Loading...
1/*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19#include <linux/module.h>
20#include <linux/string.h>
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/vmalloc.h>
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/parser.h>
29#include <linux/buffer_head.h>
30#include <linux/exportfs.h>
31#include <linux/vfs.h>
32#include <linux/random.h>
33#include <linux/mount.h>
34#include <linux/namei.h>
35#include <linux/quotaops.h>
36#include <linux/seq_file.h>
37#include <linux/ctype.h>
38#include <linux/log2.h>
39#include <linux/crc16.h>
40#include <linux/cleancache.h>
41#include <linux/uaccess.h>
42
43#include <linux/kthread.h>
44#include <linux/freezer.h>
45
46#include "ext4.h"
47#include "ext4_extents.h" /* Needed for trace points definition */
48#include "ext4_jbd2.h"
49#include "xattr.h"
50#include "acl.h"
51#include "mballoc.h"
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/ext4.h>
55
56static struct ext4_lazy_init *ext4_li_info;
57static struct mutex ext4_li_mtx;
58static struct ratelimit_state ext4_mount_msg_ratelimit;
59
60static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
61 unsigned long journal_devnum);
62static int ext4_show_options(struct seq_file *seq, struct dentry *root);
63static int ext4_commit_super(struct super_block *sb, int sync);
64static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68static int ext4_sync_fs(struct super_block *sb, int wait);
69static int ext4_remount(struct super_block *sb, int *flags, char *data);
70static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
71static int ext4_unfreeze(struct super_block *sb);
72static int ext4_freeze(struct super_block *sb);
73static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
74 const char *dev_name, void *data);
75static inline int ext2_feature_set_ok(struct super_block *sb);
76static inline int ext3_feature_set_ok(struct super_block *sb);
77static int ext4_feature_set_ok(struct super_block *sb, int readonly);
78static void ext4_destroy_lazyinit_thread(void);
79static void ext4_unregister_li_request(struct super_block *sb);
80static void ext4_clear_request_list(void);
81static struct inode *ext4_get_journal_inode(struct super_block *sb,
82 unsigned int journal_inum);
83
84/*
85 * Lock ordering
86 *
87 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
88 * i_mmap_rwsem (inode->i_mmap_rwsem)!
89 *
90 * page fault path:
91 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
92 * page lock -> i_data_sem (rw)
93 *
94 * buffered write path:
95 * sb_start_write -> i_mutex -> mmap_sem
96 * sb_start_write -> i_mutex -> transaction start -> page lock ->
97 * i_data_sem (rw)
98 *
99 * truncate:
100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
101 * i_mmap_rwsem (w) -> page lock
102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103 * transaction start -> i_data_sem (rw)
104 *
105 * direct IO:
106 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
107 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
108 * transaction start -> i_data_sem (rw)
109 *
110 * writepages:
111 * transaction start -> page lock(s) -> i_data_sem (rw)
112 */
113
114#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
115static struct file_system_type ext2_fs_type = {
116 .owner = THIS_MODULE,
117 .name = "ext2",
118 .mount = ext4_mount,
119 .kill_sb = kill_block_super,
120 .fs_flags = FS_REQUIRES_DEV,
121};
122MODULE_ALIAS_FS("ext2");
123MODULE_ALIAS("ext2");
124#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
125#else
126#define IS_EXT2_SB(sb) (0)
127#endif
128
129
130static struct file_system_type ext3_fs_type = {
131 .owner = THIS_MODULE,
132 .name = "ext3",
133 .mount = ext4_mount,
134 .kill_sb = kill_block_super,
135 .fs_flags = FS_REQUIRES_DEV,
136};
137MODULE_ALIAS_FS("ext3");
138MODULE_ALIAS("ext3");
139#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
140
141static int ext4_verify_csum_type(struct super_block *sb,
142 struct ext4_super_block *es)
143{
144 if (!ext4_has_feature_metadata_csum(sb))
145 return 1;
146
147 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
148}
149
150static __le32 ext4_superblock_csum(struct super_block *sb,
151 struct ext4_super_block *es)
152{
153 struct ext4_sb_info *sbi = EXT4_SB(sb);
154 int offset = offsetof(struct ext4_super_block, s_checksum);
155 __u32 csum;
156
157 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
158
159 return cpu_to_le32(csum);
160}
161
162static int ext4_superblock_csum_verify(struct super_block *sb,
163 struct ext4_super_block *es)
164{
165 if (!ext4_has_metadata_csum(sb))
166 return 1;
167
168 return es->s_checksum == ext4_superblock_csum(sb, es);
169}
170
171void ext4_superblock_csum_set(struct super_block *sb)
172{
173 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
174
175 if (!ext4_has_metadata_csum(sb))
176 return;
177
178 es->s_checksum = ext4_superblock_csum(sb, es);
179}
180
181void *ext4_kvmalloc(size_t size, gfp_t flags)
182{
183 void *ret;
184
185 ret = kmalloc(size, flags | __GFP_NOWARN);
186 if (!ret)
187 ret = __vmalloc(size, flags, PAGE_KERNEL);
188 return ret;
189}
190
191void *ext4_kvzalloc(size_t size, gfp_t flags)
192{
193 void *ret;
194
195 ret = kzalloc(size, flags | __GFP_NOWARN);
196 if (!ret)
197 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
198 return ret;
199}
200
201ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
202 struct ext4_group_desc *bg)
203{
204 return le32_to_cpu(bg->bg_block_bitmap_lo) |
205 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
206 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
207}
208
209ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
210 struct ext4_group_desc *bg)
211{
212 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
213 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
214 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
215}
216
217ext4_fsblk_t ext4_inode_table(struct super_block *sb,
218 struct ext4_group_desc *bg)
219{
220 return le32_to_cpu(bg->bg_inode_table_lo) |
221 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
222 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
223}
224
225__u32 ext4_free_group_clusters(struct super_block *sb,
226 struct ext4_group_desc *bg)
227{
228 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
229 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
230 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
231}
232
233__u32 ext4_free_inodes_count(struct super_block *sb,
234 struct ext4_group_desc *bg)
235{
236 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
237 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
238 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
239}
240
241__u32 ext4_used_dirs_count(struct super_block *sb,
242 struct ext4_group_desc *bg)
243{
244 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
245 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
246 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
247}
248
249__u32 ext4_itable_unused_count(struct super_block *sb,
250 struct ext4_group_desc *bg)
251{
252 return le16_to_cpu(bg->bg_itable_unused_lo) |
253 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
254 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
255}
256
257void ext4_block_bitmap_set(struct super_block *sb,
258 struct ext4_group_desc *bg, ext4_fsblk_t blk)
259{
260 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
261 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
262 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
263}
264
265void ext4_inode_bitmap_set(struct super_block *sb,
266 struct ext4_group_desc *bg, ext4_fsblk_t blk)
267{
268 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
269 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
270 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
271}
272
273void ext4_inode_table_set(struct super_block *sb,
274 struct ext4_group_desc *bg, ext4_fsblk_t blk)
275{
276 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
277 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
278 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
279}
280
281void ext4_free_group_clusters_set(struct super_block *sb,
282 struct ext4_group_desc *bg, __u32 count)
283{
284 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
285 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
286 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
287}
288
289void ext4_free_inodes_set(struct super_block *sb,
290 struct ext4_group_desc *bg, __u32 count)
291{
292 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
293 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
294 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
295}
296
297void ext4_used_dirs_set(struct super_block *sb,
298 struct ext4_group_desc *bg, __u32 count)
299{
300 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
301 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
302 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
303}
304
305void ext4_itable_unused_set(struct super_block *sb,
306 struct ext4_group_desc *bg, __u32 count)
307{
308 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
309 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
310 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
311}
312
313
314static void __save_error_info(struct super_block *sb, const char *func,
315 unsigned int line)
316{
317 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
318
319 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
320 if (bdev_read_only(sb->s_bdev))
321 return;
322 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
323 es->s_last_error_time = cpu_to_le32(get_seconds());
324 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
325 es->s_last_error_line = cpu_to_le32(line);
326 if (!es->s_first_error_time) {
327 es->s_first_error_time = es->s_last_error_time;
328 strncpy(es->s_first_error_func, func,
329 sizeof(es->s_first_error_func));
330 es->s_first_error_line = cpu_to_le32(line);
331 es->s_first_error_ino = es->s_last_error_ino;
332 es->s_first_error_block = es->s_last_error_block;
333 }
334 /*
335 * Start the daily error reporting function if it hasn't been
336 * started already
337 */
338 if (!es->s_error_count)
339 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
340 le32_add_cpu(&es->s_error_count, 1);
341}
342
343static void save_error_info(struct super_block *sb, const char *func,
344 unsigned int line)
345{
346 __save_error_info(sb, func, line);
347 ext4_commit_super(sb, 1);
348}
349
350/*
351 * The del_gendisk() function uninitializes the disk-specific data
352 * structures, including the bdi structure, without telling anyone
353 * else. Once this happens, any attempt to call mark_buffer_dirty()
354 * (for example, by ext4_commit_super), will cause a kernel OOPS.
355 * This is a kludge to prevent these oops until we can put in a proper
356 * hook in del_gendisk() to inform the VFS and file system layers.
357 */
358static int block_device_ejected(struct super_block *sb)
359{
360 struct inode *bd_inode = sb->s_bdev->bd_inode;
361 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
362
363 return bdi->dev == NULL;
364}
365
366static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
367{
368 struct super_block *sb = journal->j_private;
369 struct ext4_sb_info *sbi = EXT4_SB(sb);
370 int error = is_journal_aborted(journal);
371 struct ext4_journal_cb_entry *jce;
372
373 BUG_ON(txn->t_state == T_FINISHED);
374 spin_lock(&sbi->s_md_lock);
375 while (!list_empty(&txn->t_private_list)) {
376 jce = list_entry(txn->t_private_list.next,
377 struct ext4_journal_cb_entry, jce_list);
378 list_del_init(&jce->jce_list);
379 spin_unlock(&sbi->s_md_lock);
380 jce->jce_func(sb, jce, error);
381 spin_lock(&sbi->s_md_lock);
382 }
383 spin_unlock(&sbi->s_md_lock);
384}
385
386/* Deal with the reporting of failure conditions on a filesystem such as
387 * inconsistencies detected or read IO failures.
388 *
389 * On ext2, we can store the error state of the filesystem in the
390 * superblock. That is not possible on ext4, because we may have other
391 * write ordering constraints on the superblock which prevent us from
392 * writing it out straight away; and given that the journal is about to
393 * be aborted, we can't rely on the current, or future, transactions to
394 * write out the superblock safely.
395 *
396 * We'll just use the jbd2_journal_abort() error code to record an error in
397 * the journal instead. On recovery, the journal will complain about
398 * that error until we've noted it down and cleared it.
399 */
400
401static void ext4_handle_error(struct super_block *sb)
402{
403 if (sb->s_flags & MS_RDONLY)
404 return;
405
406 if (!test_opt(sb, ERRORS_CONT)) {
407 journal_t *journal = EXT4_SB(sb)->s_journal;
408
409 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
410 if (journal)
411 jbd2_journal_abort(journal, -EIO);
412 }
413 if (test_opt(sb, ERRORS_RO)) {
414 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
415 /*
416 * Make sure updated value of ->s_mount_flags will be visible
417 * before ->s_flags update
418 */
419 smp_wmb();
420 sb->s_flags |= MS_RDONLY;
421 }
422 if (test_opt(sb, ERRORS_PANIC)) {
423 if (EXT4_SB(sb)->s_journal &&
424 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
425 return;
426 panic("EXT4-fs (device %s): panic forced after error\n",
427 sb->s_id);
428 }
429}
430
431#define ext4_error_ratelimit(sb) \
432 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
433 "EXT4-fs error")
434
435void __ext4_error(struct super_block *sb, const char *function,
436 unsigned int line, const char *fmt, ...)
437{
438 struct va_format vaf;
439 va_list args;
440
441 if (ext4_error_ratelimit(sb)) {
442 va_start(args, fmt);
443 vaf.fmt = fmt;
444 vaf.va = &args;
445 printk(KERN_CRIT
446 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
447 sb->s_id, function, line, current->comm, &vaf);
448 va_end(args);
449 }
450 save_error_info(sb, function, line);
451 ext4_handle_error(sb);
452}
453
454void __ext4_error_inode(struct inode *inode, const char *function,
455 unsigned int line, ext4_fsblk_t block,
456 const char *fmt, ...)
457{
458 va_list args;
459 struct va_format vaf;
460 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
461
462 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
463 es->s_last_error_block = cpu_to_le64(block);
464 if (ext4_error_ratelimit(inode->i_sb)) {
465 va_start(args, fmt);
466 vaf.fmt = fmt;
467 vaf.va = &args;
468 if (block)
469 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
470 "inode #%lu: block %llu: comm %s: %pV\n",
471 inode->i_sb->s_id, function, line, inode->i_ino,
472 block, current->comm, &vaf);
473 else
474 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
475 "inode #%lu: comm %s: %pV\n",
476 inode->i_sb->s_id, function, line, inode->i_ino,
477 current->comm, &vaf);
478 va_end(args);
479 }
480 save_error_info(inode->i_sb, function, line);
481 ext4_handle_error(inode->i_sb);
482}
483
484void __ext4_error_file(struct file *file, const char *function,
485 unsigned int line, ext4_fsblk_t block,
486 const char *fmt, ...)
487{
488 va_list args;
489 struct va_format vaf;
490 struct ext4_super_block *es;
491 struct inode *inode = file_inode(file);
492 char pathname[80], *path;
493
494 es = EXT4_SB(inode->i_sb)->s_es;
495 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
496 if (ext4_error_ratelimit(inode->i_sb)) {
497 path = file_path(file, pathname, sizeof(pathname));
498 if (IS_ERR(path))
499 path = "(unknown)";
500 va_start(args, fmt);
501 vaf.fmt = fmt;
502 vaf.va = &args;
503 if (block)
504 printk(KERN_CRIT
505 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
506 "block %llu: comm %s: path %s: %pV\n",
507 inode->i_sb->s_id, function, line, inode->i_ino,
508 block, current->comm, path, &vaf);
509 else
510 printk(KERN_CRIT
511 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
512 "comm %s: path %s: %pV\n",
513 inode->i_sb->s_id, function, line, inode->i_ino,
514 current->comm, path, &vaf);
515 va_end(args);
516 }
517 save_error_info(inode->i_sb, function, line);
518 ext4_handle_error(inode->i_sb);
519}
520
521const char *ext4_decode_error(struct super_block *sb, int errno,
522 char nbuf[16])
523{
524 char *errstr = NULL;
525
526 switch (errno) {
527 case -EFSCORRUPTED:
528 errstr = "Corrupt filesystem";
529 break;
530 case -EFSBADCRC:
531 errstr = "Filesystem failed CRC";
532 break;
533 case -EIO:
534 errstr = "IO failure";
535 break;
536 case -ENOMEM:
537 errstr = "Out of memory";
538 break;
539 case -EROFS:
540 if (!sb || (EXT4_SB(sb)->s_journal &&
541 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
542 errstr = "Journal has aborted";
543 else
544 errstr = "Readonly filesystem";
545 break;
546 default:
547 /* If the caller passed in an extra buffer for unknown
548 * errors, textualise them now. Else we just return
549 * NULL. */
550 if (nbuf) {
551 /* Check for truncated error codes... */
552 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
553 errstr = nbuf;
554 }
555 break;
556 }
557
558 return errstr;
559}
560
561/* __ext4_std_error decodes expected errors from journaling functions
562 * automatically and invokes the appropriate error response. */
563
564void __ext4_std_error(struct super_block *sb, const char *function,
565 unsigned int line, int errno)
566{
567 char nbuf[16];
568 const char *errstr;
569
570 /* Special case: if the error is EROFS, and we're not already
571 * inside a transaction, then there's really no point in logging
572 * an error. */
573 if (errno == -EROFS && journal_current_handle() == NULL &&
574 (sb->s_flags & MS_RDONLY))
575 return;
576
577 if (ext4_error_ratelimit(sb)) {
578 errstr = ext4_decode_error(sb, errno, nbuf);
579 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
580 sb->s_id, function, line, errstr);
581 }
582
583 save_error_info(sb, function, line);
584 ext4_handle_error(sb);
585}
586
587/*
588 * ext4_abort is a much stronger failure handler than ext4_error. The
589 * abort function may be used to deal with unrecoverable failures such
590 * as journal IO errors or ENOMEM at a critical moment in log management.
591 *
592 * We unconditionally force the filesystem into an ABORT|READONLY state,
593 * unless the error response on the fs has been set to panic in which
594 * case we take the easy way out and panic immediately.
595 */
596
597void __ext4_abort(struct super_block *sb, const char *function,
598 unsigned int line, const char *fmt, ...)
599{
600 struct va_format vaf;
601 va_list args;
602
603 save_error_info(sb, function, line);
604 va_start(args, fmt);
605 vaf.fmt = fmt;
606 vaf.va = &args;
607 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
608 sb->s_id, function, line, &vaf);
609 va_end(args);
610
611 if ((sb->s_flags & MS_RDONLY) == 0) {
612 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
613 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
614 /*
615 * Make sure updated value of ->s_mount_flags will be visible
616 * before ->s_flags update
617 */
618 smp_wmb();
619 sb->s_flags |= MS_RDONLY;
620 if (EXT4_SB(sb)->s_journal)
621 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
622 save_error_info(sb, function, line);
623 }
624 if (test_opt(sb, ERRORS_PANIC)) {
625 if (EXT4_SB(sb)->s_journal &&
626 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
627 return;
628 panic("EXT4-fs panic from previous error\n");
629 }
630}
631
632void __ext4_msg(struct super_block *sb,
633 const char *prefix, const char *fmt, ...)
634{
635 struct va_format vaf;
636 va_list args;
637
638 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
639 return;
640
641 va_start(args, fmt);
642 vaf.fmt = fmt;
643 vaf.va = &args;
644 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
645 va_end(args);
646}
647
648#define ext4_warning_ratelimit(sb) \
649 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
650 "EXT4-fs warning")
651
652void __ext4_warning(struct super_block *sb, const char *function,
653 unsigned int line, const char *fmt, ...)
654{
655 struct va_format vaf;
656 va_list args;
657
658 if (!ext4_warning_ratelimit(sb))
659 return;
660
661 va_start(args, fmt);
662 vaf.fmt = fmt;
663 vaf.va = &args;
664 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
665 sb->s_id, function, line, &vaf);
666 va_end(args);
667}
668
669void __ext4_warning_inode(const struct inode *inode, const char *function,
670 unsigned int line, const char *fmt, ...)
671{
672 struct va_format vaf;
673 va_list args;
674
675 if (!ext4_warning_ratelimit(inode->i_sb))
676 return;
677
678 va_start(args, fmt);
679 vaf.fmt = fmt;
680 vaf.va = &args;
681 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
682 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
683 function, line, inode->i_ino, current->comm, &vaf);
684 va_end(args);
685}
686
687void __ext4_grp_locked_error(const char *function, unsigned int line,
688 struct super_block *sb, ext4_group_t grp,
689 unsigned long ino, ext4_fsblk_t block,
690 const char *fmt, ...)
691__releases(bitlock)
692__acquires(bitlock)
693{
694 struct va_format vaf;
695 va_list args;
696 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
697
698 es->s_last_error_ino = cpu_to_le32(ino);
699 es->s_last_error_block = cpu_to_le64(block);
700 __save_error_info(sb, function, line);
701
702 if (ext4_error_ratelimit(sb)) {
703 va_start(args, fmt);
704 vaf.fmt = fmt;
705 vaf.va = &args;
706 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
707 sb->s_id, function, line, grp);
708 if (ino)
709 printk(KERN_CONT "inode %lu: ", ino);
710 if (block)
711 printk(KERN_CONT "block %llu:",
712 (unsigned long long) block);
713 printk(KERN_CONT "%pV\n", &vaf);
714 va_end(args);
715 }
716
717 if (test_opt(sb, ERRORS_CONT)) {
718 ext4_commit_super(sb, 0);
719 return;
720 }
721
722 ext4_unlock_group(sb, grp);
723 ext4_handle_error(sb);
724 /*
725 * We only get here in the ERRORS_RO case; relocking the group
726 * may be dangerous, but nothing bad will happen since the
727 * filesystem will have already been marked read/only and the
728 * journal has been aborted. We return 1 as a hint to callers
729 * who might what to use the return value from
730 * ext4_grp_locked_error() to distinguish between the
731 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
732 * aggressively from the ext4 function in question, with a
733 * more appropriate error code.
734 */
735 ext4_lock_group(sb, grp);
736 return;
737}
738
739void ext4_update_dynamic_rev(struct super_block *sb)
740{
741 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
742
743 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
744 return;
745
746 ext4_warning(sb,
747 "updating to rev %d because of new feature flag, "
748 "running e2fsck is recommended",
749 EXT4_DYNAMIC_REV);
750
751 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
752 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
753 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
754 /* leave es->s_feature_*compat flags alone */
755 /* es->s_uuid will be set by e2fsck if empty */
756
757 /*
758 * The rest of the superblock fields should be zero, and if not it
759 * means they are likely already in use, so leave them alone. We
760 * can leave it up to e2fsck to clean up any inconsistencies there.
761 */
762}
763
764/*
765 * Open the external journal device
766 */
767static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
768{
769 struct block_device *bdev;
770 char b[BDEVNAME_SIZE];
771
772 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
773 if (IS_ERR(bdev))
774 goto fail;
775 return bdev;
776
777fail:
778 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
779 __bdevname(dev, b), PTR_ERR(bdev));
780 return NULL;
781}
782
783/*
784 * Release the journal device
785 */
786static void ext4_blkdev_put(struct block_device *bdev)
787{
788 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
789}
790
791static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
792{
793 struct block_device *bdev;
794 bdev = sbi->journal_bdev;
795 if (bdev) {
796 ext4_blkdev_put(bdev);
797 sbi->journal_bdev = NULL;
798 }
799}
800
801static inline struct inode *orphan_list_entry(struct list_head *l)
802{
803 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
804}
805
806static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
807{
808 struct list_head *l;
809
810 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
811 le32_to_cpu(sbi->s_es->s_last_orphan));
812
813 printk(KERN_ERR "sb_info orphan list:\n");
814 list_for_each(l, &sbi->s_orphan) {
815 struct inode *inode = orphan_list_entry(l);
816 printk(KERN_ERR " "
817 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
818 inode->i_sb->s_id, inode->i_ino, inode,
819 inode->i_mode, inode->i_nlink,
820 NEXT_ORPHAN(inode));
821 }
822}
823
824static void ext4_put_super(struct super_block *sb)
825{
826 struct ext4_sb_info *sbi = EXT4_SB(sb);
827 struct ext4_super_block *es = sbi->s_es;
828 int aborted = 0;
829 int i, err;
830
831 ext4_unregister_li_request(sb);
832 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
833
834 flush_workqueue(sbi->rsv_conversion_wq);
835 destroy_workqueue(sbi->rsv_conversion_wq);
836
837 if (sbi->s_journal) {
838 aborted = is_journal_aborted(sbi->s_journal);
839 err = jbd2_journal_destroy(sbi->s_journal);
840 sbi->s_journal = NULL;
841 if ((err < 0) && !aborted)
842 ext4_abort(sb, "Couldn't clean up the journal");
843 }
844
845 ext4_unregister_sysfs(sb);
846 ext4_es_unregister_shrinker(sbi);
847 del_timer_sync(&sbi->s_err_report);
848 ext4_release_system_zone(sb);
849 ext4_mb_release(sb);
850 ext4_ext_release(sb);
851
852 if (!(sb->s_flags & MS_RDONLY) && !aborted) {
853 ext4_clear_feature_journal_needs_recovery(sb);
854 es->s_state = cpu_to_le16(sbi->s_mount_state);
855 }
856 if (!(sb->s_flags & MS_RDONLY))
857 ext4_commit_super(sb, 1);
858
859 for (i = 0; i < sbi->s_gdb_count; i++)
860 brelse(sbi->s_group_desc[i]);
861 kvfree(sbi->s_group_desc);
862 kvfree(sbi->s_flex_groups);
863 percpu_counter_destroy(&sbi->s_freeclusters_counter);
864 percpu_counter_destroy(&sbi->s_freeinodes_counter);
865 percpu_counter_destroy(&sbi->s_dirs_counter);
866 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
867 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
868#ifdef CONFIG_QUOTA
869 for (i = 0; i < EXT4_MAXQUOTAS; i++)
870 kfree(sbi->s_qf_names[i]);
871#endif
872
873 /* Debugging code just in case the in-memory inode orphan list
874 * isn't empty. The on-disk one can be non-empty if we've
875 * detected an error and taken the fs readonly, but the
876 * in-memory list had better be clean by this point. */
877 if (!list_empty(&sbi->s_orphan))
878 dump_orphan_list(sb, sbi);
879 J_ASSERT(list_empty(&sbi->s_orphan));
880
881 sync_blockdev(sb->s_bdev);
882 invalidate_bdev(sb->s_bdev);
883 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
884 /*
885 * Invalidate the journal device's buffers. We don't want them
886 * floating about in memory - the physical journal device may
887 * hotswapped, and it breaks the `ro-after' testing code.
