157	fsid = le64_to_cpup((void *)es->s_uuid) ^
5158	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5159	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5160	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5161
5162#ifdef CONFIG_QUOTA
5163	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5164	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
5165		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5166#endif
5167	return 0;
5168}
5169
5170/* Helper function for writing quotas on sync - we need to start transaction
5171 * before quota file is locked for write. Otherwise the are possible deadlocks:
5172 * Process 1                         Process 2
5173 * ext4_create()                     quota_sync()
5174 *   jbd2_journal_start()                  write_dquot()
5175 *   dquot_initialize()                         down(dqio_mutex)
5176 *     down(dqio_mutex)                    jbd2_journal_start()
5177 *
5178 */
5179
5180#ifdef CONFIG_QUOTA
5181
 
 
 
 
5182static inline struct inode *dquot_to_inode(struct dquot *dquot)
5183{
5184	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5185}
5186
5187static int ext4_write_dquot(struct dquot *dquot)
5188{
5189	int ret, err;
5190	handle_t *handle;
5191	struct inode *inode;
5192
5193	inode = dquot_to_inode(dquot);
5194	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5195				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5196	if (IS_ERR(handle))
5197		return PTR_ERR(handle);
5198	ret = dquot_commit(dquot);
5199	err = ext4_journal_stop(handle);
5200	if (!ret)
5201		ret = err;
5202	return ret;
5203}
5204
5205static int ext4_acquire_dquot(struct dquot *dquot)
5206{
5207	int ret, err;
5208	handle_t *handle;
5209
5210	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5211				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5212	if (IS_ERR(handle))
5213		return PTR_ERR(handle);
5214	ret = dquot_acquire(dquot);
5215	err = ext4_journal_stop(handle);
5216	if (!ret)
5217		ret = err;
5218	return ret;
5219}
5220
5221static int ext4_release_dquot(struct dquot *dquot)
5222{
5223	int ret, err;
5224	handle_t *handle;
5225
5226	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5227				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5228	if (IS_ERR(handle)) {
5229		/* Release dquot anyway to avoid endless cycle in dqput() */
5230		dquot_release(dquot);
5231		return PTR_ERR(handle);
5232	}
5233	ret = dquot_release(dquot);
5234	err = ext4_journal_stop(handle);
5235	if (!ret)
5236		ret = err;
5237	return ret;
5238}
5239
5240static int ext4_mark_dquot_dirty(struct dquot *dquot)
5241{
5242	struct super_block *sb = dquot->dq_sb;
5243	struct ext4_sb_info *sbi = EXT4_SB(sb);
5244
5245	/* Are we journaling quotas? */
5246	if (ext4_has_feature_quota(sb) ||
5247	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5248		dquot_mark_dquot_dirty(dquot);
5249		return ext4_write_dquot(dquot);
5250	} else {
5251		return dquot_mark_dquot_dirty(dquot);
5252	}
5253}
5254
5255static int ext4_write_info(struct super_block *sb, int type)
5256{
5257	int ret, err;
5258	handle_t *handle;
5259
5260	/* Data block + inode block */
5261	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5262	if (IS_ERR(handle))
5263		return PTR_ERR(handle);
5264	ret = dquot_commit_info(sb, type);
5265	err = ext4_journal_stop(handle);
5266	if (!ret)
5267		ret = err;
5268	return ret;
5269}
5270
5271/*
5272 * Turn on quotas during mount time - we need to find
5273 * the quota file and such...
5274 */
5275static int ext4_quota_on_mount(struct super_block *sb, int type)
5276{
5277	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5278					EXT4_SB(sb)->s_jquota_fmt, type);
5279}
5280
5281static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5282{
5283	struct ext4_inode_info *ei = EXT4_I(inode);
5284
5285	/* The first argument of lockdep_set_subclass has to be
5286	 * *exactly* the same as the argument to init_rwsem() --- in
5287	 * this case, in init_once() --- or lockdep gets unhappy
5288	 * because the name of the lock is set using the
5289	 * stringification of the argument to init_rwsem().
5290	 */
5291	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
5292	lockdep_set_subclass(&ei->i_data_sem, subclass);
5293}
5294
5295/*
5296 * Standard function to be called on quota_on
5297 */
5298static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5299			 const struct path *path)
5300{
5301	int err;
5302
5303	if (!test_opt(sb, QUOTA))
5304		return -EINVAL;
5305
5306	/* Quotafile not on the same filesystem? */
5307	if (path->dentry->d_sb != sb)
5308		return -EXDEV;
5309	/* Journaling quota? */
5310	if (EXT4_SB(sb)->s_qf_names[type]) {
5311		/* Quotafile not in fs root? */
5312		if (path->dentry->d_parent != sb->s_root)
5313			ext4_msg(sb, KERN_WARNING,
5314				"Quota file not on filesystem root. "
5315				"Journaled quota will not work");
 
 
 
 
 
 
 
5316	}
5317
5318	/*
5319	 * When we journal data on quota file, we have to flush journal to see
5320	 * all updates to the file when we bypass pagecache...
5321	 */
5322	if (EXT4_SB(sb)->s_journal &&
5323	    ext4_should_journal_data(d_inode(path->dentry))) {
5324		/*
5325		 * We don't need to lock updates but journal_flush() could
5326		 * otherwise be livelocked...
5327		 */
5328		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5329		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5330		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5331		if (err)
5332			return err;
5333	}
 
5334	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5335	err = dquot_quota_on(sb, type, format_id, path);
5336	if (err)
5337		lockdep_set_quota_inode(path->dentry->d_inode,
5338					     I_DATA_SEM_NORMAL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5339	return err;
5340}
5341
5342static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5343			     unsigned int flags)
5344{
5345	int err;
5346	struct inode *qf_inode;
5347	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5348		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5349		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5350		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5351	};
5352
5353	BUG_ON(!ext4_has_feature_quota(sb));
5354
5355	if (!qf_inums[type])
5356		return -EPERM;
5357
5358	qf_inode = ext4_iget(sb, qf_inums[type]);
5359	if (IS_ERR(qf_inode)) {
5360		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5361		return PTR_ERR(qf_inode);
5362	}
5363
5364	/* Don't account quota for quota files to avoid recursion */
5365	qf_inode->i_flags |= S_NOQUOTA;
5366	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5367	err = dquot_enable(qf_inode, type, format_id, flags);
5368	iput(qf_inode);
5369	if (err)
5370		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
 
5371
5372	return err;
5373}
5374
5375/* Enable usage tracking for all quota types. */
5376static int ext4_enable_quotas(struct super_block *sb)
5377{
5378	int type, err = 0;
5379	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5380		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5381		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5382		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5383	};
5384	bool quota_mopt[EXT4_MAXQUOTAS] = {
5385		test_opt(sb, USRQUOTA),
5386		test_opt(sb, GRPQUOTA),
5387		test_opt(sb, PRJQUOTA),
5388	};
5389
5390	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5391	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5392		if (qf_inums[type]) {
5393			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5394				DQUOT_USAGE_ENABLED |
5395				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5396			if (err) {
5397				ext4_warning(sb,
5398					"Failed to enable quota tracking "
5399					"(type=%d, err=%d). Please run "
5400					"e2fsck to fix.", type, err);
 
 
 
5401				return err;
5402			}
5403		}
5404	}
5405	return 0;
5406}
5407
5408static int ext4_quota_off(struct super_block *sb, int type)
5409{
5410	struct inode *inode = sb_dqopt(sb)->files[type];
5411	handle_t *handle;
 
5412
5413	/* Force all delayed allocation blocks to be allocated.
5414	 * Caller already holds s_umount sem */
5415	if (test_opt(sb, DELALLOC))
5416		sync_filesystem(sb);
5417
5418	if (!inode)
5419		goto out;
5420
5421	/* Update modification times of quota files when userspace can
5422	 * start looking at them */
 
 
 
 
 
 
 
 
5423	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5424	if (IS_ERR(handle))
5425		goto out;
 
 
 
 
5426	inode->i_mtime = inode->i_ctime = current_time(inode);
5427	ext4_mark_inode_dirty(handle, inode);
5428	ext4_journal_stop(handle);
5429
 
 
 
 
 
5430out:
5431	return dquot_quota_off(sb, type);
5432}
5433
5434/* Read data from quotafile - avoid pagecache and such because we cannot afford
5435 * acquiring the locks... As quota files are never truncated and quota code
5436 * itself serializes the operations (and no one else should touch the files)
5437 * we don't have to be afraid of races */
5438static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5439			       size_t len, loff_t off)
5440{
5441	struct inode *inode = sb_dqopt(sb)->files[type];
5442	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5443	int offset = off & (sb->s_blocksize - 1);
5444	int tocopy;
5445	size_t toread;
5446	struct buffer_head *bh;
5447	loff_t i_size = i_size_read(inode);
5448
5449	if (off > i_size)
5450		return 0;
5451	if (off+len > i_size)
5452		len = i_size-off;
5453	toread = len;
5454	while (toread > 0) {
5455		tocopy = sb->s_blocksize - offset < toread ?
5456				sb->s_blocksize - offset : toread;
5457		bh = ext4_bread(NULL, inode, blk, 0);
5458		if (IS_ERR(bh))
5459			return PTR_ERR(bh);
5460		if (!bh)	/* A hole? */
5461			memset(data, 0, tocopy);
5462		else
5463			memcpy(data, bh->b_data+offset, tocopy);
5464		brelse(bh);
5465		offset = 0;
5466		toread -= tocopy;
5467		data += tocopy;
5468		blk++;
5469	}
5470	return len;
5471}
5472
5473/* Write to quotafile (we know the transaction is already started and has
5474 * enough credits) */
5475static ssize_t ext4_quota_write(struct super_block *sb, int type,
5476				const char *data, size_t len, loff_t off)
5477{
5478	struct inode *inode = sb_dqopt(sb)->files[type];
5479	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5480	int err, offset = off & (sb->s_blocksize - 1);
5481	int retries = 0;
5482	struct buffer_head *bh;
5483	handle_t *handle = journal_current_handle();
5484
5485	if (EXT4_SB(sb)->s_journal && !handle) {
5486		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5487			" cancelled because transaction is not started",
5488			(unsigned long long)off, (unsigned long long)len);
5489		return -EIO;
5490	}
5491	/*
5492	 * Since we account only one data block in transaction credits,
5493	 * then it is impossible to cross a block boundary.
5494	 */
5495	if (sb->s_blocksize - offset < len) {
5496		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5497			" cancelled because not block aligned",
5498			(unsigned long long)off, (unsigned long long)len);
5499		return -EIO;
5500	}
5501
5502	do {
5503		bh = ext4_bread(handle, inode, blk,
5504				EXT4_GET_BLOCKS_CREATE |
5505				EXT4_GET_BLOCKS_METADATA_NOFAIL);
5506	} while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5507		 ext4_should_retry_alloc(inode->i_sb, &retries));
5508	if (IS_ERR(bh))
5509		return PTR_ERR(bh);
5510	if (!bh)
5511		goto out;
5512	BUFFER_TRACE(bh, "get write access");
5513	err = ext4_journal_get_write_access(handle, bh);
5514	if (err) {
5515		brelse(bh);
5516		return err;
5517	}
5518	lock_buffer(bh);
5519	memcpy(bh->b_data+offset, data, len);
5520	flush_dcache_page(bh->b_page);
5521	unlock_buffer(bh);
5522	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5523	brelse(bh);
5524out:
5525	if (inode->i_size < off + len) {
5526		i_size_write(inode, off + len);
5527		EXT4_I(inode)->i_disksize = inode->i_size;
5528		ext4_mark_inode_dirty(handle, inode);
 
 
5529	}
5530	return len;
5531}
5532
5533static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5534{
5535	const struct quota_format_ops	*ops;
5536
5537	if (!sb_has_quota_loaded(sb, qid->type))
5538		return -ESRCH;
5539	ops = sb_dqopt(sb)->ops[qid->type];
5540	if (!ops || !ops->get_next_id)
5541		return -ENOSYS;
5542	return dquot_get_next_id(sb, qid);
5543}
5544#endif
5545
5546static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5547		       const char *dev_name, void *data)
5548{
5549	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5550}
5551
5552#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5553static inline void register_as_ext2(void)
5554{
5555	int err = register_filesystem(&ext2_fs_type);
5556	if (err)
5557		printk(KERN_WARNING
5558		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5559}
5560
5561static inline void unregister_as_ext2(void)
5562{
5563	unregister_filesystem(&ext2_fs_type);
5564}
5565
5566static inline int ext2_feature_set_ok(struct super_block *sb)
5567{
5568	if (ext4_has_unknown_ext2_incompat_features(sb))
5569		return 0;
5570	if (sb->s_flags & MS_RDONLY)
5571		return 1;
5572	if (ext4_has_unknown_ext2_ro_compat_features(sb))
5573		return 0;
5574	return 1;
5575}
5576#else
5577static inline void register_as_ext2(void) { }
5578static inline void unregister_as_ext2(void) { }
5579static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5580#endif
5581
5582static inline void register_as_ext3(void)
5583{
5584	int err = register_filesystem(&ext3_fs_type);
5585	if (err)
5586		printk(KERN_WARNING
5587		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5588}
5589
5590static inline void unregister_as_ext3(void)
5591{
5592	unregister_filesystem(&ext3_fs_type);
5593}
5594
5595static inline int ext3_feature_set_ok(struct super_block *sb)
5596{
5597	if (ext4_has_unknown_ext3_incompat_features(sb))
5598		return 0;
5599	if (!ext4_has_feature_journal(sb))
5600		return 0;
5601	if (sb->s_flags & MS_RDONLY)
5602		return 1;
5603	if (ext4_has_unknown_ext3_ro_compat_features(sb))
5604		return 0;
5605	return 1;
5606}
5607
5608static struct file_system_type ext4_fs_type = {
5609	.owner		= THIS_MODULE,
5610	.name		= "ext4",
5611	.mount		= ext4_mount,
5612	.kill_sb	= kill_block_super,
5613	.fs_flags	= FS_REQUIRES_DEV,
5614};
5615MODULE_ALIAS_FS("ext4");
5616
5617/* Shared across all ext4 file systems */
5618wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5619
5620static int __init ext4_init_fs(void)
5621{
5622	int i, err;
5623
5624	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5625	ext4_li_info = NULL;
5626	mutex_init(&ext4_li_mtx);
5627
5628	/* Build-time check for flags consistency */
5629	ext4_check_flag_values();
5630
5631	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5632		init_waitqueue_head(&ext4__ioend_wq[i]);
5633
5634	err = ext4_init_es();
5635	if (err)
5636		return err;
5637
 
 
 
 
 
 
 
 
5638	err = ext4_init_pageio();
5639	if (err)
5640		goto out5;
5641
5642	err = ext4_init_system_zone();
5643	if (err)
5644		goto out4;
5645
5646	err = ext4_init_sysfs();
5647	if (err)
5648		goto out3;
5649
5650	err = ext4_init_mballoc();
5651	if (err)
5652		goto out2;
5653	err = init_inodecache();
5654	if (err)
5655		goto out1;
5656	register_as_ext3();
5657	register_as_ext2();
5658	err = register_filesystem(&ext4_fs_type);
5659	if (err)
5660		goto out;
5661
5662	return 0;
5663out:
5664	unregister_as_ext2();
5665	unregister_as_ext3();
5666	destroy_inodecache();
5667out1:
5668	ext4_exit_mballoc();
5669out2:
5670	ext4_exit_sysfs();
5671out3:
5672	ext4_exit_system_zone();
5673out4:
5674	ext4_exit_pageio();
5675out5:
 
 
 
 
5676	ext4_exit_es();
5677
5678	return err;
5679}
5680
5681static void __exit ext4_exit_fs(void)
5682{
5683	ext4_destroy_lazyinit_thread();
5684	unregister_as_ext2();
5685	unregister_as_ext3();
5686	unregister_filesystem(&ext4_fs_type);
5687	destroy_inodecache();
5688	ext4_exit_mballoc();
5689	ext4_exit_sysfs();
5690	ext4_exit_system_zone();
5691	ext4_exit_pageio();
 
5692	ext4_exit_es();
 
5693}
5694
5695MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5696MODULE_DESCRIPTION("Fourth Extended Filesystem");
5697MODULE_LICENSE("GPL");
 
5698module_init(ext4_init_fs)
5699module_exit(ext4_exit_fs)
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/super.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  Big-endian to little-endian byte-swapping/bitmaps by
  17 *        David S. Miller (davem@caip.rutgers.edu), 1995
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/string.h>
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/vmalloc.h>
  25#include <linux/slab.h>
  26#include <linux/init.h>
  27#include <linux/blkdev.h>
  28#include <linux/backing-dev.h>
  29#include <linux/parser.h>
  30#include <linux/buffer_head.h>
  31#include <linux/exportfs.h>
  32#include <linux/vfs.h>
  33#include <linux/random.h>
  34#include <linux/mount.h>
  35#include <linux/namei.h>
  36#include <linux/quotaops.h>
  37#include <linux/seq_file.h>
  38#include <linux/ctype.h>
  39#include <linux/log2.h>
  40#include <linux/crc16.h>
  41#include <linux/dax.h>
  42#include <linux/cleancache.h>
  43#include <linux/uaccess.h>
  44#include <linux/iversion.h>
  45#include <linux/unicode.h>
  46#include <linux/part_stat.h>
  47#include <linux/kthread.h>
  48#include <linux/freezer.h>
  49
  50#include "ext4.h"
  51#include "ext4_extents.h"	/* Needed for trace points definition */
  52#include "ext4_jbd2.h"
  53#include "xattr.h"
  54#include "acl.h"
  55#include "mballoc.h"
  56#include "fsmap.h"
  57
  58#define CREATE_TRACE_POINTS
  59#include <trace/events/ext4.h>
  60
  61static struct ext4_lazy_init *ext4_li_info;
  62static struct mutex ext4_li_mtx;
  63static struct ratelimit_state ext4_mount_msg_ratelimit;
  64
  65static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
  66			     unsigned long journal_devnum);
  67static int ext4_show_options(struct seq_file *seq, struct dentry *root);
  68static int ext4_commit_super(struct super_block *sb, int sync);
  69static int ext4_mark_recovery_complete(struct super_block *sb,
  70					struct ext4_super_block *es);
  71static int ext4_clear_journal_err(struct super_block *sb,
  72				  struct ext4_super_block *es);
  73static int ext4_sync_fs(struct super_block *sb, int wait);
  74static int ext4_remount(struct super_block *sb, int *flags, char *data);
  75static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
  76static int ext4_unfreeze(struct super_block *sb);
  77static int ext4_freeze(struct super_block *sb);
  78static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
  79		       const char *dev_name, void *data);
  80static inline int ext2_feature_set_ok(struct super_block *sb);
  81static inline int ext3_feature_set_ok(struct super_block *sb);
  82static int ext4_feature_set_ok(struct super_block *sb, int readonly);
  83static void ext4_destroy_lazyinit_thread(void);
  84static void ext4_unregister_li_request(struct super_block *sb);
  85static void ext4_clear_request_list(void);
  86static struct inode *ext4_get_journal_inode(struct super_block *sb,
  87					    unsigned int journal_inum);
  88
  89/*
  90 * Lock ordering
  91 *
  92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
  93 * i_mmap_rwsem (inode->i_mmap_rwsem)!
  94 *
  95 * page fault path:
  96 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
  97 *   page lock -> i_data_sem (rw)
  98 *
  99 * buffered write path:
 100 * sb_start_write -> i_mutex -> mmap_lock
 101 * sb_start_write -> i_mutex -> transaction start -> page lock ->
 102 *   i_data_sem (rw)
 103 *
 104 * truncate:
 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
 106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
 107 *   i_data_sem (rw)
 
 108 *
 109 * direct IO:
 110 * sb_start_write -> i_mutex -> mmap_lock
 111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
 
 112 *
 113 * writepages:
 114 * transaction start -> page lock(s) -> i_data_sem (rw)
 115 */
 116
 117#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
 118static struct file_system_type ext2_fs_type = {
 119	.owner		= THIS_MODULE,
 120	.name		= "ext2",
 121	.mount		= ext4_mount,
 122	.kill_sb	= kill_block_super,
 123	.fs_flags	= FS_REQUIRES_DEV,
 124};
 125MODULE_ALIAS_FS("ext2");
 126MODULE_ALIAS("ext2");
 127#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
 128#else
 129#define IS_EXT2_SB(sb) (0)
 130#endif
 131
 132
 133static struct file_system_type ext3_fs_type = {
 134	.owner		= THIS_MODULE,
 135	.name		= "ext3",
 136	.mount		= ext4_mount,
 137	.kill_sb	= kill_block_super,
 138	.fs_flags	= FS_REQUIRES_DEV,
 139};
 140MODULE_ALIAS_FS("ext3");
 141MODULE_ALIAS("ext3");
 142#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
 143
 144/*
 145 * This works like sb_bread() except it uses ERR_PTR for error
 146 * returns.  Currently with sb_bread it's impossible to distinguish
 147 * between ENOMEM and EIO situations (since both result in a NULL
 148 * return.
 149 */
 150struct buffer_head *
 151ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
 152{
 153	struct buffer_head *bh = sb_getblk(sb, block);
 154
 155	if (bh == NULL)
 156		return ERR_PTR(-ENOMEM);
 157	if (ext4_buffer_uptodate(bh))
 158		return bh;
 159	ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
 160	wait_on_buffer(bh);
 161	if (buffer_uptodate(bh))
 162		return bh;
 163	put_bh(bh);
 164	return ERR_PTR(-EIO);
 165}
 166
 167static int ext4_verify_csum_type(struct super_block *sb,
 168				 struct ext4_super_block *es)
 169{
 170	if (!ext4_has_feature_metadata_csum(sb))
 171		return 1;
 172
 173	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
 174}
 175
 176static __le32 ext4_superblock_csum(struct super_block *sb,
 177				   struct ext4_super_block *es)
 178{
 179	struct ext4_sb_info *sbi = EXT4_SB(sb);
 180	int offset = offsetof(struct ext4_super_block, s_checksum);
 181	__u32 csum;
 182
 183	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
 184
 185	return cpu_to_le32(csum);
 186}
 187
 188static int ext4_superblock_csum_verify(struct super_block *sb,
 189				       struct ext4_super_block *es)
 190{
 191	if (!ext4_has_metadata_csum(sb))
 192		return 1;
 193
 194	return es->s_checksum == ext4_superblock_csum(sb, es);
 195}
 196
 197void ext4_superblock_csum_set(struct super_block *sb)
 198{
 199	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 200
 201	if (!ext4_has_metadata_csum(sb))
 202		return;
 203
 204	es->s_checksum = ext4_superblock_csum(sb, es);
 205}
 206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
 208			       struct ext4_group_desc *bg)
 209{
 210	return le32_to_cpu(bg->bg_block_bitmap_lo) |
 211		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 212		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
 213}
 214
 215ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
 216			       struct ext4_group_desc *bg)
 217{
 218	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
 219		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 220		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
 221}
 222
 223ext4_fsblk_t ext4_inode_table(struct super_block *sb,
 224			      struct ext4_group_desc *bg)
 225{
 226	return le32_to_cpu(bg->bg_inode_table_lo) |
 227		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 228		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
 229}
 230
 231__u32 ext4_free_group_clusters(struct super_block *sb,
 232			       struct ext4_group_desc *bg)
 233{
 234	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
 235		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 236		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
 237}
 238
 239__u32 ext4_free_inodes_count(struct super_block *sb,
 240			      struct ext4_group_desc *bg)
 241{
 242	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
 243		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 244		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
 245}
 246
 247__u32 ext4_used_dirs_count(struct super_block *sb,
 248			      struct ext4_group_desc *bg)
 249{
 250	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
 251		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 252		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
 253}
 254
 255__u32 ext4_itable_unused_count(struct super_block *sb,
 256			      struct ext4_group_desc *bg)
 257{
 258	return le16_to_cpu(bg->bg_itable_unused_lo) |
 259		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 260		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
 261}
 262
 263void ext4_block_bitmap_set(struct super_block *sb,
 264			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 265{
 266	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
 267	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 268		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
 269}
 270
 271void ext4_inode_bitmap_set(struct super_block *sb,
 272			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 273{
 274	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
 275	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 276		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
 277}
 278
 279void ext4_inode_table_set(struct super_block *sb,
 280			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
 281{
 282	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
 283	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 284		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
 285}
 286
 287void ext4_free_group_clusters_set(struct super_block *sb,
 288				  struct ext4_group_desc *bg, __u32 count)
 289{
 290	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
 291	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 292		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
 293}
 294
 295void ext4_free_inodes_set(struct super_block *sb,
 296			  struct ext4_group_desc *bg, __u32 count)
 297{
 298	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
 299	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 300		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
 301}
 302
 303void ext4_used_dirs_set(struct super_block *sb,
 304			  struct ext4_group_desc *bg, __u32 count)
 305{
 306	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
 307	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 308		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
 309}
 310
 311void ext4_itable_unused_set(struct super_block *sb,
 312			  struct ext4_group_desc *bg, __u32 count)
 313{
 314	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
 315	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 316		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
 317}
 318
 319static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
 320{
 321	time64_t now = ktime_get_real_seconds();
 322
 323	now = clamp_val(now, 0, (1ull << 40) - 1);
 324
 325	*lo = cpu_to_le32(lower_32_bits(now));
 326	*hi = upper_32_bits(now);
 327}
 328
 329static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
 330{
 331	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
 332}
 333#define ext4_update_tstamp(es, tstamp) \
 334	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
 335#define ext4_get_tstamp(es, tstamp) \
 336	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
 337
 338static void __save_error_info(struct super_block *sb, int error,
 339			      __u32 ino, __u64 block,
 340			      const char *func, unsigned int line)
 341{
 342	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 343	int err;
 344
 345	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
 346	if (bdev_read_only(sb->s_bdev))
 347		return;
 348	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
 349	ext4_update_tstamp(es, s_last_error_time);
 350	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
 351	es->s_last_error_line = cpu_to_le32(line);
 352	es->s_last_error_ino = cpu_to_le32(ino);
 353	es->s_last_error_block = cpu_to_le64(block);
 354	switch (error) {
 355	case EIO:
 356		err = EXT4_ERR_EIO;
 357		break;
 358	case ENOMEM:
 359		err = EXT4_ERR_ENOMEM;
 360		break;
 361	case EFSBADCRC:
 362		err = EXT4_ERR_EFSBADCRC;
 363		break;
 364	case 0:
 365	case EFSCORRUPTED:
 366		err = EXT4_ERR_EFSCORRUPTED;
 367		break;
 368	case ENOSPC:
 369		err = EXT4_ERR_ENOSPC;
 370		break;
 371	case ENOKEY:
 372		err = EXT4_ERR_ENOKEY;
 373		break;
 374	case EROFS:
 375		err = EXT4_ERR_EROFS;
 376		break;
 377	case EFBIG:
 378		err = EXT4_ERR_EFBIG;
 379		break;
 380	case EEXIST:
 381		err = EXT4_ERR_EEXIST;
 382		break;
 383	case ERANGE:
 384		err = EXT4_ERR_ERANGE;
 385		break;
 386	case EOVERFLOW:
 387		err = EXT4_ERR_EOVERFLOW;
 388		break;
 389	case EBUSY:
 390		err = EXT4_ERR_EBUSY;
 391		break;
 392	case ENOTDIR:
 393		err = EXT4_ERR_ENOTDIR;
 394		break;
 395	case ENOTEMPTY:
 396		err = EXT4_ERR_ENOTEMPTY;
 397		break;
 398	case ESHUTDOWN:
 399		err = EXT4_ERR_ESHUTDOWN;
 400		break;
 401	case EFAULT:
 402		err = EXT4_ERR_EFAULT;
 403		break;
 404	default:
 405		err = EXT4_ERR_UNKNOWN;
 406	}
 407	es->s_last_error_errcode = err;
 408	if (!es->s_first_error_time) {
 409		es->s_first_error_time = es->s_last_error_time;
 410		es->s_first_error_time_hi = es->s_last_error_time_hi;
 411		strncpy(es->s_first_error_func, func,
 412			sizeof(es->s_first_error_func));
 413		es->s_first_error_line = cpu_to_le32(line);
 414		es->s_first_error_ino = es->s_last_error_ino;
 415		es->s_first_error_block = es->s_last_error_block;
 416		es->s_first_error_errcode = es->s_last_error_errcode;
 417	}
 418	/*
 419	 * Start the daily error reporting function if it hasn't been
 420	 * started already
 421	 */
 422	if (!es->s_error_count)
 423		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
 424	le32_add_cpu(&es->s_error_count, 1);
 425}
 426
 427static void save_error_info(struct super_block *sb, int error,
 428			    __u32 ino, __u64 block,
 429			    const char *func, unsigned int line)
 430{
 431	__save_error_info(sb, error, ino, block, func, line);
 432	if (!bdev_read_only(sb->s_bdev))
 433		ext4_commit_super(sb, 1);
 434}
 435
 436/*
 437 * The del_gendisk() function uninitializes the disk-specific data
 438 * structures, including the bdi structure, without telling anyone
 439 * else.  Once this happens, any attempt to call mark_buffer_dirty()
 440 * (for example, by ext4_commit_super), will cause a kernel OOPS.
 441 * This is a kludge to prevent these oops until we can put in a proper
 442 * hook in del_gendisk() to inform the VFS and file system layers.
 443 */
 444static int block_device_ejected(struct super_block *sb)
 445{
 446	struct inode *bd_inode = sb->s_bdev->bd_inode;
 447	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
 448
 449	return bdi->dev == NULL;
 450}
 451
 452static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
 453{
 454	struct super_block		*sb = journal->j_private;
 455	struct ext4_sb_info		*sbi = EXT4_SB(sb);
 456	int				error = is_journal_aborted(journal);
 457	struct ext4_journal_cb_entry	*jce;
 458
 459	BUG_ON(txn->t_state == T_FINISHED);
 460
 461	ext4_process_freed_data(sb, txn->t_tid);
 462
 463	spin_lock(&sbi->s_md_lock);
 464	while (!list_empty(&txn->t_private_list)) {
 465		jce = list_entry(txn->t_private_list.next,
 466				 struct ext4_journal_cb_entry, jce_list);
 467		list_del_init(&jce->jce_list);
 468		spin_unlock(&sbi->s_md_lock);
 469		jce->jce_func(sb, jce, error);
 470		spin_lock(&sbi->s_md_lock);
 471	}
 472	spin_unlock(&sbi->s_md_lock);
 473}
 474
 475static bool system_going_down(void)
 476{
 477	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
 478		|| system_state == SYSTEM_RESTART;
 479}
 480
 481/* Deal with the reporting of failure conditions on a filesystem such as
 482 * inconsistencies detected or read IO failures.
 483 *
 484 * On ext2, we can store the error state of the filesystem in the
 485 * superblock.  That is not possible on ext4, because we may have other
 486 * write ordering constraints on the superblock which prevent us from
 487 * writing it out straight away; and given that the journal is about to
 488 * be aborted, we can't rely on the current, or future, transactions to
 489 * write out the superblock safely.
 490 *
 491 * We'll just use the jbd2_journal_abort() error code to record an error in
 492 * the journal instead.  On recovery, the journal will complain about
 493 * that error until we've noted it down and cleared it.
 494 */
 495
 496static void ext4_handle_error(struct super_block *sb)
 497{
 498	if (test_opt(sb, WARN_ON_ERROR))
 499		WARN_ON_ONCE(1);
 500
 501	if (sb_rdonly(sb))
 502		return;
 503
 504	if (!test_opt(sb, ERRORS_CONT)) {
 505		journal_t *journal = EXT4_SB(sb)->s_journal;
 506
 507		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
 508		if (journal)
 509			jbd2_journal_abort(journal, -EIO);
 510	}
 511	/*
 512	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
 513	 * could panic during 'reboot -f' as the underlying device got already
 514	 * disabled.
 515	 */
 516	if (test_opt(sb, ERRORS_RO) || system_going_down()) {
 517		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 518		/*
 519		 * Make sure updated value of ->s_mount_flags will be visible
 520		 * before ->s_flags update
 521		 */
 522		smp_wmb();
 523		sb->s_flags |= SB_RDONLY;
 524	} else if (test_opt(sb, ERRORS_PANIC)) {
 
 
 
 
 525		panic("EXT4-fs (device %s): panic forced after error\n",
 526			sb->s_id);
 527	}
 528}
 529
 530#define ext4_error_ratelimit(sb)					\
 531		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
 532			     "EXT4-fs error")
 533
 534void __ext4_error(struct super_block *sb, const char *function,
 535		  unsigned int line, int error, __u64 block,
 536		  const char *fmt, ...)
 537{
 538	struct va_format vaf;
 539	va_list args;
 540
 541	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 542		return;
 543
 544	trace_ext4_error(sb, function, line);
 545	if (ext4_error_ratelimit(sb)) {
 546		va_start(args, fmt);
 547		vaf.fmt = fmt;
 548		vaf.va = &args;
 549		printk(KERN_CRIT
 550		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
 551		       sb->s_id, function, line, current->comm, &vaf);
 552		va_end(args);
 553	}
 554	save_error_info(sb, error, 0, block, function, line);
 555	ext4_handle_error(sb);
 556}
 557
 558void __ext4_error_inode(struct inode *inode, const char *function,
 559			unsigned int line, ext4_fsblk_t block, int error,
 560			const char *fmt, ...)
 561{
 562	va_list args;
 563	struct va_format vaf;
 
 564
 565	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 566		return;
 567
 568	trace_ext4_error(inode->i_sb, function, line);
 569	if (ext4_error_ratelimit(inode->i_sb)) {
 570		va_start(args, fmt);
 571		vaf.fmt = fmt;
 572		vaf.va = &args;
 573		if (block)
 574			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 575			       "inode #%lu: block %llu: comm %s: %pV\n",
 576			       inode->i_sb->s_id, function, line, inode->i_ino,
 577			       block, current->comm, &vaf);
 578		else
 579			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 580			       "inode #%lu: comm %s: %pV\n",
 581			       inode->i_sb->s_id, function, line, inode->i_ino,
 582			       current->comm, &vaf);
 583		va_end(args);
 584	}
 585	save_error_info(inode->i_sb, error, inode->i_ino, block,
 586			function, line);
 587	ext4_handle_error(inode->i_sb);
 588}
 589
 590void __ext4_error_file(struct file *file, const char *function,
 591		       unsigned int line, ext4_fsblk_t block,
 592		       const char *fmt, ...)
 593{
 594	va_list args;
 595	struct va_format vaf;
 
 596	struct inode *inode = file_inode(file);
 597	char pathname[80], *path;
 598
 599	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 600		return;
 601
 602	trace_ext4_error(inode->i_sb, function, line);
 603	if (ext4_error_ratelimit(inode->i_sb)) {
 604		path = file_path(file, pathname, sizeof(pathname));
 605		if (IS_ERR(path))
 606			path = "(unknown)";
 607		va_start(args, fmt);
 608		vaf.fmt = fmt;
 609		vaf.va = &args;
 610		if (block)
 611			printk(KERN_CRIT
 612			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 613			       "block %llu: comm %s: path %s: %pV\n",
 614			       inode->i_sb->s_id, function, line, inode->i_ino,
 615			       block, current->comm, path, &vaf);
 616		else
 617			printk(KERN_CRIT
 618			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 619			       "comm %s: path %s: %pV\n",
 620			       inode->i_sb->s_id, function, line, inode->i_ino,
 621			       current->comm, path, &vaf);
 622		va_end(args);
 623	}
 624	save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block,
 625			function, line);
 626	ext4_handle_error(inode->i_sb);
 627}
 628
 629const char *ext4_decode_error(struct super_block *sb, int errno,
 630			      char nbuf[16])
 631{
 632	char *errstr = NULL;
 633
 634	switch (errno) {
 635	case -EFSCORRUPTED:
 636		errstr = "Corrupt filesystem";
 637		break;
 638	case -EFSBADCRC:
 639		errstr = "Filesystem failed CRC";
 640		break;
 641	case -EIO:
 642		errstr = "IO failure";
 643		break;
 644	case -ENOMEM:
 645		errstr = "Out of memory";
 646		break;
 647	case -EROFS:
 648		if (!sb || (EXT4_SB(sb)->s_journal &&
 649			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
 650			errstr = "Journal has aborted";
 651		else
 652			errstr = "Readonly filesystem";
 653		break;
 654	default:
 655		/* If the caller passed in an extra buffer for unknown
 656		 * errors, textualise them now.  Else we just return
 657		 * NULL. */
 658		if (nbuf) {
 659			/* Check for truncated error codes... */
 660			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
 661				errstr = nbuf;
 662		}
 663		break;
 664	}
 665
 666	return errstr;
 667}
 668
 669/* __ext4_std_error decodes expected errors from journaling functions
 670 * automatically and invokes the appropriate error response.  */
 671
 672void __ext4_std_error(struct super_block *sb, const char *function,
 673		      unsigned int line, int errno)
 674{
 675	char nbuf[16];
 676	const char *errstr;
 677
 678	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 679		return;
 680
 681	/* Special case: if the error is EROFS, and we're not already
 682	 * inside a transaction, then there's really no point in logging
 683	 * an error. */
 684	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
 
 685		return;
 686
 687	if (ext4_error_ratelimit(sb)) {
 688		errstr = ext4_decode_error(sb, errno, nbuf);
 689		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
 690		       sb->s_id, function, line, errstr);
 691	}
 692
 693	save_error_info(sb, -errno, 0, 0, function, line);
 694	ext4_handle_error(sb);
 695}
 696
 697/*
 698 * ext4_abort is a much stronger failure handler than ext4_error.  The
 699 * abort function may be used to deal with unrecoverable failures such
 700 * as journal IO errors or ENOMEM at a critical moment in log management.
 701 *
 702 * We unconditionally force the filesystem into an ABORT|READONLY state,
 703 * unless the error response on the fs has been set to panic in which
 704 * case we take the easy way out and panic immediately.
 705 */
 706
 707void __ext4_abort(struct super_block *sb, const char *function,
 708		  unsigned int line, int error, const char *fmt, ...)
 709{
 710	struct va_format vaf;
 711	va_list args;
 712
 713	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 714		return;
 715
 716	save_error_info(sb, error, 0, 0, function, line);
 717	va_start(args, fmt);
 718	vaf.fmt = fmt;
 719	vaf.va = &args;
 720	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
 721	       sb->s_id, function, line, &vaf);
 722	va_end(args);
 723
 724	if (sb_rdonly(sb) == 0) {
 
 725		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
 726		if (EXT4_SB(sb)->s_journal)
 727			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
 728
 729		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 730		/*
 731		 * Make sure updated value of ->s_mount_flags will be visible
 732		 * before ->s_flags update
 733		 */
 734		smp_wmb();
 735		sb->s_flags |= SB_RDONLY;
 
 
 
 736	}
 737	if (test_opt(sb, ERRORS_PANIC) && !system_going_down())
 
 
 
 738		panic("EXT4-fs panic from previous error\n");
 
 739}
 740
 741void __ext4_msg(struct super_block *sb,
 742		const char *prefix, const char *fmt, ...)
 743{
 744	struct va_format vaf;
 745	va_list args;
 746
 747	atomic_inc(&EXT4_SB(sb)->s_msg_count);
 748	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
 749		return;
 750
 751	va_start(args, fmt);
 752	vaf.fmt = fmt;
 753	vaf.va = &args;
 754	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
 755	va_end(args);
 756}
 757
 758static int ext4_warning_ratelimit(struct super_block *sb)
 759{
 760	atomic_inc(&EXT4_SB(sb)->s_warning_count);
 761	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
 762			    "EXT4-fs warning");
 763}
 764
 765void __ext4_warning(struct super_block *sb, const char *function,
 766		    unsigned int line, const char *fmt, ...)
 767{
 768	struct va_format vaf;
 769	va_list args;
 770
 771	if (!ext4_warning_ratelimit(sb))
 772		return;
 773
 774	va_start(args, fmt);
 775	vaf.fmt = fmt;
 776	vaf.va = &args;
 777	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
 778	       sb->s_id, function, line, &vaf);
 779	va_end(args);
 780}
 781
 782void __ext4_warning_inode(const struct inode *inode, const char *function,
 783			  unsigned int line, const char *fmt, ...)
 784{
 785	struct va_format vaf;
 786	va_list args;
 787
 788	if (!ext4_warning_ratelimit(inode->i_sb))
 789		return;
 790
 791	va_start(args, fmt);
 792	vaf.fmt = fmt;
 793	vaf.va = &args;
 794	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
 795	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
 796	       function, line, inode->i_ino, current->comm, &vaf);
 797	va_end(args);
 798}
 799
 800void __ext4_grp_locked_error(const char *function, unsigned int line,
 801			     struct super_block *sb, ext4_group_t grp,
 802			     unsigned long ino, ext4_fsblk_t block,
 803			     const char *fmt, ...)
 804__releases(bitlock)
 805__acquires(bitlock)
 806{
 807	struct va_format vaf;
 808	va_list args;
 
 809
 810	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 811		return;
 812
 813	trace_ext4_error(sb, function, line);
 814	__save_error_info(sb, EFSCORRUPTED, ino, block, function, line);
 815
 816	if (ext4_error_ratelimit(sb)) {
 817		va_start(args, fmt);
 818		vaf.fmt = fmt;
 819		vaf.va = &args;
 820		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
 821		       sb->s_id, function, line, grp);
 822		if (ino)
 823			printk(KERN_CONT "inode %lu: ", ino);
 824		if (block)
 825			printk(KERN_CONT "block %llu:",
 826			       (unsigned long long) block);
 827		printk(KERN_CONT "%pV\n", &vaf);
 828		va_end(args);
 829	}
 830
 831	if (test_opt(sb, WARN_ON_ERROR))
 832		WARN_ON_ONCE(1);
 833
 834	if (test_opt(sb, ERRORS_CONT)) {
 835		ext4_commit_super(sb, 0);
 836		return;
 837	}
 838
 839	ext4_unlock_group(sb, grp);
 840	ext4_commit_super(sb, 1);
 841	ext4_handle_error(sb);
 842	/*
 843	 * We only get here in the ERRORS_RO case; relocking the group
 844	 * may be dangerous, but nothing bad will happen since the
 845	 * filesystem will have already been marked read/only and the
 846	 * journal has been aborted.  We return 1 as a hint to callers
 847	 * who might what to use the return value from
 848	 * ext4_grp_locked_error() to distinguish between the
 849	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
 850	 * aggressively from the ext4 function in question, with a
 851	 * more appropriate error code.
 852	 */
 853	ext4_lock_group(sb, grp);
 854	return;
 855}
 856
 857void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
 858				     ext4_group_t group,
 859				     unsigned int flags)
 860{
 861	struct ext4_sb_info *sbi = EXT4_SB(sb);
 862	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
 863	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
 864	int ret;
 865
 866	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
 867		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
 868					    &grp->bb_state);
 869		if (!ret)
 870			percpu_counter_sub(&sbi->s_freeclusters_counter,
 871					   grp->bb_free);
 872	}
 873
 874	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
 875		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
 876					    &grp->bb_state);
 877		if (!ret && gdp) {
 878			int count;
 879
 880			count = ext4_free_inodes_count(sb, gdp);
 881			percpu_counter_sub(&sbi->s_freeinodes_counter,
 882					   count);
 883		}
 884	}
 885}
 886
 887void ext4_update_dynamic_rev(struct super_block *sb)
 888{
 889	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 890
 891	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
 892		return;
 893
 894	ext4_warning(sb,
 895		     "updating to rev %d because of new feature flag, "
 896		     "running e2fsck is recommended",
 897		     EXT4_DYNAMIC_REV);
 898
 899	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
 900	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
 901	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
 902	/* leave es->s_feature_*compat flags alone */
 903	/* es->s_uuid will be set by e2fsck if empty */
 904
 905	/*
 906	 * The rest of the superblock fields should be zero, and if not it
 907	 * means they are likely already in use, so leave them alone.  We
 908	 * can leave it up to e2fsck to clean up any inconsistencies there.
 909	 */
 910}
 911
 912/*
 913 * Open the external journal device
 914 */
 915static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
 916{
 917	struct block_device *bdev;
 
 918
 919	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
 920	if (IS_ERR(bdev))
 921		goto fail;
 922	return bdev;
 923
 924fail:
 925	ext4_msg(sb, KERN_ERR,
 926		 "failed to open journal device unknown-block(%u,%u) %ld",
 927		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
 928	return NULL;
 929}
 930
 931/*
 932 * Release the journal device
 933 */
 934static void ext4_blkdev_put(struct block_device *bdev)
 935{
 936	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
 937}
 938
 939static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
 940{
 941	struct block_device *bdev;
 942	bdev = sbi->journal_bdev;
 943	if (bdev) {
 944		ext4_blkdev_put(bdev);
 945		sbi->journal_bdev = NULL;
 946	}
 947}
 948
 949static inline struct inode *orphan_list_entry(struct list_head *l)
 950{
 951	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
 952}
 953
 954static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
 955{
 956	struct list_head *l;
 957
 958	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
 959		 le32_to_cpu(sbi->s_es->s_last_orphan));
 960
 961	printk(KERN_ERR "sb_info orphan list:\n");
 962	list_for_each(l, &sbi->s_orphan) {
 963		struct inode *inode = orphan_list_entry(l);
 964		printk(KERN_ERR "  "
 965		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
 966		       inode->i_sb->s_id, inode->i_ino, inode,
 967		       inode->i_mode, inode->i_nlink,
 968		       NEXT_ORPHAN(inode));
 969	}
 970}
 971
 972#ifdef CONFIG_QUOTA
 973static int ext4_quota_off(struct super_block *sb, int type);
 974
 975static inline void ext4_quota_off_umount(struct super_block *sb)
 976{
 977	int type;
 978
 979	/* Use our quota_off function to clear inode flags etc. */
 980	for (type = 0; type < EXT4_MAXQUOTAS; type++)
 981		ext4_quota_off(sb, type);
 982}
 983
 984/*
 985 * This is a helper function which is used in the mount/remount
 986 * codepaths (which holds s_umount) to fetch the quota file name.
 987 */
 988static inline char *get_qf_name(struct super_block *sb,
 989				struct ext4_sb_info *sbi,
 990				int type)
 991{
 992	return rcu_dereference_protected(sbi->s_qf_names[type],
 993					 lockdep_is_held(&sb->s_umount));
 994}
 995#else
 996static inline void ext4_quota_off_umount(struct super_block *sb)
 997{
 998}
 999#endif
1000
1001static void ext4_put_super(struct super_block *sb)
1002{
1003	struct ext4_sb_info *sbi = EXT4_SB(sb);
1004	struct ext4_super_block *es = sbi->s_es;
1005	struct buffer_head **group_desc;
1006	struct flex_groups **flex_groups;
1007	int aborted = 0;
1008	int i, err;
1009
1010	ext4_unregister_li_request(sb);
1011	ext4_quota_off_umount(sb);
1012
 
1013	destroy_workqueue(sbi->rsv_conversion_wq);
1014
1015	/*
1016	 * Unregister sysfs before destroying jbd2 journal.
1017	 * Since we could still access attr_journal_task attribute via sysfs
1018	 * path which could have sbi->s_journal->j_task as NULL
1019	 */
1020	ext4_unregister_sysfs(sb);
1021
1022	if (sbi->s_journal) {
1023		aborted = is_journal_aborted(sbi->s_journal);
1024		err = jbd2_journal_destroy(sbi->s_journal);
1025		sbi->s_journal = NULL;
1026		if ((err < 0) && !aborted) {
1027			ext4_abort(sb, -err, "Couldn't clean up the journal");
1028		}
1029	}
1030
 
1031	ext4_es_unregister_shrinker(sbi);
1032	del_timer_sync(&sbi->s_err_report);
1033	ext4_release_system_zone(sb);
1034	ext4_mb_release(sb);
1035	ext4_ext_release(sb);
1036
1037	if (!sb_rdonly(sb) && !aborted) {
1038		ext4_clear_feature_journal_needs_recovery(sb);
1039		es->s_state = cpu_to_le16(sbi->s_mount_state);
1040	}
1041	if (!sb_rdonly(sb))
1042		ext4_commit_super(sb, 1);
1043
1044	rcu_read_lock();
1045	group_desc = rcu_dereference(sbi->s_group_desc);
1046	for (i = 0; i < sbi->s_gdb_count; i++)
1047		brelse(group_desc[i]);
1048	kvfree(group_desc);
1049	flex_groups = rcu_dereference(sbi->s_flex_groups);
1050	if (flex_groups) {
1051		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1052			kvfree(flex_groups[i]);
1053		kvfree(flex_groups);
1054	}
1055	rcu_read_unlock();
1056	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1057	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1058	percpu_counter_destroy(&sbi->s_dirs_counter);
1059	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1060	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1061#ifdef CONFIG_QUOTA
1062	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1063		kfree(get_qf_name(sb, sbi, i));
1064#endif
1065
1066	/* Debugging code just in case the in-memory inode orphan list
1067	 * isn't empty.  The on-disk one can be non-empty if we've
1068	 * detected an error and taken the fs readonly, but the
1069	 * in-memory list had better be clean by this point. */
1070	if (!list_empty(&sbi->s_orphan))
1071		dump_orphan_list(sb, sbi);
1072	J_ASSERT(list_empty(&sbi->s_orphan));
1073
1074	sync_blockdev(sb->s_bdev);
1075	invalidate_bdev(sb->s_bdev);
1076	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1077		/*
1078		 * Invalidate the journal device's buffers.  We don't want them
1079		 * floating about in memory - the physical journal device may
1080		 * hotswapped, and it breaks the `ro-after' testing code.
1081		 */
1082		sync_blockdev(sbi->journal_bdev);
1083		invalidate_bdev(sbi->journal_bdev);
1084		ext4_blkdev_remove(sbi);
1085	}
1086
1087	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1088	sbi->s_ea_inode_cache = NULL;
1089
1090	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1091	sbi->s_ea_block_cache = NULL;
1092
1093	if (sbi->s_mmp_tsk)
1094		kthread_stop(sbi->s_mmp_tsk);
1095	brelse(sbi->s_sbh);
1096	sb->s_fs_info = NULL;
1097	/*
1098	 * Now that we are completely done shutting down the
1099	 * superblock, we need to actually destroy the kobject.
1100	 */
1101	kobject_put(&sbi->s_kobj);
1102	wait_for_completion(&sbi->s_kobj_unregister);
1103	if (sbi->s_chksum_driver)
1104		crypto_free_shash(sbi->s_chksum_driver);
1105	kfree(sbi->s_blockgroup_lock);
1106	fs_put_dax(sbi->s_daxdev);
1107	fscrypt_free_dummy_context(&sbi->s_dummy_enc_ctx);
1108#ifdef CONFIG_UNICODE
1109	utf8_unload(sbi->s_encoding);
1110#endif
1111	kfree(sbi);
1112}
1113
1114static struct kmem_cache *ext4_inode_cachep;
1115
1116/*
1117 * Called inside transaction, so use GFP_NOFS
1118 */
1119static struct inode *ext4_alloc_inode(struct super_block *sb)
1120{
1121	struct ext4_inode_info *ei;
1122
1123	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1124	if (!ei)
1125		return NULL;
1126
1127	inode_set_iversion(&ei->vfs_inode, 1);
1128	spin_lock_init(&ei->i_raw_lock);
1129	INIT_LIST_HEAD(&ei->i_prealloc_list);
1130	atomic_set(&ei->i_prealloc_active, 0);
1131	spin_lock_init(&ei->i_prealloc_lock);
1132	ext4_es_init_tree(&ei->i_es_tree);
1133	rwlock_init(&ei->i_es_lock);
1134	INIT_LIST_HEAD(&ei->i_es_list);
1135	ei->i_es_all_nr = 0;
1136	ei->i_es_shk_nr = 0;
1137	ei->i_es_shrink_lblk = 0;
1138	ei->i_reserved_data_blocks = 0;
 
 
 
 
1139	spin_lock_init(&(ei->i_block_reservation_lock));
1140	ext4_init_pending_tree(&ei->i_pending_tree);
1141#ifdef CONFIG_QUOTA
1142	ei->i_reserved_quota = 0;
1143	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1144#endif
1145	ei->jinode = NULL;
1146	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1147	spin_lock_init(&ei->i_completed_io_lock);
1148	ei->i_sync_tid = 0;
1149	ei->i_datasync_tid = 0;
1150	atomic_set(&ei->i_unwritten, 0);
1151	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1152	return &ei->vfs_inode;
1153}
1154
1155static int ext4_drop_inode(struct inode *inode)
1156{
1157	int drop = generic_drop_inode(inode);
1158
1159	if (!drop)
1160		drop = fscrypt_drop_inode(inode);
1161
1162	trace_ext4_drop_inode(inode, drop);
1163	return drop;
1164}
1165
1166static void ext4_free_in_core_inode(struct inode *inode)
1167{
1168	fscrypt_free_inode(inode);
1169	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1170}
1171
1172static void ext4_destroy_inode(struct inode *inode)
1173{
1174	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1175		ext4_msg(inode->i_sb, KERN_ERR,
1176			 "Inode %lu (%p): orphan list check failed!",
1177			 inode->i_ino, EXT4_I(inode));
1178		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1179				EXT4_I(inode), sizeof(struct ext4_inode_info),
1180				true);
1181		dump_stack();
1182	}
 
1183}
1184
1185static void init_once(void *foo)
1186{
1187	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1188
1189	INIT_LIST_HEAD(&ei->i_orphan);
1190	init_rwsem(&ei->xattr_sem);
1191	init_rwsem(&ei->i_data_sem);
1192	init_rwsem(&ei->i_mmap_sem);
1193	inode_init_once(&ei->vfs_inode);
1194}
1195
1196static int __init init_inodecache(void)
1197{
1198	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1199				sizeof(struct ext4_inode_info), 0,
1200				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1201					SLAB_ACCOUNT),
1202				offsetof(struct ext4_inode_info, i_data),
1203				sizeof_field(struct ext4_inode_info, i_data),
1204				init_once);
1205	if (ext4_inode_cachep == NULL)
1206		return -ENOMEM;
1207	return 0;
1208}
1209
1210static void destroy_inodecache(void)
1211{
1212	/*
1213	 * Make sure all delayed rcu free inodes are flushed before we
1214	 * destroy cache.
1215	 */
1216	rcu_barrier();
1217	kmem_cache_destroy(ext4_inode_cachep);
1218}
1219
1220void ext4_clear_inode(struct inode *inode)
1221{
1222	invalidate_inode_buffers(inode);
1223	clear_inode(inode);
1224	ext4_discard_preallocations(inode, 0);
 