888 */
889 sync_blockdev(sbi->journal_bdev);
890 invalidate_bdev(sbi->journal_bdev);
891 ext4_blkdev_remove(sbi);
892 }
893 if (sbi->s_mb_cache) {
894 ext4_xattr_destroy_cache(sbi->s_mb_cache);
895 sbi->s_mb_cache = NULL;
896 }
897 if (sbi->s_mmp_tsk)
898 kthread_stop(sbi->s_mmp_tsk);
899 brelse(sbi->s_sbh);
900 sb->s_fs_info = NULL;
901 /*
902 * Now that we are completely done shutting down the
903 * superblock, we need to actually destroy the kobject.
904 */
905 kobject_put(&sbi->s_kobj);
906 wait_for_completion(&sbi->s_kobj_unregister);
907 if (sbi->s_chksum_driver)
908 crypto_free_shash(sbi->s_chksum_driver);
909 kfree(sbi->s_blockgroup_lock);
910 kfree(sbi);
911}
912
913static struct kmem_cache *ext4_inode_cachep;
914
915/*
916 * Called inside transaction, so use GFP_NOFS
917 */
918static struct inode *ext4_alloc_inode(struct super_block *sb)
919{
920 struct ext4_inode_info *ei;
921
922 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
923 if (!ei)
924 return NULL;
925
926 ei->vfs_inode.i_version = 1;
927 spin_lock_init(&ei->i_raw_lock);
928 INIT_LIST_HEAD(&ei->i_prealloc_list);
929 spin_lock_init(&ei->i_prealloc_lock);
930 ext4_es_init_tree(&ei->i_es_tree);
931 rwlock_init(&ei->i_es_lock);
932 INIT_LIST_HEAD(&ei->i_es_list);
933 ei->i_es_all_nr = 0;
934 ei->i_es_shk_nr = 0;
935 ei->i_es_shrink_lblk = 0;
936 ei->i_reserved_data_blocks = 0;
937 ei->i_reserved_meta_blocks = 0;
938 ei->i_allocated_meta_blocks = 0;
939 ei->i_da_metadata_calc_len = 0;
940 ei->i_da_metadata_calc_last_lblock = 0;
941 spin_lock_init(&(ei->i_block_reservation_lock));
942#ifdef CONFIG_QUOTA
943 ei->i_reserved_quota = 0;
944 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
945#endif
946 ei->jinode = NULL;
947 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
948 spin_lock_init(&ei->i_completed_io_lock);
949 ei->i_sync_tid = 0;
950 ei->i_datasync_tid = 0;
951 atomic_set(&ei->i_unwritten, 0);
952 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
953 return &ei->vfs_inode;
954}
955
956static int ext4_drop_inode(struct inode *inode)
957{
958 int drop = generic_drop_inode(inode);
959
960 trace_ext4_drop_inode(inode, drop);
961 return drop;
962}
963
964static void ext4_i_callback(struct rcu_head *head)
965{
966 struct inode *inode = container_of(head, struct inode, i_rcu);
967 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
968}
969
970static void ext4_destroy_inode(struct inode *inode)
971{
972 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
973 ext4_msg(inode->i_sb, KERN_ERR,
974 "Inode %lu (%p): orphan list check failed!",
975 inode->i_ino, EXT4_I(inode));
976 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
977 EXT4_I(inode), sizeof(struct ext4_inode_info),
978 true);
979 dump_stack();
980 }
981 call_rcu(&inode->i_rcu, ext4_i_callback);
982}
983
984static void init_once(void *foo)
985{
986 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
987
988 INIT_LIST_HEAD(&ei->i_orphan);
989 init_rwsem(&ei->xattr_sem);
990 init_rwsem(&ei->i_data_sem);
991 init_rwsem(&ei->i_mmap_sem);
992 inode_init_once(&ei->vfs_inode);
993}
994
995static int __init init_inodecache(void)
996{
997 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
998 sizeof(struct ext4_inode_info),
999 0, (SLAB_RECLAIM_ACCOUNT|
1000 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1001 init_once);
1002 if (ext4_inode_cachep == NULL)
1003 return -ENOMEM;
1004 return 0;
1005}
1006
1007static void destroy_inodecache(void)
1008{
1009 /*
1010 * Make sure all delayed rcu free inodes are flushed before we
1011 * destroy cache.
1012 */
1013 rcu_barrier();
1014 kmem_cache_destroy(ext4_inode_cachep);
1015}
1016
1017void ext4_clear_inode(struct inode *inode)
1018{
1019 invalidate_inode_buffers(inode);
1020 clear_inode(inode);
1021 dquot_drop(inode);
1022 ext4_discard_preallocations(inode);
1023 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1024 if (EXT4_I(inode)->jinode) {
1025 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1026 EXT4_I(inode)->jinode);
1027 jbd2_free_inode(EXT4_I(inode)->jinode);
1028 EXT4_I(inode)->jinode = NULL;
1029 }
1030#ifdef CONFIG_EXT4_FS_ENCRYPTION
1031 fscrypt_put_encryption_info(inode, NULL);
1032#endif
1033}
1034
1035static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1036 u64 ino, u32 generation)
1037{
1038 struct inode *inode;
1039
1040 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1041 return ERR_PTR(-ESTALE);
1042 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1043 return ERR_PTR(-ESTALE);
1044
1045 /* iget isn't really right if the inode is currently unallocated!!
1046 *
1047 * ext4_read_inode will return a bad_inode if the inode had been
1048 * deleted, so we should be safe.
1049 *
1050 * Currently we don't know the generation for parent directory, so
1051 * a generation of 0 means "accept any"
1052 */
1053 inode = ext4_iget_normal(sb, ino);
1054 if (IS_ERR(inode))
1055 return ERR_CAST(inode);
1056 if (generation && inode->i_generation != generation) {
1057 iput(inode);
1058 return ERR_PTR(-ESTALE);
1059 }
1060
1061 return inode;
1062}
1063
1064static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1065 int fh_len, int fh_type)
1066{
1067 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1068 ext4_nfs_get_inode);
1069}
1070
1071static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1072 int fh_len, int fh_type)
1073{
1074 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1075 ext4_nfs_get_inode);
1076}
1077
1078/*
1079 * Try to release metadata pages (indirect blocks, directories) which are
1080 * mapped via the block device. Since these pages could have journal heads
1081 * which would prevent try_to_free_buffers() from freeing them, we must use
1082 * jbd2 layer's try_to_free_buffers() function to release them.
1083 */
1084static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1085 gfp_t wait)
1086{
1087 journal_t *journal = EXT4_SB(sb)->s_journal;
1088
1089 WARN_ON(PageChecked(page));
1090 if (!page_has_buffers(page))
1091 return 0;
1092 if (journal)
1093 return jbd2_journal_try_to_free_buffers(journal, page,
1094 wait & ~__GFP_DIRECT_RECLAIM);
1095 return try_to_free_buffers(page);
1096}
1097
1098#ifdef CONFIG_EXT4_FS_ENCRYPTION
1099static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1100{
1101 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1102 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1103}
1104
1105static int ext4_key_prefix(struct inode *inode, u8 **key)
1106{
1107 *key = EXT4_SB(inode->i_sb)->key_prefix;
1108 return EXT4_SB(inode->i_sb)->key_prefix_size;
1109}
1110
1111static int ext4_prepare_context(struct inode *inode)
1112{
1113 return ext4_convert_inline_data(inode);
1114}
1115
1116static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1117 void *fs_data)
1118{
1119 handle_t *handle = fs_data;
1120 int res, res2, retries = 0;
1121
1122 /*
1123 * If a journal handle was specified, then the encryption context is
1124 * being set on a new inode via inheritance and is part of a larger
1125 * transaction to create the inode. Otherwise the encryption context is
1126 * being set on an existing inode in its own transaction. Only in the
1127 * latter case should the "retry on ENOSPC" logic be used.
1128 */
1129
1130 if (handle) {
1131 res = ext4_xattr_set_handle(handle, inode,
1132 EXT4_XATTR_INDEX_ENCRYPTION,
1133 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1134 ctx, len, 0);
1135 if (!res) {
1136 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1137 ext4_clear_inode_state(inode,
1138 EXT4_STATE_MAY_INLINE_DATA);
1139 /*
1140 * Update inode->i_flags - e.g. S_DAX may get disabled
1141 */
1142 ext4_set_inode_flags(inode);
1143 }
1144 return res;
1145 }
1146
1147retry:
1148 handle = ext4_journal_start(inode, EXT4_HT_MISC,
1149 ext4_jbd2_credits_xattr(inode));
1150 if (IS_ERR(handle))
1151 return PTR_ERR(handle);
1152
1153 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1154 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1155 ctx, len, 0);
1156 if (!res) {
1157 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1158 /* Update inode->i_flags - e.g. S_DAX may get disabled */
1159 ext4_set_inode_flags(inode);
1160 res = ext4_mark_inode_dirty(handle, inode);
1161 if (res)
1162 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1163 }
1164 res2 = ext4_journal_stop(handle);
1165
1166 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1167 goto retry;
1168 if (!res)
1169 res = res2;
1170 return res;
1171}
1172
1173static int ext4_dummy_context(struct inode *inode)
1174{
1175 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1176}
1177
1178static unsigned ext4_max_namelen(struct inode *inode)
1179{
1180 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1181 EXT4_NAME_LEN;
1182}
1183
1184static struct fscrypt_operations ext4_cryptops = {
1185 .get_context = ext4_get_context,
1186 .key_prefix = ext4_key_prefix,
1187 .prepare_context = ext4_prepare_context,
1188 .set_context = ext4_set_context,
1189 .dummy_context = ext4_dummy_context,
1190 .is_encrypted = ext4_encrypted_inode,
1191 .empty_dir = ext4_empty_dir,
1192 .max_namelen = ext4_max_namelen,
1193};
1194#else
1195static struct fscrypt_operations ext4_cryptops = {
1196 .is_encrypted = ext4_encrypted_inode,
1197};
1198#endif
1199
1200#ifdef CONFIG_QUOTA
1201static char *quotatypes[] = INITQFNAMES;
1202#define QTYPE2NAME(t) (quotatypes[t])
1203
1204static int ext4_write_dquot(struct dquot *dquot);
1205static int ext4_acquire_dquot(struct dquot *dquot);
1206static int ext4_release_dquot(struct dquot *dquot);
1207static int ext4_mark_dquot_dirty(struct dquot *dquot);
1208static int ext4_write_info(struct super_block *sb, int type);
1209static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1210 const struct path *path);
1211static int ext4_quota_off(struct super_block *sb, int type);
1212static int ext4_quota_on_mount(struct super_block *sb, int type);
1213static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1214 size_t len, loff_t off);
1215static ssize_t ext4_quota_write(struct super_block *sb, int type,
1216 const char *data, size_t len, loff_t off);
1217static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1218 unsigned int flags);
1219static int ext4_enable_quotas(struct super_block *sb);
1220static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1221
1222static struct dquot **ext4_get_dquots(struct inode *inode)
1223{
1224 return EXT4_I(inode)->i_dquot;
1225}
1226
1227static const struct dquot_operations ext4_quota_operations = {
1228 .get_reserved_space = ext4_get_reserved_space,
1229 .write_dquot = ext4_write_dquot,
1230 .acquire_dquot = ext4_acquire_dquot,
1231 .release_dquot = ext4_release_dquot,
1232 .mark_dirty = ext4_mark_dquot_dirty,
1233 .write_info = ext4_write_info,
1234 .alloc_dquot = dquot_alloc,
1235 .destroy_dquot = dquot_destroy,
1236 .get_projid = ext4_get_projid,
1237 .get_next_id = ext4_get_next_id,
1238};
1239
1240static const struct quotactl_ops ext4_qctl_operations = {
1241 .quota_on = ext4_quota_on,
1242 .quota_off = ext4_quota_off,
1243 .quota_sync = dquot_quota_sync,
1244 .get_state = dquot_get_state,
1245 .set_info = dquot_set_dqinfo,
1246 .get_dqblk = dquot_get_dqblk,
1247 .set_dqblk = dquot_set_dqblk,
1248 .get_nextdqblk = dquot_get_next_dqblk,
1249};
1250#endif
1251
1252static const struct super_operations ext4_sops = {
1253 .alloc_inode = ext4_alloc_inode,
1254 .destroy_inode = ext4_destroy_inode,
1255 .write_inode = ext4_write_inode,
1256 .dirty_inode = ext4_dirty_inode,
1257 .drop_inode = ext4_drop_inode,
1258 .evict_inode = ext4_evict_inode,
1259 .put_super = ext4_put_super,
1260 .sync_fs = ext4_sync_fs,
1261 .freeze_fs = ext4_freeze,
1262 .unfreeze_fs = ext4_unfreeze,
1263 .statfs = ext4_statfs,
1264 .remount_fs = ext4_remount,
1265 .show_options = ext4_show_options,
1266#ifdef CONFIG_QUOTA
1267 .quota_read = ext4_quota_read,
1268 .quota_write = ext4_quota_write,
1269 .get_dquots = ext4_get_dquots,
1270#endif
1271 .bdev_try_to_free_page = bdev_try_to_free_page,
1272};
1273
1274static const struct export_operations ext4_export_ops = {
1275 .fh_to_dentry = ext4_fh_to_dentry,
1276 .fh_to_parent = ext4_fh_to_parent,
1277 .get_parent = ext4_get_parent,
1278};
1279
1280enum {
1281 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1282 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1283 Opt_nouid32, Opt_debug, Opt_removed,
1284 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1285 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1286 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1287 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1288 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1289 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1290 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1291 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1292 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1293 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1294 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1295 Opt_lazytime, Opt_nolazytime,
1296 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1297 Opt_inode_readahead_blks, Opt_journal_ioprio,
1298 Opt_dioread_nolock, Opt_dioread_lock,
1299 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1300 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1301};
1302
1303static const match_table_t tokens = {
1304 {Opt_bsd_df, "bsddf"},
1305 {Opt_minix_df, "minixdf"},
1306 {Opt_grpid, "grpid"},
1307 {Opt_grpid, "bsdgroups"},
1308 {Opt_nogrpid, "nogrpid"},
1309 {Opt_nogrpid, "sysvgroups"},
1310 {Opt_resgid, "resgid=%u"},
1311 {Opt_resuid, "resuid=%u"},
1312 {Opt_sb, "sb=%u"},
1313 {Opt_err_cont, "errors=continue"},
1314 {Opt_err_panic, "errors=panic"},
1315 {Opt_err_ro, "errors=remount-ro"},
1316 {Opt_nouid32, "nouid32"},
1317 {Opt_debug, "debug"},
1318 {Opt_removed, "oldalloc"},
1319 {Opt_removed, "orlov"},
1320 {Opt_user_xattr, "user_xattr"},
1321 {Opt_nouser_xattr, "nouser_xattr"},
1322 {Opt_acl, "acl"},
1323 {Opt_noacl, "noacl"},
1324 {Opt_noload, "norecovery"},
1325 {Opt_noload, "noload"},
1326 {Opt_removed, "nobh"},
1327 {Opt_removed, "bh"},
1328 {Opt_commit, "commit=%u"},
1329 {Opt_min_batch_time, "min_batch_time=%u"},
1330 {Opt_max_batch_time, "max_batch_time=%u"},
1331 {Opt_journal_dev, "journal_dev=%u"},
1332 {Opt_journal_path, "journal_path=%s"},
1333 {Opt_journal_checksum, "journal_checksum"},
1334 {Opt_nojournal_checksum, "nojournal_checksum"},
1335 {Opt_journal_async_commit, "journal_async_commit"},
1336 {Opt_abort, "abort"},
1337 {Opt_data_journal, "data=journal"},
1338 {Opt_data_ordered, "data=ordered"},
1339 {Opt_data_writeback, "data=writeback"},
1340 {Opt_data_err_abort, "data_err=abort"},
1341 {Opt_data_err_ignore, "data_err=ignore"},
1342 {Opt_offusrjquota, "usrjquota="},
1343 {Opt_usrjquota, "usrjquota=%s"},
1344 {Opt_offgrpjquota, "grpjquota="},
1345 {Opt_grpjquota, "grpjquota=%s"},
1346 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1347 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1348 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1349 {Opt_grpquota, "grpquota"},
1350 {Opt_noquota, "noquota"},
1351 {Opt_quota, "quota"},
1352 {Opt_usrquota, "usrquota"},
1353 {Opt_prjquota, "prjquota"},
1354 {Opt_barrier, "barrier=%u"},
1355 {Opt_barrier, "barrier"},
1356 {Opt_nobarrier, "nobarrier"},
1357 {Opt_i_version, "i_version"},
1358 {Opt_dax, "dax"},
1359 {Opt_stripe, "stripe=%u"},
1360 {Opt_delalloc, "delalloc"},
1361 {Opt_lazytime, "lazytime"},
1362 {Opt_nolazytime, "nolazytime"},
1363 {Opt_nodelalloc, "nodelalloc"},
1364 {Opt_removed, "mblk_io_submit"},
1365 {Opt_removed, "nomblk_io_submit"},
1366 {Opt_block_validity, "block_validity"},
1367 {Opt_noblock_validity, "noblock_validity"},
1368 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1369 {Opt_journal_ioprio, "journal_ioprio=%u"},
1370 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1371 {Opt_auto_da_alloc, "auto_da_alloc"},
1372 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1373 {Opt_dioread_nolock, "dioread_nolock"},
1374 {Opt_dioread_lock, "dioread_lock"},
1375 {Opt_discard, "discard"},
1376 {Opt_nodiscard, "nodiscard"},
1377 {Opt_init_itable, "init_itable=%u"},
1378 {Opt_init_itable, "init_itable"},
1379 {Opt_noinit_itable, "noinit_itable"},
1380 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1381 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1382 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1383 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1384 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1385 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1386 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1387 {Opt_err, NULL},
1388};
1389
1390static ext4_fsblk_t get_sb_block(void **data)
1391{
1392 ext4_fsblk_t sb_block;
1393 char *options = (char *) *data;
1394
1395 if (!options || strncmp(options, "sb=", 3) != 0)
1396 return 1; /* Default location */
1397
1398 options += 3;
1399 /* TODO: use simple_strtoll with >32bit ext4 */
1400 sb_block = simple_strtoul(options, &options, 0);
1401 if (*options && *options != ',') {
1402 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1403 (char *) *data);
1404 return 1;
1405 }
1406 if (*options == ',')
1407 options++;
1408 *data = (void *) options;
1409
1410 return sb_block;
1411}
1412
1413#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1414static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1415 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1416
1417#ifdef CONFIG_QUOTA
1418static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1419{
1420 struct ext4_sb_info *sbi = EXT4_SB(sb);
1421 char *qname;
1422 int ret = -1;
1423
1424 if (sb_any_quota_loaded(sb) &&
1425 !sbi->s_qf_names[qtype]) {
1426 ext4_msg(sb, KERN_ERR,
1427 "Cannot change journaled "
1428 "quota options when quota turned on");
1429 return -1;
1430 }
1431 if (ext4_has_feature_quota(sb)) {
1432 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1433 "ignored when QUOTA feature is enabled");
1434 return 1;
1435 }
1436 qname = match_strdup(args);
1437 if (!qname) {
1438 ext4_msg(sb, KERN_ERR,
1439 "Not enough memory for storing quotafile name");
1440 return -1;
1441 }
1442 if (sbi->s_qf_names[qtype]) {
1443 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1444 ret = 1;
1445 else
1446 ext4_msg(sb, KERN_ERR,
1447 "%s quota file already specified",
1448 QTYPE2NAME(qtype));
1449 goto errout;
1450 }
1451 if (strchr(qname, '/')) {
1452 ext4_msg(sb, KERN_ERR,
1453 "quotafile must be on filesystem root");
1454 goto errout;
1455 }
1456 sbi->s_qf_names[qtype] = qname;
1457 set_opt(sb, QUOTA);
1458 return 1;
1459errout:
1460 kfree(qname);
1461 return ret;
1462}
1463
1464static int clear_qf_name(struct super_block *sb, int qtype)
1465{
1466
1467 struct ext4_sb_info *sbi = EXT4_SB(sb);
1468
1469 if (sb_any_quota_loaded(sb) &&
1470 sbi->s_qf_names[qtype]) {
1471 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1472 " when quota turned on");
1473 return -1;
1474 }
1475 kfree(sbi->s_qf_names[qtype]);
1476 sbi->s_qf_names[qtype] = NULL;
1477 return 1;
1478}
1479#endif
1480
1481#define MOPT_SET 0x0001
1482#define MOPT_CLEAR 0x0002
1483#define MOPT_NOSUPPORT 0x0004
1484#define MOPT_EXPLICIT 0x0008
1485#define MOPT_CLEAR_ERR 0x0010
1486#define MOPT_GTE0 0x0020
1487#ifdef CONFIG_QUOTA
1488#define MOPT_Q 0
1489#define MOPT_QFMT 0x0040
1490#else
1491#define MOPT_Q MOPT_NOSUPPORT
1492#define MOPT_QFMT MOPT_NOSUPPORT
1493#endif
1494#define MOPT_DATAJ 0x0080
1495#define MOPT_NO_EXT2 0x0100
1496#define MOPT_NO_EXT3 0x0200
1497#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1498#define MOPT_STRING 0x0400
1499
1500static const struct mount_opts {
1501 int token;
1502 int mount_opt;
1503 int flags;
1504} ext4_mount_opts[] = {
1505 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1506 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1507 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1508 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1509 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1510 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1511 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1512 MOPT_EXT4_ONLY | MOPT_SET},
1513 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1514 MOPT_EXT4_ONLY | MOPT_CLEAR},
1515 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1516 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1517 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1518 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1519 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1520 MOPT_EXT4_ONLY | MOPT_CLEAR},
1521 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1522 MOPT_EXT4_ONLY | MOPT_CLEAR},
1523 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1524 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1525 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1526 EXT4_MOUNT_JOURNAL_CHECKSUM),
1527 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1528 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1529 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1530 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1531 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1532 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1533 MOPT_NO_EXT2},
1534 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1535 MOPT_NO_EXT2},
1536 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1537 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1538 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1539 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1540 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1541 {Opt_commit, 0, MOPT_GTE0},
1542 {Opt_max_batch_time, 0, MOPT_GTE0},
1543 {Opt_min_batch_time, 0, MOPT_GTE0},
1544 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1545 {Opt_init_itable, 0, MOPT_GTE0},
1546 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1547 {Opt_stripe, 0, MOPT_GTE0},
1548 {Opt_resuid, 0, MOPT_GTE0},
1549 {Opt_resgid, 0, MOPT_GTE0},
1550 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1551 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1552 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1553 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1554 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1555 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1556 MOPT_NO_EXT2 | MOPT_DATAJ},
1557 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1558 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1559#ifdef CONFIG_EXT4_FS_POSIX_ACL
1560 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1561 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1562#else
1563 {Opt_acl, 0, MOPT_NOSUPPORT},
1564 {Opt_noacl, 0, MOPT_NOSUPPORT},
1565#endif
1566 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1567 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1568 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1569 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1570 MOPT_SET | MOPT_Q},
1571 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1572 MOPT_SET | MOPT_Q},
1573 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1574 MOPT_SET | MOPT_Q},
1575 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1576 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1577 MOPT_CLEAR | MOPT_Q},
1578 {Opt_usrjquota, 0, MOPT_Q},
1579 {Opt_grpjquota, 0, MOPT_Q},
1580 {Opt_offusrjquota, 0, MOPT_Q},
1581 {Opt_offgrpjquota, 0, MOPT_Q},
1582 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1583 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1584 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1585 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1586 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1587 {Opt_err, 0, 0}
1588};
1589
1590static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1591 substring_t *args, unsigned long *journal_devnum,
1592 unsigned int *journal_ioprio, int is_remount)
1593{
1594 struct ext4_sb_info *sbi = EXT4_SB(sb);
1595 const struct mount_opts *m;
1596 kuid_t uid;
1597 kgid_t gid;
1598 int arg = 0;
1599
1600#ifdef CONFIG_QUOTA
1601 if (token == Opt_usrjquota)
1602 return set_qf_name(sb, USRQUOTA, &args[0]);
1603 else if (token == Opt_grpjquota)
1604 return set_qf_name(sb, GRPQUOTA, &args[0]);
1605 else if (token == Opt_offusrjquota)
1606 return clear_qf_name(sb, USRQUOTA);
1607 else if (token == Opt_offgrpjquota)
1608 return clear_qf_name(sb, GRPQUOTA);
1609#endif
1610 switch (token) {
1611 case Opt_noacl:
1612 case Opt_nouser_xattr:
1613 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1614 break;
1615 case Opt_sb:
1616 return 1; /* handled by get_sb_block() */
1617 case Opt_removed:
1618 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1619 return 1;
1620 case Opt_abort:
1621 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1622 return 1;
1623 case Opt_i_version:
1624 sb->s_flags |= MS_I_VERSION;
1625 return 1;
1626 case Opt_lazytime:
1627 sb->s_flags |= MS_LAZYTIME;
1628 return 1;
1629 case Opt_nolazytime:
1630 sb->s_flags &= ~MS_LAZYTIME;
1631 return 1;
1632 }
1633
1634 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1635 if (token == m->token)
1636 break;
1637
1638 if (m->token == Opt_err) {
1639 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1640 "or missing value", opt);
1641 return -1;
1642 }
1643
1644 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1645 ext4_msg(sb, KERN_ERR,
1646 "Mount option \"%s\" incompatible with ext2", opt);
1647 return -1;
1648 }
1649 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1650 ext4_msg(sb, KERN_ERR,
1651 "Mount option \"%s\" incompatible with ext3", opt);
1652 return -1;
1653 }
1654
1655 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1656 return -1;
1657 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1658 return -1;
1659 if (m->flags & MOPT_EXPLICIT) {
1660 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1661 set_opt2(sb, EXPLICIT_DELALLOC);
1662 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1663 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1664 } else
1665 return -1;
1666 }
1667 if (m->flags & MOPT_CLEAR_ERR)
1668 clear_opt(sb, ERRORS_MASK);
1669 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1670 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1671 "options when quota turned on");
1672 return -1;
1673 }
1674
1675 if (m->flags & MOPT_NOSUPPORT) {
1676 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1677 } else if (token == Opt_commit) {
1678 if (arg == 0)
1679 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1680 sbi->s_commit_interval = HZ * arg;
1681 } else if (token == Opt_max_batch_time) {
1682 sbi->s_max_batch_time = arg;
1683 } else if (token == Opt_min_batch_time) {
1684 sbi->s_min_batch_time = arg;
1685 } else if (token == Opt_inode_readahead_blks) {
1686 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1687 ext4_msg(sb, KERN_ERR,
1688 "EXT4-fs: inode_readahead_blks must be "
1689 "0 or a power of 2 smaller than 2^31");
1690 return -1;
1691 }
1692 sbi->s_inode_readahead_blks = arg;
1693 } else if (token == Opt_init_itable) {
1694 set_opt(sb, INIT_INODE_TABLE);
1695 if (!args->from)
1696 arg = EXT4_DEF_LI_WAIT_MULT;
1697 sbi->s_li_wait_mult = arg;
1698 } else if (token == Opt_max_dir_size_kb) {
1699 sbi->s_max_dir_size_kb = arg;
1700 } else if (token == Opt_stripe) {
1701 sbi->s_stripe = arg;
1702 } else if (token == Opt_resuid) {
1703 uid = make_kuid(current_user_ns(), arg);
1704 if (!uid_valid(uid)) {
1705 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1706 return -1;
1707 }
1708 sbi->s_resuid = uid;
1709 } else if (token == Opt_resgid) {
1710 gid = make_kgid(current_user_ns(), arg);
1711 if (!gid_valid(gid)) {
1712 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1713 return -1;
1714 }
1715 sbi->s_resgid = gid;
1716 } else if (token == Opt_journal_dev) {
1717 if (is_remount) {
1718 ext4_msg(sb, KERN_ERR,
1719 "Cannot specify journal on remount");
1720 return -1;
1721 }
1722 *journal_devnum = arg;
1723 } else if (token == Opt_journal_path) {
1724 char *journal_path;
1725 struct inode *journal_inode;
1726 struct path path;
1727 int error;
1728
1729 if (is_remount) {
1730 ext4_msg(sb, KERN_ERR,
1731 "Cannot specify journal on remount");
1732 return -1;
1733 }
1734 journal_path = match_strdup(&args[0]);
1735 if (!journal_path) {
1736 ext4_msg(sb, KERN_ERR, "error: could not dup "
1737 "journal device string");
1738 return -1;
1739 }
1740
1741 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1742 if (error) {
1743 ext4_msg(sb, KERN_ERR, "error: could not find "
1744 "journal device path: error %d", error);
1745 kfree(journal_path);
1746 return -1;
1747 }
1748
1749 journal_inode = d_inode(path.dentry);
1750 if (!S_ISBLK(journal_inode->i_mode)) {
1751 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1752 "is not a block device", journal_path);
1753 path_put(&path);
1754 kfree(journal_path);
1755 return -1;
1756 }
1757
1758 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1759 path_put(&path);
1760 kfree(journal_path);
1761 } else if (token == Opt_journal_ioprio) {
1762 if (arg > 7) {
1763 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1764 " (must be 0-7)");
1765 return -1;
1766 }
1767 *journal_ioprio =
1768 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1769 } else if (token == Opt_test_dummy_encryption) {
1770#ifdef CONFIG_EXT4_FS_ENCRYPTION
1771 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1772 ext4_msg(sb, KERN_WARNING,
1773 "Test dummy encryption mode enabled");
1774#else
1775 ext4_msg(sb, KERN_WARNING,
1776 "Test dummy encryption mount option ignored");
1777#endif
1778 } else if (m->flags & MOPT_DATAJ) {
1779 if (is_remount) {
1780 if (!sbi->s_journal)
1781 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1782 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1783 ext4_msg(sb, KERN_ERR,
1784 "Cannot change data mode on remount");
1785 return -1;
1786 }
1787 } else {
1788 clear_opt(sb, DATA_FLAGS);
1789 sbi->s_mount_opt |= m->mount_opt;
1790 }
1791#ifdef CONFIG_QUOTA
1792 } else if (m->flags & MOPT_QFMT) {
1793 if (sb_any_quota_loaded(sb) &&
1794 sbi->s_jquota_fmt != m->mount_opt) {
1795 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1796 "quota options when quota turned on");
1797 return -1;
1798 }
1799 if (ext4_has_feature_quota(sb)) {
1800 ext4_msg(sb, KERN_INFO,
1801 "Quota format mount options ignored "
1802 "when QUOTA feature is enabled");
1803 return 1;
1804 }
1805 sbi->s_jquota_fmt = m->mount_opt;
1806#endif
1807 } else if (token == Opt_dax) {
1808#ifdef CONFIG_FS_DAX
1809 ext4_msg(sb, KERN_WARNING,
1810 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1811 sbi->s_mount_opt |= m->mount_opt;
1812#else
1813 ext4_msg(sb, KERN_INFO, "dax option not supported");
1814 return -1;
1815#endif
1816 } else if (token == Opt_data_err_abort) {
1817 sbi->s_mount_opt |= m->mount_opt;
1818 } else if (token == Opt_data_err_ignore) {
1819 sbi->s_mount_opt &= ~m->mount_opt;
1820 } else {
1821 if (!args->from)
1822 arg = 1;
1823 if (m->flags & MOPT_CLEAR)
1824 arg = !arg;
1825 else if (unlikely(!(m->flags & MOPT_SET))) {
1826 ext4_msg(sb, KERN_WARNING,
1827 "buggy handling of option %s", opt);
1828 WARN_ON(1);
1829 return -1;
1830 }
1831 if (arg != 0)
1832 sbi->s_mount_opt |= m->mount_opt;
1833 else
1834 sbi->s_mount_opt &= ~m->mount_opt;
1835 }
1836 return 1;
1837}
1838
1839static int parse_options(char *options, struct super_block *sb,
1840 unsigned long *journal_devnum,
1841 unsigned int *journal_ioprio,
1842 int is_remount)
1843{
1844 struct ext4_sb_info *sbi = EXT4_SB(sb);
1845 char *p;
1846 substring_t args[MAX_OPT_ARGS];
1847 int token;
1848
1849 if (!options)
1850 return 1;
1851
1852 while ((p = strsep(&options, ",")) != NULL) {
1853 if (!*p)
1854 continue;
1855 /*
1856 * Initialize args struct so we know whether arg was
1857 * found; some options take optional arguments.
1858 */
1859 args[0].to = args[0].from = NULL;
1860 token = match_token(p, tokens, args);
1861 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1862 journal_ioprio, is_remount) < 0)
1863 return 0;
1864 }
1865#ifdef CONFIG_QUOTA
1866 /*
1867 * We do the test below only for project quotas. 'usrquota' and
1868 * 'grpquota' mount options are allowed even without quota feature
1869 * to support legacy quotas in quota files.
1870 */
1871 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1872 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1873 "Cannot enable project quota enforcement.");
1874 return 0;
1875 }
1876 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1877 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1878 clear_opt(sb, USRQUOTA);
1879
1880 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1881 clear_opt(sb, GRPQUOTA);
1882
1883 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1884 ext4_msg(sb, KERN_ERR, "old and new quota "
1885 "format mixing");
1886 return 0;
1887 }
1888
1889 if (!sbi->s_jquota_fmt) {
1890 ext4_msg(sb, KERN_ERR, "journaled quota format "
1891 "not specified");
1892 return 0;
1893 }
1894 }
1895#endif
1896 if (test_opt(sb, DIOREAD_NOLOCK)) {
1897 int blocksize =
1898 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1899
1900 if (blocksize < PAGE_SIZE) {
1901 ext4_msg(sb, KERN_ERR, "can't mount with "
1902 "dioread_nolock if block size != PAGE_SIZE");
1903 return 0;
1904 }
1905 }
1906 return 1;
1907}
1908
1909static inline void ext4_show_quota_options(struct seq_file *seq,
1910 struct super_block *sb)
1911{
1912#if defined(CONFIG_QUOTA)
1913 struct ext4_sb_info *sbi = EXT4_SB(sb);
1914
1915 if (sbi->s_jquota_fmt) {
1916 char *fmtname = "";
1917
1918 switch (sbi->s_jquota_fmt) {
1919 case QFMT_VFS_OLD:
1920 fmtname = "vfsold";
1921 break;
1922 case QFMT_VFS_V0:
1923 fmtname = "vfsv0";
1924 break;
1925 case QFMT_VFS_V1:
1926 fmtname = "vfsv1";
1927 break;
1928 }
1929 seq_printf(seq, ",jqfmt=%s", fmtname);
1930 }
1931
1932 if (sbi->s_qf_names[USRQUOTA])
1933 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1934
1935 if (sbi->s_qf_names[GRPQUOTA])
1936 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1937#endif
1938}
1939
1940static const char *token2str(int token)
1941{
1942 const struct match_token *t;
1943
1944 for (t = tokens; t->token != Opt_err; t++)
1945 if (t->token == token && !strchr(t->pattern, '='))
1946 break;
1947 return t->pattern;
1948}
1949
1950/*
1951 * Show an option if
1952 * - it's set to a non-default value OR
1953 * - if the per-sb default is different from the global default
1954 */
1955static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1956 int nodefs)
1957{
1958 struct ext4_sb_info *sbi = EXT4_SB(sb);
1959 struct ext4_super_block *es = sbi->s_es;
1960 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1961 const struct mount_opts *m;
1962 char sep = nodefs ? '\n' : ',';
1963
1964#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1965#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1966
1967 if (sbi->s_sb_block != 1)
1968 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1969
1970 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1971 int want_set = m->flags & MOPT_SET;
1972 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1973 (m->flags & MOPT_CLEAR_ERR))
1974 continue;
1975 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1976 continue; /* skip if same as the default */
1977 if ((want_set &&
1978 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1979 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1980 continue; /* select Opt_noFoo vs Opt_Foo */
1981 SEQ_OPTS_PRINT("%s", token2str(m->token));
1982 }
1983
1984 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1985 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1986 SEQ_OPTS_PRINT("resuid=%u",
1987 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1988 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1989 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1990 SEQ_OPTS_PRINT("resgid=%u",
1991 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1992 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1993 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1994 SEQ_OPTS_PUTS("errors=remount-ro");
1995 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1996 SEQ_OPTS_PUTS("errors=continue");
1997 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1998 SEQ_OPTS_PUTS("errors=panic");
1999 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2000 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2001 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2002 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2003 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2004 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2005 if (sb->s_flags & MS_I_VERSION)
2006 SEQ_OPTS_PUTS("i_version");
2007 if (nodefs || sbi->s_stripe)
2008 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2009 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2010 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2011 SEQ_OPTS_PUTS("data=journal");
2012 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2013 SEQ_OPTS_PUTS("data=ordered");
2014 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2015 SEQ_OPTS_PUTS("data=writeback");
2016 }
2017 if (nodefs ||
2018 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2019 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2020 sbi->s_inode_readahead_blks);
2021
2022 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2023 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2024 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2025 if (nodefs || sbi->s_max_dir_size_kb)
2026 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2027 if (test_opt(sb, DATA_ERR_ABORT))
2028 SEQ_OPTS_PUTS("data_err=abort");
2029
2030 ext4_show_quota_options(seq, sb);
2031 return 0;
2032}
2033
2034static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2035{
2036 return _ext4_show_options(seq, root->d_sb, 0);
2037}
2038
2039int ext4_seq_options_show(struct seq_file *seq, void *offset)
2040{
2041 struct super_block *sb = seq->private;
2042 int rc;
2043
2044 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2045 rc = _ext4_show_options(seq, sb, 1);
2046 seq_puts(seq, "\n");
2047 return rc;
2048}
2049
2050static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2051 int read_only)
2052{
2053 struct ext4_sb_info *sbi = EXT4_SB(sb);
2054 int res = 0;
2055
2056 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2057 ext4_msg(sb, KERN_ERR, "revision level too high, "
2058 "forcing read-only mode");
2059 res = MS_RDONLY;
2060 }
2061 if (read_only)
2062 goto done;
2063 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2064 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2065 "running e2fsck is recommended");
2066 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2067 ext4_msg(sb, KERN_WARNING,
2068 "warning: mounting fs with errors, "
2069 "running e2fsck is recommended");
2070 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2071 le16_to_cpu(es->s_mnt_count) >=
2072 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2073 ext4_msg(sb, KERN_WARNING,
2074 "warning: maximal mount count reached, "
2075 "running e2fsck is recommended");
2076 else if (le32_to_cpu(es->s_checkinterval) &&
2077 (le32_to_cpu(es->s_lastcheck) +
2078 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2079 ext4_msg(sb, KERN_WARNING,
2080 "warning: checktime reached, "
2081 "running e2fsck is recommended");
2082 if (!sbi->s_journal)
2083 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2084 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2085 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2086 le16_add_cpu(&es->s_mnt_count, 1);
2087 es->s_mtime = cpu_to_le32(get_seconds());
2088 ext4_update_dynamic_rev(sb);
2089 if (sbi->s_journal)
2090 ext4_set_feature_journal_needs_recovery(sb);
2091
2092 ext4_commit_super(sb, 1);
2093done:
2094 if (test_opt(sb, DEBUG))
2095 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2096 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2097 sb->s_blocksize,
2098 sbi->s_groups_count,
2099 EXT4_BLOCKS_PER_GROUP(sb),
2100 EXT4_INODES_PER_GROUP(sb),
2101 sbi->s_mount_opt, sbi->s_mount_opt2);
2102
2103 cleancache_init_fs(sb);
2104 return res;
2105}
2106
2107int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2108{
2109 struct ext4_sb_info *sbi = EXT4_SB(sb);
2110 struct flex_groups *new_groups;
2111 int size;
2112
2113 if (!sbi->s_log_groups_per_flex)
2114 return 0;
2115
2116 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2117 if (size <= sbi->s_flex_groups_allocated)
2118 return 0;
2119
2120 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2121 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2122 if (!new_groups) {
2123 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2124 size / (int) sizeof(struct flex_groups));
2125 return -ENOMEM;
2126 }
2127
2128 if (sbi->s_flex_groups) {
2129 memcpy(new_groups, sbi->s_flex_groups,
2130 (sbi->s_flex_groups_allocated *
2131 sizeof(struct flex_groups)));
2132 kvfree(sbi->s_flex_groups);
2133 }
2134 sbi->s_flex_groups = new_groups;
2135 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2136 return 0;
2137}
2138
2139static int ext4_fill_flex_info(struct super_block *sb)
2140{
2141 struct ext4_sb_info *sbi = EXT4_SB(sb);
2142 struct ext4_group_desc *gdp = NULL;
2143 ext4_group_t flex_group;
2144 int i, err;
2145
2146 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2147 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2148 sbi->s_log_groups_per_flex = 0;
2149 return 1;
2150 }
2151
2152 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2153 if (err)
2154 goto failed;
2155
2156 for (i = 0; i < sbi->s_groups_count; i++) {
2157 gdp = ext4_get_group_desc(sb, i, NULL);
2158
2159 flex_group = ext4_flex_group(sbi, i);
2160 atomic_add(ext4_free_inodes_count(sb, gdp),
2161 &sbi->s_flex_groups[flex_group].free_inodes);
2162 atomic64_add(ext4_free_group_clusters(sb, gdp),
2163 &sbi->s_flex_groups[flex_group].free_clusters);
2164 atomic_add(ext4_used_dirs_count(sb, gdp),
2165 &sbi->s_flex_groups[flex_group].used_dirs);
2166 }
2167
2168 return 1;
2169failed:
2170 return 0;
2171}
2172
2173static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2174 struct ext4_group_desc *gdp)
2175{
2176 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2177 __u16 crc = 0;
2178 __le32 le_group = cpu_to_le32(block_group);
2179 struct ext4_sb_info *sbi = EXT4_SB(sb);
2180
2181 if (ext4_has_metadata_csum(sbi->s_sb)) {
2182 /* Use new metadata_csum algorithm */
2183 __u32 csum32;
2184 __u16 dummy_csum = 0;
2185
2186 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2187 sizeof(le_group));
2188 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2189 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2190 sizeof(dummy_csum));
2191 offset += sizeof(dummy_csum);
2192 if (offset < sbi->s_desc_size)
2193 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2194 sbi->s_desc_size - offset);
2195
2196 crc = csum32 & 0xFFFF;
2197 goto out;
2198 }
2199
2200 /* old crc16 code */
2201 if (!ext4_has_feature_gdt_csum(sb))
2202 return 0;
2203
2204 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2205 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2206 crc = crc16(crc, (__u8 *)gdp, offset);
2207 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2208 /* for checksum of struct ext4_group_desc do the rest...*/
2209 if (ext4_has_feature_64bit(sb) &&
2210 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2211 crc = crc16(crc, (__u8 *)gdp + offset,
2212 le16_to_cpu(sbi->s_es->s_desc_size) -
2213 offset);
2214
2215out:
2216 return cpu_to_le16(crc);
2217}
2218
2219int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2220 struct ext4_group_desc *gdp)
2221{
2222 if (ext4_has_group_desc_csum(sb) &&
2223 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2224 return 0;
2225
2226 return 1;
2227}
2228
2229void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2230 struct ext4_group_desc *gdp)
2231{
2232 if (!ext4_has_group_desc_csum(sb))
2233 return;
2234 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2235}
2236
2237/* Called at mount-time, super-block is locked */
2238static int ext4_check_descriptors(struct super_block *sb,
2239 ext4_fsblk_t sb_block,
2240 ext4_group_t *first_not_zeroed)
2241{
2242 struct ext4_sb_info *sbi = EXT4_SB(sb);
2243 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2244 ext4_fsblk_t last_block;
2245 ext4_fsblk_t block_bitmap;
2246 ext4_fsblk_t inode_bitmap;
2247 ext4_fsblk_t inode_table;
2248 int flexbg_flag = 0;
2249 ext4_group_t i, grp = sbi->s_groups_count;
2250
2251 if (ext4_has_feature_flex_bg(sb))
2252 flexbg_flag = 1;
2253
2254 ext4_debug("Checking group descriptors");
2255
2256 for (i = 0; i < sbi->s_groups_count; i++) {
2257 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2258
2259 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2260 last_block = ext4_blocks_count(sbi->s_es) - 1;
2261 else
2262 last_block = first_block +
2263 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2264
2265 if ((grp == sbi->s_groups_count) &&
2266 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2267 grp = i;
2268
2269 block_bitmap = ext4_block_bitmap(sb, gdp);
2270 if (block_bitmap == sb_block) {
2271 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2272 "Block bitmap for group %u overlaps "
2273 "superblock", i);
2274 }
2275 if (block_bitmap < first_block || block_bitmap > last_block) {
2276 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2277 "Block bitmap for group %u not in group "
2278 "(block %llu)!", i, block_bitmap);
2279 return 0;
2280 }
2281 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2282 if (inode_bitmap == sb_block) {
2283 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2284 "Inode bitmap for group %u overlaps "
2285 "superblock", i);
2286 }
2287 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2288 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2289 "Inode bitmap for group %u not in group "
2290 "(block %llu)!", i, inode_bitmap);
2291 return 0;
2292 }
2293 inode_table = ext4_inode_table(sb, gdp);
2294 if (inode_table == sb_block) {
2295 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2296 "Inode table for group %u overlaps "
2297 "superblock", i);
2298 }
2299 if (inode_table < first_block ||
2300 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2301 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2302 "Inode table for group %u not in group "
2303 "(block %llu)!", i, inode_table);
2304 return 0;
2305 }
2306 ext4_lock_group(sb, i);
2307 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2308 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2309 "Checksum for group %u failed (%u!=%u)",
2310 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2311 gdp)), le16_to_cpu(gdp->bg_checksum));
2312 if (!(sb->s_flags & MS_RDONLY)) {
2313 ext4_unlock_group(sb, i);
2314 return 0;
2315 }
2316 }
2317 ext4_unlock_group(sb, i);
2318 if (!flexbg_flag)
2319 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2320 }
2321 if (NULL != first_not_zeroed)
2322 *first_not_zeroed = grp;
2323 return 1;
2324}
2325
2326/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2327 * the superblock) which were deleted from all directories, but held open by
2328 * a process at the time of a crash. We walk the list and try to delete these
2329 * inodes at recovery time (only with a read-write filesystem).
2330 *
2331 * In order to keep the orphan inode chain consistent during traversal (in
2332 * case of crash during recovery), we link each inode into the superblock
2333 * orphan list_head and handle it the same way as an inode deletion during
2334 * normal operation (which journals the operations for us).
2335 *
2336 * We only do an iget() and an iput() on each inode, which is very safe if we
2337 * accidentally point at an in-use or already deleted inode. The worst that
2338 * can happen in this case is that we get a "bit already cleared" message from
2339 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2340 * e2fsck was run on this filesystem, and it must have already done the orphan
2341 * inode cleanup for us, so we can safely abort without any further action.
2342 */
2343static void ext4_orphan_cleanup(struct super_block *sb,
2344 struct ext4_super_block *es)
2345{
2346 unsigned int s_flags = sb->s_flags;
2347 int ret, nr_orphans = 0, nr_truncates = 0;
2348#ifdef CONFIG_QUOTA
2349 int i;
2350#endif
2351 if (!es->s_last_orphan) {
2352 jbd_debug(4, "no orphan inodes to clean up\n");
2353 return;
2354 }
2355
2356 if (bdev_read_only(sb->s_bdev)) {
2357 ext4_msg(sb, KERN_ERR, "write access "
2358 "unavailable, skipping orphan cleanup");
2359 return;
2360 }
2361
2362 /* Check if feature set would not allow a r/w mount */
2363 if (!ext4_feature_set_ok(sb, 0)) {
2364 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2365 "unknown ROCOMPAT features");
2366 return;
2367 }
2368
2369 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2370 /* don't clear list on RO mount w/ errors */
2371 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2372 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2373 "clearing orphan list.\n");
2374 es->s_last_orphan = 0;
2375 }
2376 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2377 return;
2378 }
2379
2380 if (s_flags & MS_RDONLY) {
2381 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2382 sb->s_flags &= ~MS_RDONLY;
2383 }
2384#ifdef CONFIG_QUOTA
2385 /* Needed for iput() to work correctly and not trash data */
2386 sb->s_flags |= MS_ACTIVE;
2387 /* Turn on quotas so that they are updated correctly */
2388 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2389 if (EXT4_SB(sb)->s_qf_names[i]) {
2390 int ret = ext4_quota_on_mount(sb, i);
2391 if (ret < 0)
2392 ext4_msg(sb, KERN_ERR,
2393 "Cannot turn on journaled "
2394 "quota: error %d", ret);
2395 }
2396 }
2397#endif
2398
2399 while (es->s_last_orphan) {
2400 struct inode *inode;
2401
2402 /*
2403 * We may have encountered an error during cleanup; if
2404 * so, skip the rest.
2405 */
2406 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2407 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2408 es->s_last_orphan = 0;
2409 break;
2410 }
2411
2412 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2413 if (IS_ERR(inode)) {
2414 es->s_last_orphan = 0;
2415 break;
2416 }
2417
2418 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2419 dquot_initialize(inode);
2420 if (inode->i_nlink) {
2421 if (test_opt(sb, DEBUG))
2422 ext4_msg(sb, KERN_DEBUG,
2423 "%s: truncating inode %lu to %lld bytes",
2424 __func__, inode->i_ino, inode->i_size);
2425 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2426 inode->i_ino, inode->i_size);
2427 inode_lock(inode);
2428 truncate_inode_pages(inode->i_mapping, inode->i_size);
2429 ret = ext4_truncate(inode);
2430 if (ret)
2431 ext4_std_error(inode->i_sb, ret);
2432 inode_unlock(inode);
2433 nr_truncates++;
2434 } else {
2435 if (test_opt(sb, DEBUG))
2436 ext4_msg(sb, KERN_DEBUG,
2437 "%s: deleting unreferenced inode %lu",
2438 __func__, inode->i_ino);
2439 jbd_debug(2, "deleting unreferenced inode %lu\n",
2440 inode->i_ino);
2441 nr_orphans++;
2442 }
2443 iput(inode); /* The delete magic happens here! */
2444 }
2445
2446#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2447
2448 if (nr_orphans)
2449 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2450 PLURAL(nr_orphans));
2451 if (nr_truncates)
2452 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2453 PLURAL(nr_truncates));
2454#ifdef CONFIG_QUOTA
2455 /* Turn quotas off */
2456 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2457 if (sb_dqopt(sb)->files[i])
2458 dquot_quota_off(sb, i);
2459 }
2460#endif
2461 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2462}
2463
2464/*
2465 * Maximal extent format file size.
2466 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2467 * extent format containers, within a sector_t, and within i_blocks
2468 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2469 * so that won't be a limiting factor.
2470 *
2471 * However there is other limiting factor. We do store extents in the form
2472 * of starting block and length, hence the resulting length of the extent
2473 * covering maximum file size must fit into on-disk format containers as
2474 * well. Given that length is always by 1 unit bigger than max unit (because
2475 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2476 *
2477 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2478 */
2479static loff_t ext4_max_size(int blkbits, int has_huge_files)
2480{
2481 loff_t res;
2482 loff_t upper_limit = MAX_LFS_FILESIZE;
2483
2484 /* small i_blocks in vfs inode? */
2485 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2486 /*
2487 * CONFIG_LBDAF is not enabled implies the inode
2488 * i_block represent total blocks in 512 bytes
2489 * 32 == size of vfs inode i_blocks * 8
2490 */
2491 upper_limit = (1LL << 32) - 1;
2492
2493 /* total blocks in file system block size */
2494 upper_limit >>= (blkbits - 9);
2495 upper_limit <<= blkbits;
2496 }
2497
2498 /*
2499 * 32-bit extent-start container, ee_block. We lower the maxbytes
2500 * by one fs block, so ee_len can cover the extent of maximum file
2501 * size
2502 */
2503 res = (1LL << 32) - 1;
2504 res <<= blkbits;
2505
2506 /* Sanity check against vm- & vfs- imposed limits */
2507 if (res > upper_limit)
2508 res = upper_limit;
2509
2510 return res;
2511}
2512
2513/*
2514 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2515 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2516 * We need to be 1 filesystem block less than the 2^48 sector limit.
2517 */
2518static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2519{
2520 loff_t res = EXT4_NDIR_BLOCKS;
2521 int meta_blocks;
2522 loff_t upper_limit;
2523 /* This is calculated to be the largest file size for a dense, block
2524 * mapped file such that the file's total number of 512-byte sectors,
2525 * including data and all indirect blocks, does not exceed (2^48 - 1).
2526 *
2527 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2528 * number of 512-byte sectors of the file.
2529 */
2530
2531 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2532 /*
2533 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2534 * the inode i_block field represents total file blocks in
2535 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2536 */
2537 upper_limit = (1LL << 32) - 1;
2538
2539 /* total blocks in file system block size */
2540 upper_limit >>= (bits - 9);
2541
2542 } else {
2543 /*
2544 * We use 48 bit ext4_inode i_blocks
2545 * With EXT4_HUGE_FILE_FL set the i_blocks
2546 * represent total number of blocks in
2547 * file system block size
2548 */
2549 upper_limit = (1LL << 48) - 1;
2550
2551 }
2552
2553 /* indirect blocks */
2554 meta_blocks = 1;
2555 /* double indirect blocks */
2556 meta_blocks += 1 + (1LL << (bits-2));
2557 /* tripple indirect blocks */
2558 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2559
2560 upper_limit -= meta_blocks;
2561 upper_limit <<= bits;
2562
2563 res += 1LL << (bits-2);
2564 res += 1LL << (2*(bits-2));
2565 res += 1LL << (3*(bits-2));
2566 res <<= bits;
2567 if (res > upper_limit)
2568 res = upper_limit;
2569
2570 if (res > MAX_LFS_FILESIZE)
2571 res = MAX_LFS_FILESIZE;
2572
2573 return res;
2574}
2575
2576static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2577 ext4_fsblk_t logical_sb_block, int nr)
2578{
2579 struct ext4_sb_info *sbi = EXT4_SB(sb);
2580 ext4_group_t bg, first_meta_bg;
2581 int has_super = 0;
2582
2583 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2584
2585 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2586 return logical_sb_block + nr + 1;
2587 bg = sbi->s_desc_per_block * nr;
2588 if (ext4_bg_has_super(sb, bg))
2589 has_super = 1;
2590
2591 /*
2592 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2593 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2594 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2595 * compensate.
2596 */
2597 if (sb->s_blocksize == 1024 && nr == 0 &&
2598 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2599 has_super++;
2600
2601 return (has_super + ext4_group_first_block_no(sb, bg));
2602}
2603
2604/**
2605 * ext4_get_stripe_size: Get the stripe size.
2606 * @sbi: In memory super block info
2607 *
2608 * If we have specified it via mount option, then
2609 * use the mount option value. If the value specified at mount time is
2610 * greater than the blocks per group use the super block value.
2611 * If the super block value is greater than blocks per group return 0.
2612 * Allocator needs it be less than blocks per group.
2613 *
2614 */
2615static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2616{
2617 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2618 unsigned long stripe_width =
2619 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2620 int ret;
2621
2622 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2623 ret = sbi->s_stripe;
2624 else if (stripe_width <= sbi->s_blocks_per_group)
2625 ret = stripe_width;
2626 else if (stride <= sbi->s_blocks_per_group)
2627 ret = stride;
2628 else
2629 ret = 0;
2630
2631 /*
2632 * If the stripe width is 1, this makes no sense and
2633 * we set it to 0 to turn off stripe handling code.
2634 */
2635 if (ret <= 1)
2636 ret = 0;
2637
2638 return ret;
2639}
2640
2641/*
2642 * Check whether this filesystem can be mounted based on
2643 * the features present and the RDONLY/RDWR mount requested.
2644 * Returns 1 if this filesystem can be mounted as requested,
2645 * 0 if it cannot be.
2646 */
2647static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2648{
2649 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2650 ext4_msg(sb, KERN_ERR,
2651 "Couldn't mount because of "
2652 "unsupported optional features (%x)",
2653 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2654 ~EXT4_FEATURE_INCOMPAT_SUPP));
2655 return 0;
2656 }
2657
2658 if (readonly)
2659 return 1;
2660
2661 if (ext4_has_feature_readonly(sb)) {
2662 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2663 sb->s_flags |= MS_RDONLY;
2664 return 1;
2665 }
2666
2667 /* Check that feature set is OK for a read-write mount */
2668 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2669 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2670 "unsupported optional features (%x)",
2671 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2672 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2673 return 0;
2674 }
2675 /*
2676 * Large file size enabled file system can only be mounted
2677 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2678 */
2679 if (ext4_has_feature_huge_file(sb)) {
2680 if (sizeof(blkcnt_t) < sizeof(u64)) {
2681 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2682 "cannot be mounted RDWR without "
2683 "CONFIG_LBDAF");
2684 return 0;
2685 }
2686 }
2687 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2688 ext4_msg(sb, KERN_ERR,
2689 "Can't support bigalloc feature without "
2690 "extents feature\n");
2691 return 0;
2692 }
2693
2694#ifndef CONFIG_QUOTA
2695 if (ext4_has_feature_quota(sb) && !readonly) {
2696 ext4_msg(sb, KERN_ERR,
2697 "Filesystem with quota feature cannot be mounted RDWR "
2698 "without CONFIG_QUOTA");
2699 return 0;
2700 }
2701 if (ext4_has_feature_project(sb) && !readonly) {
2702 ext4_msg(sb, KERN_ERR,
2703 "Filesystem with project quota feature cannot be mounted RDWR "
2704 "without CONFIG_QUOTA");
2705 return 0;
2706 }
2707#endif /* CONFIG_QUOTA */
2708 return 1;
2709}
2710
2711/*
2712 * This function is called once a day if we have errors logged
2713 * on the file system
2714 */
2715static void print_daily_error_info(unsigned long arg)
2716{
2717 struct super_block *sb = (struct super_block *) arg;
2718 struct ext4_sb_info *sbi;
2719 struct ext4_super_block *es;
2720
2721 sbi = EXT4_SB(sb);
2722 es = sbi->s_es;
2723
2724 if (es->s_error_count)
2725 /* fsck newer than v1.41.13 is needed to clean this condition. */
2726 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2727 le32_to_cpu(es->s_error_count));
2728 if (es->s_first_error_time) {
2729 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2730 sb->s_id, le32_to_cpu(es->s_first_error_time),
2731 (int) sizeof(es->s_first_error_func),
2732 es->s_first_error_func,
2733 le32_to_cpu(es->s_first_error_line));
2734 if (es->s_first_error_ino)
2735 printk(KERN_CONT ": inode %u",
2736 le32_to_cpu(es->s_first_error_ino));
2737 if (es->s_first_error_block)
2738 printk(KERN_CONT ": block %llu", (unsigned long long)
2739 le64_to_cpu(es->s_first_error_block));
2740 printk(KERN_CONT "\n");
2741 }
2742 if (es->s_last_error_time) {
2743 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2744 sb->s_id, le32_to_cpu(es->s_last_error_time),
2745 (int) sizeof(es->s_last_error_func),
2746 es->s_last_error_func,
2747 le32_to_cpu(es->s_last_error_line));
2748 if (es->s_last_error_ino)
2749 printk(KERN_CONT ": inode %u",
2750 le32_to_cpu(es->s_last_error_ino));
2751 if (es->s_last_error_block)
2752 printk(KERN_CONT ": block %llu", (unsigned long long)
2753 le64_to_cpu(es->s_last_error_block));
2754 printk(KERN_CONT "\n");
2755 }
2756 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2757}
2758
2759/* Find next suitable group and run ext4_init_inode_table */
2760static int ext4_run_li_request(struct ext4_li_request *elr)
2761{
2762 struct ext4_group_desc *gdp = NULL;
2763 ext4_group_t group, ngroups;
2764 struct super_block *sb;
2765 unsigned long timeout = 0;
2766 int ret = 0;
2767
2768 sb = elr->lr_super;
2769 ngroups = EXT4_SB(sb)->s_groups_count;
2770
2771 for (group = elr->lr_next_group; group < ngroups; group++) {
2772 gdp = ext4_get_group_desc(sb, group, NULL);
2773 if (!gdp) {
2774 ret = 1;
2775 break;
2776 }
2777
2778 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2779 break;
2780 }
2781
2782 if (group >= ngroups)
2783 ret = 1;
2784
2785 if (!ret) {
2786 timeout = jiffies;
2787 ret = ext4_init_inode_table(sb, group,
2788 elr->lr_timeout ? 0 : 1);
2789 if (elr->lr_timeout == 0) {
2790 timeout = (jiffies - timeout) *
2791 elr->lr_sbi->s_li_wait_mult;
2792 elr->lr_timeout = timeout;
2793 }
2794 elr->lr_next_sched = jiffies + elr->lr_timeout;
2795 elr->lr_next_group = group + 1;
2796 }
2797 return ret;
2798}
2799
2800/*
2801 * Remove lr_request from the list_request and free the
2802 * request structure. Should be called with li_list_mtx held
2803 */
2804static void ext4_remove_li_request(struct ext4_li_request *elr)
2805{
2806 struct ext4_sb_info *sbi;
2807
2808 if (!elr)
2809 return;
2810
2811 sbi = elr->lr_sbi;
2812
2813 list_del(&elr->lr_request);
2814 sbi->s_li_request = NULL;
2815 kfree(elr);
2816}
2817
2818static void ext4_unregister_li_request(struct super_block *sb)
2819{
2820 mutex_lock(&ext4_li_mtx);
2821 if (!ext4_li_info) {
2822 mutex_unlock(&ext4_li_mtx);
2823 return;
2824 }
2825
2826 mutex_lock(&ext4_li_info->li_list_mtx);
2827 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2828 mutex_unlock(&ext4_li_info->li_list_mtx);
2829 mutex_unlock(&ext4_li_mtx);
2830}
2831
2832static struct task_struct *ext4_lazyinit_task;
2833
2834/*
2835 * This is the function where ext4lazyinit thread lives. It walks
2836 * through the request list searching for next scheduled filesystem.
2837 * When such a fs is found, run the lazy initialization request
2838 * (ext4_rn_li_request) and keep track of the time spend in this
2839 * function. Based on that time we compute next schedule time of
2840 * the request. When walking through the list is complete, compute
2841 * next waking time and put itself into sleep.
2842 */
2843static int ext4_lazyinit_thread(void *arg)
2844{
2845 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2846 struct list_head *pos, *n;
2847 struct ext4_li_request *elr;
2848 unsigned long next_wakeup, cur;
2849
2850 BUG_ON(NULL == eli);
2851
2852cont_thread:
2853 while (true) {
2854 next_wakeup = MAX_JIFFY_OFFSET;
2855
2856 mutex_lock(&eli->li_list_mtx);
2857 if (list_empty(&eli->li_request_list)) {
2858 mutex_unlock(&eli->li_list_mtx);
2859 goto exit_thread;
2860 }
2861 list_for_each_safe(pos, n, &eli->li_request_list) {
2862 int err = 0;
2863 int progress = 0;
2864 elr = list_entry(pos, struct ext4_li_request,
2865 lr_request);
2866
2867 if (time_before(jiffies, elr->lr_next_sched)) {
2868 if (time_before(elr->lr_next_sched, next_wakeup))
2869 next_wakeup = elr->lr_next_sched;
2870 continue;
2871 }
2872 if (down_read_trylock(&elr->lr_super->s_umount)) {
2873 if (sb_start_write_trylock(elr->lr_super)) {
2874 progress = 1;
2875 /*
2876 * We hold sb->s_umount, sb can not
2877 * be removed from the list, it is
2878 * now safe to drop li_list_mtx
2879 */
2880 mutex_unlock(&eli->li_list_mtx);
2881 err = ext4_run_li_request(elr);
2882 sb_end_write(elr->lr_super);
2883 mutex_lock(&eli->li_list_mtx);
2884 n = pos->next;
2885 }
2886 up_read((&elr->lr_super->s_umount));
2887 }
2888 /* error, remove the lazy_init job */
2889 if (err) {
2890 ext4_remove_li_request(elr);
2891 continue;
2892 }
2893 if (!progress) {
2894 elr->lr_next_sched = jiffies +
2895 (prandom_u32()
2896 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2897 }
2898 if (time_before(elr->lr_next_sched, next_wakeup))
2899 next_wakeup = elr->lr_next_sched;
2900 }
2901 mutex_unlock(&eli->li_list_mtx);
2902
2903 try_to_freeze();
2904
2905 cur = jiffies;
2906 if ((time_after_eq(cur, next_wakeup)) ||
2907 (MAX_JIFFY_OFFSET == next_wakeup)) {
2908 cond_resched();
2909 continue;
2910 }
2911
2912 schedule_timeout_interruptible(next_wakeup - cur);
2913
2914 if (kthread_should_stop()) {
2915 ext4_clear_request_list();
2916 goto exit_thread;
2917 }
2918 }
2919
2920exit_thread:
2921 /*
2922 * It looks like the request list is empty, but we need
2923 * to check it under the li_list_mtx lock, to prevent any
2924 * additions into it, and of course we should lock ext4_li_mtx
2925 * to atomically free the list and ext4_li_info, because at
2926 * this point another ext4 filesystem could be registering
2927 * new one.
2928 */
2929 mutex_lock(&ext4_li_mtx);
2930 mutex_lock(&eli->li_list_mtx);
2931 if (!list_empty(&eli->li_request_list)) {
2932 mutex_unlock(&eli->li_list_mtx);
2933 mutex_unlock(&ext4_li_mtx);
2934 goto cont_thread;
2935 }
2936 mutex_unlock(&eli->li_list_mtx);
2937 kfree(ext4_li_info);
2938 ext4_li_info = NULL;
2939 mutex_unlock(&ext4_li_mtx);
2940
2941 return 0;
2942}
2943
2944static void ext4_clear_request_list(void)
2945{
2946 struct list_head *pos, *n;
2947 struct ext4_li_request *elr;
2948
2949 mutex_lock(&ext4_li_info->li_list_mtx);
2950 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2951 elr = list_entry(pos, struct ext4_li_request,
2952 lr_request);
2953 ext4_remove_li_request(elr);
2954 }
2955 mutex_unlock(&ext4_li_info->li_list_mtx);
2956}
2957
2958static int ext4_run_lazyinit_thread(void)
2959{
2960 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2961 ext4_li_info, "ext4lazyinit");
2962 if (IS_ERR(ext4_lazyinit_task)) {
2963 int err = PTR_ERR(ext4_lazyinit_task);
2964 ext4_clear_request_list();
2965 kfree(ext4_li_info);
2966 ext4_li_info = NULL;
2967 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2968 "initialization thread\n",
2969 err);
2970 return err;
2971 }
2972 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2973 return 0;
2974}
2975
2976/*
2977 * Check whether it make sense to run itable init. thread or not.
2978 * If there is at least one uninitialized inode table, return
2979 * corresponding group number, else the loop goes through all
2980 * groups and return total number of groups.
2981 */
2982static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2983{
2984 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2985 struct ext4_group_desc *gdp = NULL;
2986
2987 for (group = 0; group < ngroups; group++) {
2988 gdp = ext4_get_group_desc(sb, group, NULL);
2989 if (!gdp)
2990 continue;
2991
2992 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2993 break;
2994 }
2995
2996 return group;
2997}
2998
2999static int ext4_li_info_new(void)
3000{
3001 struct ext4_lazy_init *eli = NULL;
3002
3003 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3004 if (!eli)
3005 return -ENOMEM;
3006
3007 INIT_LIST_HEAD(&eli->li_request_list);
3008 mutex_init(&eli->li_list_mtx);
3009
3010 eli->li_state |= EXT4_LAZYINIT_QUIT;
3011
3012 ext4_li_info = eli;
3013
3014 return 0;
3015}
3016
3017static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3018 ext4_group_t start)
3019{
3020 struct ext4_sb_info *sbi = EXT4_SB(sb);
3021 struct ext4_li_request *elr;
3022
3023 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3024 if (!elr)
3025 return NULL;
3026
3027 elr->lr_super = sb;
3028 elr->lr_sbi = sbi;
3029 elr->lr_next_group = start;
3030
3031 /*
3032 * Randomize first schedule time of the request to
3033 * spread the inode table initialization requests
3034 * better.
3035 */
3036 elr->lr_next_sched = jiffies + (prandom_u32() %
3037 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3038 return elr;
3039}
3040
3041int ext4_register_li_request(struct super_block *sb,
3042 ext4_group_t first_not_zeroed)
3043{
3044 struct ext4_sb_info *sbi = EXT4_SB(sb);
3045 struct ext4_li_request *elr = NULL;
3046 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3047 int ret = 0;
3048
3049 mutex_lock(&ext4_li_mtx);
3050 if (sbi->s_li_request != NULL) {
3051 /*
3052 * Reset timeout so it can be computed again, because
3053 * s_li_wait_mult might have changed.
3054 */
3055 sbi->s_li_request->lr_timeout = 0;
3056 goto out;
3057 }
3058
3059 if (first_not_zeroed == ngroups ||
3060 (sb->s_flags & MS_RDONLY) ||
3061 !test_opt(sb, INIT_INODE_TABLE))
3062 goto out;
3063
3064 elr = ext4_li_request_new(sb, first_not_zeroed);
3065 if (!elr) {
3066 ret = -ENOMEM;
3067 goto out;
3068 }
3069
3070 if (NULL == ext4_li_info) {
3071 ret = ext4_li_info_new();
3072 if (ret)
3073 goto out;
3074 }
3075
3076 mutex_lock(&ext4_li_info->li_list_mtx);
3077 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3078 mutex_unlock(&ext4_li_info->li_list_mtx);
3079
3080 sbi->s_li_request = elr;
3081 /*
3082 * set elr to NULL here since it has been inserted to
3083 * the request_list and the removal and free of it is
3084 * handled by ext4_clear_request_list from now on.
3085 */
3086 elr = NULL;
3087
3088 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3089 ret = ext4_run_lazyinit_thread();
3090 if (ret)
3091 goto out;
3092 }
3093out:
3094 mutex_unlock(&ext4_li_mtx);
3095 if (ret)
3096 kfree(elr);
3097 return ret;
3098}
3099
3100/*
3101 * We do not need to lock anything since this is called on
3102 * module unload.
3103 */
3104static void ext4_destroy_lazyinit_thread(void)
3105{
3106 /*
3107 * If thread exited earlier
3108 * there's nothing to be done.
3109 */
3110 if (!ext4_li_info || !ext4_lazyinit_task)
3111 return;
3112
3113 kthread_stop(ext4_lazyinit_task);
3114}
3115
3116static int set_journal_csum_feature_set(struct super_block *sb)
3117{
3118 int ret = 1;
3119 int compat, incompat;
3120 struct ext4_sb_info *sbi = EXT4_SB(sb);
3121
3122 if (ext4_has_metadata_csum(sb)) {
3123 /* journal checksum v3 */
3124 compat = 0;
3125 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3126 } else {
3127 /* journal checksum v1 */
3128 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3129 incompat = 0;
3130 }
3131
3132 jbd2_journal_clear_features(sbi->s_journal,
3133 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3134 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3135 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3136 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3137 ret = jbd2_journal_set_features(sbi->s_journal,
3138 compat, 0,
3139 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3140 incompat);
3141 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3142 ret = jbd2_journal_set_features(sbi->s_journal,
3143 compat, 0,
3144 incompat);
3145 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3146 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3147 } else {
3148 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3149 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3150 }
3151
3152 return ret;
3153}
3154
3155/*
3156 * Note: calculating the overhead so we can be compatible with
3157 * historical BSD practice is quite difficult in the face of
3158 * clusters/bigalloc. This is because multiple metadata blocks from
3159 * different block group can end up in the same allocation cluster.
3160 * Calculating the exact overhead in the face of clustered allocation
3161 * requires either O(all block bitmaps) in memory or O(number of block
3162 * groups**2) in time. We will still calculate the superblock for
3163 * older file systems --- and if we come across with a bigalloc file
3164 * system with zero in s_overhead_clusters the estimate will be close to
3165 * correct especially for very large cluster sizes --- but for newer
3166 * file systems, it's better to calculate this figure once at mkfs
3167 * time, and store it in the superblock. If the superblock value is
3168 * present (even for non-bigalloc file systems), we will use it.
3169 */
3170static int count_overhead(struct super_block *sb, ext4_group_t grp,
3171 char *buf)
3172{
3173 struct ext4_sb_info *sbi = EXT4_SB(sb);
3174 struct ext4_group_desc *gdp;
3175 ext4_fsblk_t first_block, last_block, b;
3176 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3177 int s, j, count = 0;
3178
3179 if (!ext4_has_feature_bigalloc(sb))
3180 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3181 sbi->s_itb_per_group + 2);
3182
3183 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3184 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3185 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3186 for (i = 0; i < ngroups; i++) {
3187 gdp = ext4_get_group_desc(sb, i, NULL);
3188 b = ext4_block_bitmap(sb, gdp);
3189 if (b >= first_block && b <= last_block) {
3190 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3191 count++;
3192 }
3193 b = ext4_inode_bitmap(sb, gdp);
3194 if (b >= first_block && b <= last_block) {
3195 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3196 count++;
3197 }
3198 b = ext4_inode_table(sb, gdp);
3199 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3200 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3201 int c = EXT4_B2C(sbi, b - first_block);
3202 ext4_set_bit(c, buf);
3203 count++;
3204 }
3205 if (i != grp)
3206 continue;
3207 s = 0;
3208 if (ext4_bg_has_super(sb, grp)) {
3209 ext4_set_bit(s++, buf);
3210 count++;
3211 }
3212 j = ext4_bg_num_gdb(sb, grp);
3213 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3214 ext4_error(sb, "Invalid number of block group "
3215 "descriptor blocks: %d", j);
3216 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3217 }
3218 count += j;
3219 for (; j > 0; j--)
3220 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3221 }
3222 if (!count)
3223 return 0;
3224 return EXT4_CLUSTERS_PER_GROUP(sb) -
3225 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3226}
3227
3228/*
3229 * Compute the overhead and stash it in sbi->s_overhead
3230 */
3231int ext4_calculate_overhead(struct super_block *sb)
3232{
3233 struct ext4_sb_info *sbi = EXT4_SB(sb);
3234 struct ext4_super_block *es = sbi->s_es;
3235 struct inode *j_inode;
3236 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3237 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3238 ext4_fsblk_t overhead = 0;
3239 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3240
3241 if (!buf)
3242 return -ENOMEM;
3243
3244 /*
3245 * Compute the overhead (FS structures). This is constant
3246 * for a given filesystem unless the number of block groups
3247 * changes so we cache the previous value until it does.