1225	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1226	dquot_drop(inode);
1227	if (EXT4_I(inode)->jinode) {
1228		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1229					       EXT4_I(inode)->jinode);
1230		jbd2_free_inode(EXT4_I(inode)->jinode);
1231		EXT4_I(inode)->jinode = NULL;
1232	}
1233	fscrypt_put_encryption_info(inode);
1234	fsverity_cleanup_inode(inode);
 
1235}
1236
1237static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1238					u64 ino, u32 generation)
1239{
1240	struct inode *inode;
1241
1242	/*
 
 
 
 
 
 
 
 
 
1243	 * Currently we don't know the generation for parent directory, so
1244	 * a generation of 0 means "accept any"
1245	 */
1246	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1247	if (IS_ERR(inode))
1248		return ERR_CAST(inode);
1249	if (generation && inode->i_generation != generation) {
1250		iput(inode);
1251		return ERR_PTR(-ESTALE);
1252	}
1253
1254	return inode;
1255}
1256
1257static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1258					int fh_len, int fh_type)
1259{
1260	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1261				    ext4_nfs_get_inode);
1262}
1263
1264static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1265					int fh_len, int fh_type)
1266{
1267	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1268				    ext4_nfs_get_inode);
1269}
1270
1271static int ext4_nfs_commit_metadata(struct inode *inode)
1272{
1273	struct writeback_control wbc = {
1274		.sync_mode = WB_SYNC_ALL
1275	};
1276
1277	trace_ext4_nfs_commit_metadata(inode);
1278	return ext4_write_inode(inode, &wbc);
1279}
1280
1281/*
1282 * Try to release metadata pages (indirect blocks, directories) which are
1283 * mapped via the block device.  Since these pages could have journal heads
1284 * which would prevent try_to_free_buffers() from freeing them, we must use
1285 * jbd2 layer's try_to_free_buffers() function to release them.
1286 */
1287static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1288				 gfp_t wait)
1289{
1290	journal_t *journal = EXT4_SB(sb)->s_journal;
1291
1292	WARN_ON(PageChecked(page));
1293	if (!page_has_buffers(page))
1294		return 0;
1295	if (journal)
1296		return jbd2_journal_try_to_free_buffers(journal, page);
1297
1298	return try_to_free_buffers(page);
1299}
1300
1301#ifdef CONFIG_FS_ENCRYPTION
1302static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1303{
1304	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1305				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1306}
1307
 
 
 
 
 
 
 
 
 
 
 
1308static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1309							void *fs_data)
1310{
1311	handle_t *handle = fs_data;
1312	int res, res2, credits, retries = 0;
1313
1314	/*
1315	 * Encrypting the root directory is not allowed because e2fsck expects
1316	 * lost+found to exist and be unencrypted, and encrypting the root
1317	 * directory would imply encrypting the lost+found directory as well as
1318	 * the filename "lost+found" itself.
1319	 */
1320	if (inode->i_ino == EXT4_ROOT_INO)
1321		return -EPERM;
1322
1323	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1324		return -EINVAL;
1325
1326	if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1327		return -EOPNOTSUPP;
1328
1329	res = ext4_convert_inline_data(inode);
1330	if (res)
1331		return res;
1332
1333	/*
1334	 * If a journal handle was specified, then the encryption context is
1335	 * being set on a new inode via inheritance and is part of a larger
1336	 * transaction to create the inode.  Otherwise the encryption context is
1337	 * being set on an existing inode in its own transaction.  Only in the
1338	 * latter case should the "retry on ENOSPC" logic be used.
1339	 */
1340
1341	if (handle) {
1342		res = ext4_xattr_set_handle(handle, inode,
1343					    EXT4_XATTR_INDEX_ENCRYPTION,
1344					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1345					    ctx, len, 0);
1346		if (!res) {
1347			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1348			ext4_clear_inode_state(inode,
1349					EXT4_STATE_MAY_INLINE_DATA);
1350			/*
1351			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1352			 * S_DAX may be disabled
1353			 */
1354			ext4_set_inode_flags(inode, false);
1355		}
1356		return res;
1357	}
1358
1359	res = dquot_initialize(inode);
1360	if (res)
1361		return res;
1362retry:
1363	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1364				     &credits);
1365	if (res)
1366		return res;
1367
1368	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1369	if (IS_ERR(handle))
1370		return PTR_ERR(handle);
1371
1372	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1373				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1374				    ctx, len, 0);
1375	if (!res) {
1376		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1377		/*
1378		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1379		 * S_DAX may be disabled
1380		 */
1381		ext4_set_inode_flags(inode, false);
1382		res = ext4_mark_inode_dirty(handle, inode);
1383		if (res)
1384			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1385	}
1386	res2 = ext4_journal_stop(handle);
1387
1388	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1389		goto retry;
1390	if (!res)
1391		res = res2;
1392	return res;
1393}
1394
1395static const union fscrypt_context *
1396ext4_get_dummy_context(struct super_block *sb)
1397{
1398	return EXT4_SB(sb)->s_dummy_enc_ctx.ctx;
1399}
1400
1401static bool ext4_has_stable_inodes(struct super_block *sb)
1402{
1403	return ext4_has_feature_stable_inodes(sb);
 
1404}
1405
1406static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1407				       int *ino_bits_ret, int *lblk_bits_ret)
1408{
1409	*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1410	*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1411}
1412
1413static const struct fscrypt_operations ext4_cryptops = {
1414	.key_prefix		= "ext4:",
1415	.get_context		= ext4_get_context,
 
 
1416	.set_context		= ext4_set_context,
1417	.get_dummy_context	= ext4_get_dummy_context,
 
1418	.empty_dir		= ext4_empty_dir,
1419	.max_namelen		= EXT4_NAME_LEN,
1420	.has_stable_inodes	= ext4_has_stable_inodes,
1421	.get_ino_and_lblk_bits	= ext4_get_ino_and_lblk_bits,
 
 
1422};
1423#endif
1424
1425#ifdef CONFIG_QUOTA
1426static const char * const quotatypes[] = INITQFNAMES;
1427#define QTYPE2NAME(t) (quotatypes[t])
1428
1429static int ext4_write_dquot(struct dquot *dquot);
1430static int ext4_acquire_dquot(struct dquot *dquot);
1431static int ext4_release_dquot(struct dquot *dquot);
1432static int ext4_mark_dquot_dirty(struct dquot *dquot);
1433static int ext4_write_info(struct super_block *sb, int type);
1434static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1435			 const struct path *path);
 
1436static int ext4_quota_on_mount(struct super_block *sb, int type);
1437static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1438			       size_t len, loff_t off);
1439static ssize_t ext4_quota_write(struct super_block *sb, int type,
1440				const char *data, size_t len, loff_t off);
1441static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1442			     unsigned int flags);
1443static int ext4_enable_quotas(struct super_block *sb);
 
1444
1445static struct dquot **ext4_get_dquots(struct inode *inode)
1446{
1447	return EXT4_I(inode)->i_dquot;
1448}
1449
1450static const struct dquot_operations ext4_quota_operations = {
1451	.get_reserved_space	= ext4_get_reserved_space,
1452	.write_dquot		= ext4_write_dquot,
1453	.acquire_dquot		= ext4_acquire_dquot,
1454	.release_dquot		= ext4_release_dquot,
1455	.mark_dirty		= ext4_mark_dquot_dirty,
1456	.write_info		= ext4_write_info,
1457	.alloc_dquot		= dquot_alloc,
1458	.destroy_dquot		= dquot_destroy,
1459	.get_projid		= ext4_get_projid,
1460	.get_inode_usage	= ext4_get_inode_usage,
1461	.get_next_id		= dquot_get_next_id,
1462};
1463
1464static const struct quotactl_ops ext4_qctl_operations = {
1465	.quota_on	= ext4_quota_on,
1466	.quota_off	= ext4_quota_off,
1467	.quota_sync	= dquot_quota_sync,
1468	.get_state	= dquot_get_state,
1469	.set_info	= dquot_set_dqinfo,
1470	.get_dqblk	= dquot_get_dqblk,
1471	.set_dqblk	= dquot_set_dqblk,
1472	.get_nextdqblk	= dquot_get_next_dqblk,
1473};
1474#endif
1475
1476static const struct super_operations ext4_sops = {
1477	.alloc_inode	= ext4_alloc_inode,
1478	.free_inode	= ext4_free_in_core_inode,
1479	.destroy_inode	= ext4_destroy_inode,
1480	.write_inode	= ext4_write_inode,
1481	.dirty_inode	= ext4_dirty_inode,
1482	.drop_inode	= ext4_drop_inode,
1483	.evict_inode	= ext4_evict_inode,
1484	.put_super	= ext4_put_super,
1485	.sync_fs	= ext4_sync_fs,
1486	.freeze_fs	= ext4_freeze,
1487	.unfreeze_fs	= ext4_unfreeze,
1488	.statfs		= ext4_statfs,
1489	.remount_fs	= ext4_remount,
1490	.show_options	= ext4_show_options,
1491#ifdef CONFIG_QUOTA
1492	.quota_read	= ext4_quota_read,
1493	.quota_write	= ext4_quota_write,
1494	.get_dquots	= ext4_get_dquots,
1495#endif
1496	.bdev_try_to_free_page = bdev_try_to_free_page,
1497};
1498
1499static const struct export_operations ext4_export_ops = {
1500	.fh_to_dentry = ext4_fh_to_dentry,
1501	.fh_to_parent = ext4_fh_to_parent,
1502	.get_parent = ext4_get_parent,
1503	.commit_metadata = ext4_nfs_commit_metadata,
1504};
1505
1506enum {
1507	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1508	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1509	Opt_nouid32, Opt_debug, Opt_removed,
1510	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1511	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1512	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1513	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1514	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1515	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1516	Opt_inlinecrypt,
1517	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1518	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1519	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1520	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1521	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1522	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1523	Opt_nowarn_on_error, Opt_mblk_io_submit,
1524	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1525	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1526	Opt_inode_readahead_blks, Opt_journal_ioprio,
1527	Opt_dioread_nolock, Opt_dioread_lock,
1528	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1529	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1530	Opt_prefetch_block_bitmaps,
1531};
1532
1533static const match_table_t tokens = {
1534	{Opt_bsd_df, "bsddf"},
1535	{Opt_minix_df, "minixdf"},
1536	{Opt_grpid, "grpid"},
1537	{Opt_grpid, "bsdgroups"},
1538	{Opt_nogrpid, "nogrpid"},
1539	{Opt_nogrpid, "sysvgroups"},
1540	{Opt_resgid, "resgid=%u"},
1541	{Opt_resuid, "resuid=%u"},
1542	{Opt_sb, "sb=%u"},
1543	{Opt_err_cont, "errors=continue"},
1544	{Opt_err_panic, "errors=panic"},
1545	{Opt_err_ro, "errors=remount-ro"},
1546	{Opt_nouid32, "nouid32"},
1547	{Opt_debug, "debug"},
1548	{Opt_removed, "oldalloc"},
1549	{Opt_removed, "orlov"},
1550	{Opt_user_xattr, "user_xattr"},
1551	{Opt_nouser_xattr, "nouser_xattr"},
1552	{Opt_acl, "acl"},
1553	{Opt_noacl, "noacl"},
1554	{Opt_noload, "norecovery"},
1555	{Opt_noload, "noload"},
1556	{Opt_removed, "nobh"},
1557	{Opt_removed, "bh"},
1558	{Opt_commit, "commit=%u"},
1559	{Opt_min_batch_time, "min_batch_time=%u"},
1560	{Opt_max_batch_time, "max_batch_time=%u"},
1561	{Opt_journal_dev, "journal_dev=%u"},
1562	{Opt_journal_path, "journal_path=%s"},
1563	{Opt_journal_checksum, "journal_checksum"},
1564	{Opt_nojournal_checksum, "nojournal_checksum"},
1565	{Opt_journal_async_commit, "journal_async_commit"},
1566	{Opt_abort, "abort"},
1567	{Opt_data_journal, "data=journal"},
1568	{Opt_data_ordered, "data=ordered"},
1569	{Opt_data_writeback, "data=writeback"},
1570	{Opt_data_err_abort, "data_err=abort"},
1571	{Opt_data_err_ignore, "data_err=ignore"},
1572	{Opt_offusrjquota, "usrjquota="},
1573	{Opt_usrjquota, "usrjquota=%s"},
1574	{Opt_offgrpjquota, "grpjquota="},
1575	{Opt_grpjquota, "grpjquota=%s"},
1576	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1577	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1578	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1579	{Opt_grpquota, "grpquota"},
1580	{Opt_noquota, "noquota"},
1581	{Opt_quota, "quota"},
1582	{Opt_usrquota, "usrquota"},
1583	{Opt_prjquota, "prjquota"},
1584	{Opt_barrier, "barrier=%u"},
1585	{Opt_barrier, "barrier"},
1586	{Opt_nobarrier, "nobarrier"},
1587	{Opt_i_version, "i_version"},
1588	{Opt_dax, "dax"},
1589	{Opt_dax_always, "dax=always"},
1590	{Opt_dax_inode, "dax=inode"},
1591	{Opt_dax_never, "dax=never"},
1592	{Opt_stripe, "stripe=%u"},
1593	{Opt_delalloc, "delalloc"},
1594	{Opt_warn_on_error, "warn_on_error"},
1595	{Opt_nowarn_on_error, "nowarn_on_error"},
1596	{Opt_lazytime, "lazytime"},
1597	{Opt_nolazytime, "nolazytime"},
1598	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1599	{Opt_nodelalloc, "nodelalloc"},
1600	{Opt_removed, "mblk_io_submit"},
1601	{Opt_removed, "nomblk_io_submit"},
1602	{Opt_block_validity, "block_validity"},
1603	{Opt_noblock_validity, "noblock_validity"},
1604	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1605	{Opt_journal_ioprio, "journal_ioprio=%u"},
1606	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1607	{Opt_auto_da_alloc, "auto_da_alloc"},
1608	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1609	{Opt_dioread_nolock, "dioread_nolock"},
1610	{Opt_dioread_lock, "nodioread_nolock"},
1611	{Opt_dioread_lock, "dioread_lock"},
1612	{Opt_discard, "discard"},
1613	{Opt_nodiscard, "nodiscard"},
1614	{Opt_init_itable, "init_itable=%u"},
1615	{Opt_init_itable, "init_itable"},
1616	{Opt_noinit_itable, "noinit_itable"},
1617	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1618	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1619	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1620	{Opt_inlinecrypt, "inlinecrypt"},
1621	{Opt_nombcache, "nombcache"},
1622	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1623	{Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
1624	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1625	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1626	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1627	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1628	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1629	{Opt_err, NULL},
1630};
1631
1632static ext4_fsblk_t get_sb_block(void **data)
1633{
1634	ext4_fsblk_t	sb_block;
1635	char		*options = (char *) *data;
1636
1637	if (!options || strncmp(options, "sb=", 3) != 0)
1638		return 1;	/* Default location */
1639
1640	options += 3;
1641	/* TODO: use simple_strtoll with >32bit ext4 */
1642	sb_block = simple_strtoul(options, &options, 0);
1643	if (*options && *options != ',') {
1644		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1645		       (char *) *data);
1646		return 1;
1647	}
1648	if (*options == ',')
1649		options++;
1650	*data = (void *) options;
1651
1652	return sb_block;
1653}
1654
1655#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1656static const char deprecated_msg[] =
1657	"Mount option \"%s\" will be removed by %s\n"
1658	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1659
1660#ifdef CONFIG_QUOTA
1661static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1662{
1663	struct ext4_sb_info *sbi = EXT4_SB(sb);
1664	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1665	int ret = -1;
1666
1667	if (sb_any_quota_loaded(sb) && !old_qname) {
 
1668		ext4_msg(sb, KERN_ERR,
1669			"Cannot change journaled "
1670			"quota options when quota turned on");
1671		return -1;
1672	}
1673	if (ext4_has_feature_quota(sb)) {
1674		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1675			 "ignored when QUOTA feature is enabled");
1676		return 1;
1677	}
1678	qname = match_strdup(args);
1679	if (!qname) {
1680		ext4_msg(sb, KERN_ERR,
1681			"Not enough memory for storing quotafile name");
1682		return -1;
1683	}
1684	if (old_qname) {
1685		if (strcmp(old_qname, qname) == 0)
1686			ret = 1;
1687		else
1688			ext4_msg(sb, KERN_ERR,
1689				 "%s quota file already specified",
1690				 QTYPE2NAME(qtype));
1691		goto errout;
1692	}
1693	if (strchr(qname, '/')) {
1694		ext4_msg(sb, KERN_ERR,
1695			"quotafile must be on filesystem root");
1696		goto errout;
1697	}
1698	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1699	set_opt(sb, QUOTA);
1700	return 1;
1701errout:
1702	kfree(qname);
1703	return ret;
1704}
1705
1706static int clear_qf_name(struct super_block *sb, int qtype)
1707{
1708
1709	struct ext4_sb_info *sbi = EXT4_SB(sb);
1710	char *old_qname = get_qf_name(sb, sbi, qtype);
1711
1712	if (sb_any_quota_loaded(sb) && old_qname) {
 
1713		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1714			" when quota turned on");
1715		return -1;
1716	}
1717	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1718	synchronize_rcu();
1719	kfree(old_qname);
1720	return 1;
1721}
1722#endif
1723
1724#define MOPT_SET	0x0001
1725#define MOPT_CLEAR	0x0002
1726#define MOPT_NOSUPPORT	0x0004
1727#define MOPT_EXPLICIT	0x0008
1728#define MOPT_CLEAR_ERR	0x0010
1729#define MOPT_GTE0	0x0020
1730#ifdef CONFIG_QUOTA
1731#define MOPT_Q		0
1732#define MOPT_QFMT	0x0040
1733#else
1734#define MOPT_Q		MOPT_NOSUPPORT
1735#define MOPT_QFMT	MOPT_NOSUPPORT
1736#endif
1737#define MOPT_DATAJ	0x0080
1738#define MOPT_NO_EXT2	0x0100
1739#define MOPT_NO_EXT3	0x0200
1740#define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1741#define MOPT_STRING	0x0400
1742#define MOPT_SKIP	0x0800
1743
1744static const struct mount_opts {
1745	int	token;
1746	int	mount_opt;
1747	int	flags;
1748} ext4_mount_opts[] = {
1749	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1750	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1751	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1752	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1753	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1754	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1755	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1756	 MOPT_EXT4_ONLY | MOPT_SET},
1757	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1758	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1759	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1760	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1761	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1762	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1763	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1764	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1765	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1766	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1767	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1768	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1769	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1770	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1771	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1772				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1773	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1774	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1775	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1776	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1777	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1778	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1779	 MOPT_NO_EXT2},
1780	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1781	 MOPT_NO_EXT2},
1782	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1783	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1784	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1785	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1786	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1787	{Opt_commit, 0, MOPT_GTE0},
1788	{Opt_max_batch_time, 0, MOPT_GTE0},
1789	{Opt_min_batch_time, 0, MOPT_GTE0},
1790	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1791	{Opt_init_itable, 0, MOPT_GTE0},
1792	{Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1793	{Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1794		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1795	{Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1796		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1797	{Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1798		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1799	{Opt_stripe, 0, MOPT_GTE0},
1800	{Opt_resuid, 0, MOPT_GTE0},
1801	{Opt_resgid, 0, MOPT_GTE0},
1802	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1803	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1804	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1805	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1806	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1807	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1808	 MOPT_NO_EXT2 | MOPT_DATAJ},
1809	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1810	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1811#ifdef CONFIG_EXT4_FS_POSIX_ACL
1812	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1813	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1814#else
1815	{Opt_acl, 0, MOPT_NOSUPPORT},
1816	{Opt_noacl, 0, MOPT_NOSUPPORT},
1817#endif
1818	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1819	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1820	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1821	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1822	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1823							MOPT_SET | MOPT_Q},
1824	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1825							MOPT_SET | MOPT_Q},
1826	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1827							MOPT_SET | MOPT_Q},
1828	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1829		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1830							MOPT_CLEAR | MOPT_Q},
1831	{Opt_usrjquota, 0, MOPT_Q},
1832	{Opt_grpjquota, 0, MOPT_Q},
1833	{Opt_offusrjquota, 0, MOPT_Q},
1834	{Opt_offgrpjquota, 0, MOPT_Q},
1835	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1836	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1837	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1838	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1839	{Opt_test_dummy_encryption, 0, MOPT_STRING},
1840	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1841	{Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
1842	 MOPT_SET},
1843	{Opt_err, 0, 0}
1844};
1845
1846#ifdef CONFIG_UNICODE
1847static const struct ext4_sb_encodings {
1848	__u16 magic;
1849	char *name;
1850	char *version;
1851} ext4_sb_encoding_map[] = {
1852	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1853};
1854
1855static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1856				 const struct ext4_sb_encodings **encoding,
1857				 __u16 *flags)
1858{
1859	__u16 magic = le16_to_cpu(es->s_encoding);
1860	int i;
1861
1862	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1863		if (magic == ext4_sb_encoding_map[i].magic)
1864			break;
1865
1866	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1867		return -EINVAL;
1868
1869	*encoding = &ext4_sb_encoding_map[i];
1870	*flags = le16_to_cpu(es->s_encoding_flags);
1871
1872	return 0;
1873}
1874#endif
1875
1876static int ext4_set_test_dummy_encryption(struct super_block *sb,
1877					  const char *opt,
1878					  const substring_t *arg,
1879					  bool is_remount)
1880{
1881#ifdef CONFIG_FS_ENCRYPTION
1882	struct ext4_sb_info *sbi = EXT4_SB(sb);
1883	int err;
1884
1885	/*
1886	 * This mount option is just for testing, and it's not worthwhile to
1887	 * implement the extra complexity (e.g. RCU protection) that would be
1888	 * needed to allow it to be set or changed during remount.  We do allow
1889	 * it to be specified during remount, but only if there is no change.
1890	 */
1891	if (is_remount && !sbi->s_dummy_enc_ctx.ctx) {
1892		ext4_msg(sb, KERN_WARNING,
1893			 "Can't set test_dummy_encryption on remount");
1894		return -1;
1895	}
1896	err = fscrypt_set_test_dummy_encryption(sb, arg, &sbi->s_dummy_enc_ctx);
1897	if (err) {
1898		if (err == -EEXIST)
1899			ext4_msg(sb, KERN_WARNING,
1900				 "Can't change test_dummy_encryption on remount");
1901		else if (err == -EINVAL)
1902			ext4_msg(sb, KERN_WARNING,
1903				 "Value of option \"%s\" is unrecognized", opt);
1904		else
1905			ext4_msg(sb, KERN_WARNING,
1906				 "Error processing option \"%s\" [%d]",
1907				 opt, err);
1908		return -1;
1909	}
1910	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
1911#else
1912	ext4_msg(sb, KERN_WARNING,
1913		 "Test dummy encryption mount option ignored");
1914#endif
1915	return 1;
1916}
1917
1918static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1919			    substring_t *args, unsigned long *journal_devnum,
1920			    unsigned int *journal_ioprio, int is_remount)
1921{
1922	struct ext4_sb_info *sbi = EXT4_SB(sb);
1923	const struct mount_opts *m;
1924	kuid_t uid;
1925	kgid_t gid;
1926	int arg = 0;
1927
1928#ifdef CONFIG_QUOTA
1929	if (token == Opt_usrjquota)
1930		return set_qf_name(sb, USRQUOTA, &args[0]);
1931	else if (token == Opt_grpjquota)
1932		return set_qf_name(sb, GRPQUOTA, &args[0]);
1933	else if (token == Opt_offusrjquota)
1934		return clear_qf_name(sb, USRQUOTA);
1935	else if (token == Opt_offgrpjquota)
1936		return clear_qf_name(sb, GRPQUOTA);
1937#endif
1938	switch (token) {
1939	case Opt_noacl:
1940	case Opt_nouser_xattr:
1941		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1942		break;
1943	case Opt_sb:
1944		return 1;	/* handled by get_sb_block() */
1945	case Opt_removed:
1946		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1947		return 1;
1948	case Opt_abort:
1949		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1950		return 1;
1951	case Opt_i_version:
1952		sb->s_flags |= SB_I_VERSION;
1953		return 1;
1954	case Opt_lazytime:
1955		sb->s_flags |= SB_LAZYTIME;
1956		return 1;
1957	case Opt_nolazytime:
1958		sb->s_flags &= ~SB_LAZYTIME;
1959		return 1;
1960	case Opt_inlinecrypt:
1961#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
1962		sb->s_flags |= SB_INLINECRYPT;
1963#else
1964		ext4_msg(sb, KERN_ERR, "inline encryption not supported");
1965#endif
1966		return 1;
1967	}
1968
1969	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1970		if (token == m->token)
1971			break;
1972
1973	if (m->token == Opt_err) {
1974		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1975			 "or missing value", opt);
1976		return -1;
1977	}
1978
1979	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1980		ext4_msg(sb, KERN_ERR,
1981			 "Mount option \"%s\" incompatible with ext2", opt);
1982		return -1;
1983	}
1984	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1985		ext4_msg(sb, KERN_ERR,
1986			 "Mount option \"%s\" incompatible with ext3", opt);
1987		return -1;
1988	}
1989
1990	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1991		return -1;
1992	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1993		return -1;
1994	if (m->flags & MOPT_EXPLICIT) {
1995		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1996			set_opt2(sb, EXPLICIT_DELALLOC);
1997		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1998			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1999		} else
2000			return -1;
2001	}
2002	if (m->flags & MOPT_CLEAR_ERR)
2003		clear_opt(sb, ERRORS_MASK);
2004	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2005		ext4_msg(sb, KERN_ERR, "Cannot change quota "
2006			 "options when quota turned on");
2007		return -1;
2008	}
2009
2010	if (m->flags & MOPT_NOSUPPORT) {
2011		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2012	} else if (token == Opt_commit) {
2013		if (arg == 0)
2014			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2015		else if (arg > INT_MAX / HZ) {
2016			ext4_msg(sb, KERN_ERR,
2017				 "Invalid commit interval %d, "
2018				 "must be smaller than %d",
2019				 arg, INT_MAX / HZ);
2020			return -1;
2021		}
2022		sbi->s_commit_interval = HZ * arg;
2023	} else if (token == Opt_debug_want_extra_isize) {
2024		if ((arg & 1) ||
2025		    (arg < 4) ||
2026		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2027			ext4_msg(sb, KERN_ERR,
2028				 "Invalid want_extra_isize %d", arg);
2029			return -1;
2030		}
2031		sbi->s_want_extra_isize = arg;
2032	} else if (token == Opt_max_batch_time) {
2033		sbi->s_max_batch_time = arg;
2034	} else if (token == Opt_min_batch_time) {
2035		sbi->s_min_batch_time = arg;
2036	} else if (token == Opt_inode_readahead_blks) {
2037		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2038			ext4_msg(sb, KERN_ERR,
2039				 "EXT4-fs: inode_readahead_blks must be "
2040				 "0 or a power of 2 smaller than 2^31");
2041			return -1;
2042		}
2043		sbi->s_inode_readahead_blks = arg;
2044	} else if (token == Opt_init_itable) {
2045		set_opt(sb, INIT_INODE_TABLE);
2046		if (!args->from)
2047			arg = EXT4_DEF_LI_WAIT_MULT;
2048		sbi->s_li_wait_mult = arg;
2049	} else if (token == Opt_max_dir_size_kb) {
2050		sbi->s_max_dir_size_kb = arg;
2051	} else if (token == Opt_stripe) {
2052		sbi->s_stripe = arg;
2053	} else if (token == Opt_resuid) {
2054		uid = make_kuid(current_user_ns(), arg);
2055		if (!uid_valid(uid)) {
2056			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2057			return -1;
2058		}
2059		sbi->s_resuid = uid;
2060	} else if (token == Opt_resgid) {
2061		gid = make_kgid(current_user_ns(), arg);
2062		if (!gid_valid(gid)) {
2063			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2064			return -1;
2065		}
2066		sbi->s_resgid = gid;
2067	} else if (token == Opt_journal_dev) {
2068		if (is_remount) {
2069			ext4_msg(sb, KERN_ERR,
2070				 "Cannot specify journal on remount");
2071			return -1;
2072		}
2073		*journal_devnum = arg;
2074	} else if (token == Opt_journal_path) {
2075		char *journal_path;
2076		struct inode *journal_inode;
2077		struct path path;
2078		int error;
2079
2080		if (is_remount) {
2081			ext4_msg(sb, KERN_ERR,
2082				 "Cannot specify journal on remount");
2083			return -1;
2084		}
2085		journal_path = match_strdup(&args[0]);
2086		if (!journal_path) {
2087			ext4_msg(sb, KERN_ERR, "error: could not dup "
2088				"journal device string");
2089			return -1;
2090		}
2091
2092		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2093		if (error) {
2094			ext4_msg(sb, KERN_ERR, "error: could not find "
2095				"journal device path: error %d", error);
2096			kfree(journal_path);
2097			return -1;
2098		}
2099
2100		journal_inode = d_inode(path.dentry);
2101		if (!S_ISBLK(journal_inode->i_mode)) {
2102			ext4_msg(sb, KERN_ERR, "error: journal path %s "
2103				"is not a block device", journal_path);
2104			path_put(&path);
2105			kfree(journal_path);
2106			return -1;
2107		}
2108
2109		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
2110		path_put(&path);
2111		kfree(journal_path);
2112	} else if (token == Opt_journal_ioprio) {
2113		if (arg > 7) {
2114			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2115				 " (must be 0-7)");
2116			return -1;
2117		}
2118		*journal_ioprio =
2119			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2120	} else if (token == Opt_test_dummy_encryption) {
2121		return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2122						      is_remount);
 