3248 */
3249
3250 /*
3251 * All of the blocks before first_data_block are overhead
3252 */
3253 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3254
3255 /*
3256 * Add the overhead found in each block group
3257 */
3258 for (i = 0; i < ngroups; i++) {
3259 int blks;
3260
3261 blks = count_overhead(sb, i, buf);
3262 overhead += blks;
3263 if (blks)
3264 memset(buf, 0, PAGE_SIZE);
3265 cond_resched();
3266 }
3267
3268 /*
3269 * Add the internal journal blocks whether the journal has been
3270 * loaded or not
3271 */
3272 if (sbi->s_journal && !sbi->journal_bdev)
3273 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3274 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3275 j_inode = ext4_get_journal_inode(sb, j_inum);
3276 if (j_inode) {
3277 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3278 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3279 iput(j_inode);
3280 } else {
3281 ext4_msg(sb, KERN_ERR, "can't get journal size");
3282 }
3283 }
3284 sbi->s_overhead = overhead;
3285 smp_wmb();
3286 free_page((unsigned long) buf);
3287 return 0;
3288}
3289
3290static void ext4_set_resv_clusters(struct super_block *sb)
3291{
3292 ext4_fsblk_t resv_clusters;
3293 struct ext4_sb_info *sbi = EXT4_SB(sb);
3294
3295 /*
3296 * There's no need to reserve anything when we aren't using extents.
3297 * The space estimates are exact, there are no unwritten extents,
3298 * hole punching doesn't need new metadata... This is needed especially
3299 * to keep ext2/3 backward compatibility.
3300 */
3301 if (!ext4_has_feature_extents(sb))
3302 return;
3303 /*
3304 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3305 * This should cover the situations where we can not afford to run
3306 * out of space like for example punch hole, or converting
3307 * unwritten extents in delalloc path. In most cases such
3308 * allocation would require 1, or 2 blocks, higher numbers are
3309 * very rare.
3310 */
3311 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3312 sbi->s_cluster_bits);
3313
3314 do_div(resv_clusters, 50);
3315 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3316
3317 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3318}
3319
3320static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3321{
3322 char *orig_data = kstrdup(data, GFP_KERNEL);
3323 struct buffer_head *bh;
3324 struct ext4_super_block *es = NULL;
3325 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3326 ext4_fsblk_t block;
3327 ext4_fsblk_t sb_block = get_sb_block(&data);
3328 ext4_fsblk_t logical_sb_block;
3329 unsigned long offset = 0;
3330 unsigned long journal_devnum = 0;
3331 unsigned long def_mount_opts;
3332 struct inode *root;
3333 const char *descr;
3334 int ret = -ENOMEM;
3335 int blocksize, clustersize;
3336 unsigned int db_count;
3337 unsigned int i;
3338 int needs_recovery, has_huge_files, has_bigalloc;
3339 __u64 blocks_count;
3340 int err = 0;
3341 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3342 ext4_group_t first_not_zeroed;
3343
3344 if ((data && !orig_data) || !sbi)
3345 goto out_free_base;
3346
3347 sbi->s_blockgroup_lock =
3348 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3349 if (!sbi->s_blockgroup_lock)
3350 goto out_free_base;
3351
3352 sb->s_fs_info = sbi;
3353 sbi->s_sb = sb;
3354 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3355 sbi->s_sb_block = sb_block;
3356 if (sb->s_bdev->bd_part)
3357 sbi->s_sectors_written_start =
3358 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3359
3360 /* Cleanup superblock name */
3361 strreplace(sb->s_id, '/', '!');
3362
3363 /* -EINVAL is default */
3364 ret = -EINVAL;
3365 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3366 if (!blocksize) {
3367 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3368 goto out_fail;
3369 }
3370
3371 /*
3372 * The ext4 superblock will not be buffer aligned for other than 1kB
3373 * block sizes. We need to calculate the offset from buffer start.
3374 */
3375 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3376 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3377 offset = do_div(logical_sb_block, blocksize);
3378 } else {
3379 logical_sb_block = sb_block;
3380 }
3381
3382 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3383 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3384 goto out_fail;
3385 }
3386 /*
3387 * Note: s_es must be initialized as soon as possible because
3388 * some ext4 macro-instructions depend on its value
3389 */
3390 es = (struct ext4_super_block *) (bh->b_data + offset);
3391 sbi->s_es = es;
3392 sb->s_magic = le16_to_cpu(es->s_magic);
3393 if (sb->s_magic != EXT4_SUPER_MAGIC)
3394 goto cantfind_ext4;
3395 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3396
3397 /* Warn if metadata_csum and gdt_csum are both set. */
3398 if (ext4_has_feature_metadata_csum(sb) &&
3399 ext4_has_feature_gdt_csum(sb))
3400 ext4_warning(sb, "metadata_csum and uninit_bg are "
3401 "redundant flags; please run fsck.");
3402
3403 /* Check for a known checksum algorithm */
3404 if (!ext4_verify_csum_type(sb, es)) {
3405 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3406 "unknown checksum algorithm.");
3407 silent = 1;
3408 goto cantfind_ext4;
3409 }
3410
3411 /* Load the checksum driver */
3412 if (ext4_has_feature_metadata_csum(sb)) {
3413 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3414 if (IS_ERR(sbi->s_chksum_driver)) {
3415 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3416 ret = PTR_ERR(sbi->s_chksum_driver);
3417 sbi->s_chksum_driver = NULL;
3418 goto failed_mount;
3419 }
3420 }
3421
3422 /* Check superblock checksum */
3423 if (!ext4_superblock_csum_verify(sb, es)) {
3424 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3425 "invalid superblock checksum. Run e2fsck?");
3426 silent = 1;
3427 ret = -EFSBADCRC;
3428 goto cantfind_ext4;
3429 }
3430
3431 /* Precompute checksum seed for all metadata */
3432 if (ext4_has_feature_csum_seed(sb))
3433 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3434 else if (ext4_has_metadata_csum(sb))
3435 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3436 sizeof(es->s_uuid));
3437
3438 /* Set defaults before we parse the mount options */
3439 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3440 set_opt(sb, INIT_INODE_TABLE);
3441 if (def_mount_opts & EXT4_DEFM_DEBUG)
3442 set_opt(sb, DEBUG);
3443 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3444 set_opt(sb, GRPID);
3445 if (def_mount_opts & EXT4_DEFM_UID16)
3446 set_opt(sb, NO_UID32);
3447 /* xattr user namespace & acls are now defaulted on */
3448 set_opt(sb, XATTR_USER);
3449#ifdef CONFIG_EXT4_FS_POSIX_ACL
3450 set_opt(sb, POSIX_ACL);
3451#endif
3452 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3453 if (ext4_has_metadata_csum(sb))
3454 set_opt(sb, JOURNAL_CHECKSUM);
3455
3456 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3457 set_opt(sb, JOURNAL_DATA);
3458 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3459 set_opt(sb, ORDERED_DATA);
3460 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3461 set_opt(sb, WRITEBACK_DATA);
3462
3463 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3464 set_opt(sb, ERRORS_PANIC);
3465 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3466 set_opt(sb, ERRORS_CONT);
3467 else
3468 set_opt(sb, ERRORS_RO);
3469 /* block_validity enabled by default; disable with noblock_validity */
3470 set_opt(sb, BLOCK_VALIDITY);
3471 if (def_mount_opts & EXT4_DEFM_DISCARD)
3472 set_opt(sb, DISCARD);
3473
3474 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3475 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3476 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3477 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3478 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3479
3480 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3481 set_opt(sb, BARRIER);
3482
3483 /*
3484 * enable delayed allocation by default
3485 * Use -o nodelalloc to turn it off
3486 */
3487 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3488 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3489 set_opt(sb, DELALLOC);
3490
3491 /*
3492 * set default s_li_wait_mult for lazyinit, for the case there is
3493 * no mount option specified.
3494 */
3495 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3496
3497 if (sbi->s_es->s_mount_opts[0]) {
3498 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3499 sizeof(sbi->s_es->s_mount_opts),
3500 GFP_KERNEL);
3501 if (!s_mount_opts)
3502 goto failed_mount;
3503 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3504 &journal_ioprio, 0)) {
3505 ext4_msg(sb, KERN_WARNING,
3506 "failed to parse options in superblock: %s",
3507 s_mount_opts);
3508 }
3509 kfree(s_mount_opts);
3510 }
3511 sbi->s_def_mount_opt = sbi->s_mount_opt;
3512 if (!parse_options((char *) data, sb, &journal_devnum,
3513 &journal_ioprio, 0))
3514 goto failed_mount;
3515
3516 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3517 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3518 "with data=journal disables delayed "
3519 "allocation and O_DIRECT support!\n");
3520 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3521 ext4_msg(sb, KERN_ERR, "can't mount with "
3522 "both data=journal and delalloc");
3523 goto failed_mount;
3524 }
3525 if (test_opt(sb, DIOREAD_NOLOCK)) {
3526 ext4_msg(sb, KERN_ERR, "can't mount with "
3527 "both data=journal and dioread_nolock");
3528 goto failed_mount;
3529 }
3530 if (test_opt(sb, DAX)) {
3531 ext4_msg(sb, KERN_ERR, "can't mount with "
3532 "both data=journal and dax");
3533 goto failed_mount;
3534 }
3535 if (ext4_has_feature_encrypt(sb)) {
3536 ext4_msg(sb, KERN_WARNING,
3537 "encrypted files will use data=ordered "
3538 "instead of data journaling mode");
3539 }
3540 if (test_opt(sb, DELALLOC))
3541 clear_opt(sb, DELALLOC);
3542 } else {
3543 sb->s_iflags |= SB_I_CGROUPWB;
3544 }
3545
3546 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3547 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3548
3549 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3550 (ext4_has_compat_features(sb) ||
3551 ext4_has_ro_compat_features(sb) ||
3552 ext4_has_incompat_features(sb)))
3553 ext4_msg(sb, KERN_WARNING,
3554 "feature flags set on rev 0 fs, "
3555 "running e2fsck is recommended");
3556
3557 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3558 set_opt2(sb, HURD_COMPAT);
3559 if (ext4_has_feature_64bit(sb)) {
3560 ext4_msg(sb, KERN_ERR,
3561 "The Hurd can't support 64-bit file systems");
3562 goto failed_mount;
3563 }
3564 }
3565
3566 if (IS_EXT2_SB(sb)) {
3567 if (ext2_feature_set_ok(sb))
3568 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3569 "using the ext4 subsystem");
3570 else {
3571 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3572 "to feature incompatibilities");
3573 goto failed_mount;
3574 }
3575 }
3576
3577 if (IS_EXT3_SB(sb)) {
3578 if (ext3_feature_set_ok(sb))
3579 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3580 "using the ext4 subsystem");
3581 else {
3582 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3583 "to feature incompatibilities");
3584 goto failed_mount;
3585 }
3586 }
3587
3588 /*
3589 * Check feature flags regardless of the revision level, since we
3590 * previously didn't change the revision level when setting the flags,
3591 * so there is a chance incompat flags are set on a rev 0 filesystem.
3592 */
3593 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3594 goto failed_mount;
3595
3596 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3597 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3598 blocksize > EXT4_MAX_BLOCK_SIZE) {
3599 ext4_msg(sb, KERN_ERR,
3600 "Unsupported filesystem blocksize %d (%d log_block_size)",
3601 blocksize, le32_to_cpu(es->s_log_block_size));
3602 goto failed_mount;
3603 }
3604 if (le32_to_cpu(es->s_log_block_size) >
3605 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3606 ext4_msg(sb, KERN_ERR,
3607 "Invalid log block size: %u",
3608 le32_to_cpu(es->s_log_block_size));
3609 goto failed_mount;
3610 }
3611
3612 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3613 ext4_msg(sb, KERN_ERR,
3614 "Number of reserved GDT blocks insanely large: %d",
3615 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3616 goto failed_mount;
3617 }
3618
3619 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3620 err = bdev_dax_supported(sb, blocksize);
3621 if (err)
3622 goto failed_mount;
3623 }
3624
3625 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3626 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3627 es->s_encryption_level);
3628 goto failed_mount;
3629 }
3630
3631 if (sb->s_blocksize != blocksize) {
3632 /* Validate the filesystem blocksize */
3633 if (!sb_set_blocksize(sb, blocksize)) {
3634 ext4_msg(sb, KERN_ERR, "bad block size %d",
3635 blocksize);
3636 goto failed_mount;
3637 }
3638
3639 brelse(bh);
3640 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3641 offset = do_div(logical_sb_block, blocksize);
3642 bh = sb_bread_unmovable(sb, logical_sb_block);
3643 if (!bh) {
3644 ext4_msg(sb, KERN_ERR,
3645 "Can't read superblock on 2nd try");
3646 goto failed_mount;
3647 }
3648 es = (struct ext4_super_block *)(bh->b_data + offset);
3649 sbi->s_es = es;
3650 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3651 ext4_msg(sb, KERN_ERR,
3652 "Magic mismatch, very weird!");
3653 goto failed_mount;
3654 }
3655 }
3656
3657 has_huge_files = ext4_has_feature_huge_file(sb);
3658 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3659 has_huge_files);
3660 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3661
3662 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3663 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3664 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3665 } else {
3666 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3667 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3668 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3669 (!is_power_of_2(sbi->s_inode_size)) ||
3670 (sbi->s_inode_size > blocksize)) {
3671 ext4_msg(sb, KERN_ERR,
3672 "unsupported inode size: %d",
3673 sbi->s_inode_size);
3674 goto failed_mount;
3675 }
3676 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3677 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3678 }
3679
3680 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3681 if (ext4_has_feature_64bit(sb)) {
3682 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3683 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3684 !is_power_of_2(sbi->s_desc_size)) {
3685 ext4_msg(sb, KERN_ERR,
3686 "unsupported descriptor size %lu",
3687 sbi->s_desc_size);
3688 goto failed_mount;
3689 }
3690 } else
3691 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3692
3693 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3694 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3695
3696 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3697 if (sbi->s_inodes_per_block == 0)
3698 goto cantfind_ext4;
3699 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3700 sbi->s_inodes_per_group > blocksize * 8) {
3701 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3702 sbi->s_blocks_per_group);
3703 goto failed_mount;
3704 }
3705 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3706 sbi->s_inodes_per_block;
3707 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3708 sbi->s_sbh = bh;
3709 sbi->s_mount_state = le16_to_cpu(es->s_state);
3710 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3711 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3712
3713 for (i = 0; i < 4; i++)
3714 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3715 sbi->s_def_hash_version = es->s_def_hash_version;
3716 if (ext4_has_feature_dir_index(sb)) {
3717 i = le32_to_cpu(es->s_flags);
3718 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3719 sbi->s_hash_unsigned = 3;
3720 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3721#ifdef __CHAR_UNSIGNED__
3722 if (!(sb->s_flags & MS_RDONLY))
3723 es->s_flags |=
3724 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3725 sbi->s_hash_unsigned = 3;
3726#else
3727 if (!(sb->s_flags & MS_RDONLY))
3728 es->s_flags |=
3729 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3730#endif
3731 }
3732 }
3733
3734 /* Handle clustersize */
3735 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3736 has_bigalloc = ext4_has_feature_bigalloc(sb);
3737 if (has_bigalloc) {
3738 if (clustersize < blocksize) {
3739 ext4_msg(sb, KERN_ERR,
3740 "cluster size (%d) smaller than "
3741 "block size (%d)", clustersize, blocksize);
3742 goto failed_mount;
3743 }
3744 if (le32_to_cpu(es->s_log_cluster_size) >
3745 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3746 ext4_msg(sb, KERN_ERR,
3747 "Invalid log cluster size: %u",
3748 le32_to_cpu(es->s_log_cluster_size));
3749 goto failed_mount;
3750 }
3751 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3752 le32_to_cpu(es->s_log_block_size);
3753 sbi->s_clusters_per_group =
3754 le32_to_cpu(es->s_clusters_per_group);
3755 if (sbi->s_clusters_per_group > blocksize * 8) {
3756 ext4_msg(sb, KERN_ERR,
3757 "#clusters per group too big: %lu",
3758 sbi->s_clusters_per_group);
3759 goto failed_mount;
3760 }
3761 if (sbi->s_blocks_per_group !=
3762 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3763 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3764 "clusters per group (%lu) inconsistent",
3765 sbi->s_blocks_per_group,
3766 sbi->s_clusters_per_group);
3767 goto failed_mount;
3768 }
3769 } else {
3770 if (clustersize != blocksize) {
3771 ext4_warning(sb, "fragment/cluster size (%d) != "
3772 "block size (%d)", clustersize,
3773 blocksize);
3774 clustersize = blocksize;
3775 }
3776 if (sbi->s_blocks_per_group > blocksize * 8) {
3777 ext4_msg(sb, KERN_ERR,
3778 "#blocks per group too big: %lu",
3779 sbi->s_blocks_per_group);
3780 goto failed_mount;
3781 }
3782 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3783 sbi->s_cluster_bits = 0;
3784 }
3785 sbi->s_cluster_ratio = clustersize / blocksize;
3786
3787 /* Do we have standard group size of clustersize * 8 blocks ? */
3788 if (sbi->s_blocks_per_group == clustersize << 3)
3789 set_opt2(sb, STD_GROUP_SIZE);
3790
3791 /*
3792 * Test whether we have more sectors than will fit in sector_t,
3793 * and whether the max offset is addressable by the page cache.
3794 */
3795 err = generic_check_addressable(sb->s_blocksize_bits,
3796 ext4_blocks_count(es));
3797 if (err) {
3798 ext4_msg(sb, KERN_ERR, "filesystem"
3799 " too large to mount safely on this system");
3800 if (sizeof(sector_t) < 8)
3801 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3802 goto failed_mount;
3803 }
3804
3805 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3806 goto cantfind_ext4;
3807
3808 /* check blocks count against device size */
3809 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3810 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3811 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3812 "exceeds size of device (%llu blocks)",
3813 ext4_blocks_count(es), blocks_count);
3814 goto failed_mount;
3815 }
3816
3817 /*
3818 * It makes no sense for the first data block to be beyond the end
3819 * of the filesystem.
3820 */
3821 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3822 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3823 "block %u is beyond end of filesystem (%llu)",
3824 le32_to_cpu(es->s_first_data_block),
3825 ext4_blocks_count(es));
3826 goto failed_mount;
3827 }
3828 blocks_count = (ext4_blocks_count(es) -
3829 le32_to_cpu(es->s_first_data_block) +
3830 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3831 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3832 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3833 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3834 "(block count %llu, first data block %u, "
3835 "blocks per group %lu)", sbi->s_groups_count,
3836 ext4_blocks_count(es),
3837 le32_to_cpu(es->s_first_data_block),
3838 EXT4_BLOCKS_PER_GROUP(sb));
3839 goto failed_mount;
3840 }
3841 sbi->s_groups_count = blocks_count;
3842 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3843 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3844 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3845 EXT4_DESC_PER_BLOCK(sb);
3846 if (ext4_has_feature_meta_bg(sb)) {
3847 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3848 ext4_msg(sb, KERN_WARNING,
3849 "first meta block group too large: %u "
3850 "(group descriptor block count %u)",
3851 le32_to_cpu(es->s_first_meta_bg), db_count);
3852 goto failed_mount;
3853 }
3854 }
3855 sbi->s_group_desc = ext4_kvmalloc(db_count *
3856 sizeof(struct buffer_head *),
3857 GFP_KERNEL);
3858 if (sbi->s_group_desc == NULL) {
3859 ext4_msg(sb, KERN_ERR, "not enough memory");
3860 ret = -ENOMEM;
3861 goto failed_mount;
3862 }
3863
3864 bgl_lock_init(sbi->s_blockgroup_lock);
3865
3866 for (i = 0; i < db_count; i++) {
3867 block = descriptor_loc(sb, logical_sb_block, i);
3868 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3869 if (!sbi->s_group_desc[i]) {
3870 ext4_msg(sb, KERN_ERR,
3871 "can't read group descriptor %d", i);
3872 db_count = i;
3873 goto failed_mount2;
3874 }
3875 }
3876 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3877 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3878 ret = -EFSCORRUPTED;
3879 goto failed_mount2;
3880 }
3881
3882 sbi->s_gdb_count = db_count;
3883 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3884 spin_lock_init(&sbi->s_next_gen_lock);
3885
3886 setup_timer(&sbi->s_err_report, print_daily_error_info,
3887 (unsigned long) sb);
3888
3889 /* Register extent status tree shrinker */
3890 if (ext4_es_register_shrinker(sbi))
3891 goto failed_mount3;
3892
3893 sbi->s_stripe = ext4_get_stripe_size(sbi);
3894 sbi->s_extent_max_zeroout_kb = 32;
3895
3896 /*
3897 * set up enough so that it can read an inode
3898 */
3899 sb->s_op = &ext4_sops;
3900 sb->s_export_op = &ext4_export_ops;
3901 sb->s_xattr = ext4_xattr_handlers;
3902 sb->s_cop = &ext4_cryptops;
3903#ifdef CONFIG_QUOTA
3904 sb->dq_op = &ext4_quota_operations;
3905 if (ext4_has_feature_quota(sb))
3906 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3907 else
3908 sb->s_qcop = &ext4_qctl_operations;
3909 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3910#endif
3911 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3912
3913 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3914 mutex_init(&sbi->s_orphan_lock);
3915
3916 sb->s_root = NULL;
3917
3918 needs_recovery = (es->s_last_orphan != 0 ||
3919 ext4_has_feature_journal_needs_recovery(sb));
3920
3921 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3922 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3923 goto failed_mount3a;
3924
3925 /*
3926 * The first inode we look at is the journal inode. Don't try
3927 * root first: it may be modified in the journal!
3928 */
3929 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3930 err = ext4_load_journal(sb, es, journal_devnum);
3931 if (err)
3932 goto failed_mount3a;
3933 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3934 ext4_has_feature_journal_needs_recovery(sb)) {
3935 ext4_msg(sb, KERN_ERR, "required journal recovery "
3936 "suppressed and not mounted read-only");
3937 goto failed_mount_wq;
3938 } else {
3939 /* Nojournal mode, all journal mount options are illegal */
3940 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3941 ext4_msg(sb, KERN_ERR, "can't mount with "
3942 "journal_checksum, fs mounted w/o journal");
3943 goto failed_mount_wq;
3944 }
3945 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3946 ext4_msg(sb, KERN_ERR, "can't mount with "
3947 "journal_async_commit, fs mounted w/o journal");
3948 goto failed_mount_wq;
3949 }
3950 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3951 ext4_msg(sb, KERN_ERR, "can't mount with "
3952 "commit=%lu, fs mounted w/o journal",
3953 sbi->s_commit_interval / HZ);
3954 goto failed_mount_wq;
3955 }
3956 if (EXT4_MOUNT_DATA_FLAGS &
3957 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3958 ext4_msg(sb, KERN_ERR, "can't mount with "
3959 "data=, fs mounted w/o journal");
3960 goto failed_mount_wq;
3961 }
3962 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3963 clear_opt(sb, JOURNAL_CHECKSUM);
3964 clear_opt(sb, DATA_FLAGS);
3965 sbi->s_journal = NULL;
3966 needs_recovery = 0;
3967 goto no_journal;
3968 }
3969
3970 if (ext4_has_feature_64bit(sb) &&
3971 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3972 JBD2_FEATURE_INCOMPAT_64BIT)) {
3973 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3974 goto failed_mount_wq;
3975 }
3976
3977 if (!set_journal_csum_feature_set(sb)) {
3978 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3979 "feature set");
3980 goto failed_mount_wq;
3981 }
3982
3983 /* We have now updated the journal if required, so we can
3984 * validate the data journaling mode. */
3985 switch (test_opt(sb, DATA_FLAGS)) {
3986 case 0:
3987 /* No mode set, assume a default based on the journal
3988 * capabilities: ORDERED_DATA if the journal can
3989 * cope, else JOURNAL_DATA
3990 */
3991 if (jbd2_journal_check_available_features
3992 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3993 set_opt(sb, ORDERED_DATA);
3994 else
3995 set_opt(sb, JOURNAL_DATA);
3996 break;
3997
3998 case EXT4_MOUNT_ORDERED_DATA:
3999 case EXT4_MOUNT_WRITEBACK_DATA:
4000 if (!jbd2_journal_check_available_features
4001 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4002 ext4_msg(sb, KERN_ERR, "Journal does not support "
4003 "requested data journaling mode");
4004 goto failed_mount_wq;
4005 }
4006 default:
4007 break;
4008 }
4009
4010 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4011 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4012 ext4_msg(sb, KERN_ERR, "can't mount with "
4013 "journal_async_commit in data=ordered mode");
4014 goto failed_mount_wq;
4015 }
4016
4017 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4018
4019 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4020
4021no_journal:
4022 sbi->s_mb_cache = ext4_xattr_create_cache();
4023 if (!sbi->s_mb_cache) {
4024 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4025 goto failed_mount_wq;
4026 }
4027
4028 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4029 (blocksize != PAGE_SIZE)) {
4030 ext4_msg(sb, KERN_ERR,
4031 "Unsupported blocksize for fs encryption");
4032 goto failed_mount_wq;
4033 }
4034
4035 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
4036 !ext4_has_feature_encrypt(sb)) {
4037 ext4_set_feature_encrypt(sb);
4038 ext4_commit_super(sb, 1);
4039 }
4040
4041 /*
4042 * Get the # of file system overhead blocks from the
4043 * superblock if present.