 
 
 
 
 
2123	} else if (m->flags & MOPT_DATAJ) {
2124		if (is_remount) {
2125			if (!sbi->s_journal)
2126				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2127			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2128				ext4_msg(sb, KERN_ERR,
2129					 "Cannot change data mode on remount");
2130				return -1;
2131			}
2132		} else {
2133			clear_opt(sb, DATA_FLAGS);
2134			sbi->s_mount_opt |= m->mount_opt;
2135		}
2136#ifdef CONFIG_QUOTA
2137	} else if (m->flags & MOPT_QFMT) {
2138		if (sb_any_quota_loaded(sb) &&
2139		    sbi->s_jquota_fmt != m->mount_opt) {
2140			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2141				 "quota options when quota turned on");
2142			return -1;
2143		}
2144		if (ext4_has_feature_quota(sb)) {
2145			ext4_msg(sb, KERN_INFO,
2146				 "Quota format mount options ignored "
2147				 "when QUOTA feature is enabled");
2148			return 1;
2149		}
2150		sbi->s_jquota_fmt = m->mount_opt;
2151#endif
2152	} else if (token == Opt_dax || token == Opt_dax_always ||
2153		   token == Opt_dax_inode || token == Opt_dax_never) {
2154#ifdef CONFIG_FS_DAX
2155		switch (token) {
2156		case Opt_dax:
2157		case Opt_dax_always:
2158			if (is_remount &&
2159			    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2160			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2161			fail_dax_change_remount:
2162				ext4_msg(sb, KERN_ERR, "can't change "
2163					 "dax mount option while remounting");
2164				return -1;
2165			}
2166			if (is_remount &&
2167			    (test_opt(sb, DATA_FLAGS) ==
2168			     EXT4_MOUNT_JOURNAL_DATA)) {
2169				    ext4_msg(sb, KERN_ERR, "can't mount with "
2170					     "both data=journal and dax");
2171				    return -1;
2172			}
2173			ext4_msg(sb, KERN_WARNING,
2174				"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2175			sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2176			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2177			break;
2178		case Opt_dax_never:
2179			if (is_remount &&
2180			    (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2181			     (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2182				goto fail_dax_change_remount;
2183			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2184			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2185			break;
2186		case Opt_dax_inode:
2187			if (is_remount &&
2188			    ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2189			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2190			     !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2191				goto fail_dax_change_remount;
2192			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2193			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2194			/* Strictly for printing options */
2195			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2196			break;
2197		}
2198#else
2199		ext4_msg(sb, KERN_INFO, "dax option not supported");
2200		sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2201		sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2202		return -1;
2203#endif
2204	} else if (token == Opt_data_err_abort) {
2205		sbi->s_mount_opt |= m->mount_opt;
2206	} else if (token == Opt_data_err_ignore) {
2207		sbi->s_mount_opt &= ~m->mount_opt;
2208	} else {
2209		if (!args->from)
2210			arg = 1;
2211		if (m->flags & MOPT_CLEAR)
2212			arg = !arg;
2213		else if (unlikely(!(m->flags & MOPT_SET))) {
2214			ext4_msg(sb, KERN_WARNING,
2215				 "buggy handling of option %s", opt);
2216			WARN_ON(1);
2217			return -1;
2218		}
2219		if (arg != 0)
2220			sbi->s_mount_opt |= m->mount_opt;
2221		else
2222			sbi->s_mount_opt &= ~m->mount_opt;
2223	}
2224	return 1;
2225}
2226
2227static int parse_options(char *options, struct super_block *sb,
2228			 unsigned long *journal_devnum,
2229			 unsigned int *journal_ioprio,
2230			 int is_remount)
2231{
2232	struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2233	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2234	substring_t args[MAX_OPT_ARGS];
2235	int token;
2236
2237	if (!options)
2238		return 1;
2239
2240	while ((p = strsep(&options, ",")) != NULL) {
2241		if (!*p)
2242			continue;
2243		/*
2244		 * Initialize args struct so we know whether arg was
2245		 * found; some options take optional arguments.
2246		 */
2247		args[0].to = args[0].from = NULL;
2248		token = match_token(p, tokens, args);
2249		if (handle_mount_opt(sb, p, token, args, journal_devnum,
2250				     journal_ioprio, is_remount) < 0)
2251			return 0;
2252	}
2253#ifdef CONFIG_QUOTA
2254	/*
2255	 * We do the test below only for project quotas. 'usrquota' and
2256	 * 'grpquota' mount options are allowed even without quota feature
2257	 * to support legacy quotas in quota files.
2258	 */
2259	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2260		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2261			 "Cannot enable project quota enforcement.");
2262		return 0;
2263	}
2264	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2265	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2266	if (usr_qf_name || grp_qf_name) {
2267		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2268			clear_opt(sb, USRQUOTA);
2269
2270		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2271			clear_opt(sb, GRPQUOTA);
2272
2273		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2274			ext4_msg(sb, KERN_ERR, "old and new quota "
2275					"format mixing");
2276			return 0;
2277		}
2278
2279		if (!sbi->s_jquota_fmt) {
2280			ext4_msg(sb, KERN_ERR, "journaled quota format "
2281					"not specified");
2282			return 0;
2283		}
2284	}
2285#endif
2286	if (test_opt(sb, DIOREAD_NOLOCK)) {
2287		int blocksize =
2288			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2289		if (blocksize < PAGE_SIZE)
2290			ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2291				 "experimental mount option 'dioread_nolock' "
2292				 "for blocksize < PAGE_SIZE");
 
 
2293	}
2294	return 1;
2295}
2296
2297static inline void ext4_show_quota_options(struct seq_file *seq,
2298					   struct super_block *sb)
2299{
2300#if defined(CONFIG_QUOTA)
2301	struct ext4_sb_info *sbi = EXT4_SB(sb);
2302	char *usr_qf_name, *grp_qf_name;
2303
2304	if (sbi->s_jquota_fmt) {
2305		char *fmtname = "";
2306
2307		switch (sbi->s_jquota_fmt) {
2308		case QFMT_VFS_OLD:
2309			fmtname = "vfsold";
2310			break;
2311		case QFMT_VFS_V0:
2312			fmtname = "vfsv0";
2313			break;
2314		case QFMT_VFS_V1:
2315			fmtname = "vfsv1";
2316			break;
2317		}
2318		seq_printf(seq, ",jqfmt=%s", fmtname);
2319	}
2320
2321	rcu_read_lock();
2322	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2323	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2324	if (usr_qf_name)
2325		seq_show_option(seq, "usrjquota", usr_qf_name);
2326	if (grp_qf_name)
2327		seq_show_option(seq, "grpjquota", grp_qf_name);
2328	rcu_read_unlock();
2329#endif
2330}
2331
2332static const char *token2str(int token)
2333{
2334	const struct match_token *t;
2335
2336	for (t = tokens; t->token != Opt_err; t++)
2337		if (t->token == token && !strchr(t->pattern, '='))
2338			break;
2339	return t->pattern;
2340}
2341
2342/*
2343 * Show an option if
2344 *  - it's set to a non-default value OR
2345 *  - if the per-sb default is different from the global default
2346 */
2347static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2348			      int nodefs)
2349{
2350	struct ext4_sb_info *sbi = EXT4_SB(sb);
2351	struct ext4_super_block *es = sbi->s_es;
2352	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2353	const struct mount_opts *m;
2354	char sep = nodefs ? '\n' : ',';
2355
2356#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2357#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2358
2359	if (sbi->s_sb_block != 1)
2360		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2361
2362	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2363		int want_set = m->flags & MOPT_SET;
2364		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2365		    (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2366			continue;
2367		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2368			continue; /* skip if same as the default */
2369		if ((want_set &&
2370		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2371		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2372			continue; /* select Opt_noFoo vs Opt_Foo */
2373		SEQ_OPTS_PRINT("%s", token2str(m->token));
2374	}
2375
2376	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2377	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2378		SEQ_OPTS_PRINT("resuid=%u",
2379				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2380	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2381	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2382		SEQ_OPTS_PRINT("resgid=%u",
2383				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2384	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2385	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2386		SEQ_OPTS_PUTS("errors=remount-ro");
2387	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2388		SEQ_OPTS_PUTS("errors=continue");
2389	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2390		SEQ_OPTS_PUTS("errors=panic");
2391	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2392		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2393	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2394		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2395	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2396		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2397	if (sb->s_flags & SB_I_VERSION)
2398		SEQ_OPTS_PUTS("i_version");
2399	if (nodefs || sbi->s_stripe)
2400		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2401	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2402			(sbi->s_mount_opt ^ def_mount_opt)) {
2403		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2404			SEQ_OPTS_PUTS("data=journal");
2405		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2406			SEQ_OPTS_PUTS("data=ordered");
2407		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2408			SEQ_OPTS_PUTS("data=writeback");
2409	}
2410	if (nodefs ||
2411	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2412		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2413			       sbi->s_inode_readahead_blks);
2414
2415	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2416		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2417		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2418	if (nodefs || sbi->s_max_dir_size_kb)
2419		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2420	if (test_opt(sb, DATA_ERR_ABORT))
2421		SEQ_OPTS_PUTS("data_err=abort");
2422
2423	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2424
2425	if (sb->s_flags & SB_INLINECRYPT)
2426		SEQ_OPTS_PUTS("inlinecrypt");
2427
2428	if (test_opt(sb, DAX_ALWAYS)) {
2429		if (IS_EXT2_SB(sb))
2430			SEQ_OPTS_PUTS("dax");
2431		else
2432			SEQ_OPTS_PUTS("dax=always");
2433	} else if (test_opt2(sb, DAX_NEVER)) {
2434		SEQ_OPTS_PUTS("dax=never");
2435	} else if (test_opt2(sb, DAX_INODE)) {
2436		SEQ_OPTS_PUTS("dax=inode");
2437	}
2438
2439	ext4_show_quota_options(seq, sb);
2440	return 0;
2441}
2442
2443static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2444{
2445	return _ext4_show_options(seq, root->d_sb, 0);
2446}
2447
2448int ext4_seq_options_show(struct seq_file *seq, void *offset)
2449{
2450	struct super_block *sb = seq->private;
2451	int rc;
2452
2453	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2454	rc = _ext4_show_options(seq, sb, 1);
2455	seq_puts(seq, "\n");
2456	return rc;
2457}
2458
2459static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2460			    int read_only)
2461{
2462	struct ext4_sb_info *sbi = EXT4_SB(sb);
2463	int err = 0;
2464
2465	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2466		ext4_msg(sb, KERN_ERR, "revision level too high, "
2467			 "forcing read-only mode");
2468		err = -EROFS;
2469		goto done;
2470	}
2471	if (read_only)
2472		goto done;
2473	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2474		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2475			 "running e2fsck is recommended");
2476	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2477		ext4_msg(sb, KERN_WARNING,
2478			 "warning: mounting fs with errors, "
2479			 "running e2fsck is recommended");
2480	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2481		 le16_to_cpu(es->s_mnt_count) >=
2482		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2483		ext4_msg(sb, KERN_WARNING,
2484			 "warning: maximal mount count reached, "
2485			 "running e2fsck is recommended");
2486	else if (le32_to_cpu(es->s_checkinterval) &&
2487		 (ext4_get_tstamp(es, s_lastcheck) +
2488		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2489		ext4_msg(sb, KERN_WARNING,
2490			 "warning: checktime reached, "
2491			 "running e2fsck is recommended");
2492	if (!sbi->s_journal)
2493		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2494	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2495		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2496	le16_add_cpu(&es->s_mnt_count, 1);
2497	ext4_update_tstamp(es, s_mtime);
 
2498	if (sbi->s_journal)
2499		ext4_set_feature_journal_needs_recovery(sb);
2500
2501	err = ext4_commit_super(sb, 1);
2502done:
2503	if (test_opt(sb, DEBUG))
2504		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2505				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2506			sb->s_blocksize,
2507			sbi->s_groups_count,
2508			EXT4_BLOCKS_PER_GROUP(sb),
2509			EXT4_INODES_PER_GROUP(sb),
2510			sbi->s_mount_opt, sbi->s_mount_opt2);
2511
2512	cleancache_init_fs(sb);
2513	return err;
2514}
2515
2516int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2517{
2518	struct ext4_sb_info *sbi = EXT4_SB(sb);
2519	struct flex_groups **old_groups, **new_groups;
2520	int size, i, j;
2521
2522	if (!sbi->s_log_groups_per_flex)
2523		return 0;
2524
2525	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2526	if (size <= sbi->s_flex_groups_allocated)
2527		return 0;
2528
2529	new_groups = kvzalloc(roundup_pow_of_two(size *
2530			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2531	if (!new_groups) {
2532		ext4_msg(sb, KERN_ERR,
2533			 "not enough memory for %d flex group pointers", size);
2534		return -ENOMEM;
2535	}
2536	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2537		new_groups[i] = kvzalloc(roundup_pow_of_two(
2538					 sizeof(struct flex_groups)),
2539					 GFP_KERNEL);
2540		if (!new_groups[i]) {
2541			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2542				kvfree(new_groups[j]);
2543			kvfree(new_groups);
2544			ext4_msg(sb, KERN_ERR,
2545				 "not enough memory for %d flex groups", size);
2546			return -ENOMEM;
2547		}
2548	}
2549	rcu_read_lock();
2550	old_groups = rcu_dereference(sbi->s_flex_groups);
2551	if (old_groups)
2552		memcpy(new_groups, old_groups,
2553		       (sbi->s_flex_groups_allocated *
2554			sizeof(struct flex_groups *)));
2555	rcu_read_unlock();
2556	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2557	sbi->s_flex_groups_allocated = size;
2558	if (old_groups)
2559		ext4_kvfree_array_rcu(old_groups);
2560	return 0;
2561}
2562
2563static int ext4_fill_flex_info(struct super_block *sb)
2564{
2565	struct ext4_sb_info *sbi = EXT4_SB(sb);
2566	struct ext4_group_desc *gdp = NULL;
2567	struct flex_groups *fg;
2568	ext4_group_t flex_group;
2569	int i, err;
2570
2571	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2572	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2573		sbi->s_log_groups_per_flex = 0;
2574		return 1;
2575	}
2576
2577	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2578	if (err)
2579		goto failed;
2580
2581	for (i = 0; i < sbi->s_groups_count; i++) {
2582		gdp = ext4_get_group_desc(sb, i, NULL);
2583
2584		flex_group = ext4_flex_group(sbi, i);
2585		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2586		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2587		atomic64_add(ext4_free_group_clusters(sb, gdp),
2588			     &fg->free_clusters);
2589		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
 
2590	}
2591
2592	return 1;
2593failed:
2594	return 0;
2595}
2596
2597static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2598				   struct ext4_group_desc *gdp)
2599{
2600	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2601	__u16 crc = 0;
2602	__le32 le_group = cpu_to_le32(block_group);
2603	struct ext4_sb_info *sbi = EXT4_SB(sb);
2604
2605	if (ext4_has_metadata_csum(sbi->s_sb)) {
2606		/* Use new metadata_csum algorithm */
2607		__u32 csum32;
2608		__u16 dummy_csum = 0;
2609
2610		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2611				     sizeof(le_group));
2612		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2613		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2614				     sizeof(dummy_csum));
2615		offset += sizeof(dummy_csum);
2616		if (offset < sbi->s_desc_size)
2617			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2618					     sbi->s_desc_size - offset);
2619
2620		crc = csum32 & 0xFFFF;
2621		goto out;
2622	}
2623
2624	/* old crc16 code */
2625	if (!ext4_has_feature_gdt_csum(sb))
2626		return 0;
2627
2628	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2629	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2630	crc = crc16(crc, (__u8 *)gdp, offset);
2631	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2632	/* for checksum of struct ext4_group_desc do the rest...*/
2633	if (ext4_has_feature_64bit(sb) &&
2634	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2635		crc = crc16(crc, (__u8 *)gdp + offset,
2636			    le16_to_cpu(sbi->s_es->s_desc_size) -
2637				offset);
2638
2639out:
2640	return cpu_to_le16(crc);
2641}
2642
2643int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2644				struct ext4_group_desc *gdp)
2645{
2646	if (ext4_has_group_desc_csum(sb) &&
2647	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2648		return 0;
2649
2650	return 1;
2651}
2652
2653void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2654			      struct ext4_group_desc *gdp)
2655{
2656	if (!ext4_has_group_desc_csum(sb))
2657		return;
2658	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2659}
2660
2661/* Called at mount-time, super-block is locked */
2662static int ext4_check_descriptors(struct super_block *sb,
2663				  ext4_fsblk_t sb_block,
2664				  ext4_group_t *first_not_zeroed)
2665{
2666	struct ext4_sb_info *sbi = EXT4_SB(sb);
2667	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2668	ext4_fsblk_t last_block;
2669	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2670	ext4_fsblk_t block_bitmap;
2671	ext4_fsblk_t inode_bitmap;
2672	ext4_fsblk_t inode_table;
2673	int flexbg_flag = 0;
2674	ext4_group_t i, grp = sbi->s_groups_count;
2675
2676	if (ext4_has_feature_flex_bg(sb))
2677		flexbg_flag = 1;
2678
2679	ext4_debug("Checking group descriptors");
2680
2681	for (i = 0; i < sbi->s_groups_count; i++) {
2682		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2683
2684		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2685			last_block = ext4_blocks_count(sbi->s_es) - 1;
2686		else
2687			last_block = first_block +
2688				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2689
2690		if ((grp == sbi->s_groups_count) &&
2691		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2692			grp = i;
2693
2694		block_bitmap = ext4_block_bitmap(sb, gdp);
2695		if (block_bitmap == sb_block) {
2696			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2697				 "Block bitmap for group %u overlaps "
2698				 "superblock", i);
2699			if (!sb_rdonly(sb))
2700				return 0;
2701		}
2702		if (block_bitmap >= sb_block + 1 &&
2703		    block_bitmap <= last_bg_block) {
2704			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2705				 "Block bitmap for group %u overlaps "
2706				 "block group descriptors", i);
2707			if (!sb_rdonly(sb))
2708				return 0;
2709		}
2710		if (block_bitmap < first_block || block_bitmap > last_block) {
2711			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2712			       "Block bitmap for group %u not in group "
2713			       "(block %llu)!", i, block_bitmap);
2714			return 0;
2715		}
2716		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2717		if (inode_bitmap == sb_block) {
2718			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2719				 "Inode bitmap for group %u overlaps "
2720				 "superblock", i);
2721			if (!sb_rdonly(sb))
2722				return 0;
2723		}
2724		if (inode_bitmap >= sb_block + 1 &&
2725		    inode_bitmap <= last_bg_block) {
2726			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2727				 "Inode bitmap for group %u overlaps "
2728				 "block group descriptors", i);
2729			if (!sb_rdonly(sb))
2730				return 0;
2731		}
2732		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2733			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2734			       "Inode bitmap for group %u not in group "
2735			       "(block %llu)!", i, inode_bitmap);
2736			return 0;
2737		}
2738		inode_table = ext4_inode_table(sb, gdp);
2739		if (inode_table == sb_block) {
2740			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2741				 "Inode table for group %u overlaps "
2742				 "superblock", i);
2743			if (!sb_rdonly(sb))
2744				return 0;
2745		}
2746		if (inode_table >= sb_block + 1 &&
2747		    inode_table <= last_bg_block) {
2748			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2749				 "Inode table for group %u overlaps "
2750				 "block group descriptors", i);
2751			if (!sb_rdonly(sb))
2752				return 0;
2753		}
2754		if (inode_table < first_block ||
2755		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2756			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2757			       "Inode table for group %u not in group "
2758			       "(block %llu)!", i, inode_table);
2759			return 0;
2760		}
2761		ext4_lock_group(sb, i);
2762		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2763			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2764				 "Checksum for group %u failed (%u!=%u)",
2765				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2766				     gdp)), le16_to_cpu(gdp->bg_checksum));
2767			if (!sb_rdonly(sb)) {
2768				ext4_unlock_group(sb, i);
2769				return 0;
2770			}
2771		}
2772		ext4_unlock_group(sb, i);
2773		if (!flexbg_flag)
2774			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2775	}
2776	if (NULL != first_not_zeroed)
2777		*first_not_zeroed = grp;
2778	return 1;
2779}
2780
2781/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2782 * the superblock) which were deleted from all directories, but held open by
2783 * a process at the time of a crash.  We walk the list and try to delete these
2784 * inodes at recovery time (only with a read-write filesystem).
2785 *
2786 * In order to keep the orphan inode chain consistent during traversal (in
2787 * case of crash during recovery), we link each inode into the superblock
2788 * orphan list_head and handle it the same way as an inode deletion during
2789 * normal operation (which journals the operations for us).
2790 *
2791 * We only do an iget() and an iput() on each inode, which is very safe if we
2792 * accidentally point at an in-use or already deleted inode.  The worst that
2793 * can happen in this case is that we get a "bit already cleared" message from
2794 * ext4_free_inode().  The only reason we would point at a wrong inode is if
2795 * e2fsck was run on this filesystem, and it must have already done the orphan
2796 * inode cleanup for us, so we can safely abort without any further action.
2797 */
2798static void ext4_orphan_cleanup(struct super_block *sb,
2799				struct ext4_super_block *es)
2800{
2801	unsigned int s_flags = sb->s_flags;
2802	int ret, nr_orphans = 0, nr_truncates = 0;
2803#ifdef CONFIG_QUOTA
2804	int quota_update = 0;
2805	int i;
2806#endif
2807	if (!es->s_last_orphan) {
2808		jbd_debug(4, "no orphan inodes to clean up\n");
2809		return;
2810	}
2811
2812	if (bdev_read_only(sb->s_bdev)) {
2813		ext4_msg(sb, KERN_ERR, "write access "
2814			"unavailable, skipping orphan cleanup");
2815		return;
2816	}
2817
2818	/* Check if feature set would not allow a r/w mount */
2819	if (!ext4_feature_set_ok(sb, 0)) {
2820		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2821			 "unknown ROCOMPAT features");
2822		return;
2823	}
2824
2825	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2826		/* don't clear list on RO mount w/ errors */
2827		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2828			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2829				  "clearing orphan list.\n");
2830			es->s_last_orphan = 0;
2831		}
2832		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2833		return;
2834	}
2835
2836	if (s_flags & SB_RDONLY) {
2837		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2838		sb->s_flags &= ~SB_RDONLY;
2839	}
2840#ifdef CONFIG_QUOTA
2841	/* Needed for iput() to work correctly and not trash data */
2842	sb->s_flags |= SB_ACTIVE;
2843
2844	/*
2845	 * Turn on quotas which were not enabled for read-only mounts if
2846	 * filesystem has quota feature, so that they are updated correctly.
2847	 */
2848	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2849		int ret = ext4_enable_quotas(sb);
2850
2851		if (!ret)
2852			quota_update = 1;
2853		else
2854			ext4_msg(sb, KERN_ERR,
2855				"Cannot turn on quotas: error %d", ret);
2856	}
2857
2858	/* Turn on journaled quotas used for old sytle */
2859	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2860		if (EXT4_SB(sb)->s_qf_names[i]) {
2861			int ret = ext4_quota_on_mount(sb, i);
2862
2863			if (!ret)
2864				quota_update = 1;
2865			else
2866				ext4_msg(sb, KERN_ERR,
2867					"Cannot turn on journaled "
2868					"quota: type %d: error %d", i, ret);
2869		}
2870	}
2871#endif
2872
2873	while (es->s_last_orphan) {
2874		struct inode *inode;
2875
2876		/*
2877		 * We may have encountered an error during cleanup; if
2878		 * so, skip the rest.
2879		 */
2880		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2881			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2882			es->s_last_orphan = 0;
2883			break;
2884		}
2885
2886		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2887		if (IS_ERR(inode)) {
2888			es->s_last_orphan = 0;
2889			break;
2890		}
2891
2892		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2893		dquot_initialize(inode);
2894		if (inode->i_nlink) {
2895			if (test_opt(sb, DEBUG))
2896				ext4_msg(sb, KERN_DEBUG,
2897					"%s: truncating inode %lu to %lld bytes",
2898					__func__, inode->i_ino, inode->i_size);
2899			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2900				  inode->i_ino, inode->i_size);
2901			inode_lock(inode);
2902			truncate_inode_pages(inode->i_mapping, inode->i_size);
2903			ret = ext4_truncate(inode);
2904			if (ret)
2905				ext4_std_error(inode->i_sb, ret);
2906			inode_unlock(inode);
2907			nr_truncates++;
2908		} else {
2909			if (test_opt(sb, DEBUG))
2910				ext4_msg(sb, KERN_DEBUG,
2911					"%s: deleting unreferenced inode %lu",
2912					__func__, inode->i_ino);
2913			jbd_debug(2, "deleting unreferenced inode %lu\n",
2914				  inode->i_ino);
2915			nr_orphans++;
2916		}
2917		iput(inode);  /* The delete magic happens here! */
2918	}
2919
2920#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2921
2922	if (nr_orphans)
2923		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2924		       PLURAL(nr_orphans));
2925	if (nr_truncates)
2926		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2927		       PLURAL(nr_truncates));
2928#ifdef CONFIG_QUOTA
2929	/* Turn off quotas if they were enabled for orphan cleanup */
2930	if (quota_update) {
2931		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2932			if (sb_dqopt(sb)->files[i])
2933				dquot_quota_off(sb, i);
2934		}
2935	}
2936#endif
2937	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2938}
2939
2940/*
2941 * Maximal extent format file size.
2942 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2943 * extent format containers, within a sector_t, and within i_blocks
2944 * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2945 * so that won't be a limiting factor.
2946 *
2947 * However there is other limiting factor. We do store extents in the form
2948 * of starting block and length, hence the resulting length of the extent
2949 * covering maximum file size must fit into on-disk format containers as
2950 * well. Given that length is always by 1 unit bigger than max unit (because
2951 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2952 *
2953 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2954 */
2955static loff_t ext4_max_size(int blkbits, int has_huge_files)
2956{
2957	loff_t res;
2958	loff_t upper_limit = MAX_LFS_FILESIZE;
2959
2960	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2961
2962	if (!has_huge_files) {
 