4044 */
4045 if (es->s_overhead_clusters)
4046 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4047 else {
4048 err = ext4_calculate_overhead(sb);
4049 if (err)
4050 goto failed_mount_wq;
4051 }
4052
4053 /*
4054 * The maximum number of concurrent works can be high and
4055 * concurrency isn't really necessary. Limit it to 1.
4056 */
4057 EXT4_SB(sb)->rsv_conversion_wq =
4058 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4059 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4060 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4061 ret = -ENOMEM;
4062 goto failed_mount4;
4063 }
4064
4065 /*
4066 * The jbd2_journal_load will have done any necessary log recovery,
4067 * so we can safely mount the rest of the filesystem now.
4068 */
4069
4070 root = ext4_iget(sb, EXT4_ROOT_INO);
4071 if (IS_ERR(root)) {
4072 ext4_msg(sb, KERN_ERR, "get root inode failed");
4073 ret = PTR_ERR(root);
4074 root = NULL;
4075 goto failed_mount4;
4076 }
4077 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4078 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4079 iput(root);
4080 goto failed_mount4;
4081 }
4082 sb->s_root = d_make_root(root);
4083 if (!sb->s_root) {
4084 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4085 ret = -ENOMEM;
4086 goto failed_mount4;
4087 }
4088
4089 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4090 sb->s_flags |= MS_RDONLY;
4091
4092 /* determine the minimum size of new large inodes, if present */
4093 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4094 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4095 EXT4_GOOD_OLD_INODE_SIZE;
4096 if (ext4_has_feature_extra_isize(sb)) {
4097 if (sbi->s_want_extra_isize <
4098 le16_to_cpu(es->s_want_extra_isize))
4099 sbi->s_want_extra_isize =
4100 le16_to_cpu(es->s_want_extra_isize);
4101 if (sbi->s_want_extra_isize <
4102 le16_to_cpu(es->s_min_extra_isize))
4103 sbi->s_want_extra_isize =
4104 le16_to_cpu(es->s_min_extra_isize);
4105 }
4106 }
4107 /* Check if enough inode space is available */
4108 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4109 sbi->s_inode_size) {
4110 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4111 EXT4_GOOD_OLD_INODE_SIZE;
4112 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4113 "available");
4114 }
4115
4116 ext4_set_resv_clusters(sb);
4117
4118 err = ext4_setup_system_zone(sb);
4119 if (err) {
4120 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4121 "zone (%d)", err);
4122 goto failed_mount4a;
4123 }
4124
4125 ext4_ext_init(sb);
4126 err = ext4_mb_init(sb);
4127 if (err) {
4128 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4129 err);
4130 goto failed_mount5;
4131 }
4132
4133 block = ext4_count_free_clusters(sb);
4134 ext4_free_blocks_count_set(sbi->s_es,
4135 EXT4_C2B(sbi, block));
4136 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4137 GFP_KERNEL);
4138 if (!err) {
4139 unsigned long freei = ext4_count_free_inodes(sb);
4140 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4141 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4142 GFP_KERNEL);
4143 }
4144 if (!err)
4145 err = percpu_counter_init(&sbi->s_dirs_counter,
4146 ext4_count_dirs(sb), GFP_KERNEL);
4147 if (!err)
4148 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4149 GFP_KERNEL);
4150 if (!err)
4151 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4152
4153 if (err) {
4154 ext4_msg(sb, KERN_ERR, "insufficient memory");
4155 goto failed_mount6;
4156 }
4157
4158 if (ext4_has_feature_flex_bg(sb))
4159 if (!ext4_fill_flex_info(sb)) {
4160 ext4_msg(sb, KERN_ERR,
4161 "unable to initialize "
4162 "flex_bg meta info!");
4163 goto failed_mount6;
4164 }
4165
4166 err = ext4_register_li_request(sb, first_not_zeroed);
4167 if (err)
4168 goto failed_mount6;
4169
4170 err = ext4_register_sysfs(sb);
4171 if (err)
4172 goto failed_mount7;
4173
4174#ifdef CONFIG_QUOTA
4175 /* Enable quota usage during mount. */
4176 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4177 err = ext4_enable_quotas(sb);
4178 if (err)
4179 goto failed_mount8;
4180 }
4181#endif /* CONFIG_QUOTA */
4182
4183 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4184 ext4_orphan_cleanup(sb, es);
4185 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4186 if (needs_recovery) {
4187 ext4_msg(sb, KERN_INFO, "recovery complete");
4188 ext4_mark_recovery_complete(sb, es);
4189 }
4190 if (EXT4_SB(sb)->s_journal) {
4191 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4192 descr = " journalled data mode";
4193 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4194 descr = " ordered data mode";
4195 else
4196 descr = " writeback data mode";
4197 } else
4198 descr = "out journal";
4199
4200 if (test_opt(sb, DISCARD)) {
4201 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4202 if (!blk_queue_discard(q))
4203 ext4_msg(sb, KERN_WARNING,
4204 "mounting with \"discard\" option, but "
4205 "the device does not support discard");
4206 }
4207
4208 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4209 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4210 "Opts: %.*s%s%s", descr,
4211 (int) sizeof(sbi->s_es->s_mount_opts),
4212 sbi->s_es->s_mount_opts,
4213 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4214
4215 if (es->s_error_count)
4216 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4217
4218 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4219 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4220 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4221 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4222
4223 kfree(orig_data);
4224#ifdef CONFIG_EXT4_FS_ENCRYPTION
4225 memcpy(sbi->key_prefix, EXT4_KEY_DESC_PREFIX,
4226 EXT4_KEY_DESC_PREFIX_SIZE);
4227 sbi->key_prefix_size = EXT4_KEY_DESC_PREFIX_SIZE;
4228#endif
4229 return 0;
4230
4231cantfind_ext4:
4232 if (!silent)
4233 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4234 goto failed_mount;
4235
4236#ifdef CONFIG_QUOTA
4237failed_mount8:
4238 ext4_unregister_sysfs(sb);
4239#endif
4240failed_mount7:
4241 ext4_unregister_li_request(sb);
4242failed_mount6:
4243 ext4_mb_release(sb);
4244 if (sbi->s_flex_groups)
4245 kvfree(sbi->s_flex_groups);
4246 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4247 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4248 percpu_counter_destroy(&sbi->s_dirs_counter);
4249 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4250failed_mount5:
4251 ext4_ext_release(sb);
4252 ext4_release_system_zone(sb);
4253failed_mount4a:
4254 dput(sb->s_root);
4255 sb->s_root = NULL;
4256failed_mount4:
4257 ext4_msg(sb, KERN_ERR, "mount failed");
4258 if (EXT4_SB(sb)->rsv_conversion_wq)
4259 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4260failed_mount_wq:
4261 if (sbi->s_mb_cache) {
4262 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4263 sbi->s_mb_cache = NULL;
4264 }
4265 if (sbi->s_journal) {
4266 jbd2_journal_destroy(sbi->s_journal);
4267 sbi->s_journal = NULL;
4268 }
4269failed_mount3a:
4270 ext4_es_unregister_shrinker(sbi);
4271failed_mount3:
4272 del_timer_sync(&sbi->s_err_report);
4273 if (sbi->s_mmp_tsk)
4274 kthread_stop(sbi->s_mmp_tsk);
4275failed_mount2:
4276 for (i = 0; i < db_count; i++)
4277 brelse(sbi->s_group_desc[i]);
4278 kvfree(sbi->s_group_desc);
4279failed_mount:
4280 if (sbi->s_chksum_driver)
4281 crypto_free_shash(sbi->s_chksum_driver);
4282#ifdef CONFIG_QUOTA
4283 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4284 kfree(sbi->s_qf_names[i]);
4285#endif
4286 ext4_blkdev_remove(sbi);
4287 brelse(bh);
4288out_fail:
4289 sb->s_fs_info = NULL;
4290 kfree(sbi->s_blockgroup_lock);
4291out_free_base:
4292 kfree(sbi);
4293 kfree(orig_data);
4294 return err ? err : ret;
4295}
4296
4297/*
4298 * Setup any per-fs journal parameters now. We'll do this both on
4299 * initial mount, once the journal has been initialised but before we've
4300 * done any recovery; and again on any subsequent remount.
4301 */
4302static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4303{
4304 struct ext4_sb_info *sbi = EXT4_SB(sb);
4305
4306 journal->j_commit_interval = sbi->s_commit_interval;
4307 journal->j_min_batch_time = sbi->s_min_batch_time;
4308 journal->j_max_batch_time = sbi->s_max_batch_time;
4309
4310 write_lock(&journal->j_state_lock);
4311 if (test_opt(sb, BARRIER))
4312 journal->j_flags |= JBD2_BARRIER;
4313 else
4314 journal->j_flags &= ~JBD2_BARRIER;
4315 if (test_opt(sb, DATA_ERR_ABORT))
4316 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4317 else
4318 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4319 write_unlock(&journal->j_state_lock);
4320}
4321
4322static struct inode *ext4_get_journal_inode(struct super_block *sb,
4323 unsigned int journal_inum)
4324{
4325 struct inode *journal_inode;
4326
4327 /*
4328 * Test for the existence of a valid inode on disk. Bad things
4329 * happen if we iget() an unused inode, as the subsequent iput()
4330 * will try to delete it.
4331 */
4332 journal_inode = ext4_iget(sb, journal_inum);
4333 if (IS_ERR(journal_inode)) {
4334 ext4_msg(sb, KERN_ERR, "no journal found");
4335 return NULL;
4336 }
4337 if (!journal_inode->i_nlink) {
4338 make_bad_inode(journal_inode);
4339 iput(journal_inode);
4340 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4341 return NULL;
4342 }
4343
4344 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4345 journal_inode, journal_inode->i_size);
4346 if (!S_ISREG(journal_inode->i_mode)) {
4347 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4348 iput(journal_inode);
4349 return NULL;
4350 }
4351 return journal_inode;
4352}
4353
4354static journal_t *ext4_get_journal(struct super_block *sb,
4355 unsigned int journal_inum)
4356{
4357 struct inode *journal_inode;
4358 journal_t *journal;
4359
4360 BUG_ON(!ext4_has_feature_journal(sb));
4361
4362 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4363 if (!journal_inode)
4364 return NULL;
4365
4366 journal = jbd2_journal_init_inode(journal_inode);
4367 if (!journal) {
4368 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4369 iput(journal_inode);
4370 return NULL;
4371 }
4372 journal->j_private = sb;
4373 ext4_init_journal_params(sb, journal);
4374 return journal;
4375}
4376
4377static journal_t *ext4_get_dev_journal(struct super_block *sb,
4378 dev_t j_dev)
4379{
4380 struct buffer_head *bh;
4381 journal_t *journal;
4382 ext4_fsblk_t start;
4383 ext4_fsblk_t len;
4384 int hblock, blocksize;
4385 ext4_fsblk_t sb_block;
4386 unsigned long offset;
4387 struct ext4_super_block *es;
4388 struct block_device *bdev;
4389
4390 BUG_ON(!ext4_has_feature_journal(sb));
4391
4392 bdev = ext4_blkdev_get(j_dev, sb);
4393 if (bdev == NULL)
4394 return NULL;
4395
4396 blocksize = sb->s_blocksize;
4397 hblock = bdev_logical_block_size(bdev);
4398 if (blocksize < hblock) {
4399 ext4_msg(sb, KERN_ERR,
4400 "blocksize too small for journal device");
4401 goto out_bdev;
4402 }
4403
4404 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4405 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4406 set_blocksize(bdev, blocksize);
4407 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4408 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4409 "external journal");
4410 goto out_bdev;
4411 }
4412
4413 es = (struct ext4_super_block *) (bh->b_data + offset);
4414 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4415 !(le32_to_cpu(es->s_feature_incompat) &
4416 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4417 ext4_msg(sb, KERN_ERR, "external journal has "
4418 "bad superblock");
4419 brelse(bh);
4420 goto out_bdev;
4421 }
4422
4423 if ((le32_to_cpu(es->s_feature_ro_compat) &
4424 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4425 es->s_checksum != ext4_superblock_csum(sb, es)) {
4426 ext4_msg(sb, KERN_ERR, "external journal has "
4427 "corrupt superblock");
4428 brelse(bh);
4429 goto out_bdev;
4430 }
4431
4432 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4433 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4434 brelse(bh);
4435 goto out_bdev;
4436 }
4437
4438 len = ext4_blocks_count(es);
4439 start = sb_block + 1;
4440 brelse(bh); /* we're done with the superblock */
4441
4442 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4443 start, len, blocksize);
4444 if (!journal) {
4445 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4446 goto out_bdev;
4447 }
4448 journal->j_private = sb;
4449 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4450 wait_on_buffer(journal->j_sb_buffer);
4451 if (!buffer_uptodate(journal->j_sb_buffer)) {
4452 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4453 goto out_journal;
4454 }
4455 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4456 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4457 "user (unsupported) - %d",
4458 be32_to_cpu(journal->j_superblock->s_nr_users));
4459 goto out_journal;
4460 }
4461 EXT4_SB(sb)->journal_bdev = bdev;
4462 ext4_init_journal_params(sb, journal);
4463 return journal;
4464
4465out_journal:
4466 jbd2_journal_destroy(journal);
4467out_bdev:
4468 ext4_blkdev_put(bdev);
4469 return NULL;
4470}
4471
4472static int ext4_load_journal(struct super_block *sb,
4473 struct ext4_super_block *es,
4474 unsigned long journal_devnum)
4475{
4476 journal_t *journal;
4477 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4478 dev_t journal_dev;
4479 int err = 0;
4480 int really_read_only;
4481
4482 BUG_ON(!ext4_has_feature_journal(sb));
4483
4484 if (journal_devnum &&
4485 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4486 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4487 "numbers have changed");
4488 journal_dev = new_decode_dev(journal_devnum);
4489 } else
4490 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4491
4492 really_read_only = bdev_read_only(sb->s_bdev);
4493
4494 /*
4495 * Are we loading a blank journal or performing recovery after a
4496 * crash? For recovery, we need to check in advance whether we
4497 * can get read-write access to the device.
4498 */
4499 if (ext4_has_feature_journal_needs_recovery(sb)) {
4500 if (sb->s_flags & MS_RDONLY) {
4501 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4502 "required on readonly filesystem");
4503 if (really_read_only) {
4504 ext4_msg(sb, KERN_ERR, "write access "
4505 "unavailable, cannot proceed");
4506 return -EROFS;
4507 }
4508 ext4_msg(sb, KERN_INFO, "write access will "
4509 "be enabled during recovery");
4510 }
4511 }
4512
4513 if (journal_inum && journal_dev) {
4514 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4515 "and inode journals!");
4516 return -EINVAL;
4517 }
4518
4519 if (journal_inum) {
4520 if (!(journal = ext4_get_journal(sb, journal_inum)))
4521 return -EINVAL;
4522 } else {
4523 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4524 return -EINVAL;
4525 }
4526
4527 if (!(journal->j_flags & JBD2_BARRIER))
4528 ext4_msg(sb, KERN_INFO, "barriers disabled");
4529
4530 if (!ext4_has_feature_journal_needs_recovery(sb))
4531 err = jbd2_journal_wipe(journal, !really_read_only);
4532 if (!err) {
4533 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4534 if (save)
4535 memcpy(save, ((char *) es) +
4536 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4537 err = jbd2_journal_load(journal);
4538 if (save)
4539 memcpy(((char *) es) + EXT4_S_ERR_START,
4540 save, EXT4_S_ERR_LEN);
4541 kfree(save);
4542 }
4543
4544 if (err) {
4545 ext4_msg(sb, KERN_ERR, "error loading journal");
4546 jbd2_journal_destroy(journal);
4547 return err;
4548 }
4549
4550 EXT4_SB(sb)->s_journal = journal;
4551 ext4_clear_journal_err(sb, es);
4552
4553 if (!really_read_only && journal_devnum &&
4554 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4555 es->s_journal_dev = cpu_to_le32(journal_devnum);
4556
4557 /* Make sure we flush the recovery flag to disk. */
4558 ext4_commit_super(sb, 1);
4559 }
4560
4561 return 0;
4562}
4563
4564static int ext4_commit_super(struct super_block *sb, int sync)
4565{
4566 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4567 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4568 int error = 0;
4569
4570 if (!sbh || block_device_ejected(sb))
4571 return error;
4572 /*
4573 * If the file system is mounted read-only, don't update the
4574 * superblock write time. This avoids updating the superblock
4575 * write time when we are mounting the root file system
4576 * read/only but we need to replay the journal; at that point,
4577 * for people who are east of GMT and who make their clock
4578 * tick in localtime for Windows bug-for-bug compatibility,
4579 * the clock is set in the future, and this will cause e2fsck
4580 * to complain and force a full file system check.
4581 */
4582 if (!(sb->s_flags & MS_RDONLY))
4583 es->s_wtime = cpu_to_le32(get_seconds());
4584 if (sb->s_bdev->bd_part)
4585 es->s_kbytes_written =
4586 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4587 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4588 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4589 else
4590 es->s_kbytes_written =
4591 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4592 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4593 ext4_free_blocks_count_set(es,
4594 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4595 &EXT4_SB(sb)->s_freeclusters_counter)));
4596 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4597 es->s_free_inodes_count =
4598 cpu_to_le32(percpu_counter_sum_positive(
4599 &EXT4_SB(sb)->s_freeinodes_counter));
4600 BUFFER_TRACE(sbh, "marking dirty");
4601 ext4_superblock_csum_set(sb);
4602 if (sync)
4603 lock_buffer(sbh);
4604 if (buffer_write_io_error(sbh)) {
4605 /*
4606 * Oh, dear. A previous attempt to write the
4607 * superblock failed. This could happen because the
4608 * USB device was yanked out. Or it could happen to
4609 * be a transient write error and maybe the block will
4610 * be remapped. Nothing we can do but to retry the
4611 * write and hope for the best.
4612 */
4613 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4614 "superblock detected");
4615 clear_buffer_write_io_error(sbh);
4616 set_buffer_uptodate(sbh);
4617 }
4618 mark_buffer_dirty(sbh);
4619 if (sync) {
4620 unlock_buffer(sbh);
4621 error = __sync_dirty_buffer(sbh,
4622 test_opt(sb, BARRIER) ? REQ_FUA : REQ_SYNC);
4623 if (error)
4624 return error;
4625
4626 error = buffer_write_io_error(sbh);
4627 if (error) {
4628 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4629 "superblock");
4630 clear_buffer_write_io_error(sbh);
4631 set_buffer_uptodate(sbh);
4632 }
4633 }
4634 return error;
4635}
4636
4637/*
4638 * Have we just finished recovery? If so, and if we are mounting (or
4639 * remounting) the filesystem readonly, then we will end up with a
4640 * consistent fs on disk. Record that fact.
4641 */
4642static void ext4_mark_recovery_complete(struct super_block *sb,
4643 struct ext4_super_block *es)
4644{
4645 journal_t *journal = EXT4_SB(sb)->s_journal;
4646
4647 if (!ext4_has_feature_journal(sb)) {
4648 BUG_ON(journal != NULL);
4649 return;
4650 }
4651 jbd2_journal_lock_updates(journal);
4652 if (jbd2_journal_flush(journal) < 0)
4653 goto out;
4654
4655 if (ext4_has_feature_journal_needs_recovery(sb) &&
4656 sb->s_flags & MS_RDONLY) {
4657 ext4_clear_feature_journal_needs_recovery(sb);
4658 ext4_commit_super(sb, 1);
4659 }
4660
4661out:
4662 jbd2_journal_unlock_updates(journal);
4663}
4664
4665/*
4666 * If we are mounting (or read-write remounting) a filesystem whose journal
4667 * has recorded an error from a previous lifetime, move that error to the
4668 * main filesystem now.
4669 */
4670static void ext4_clear_journal_err(struct super_block *sb,
4671 struct ext4_super_block *es)
4672{
4673 journal_t *journal;
4674 int j_errno;
4675 const char *errstr;
4676
4677 BUG_ON(!ext4_has_feature_journal(sb));
4678
4679 journal = EXT4_SB(sb)->s_journal;
4680
4681 /*
4682 * Now check for any error status which may have been recorded in the
4683 * journal by a prior ext4_error() or ext4_abort()
4684 */
4685
4686 j_errno = jbd2_journal_errno(journal);
4687 if (j_errno) {
4688 char nbuf[16];
4689
4690 errstr = ext4_decode_error(sb, j_errno, nbuf);
4691 ext4_warning(sb, "Filesystem error recorded "
4692 "from previous mount: %s", errstr);
4693 ext4_warning(sb, "Marking fs in need of filesystem check.");
4694
4695 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4696 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4697 ext4_commit_super(sb, 1);
4698
4699 jbd2_journal_clear_err(journal);
4700 jbd2_journal_update_sb_errno(journal);
4701 }
4702}
4703
4704/*
4705 * Force the running and committing transactions to commit,
4706 * and wait on the commit.
4707 */
4708int ext4_force_commit(struct super_block *sb)
4709{
4710 journal_t *journal;
4711
4712 if (sb->s_flags & MS_RDONLY)
4713 return 0;
4714
4715 journal = EXT4_SB(sb)->s_journal;
4716 return ext4_journal_force_commit(journal);
4717}
4718
4719static int ext4_sync_fs(struct super_block *sb, int wait)
4720{
4721 int ret = 0;
4722 tid_t target;
4723 bool needs_barrier = false;
4724 struct ext4_sb_info *sbi = EXT4_SB(sb);
4725
4726 trace_ext4_sync_fs(sb, wait);
4727 flush_workqueue(sbi->rsv_conversion_wq);
4728 /*
4729 * Writeback quota in non-journalled quota case - journalled quota has
4730 * no dirty dquots
4731 */
4732 dquot_writeback_dquots(sb, -1);
4733 /*
4734 * Data writeback is possible w/o journal transaction, so barrier must
4735 * being sent at the end of the function. But we can skip it if
4736 * transaction_commit will do it for us.
4737 */
4738 if (sbi->s_journal) {
4739 target = jbd2_get_latest_transaction(sbi->s_journal);
4740 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4741 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4742 needs_barrier = true;
4743
4744 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4745 if (wait)
4746 ret = jbd2_log_wait_commit(sbi->s_journal,
4747 target);
4748 }
4749 } else if (wait && test_opt(sb, BARRIER))
4750 needs_barrier = true;
4751 if (needs_barrier) {
4752 int err;
4753 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4754 if (!ret)
4755 ret = err;
4756 }
4757
4758 return ret;
4759}
4760
4761/*
4762 * LVM calls this function before a (read-only) snapshot is created. This
4763 * gives us a chance to flush the journal completely and mark the fs clean.
4764 *
4765 * Note that only this function cannot bring a filesystem to be in a clean
4766 * state independently. It relies on upper layer to stop all data & metadata
4767 * modifications.
4768 */
4769static int ext4_freeze(struct super_block *sb)
4770{
4771 int error = 0;
4772 journal_t *journal;
4773
4774 if (sb->s_flags & MS_RDONLY)
4775 return 0;
4776
4777 journal = EXT4_SB(sb)->s_journal;
4778
4779 if (journal) {
4780 /* Now we set up the journal barrier. */
4781 jbd2_journal_lock_updates(journal);
4782
4783 /*
4784 * Don't clear the needs_recovery flag if we failed to
4785 * flush the journal.
4786 */
4787 error = jbd2_journal_flush(journal);
4788 if (error < 0)
4789 goto out;
4790
4791 /* Journal blocked and flushed, clear needs_recovery flag. */
4792 ext4_clear_feature_journal_needs_recovery(sb);
4793 }
4794
4795 error = ext4_commit_super(sb, 1);
4796out:
4797 if (journal)
4798 /* we rely on upper layer to stop further updates */
4799 jbd2_journal_unlock_updates(journal);
4800 return error;
4801}
4802
4803/*
4804 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4805 * flag here, even though the filesystem is not technically dirty yet.
4806 */
4807static int ext4_unfreeze(struct super_block *sb)
4808{
4809 if (sb->s_flags & MS_RDONLY)
4810 return 0;
4811
4812 if (EXT4_SB(sb)->s_journal) {
4813 /* Reset the needs_recovery flag before the fs is unlocked. */
4814 ext4_set_feature_journal_needs_recovery(sb);
4815 }
4816
4817 ext4_commit_super(sb, 1);
4818 return 0;
4819}
4820
4821/*
4822 * Structure to save mount options for ext4_remount's benefit
4823 */
4824struct ext4_mount_options {
4825 unsigned long s_mount_opt;
4826 unsigned long s_mount_opt2;
4827 kuid_t s_resuid;
4828 kgid_t s_resgid;
4829 unsigned long s_commit_interval;
4830 u32 s_min_batch_time, s_max_batch_time;
4831#ifdef CONFIG_QUOTA
4832 int s_jquota_fmt;
4833 char *s_qf_names[EXT4_MAXQUOTAS];
4834#endif
4835};
4836
4837static int ext4_remount(struct super_block *sb, int *flags, char *data)
4838{
4839 struct ext4_super_block *es;
4840 struct ext4_sb_info *sbi = EXT4_SB(sb);
4841 unsigned long old_sb_flags;
4842 struct ext4_mount_options old_opts;
4843 int enable_quota = 0;
4844 ext4_group_t g;
4845 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4846 int err = 0;
4847#ifdef CONFIG_QUOTA
4848 int i, j;
4849#endif
4850 char *orig_data = kstrdup(data, GFP_KERNEL);
4851
4852 /* Store the original options */
4853 old_sb_flags = sb->s_flags;
4854 old_opts.s_mount_opt = sbi->s_mount_opt;
4855 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4856 old_opts.s_resuid = sbi->s_resuid;
4857 old_opts.s_resgid = sbi->s_resgid;
4858 old_opts.s_commit_interval = sbi->s_commit_interval;
4859 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4860 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4861#ifdef CONFIG_QUOTA
4862 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4863 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4864 if (sbi->s_qf_names[i]) {
4865 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4866 GFP_KERNEL);
4867 if (!old_opts.s_qf_names[i]) {
4868 for (j = 0; j < i; j++)
4869 kfree(old_opts.s_qf_names[j]);
4870 kfree(orig_data);
4871 return -ENOMEM;
4872 }
4873 } else
4874 old_opts.s_qf_names[i] = NULL;
4875#endif
4876 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4877 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4878
4879 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4880 err = -EINVAL;
4881 goto restore_opts;
4882 }
4883
4884 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4885 test_opt(sb, JOURNAL_CHECKSUM)) {
4886 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4887 "during remount not supported; ignoring");
4888 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4889 }
4890
4891 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4892 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4893 ext4_msg(sb, KERN_ERR, "can't mount with "
4894 "both data=journal and delalloc");
4895 err = -EINVAL;
4896 goto restore_opts;
4897 }
4898 if (test_opt(sb, DIOREAD_NOLOCK)) {
4899 ext4_msg(sb, KERN_ERR, "can't mount with "
4900 "both data=journal and dioread_nolock");
4901 err = -EINVAL;
4902 goto restore_opts;
4903 }
4904 if (test_opt(sb, DAX)) {
4905 ext4_msg(sb, KERN_ERR, "can't mount with "
4906 "both data=journal and dax");
4907 err = -EINVAL;
4908 goto restore_opts;
4909 }
4910 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
4911 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4912 ext4_msg(sb, KERN_ERR, "can't mount with "
4913 "journal_async_commit in data=ordered mode");
4914 err = -EINVAL;
4915 goto restore_opts;
4916 }
4917 }
4918
4919 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4920 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4921 "dax flag with busy inodes while remounting");
4922 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4923 }
4924
4925 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4926 ext4_abort(sb, "Abort forced by user");
4927
4928 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4929 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4930
4931 es = sbi->s_es;
4932
4933 if (sbi->s_journal) {
4934 ext4_init_journal_params(sb, sbi->s_journal);
4935 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4936 }
4937
4938 if (*flags & MS_LAZYTIME)
4939 sb->s_flags |= MS_LAZYTIME;
4940
4941 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4942 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4943 err = -EROFS;
4944 goto restore_opts;
4945 }
4946
4947 if (*flags & MS_RDONLY) {
4948 err = sync_filesystem(sb);
4949 if (err < 0)
4950 goto restore_opts;
4951 err = dquot_suspend(sb, -1);
4952 if (err < 0)
4953 goto restore_opts;
4954
4955 /*
4956 * First of all, the unconditional stuff we have to do
4957 * to disable replay of the journal when we next remount
4958 */
4959 sb->s_flags |= MS_RDONLY;
4960
4961 /*
4962 * OK, test if we are remounting a valid rw partition
4963 * readonly, and if so set the rdonly flag and then
4964 * mark the partition as valid again.
4965 */
4966 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4967 (sbi->s_mount_state & EXT4_VALID_FS))
4968 es->s_state = cpu_to_le16(sbi->s_mount_state);
4969
4970 if (sbi->s_journal)
4971 ext4_mark_recovery_complete(sb, es);
4972 } else {
4973 /* Make sure we can mount this feature set readwrite */
4974 if (ext4_has_feature_readonly(sb) ||
4975 !ext4_feature_set_ok(sb, 0)) {
4976 err = -EROFS;
4977 goto restore_opts;
4978 }
4979 /*
4980 * Make sure the group descriptor checksums
4981 * are sane. If they aren't, refuse to remount r/w.
4982 */
4983 for (g = 0; g < sbi->s_groups_count; g++) {
4984 struct ext4_group_desc *gdp =
4985 ext4_get_group_desc(sb, g, NULL);
4986
4987 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4988 ext4_msg(sb, KERN_ERR,
4989 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4990 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4991 le16_to_cpu(gdp->bg_checksum));
4992 err = -EFSBADCRC;
4993 goto restore_opts;
4994 }
4995 }
4996
4997 /*
4998 * If we have an unprocessed orphan list hanging
4999 * around from a previously readonly bdev mount,
5000 * require a full umount/remount for now.
5001 */
5002 if (es->s_last_orphan) {
5003 ext4_msg(sb, KERN_WARNING, "Couldn't "
5004 "remount RDWR because of unprocessed "
5005 "orphan inode list. Please "
5006 "umount/remount instead");
5007 err = -EINVAL;
5008 goto restore_opts;
5009 }
5010
5011 /*
5012 * Mounting a RDONLY partition read-write, so reread
5013 * and store the current valid flag. (It may have
5014 * been changed by e2fsck since we originally mounted
5015 * the partition.)
5016 */
5017 if (sbi->s_journal)
5018 ext4_clear_journal_err(sb, es);
5019 sbi->s_mount_state = le16_to_cpu(es->s_state);
5020 if (!ext4_setup_super(sb, es, 0))
5021 sb->s_flags &= ~MS_RDONLY;
5022 if (ext4_has_feature_mmp(sb))
5023 if (ext4_multi_mount_protect(sb,
5024 le64_to_cpu(es->s_mmp_block))) {
5025 err = -EROFS;
5026 goto restore_opts;
5027 }
5028 enable_quota = 1;
5029 }
5030 }
5031
5032 /*
5033 * Reinitialize lazy itable initialization thread based on
5034 * current settings
5035 */
5036 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5037 ext4_unregister_li_request(sb);
5038 else {
5039 ext4_group_t first_not_zeroed;
5040 first_not_zeroed = ext4_has_uninit_itable(sb);
5041 ext4_register_li_request(sb, first_not_zeroed);
5042 }
5043
5044 ext4_setup_system_zone(sb);
5045 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5046 ext4_commit_super(sb, 1);
5047
5048#ifdef CONFIG_QUOTA
5049 /* Release old quota file names */
5050 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5051 kfree(old_opts.s_qf_names[i]);
5052 if (enable_quota) {
5053 if (sb_any_quota_suspended(sb))
5054 dquot_resume(sb, -1);
5055 else if (ext4_has_feature_quota(sb)) {
5056 err = ext4_enable_quotas(sb);
5057 if (err)
5058 goto restore_opts;
5059 }
5060 }
5061#endif
5062
5063 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5064 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5065 kfree(orig_data);
5066 return 0;
5067
5068restore_opts:
5069 sb->s_flags = old_sb_flags;
5070 sbi->s_mount_opt = old_opts.s_mount_opt;
5071 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5072 sbi->s_resuid = old_opts.s_resuid;
5073 sbi->s_resgid = old_opts.s_resgid;
5074 sbi->s_commit_interval = old_opts.s_commit_interval;
5075 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5076 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5077#ifdef CONFIG_QUOTA
5078 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5079 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5080 kfree(sbi->s_qf_names[i]);
5081 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5082 }
5083#endif
5084 kfree(orig_data);
5085 return err;
5086}
5087
5088#ifdef CONFIG_QUOTA
5089static int ext4_statfs_project(struct super_block *sb,
5090 kprojid_t projid, struct kstatfs *buf)
5091{
5092 struct kqid qid;
5093 struct dquot *dquot;
5094 u64 limit;
5095 u64 curblock;
5096
5097 qid = make_kqid_projid(projid);
5098 dquot = dqget(sb, qid);
5099 if (IS_ERR(dquot))
5100 return PTR_ERR(dquot);
5101 spin_lock(&dq_data_lock);
5102
5103 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5104 dquot->dq_dqb.dqb_bsoftlimit :
5105 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5106 if (limit && buf->f_blocks > limit) {
5107 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5108 buf->f_blocks = limit;
5109 buf->f_bfree = buf->f_bavail =
5110 (buf->f_blocks > curblock) ?
5111 (buf->f_blocks - curblock) : 0;
5112 }
5113
5114 limit = dquot->dq_dqb.dqb_isoftlimit ?
5115 dquot->dq_dqb.dqb_isoftlimit :
5116 dquot->dq_dqb.dqb_ihardlimit;
5117 if (limit && buf->f_files > limit) {
5118 buf->f_files = limit;
5119 buf->f_ffree =
5120 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5121 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5122 }
5123
5124 spin_unlock(&dq_data_lock);
5125 dqput(dquot);
5126 return 0;
5127}
5128#endif
5129
5130static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5131{
5132 struct super_block *sb = dentry->d_sb;
5133 struct ext4_sb_info *sbi = EXT4_SB(sb);
5134 struct ext4_super_block *es = sbi->s_es;
5135 ext4_fsblk_t overhead = 0, resv_blocks;
5136 u64 fsid;
5137 s64 bfree;
5138 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5139
5140 if (!test_opt(sb, MINIX_DF))
5141 overhead = sbi->s_overhead;
5142
5143 buf->f_type = EXT4_SUPER_MAGIC;
5144 buf->f_bsize = sb->s_blocksize;
5145 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5146 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5147 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5148 /* prevent underflow in case that few free space is available */
5149 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5150 buf->f_bavail = buf->f_bfree -
5151 (ext4_r_blocks_count(es) + resv_blocks);
5152 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5153 buf->f_bavail = 0;
5154 buf->f_files = le32_to_cpu(es->s_inodes_count);
5155 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5156 buf->f_namelen = EXT4_NAME_LEN;
5157 fsid = le64_to_cpup((void *)es->s_uuid) ^
5158 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5159 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5160 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5161
5162#ifdef CONFIG_QUOTA
5163 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5164 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5165 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5166#endif
5167 return 0;
5168}
5169
5170/* Helper function for writing quotas on sync - we need to start transaction
5171 * before quota file is locked for write. Otherwise the are possible deadlocks:
5172 * Process 1 Process 2
5173 * ext4_create() quota_sync()
5174 * jbd2_journal_start() write_dquot()
5175 * dquot_initialize() down(dqio_mutex)
5176 * down(dqio_mutex) jbd2_journal_start()
5177 *
5178 */
5179
5180#ifdef CONFIG_QUOTA
5181
5182static inline struct inode *dquot_to_inode(struct dquot *dquot)
5183{
5184 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5185}
5186
5187static int ext4_write_dquot(struct dquot *dquot)
5188{
5189 int ret, err;
5190 handle_t *handle;
5191 struct inode *inode;
5192
5193 inode = dquot_to_inode(dquot);
5194 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5195 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5196 if (IS_ERR(handle))
5197 return PTR_ERR(handle);
5198 ret = dquot_commit(dquot);
5199 err = ext4_journal_stop(handle);
5200 if (!ret)
5201 ret = err;
5202 return ret;
5203}
5204
5205static int ext4_acquire_dquot(struct dquot *dquot)
5206{
5207 int ret, err;
5208 handle_t *handle;
5209
5210 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5211 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5212 if (IS_ERR(handle))
5213 return PTR_ERR(handle);
5214 ret = dquot_acquire(dquot);
5215 err = ext4_journal_stop(handle);
5216 if (!ret)
5217 ret = err;
5218 return ret;
5219}
5220
5221static int ext4_release_dquot(struct dquot *dquot)
5222{
5223 int ret, err;
5224 handle_t *handle;
5225
5226 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5227 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5228 if (IS_ERR(handle)) {
5229 /* Release dquot anyway to avoid endless cycle in dqput() */
5230 dquot_release(dquot);
5231 return PTR_ERR(handle);
5232 }
5233 ret = dquot_release(dquot);
5234 err = ext4_journal_stop(handle);
5235 if (!ret)
5236 ret = err;
5237 return ret;
5238}
5239
5240static int ext4_mark_dquot_dirty(struct dquot *dquot)
5241{
5242 struct super_block *sb = dquot->dq_sb;
5243 struct ext4_sb_info *sbi = EXT4_SB(sb);
5244
5245 /* Are we journaling quotas? */
5246 if (ext4_has_feature_quota(sb) ||
5247 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5248 dquot_mark_dquot_dirty(dquot);
5249 return ext4_write_dquot(dquot);
5250 } else {
5251 return dquot_mark_dquot_dirty(dquot);
5252 }
5253}
5254
5255static int ext4_write_info(struct super_block *sb, int type)
5256{
5257 int ret, err;
5258 handle_t *handle;
5259
5260 /* Data block + inode block */
5261 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5262 if (IS_ERR(handle))
5263 return PTR_ERR(handle);
5264 ret = dquot_commit_info(sb, type);
5265 err = ext4_journal_stop(handle);
5266 if (!ret)
5267 ret = err;
5268 return ret;
5269}
5270
5271/*
5272 * Turn on quotas during mount time - we need to find
5273 * the quota file and such...
5274 */
5275static int ext4_quota_on_mount(struct super_block *sb, int type)
5276{
5277 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5278 EXT4_SB(sb)->s_jquota_fmt, type);
5279}
5280
5281static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5282{
5283 struct ext4_inode_info *ei = EXT4_I(inode);
5284
5285 /* The first argument of lockdep_set_subclass has to be
5286 * *exactly* the same as the argument to init_rwsem() --- in
5287 * this case, in init_once() --- or lockdep gets unhappy
5288 * because the name of the lock is set using the
5289 * stringification of the argument to init_rwsem().
5290 */
5291 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5292 lockdep_set_subclass(&ei->i_data_sem, subclass);
5293}
5294
5295/*
5296 * Standard function to be called on quota_on
5297 */
5298static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5299 const struct path *path)
5300{
5301 int err;
5302
5303 if (!test_opt(sb, QUOTA))
5304 return -EINVAL;
5305
5306 /* Quotafile not on the same filesystem? */
5307 if (path->dentry->d_sb != sb)
5308 return -EXDEV;
5309 /* Journaling quota? */
5310 if (EXT4_SB(sb)->s_qf_names[type]) {
5311 /* Quotafile not in fs root? */
5312 if (path->dentry->d_parent != sb->s_root)
5313 ext4_msg(sb, KERN_WARNING,
5314 "Quota file not on filesystem root. "
5315 "Journaled quota will not work");
5316 }
5317
5318 /*
5319 * When we journal data on quota file, we have to flush journal to see
5320 * all updates to the file when we bypass pagecache...
5321 */
5322 if (EXT4_SB(sb)->s_journal &&
5323 ext4_should_journal_data(d_inode(path->dentry))) {
5324 /*
5325 * We don't need to lock updates but journal_flush() could
5326 * otherwise be livelocked...
5327 */
5328 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5329 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5330 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5331 if (err)
5332 return err;
5333 }
5334 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5335 err = dquot_quota_on(sb, type, format_id, path);
5336 if (err)
5337 lockdep_set_quota_inode(path->dentry->d_inode,
5338 I_DATA_SEM_NORMAL);
5339 return err;
5340}
5341
5342static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5343 unsigned int flags)
5344{
5345 int err;
5346 struct inode *qf_inode;
5347 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5348 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5349 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5350 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5351 };
5352
5353 BUG_ON(!ext4_has_feature_quota(sb));
5354
5355 if (!qf_inums[type])
5356 return -EPERM;
5357
5358 qf_inode = ext4_iget(sb, qf_inums[type]);
5359 if (IS_ERR(qf_inode)) {
5360 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5361 return PTR_ERR(qf_inode);
5362 }
5363
5364 /* Don't account quota for quota files to avoid recursion */
5365 qf_inode->i_flags |= S_NOQUOTA;
5366 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5367 err = dquot_enable(qf_inode, type, format_id, flags);
5368 iput(qf_inode);
5369 if (err)
5370 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5371
5372 return err;
5373}
5374
5375/* Enable usage tracking for all quota types. */
5376static int ext4_enable_quotas(struct super_block *sb)
5377{
5378 int type, err = 0;
5379 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5380 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5381 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5382 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5383 };
5384 bool quota_mopt[EXT4_MAXQUOTAS] = {
5385 test_opt(sb, USRQUOTA),
5386 test_opt(sb, GRPQUOTA),
5387 test_opt(sb, PRJQUOTA),
5388 };
5389
5390 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5391 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5392 if (qf_inums[type]) {
5393 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5394 DQUOT_USAGE_ENABLED |
5395 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5396 if (err) {
5397 ext4_warning(sb,
5398 "Failed to enable quota tracking "
5399 "(type=%d, err=%d). Please run "
5400 "e2fsck to fix.", type, err);
5401 return err;
5402 }
5403 }
5404 }
5405 return 0;
5406}
5407
5408static int ext4_quota_off(struct super_block *sb, int type)
5409{
5410 struct inode *inode = sb_dqopt(sb)->files[type];
5411 handle_t *handle;
5412
5413 /* Force all delayed allocation blocks to be allocated.
5414 * Caller already holds s_umount sem */
5415 if (test_opt(sb, DELALLOC))
5416 sync_filesystem(sb);
5417
5418 if (!inode)
5419 goto out;
5420
5421 /* Update modification times of quota files when userspace can
5422 * start looking at them */
5423 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5424 if (IS_ERR(handle))
5425 goto out;
5426 inode->i_mtime = inode->i_ctime = current_time(inode);
5427 ext4_mark_inode_dirty(handle, inode);
5428 ext4_journal_stop(handle);
5429
5430out:
5431 return dquot_quota_off(sb, type);
5432}
5433
5434/* Read data from quotafile - avoid pagecache and such because we cannot afford
5435 * acquiring the locks... As quota files are never truncated and quota code
5436 * itself serializes the operations (and no one else should touch the files)
5437 * we don't have to be afraid of races */
5438static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5439 size_t len, loff_t off)
5440{
5441 struct inode *inode = sb_dqopt(sb)->files[type];
5442 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5443 int offset = off & (sb->s_blocksize - 1);
5444 int tocopy;
5445 size_t toread;
5446 struct buffer_head *bh;
5447 loff_t i_size = i_size_read(inode);
5448
5449 if (off > i_size)
5450 return 0;
5451 if (off+len > i_size)
5452 len = i_size-off;
5453 toread = len;
5454 while (toread > 0) {
5455 tocopy = sb->s_blocksize - offset < toread ?
5456 sb->s_blocksize - offset : toread;
5457 bh = ext4_bread(NULL, inode, blk, 0);
5458 if (IS_ERR(bh))
5459 return PTR_ERR(bh);
5460 if (!bh) /* A hole? */
5461 memset(data, 0, tocopy);
5462 else
5463 memcpy(data, bh->b_data+offset, tocopy);
5464 brelse(bh);
5465 offset = 0;
5466 toread -= tocopy;
5467 data += tocopy;
5468 blk++;
5469 }
5470 return len;
5471}
5472
5473/* Write to quotafile (we know the transaction is already started and has
5474 * enough credits) */
5475static ssize_t ext4_quota_write(struct super_block *sb, int type,
5476 const char *data, size_t len, loff_t off)
5477{
5478 struct inode *inode = sb_dqopt(sb)->files[type];
5479 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5480 int err, offset = off & (sb->s_blocksize - 1);
5481 int retries = 0;
5482 struct buffer_head *bh;
5483 handle_t *handle = journal_current_handle();
5484
5485 if (EXT4_SB(sb)->s_journal && !handle) {
5486 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5487 " cancelled because transaction is not started",
5488 (unsigned long long)off, (unsigned long long)len);
5489 return -EIO;
5490 }
5491 /*
5492 * Since we account only one data block in transaction credits,
5493 * then it is impossible to cross a block boundary.
5494 */
5495 if (sb->s_blocksize - offset < len) {
5496 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5497 " cancelled because not block aligned",
5498 (unsigned long long)off, (unsigned long long)len);
5499 return -EIO;
5500 }
5501
5502 do {
5503 bh = ext4_bread(handle, inode, blk,
5504 EXT4_GET_BLOCKS_CREATE |
5505 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5506 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5507 ext4_should_retry_alloc(inode->i_sb, &retries));
5508 if (IS_ERR(bh))
5509 return PTR_ERR(bh);
5510 if (!bh)
5511 goto out;
5512 BUFFER_TRACE(bh, "get write access");
5513 err = ext4_journal_get_write_access(handle, bh);
5514 if (err) {
5515 brelse(bh);
5516 return err;
5517 }
5518 lock_buffer(bh);
5519 memcpy(bh->b_data+offset, data, len);
5520 flush_dcache_page(bh->b_page);
5521 unlock_buffer(bh);
5522 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5523 brelse(bh);
5524out:
5525 if (inode->i_size < off + len) {
5526 i_size_write(inode, off + len);
5527 EXT4_I(inode)->i_disksize = inode->i_size;
5528 ext4_mark_inode_dirty(handle, inode);
5529 }
5530 return len;
5531}
5532
5533static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5534{
5535 const struct quota_format_ops *ops;
5536
5537 if (!sb_has_quota_loaded(sb, qid->type))
5538 return -ESRCH;
5539 ops = sb_dqopt(sb)->ops[qid->type];
5540 if (!ops || !ops->get_next_id)
5541 return -ENOSYS;
5542 return dquot_get_next_id(sb, qid);
5543}
5544#endif
5545
5546static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5547 const char *dev_name, void *data)
5548{
5549 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5550}
5551
5552#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5553static inline void register_as_ext2(void)
5554{
5555 int err = register_filesystem(&ext2_fs_type);
5556 if (err)
5557 printk(KERN_WARNING
5558 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5559}
5560
5561static inline void unregister_as_ext2(void)
5562{
5563 unregister_filesystem(&ext2_fs_type);
5564}
5565
5566static inline int ext2_feature_set_ok(struct super_block *sb)
5567{
5568 if (ext4_has_unknown_ext2_incompat_features(sb))
5569 return 0;
5570 if (sb->s_flags & MS_RDONLY)
5571 return 1;
5572 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5573 return 0;
5574 return 1;
5575}
5576#else
5577static inline void register_as_ext2(void) { }
5578static inline void unregister_as_ext2(void) { }
5579static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5580#endif
5581
5582static inline void register_as_ext3(void)
5583{
5584 int err = register_filesystem(&ext3_fs_type);
5585 if (err)
5586 printk(KERN_WARNING
5587 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5588}
5589
5590static inline void unregister_as_ext3(void)
5591{
5592 unregister_filesystem(&ext3_fs_type);
5593}
5594
5595static inline int ext3_feature_set_ok(struct super_block *sb)
5596{
5597 if (ext4_has_unknown_ext3_incompat_features(sb))
5598 return 0;
5599 if (!ext4_has_feature_journal(sb))
5600 return 0;
5601 if (sb->s_flags & MS_RDONLY)
5602 return 1;
5603 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5604 return 0;
5605 return 1;
5606}
5607
5608static struct file_system_type ext4_fs_type = {
5609 .owner = THIS_MODULE,
5610 .name = "ext4",
5611 .mount = ext4_mount,
5612 .kill_sb = kill_block_super,
5613 .fs_flags = FS_REQUIRES_DEV,
5614};
5615MODULE_ALIAS_FS("ext4");
5616
5617/* Shared across all ext4 file systems */
5618wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5619
5620static int __init ext4_init_fs(void)
5621{
5622 int i, err;
5623
5624 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5625 ext4_li_info = NULL;
5626 mutex_init(&ext4_li_mtx);
5627
5628 /* Build-time check for flags consistency */
5629 ext4_check_flag_values();
5630
5631 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5632 init_waitqueue_head(&ext4__ioend_wq[i]);
5633
5634 err = ext4_init_es();
5635 if (err)
5636 return err;
5637
5638 err = ext4_init_pageio();
5639 if (err)
5640 goto out5;
5641
5642 err = ext4_init_system_zone();
5643 if (err)
5644 goto out4;
5645
5646 err = ext4_init_sysfs();
5647 if (err)
5648 goto out3;
5649
5650 err = ext4_init_mballoc();
5651 if (err)
5652 goto out2;
5653 err = init_inodecache();
5654 if (err)
5655 goto out1;
5656 register_as_ext3();
5657 register_as_ext2();
5658 err = register_filesystem(&ext4_fs_type);
5659 if (err)
5660 goto out;
5661
5662 return 0;
5663out:
5664 unregister_as_ext2();
5665 unregister_as_ext3();
5666 destroy_inodecache();
5667out1:
5668 ext4_exit_mballoc();
5669out2:
5670 ext4_exit_sysfs();
5671out3:
5672 ext4_exit_system_zone();
5673out4:
5674 ext4_exit_pageio();
5675out5:
5676 ext4_exit_es();
5677
5678 return err;
5679}
5680
5681static void __exit ext4_exit_fs(void)
5682{
5683 ext4_destroy_lazyinit_thread();
5684 unregister_as_ext2();
5685 unregister_as_ext3();
5686 unregister_filesystem(&ext4_fs_type);
5687 destroy_inodecache();
5688 ext4_exit_mballoc();
5689 ext4_exit_sysfs();
5690 ext4_exit_system_zone();
5691 ext4_exit_pageio();
5692 ext4_exit_es();
5693}
5694
5695MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5696MODULE_DESCRIPTION("Fourth Extended Filesystem");
5697MODULE_LICENSE("GPL");
5698module_init(ext4_init_fs)
5699module_exit(ext4_exit_fs)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20#include <linux/module.h>
21#include <linux/string.h>
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/vmalloc.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
29#include <linux/parser.h>
30#include <linux/buffer_head.h>
31#include <linux/exportfs.h>
32#include <linux/vfs.h>
33#include <linux/random.h>
34#include <linux/mount.h>
35#include <linux/namei.h>
36#include <linux/quotaops.h>
37#include <linux/seq_file.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/dax.h>
42#include <linux/cleancache.h>
43#include <linux/uaccess.h>
44#include <linux/iversion.h>
45#include <linux/unicode.h>
46#include <linux/part_stat.h>
47#include <linux/kthread.h>
48#include <linux/freezer.h>
49
50#include "ext4.h"
51#include "ext4_extents.h" /* Needed for trace points definition */
52#include "ext4_jbd2.h"
53#include "xattr.h"
54#include "acl.h"
55#include "mballoc.h"
56#include "fsmap.h"
57
58#define CREATE_TRACE_POINTS
59#include <trace/events/ext4.h>
60
61static struct ext4_lazy_init *ext4_li_info;
62static struct mutex ext4_li_mtx;
63static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68static int ext4_commit_super(struct super_block *sb, int sync);
69static int ext4_mark_recovery_complete(struct super_block *sb,
70 struct ext4_super_block *es);
71static int ext4_clear_journal_err(struct super_block *sb,
72 struct ext4_super_block *es);
73static int ext4_sync_fs(struct super_block *sb, int wait);
74static int ext4_remount(struct super_block *sb, int *flags, char *data);
75static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76static int ext4_unfreeze(struct super_block *sb);
77static int ext4_freeze(struct super_block *sb);
78static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80static inline int ext2_feature_set_ok(struct super_block *sb);
81static inline int ext3_feature_set_ok(struct super_block *sb);
82static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83static void ext4_destroy_lazyinit_thread(void);
84static void ext4_unregister_li_request(struct super_block *sb);
85static void ext4_clear_request_list(void);
86static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 unsigned int journal_inum);
88
89/*
90 * Lock ordering
91 *
92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93 * i_mmap_rwsem (inode->i_mmap_rwsem)!