 
 
 
2963		upper_limit = (1LL << 32) - 1;
2964
2965		/* total blocks in file system block size */
2966		upper_limit >>= (blkbits - 9);
2967		upper_limit <<= blkbits;
2968	}
2969
2970	/*
2971	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2972	 * by one fs block, so ee_len can cover the extent of maximum file
2973	 * size
2974	 */
2975	res = (1LL << 32) - 1;
2976	res <<= blkbits;
2977
2978	/* Sanity check against vm- & vfs- imposed limits */
2979	if (res > upper_limit)
2980		res = upper_limit;
2981
2982	return res;
2983}
2984
2985/*
2986 * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2987 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2988 * We need to be 1 filesystem block less than the 2^48 sector limit.
2989 */
2990static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2991{
2992	loff_t res = EXT4_NDIR_BLOCKS;
2993	int meta_blocks;
2994	loff_t upper_limit;
2995	/* This is calculated to be the largest file size for a dense, block
2996	 * mapped file such that the file's total number of 512-byte sectors,
2997	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2998	 *
2999	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3000	 * number of 512-byte sectors of the file.
3001	 */
3002
3003	if (!has_huge_files) {
3004		/*
3005		 * !has_huge_files or implies that the inode i_block field
3006		 * represents total file blocks in 2^32 512-byte sectors ==
3007		 * size of vfs inode i_blocks * 8
3008		 */
3009		upper_limit = (1LL << 32) - 1;
3010
3011		/* total blocks in file system block size */
3012		upper_limit >>= (bits - 9);
3013
3014	} else {
3015		/*
3016		 * We use 48 bit ext4_inode i_blocks
3017		 * With EXT4_HUGE_FILE_FL set the i_blocks
3018		 * represent total number of blocks in
3019		 * file system block size
3020		 */
3021		upper_limit = (1LL << 48) - 1;
3022
3023	}
3024
3025	/* indirect blocks */
3026	meta_blocks = 1;
3027	/* double indirect blocks */
3028	meta_blocks += 1 + (1LL << (bits-2));
3029	/* tripple indirect blocks */
3030	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3031
3032	upper_limit -= meta_blocks;
3033	upper_limit <<= bits;
3034
3035	res += 1LL << (bits-2);
3036	res += 1LL << (2*(bits-2));
3037	res += 1LL << (3*(bits-2));
3038	res <<= bits;
3039	if (res > upper_limit)
3040		res = upper_limit;
3041
3042	if (res > MAX_LFS_FILESIZE)
3043		res = MAX_LFS_FILESIZE;
3044
3045	return res;
3046}
3047
3048static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3049				   ext4_fsblk_t logical_sb_block, int nr)
3050{
3051	struct ext4_sb_info *sbi = EXT4_SB(sb);
3052	ext4_group_t bg, first_meta_bg;
3053	int has_super = 0;
3054
3055	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3056
3057	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3058		return logical_sb_block + nr + 1;
3059	bg = sbi->s_desc_per_block * nr;
3060	if (ext4_bg_has_super(sb, bg))
3061		has_super = 1;
3062
3063	/*
3064	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3065	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3066	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3067	 * compensate.
3068	 */
3069	if (sb->s_blocksize == 1024 && nr == 0 &&
3070	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3071		has_super++;
3072
3073	return (has_super + ext4_group_first_block_no(sb, bg));
3074}
3075
3076/**
3077 * ext4_get_stripe_size: Get the stripe size.
3078 * @sbi: In memory super block info
3079 *
3080 * If we have specified it via mount option, then
3081 * use the mount option value. If the value specified at mount time is
3082 * greater than the blocks per group use the super block value.
3083 * If the super block value is greater than blocks per group return 0.
3084 * Allocator needs it be less than blocks per group.
3085 *
3086 */
3087static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3088{
3089	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3090	unsigned long stripe_width =
3091			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3092	int ret;
3093
3094	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3095		ret = sbi->s_stripe;
3096	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3097		ret = stripe_width;
3098	else if (stride && stride <= sbi->s_blocks_per_group)
3099		ret = stride;
3100	else
3101		ret = 0;
3102
3103	/*
3104	 * If the stripe width is 1, this makes no sense and
3105	 * we set it to 0 to turn off stripe handling code.
3106	 */
3107	if (ret <= 1)
3108		ret = 0;
3109
3110	return ret;
3111}
3112
3113/*
3114 * Check whether this filesystem can be mounted based on
3115 * the features present and the RDONLY/RDWR mount requested.
3116 * Returns 1 if this filesystem can be mounted as requested,
3117 * 0 if it cannot be.
3118 */
3119static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3120{
3121	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3122		ext4_msg(sb, KERN_ERR,
3123			"Couldn't mount because of "
3124			"unsupported optional features (%x)",
3125			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3126			~EXT4_FEATURE_INCOMPAT_SUPP));
3127		return 0;
3128	}
3129
3130#ifndef CONFIG_UNICODE
3131	if (ext4_has_feature_casefold(sb)) {
3132		ext4_msg(sb, KERN_ERR,
3133			 "Filesystem with casefold feature cannot be "
3134			 "mounted without CONFIG_UNICODE");
3135		return 0;
3136	}
3137#endif
3138
3139	if (readonly)
3140		return 1;
3141
3142	if (ext4_has_feature_readonly(sb)) {
3143		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3144		sb->s_flags |= SB_RDONLY;
3145		return 1;
3146	}
3147
3148	/* Check that feature set is OK for a read-write mount */
3149	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3150		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3151			 "unsupported optional features (%x)",
3152			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3153				~EXT4_FEATURE_RO_COMPAT_SUPP));
3154		return 0;
3155	}
 
 
 
 
 
 
 
 
 
 
 
 
3156	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3157		ext4_msg(sb, KERN_ERR,
3158			 "Can't support bigalloc feature without "
3159			 "extents feature\n");
3160		return 0;
3161	}
3162
3163#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3164	if (!readonly && (ext4_has_feature_quota(sb) ||
3165			  ext4_has_feature_project(sb))) {
3166		ext4_msg(sb, KERN_ERR,
3167			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
 
 
 
 
 
 
 
3168		return 0;
3169	}
3170#endif  /* CONFIG_QUOTA */
3171	return 1;
3172}
3173
3174/*
3175 * This function is called once a day if we have errors logged
3176 * on the file system
3177 */
3178static void print_daily_error_info(struct timer_list *t)
3179{
3180	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3181	struct super_block *sb = sbi->s_sb;
3182	struct ext4_super_block *es = sbi->s_es;
 
 
 
3183
3184	if (es->s_error_count)
3185		/* fsck newer than v1.41.13 is needed to clean this condition. */
3186		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3187			 le32_to_cpu(es->s_error_count));
3188	if (es->s_first_error_time) {
3189		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3190		       sb->s_id,
3191		       ext4_get_tstamp(es, s_first_error_time),
3192		       (int) sizeof(es->s_first_error_func),
3193		       es->s_first_error_func,
3194		       le32_to_cpu(es->s_first_error_line));
3195		if (es->s_first_error_ino)
3196			printk(KERN_CONT ": inode %u",
3197			       le32_to_cpu(es->s_first_error_ino));
3198		if (es->s_first_error_block)
3199			printk(KERN_CONT ": block %llu", (unsigned long long)
3200			       le64_to_cpu(es->s_first_error_block));
3201		printk(KERN_CONT "\n");
3202	}
3203	if (es->s_last_error_time) {
3204		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3205		       sb->s_id,
3206		       ext4_get_tstamp(es, s_last_error_time),
3207		       (int) sizeof(es->s_last_error_func),
3208		       es->s_last_error_func,
3209		       le32_to_cpu(es->s_last_error_line));
3210		if (es->s_last_error_ino)
3211			printk(KERN_CONT ": inode %u",
3212			       le32_to_cpu(es->s_last_error_ino));
3213		if (es->s_last_error_block)
3214			printk(KERN_CONT ": block %llu", (unsigned long long)
3215			       le64_to_cpu(es->s_last_error_block));
3216		printk(KERN_CONT "\n");
3217	}
3218	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3219}
3220
3221/* Find next suitable group and run ext4_init_inode_table */
3222static int ext4_run_li_request(struct ext4_li_request *elr)
3223{
3224	struct ext4_group_desc *gdp = NULL;
3225	struct super_block *sb = elr->lr_super;
3226	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3227	ext4_group_t group = elr->lr_next_group;
3228	unsigned long timeout = 0;
3229	unsigned int prefetch_ios = 0;
3230	int ret = 0;
3231
3232	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3233		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3234				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3235		if (prefetch_ios)
3236			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3237					      prefetch_ios);
3238		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3239					    prefetch_ios);
3240		if (group >= elr->lr_next_group) {
3241			ret = 1;
3242			if (elr->lr_first_not_zeroed != ngroups &&
3243			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3244				elr->lr_next_group = elr->lr_first_not_zeroed;
3245				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3246				ret = 0;
3247			}
3248		}
3249		return ret;
3250	}
3251
3252	for (; group < ngroups; group++) {
3253		gdp = ext4_get_group_desc(sb, group, NULL);
3254		if (!gdp) {
3255			ret = 1;
3256			break;
3257		}
3258
3259		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3260			break;
3261	}
3262
3263	if (group >= ngroups)
3264		ret = 1;
3265
3266	if (!ret) {
3267		timeout = jiffies;
3268		ret = ext4_init_inode_table(sb, group,
3269					    elr->lr_timeout ? 0 : 1);
3270		trace_ext4_lazy_itable_init(sb, group);
3271		if (elr->lr_timeout == 0) {
3272			timeout = (jiffies - timeout) *
3273				EXT4_SB(elr->lr_super)->s_li_wait_mult;
3274			elr->lr_timeout = timeout;
3275		}
3276		elr->lr_next_sched = jiffies + elr->lr_timeout;
3277		elr->lr_next_group = group + 1;
3278	}
3279	return ret;
3280}
3281
3282/*
3283 * Remove lr_request from the list_request and free the
3284 * request structure. Should be called with li_list_mtx held
3285 */
3286static void ext4_remove_li_request(struct ext4_li_request *elr)
3287{
 
 
3288	if (!elr)
3289		return;
3290
 
 
3291	list_del(&elr->lr_request);
3292	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3293	kfree(elr);
3294}
3295
3296static void ext4_unregister_li_request(struct super_block *sb)
3297{
3298	mutex_lock(&ext4_li_mtx);
3299	if (!ext4_li_info) {
3300		mutex_unlock(&ext4_li_mtx);
3301		return;
3302	}
3303
3304	mutex_lock(&ext4_li_info->li_list_mtx);
3305	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3306	mutex_unlock(&ext4_li_info->li_list_mtx);
3307	mutex_unlock(&ext4_li_mtx);
3308}
3309
3310static struct task_struct *ext4_lazyinit_task;
3311
3312/*
3313 * This is the function where ext4lazyinit thread lives. It walks
3314 * through the request list searching for next scheduled filesystem.
3315 * When such a fs is found, run the lazy initialization request
3316 * (ext4_rn_li_request) and keep track of the time spend in this
3317 * function. Based on that time we compute next schedule time of
3318 * the request. When walking through the list is complete, compute
3319 * next waking time and put itself into sleep.
3320 */
3321static int ext4_lazyinit_thread(void *arg)
3322{
3323	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3324	struct list_head *pos, *n;
3325	struct ext4_li_request *elr;
3326	unsigned long next_wakeup, cur;
3327
3328	BUG_ON(NULL == eli);
3329
3330cont_thread:
3331	while (true) {
3332		next_wakeup = MAX_JIFFY_OFFSET;
3333
3334		mutex_lock(&eli->li_list_mtx);
3335		if (list_empty(&eli->li_request_list)) {
3336			mutex_unlock(&eli->li_list_mtx);
3337			goto exit_thread;
3338		}
3339		list_for_each_safe(pos, n, &eli->li_request_list) {
3340			int err = 0;
3341			int progress = 0;
3342			elr = list_entry(pos, struct ext4_li_request,
3343					 lr_request);
3344
3345			if (time_before(jiffies, elr->lr_next_sched)) {
3346				if (time_before(elr->lr_next_sched, next_wakeup))
3347					next_wakeup = elr->lr_next_sched;
3348				continue;
3349			}
3350			if (down_read_trylock(&elr->lr_super->s_umount)) {
3351				if (sb_start_write_trylock(elr->lr_super)) {
3352					progress = 1;
3353					/*
3354					 * We hold sb->s_umount, sb can not
3355					 * be removed from the list, it is
3356					 * now safe to drop li_list_mtx
3357					 */
3358					mutex_unlock(&eli->li_list_mtx);
3359					err = ext4_run_li_request(elr);
3360					sb_end_write(elr->lr_super);
3361					mutex_lock(&eli->li_list_mtx);
3362					n = pos->next;
3363				}
3364				up_read((&elr->lr_super->s_umount));
3365			}
3366			/* error, remove the lazy_init job */
3367			if (err) {
3368				ext4_remove_li_request(elr);
3369				continue;
3370			}
3371			if (!progress) {
3372				elr->lr_next_sched = jiffies +
3373					(prandom_u32()
3374					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3375			}
3376			if (time_before(elr->lr_next_sched, next_wakeup))
3377				next_wakeup = elr->lr_next_sched;
3378		}
3379		mutex_unlock(&eli->li_list_mtx);
3380
3381		try_to_freeze();
3382
3383		cur = jiffies;
3384		if ((time_after_eq(cur, next_wakeup)) ||
3385		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3386			cond_resched();
3387			continue;
3388		}
3389
3390		schedule_timeout_interruptible(next_wakeup - cur);
3391
3392		if (kthread_should_stop()) {
3393			ext4_clear_request_list();
3394			goto exit_thread;
3395		}
3396	}
3397
3398exit_thread:
3399	/*
3400	 * It looks like the request list is empty, but we need
3401	 * to check it under the li_list_mtx lock, to prevent any
3402	 * additions into it, and of course we should lock ext4_li_mtx
3403	 * to atomically free the list and ext4_li_info, because at
3404	 * this point another ext4 filesystem could be registering
3405	 * new one.
3406	 */
3407	mutex_lock(&ext4_li_mtx);
3408	mutex_lock(&eli->li_list_mtx);
3409	if (!list_empty(&eli->li_request_list)) {
3410		mutex_unlock(&eli->li_list_mtx);
3411		mutex_unlock(&ext4_li_mtx);
3412		goto cont_thread;
3413	}
3414	mutex_unlock(&eli->li_list_mtx);
3415	kfree(ext4_li_info);
3416	ext4_li_info = NULL;
3417	mutex_unlock(&ext4_li_mtx);
3418
3419	return 0;
3420}
3421
3422static void ext4_clear_request_list(void)
3423{
3424	struct list_head *pos, *n;
3425	struct ext4_li_request *elr;
3426
3427	mutex_lock(&ext4_li_info->li_list_mtx);
3428	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3429		elr = list_entry(pos, struct ext4_li_request,
3430				 lr_request);
3431		ext4_remove_li_request(elr);
3432	}
3433	mutex_unlock(&ext4_li_info->li_list_mtx);
3434}
3435
3436static int ext4_run_lazyinit_thread(void)
3437{
3438	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3439					 ext4_li_info, "ext4lazyinit");
3440	if (IS_ERR(ext4_lazyinit_task)) {
3441		int err = PTR_ERR(ext4_lazyinit_task);
3442		ext4_clear_request_list();
3443		kfree(ext4_li_info);
3444		ext4_li_info = NULL;
3445		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3446				 "initialization thread\n",
3447				 err);
3448		return err;
3449	}
3450	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3451	return 0;
3452}
3453
3454/*
3455 * Check whether it make sense to run itable init. thread or not.
3456 * If there is at least one uninitialized inode table, return
3457 * corresponding group number, else the loop goes through all
3458 * groups and return total number of groups.
3459 */
3460static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3461{
3462	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3463	struct ext4_group_desc *gdp = NULL;
3464
3465	if (!ext4_has_group_desc_csum(sb))
3466		return ngroups;
3467
3468	for (group = 0; group < ngroups; group++) {
3469		gdp = ext4_get_group_desc(sb, group, NULL);
3470		if (!gdp)
3471			continue;
3472
3473		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3474			break;
3475	}
3476
3477	return group;
3478}
3479
3480static int ext4_li_info_new(void)
3481{
3482	struct ext4_lazy_init *eli = NULL;
3483
3484	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3485	if (!eli)
3486		return -ENOMEM;
3487
3488	INIT_LIST_HEAD(&eli->li_request_list);
3489	mutex_init(&eli->li_list_mtx);
3490
3491	eli->li_state |= EXT4_LAZYINIT_QUIT;
3492
3493	ext4_li_info = eli;
3494
3495	return 0;
3496}
3497
3498static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3499					    ext4_group_t start)
3500{
 
3501	struct ext4_li_request *elr;
3502
3503	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3504	if (!elr)
3505		return NULL;
3506
3507	elr->lr_super = sb;
3508	elr->lr_first_not_zeroed = start;
3509	if (test_opt(sb, PREFETCH_BLOCK_BITMAPS))
3510		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3511	else {
3512		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3513		elr->lr_next_group = start;
3514	}
3515
3516	/*
3517	 * Randomize first schedule time of the request to
3518	 * spread the inode table initialization requests
3519	 * better.
3520	 */
3521	elr->lr_next_sched = jiffies + (prandom_u32() %
3522				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3523	return elr;
3524}
3525
3526int ext4_register_li_request(struct super_block *sb,
3527			     ext4_group_t first_not_zeroed)
3528{
3529	struct ext4_sb_info *sbi = EXT4_SB(sb);
3530	struct ext4_li_request *elr = NULL;
3531	ext4_group_t ngroups = sbi->s_groups_count;
3532	int ret = 0;
3533
3534	mutex_lock(&ext4_li_mtx);
3535	if (sbi->s_li_request != NULL) {
3536		/*
3537		 * Reset timeout so it can be computed again, because
3538		 * s_li_wait_mult might have changed.
3539		 */
3540		sbi->s_li_request->lr_timeout = 0;
3541		goto out;
3542	}
3543
3544	if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) &&
3545	    (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3546	     !test_opt(sb, INIT_INODE_TABLE)))
3547		goto out;
3548
3549	elr = ext4_li_request_new(sb, first_not_zeroed);
3550	if (!elr) {
3551		ret = -ENOMEM;
3552		goto out;
3553	}
3554
3555	if (NULL == ext4_li_info) {
3556		ret = ext4_li_info_new();
3557		if (ret)
3558			goto out;
3559	}
3560
3561	mutex_lock(&ext4_li_info->li_list_mtx);
3562	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3563	mutex_unlock(&ext4_li_info->li_list_mtx);
3564
3565	sbi->s_li_request = elr;
3566	/*
3567	 * set elr to NULL here since it has been inserted to
3568	 * the request_list and the removal and free of it is
3569	 * handled by ext4_clear_request_list from now on.
3570	 */
3571	elr = NULL;
3572
3573	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3574		ret = ext4_run_lazyinit_thread();
3575		if (ret)
3576			goto out;
3577	}
3578out:
3579	mutex_unlock(&ext4_li_mtx);
3580	if (ret)
3581		kfree(elr);
3582	return ret;
3583}
3584
3585/*
3586 * We do not need to lock anything since this is called on
3587 * module unload.
3588 */
3589static void ext4_destroy_lazyinit_thread(void)
3590{
3591	/*
3592	 * If thread exited earlier
3593	 * there's nothing to be done.
3594	 */
3595	if (!ext4_li_info || !ext4_lazyinit_task)
3596		return;
3597
3598	kthread_stop(ext4_lazyinit_task);
3599}
3600
3601static int set_journal_csum_feature_set(struct super_block *sb)
3602{
3603	int ret = 1;
3604	int compat, incompat;
3605	struct ext4_sb_info *sbi = EXT4_SB(sb);
3606
3607	if (ext4_has_metadata_csum(sb)) {
3608		/* journal checksum v3 */
3609		compat = 0;
3610		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3611	} else {
3612		/* journal checksum v1 */
3613		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3614		incompat = 0;
3615	}
3616
3617	jbd2_journal_clear_features(sbi->s_journal,
3618			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3619			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3620			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3621	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3622		ret = jbd2_journal_set_features(sbi->s_journal,
3623				compat, 0,
3624				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3625				incompat);
3626	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3627		ret = jbd2_journal_set_features(sbi->s_journal,
3628				compat, 0,
3629				incompat);
3630		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3631				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3632	} else {
3633		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3634				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3635	}
3636
3637	return ret;
3638}
3639
3640/*
3641 * Note: calculating the overhead so we can be compatible with
3642 * historical BSD practice is quite difficult in the face of
3643 * clusters/bigalloc.  This is because multiple metadata blocks from
3644 * different block group can end up in the same allocation cluster.
3645 * Calculating the exact overhead in the face of clustered allocation
3646 * requires either O(all block bitmaps) in memory or O(number of block
3647 * groups**2) in time.  We will still calculate the superblock for
3648 * older file systems --- and if we come across with a bigalloc file
3649 * system with zero in s_overhead_clusters the estimate will be close to
3650 * correct especially for very large cluster sizes --- but for newer
3651 * file systems, it's better to calculate this figure once at mkfs
3652 * time, and store it in the superblock.  If the superblock value is
3653 * present (even for non-bigalloc file systems), we will use it.
3654 */
3655static int count_overhead(struct super_block *sb, ext4_group_t grp,
3656			  char *buf)
3657{
3658	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3659	struct ext4_group_desc	*gdp;
3660	ext4_fsblk_t		first_block, last_block, b;
3661	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3662	int			s, j, count = 0;
3663
3664	if (!ext4_has_feature_bigalloc(sb))
3665		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3666			sbi->s_itb_per_group + 2);
3667
3668	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3669		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3670	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3671	for (i = 0; i < ngroups; i++) {
3672		gdp = ext4_get_group_desc(sb, i, NULL);
3673		b = ext4_block_bitmap(sb, gdp);
3674		if (b >= first_block && b <= last_block) {
3675			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3676			count++;
3677		}
3678		b = ext4_inode_bitmap(sb, gdp);
3679		if (b >= first_block && b <= last_block) {
3680			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3681			count++;
3682		}
3683		b = ext4_inode_table(sb, gdp);
3684		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3685			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3686				int c = EXT4_B2C(sbi, b - first_block);
3687				ext4_set_bit(c, buf);
3688				count++;
3689			}
3690		if (i != grp)
3691			continue;
3692		s = 0;
3693		if (ext4_bg_has_super(sb, grp)) {
3694			ext4_set_bit(s++, buf);
3695			count++;
3696		}
3697		j = ext4_bg_num_gdb(sb, grp);
3698		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3699			ext4_error(sb, "Invalid number of block group "
3700				   "descriptor blocks: %d", j);
3701			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3702		}
3703		count += j;
3704		for (; j > 0; j--)
3705			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3706	}
3707	if (!count)
3708		return 0;
3709	return EXT4_CLUSTERS_PER_GROUP(sb) -
3710		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3711}
3712
3713/*
3714 * Compute the overhead and stash it in sbi->s_overhead
3715 */
3716int ext4_calculate_overhead(struct super_block *sb)
3717{
3718	struct ext4_sb_info *sbi = EXT4_SB(sb);
3719	struct ext4_super_block *es = sbi->s_es;
3720	struct inode *j_inode;
3721	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3722	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3723	ext4_fsblk_t overhead = 0;
3724	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3725
3726	if (!buf)
3727		return -ENOMEM;
3728
3729	/*
3730	 * Compute the overhead (FS structures).  This is constant
3731	 * for a given filesystem unless the number of block groups
3732	 * changes so we cache the previous value until it does.
3733	 */
3734
3735	/*
3736	 * All of the blocks before first_data_block are overhead
3737	 */
3738	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3739
3740	/*
3741	 * Add the overhead found in each block group
3742	 */
3743	for (i = 0; i < ngroups; i++) {
3744		int blks;
3745
3746		blks = count_overhead(sb, i, buf);
3747		overhead += blks;
3748		if (blks)
3749			memset(buf, 0, PAGE_SIZE);
3750		cond_resched();
3751	}
3752
3753	/*
3754	 * Add the internal journal blocks whether the journal has been
3755	 * loaded or not
3756	 */
3757	if (sbi->s_journal && !sbi->journal_bdev)
3758		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3759	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3760		/* j_inum for internal journal is non-zero */
3761		j_inode = ext4_get_journal_inode(sb, j_inum);
3762		if (j_inode) {
3763			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3764			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3765			iput(j_inode);
3766		} else {
3767			ext4_msg(sb, KERN_ERR, "can't get journal size");
3768		}
3769	}
3770	sbi->s_overhead = overhead;
3771	smp_wmb();
3772	free_page((unsigned long) buf);
3773	return 0;
3774}
3775
3776static void ext4_set_resv_clusters(struct super_block *sb)
3777{
3778	ext4_fsblk_t resv_clusters;
3779	struct ext4_sb_info *sbi = EXT4_SB(sb);
3780
3781	/*
3782	 * There's no need to reserve anything when we aren't using extents.
3783	 * The space estimates are exact, there are no unwritten extents,
3784	 * hole punching doesn't need new metadata... This is needed especially
3785	 * to keep ext2/3 backward compatibility.
3786	 */
3787	if (!ext4_has_feature_extents(sb))
3788		return;
3789	/*
3790	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3791	 * This should cover the situations where we can not afford to run
3792	 * out of space like for example punch hole, or converting
3793	 * unwritten extents in delalloc path. In most cases such
3794	 * allocation would require 1, or 2 blocks, higher numbers are
3795	 * very rare.
3796	 */
3797	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3798			 sbi->s_cluster_bits);
3799
3800	do_div(resv_clusters, 50);
3801	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3802
3803	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3804}
3805
3806static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3807{
3808	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3809	char *orig_data = kstrdup(data, GFP_KERNEL);
3810	struct buffer_head *bh, **group_desc;
3811	struct ext4_super_block *es = NULL;
3812	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3813	struct flex_groups **flex_groups;
3814	ext4_fsblk_t block;
3815	ext4_fsblk_t sb_block = get_sb_block(&data);
3816	ext4_fsblk_t logical_sb_block;
3817	unsigned long offset = 0;
3818	unsigned long journal_devnum = 0;
3819	unsigned long def_mount_opts;
3820	struct inode *root;
3821	const char *descr;
3822	int ret = -ENOMEM;
3823	int blocksize, clustersize;
3824	unsigned int db_count;
3825	unsigned int i;
3826	int needs_recovery, has_huge_files;
3827	__u64 blocks_count;
3828	int err = 0;
3829	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3830	ext4_group_t first_not_zeroed;
3831
3832	if ((data && !orig_data) || !sbi)
3833		goto out_free_base;
3834
3835	sbi->s_daxdev = dax_dev;
3836	sbi->s_blockgroup_lock =
3837		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3838	if (!sbi->s_blockgroup_lock)
3839		goto out_free_base;
3840
3841	sb->s_fs_info = sbi;
3842	sbi->s_sb = sb;
3843	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3844	sbi->s_sb_block = sb_block;
3845	if (sb->s_bdev->bd_part)
3846		sbi->s_sectors_written_start =
3847			part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3848
3849	/* Cleanup superblock name */
3850	strreplace(sb->s_id, '/', '!');
3851
3852	/* -EINVAL is default */
3853	ret = -EINVAL;
3854	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3855	if (!blocksize) {
3856		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3857		goto out_fail;
3858	}
3859
3860	/*
3861	 * The ext4 superblock will not be buffer aligned for other than 1kB
3862	 * block sizes.  We need to calculate the offset from buffer start.
3863	 */
3864	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3865		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3866		offset = do_div(logical_sb_block, blocksize);
3867	} else {
3868		logical_sb_block = sb_block;
3869	}
3870
3871	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3872		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3873		goto out_fail;
3874	}
3875	/*
3876	 * Note: s_es must be initialized as soon as possible because
3877	 *       some ext4 macro-instructions depend on its value
3878	 */
3879	es = (struct ext4_super_block *) (bh->b_data + offset);
3880	sbi->s_es = es;
3881	sb->s_magic = le16_to_cpu(es->s_magic);
3882	if (sb->s_magic != EXT4_SUPER_MAGIC)
3883		goto cantfind_ext4;
3884	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3885
3886	/* Warn if metadata_csum and gdt_csum are both set. */
3887	if (ext4_has_feature_metadata_csum(sb) &&
3888	    ext4_has_feature_gdt_csum(sb))
3889		ext4_warning(sb, "metadata_csum and uninit_bg are "
3890			     "redundant flags; please run fsck.");
3891
3892	/* Check for a known checksum algorithm */
3893	if (!ext4_verify_csum_type(sb, es)) {
3894		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3895			 "unknown checksum algorithm.");
3896		silent = 1;
3897		goto cantfind_ext4;
3898	}
3899
3900	/* Load the checksum driver */
3901	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3902	if (IS_ERR(sbi->s_chksum_driver)) {
3903		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3904		ret = PTR_ERR(sbi->s_chksum_driver);
3905		sbi->s_chksum_driver = NULL;
3906		goto failed_mount;
 
 
3907	}
3908
3909	/* Check superblock checksum */
3910	if (!ext4_superblock_csum_verify(sb, es)) {
3911		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3912			 "invalid superblock checksum.  Run e2fsck?");
3913		silent = 1;
3914		ret = -EFSBADCRC;
3915		goto cantfind_ext4;
3916	}
3917
3918	/* Precompute checksum seed for all metadata */
3919	if (ext4_has_feature_csum_seed(sb))
3920		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3921	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3922		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3923					       sizeof(es->s_uuid));
3924
3925	/* Set defaults before we parse the mount options */
3926	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3927	set_opt(sb, INIT_INODE_TABLE);
3928	if (def_mount_opts & EXT4_DEFM_DEBUG)
3929		set_opt(sb, DEBUG);
3930	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3931		set_opt(sb, GRPID);
3932	if (def_mount_opts & EXT4_DEFM_UID16)
3933		set_opt(sb, NO_UID32);
3934	/* xattr user namespace & acls are now defaulted on */
3935	set_opt(sb, XATTR_USER);
3936#ifdef CONFIG_EXT4_FS_POSIX_ACL
3937	set_opt(sb, POSIX_ACL);
3938#endif
3939	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3940	if (ext4_has_metadata_csum(sb))
3941		set_opt(sb, JOURNAL_CHECKSUM);
3942
3943	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3944		set_opt(sb, JOURNAL_DATA);
3945	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3946		set_opt(sb, ORDERED_DATA);
3947	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3948		set_opt(sb, WRITEBACK_DATA);
3949
3950	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3951		set_opt(sb, ERRORS_PANIC);
3952	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3953		set_opt(sb, ERRORS_CONT);
3954	else
3955		set_opt(sb, ERRORS_RO);
3956	/* block_validity enabled by default; disable with noblock_validity */
3957	set_opt(sb, BLOCK_VALIDITY);
3958	if (def_mount_opts & EXT4_DEFM_DISCARD)
3959		set_opt(sb, DISCARD);
3960
3961	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3962	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3963	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3964	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3965	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3966
3967	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3968		set_opt(sb, BARRIER);
3969
3970	/*
3971	 * enable delayed allocation by default
3972	 * Use -o nodelalloc to turn it off
3973	 */
3974	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3975	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3976		set_opt(sb, DELALLOC);
3977
3978	/*
3979	 * set default s_li_wait_mult for lazyinit, for the case there is
3980	 * no mount option specified.
3981	 */
3982	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3983
3984	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3985
3986	if (blocksize == PAGE_SIZE)
3987		set_opt(sb, DIOREAD_NOLOCK);
3988
3989	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3990	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3991		ext4_msg(sb, KERN_ERR,
3992		       "Unsupported filesystem blocksize %d (%d log_block_size)",
3993			 blocksize, le32_to_cpu(es->s_log_block_size));
3994		goto failed_mount;
3995	}
3996
3997	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3998		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3999		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4000	} else {
4001		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4002		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4003		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4004			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4005				 sbi->s_first_ino);
4006			goto failed_mount;
4007		}
4008		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4009		    (!is_power_of_2(sbi->s_inode_size)) ||
4010		    (sbi->s_inode_size > blocksize)) {
4011			ext4_msg(sb, KERN_ERR,
4012			       "unsupported inode size: %d",
4013			       sbi->s_inode_size);
4014			ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4015			goto failed_mount;
4016		}
4017		/*
4018		 * i_atime_extra is the last extra field available for
4019		 * [acm]times in struct ext4_inode. Checking for that
4020		 * field should suffice to ensure we have extra space
4021		 * for all three.
4022		 */
4023		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4024			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4025			sb->s_time_gran = 1;
4026			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4027		} else {
4028			sb->s_time_gran = NSEC_PER_SEC;
4029			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4030		}
4031		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4032	}
4033	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4034		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4035			EXT4_GOOD_OLD_INODE_SIZE;
4036		if (ext4_has_feature_extra_isize(sb)) {
4037			unsigned v, max = (sbi->s_inode_size -
4038					   EXT4_GOOD_OLD_INODE_SIZE);
4039
4040			v = le16_to_cpu(es->s_want_extra_isize);
4041			if (v > max) {
4042				ext4_msg(sb, KERN_ERR,
4043					 "bad s_want_extra_isize: %d", v);
4044				goto failed_mount;
4045			}
4046			if (sbi->s_want_extra_isize < v)
4047				sbi->s_want_extra_isize = v;
4048
4049			v = le16_to_cpu(es->s_min_extra_isize);
4050			if (v > max) {
4051				ext4_msg(sb, KERN_ERR,
4052					 "bad s_min_extra_isize: %d", v);
4053				goto failed_mount;
4054			}
4055			if (sbi->s_want_extra_isize < v)
4056				sbi->s_want_extra_isize = v;
4057		}
4058	}
4059
4060	if (sbi->s_es->s_mount_opts[0]) {
4061		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4062					      sizeof(sbi->s_es->s_mount_opts),
4063					      GFP_KERNEL);
4064		if (!s_mount_opts)
4065			goto failed_mount;
4066		if (!parse_options(s_mount_opts, sb, &journal_devnum,
4067				   &journal_ioprio, 0)) {
4068			ext4_msg(sb, KERN_WARNING,
4069				 "failed to parse options in superblock: %s",
4070				 s_mount_opts);
4071		}
4072		kfree(s_mount_opts);
4073	}
4074	sbi->s_def_mount_opt = sbi->s_mount_opt;
4075	if (!parse_options((char *) data, sb, &journal_devnum,
4076			   &journal_ioprio, 0))
4077		goto failed_mount;
4078
4079#ifdef CONFIG_UNICODE
4080	if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
4081		const struct ext4_sb_encodings *encoding_info;
4082		struct unicode_map *encoding;
4083		__u16 encoding_flags;
4084
4085		if (ext4_has_feature_encrypt(sb)) {
4086			ext4_msg(sb, KERN_ERR,
4087				 "Can't mount with encoding and encryption");
4088			goto failed_mount;
4089		}
4090
4091		if (ext4_sb_read_encoding(es, &encoding_info,
4092					  &encoding_flags)) {
4093			ext4_msg(sb, KERN_ERR,
4094				 "Encoding requested by superblock is unknown");
4095			goto failed_mount;
4096		}
4097
4098		encoding = utf8_load(encoding_info->version);
4099		if (IS_ERR(encoding)) {
4100			ext4_msg(sb, KERN_ERR,
4101				 "can't mount with superblock charset: %s-%s "
4102				 "not supported by the kernel. flags: 0x%x.",
4103				 encoding_info->name, encoding_info->version,
4104				 encoding_flags);
4105			goto failed_mount;
4106		}
4107		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4108			 "%s-%s with flags 0x%hx", encoding_info->name,
4109			 encoding_info->version?:"\b", encoding_flags);
4110
4111		sbi->s_encoding = encoding;
4112		sbi->s_encoding_flags = encoding_flags;
4113	}
4114#endif
4115
4116	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4117		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n");
4118		/* can't mount with both data=journal and dioread_nolock. */
4119		clear_opt(sb, DIOREAD_NOLOCK);
4120		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4121			ext4_msg(sb, KERN_ERR, "can't mount with "
4122				 "both data=journal and delalloc");
4123			goto failed_mount;
4124		}
4125		if (test_opt(sb, DAX_ALWAYS)) {
 
 
 
 
 
4126			ext4_msg(sb, KERN_ERR, "can't mount with "
4127				 "both data=journal and dax");
4128			goto failed_mount;
4129		}
4130		if (ext4_has_feature_encrypt(sb)) {
4131			ext4_msg(sb, KERN_WARNING,
4132				 "encrypted files will use data=ordered "
4133				 "instead of data journaling mode");
4134		}
4135		if (test_opt(sb, DELALLOC))
4136			clear_opt(sb, DELALLOC);
4137	} else {
4138		sb->s_iflags |= SB_I_CGROUPWB;
4139	}
4140
4141	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4142		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4143
4144	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4145	    (ext4_has_compat_features(sb) ||
4146	     ext4_has_ro_compat_features(sb) ||
4147	     ext4_has_incompat_features(sb)))
4148		ext4_msg(sb, KERN_WARNING,
4149		       "feature flags set on rev 0 fs, "
4150		       "running e2fsck is recommended");
4151
4152	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4153		set_opt2(sb, HURD_COMPAT);
4154		if (ext4_has_feature_64bit(sb)) {
4155			ext4_msg(sb, KERN_ERR,
4156				 "The Hurd can't support 64-bit file systems");
4157			goto failed_mount;
4158		}
4159
4160		/*
4161		 * ea_inode feature uses l_i_version field which is not
4162		 * available in HURD_COMPAT mode.
4163		 */
4164		if (ext4_has_feature_ea_inode(sb)) {
4165			ext4_msg(sb, KERN_ERR,
4166				 "ea_inode feature is not supported for Hurd");
4167			goto failed_mount;
4168		}
4169	}
4170
4171	if (IS_EXT2_SB(sb)) {
4172		if (ext2_feature_set_ok(sb))
4173			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4174				 "using the ext4 subsystem");
4175		else {
4176			/*
4177			 * If we're probing be silent, if this looks like
4178			 * it's actually an ext[34] filesystem.
4179			 */
4180			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4181				goto failed_mount;
4182			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4183				 "to feature incompatibilities");
4184			goto failed_mount;
4185		}
4186	}
4187
4188	if (IS_EXT3_SB(sb)) {
4189		if (ext3_feature_set_ok(sb))
4190			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4191				 "using the ext4 subsystem");
4192		else {
4193			/*
4194			 * If we're probing be silent, if this looks like
4195			 * it's actually an ext4 filesystem.
4196			 */
4197			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4198				goto failed_mount;
4199			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4200				 "to feature incompatibilities");
4201			goto failed_mount;
4202		}
4203	}
4204
4205	/*
4206	 * Check feature flags regardless of the revision level, since we
4207	 * previously didn't change the revision level when setting the flags,
4208	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4209	 */
4210	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4211		goto failed_mount;
4212
 
 
 
 
 
 
 
 
4213	if (le32_to_cpu(es->s_log_block_size) >
4214	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4215		ext4_msg(sb, KERN_ERR,
4216			 "Invalid log block size: %u",
4217			 le32_to_cpu(es->s_log_block_size));
4218		goto failed_mount;
4219	}
4220	if (le32_to_cpu(es->s_log_cluster_size) >
4221	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4222		ext4_msg(sb, KERN_ERR,
4223			 "Invalid log cluster size: %u",
4224			 le32_to_cpu(es->s_log_cluster_size));
4225		goto failed_mount;
4226	}
4227
4228	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4229		ext4_msg(sb, KERN_ERR,
4230			 "Number of reserved GDT blocks insanely large: %d",
4231			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4232		goto failed_mount;
4233	}
4234
4235	if (bdev_dax_supported(sb->s_bdev, blocksize))
4236		set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4237
4238	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4239		if (ext4_has_feature_inline_data(sb)) {
4240			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4241					" that may contain inline data");
4242			goto failed_mount;
4243		}
4244		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4245			ext4_msg(sb, KERN_ERR,
4246				"DAX unsupported by block device.");
4247			goto failed_mount;
4248		}
4249	}
4250
4251	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4252		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4253			 es->s_encryption_level);
4254		goto failed_mount;
4255	}
4256
4257	if (sb->s_blocksize != blocksize) {
4258		/* Validate the filesystem blocksize */
4259		if (!sb_set_blocksize(sb, blocksize)) {
4260			ext4_msg(sb, KERN_ERR, "bad block size %d",
4261					blocksize);
4262			goto failed_mount;
4263		}
4264
4265		brelse(bh);
4266		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4267		offset = do_div(logical_sb_block, blocksize);
4268		bh = sb_bread_unmovable(sb, logical_sb_block);
4269		if (!bh) {
4270			ext4_msg(sb, KERN_ERR,
4271			       "Can't read superblock on 2nd try");
4272			goto failed_mount;
4273		}
4274		es = (struct ext4_super_block *)(bh->b_data + offset);
4275		sbi->s_es = es;
4276		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4277			ext4_msg(sb, KERN_ERR,
4278			       "Magic mismatch, very weird!");
4279			goto failed_mount;
4280		}
4281	}
4282
4283	has_huge_files = ext4_has_feature_huge_file(sb);
4284	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4285						      has_huge_files);
4286	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4288	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4289	if (ext4_has_feature_64bit(sb)) {
4290		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4291		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4292		    !is_power_of_2(sbi->s_desc_size)) {
4293			ext4_msg(sb, KERN_ERR,
4294			       "unsupported descriptor size %lu",
4295			       sbi->s_desc_size);
4296			goto failed_mount;
4297		}
4298	} else
4299		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4300
4301	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4302	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4303
4304	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4305	if (sbi->s_inodes_per_block == 0)
4306		goto cantfind_ext4;
4307	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4308	    sbi->s_inodes_per_group > blocksize * 8) {
4309		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4310			 sbi->s_inodes_per_group);
4311		goto failed_mount;
4312	}
4313	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4314					sbi->s_inodes_per_block;
4315	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4316	sbi->s_sbh = bh;
4317	sbi->s_mount_state = le16_to_cpu(es->s_state);
4318	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4319	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4320
4321	for (i = 0; i < 4; i++)
4322		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4323	sbi->s_def_hash_version = es->s_def_hash_version;
4324	if (ext4_has_feature_dir_index(sb)) {
4325		i = le32_to_cpu(es->s_flags);
4326		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4327			sbi->s_hash_unsigned = 3;
4328		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4329#ifdef __CHAR_UNSIGNED__
4330			if (!sb_rdonly(sb))
4331				es->s_flags |=
4332					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4333			sbi->s_hash_unsigned = 3;
4334#else
4335			if (!sb_rdonly(sb))
4336				es->s_flags |=
4337					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4338#endif
4339		}
4340	}
4341
4342	/* Handle clustersize */
4343	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4344	if (ext4_has_feature_bigalloc(sb)) {
 
4345		if (clustersize < blocksize) {
4346			ext4_msg(sb, KERN_ERR,
4347				 "cluster size (%d) smaller than "
4348				 "block size (%d)", clustersize, blocksize);
4349			goto failed_mount;
4350		}
 
 
 
 
 
 
 
4351		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4352			le32_to_cpu(es->s_log_block_size);
4353		sbi->s_clusters_per_group =
4354			le32_to_cpu(es->s_clusters_per_group);
4355		if (sbi->s_clusters_per_group > blocksize * 8) {
4356			ext4_msg(sb, KERN_ERR,
4357				 "#clusters per group too big: %lu",
4358				 sbi->s_clusters_per_group);
4359			goto failed_mount;
4360		}
4361		if (sbi->s_blocks_per_group !=
4362		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4363			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4364				 "clusters per group (%lu) inconsistent",
4365				 sbi->s_blocks_per_group,
4366				 sbi->s_clusters_per_group);
4367			goto failed_mount;
4368		}
4369	} else {
4370		if (clustersize != blocksize) {
4371			ext4_msg(sb, KERN_ERR,
4372				 "fragment/cluster size (%d) != "
4373				 "block size (%d)", clustersize, blocksize);
4374			goto failed_mount;
4375		}
4376		if (sbi->s_blocks_per_group > blocksize * 8) {
4377			ext4_msg(sb, KERN_ERR,
4378				 "#blocks per group too big: %lu",
4379				 sbi->s_blocks_per_group);
4380			goto failed_mount;
4381		}
4382		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4383		sbi->s_cluster_bits = 0;
4384	}
4385	sbi->s_cluster_ratio = clustersize / blocksize;
4386
4387	/* Do we have standard group size of clustersize * 8 blocks ? */
4388	if (sbi->s_blocks_per_group == clustersize << 3)
4389		set_opt2(sb, STD_GROUP_SIZE);
4390
4391	/*
4392	 * Test whether we have more sectors than will fit in sector_t,
4393	 * and whether the max offset is addressable by the page cache.
4394	 */
4395	err = generic_check_addressable(sb->s_blocksize_bits,
4396					ext4_blocks_count(es));
4397	if (err) {
4398		ext4_msg(sb, KERN_ERR, "filesystem"
4399			 " too large to mount safely on this system");
 
 
4400		goto failed_mount;
4401	}
4402
4403	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4404		goto cantfind_ext4;
4405
4406	/* check blocks count against device size */
4407	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4408	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4409		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4410		       "exceeds size of device (%llu blocks)",
4411		       ext4_blocks_count(es), blocks_count);
4412		goto failed_mount;
4413	}
4414
4415	/*
4416	 * It makes no sense for the first data block to be beyond the end
4417	 * of the filesystem.
4418	 */
4419	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4420		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4421			 "block %u is beyond end of filesystem (%llu)",
4422			 le32_to_cpu(es->s_first_data_block),
4423			 ext4_blocks_count(es));
4424		goto failed_mount;
4425	}
4426	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4427	    (sbi->s_cluster_ratio == 1)) {
4428		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4429			 "block is 0 with a 1k block and cluster size");
4430		goto failed_mount;
4431	}
4432
4433	blocks_count = (ext4_blocks_count(es) -
4434			le32_to_cpu(es->s_first_data_block) +
4435			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4436	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4437	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4438		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4439		       "(block count %llu, first data block %u, "
4440		       "blocks per group %lu)", blocks_count,
4441		       ext4_blocks_count(es),
4442		       le32_to_cpu(es->s_first_data_block),
4443		       EXT4_BLOCKS_PER_GROUP(sb));
4444		goto failed_mount;
4445	}
4446	sbi->s_groups_count = blocks_count;
4447	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4448			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4449	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4450	    le32_to_cpu(es->s_inodes_count)) {
4451		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4452			 le32_to_cpu(es->s_inodes_count),
4453			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4454		ret = -EINVAL;
4455		goto failed_mount;
4456	}
4457	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4458		   EXT4_DESC_PER_BLOCK(sb);
4459	if (ext4_has_feature_meta_bg(sb)) {
4460		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4461			ext4_msg(sb, KERN_WARNING,
4462				 "first meta block group too large: %u "
4463				 "(group descriptor block count %u)",
4464				 le32_to_cpu(es->s_first_meta_bg), db_count);
4465			goto failed_mount;
4466		}
4467	}
4468	rcu_assign_pointer(sbi->s_group_desc,
4469			   kvmalloc_array(db_count,
4470					  sizeof(struct buffer_head *),
4471					  GFP_KERNEL));
4472	if (sbi->s_group_desc == NULL) {
4473		ext4_msg(sb, KERN_ERR, "not enough memory");
4474		ret = -ENOMEM;
4475		goto failed_mount;
4476	}
4477
4478	bgl_lock_init(sbi->s_blockgroup_lock);
4479
4480	/* Pre-read the descriptors into the buffer cache */
4481	for (i = 0; i < db_count; i++) {
4482		block = descriptor_loc(sb, logical_sb_block, i);
4483		sb_breadahead_unmovable(sb, block);
4484	}
4485
4486	for (i = 0; i < db_count; i++) {
4487		struct buffer_head *bh;
4488
4489		block = descriptor_loc(sb, logical_sb_block, i);
4490		bh = sb_bread_unmovable(sb, block);
4491		if (!bh) {
4492			ext4_msg(sb, KERN_ERR,
4493			       "can't read group descriptor %d", i);
4494			db_count = i;
4495			goto failed_mount2;
4496		}
4497		rcu_read_lock();
4498		rcu_dereference(sbi->s_group_desc)[i] = bh;
4499		rcu_read_unlock();
4500	}
4501	sbi->s_gdb_count = db_count;
4502	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4503		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4504		ret = -EFSCORRUPTED;
4505		goto failed_mount2;
4506	}
4507
4508	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
 
 
 
 
 
4509
4510	/* Register extent status tree shrinker */
4511	if (ext4_es_register_shrinker(sbi))
4512		goto failed_mount3;
4513
4514	sbi->s_stripe = ext4_get_stripe_size(sbi);
4515	sbi->s_extent_max_zeroout_kb = 32;
4516
4517	/*
4518	 * set up enough so that it can read an inode
4519	 */
4520	sb->s_op = &ext4_sops;
4521	sb->s_export_op = &ext4_export_ops;
4522	sb->s_xattr = ext4_xattr_handlers;
4523#ifdef CONFIG_FS_ENCRYPTION
4524	sb->s_cop = &ext4_cryptops;
4525#endif
4526#ifdef CONFIG_FS_VERITY
4527	sb->s_vop = &ext4_verityops;
4528#endif
4529#ifdef CONFIG_QUOTA
4530	sb->dq_op = &ext4_quota_operations;
4531	if (ext4_has_feature_quota(sb))
4532		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4533	else
4534		sb->s_qcop = &ext4_qctl_operations;
4535	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4536#endif
4537	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4538
4539	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4540	mutex_init(&sbi->s_orphan_lock);
4541
4542	sb->s_root = NULL;
4543
4544	needs_recovery = (es->s_last_orphan != 0 ||
4545			  ext4_has_feature_journal_needs_recovery(sb));
4546
4547	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4548		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4549			goto failed_mount3a;
4550
4551	/*
4552	 * The first inode we look at is the journal inode.  Don't try
4553	 * root first: it may be modified in the journal!
4554	 */
4555	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4556		err = ext4_load_journal(sb, es, journal_devnum);
4557		if (err)
4558			goto failed_mount3a;
4559	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4560		   ext4_has_feature_journal_needs_recovery(sb)) {
4561		ext4_msg(sb, KERN_ERR, "required journal recovery "
4562		       "suppressed and not mounted read-only");
4563		goto failed_mount_wq;
4564	} else {
4565		/* Nojournal mode, all journal mount options are illegal */
4566		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4567			ext4_msg(sb, KERN_ERR, "can't mount with "
4568				 "journal_checksum, fs mounted w/o journal");
4569			goto failed_mount_wq;
4570		}
4571		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4572			ext4_msg(sb, KERN_ERR, "can't mount with "
4573				 "journal_async_commit, fs mounted w/o journal");
4574			goto failed_mount_wq;
4575		}
4576		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4577			ext4_msg(sb, KERN_ERR, "can't mount with "
4578				 "commit=%lu, fs mounted w/o journal",
4579				 sbi->s_commit_interval / HZ);
4580			goto failed_mount_wq;
4581		}
4582		if (EXT4_MOUNT_DATA_FLAGS &
4583		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4584			ext4_msg(sb, KERN_ERR, "can't mount with "
4585				 "data=, fs mounted w/o journal");
4586			goto failed_mount_wq;
4587		}
4588		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4589		clear_opt(sb, JOURNAL_CHECKSUM);
4590		clear_opt(sb, DATA_FLAGS);
4591		sbi->s_journal = NULL;
4592		needs_recovery = 0;
4593		goto no_journal;
4594	}
4595
4596	if (ext4_has_feature_64bit(sb) &&
4597	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4598				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4599		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4600		goto failed_mount_wq;
4601	}
4602
4603	if (!set_journal_csum_feature_set(sb)) {
4604		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4605			 "feature set");
4606		goto failed_mount_wq;
4607	}
4608
4609	/* We have now updated the journal if required, so we can
4610	 * validate the data journaling mode. */
4611	switch (test_opt(sb, DATA_FLAGS)) {
4612	case 0:
4613		/* No mode set, assume a default based on the journal
4614		 * capabilities: ORDERED_DATA if the journal can
4615		 * cope, else JOURNAL_DATA
4616		 */
4617		if (jbd2_journal_check_available_features
4618		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4619			set_opt(sb, ORDERED_DATA);
4620			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4621		} else {
4622			set_opt(sb, JOURNAL_DATA);
4623			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4624		}
4625		break;
4626
4627	case EXT4_MOUNT_ORDERED_DATA:
4628	case EXT4_MOUNT_WRITEBACK_DATA:
4629		if (!jbd2_journal_check_available_features
4630		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4631			ext4_msg(sb, KERN_ERR, "Journal does not support "
4632			       "requested data journaling mode");
4633			goto failed_mount_wq;
4634		}
4635	default:
4636		break;
4637	}
4638
4639	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4640	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4641		ext4_msg(sb, KERN_ERR, "can't mount with "
4642			"journal_async_commit in data=ordered mode");
4643		goto failed_mount_wq;
4644	}
4645
4646	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4647
4648	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4649
4650no_journal:
4651	if (!test_opt(sb, NO_MBCACHE)) {
4652		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4653		if (!sbi->s_ea_block_cache) {
4654			ext4_msg(sb, KERN_ERR,
4655				 "Failed to create ea_block_cache");
4656			goto failed_mount_wq;
4657		}
4658
4659		if (ext4_has_feature_ea_inode(sb)) {
4660			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4661			if (!sbi->s_ea_inode_cache) {
4662				ext4_msg(sb, KERN_ERR,
4663					 "Failed to create ea_inode_cache");
4664				goto failed_mount_wq;
4665			}
4666		}
4667	}
4668
4669	if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4670		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
 
 
4671		goto failed_mount_wq;
4672	}
4673
4674	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4675	    !ext4_has_feature_encrypt(sb)) {
4676		ext4_set_feature_encrypt(sb);
4677		ext4_commit_super(sb, 1);
4678	}
4679
4680	/*
4681	 * Get the # of file system overhead blocks from the
4682	 * superblock if present.
4683	 */
4684	if (es->s_overhead_clusters)
4685		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4686	else {
4687		err = ext4_calculate_overhead(sb);
4688		if (err)
4689			goto failed_mount_wq;
4690	}
4691
4692	/*
4693	 * The maximum number of concurrent works can be high and
4694	 * concurrency isn't really necessary.  Limit it to 1.
4695	 */
4696	EXT4_SB(sb)->rsv_conversion_wq =
4697		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4698	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4699		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4700		ret = -ENOMEM;
4701		goto failed_mount4;
4702	}
4703
4704	/*
4705	 * The jbd2_journal_load will have done any necessary log recovery,
4706	 * so we can safely mount the rest of the filesystem now.
4707	 */
4708
4709	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4710	if (IS_ERR(root)) {
4711		ext4_msg(sb, KERN_ERR, "get root inode failed");
4712		ret = PTR_ERR(root);
4713		root = NULL;
4714		goto failed_mount4;
4715	}
4716	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4717		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4718		iput(root);
4719		goto failed_mount4;
4720	}
4721
4722#ifdef CONFIG_UNICODE
4723	if (sbi->s_encoding)
4724		sb->s_d_op = &ext4_dentry_ops;
4725#endif
4726
4727	sb->s_root = d_make_root(root);
4728	if (!sb->s_root) {
4729		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4730		ret = -ENOMEM;
4731		goto failed_mount4;
4732	}
4733
4734	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4735	if (ret == -EROFS) {
4736		sb->s_flags |= SB_RDONLY;
4737		ret = 0;
4738	} else if (ret)
4739		goto failed_mount4a;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4740
4741	ext4_set_resv_clusters(sb);
4742
4743	if (test_opt(sb, BLOCK_VALIDITY)) {
4744		err = ext4_setup_system_zone(sb);
4745		if (err) {
4746			ext4_msg(sb, KERN_ERR, "failed to initialize system "
4747				 "zone (%d)", err);
4748			goto failed_mount4a;
4749		}
4750	}
4751
4752	ext4_ext_init(sb);
4753	err = ext4_mb_init(sb);
4754	if (err) {
4755		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4756			 err);
4757		goto failed_mount5;
4758	}
4759
4760	block = ext4_count_free_clusters(sb);
4761	ext4_free_blocks_count_set(sbi->s_es, 
4762				   EXT4_C2B(sbi, block));
4763	ext4_superblock_csum_set(sb);
4764	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4765				  GFP_KERNEL);
4766	if (!err) {
4767		unsigned long freei = ext4_count_free_inodes(sb);
4768		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4769		ext4_superblock_csum_set(sb);
4770		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4771					  GFP_KERNEL);
4772	}
4773	if (!err)
4774		err = percpu_counter_init(&sbi->s_dirs_counter,
4775					  ext4_count_dirs(sb), GFP_KERNEL);
4776	if (!err)
4777		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4778					  GFP_KERNEL);
4779	if (!err)
4780		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4781
4782	if (err) {
4783		ext4_msg(sb, KERN_ERR, "insufficient memory");
4784		goto failed_mount6;
4785	}
4786
4787	if (ext4_has_feature_flex_bg(sb))
4788		if (!ext4_fill_flex_info(sb)) {
4789			ext4_msg(sb, KERN_ERR,
4790			       "unable to initialize "
4791			       "flex_bg meta info!");
4792			goto failed_mount6;
4793		}
4794
4795	err = ext4_register_li_request(sb, first_not_zeroed);
4796	if (err)
4797		goto failed_mount6;
4798
4799	err = ext4_register_sysfs(sb);
4800	if (err)
4801		goto failed_mount7;
4802
4803#ifdef CONFIG_QUOTA
4804	/* Enable quota usage during mount. */
4805	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4806		err = ext4_enable_quotas(sb);
4807		if (err)
4808			goto failed_mount8;
4809	}
4810#endif  /* CONFIG_QUOTA */
4811
4812	/*
4813	 * Save the original bdev mapping's wb_err value which could be
4814	 * used to detect the metadata async write error.
4815	 */
4816	spin_lock_init(&sbi->s_bdev_wb_lock);
4817	if (!sb_rdonly(sb))
4818		errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
4819					 &sbi->s_bdev_wb_err);
4820	sb->s_bdev->bd_super = sb;
4821	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4822	ext4_orphan_cleanup(sb, es);
4823	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4824	if (needs_recovery) {
4825		ext4_msg(sb, KERN_INFO, "recovery complete");
4826		err = ext4_mark_recovery_complete(sb, es);
4827		if (err)
4828			goto failed_mount8;
4829	}
4830	if (EXT4_SB(sb)->s_journal) {
4831		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4832			descr = " journalled data mode";
4833		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4834			descr = " ordered data mode";
4835		else
4836			descr = " writeback data mode";
4837	} else
4838		descr = "out journal";
4839
4840	if (test_opt(sb, DISCARD)) {
4841		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4842		if (!blk_queue_discard(q))
4843			ext4_msg(sb, KERN_WARNING,
4844				 "mounting with \"discard\" option, but "
4845				 "the device does not support discard");
4846	}
4847
4848	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4849		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4850			 "Opts: %.*s%s%s", descr,
4851			 (int) sizeof(sbi->s_es->s_mount_opts),
4852			 sbi->s_es->s_mount_opts,
4853			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4854
4855	if (es->s_error_count)
4856		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4857
4858	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4859	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4860	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4861	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4862	atomic_set(&sbi->s_warning_count, 0);
4863	atomic_set(&sbi->s_msg_count, 0);
4864
4865	kfree(orig_data);
 
 
 
 
 
4866	return 0;
4867
4868cantfind_ext4:
4869	if (!silent)
4870		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4871	goto failed_mount;
4872
 
4873failed_mount8:
4874	ext4_unregister_sysfs(sb);
 
4875failed_mount7:
4876	ext4_unregister_li_request(sb);
4877failed_mount6:
4878	ext4_mb_release(sb);
4879	rcu_read_lock();
4880	flex_groups = rcu_dereference(sbi->s_flex_groups);
4881	if (flex_groups) {
4882		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
4883			kvfree(flex_groups[i]);
4884		kvfree(flex_groups);
4885	}
4886	rcu_read_unlock();
4887	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4888	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4889	percpu_counter_destroy(&sbi->s_dirs_counter);
4890	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4891	percpu_free_rwsem(&sbi->s_writepages_rwsem);
4892failed_mount5:
4893	ext4_ext_release(sb);
4894	ext4_release_system_zone(sb);
4895failed_mount4a:
4896	dput(sb->s_root);
4897	sb->s_root = NULL;
4898failed_mount4:
4899	ext4_msg(sb, KERN_ERR, "mount failed");
4900	if (EXT4_SB(sb)->rsv_conversion_wq)
4901		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4902failed_mount_wq:
4903	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4904	sbi->s_ea_inode_cache = NULL;
4905
4906	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4907	sbi->s_ea_block_cache = NULL;
4908
4909	if (sbi->s_journal) {
4910		jbd2_journal_destroy(sbi->s_journal);
4911		sbi->s_journal = NULL;
4912	}
4913failed_mount3a:
4914	ext4_es_unregister_shrinker(sbi);
4915failed_mount3:
4916	del_timer_sync(&sbi->s_err_report);
4917	if (sbi->s_mmp_tsk)
4918		kthread_stop(sbi->s_mmp_tsk);
4919failed_mount2:
4920	rcu_read_lock();
4921	group_desc = rcu_dereference(sbi->s_group_desc);
4922	for (i = 0; i < db_count; i++)
4923		brelse(group_desc[i]);
4924	kvfree(group_desc);
4925	rcu_read_unlock();
4926failed_mount:
4927	if (sbi->s_chksum_driver)
4928		crypto_free_shash(sbi->s_chksum_driver);
4929
4930#ifdef CONFIG_UNICODE
4931	utf8_unload(sbi->s_encoding);
4932#endif
4933
4934#ifdef CONFIG_QUOTA
4935	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4936		kfree(get_qf_name(sb, sbi, i));
4937#endif
4938	fscrypt_free_dummy_context(&sbi->s_dummy_enc_ctx);
4939	ext4_blkdev_remove(sbi);
4940	brelse(bh);
4941out_fail:
4942	sb->s_fs_info = NULL;
4943	kfree(sbi->s_blockgroup_lock);
4944out_free_base:
4945	kfree(sbi);
4946	kfree(orig_data);
4947	fs_put_dax(dax_dev);
4948	return err ? err : ret;
4949}
4950
4951/*
4952 * Setup any per-fs journal parameters now.  We'll do this both on
4953 * initial mount, once the journal has been initialised but before we've
4954 * done any recovery; and again on any subsequent remount.
4955 */
4956static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4957{
4958	struct ext4_sb_info *sbi = EXT4_SB(sb);
4959
4960	journal->j_commit_interval = sbi->s_commit_interval;
4961	journal->j_min_batch_time = sbi->s_min_batch_time;
4962	journal->j_max_batch_time = sbi->s_max_batch_time;
4963
4964	write_lock(&journal->j_state_lock);
4965	if (test_opt(sb, BARRIER))
4966		journal->j_flags |= JBD2_BARRIER;
4967	else
4968		journal->j_flags &= ~JBD2_BARRIER;
4969	if (test_opt(sb, DATA_ERR_ABORT))
4970		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4971	else
4972		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4973	write_unlock(&journal->j_state_lock);
4974}
4975
4976static struct inode *ext4_get_journal_inode(struct super_block *sb,
4977					     unsigned int journal_inum)
4978{
4979	struct inode *journal_inode;
4980
4981	/*
4982	 * Test for the existence of a valid inode on disk.  Bad things
4983	 * happen if we iget() an unused inode, as the subsequent iput()
4984	 * will try to delete it.
4985	 */
4986	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4987	if (IS_ERR(journal_inode)) {
4988		ext4_msg(sb, KERN_ERR, "no journal found");
4989		return NULL;
4990	}
4991	if (!journal_inode->i_nlink) {
4992		make_bad_inode(journal_inode);
4993		iput(journal_inode);
4994		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4995		return NULL;
4996	}
4997
4998	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4999		  journal_inode, journal_inode->i_size);
5000	if (!S_ISREG(journal_inode->i_mode)) {
5001		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5002		iput(journal_inode);
5003		return NULL;
5004	}
5005	return journal_inode;
5006}
5007
5008static journal_t *ext4_get_journal(struct super_block *sb,
5009				   unsigned int journal_inum)
5010{
5011	struct inode *journal_inode;
5012	journal_t *journal;
5013
5014	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5015		return NULL;
5016
5017	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5018	if (!journal_inode)
5019		return NULL;
5020
5021	journal = jbd2_journal_init_inode(journal_inode);
5022	if (!journal) {
5023		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5024		iput(journal_inode);
5025		return NULL;
5026	}
5027	journal->j_private = sb;
5028	ext4_init_journal_params(sb, journal);
5029	return journal;
5030}
5031
5032static journal_t *ext4_get_dev_journal(struct super_block *sb,
5033				       dev_t j_dev)
5034{
5035	struct buffer_head *bh;
5036	journal_t *journal;
5037	ext4_fsblk_t start;
5038	ext4_fsblk_t len;
5039	int hblock, blocksize;
5040	ext4_fsblk_t sb_block;
5041	unsigned long offset;
5042	struct ext4_super_block *es;
5043	struct block_device *bdev;
5044
5045	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5046		return NULL;
5047
5048	bdev = ext4_blkdev_get(j_dev, sb);
5049	if (bdev == NULL)
5050		return NULL;
5051
5052	blocksize = sb->s_blocksize;
5053	hblock = bdev_logical_block_size(bdev);
5054	if (blocksize < hblock) {
5055		ext4_msg(sb, KERN_ERR,
5056			"blocksize too small for journal device");
5057		goto out_bdev;
5058	}
5059
5060	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5061	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5062	set_blocksize(bdev, blocksize);
5063	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5064		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5065		       "external journal");
5066		goto out_bdev;
5067	}
5068
5069	es = (struct ext4_super_block *) (bh->b_data + offset);
5070	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5071	    !(le32_to_cpu(es->s_feature_incompat) &
5072	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5073		ext4_msg(sb, KERN_ERR, "external journal has "
5074					"bad superblock");
5075		brelse(bh);
5076		goto out_bdev;
5077	}
5078
5079	if ((le32_to_cpu(es->s_feature_ro_compat) &
5080	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5081	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5082		ext4_msg(sb, KERN_ERR, "external journal has "
5083				       "corrupt superblock");
5084		brelse(bh);
5085		goto out_bdev;
5086	}
5087
5088	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5089		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5090		brelse(bh);
5091		goto out_bdev;
5092	}
5093
5094	len = ext4_blocks_count(es);
5095	start = sb_block + 1;
5096	brelse(bh);	/* we're done with the superblock */
5097
5098	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5099					start, len, blocksize);
5100	if (!journal) {
5101		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5102		goto out_bdev;
5103	}
5104	journal->j_private = sb;
5105	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
5106	wait_on_buffer(journal->j_sb_buffer);
5107	if (!buffer_uptodate(journal->j_sb_buffer)) {
5108		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5109		goto out_journal;
5110	}
5111	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5112		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5113					"user (unsupported) - %d",
5114			be32_to_cpu(journal->j_superblock->s_nr_users));
5115		goto out_journal;
5116	}
5117	EXT4_SB(sb)->journal_bdev = bdev;
5118	ext4_init_journal_params(sb, journal);
5119	return journal;
5120
5121out_journal:
5122	jbd2_journal_destroy(journal);
5123out_bdev:
5124	ext4_blkdev_put(bdev);
5125	return NULL;
5126}
5127
5128static int ext4_load_journal(struct super_block *sb,
5129			     struct ext4_super_block *es,
5130			     unsigned long journal_devnum)
5131{
5132	journal_t *journal;
5133	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5134	dev_t journal_dev;
5135	int err = 0;
5136	int really_read_only;
5137	int journal_dev_ro;
5138
5139	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5140		return -EFSCORRUPTED;
5141
5142	if (journal_devnum &&
5143	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5144		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5145			"numbers have changed");
5146		journal_dev = new_decode_dev(journal_devnum);
5147	} else
5148		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5149
5150	if (journal_inum && journal_dev) {
5151		ext4_msg(sb, KERN_ERR,
5152			 "filesystem has both journal inode and journal device!");
5153		return -EINVAL;
5154	}
5155
5156	if (journal_inum) {
5157		journal = ext4_get_journal(sb, journal_inum);
5158		if (!journal)
5159			return -EINVAL;
5160	} else {
5161		journal = ext4_get_dev_journal(sb, journal_dev);
5162		if (!journal)
5163			return -EINVAL;
5164	}
5165
5166	journal_dev_ro = bdev_read_only(journal->j_dev);
5167	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5168
5169	if (journal_dev_ro && !sb_rdonly(sb)) {
5170		ext4_msg(sb, KERN_ERR,
5171			 "journal device read-only, try mounting with '-o ro'");
5172		err = -EROFS;
5173		goto err_out;
5174	}
5175
5176	/*
5177	 * Are we loading a blank journal or performing recovery after a
5178	 * crash?  For recovery, we need to check in advance whether we
5179	 * can get read-write access to the device.
5180	 */
5181	if (ext4_has_feature_journal_needs_recovery(sb)) {
5182		if (sb_rdonly(sb)) {
5183			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5184					"required on readonly filesystem");
5185			if (really_read_only) {
5186				ext4_msg(sb, KERN_ERR, "write access "
5187					"unavailable, cannot proceed "
5188					"(try mounting with noload)");
5189				err = -EROFS;
5190				goto err_out;
5191			}
5192			ext4_msg(sb, KERN_INFO, "write access will "
5193			       "be enabled during recovery");
5194		}
5195	}
5196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5197	if (!(journal->j_flags & JBD2_BARRIER))
5198		ext4_msg(sb, KERN_INFO, "barriers disabled");
5199
5200	if (!ext4_has_feature_journal_needs_recovery(sb))
5201		err = jbd2_journal_wipe(journal, !really_read_only);
5202	if (!err) {
5203		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5204		if (save)
5205			memcpy(save, ((char *) es) +
5206			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5207		err = jbd2_journal_load(journal);
5208		if (save)
5209			memcpy(((char *) es) + EXT4_S_ERR_START,
5210			       save, EXT4_S_ERR_LEN);
5211		kfree(save);
5212	}
5213
5214	if (err) {
5215		ext4_msg(sb, KERN_ERR, "error loading journal");
5216		goto err_out;
 
5217	}
5218
5219	EXT4_SB(sb)->s_journal = journal;
5220	err = ext4_clear_journal_err(sb, es);
5221	if (err) {
5222		EXT4_SB(sb)->s_journal = NULL;
5223		jbd2_journal_destroy(journal);
5224		return err;
5225	}
5226
5227	if (!really_read_only && journal_devnum &&
5228	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5229		es->s_journal_dev = cpu_to_le32(journal_devnum);
5230
5231		/* Make sure we flush the recovery flag to disk. */
5232		ext4_commit_super(sb, 1);
5233	}
5234
5235	return 0;
5236
5237err_out:
5238	jbd2_journal_destroy(journal);
5239	return err;
5240}
5241
5242static int ext4_commit_super(struct super_block *sb, int sync)
5243{
5244	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5245	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5246	int error = 0;
5247
5248	if (!sbh || block_device_ejected(sb))
5249		return error;
5250
5251	/*
5252	 * If the file system is mounted read-only, don't update the
5253	 * superblock write time.  This avoids updating the superblock
5254	 * write time when we are mounting the root file system
5255	 * read/only but we need to replay the journal; at that point,
5256	 * for people who are east of GMT and who make their clock
5257	 * tick in localtime for Windows bug-for-bug compatibility,
5258	 * the clock is set in the future, and this will cause e2fsck
5259	 * to complain and force a full file system check.
5260	 */
5261	if (!(sb->s_flags & SB_RDONLY))
5262		ext4_update_tstamp(es, s_wtime);
5263	if (sb->s_bdev->bd_part)
5264		es->s_kbytes_written =
5265			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5266			    ((part_stat_read(sb->s_bdev->bd_part,
5267					     sectors[STAT_WRITE]) -
5268			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
5269	else
5270		es->s_kbytes_written =
5271			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5272	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5273		ext4_free_blocks_count_set(es,
5274			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5275				&EXT4_SB(sb)->s_freeclusters_counter)));
5276	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5277		es->s_free_inodes_count =
5278			cpu_to_le32(percpu_counter_sum_positive(
5279				&EXT4_SB(sb)->s_freeinodes_counter));
5280	BUFFER_TRACE(sbh, "marking dirty");
5281	ext4_superblock_csum_set(sb);
5282	if (sync)
5283		lock_buffer(sbh);
5284	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5285		/*
5286		 * Oh, dear.  A previous attempt to write the
5287		 * superblock failed.  This could happen because the
5288		 * USB device was yanked out.  Or it could happen to
5289		 * be a transient write error and maybe the block will
5290		 * be remapped.  Nothing we can do but to retry the
5291		 * write and hope for the best.
5292		 */
5293		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5294		       "superblock detected");
5295		clear_buffer_write_io_error(sbh);
5296		set_buffer_uptodate(sbh);
5297	}
5298	mark_buffer_dirty(sbh);
5299	if (sync) {
5300		unlock_buffer(sbh);
5301		error = __sync_dirty_buffer(sbh,
5302			REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5303		if (buffer_write_io_error(sbh)) {
 
 
 
 
5304			ext4_msg(sb, KERN_ERR, "I/O error while writing "
5305			       "superblock");
5306			clear_buffer_write_io_error(sbh);
5307			set_buffer_uptodate(sbh);
5308		}
5309	}
5310	return error;
5311}
5312
5313/*
5314 * Have we just finished recovery?  If so, and if we are mounting (or
5315 * remounting) the filesystem readonly, then we will end up with a
5316 * consistent fs on disk.  Record that fact.
5317 */
5318static int ext4_mark_recovery_complete(struct super_block *sb,
5319				       struct ext4_super_block *es)
5320{
5321	int err;
5322	journal_t *journal = EXT4_SB(sb)->s_journal;
5323
5324	if (!ext4_has_feature_journal(sb)) {
5325		if (journal != NULL) {
5326			ext4_error(sb, "Journal got removed while the fs was "
5327				   "mounted!");
5328			return -EFSCORRUPTED;
5329		}
5330		return 0;
5331	}
5332	jbd2_journal_lock_updates(journal);
5333	err = jbd2_journal_flush(journal);
5334	if (err < 0)
5335		goto out;
5336
5337	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
 
5338		ext4_clear_feature_journal_needs_recovery(sb);
5339		ext4_commit_super(sb, 1);
5340	}
 
5341out:
5342	jbd2_journal_unlock_updates(journal);
5343	return err;
5344}
5345
5346/*
5347 * If we are mounting (or read-write remounting) a filesystem whose journal
5348 * has recorded an error from a previous lifetime, move that error to the
5349 * main filesystem now.
5350 */
5351static int ext4_clear_journal_err(struct super_block *sb,
5352				   struct ext4_super_block *es)
5353{
5354	journal_t *journal;
5355	int j_errno;
5356	const char *errstr;
5357
5358	if (!ext4_has_feature_journal(sb)) {
5359		ext4_error(sb, "Journal got removed while the fs was mounted!");
5360		return -EFSCORRUPTED;
5361	}
5362
5363	journal = EXT4_SB(sb)->s_journal;
5364
5365	/*
5366	 * Now check for any error status which may have been recorded in the
5367	 * journal by a prior ext4_error() or ext4_abort()
5368	 */
5369
5370	j_errno = jbd2_journal_errno(journal);
5371	if (j_errno) {
5372		char nbuf[16];
5373
5374		errstr = ext4_decode_error(sb, j_errno, nbuf);
5375		ext4_warning(sb, "Filesystem error recorded "
5376			     "from previous mount: %s", errstr);
5377		ext4_warning(sb, "Marking fs in need of filesystem check.");
5378
5379		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5380		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5381		ext4_commit_super(sb, 1);
5382
5383		jbd2_journal_clear_err(journal);
5384		jbd2_journal_update_sb_errno(journal);
5385	}
5386	return 0;
5387}
5388
5389/*
5390 * Force the running and committing transactions to commit,
5391 * and wait on the commit.
5392 */
5393int ext4_force_commit(struct super_block *sb)
5394{
5395	journal_t *journal;
5396
5397	if (sb_rdonly(sb))
5398		return 0;
5399
5400	journal = EXT4_SB(sb)->s_journal;
5401	return ext4_journal_force_commit(journal);
5402}
5403
5404static int ext4_sync_fs(struct super_block *sb, int wait)
5405{
5406	int ret = 0;
5407	tid_t target;
5408	bool needs_barrier = false;
5409	struct ext4_sb_info *sbi = EXT4_SB(sb);
5410
5411	if (unlikely(ext4_forced_shutdown(sbi)))
5412		return 0;
5413
5414	trace_ext4_sync_fs(sb, wait);
5415	flush_workqueue(sbi->rsv_conversion_wq);
5416	/*
5417	 * Writeback quota in non-journalled quota case - journalled quota has
5418	 * no dirty dquots
5419	 */
5420	dquot_writeback_dquots(sb, -1);
5421	/*
5422	 * Data writeback is possible w/o journal transaction, so barrier must
5423	 * being sent at the end of the function. But we can skip it if
5424	 * transaction_commit will do it for us.
5425	 */
5426	if (sbi->s_journal) {
5427		target = jbd2_get_latest_transaction(sbi->s_journal);
5428		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5429		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5430			needs_barrier = true;
5431
5432		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5433			if (wait)
5434				ret = jbd2_log_wait_commit(sbi->s_journal,
5435							   target);
5436		}
5437	} else if (wait && test_opt(sb, BARRIER))
5438		needs_barrier = true;
5439	if (needs_barrier) {
5440		int err;
5441		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
5442		if (!ret)
5443			ret = err;
5444	}
5445
5446	return ret;
5447}
5448
5449/*
5450 * LVM calls this function before a (read-only) snapshot is created.  This
5451 * gives us a chance to flush the journal completely and mark the fs clean.
5452 *
5453 * Note that only this function cannot bring a filesystem to be in a clean
5454 * state independently. It relies on upper layer to stop all data & metadata
5455 * modifications.
5456 */
5457static int ext4_freeze(struct super_block *sb)
5458{
5459	int error = 0;
5460	journal_t *journal;
5461
5462	if (sb_rdonly(sb))
5463		return 0;
5464
5465	journal = EXT4_SB(sb)->s_journal;
5466
5467	if (journal) {
5468		/* Now we set up the journal barrier. */
5469		jbd2_journal_lock_updates(journal);
5470
5471		/*
5472		 * Don't clear the needs_recovery flag if we failed to
5473		 * flush the journal.
5474		 */
5475		error = jbd2_journal_flush(journal);
5476		if (error < 0)
5477			goto out;
5478
5479		/* Journal blocked and flushed, clear needs_recovery flag. */
5480		ext4_clear_feature_journal_needs_recovery(sb);
5481	}
5482
5483	error = ext4_commit_super(sb, 1);
5484out:
5485	if (journal)
5486		/* we rely on upper layer to stop further updates */
5487		jbd2_journal_unlock_updates(journal);
5488	return error;
5489}
5490
5491/*
5492 * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5493 * flag here, even though the filesystem is not technically dirty yet.
5494 */
5495static int ext4_unfreeze(struct super_block *sb)
5496{
5497	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5498		return 0;
5499
5500	if (EXT4_SB(sb)->s_journal) {
5501		/* Reset the needs_recovery flag before the fs is unlocked. */
5502		ext4_set_feature_journal_needs_recovery(sb);
5503	}
5504
5505	ext4_commit_super(sb, 1);
5506	return 0;
5507}
5508
5509/*
5510 * Structure to save mount options for ext4_remount's benefit
5511 */
5512struct ext4_mount_options {
5513	unsigned long s_mount_opt;
5514	unsigned long s_mount_opt2;
5515	kuid_t s_resuid;
5516	kgid_t s_resgid;
5517	unsigned long s_commit_interval;
5518	u32 s_min_batch_time, s_max_batch_time;
5519#ifdef CONFIG_QUOTA
5520	int s_jquota_fmt;
5521	char *s_qf_names[EXT4_MAXQUOTAS];
5522#endif
5523};
5524
5525static int ext4_remount(struct super_block *sb, int *flags, char *data)
5526{
5527	struct ext4_super_block *es;
5528	struct ext4_sb_info *sbi = EXT4_SB(sb);
5529	unsigned long old_sb_flags, vfs_flags;
5530	struct ext4_mount_options old_opts;
5531	int enable_quota = 0;
5532	ext4_group_t g;
5533	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5534	int err = 0;
5535#ifdef CONFIG_QUOTA
5536	int i, j;
5537	char *to_free[EXT4_MAXQUOTAS];
5538#endif
5539	char *orig_data = kstrdup(data, GFP_KERNEL);
5540
5541	if (data && !orig_data)
5542		return -ENOMEM;
5543
5544	/* Store the original options */
5545	old_sb_flags = sb->s_flags;
5546	old_opts.s_mount_opt = sbi->s_mount_opt;
5547	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5548	old_opts.s_resuid = sbi->s_resuid;
5549	old_opts.s_resgid = sbi->s_resgid;
5550	old_opts.s_commit_interval = sbi->s_commit_interval;
5551	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5552	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5553#ifdef CONFIG_QUOTA
5554	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5555	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5556		if (sbi->s_qf_names[i]) {
5557			char *qf_name = get_qf_name(sb, sbi, i);
5558
5559			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5560			if (!old_opts.s_qf_names[i]) {
5561				for (j = 0; j < i; j++)
5562					kfree(old_opts.s_qf_names[j]);
5563				kfree(orig_data);
5564				return -ENOMEM;
5565			}
5566		} else
5567			old_opts.s_qf_names[i] = NULL;
5568#endif
5569	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5570		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5571
5572	/*
5573	 * Some options can be enabled by ext4 and/or by VFS mount flag
5574	 * either way we need to make sure it matches in both *flags and
5575	 * s_flags. Copy those selected flags from *flags to s_flags
5576	 */
5577	vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5578	sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5579
5580	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5581		err = -EINVAL;
5582		goto restore_opts;
5583	}
5584
5585	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5586	    test_opt(sb, JOURNAL_CHECKSUM)) {
5587		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5588			 "during remount not supported; ignoring");
5589		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5590	}
5591
5592	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5593		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5594			ext4_msg(sb, KERN_ERR, "can't mount with "
5595				 "both data=journal and delalloc");
5596			err = -EINVAL;
5597			goto restore_opts;
5598		}
5599		if (test_opt(sb, DIOREAD_NOLOCK)) {
5600			ext4_msg(sb, KERN_ERR, "can't mount with "
5601				 "both data=journal and dioread_nolock");
5602			err = -EINVAL;
5603			goto restore_opts;
5604		}
 
 
 
 
 
 
5605	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5606		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5607			ext4_msg(sb, KERN_ERR, "can't mount with "
5608				"journal_async_commit in data=ordered mode");
5609			err = -EINVAL;
5610			goto restore_opts;
5611		}
5612	}
5613
5614	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5615		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5616		err = -EINVAL;
5617		goto restore_opts;
5618	}
5619
5620	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5621		ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5622
5623	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5624		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5625
5626	es = sbi->s_es;
5627
5628	if (sbi->s_journal) {
5629		ext4_init_journal_params(sb, sbi->s_journal);
5630		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5631	}
5632
5633	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
 
 
 
5634		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5635			err = -EROFS;
5636			goto restore_opts;
5637		}
5638
5639		if (*flags & SB_RDONLY) {
5640			err = sync_filesystem(sb);
5641			if (err < 0)
5642				goto restore_opts;
5643			err = dquot_suspend(sb, -1);
5644			if (err < 0)
5645				goto restore_opts;
5646
5647			/*
5648			 * First of all, the unconditional stuff we have to do
5649			 * to disable replay of the journal when we next remount
5650			 */
5651			sb->s_flags |= SB_RDONLY;
5652
5653			/*
5654			 * OK, test if we are remounting a valid rw partition
5655			 * readonly, and if so set the rdonly flag and then
5656			 * mark the partition as valid again.
5657			 */
5658			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5659			    (sbi->s_mount_state & EXT4_VALID_FS))
5660				es->s_state = cpu_to_le16(sbi->s_mount_state);
5661
5662			if (sbi->s_journal) {
5663				/*
5664				 * We let remount-ro finish even if marking fs
5665				 * as clean failed...
5666				 */
5667				ext4_mark_recovery_complete(sb, es);
5668			}
5669			if (sbi->s_mmp_tsk)
5670				kthread_stop(sbi->s_mmp_tsk);
5671		} else {
5672			/* Make sure we can mount this feature set readwrite */
5673			if (ext4_has_feature_readonly(sb) ||
5674			    !ext4_feature_set_ok(sb, 0)) {
5675				err = -EROFS;
5676				goto restore_opts;
5677			}
5678			/*
5679			 * Make sure the group descriptor checksums
5680			 * are sane.  If they aren't, refuse to remount r/w.
5681			 */
5682			for (g = 0; g < sbi->s_groups_count; g++) {
5683				struct ext4_group_desc *gdp =
5684					ext4_get_group_desc(sb, g, NULL);
5685
5686				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5687					ext4_msg(sb, KERN_ERR,
5688	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5689		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5690					       le16_to_cpu(gdp->bg_checksum));
5691					err = -EFSBADCRC;
5692					goto restore_opts;
5693				}
5694			}
5695
5696			/*
5697			 * If we have an unprocessed orphan list hanging
5698			 * around from a previously readonly bdev mount,
5699			 * require a full umount/remount for now.
5700			 */
5701			if (es->s_last_orphan) {
5702				ext4_msg(sb, KERN_WARNING, "Couldn't "
5703				       "remount RDWR because of unprocessed "
5704				       "orphan inode list.  Please "
5705				       "umount/remount instead");
5706				err = -EINVAL;
5707				goto restore_opts;
5708			}
5709
5710			/*
5711			 * Update the original bdev mapping's wb_err value
5712			 * which could be used to detect the metadata async
5713			 * write error.
5714			 */
5715			errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5716						 &sbi->s_bdev_wb_err);
5717
5718			/*
5719			 * Mounting a RDONLY partition read-write, so reread
5720			 * and store the current valid flag.  (It may have
5721			 * been changed by e2fsck since we originally mounted
5722			 * the partition.)
5723			 */
5724			if (sbi->s_journal) {
5725				err = ext4_clear_journal_err(sb, es);
5726				if (err)
5727					goto restore_opts;
5728			}
5729			sbi->s_mount_state = le16_to_cpu(es->s_state);
5730
5731			err = ext4_setup_super(sb, es, 0);
5732			if (err)
5733				goto restore_opts;
5734
5735			sb->s_flags &= ~SB_RDONLY;
5736			if (ext4_has_feature_mmp(sb))
5737				if (ext4_multi_mount_protect(sb,
5738						le64_to_cpu(es->s_mmp_block))) {
5739					err = -EROFS;
5740					goto restore_opts;
5741				}
5742			enable_quota = 1;
5743		}
5744	}
5745
5746	/*
5747	 * Reinitialize lazy itable initialization thread based on
5748	 * current settings
5749	 */
5750	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5751		ext4_unregister_li_request(sb);
5752	else {
5753		ext4_group_t first_not_zeroed;
5754		first_not_zeroed = ext4_has_uninit_itable(sb);
5755		ext4_register_li_request(sb, first_not_zeroed);
5756	}
5757
5758	/*
5759	 * Handle creation of system zone data early because it can fail.
5760	 * Releasing of existing data is done when we are sure remount will
5761	 * succeed.
5762	 */
5763	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->system_blks) {
5764		err = ext4_setup_system_zone(sb);
5765		if (err)
5766			goto restore_opts;
5767	}
5768
5769	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5770		err = ext4_commit_super(sb, 1);
5771		if (err)
5772			goto restore_opts;
5773	}
5774
5775#ifdef CONFIG_QUOTA
5776	/* Release old quota file names */
5777	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5778		kfree(old_opts.s_qf_names[i]);
5779	if (enable_quota) {
5780		if (sb_any_quota_suspended(sb))
5781			dquot_resume(sb, -1);
5782		else if (ext4_has_feature_quota(sb)) {
5783			err = ext4_enable_quotas(sb);
5784			if (err)
5785				goto restore_opts;
5786		}
5787	}
5788#endif
5789	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->system_blks)
5790		ext4_release_system_zone(sb);
5791
5792	/*
5793	 * Some options can be enabled by ext4 and/or by VFS mount flag
5794	 * either way we need to make sure it matches in both *flags and
5795	 * s_flags. Copy those selected flags from s_flags to *flags
5796	 */
5797	*flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
5798
 
5799	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5800	kfree(orig_data);
5801	return 0;
5802
5803restore_opts:
5804	sb->s_flags = old_sb_flags;
5805	sbi->s_mount_opt = old_opts.s_mount_opt;
5806	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5807	sbi->s_resuid = old_opts.s_resuid;
5808	sbi->s_resgid = old_opts.s_resgid;
5809	sbi->s_commit_interval = old_opts.s_commit_interval;
5810	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5811	sbi->s_max_batch_time = old_opts.s_max_batch_time;
5812	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->system_blks)
5813		ext4_release_system_zone(sb);
5814#ifdef CONFIG_QUOTA
5815	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5816	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5817		to_free[i] = get_qf_name(sb, sbi, i);
5818		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5819	}
5820	synchronize_rcu();
5821	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5822		kfree(to_free[i]);
5823#endif
5824	kfree(orig_data);
5825	return err;
5826}
5827
5828#ifdef CONFIG_QUOTA
5829static int ext4_statfs_project(struct super_block *sb,
5830			       kprojid_t projid, struct kstatfs *buf)
5831{
5832	struct kqid qid;
5833	struct dquot *dquot;
5834	u64 limit;
5835	u64 curblock;
5836
5837	qid = make_kqid_projid(projid);
5838	dquot = dqget(sb, qid);
5839	if (IS_ERR(dquot))
5840		return PTR_ERR(dquot);
5841	spin_lock(&dquot->dq_dqb_lock);
5842
5843	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
5844			     dquot->dq_dqb.dqb_bhardlimit);
5845	limit >>= sb->s_blocksize_bits;
5846
 
 
 
5847	if (limit && buf->f_blocks > limit) {
5848		curblock = (dquot->dq_dqb.dqb_curspace +
5849			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5850		buf->f_blocks = limit;
5851		buf->f_bfree = buf->f_bavail =
5852			(buf->f_blocks > curblock) ?
5853			 (buf->f_blocks - curblock) : 0;
5854	}
5855
5856	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
5857			     dquot->dq_dqb.dqb_ihardlimit);
 
5858	if (limit && buf->f_files > limit) {
5859		buf->f_files = limit;
5860		buf->f_ffree =
5861			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5862			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5863	}
5864
5865	spin_unlock(&dquot->dq_dqb_lock);
5866	dqput(dquot);
5867	return 0;
5868}
5869#endif
5870
5871static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5872{
5873	struct super_block *sb = dentry->d_sb;
5874	struct ext4_sb_info *sbi = EXT4_SB(sb);
5875	struct ext4_super_block *es = sbi->s_es;
5876	ext4_fsblk_t overhead = 0, resv_blocks;
5877	u64 fsid;
5878	s64 bfree;
5879	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5880
5881	if (!test_opt(sb, MINIX_DF))
5882		overhead = sbi->s_overhead;
5883
5884	buf->f_type = EXT4_SUPER_MAGIC;
5885	buf->f_bsize = sb->s_blocksize;
5886	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5887	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5888		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5889	/* prevent underflow in case that few free space is available */
5890	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5891	buf->f_bavail = buf->f_bfree -
5892			(ext4_r_blocks_count(es) + resv_blocks);
5893	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5894		buf->f_bavail = 0;
5895	buf->f_files = le32_to_cpu(es->s_inodes_count);
5896	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5897	buf->f_namelen = EXT4_NAME_LEN;
5898	fsid = le64_to_cpup((void *)es->s_uuid) ^
5899	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5900	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5901	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5902
5903#ifdef CONFIG_QUOTA
5904	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5905	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
5906		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5907#endif
5908	return 0;
5909}
5910
 
 
 
 
 
 
 
 
 
5911
5912#ifdef CONFIG_QUOTA
5913
5914/*
5915 * Helper functions so that transaction is started before we acquire dqio_sem
5916 * to keep correct lock ordering of transaction > dqio_sem
5917 */
5918static inline struct inode *dquot_to_inode(struct dquot *dquot)
5919{
5920	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5921}
5922
5923static int ext4_write_dquot(struct dquot *dquot)
5924{
5925	int ret, err;
5926	handle_t *handle;
5927	struct inode *inode;
5928
5929	inode = dquot_to_inode(dquot);
5930	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5931				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5932	if (IS_ERR(handle))
5933		return PTR_ERR(handle);
5934	ret = dquot_commit(dquot);
5935	err = ext4_journal_stop(handle);
5936	if (!ret)
5937		ret = err;
5938	return ret;
5939}
5940
5941static int ext4_acquire_dquot(struct dquot *dquot)
5942{
5943	int ret, err;
5944	handle_t *handle;
5945
5946	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5947				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5948	if (IS_ERR(handle))
5949		return PTR_ERR(handle);
5950	ret = dquot_acquire(dquot);
5951	err = ext4_journal_stop(handle);
5952	if (!ret)
5953		ret = err;
5954	return ret;
5955}
5956
5957static int ext4_release_dquot(struct dquot *dquot)
5958{
5959	int ret, err;
5960	handle_t *handle;
5961
5962	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5963				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5964	if (IS_ERR(handle)) {
5965		/* Release dquot anyway to avoid endless cycle in dqput() */
5966		dquot_release(dquot);
5967		return PTR_ERR(handle);
5968	}
5969	ret = dquot_release(dquot);
5970	err = ext4_journal_stop(handle);
5971	if (!ret)
5972		ret = err;
5973	return ret;
5974}
5975
5976static int ext4_mark_dquot_dirty(struct dquot *dquot)
5977{
5978	struct super_block *sb = dquot->dq_sb;
5979	struct ext4_sb_info *sbi = EXT4_SB(sb);
5980
5981	/* Are we journaling quotas? */
5982	if (ext4_has_feature_quota(sb) ||
5983	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5984		dquot_mark_dquot_dirty(dquot);
5985		return ext4_write_dquot(dquot);
5986	} else {
5987		return dquot_mark_dquot_dirty(dquot);
5988	}
5989}
5990
5991static int ext4_write_info(struct super_block *sb, int type)
5992{
5993	int ret, err;
5994	handle_t *handle;
5995
5996	/* Data block + inode block */
5997	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5998	if (IS_ERR(handle))
5999		return PTR_ERR(handle);
6000	ret = dquot_commit_info(sb, type);
6001	err = ext4_journal_stop(handle);
6002	if (!ret)
6003		ret = err;
6004	return ret;
6005}
6006
6007/*
6008 * Turn on quotas during mount time - we need to find
6009 * the quota file and such...
6010 */
6011static int ext4_quota_on_mount(struct super_block *sb, int type)
6012{
6013	return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6014					EXT4_SB(sb)->s_jquota_fmt, type);
6015}
6016
6017static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6018{
6019	struct ext4_inode_info *ei = EXT4_I(inode);
6020
6021	/* The first argument of lockdep_set_subclass has to be
6022	 * *exactly* the same as the argument to init_rwsem() --- in
6023	 * this case, in init_once() --- or lockdep gets unhappy
6024	 * because the name of the lock is set using the
6025	 * stringification of the argument to init_rwsem().
6026	 */
6027	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6028	lockdep_set_subclass(&ei->i_data_sem, subclass);
6029}
6030
6031/*
6032 * Standard function to be called on quota_on
6033 */
6034static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6035			 const struct path *path)
6036{
6037	int err;
6038
6039	if (!test_opt(sb, QUOTA))
6040		return -EINVAL;
6041
6042	/* Quotafile not on the same filesystem? */
6043	if (path->dentry->d_sb != sb)
6044		return -EXDEV;
6045	/* Journaling quota? */
6046	if (EXT4_SB(sb)->s_qf_names[type]) {
6047		/* Quotafile not in fs root? */
6048		if (path->dentry->d_parent != sb->s_root)
6049			ext4_msg(sb, KERN_WARNING,
6050				"Quota file not on filesystem root. "
6051				"Journaled quota will not work");
6052		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6053	} else {
6054		/*
6055		 * Clear the flag just in case mount options changed since
6056		 * last time.
6057		 */
6058		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6059	}
6060
6061	/*
6062	 * When we journal data on quota file, we have to flush journal to see
6063	 * all updates to the file when we bypass pagecache...
6064	 */
6065	if (EXT4_SB(sb)->s_journal &&
6066	    ext4_should_journal_data(d_inode(path->dentry))) {
6067		/*
6068		 * We don't need to lock updates but journal_flush() could
6069		 * otherwise be livelocked...
6070		 */
6071		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6072		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6073		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6074		if (err)
6075			return err;
6076	}
6077
6078	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6079	err = dquot_quota_on(sb, type, format_id, path);
6080	if (err) {
6081		lockdep_set_quota_inode(path->dentry->d_inode,
6082					     I_DATA_SEM_NORMAL);
6083	} else {
6084		struct inode *inode = d_inode(path->dentry);
6085		handle_t *handle;
6086
6087		/*
6088		 * Set inode flags to prevent userspace from messing with quota
6089		 * files. If this fails, we return success anyway since quotas
6090		 * are already enabled and this is not a hard failure.
6091		 */
6092		inode_lock(inode);
6093		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6094		if (IS_ERR(handle))
6095			goto unlock_inode;
6096		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6097		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6098				S_NOATIME | S_IMMUTABLE);
6099		err = ext4_mark_inode_dirty(handle, inode);
6100		ext4_journal_stop(handle);
6101	unlock_inode:
6102		inode_unlock(inode);
6103	}
6104	return err;
6105}
6106
6107static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6108			     unsigned int flags)
6109{
6110	int err;
6111	struct inode *qf_inode;
6112	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6113		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6114		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6115		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6116	};
6117
6118	BUG_ON(!ext4_has_feature_quota(sb));
6119
6120	if (!qf_inums[type])
6121		return -EPERM;
6122
6123	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6124	if (IS_ERR(qf_inode)) {
6125		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6126		return PTR_ERR(qf_inode);
6127	}
6128
6129	/* Don't account quota for quota files to avoid recursion */
6130	qf_inode->i_flags |= S_NOQUOTA;
6131	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6132	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
 
6133	if (err)
6134		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6135	iput(qf_inode);
6136
6137	return err;
6138}
6139
6140/* Enable usage tracking for all quota types. */
6141static int ext4_enable_quotas(struct super_block *sb)
6142{
6143	int type, err = 0;
6144	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6145		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6146		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6147		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6148	};
6149	bool quota_mopt[EXT4_MAXQUOTAS] = {
6150		test_opt(sb, USRQUOTA),
6151		test_opt(sb, GRPQUOTA),
6152		test_opt(sb, PRJQUOTA),
6153	};
6154
6155	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6156	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6157		if (qf_inums[type]) {
6158			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6159				DQUOT_USAGE_ENABLED |
6160				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6161			if (err) {
6162				ext4_warning(sb,
6163					"Failed to enable quota tracking "
6164					"(type=%d, err=%d). Please run "
6165					"e2fsck to fix.", type, err);
6166				for (type--; type >= 0; type--)
6167					dquot_quota_off(sb, type);
6168
6169				return err;
6170			}
6171		}
6172	}
6173	return 0;
6174}
6175
6176static int ext4_quota_off(struct super_block *sb, int type)
6177{
6178	struct inode *inode = sb_dqopt(sb)->files[type];
6179	handle_t *handle;
6180	int err;
6181
6182	/* Force all delayed allocation blocks to be allocated.
6183	 * Caller already holds s_umount sem */
6184	if (test_opt(sb, DELALLOC))
6185		sync_filesystem(sb);
6186
6187	if (!inode || !igrab(inode))
6188		goto out;
6189
6190	err = dquot_quota_off(sb, type);
6191	if (err || ext4_has_feature_quota(sb))
6192		goto out_put;
6193
6194	inode_lock(inode);
6195	/*
6196	 * Update modification times of quota files when userspace can
6197	 * start looking at them. If we fail, we return success anyway since
6198	 * this is not a hard failure and quotas are already disabled.
6199	 */
6200	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6201	if (IS_ERR(handle)) {
6202		err = PTR_ERR(handle);
6203		goto out_unlock;
6204	}
6205	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6206	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6207	inode->i_mtime = inode->i_ctime = current_time(inode);
6208	err = ext4_mark_inode_dirty(handle, inode);
6209	ext4_journal_stop(handle);
6210out_unlock:
6211	inode_unlock(inode);
6212out_put:
6213	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6214	iput(inode);
6215	return err;
6216out:
6217	return dquot_quota_off(sb, type);
6218}
6219
6220/* Read data from quotafile - avoid pagecache and such because we cannot afford
6221 * acquiring the locks... As quota files are never truncated and quota code
6222 * itself serializes the operations (and no one else should touch the files)
6223 * we don't have to be afraid of races */
6224static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6225			       size_t len, loff_t off)
6226{
6227	struct inode *inode = sb_dqopt(sb)->files[type];
6228	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6229	int offset = off & (sb->s_blocksize - 1);
6230	int tocopy;
6231	size_t toread;
6232	struct buffer_head *bh;
6233	loff_t i_size = i_size_read(inode);
6234
6235	if (off > i_size)
6236		return 0;
6237	if (off+len > i_size)
6238		len = i_size-off;
6239	toread = len;
6240	while (toread > 0) {
6241		tocopy = sb->s_blocksize - offset < toread ?
6242				sb->s_blocksize - offset : toread;
6243		bh = ext4_bread(NULL, inode, blk, 0);
6244		if (IS_ERR(bh))
6245			return PTR_ERR(bh);
6246		if (!bh)	/* A hole? */
6247			memset(data, 0, tocopy);
6248		else
6249			memcpy(data, bh->b_data+offset, tocopy);
6250		brelse(bh);
6251		offset = 0;
6252		toread -= tocopy;
6253		data += tocopy;
6254		blk++;
6255	}
6256	return len;
6257}
6258
6259/* Write to quotafile (we know the transaction is already started and has
6260 * enough credits) */
6261static ssize_t ext4_quota_write(struct super_block *sb, int type,
6262				const char *data, size_t len, loff_t off)
6263{
6264	struct inode *inode = sb_dqopt(sb)->files[type];
6265	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6266	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6267	int retries = 0;
6268	struct buffer_head *bh;
6269	handle_t *handle = journal_current_handle();
6270
6271	if (EXT4_SB(sb)->s_journal && !handle) {
6272		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6273			" cancelled because transaction is not started",
6274			(unsigned long long)off, (unsigned long long)len);
6275		return -EIO;
6276	}
6277	/*
6278	 * Since we account only one data block in transaction credits,
6279	 * then it is impossible to cross a block boundary.
6280	 */
6281	if (sb->s_blocksize - offset < len) {
6282		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6283			" cancelled because not block aligned",
6284			(unsigned long long)off, (unsigned long long)len);
6285		return -EIO;
6286	}
6287
6288	do {
6289		bh = ext4_bread(handle, inode, blk,
6290				EXT4_GET_BLOCKS_CREATE |
6291				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6292	} while (PTR_ERR(bh) == -ENOSPC &&
6293		 ext4_should_retry_alloc(inode->i_sb, &retries));
6294	if (IS_ERR(bh))
6295		return PTR_ERR(bh);
6296	if (!bh)
6297		goto out;
6298	BUFFER_TRACE(bh, "get write access");
6299	err = ext4_journal_get_write_access(handle, bh);
6300	if (err) {
6301		brelse(bh);
6302		return err;
6303	}
6304	lock_buffer(bh);
6305	memcpy(bh->b_data+offset, data, len);
6306	flush_dcache_page(bh->b_page);
6307	unlock_buffer(bh);
6308	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6309	brelse(bh);
6310out:
6311	if (inode->i_size < off + len) {
6312		i_size_write(inode, off + len);
6313		EXT4_I(inode)->i_disksize = inode->i_size;
6314		err2 = ext4_mark_inode_dirty(handle, inode);
6315		if (unlikely(err2 && !err))
6316			err = err2;
6317	}
6318	return err ? err : len;
 
 
 
 
 
 
 
 
 
 
 
 
6319}
6320#endif
6321
6322static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6323		       const char *dev_name, void *data)
6324{
6325	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6326}
6327
6328#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6329static inline void register_as_ext2(void)
6330{
6331	int err = register_filesystem(&ext2_fs_type);
6332	if (err)
6333		printk(KERN_WARNING
6334		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6335}
6336
6337static inline void unregister_as_ext2(void)
6338{
6339	unregister_filesystem(&ext2_fs_type);
6340}
6341
6342static inline int ext2_feature_set_ok(struct super_block *sb)
6343{
6344	if (ext4_has_unknown_ext2_incompat_features(sb))
6345		return 0;
6346	if (sb_rdonly(sb))
6347		return 1;
6348	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6349		return 0;
6350	return 1;
6351}
6352#else
6353static inline void register_as_ext2(void) { }
6354static inline void unregister_as_ext2(void) { }
6355static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6356#endif
6357
6358static inline void register_as_ext3(void)
6359{
6360	int err = register_filesystem(&ext3_fs_type);
6361	if (err)
6362		printk(KERN_WARNING
6363		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6364}
6365
6366static inline void unregister_as_ext3(void)
6367{
6368	unregister_filesystem(&ext3_fs_type);
6369}
6370
6371static inline int ext3_feature_set_ok(struct super_block *sb)
6372{
6373	if (ext4_has_unknown_ext3_incompat_features(sb))
6374		return 0;
6375	if (!ext4_has_feature_journal(sb))
6376		return 0;
6377	if (sb_rdonly(sb))
6378		return 1;
6379	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6380		return 0;
6381	return 1;
6382}
6383
6384static struct file_system_type ext4_fs_type = {
6385	.owner		= THIS_MODULE,
6386	.name		= "ext4",
6387	.mount		= ext4_mount,
6388	.kill_sb	= kill_block_super,
6389	.fs_flags	= FS_REQUIRES_DEV,
6390};
6391MODULE_ALIAS_FS("ext4");
6392
6393/* Shared across all ext4 file systems */
6394wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6395
6396static int __init ext4_init_fs(void)
6397{
6398	int i, err;
6399
6400	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6401	ext4_li_info = NULL;
6402	mutex_init(&ext4_li_mtx);
6403
6404	/* Build-time check for flags consistency */
6405	ext4_check_flag_values();
6406
6407	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6408		init_waitqueue_head(&ext4__ioend_wq[i]);
6409
6410	err = ext4_init_es();
6411	if (err)
6412		return err;
6413
6414	err = ext4_init_pending();
6415	if (err)
6416		goto out7;
6417
6418	err = ext4_init_post_read_processing();
6419	if (err)
6420		goto out6;
6421
6422	err = ext4_init_pageio();
6423	if (err)
6424		goto out5;
6425
6426	err = ext4_init_system_zone();
6427	if (err)
6428		goto out4;
6429
6430	err = ext4_init_sysfs();
6431	if (err)
6432		goto out3;
6433
6434	err = ext4_init_mballoc();
6435	if (err)
6436		goto out2;
6437	err = init_inodecache();
6438	if (err)
6439		goto out1;
6440	register_as_ext3();
6441	register_as_ext2();
6442	err = register_filesystem(&ext4_fs_type);
6443	if (err)
6444		goto out;
6445
6446	return 0;
6447out:
6448	unregister_as_ext2();
6449	unregister_as_ext3();
6450	destroy_inodecache();
6451out1:
6452	ext4_exit_mballoc();
6453out2:
6454	ext4_exit_sysfs();
6455out3:
6456	ext4_exit_system_zone();
6457out4:
6458	ext4_exit_pageio();
6459out5:
6460	ext4_exit_post_read_processing();
6461out6:
6462	ext4_exit_pending();
6463out7:
6464	ext4_exit_es();
6465
6466	return err;
6467}
6468
6469static void __exit ext4_exit_fs(void)
6470{
6471	ext4_destroy_lazyinit_thread();
6472	unregister_as_ext2();
6473	unregister_as_ext3();
6474	unregister_filesystem(&ext4_fs_type);
6475	destroy_inodecache();
6476	ext4_exit_mballoc();
6477	ext4_exit_sysfs();
6478	ext4_exit_system_zone();
6479	ext4_exit_pageio();
6480	ext4_exit_post_read_processing();
6481	ext4_exit_es();
6482	ext4_exit_pending();
6483}
6484
6485MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6486MODULE_DESCRIPTION("Fourth Extended Filesystem");
6487MODULE_LICENSE("GPL");
6488MODULE_SOFTDEP("pre: crc32c");
6489module_init(ext4_init_fs)
6490module_exit(ext4_exit_fs)