94 *
95 * page fault path:
96 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97 * page lock -> i_data_sem (rw)
98 *
99 * buffered write path:
100 * sb_start_write -> i_mutex -> mmap_lock
101 * sb_start_write -> i_mutex -> transaction start -> page lock ->
102 * i_data_sem (rw)
103 *
104 * truncate:
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107 * i_data_sem (rw)
108 *
109 * direct IO:
110 * sb_start_write -> i_mutex -> mmap_lock
111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112 *
113 * writepages:
114 * transaction start -> page lock(s) -> i_data_sem (rw)
115 */
116
117#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118static struct file_system_type ext2_fs_type = {
119 .owner = THIS_MODULE,
120 .name = "ext2",
121 .mount = ext4_mount,
122 .kill_sb = kill_block_super,
123 .fs_flags = FS_REQUIRES_DEV,
124};
125MODULE_ALIAS_FS("ext2");
126MODULE_ALIAS("ext2");
127#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128#else
129#define IS_EXT2_SB(sb) (0)
130#endif
131
132
133static struct file_system_type ext3_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext3",
136 .mount = ext4_mount,
137 .kill_sb = kill_block_super,
138 .fs_flags = FS_REQUIRES_DEV,
139};
140MODULE_ALIAS_FS("ext3");
141MODULE_ALIAS("ext3");
142#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143
144/*
145 * This works like sb_bread() except it uses ERR_PTR for error
146 * returns. Currently with sb_bread it's impossible to distinguish
147 * between ENOMEM and EIO situations (since both result in a NULL
148 * return.
149 */
150struct buffer_head *
151ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
152{
153 struct buffer_head *bh = sb_getblk(sb, block);
154
155 if (bh == NULL)
156 return ERR_PTR(-ENOMEM);
157 if (ext4_buffer_uptodate(bh))
158 return bh;
159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
160 wait_on_buffer(bh);
161 if (buffer_uptodate(bh))
162 return bh;
163 put_bh(bh);
164 return ERR_PTR(-EIO);
165}
166
167static int ext4_verify_csum_type(struct super_block *sb,
168 struct ext4_super_block *es)
169{
170 if (!ext4_has_feature_metadata_csum(sb))
171 return 1;
172
173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
174}
175
176static __le32 ext4_superblock_csum(struct super_block *sb,
177 struct ext4_super_block *es)
178{
179 struct ext4_sb_info *sbi = EXT4_SB(sb);
180 int offset = offsetof(struct ext4_super_block, s_checksum);
181 __u32 csum;
182
183 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
184
185 return cpu_to_le32(csum);
186}
187
188static int ext4_superblock_csum_verify(struct super_block *sb,
189 struct ext4_super_block *es)
190{
191 if (!ext4_has_metadata_csum(sb))
192 return 1;
193
194 return es->s_checksum == ext4_superblock_csum(sb, es);
195}
196
197void ext4_superblock_csum_set(struct super_block *sb)
198{
199 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
200
201 if (!ext4_has_metadata_csum(sb))
202 return;
203
204 es->s_checksum = ext4_superblock_csum(sb, es);
205}
206
207ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
208 struct ext4_group_desc *bg)
209{
210 return le32_to_cpu(bg->bg_block_bitmap_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
213}
214
215ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
216 struct ext4_group_desc *bg)
217{
218 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
221}
222
223ext4_fsblk_t ext4_inode_table(struct super_block *sb,
224 struct ext4_group_desc *bg)
225{
226 return le32_to_cpu(bg->bg_inode_table_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
229}
230
231__u32 ext4_free_group_clusters(struct super_block *sb,
232 struct ext4_group_desc *bg)
233{
234 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
237}
238
239__u32 ext4_free_inodes_count(struct super_block *sb,
240 struct ext4_group_desc *bg)
241{
242 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
245}
246
247__u32 ext4_used_dirs_count(struct super_block *sb,
248 struct ext4_group_desc *bg)
249{
250 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
252 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
253}
254
255__u32 ext4_itable_unused_count(struct super_block *sb,
256 struct ext4_group_desc *bg)
257{
258 return le16_to_cpu(bg->bg_itable_unused_lo) |
259 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
260 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
261}
262
263void ext4_block_bitmap_set(struct super_block *sb,
264 struct ext4_group_desc *bg, ext4_fsblk_t blk)
265{
266 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
269}
270
271void ext4_inode_bitmap_set(struct super_block *sb,
272 struct ext4_group_desc *bg, ext4_fsblk_t blk)
273{
274 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
277}
278
279void ext4_inode_table_set(struct super_block *sb,
280 struct ext4_group_desc *bg, ext4_fsblk_t blk)
281{
282 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
285}
286
287void ext4_free_group_clusters_set(struct super_block *sb,
288 struct ext4_group_desc *bg, __u32 count)
289{
290 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
293}
294
295void ext4_free_inodes_set(struct super_block *sb,
296 struct ext4_group_desc *bg, __u32 count)
297{
298 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
301}
302
303void ext4_used_dirs_set(struct super_block *sb,
304 struct ext4_group_desc *bg, __u32 count)
305{
306 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
308 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
309}
310
311void ext4_itable_unused_set(struct super_block *sb,
312 struct ext4_group_desc *bg, __u32 count)
313{
314 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
315 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
316 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
317}
318
319static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
320{
321 time64_t now = ktime_get_real_seconds();
322
323 now = clamp_val(now, 0, (1ull << 40) - 1);
324
325 *lo = cpu_to_le32(lower_32_bits(now));
326 *hi = upper_32_bits(now);
327}
328
329static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
330{
331 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
332}
333#define ext4_update_tstamp(es, tstamp) \
334 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
335#define ext4_get_tstamp(es, tstamp) \
336 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
337
338static void __save_error_info(struct super_block *sb, int error,
339 __u32 ino, __u64 block,
340 const char *func, unsigned int line)
341{
342 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
343 int err;
344
345 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
346 if (bdev_read_only(sb->s_bdev))
347 return;
348 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
349 ext4_update_tstamp(es, s_last_error_time);
350 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
351 es->s_last_error_line = cpu_to_le32(line);
352 es->s_last_error_ino = cpu_to_le32(ino);
353 es->s_last_error_block = cpu_to_le64(block);
354 switch (error) {
355 case EIO:
356 err = EXT4_ERR_EIO;
357 break;
358 case ENOMEM:
359 err = EXT4_ERR_ENOMEM;
360 break;
361 case EFSBADCRC:
362 err = EXT4_ERR_EFSBADCRC;
363 break;
364 case 0:
365 case EFSCORRUPTED:
366 err = EXT4_ERR_EFSCORRUPTED;
367 break;
368 case ENOSPC:
369 err = EXT4_ERR_ENOSPC;
370 break;
371 case ENOKEY:
372 err = EXT4_ERR_ENOKEY;
373 break;
374 case EROFS:
375 err = EXT4_ERR_EROFS;
376 break;
377 case EFBIG:
378 err = EXT4_ERR_EFBIG;
379 break;
380 case EEXIST:
381 err = EXT4_ERR_EEXIST;
382 break;
383 case ERANGE:
384 err = EXT4_ERR_ERANGE;
385 break;
386 case EOVERFLOW:
387 err = EXT4_ERR_EOVERFLOW;
388 break;
389 case EBUSY:
390 err = EXT4_ERR_EBUSY;
391 break;
392 case ENOTDIR:
393 err = EXT4_ERR_ENOTDIR;
394 break;
395 case ENOTEMPTY:
396 err = EXT4_ERR_ENOTEMPTY;
397 break;
398 case ESHUTDOWN:
399 err = EXT4_ERR_ESHUTDOWN;
400 break;
401 case EFAULT:
402 err = EXT4_ERR_EFAULT;
403 break;
404 default:
405 err = EXT4_ERR_UNKNOWN;
406 }
407 es->s_last_error_errcode = err;
408 if (!es->s_first_error_time) {
409 es->s_first_error_time = es->s_last_error_time;
410 es->s_first_error_time_hi = es->s_last_error_time_hi;
411 strncpy(es->s_first_error_func, func,
412 sizeof(es->s_first_error_func));
413 es->s_first_error_line = cpu_to_le32(line);
414 es->s_first_error_ino = es->s_last_error_ino;
415 es->s_first_error_block = es->s_last_error_block;
416 es->s_first_error_errcode = es->s_last_error_errcode;
417 }
418 /*
419 * Start the daily error reporting function if it hasn't been
420 * started already
421 */
422 if (!es->s_error_count)
423 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
424 le32_add_cpu(&es->s_error_count, 1);
425}
426
427static void save_error_info(struct super_block *sb, int error,
428 __u32 ino, __u64 block,
429 const char *func, unsigned int line)
430{
431 __save_error_info(sb, error, ino, block, func, line);
432 if (!bdev_read_only(sb->s_bdev))
433 ext4_commit_super(sb, 1);
434}
435
436/*
437 * The del_gendisk() function uninitializes the disk-specific data
438 * structures, including the bdi structure, without telling anyone
439 * else. Once this happens, any attempt to call mark_buffer_dirty()
440 * (for example, by ext4_commit_super), will cause a kernel OOPS.
441 * This is a kludge to prevent these oops until we can put in a proper
442 * hook in del_gendisk() to inform the VFS and file system layers.
443 */
444static int block_device_ejected(struct super_block *sb)
445{
446 struct inode *bd_inode = sb->s_bdev->bd_inode;
447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
448
449 return bdi->dev == NULL;
450}
451
452static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
453{
454 struct super_block *sb = journal->j_private;
455 struct ext4_sb_info *sbi = EXT4_SB(sb);
456 int error = is_journal_aborted(journal);
457 struct ext4_journal_cb_entry *jce;
458
459 BUG_ON(txn->t_state == T_FINISHED);
460
461 ext4_process_freed_data(sb, txn->t_tid);
462
463 spin_lock(&sbi->s_md_lock);
464 while (!list_empty(&txn->t_private_list)) {
465 jce = list_entry(txn->t_private_list.next,
466 struct ext4_journal_cb_entry, jce_list);
467 list_del_init(&jce->jce_list);
468 spin_unlock(&sbi->s_md_lock);
469 jce->jce_func(sb, jce, error);
470 spin_lock(&sbi->s_md_lock);
471 }
472 spin_unlock(&sbi->s_md_lock);
473}
474
475static bool system_going_down(void)
476{
477 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
478 || system_state == SYSTEM_RESTART;
479}
480
481/* Deal with the reporting of failure conditions on a filesystem such as
482 * inconsistencies detected or read IO failures.
483 *
484 * On ext2, we can store the error state of the filesystem in the
485 * superblock. That is not possible on ext4, because we may have other
486 * write ordering constraints on the superblock which prevent us from
487 * writing it out straight away; and given that the journal is about to
488 * be aborted, we can't rely on the current, or future, transactions to
489 * write out the superblock safely.
490 *
491 * We'll just use the jbd2_journal_abort() error code to record an error in
492 * the journal instead. On recovery, the journal will complain about
493 * that error until we've noted it down and cleared it.
494 */
495
496static void ext4_handle_error(struct super_block *sb)
497{
498 if (test_opt(sb, WARN_ON_ERROR))
499 WARN_ON_ONCE(1);
500
501 if (sb_rdonly(sb))
502 return;
503
504 if (!test_opt(sb, ERRORS_CONT)) {
505 journal_t *journal = EXT4_SB(sb)->s_journal;
506
507 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
508 if (journal)
509 jbd2_journal_abort(journal, -EIO);
510 }
511 /*
512 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
513 * could panic during 'reboot -f' as the underlying device got already
514 * disabled.
515 */
516 if (test_opt(sb, ERRORS_RO) || system_going_down()) {
517 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
518 /*
519 * Make sure updated value of ->s_mount_flags will be visible
520 * before ->s_flags update
521 */
522 smp_wmb();
523 sb->s_flags |= SB_RDONLY;
524 } else if (test_opt(sb, ERRORS_PANIC)) {
525 panic("EXT4-fs (device %s): panic forced after error\n",
526 sb->s_id);
527 }
528}
529
530#define ext4_error_ratelimit(sb) \
531 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
532 "EXT4-fs error")
533
534void __ext4_error(struct super_block *sb, const char *function,
535 unsigned int line, int error, __u64 block,
536 const char *fmt, ...)
537{
538 struct va_format vaf;
539 va_list args;
540
541 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
542 return;
543
544 trace_ext4_error(sb, function, line);
545 if (ext4_error_ratelimit(sb)) {
546 va_start(args, fmt);
547 vaf.fmt = fmt;
548 vaf.va = &args;
549 printk(KERN_CRIT
550 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
551 sb->s_id, function, line, current->comm, &vaf);
552 va_end(args);
553 }
554 save_error_info(sb, error, 0, block, function, line);
555 ext4_handle_error(sb);
556}
557
558void __ext4_error_inode(struct inode *inode, const char *function,
559 unsigned int line, ext4_fsblk_t block, int error,
560 const char *fmt, ...)
561{
562 va_list args;
563 struct va_format vaf;
564
565 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
566 return;
567
568 trace_ext4_error(inode->i_sb, function, line);
569 if (ext4_error_ratelimit(inode->i_sb)) {
570 va_start(args, fmt);
571 vaf.fmt = fmt;
572 vaf.va = &args;
573 if (block)
574 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
575 "inode #%lu: block %llu: comm %s: %pV\n",
576 inode->i_sb->s_id, function, line, inode->i_ino,
577 block, current->comm, &vaf);
578 else
579 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
580 "inode #%lu: comm %s: %pV\n",
581 inode->i_sb->s_id, function, line, inode->i_ino,
582 current->comm, &vaf);
583 va_end(args);
584 }
585 save_error_info(inode->i_sb, error, inode->i_ino, block,
586 function, line);
587 ext4_handle_error(inode->i_sb);
588}
589
590void __ext4_error_file(struct file *file, const char *function,
591 unsigned int line, ext4_fsblk_t block,
592 const char *fmt, ...)
593{
594 va_list args;
595 struct va_format vaf;
596 struct inode *inode = file_inode(file);
597 char pathname[80], *path;
598
599 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
600 return;
601
602 trace_ext4_error(inode->i_sb, function, line);
603 if (ext4_error_ratelimit(inode->i_sb)) {
604 path = file_path(file, pathname, sizeof(pathname));
605 if (IS_ERR(path))
606 path = "(unknown)";
607 va_start(args, fmt);
608 vaf.fmt = fmt;
609 vaf.va = &args;
610 if (block)
611 printk(KERN_CRIT
612 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
613 "block %llu: comm %s: path %s: %pV\n",
614 inode->i_sb->s_id, function, line, inode->i_ino,
615 block, current->comm, path, &vaf);
616 else
617 printk(KERN_CRIT
618 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
619 "comm %s: path %s: %pV\n",
620 inode->i_sb->s_id, function, line, inode->i_ino,
621 current->comm, path, &vaf);
622 va_end(args);
623 }
624 save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block,
625 function, line);
626 ext4_handle_error(inode->i_sb);
627}
628
629const char *ext4_decode_error(struct super_block *sb, int errno,
630 char nbuf[16])
631{
632 char *errstr = NULL;
633
634 switch (errno) {
635 case -EFSCORRUPTED:
636 errstr = "Corrupt filesystem";
637 break;
638 case -EFSBADCRC:
639 errstr = "Filesystem failed CRC";
640 break;
641 case -EIO:
642 errstr = "IO failure";
643 break;
644 case -ENOMEM:
645 errstr = "Out of memory";
646 break;
647 case -EROFS:
648 if (!sb || (EXT4_SB(sb)->s_journal &&
649 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
650 errstr = "Journal has aborted";
651 else
652 errstr = "Readonly filesystem";
653 break;
654 default:
655 /* If the caller passed in an extra buffer for unknown
656 * errors, textualise them now. Else we just return
657 * NULL. */
658 if (nbuf) {
659 /* Check for truncated error codes... */
660 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
661 errstr = nbuf;
662 }
663 break;
664 }
665
666 return errstr;
667}
668
669/* __ext4_std_error decodes expected errors from journaling functions
670 * automatically and invokes the appropriate error response. */
671
672void __ext4_std_error(struct super_block *sb, const char *function,
673 unsigned int line, int errno)
674{
675 char nbuf[16];
676 const char *errstr;
677
678 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
679 return;
680
681 /* Special case: if the error is EROFS, and we're not already
682 * inside a transaction, then there's really no point in logging
683 * an error. */
684 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
685 return;
686
687 if (ext4_error_ratelimit(sb)) {
688 errstr = ext4_decode_error(sb, errno, nbuf);
689 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
690 sb->s_id, function, line, errstr);
691 }
692
693 save_error_info(sb, -errno, 0, 0, function, line);
694 ext4_handle_error(sb);
695}
696
697/*
698 * ext4_abort is a much stronger failure handler than ext4_error. The
699 * abort function may be used to deal with unrecoverable failures such
700 * as journal IO errors or ENOMEM at a critical moment in log management.
701 *
702 * We unconditionally force the filesystem into an ABORT|READONLY state,
703 * unless the error response on the fs has been set to panic in which
704 * case we take the easy way out and panic immediately.
705 */
706
707void __ext4_abort(struct super_block *sb, const char *function,
708 unsigned int line, int error, const char *fmt, ...)
709{
710 struct va_format vaf;
711 va_list args;
712
713 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
714 return;
715
716 save_error_info(sb, error, 0, 0, function, line);
717 va_start(args, fmt);
718 vaf.fmt = fmt;
719 vaf.va = &args;
720 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
721 sb->s_id, function, line, &vaf);
722 va_end(args);
723
724 if (sb_rdonly(sb) == 0) {
725 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
726 if (EXT4_SB(sb)->s_journal)
727 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
728
729 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
730 /*
731 * Make sure updated value of ->s_mount_flags will be visible
732 * before ->s_flags update
733 */
734 smp_wmb();
735 sb->s_flags |= SB_RDONLY;
736 }
737 if (test_opt(sb, ERRORS_PANIC) && !system_going_down())
738 panic("EXT4-fs panic from previous error\n");
739}
740
741void __ext4_msg(struct super_block *sb,
742 const char *prefix, const char *fmt, ...)
743{
744 struct va_format vaf;
745 va_list args;
746
747 atomic_inc(&EXT4_SB(sb)->s_msg_count);
748 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
749 return;
750
751 va_start(args, fmt);
752 vaf.fmt = fmt;
753 vaf.va = &args;
754 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
755 va_end(args);
756}
757
758static int ext4_warning_ratelimit(struct super_block *sb)
759{
760 atomic_inc(&EXT4_SB(sb)->s_warning_count);
761 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
762 "EXT4-fs warning");
763}
764
765void __ext4_warning(struct super_block *sb, const char *function,
766 unsigned int line, const char *fmt, ...)
767{
768 struct va_format vaf;
769 va_list args;
770
771 if (!ext4_warning_ratelimit(sb))
772 return;
773
774 va_start(args, fmt);
775 vaf.fmt = fmt;
776 vaf.va = &args;
777 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
778 sb->s_id, function, line, &vaf);
779 va_end(args);
780}
781
782void __ext4_warning_inode(const struct inode *inode, const char *function,
783 unsigned int line, const char *fmt, ...)
784{
785 struct va_format vaf;
786 va_list args;
787
788 if (!ext4_warning_ratelimit(inode->i_sb))
789 return;
790
791 va_start(args, fmt);
792 vaf.fmt = fmt;
793 vaf.va = &args;
794 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
795 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
796 function, line, inode->i_ino, current->comm, &vaf);
797 va_end(args);
798}
799
800void __ext4_grp_locked_error(const char *function, unsigned int line,
801 struct super_block *sb, ext4_group_t grp,
802 unsigned long ino, ext4_fsblk_t block,
803 const char *fmt, ...)
804__releases(bitlock)
805__acquires(bitlock)
806{
807 struct va_format vaf;
808 va_list args;
809
810 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
811 return;
812
813 trace_ext4_error(sb, function, line);
814 __save_error_info(sb, EFSCORRUPTED, ino, block, function, line);
815
816 if (ext4_error_ratelimit(sb)) {
817 va_start(args, fmt);
818 vaf.fmt = fmt;
819 vaf.va = &args;
820 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
821 sb->s_id, function, line, grp);
822 if (ino)
823 printk(KERN_CONT "inode %lu: ", ino);
824 if (block)
825 printk(KERN_CONT "block %llu:",
826 (unsigned long long) block);
827 printk(KERN_CONT "%pV\n", &vaf);
828 va_end(args);
829 }
830
831 if (test_opt(sb, WARN_ON_ERROR))
832 WARN_ON_ONCE(1);
833
834 if (test_opt(sb, ERRORS_CONT)) {
835 ext4_commit_super(sb, 0);
836 return;
837 }
838
839 ext4_unlock_group(sb, grp);
840 ext4_commit_super(sb, 1);
841 ext4_handle_error(sb);
842 /*
843 * We only get here in the ERRORS_RO case; relocking the group
844 * may be dangerous, but nothing bad will happen since the
845 * filesystem will have already been marked read/only and the
846 * journal has been aborted. We return 1 as a hint to callers
847 * who might what to use the return value from
848 * ext4_grp_locked_error() to distinguish between the
849 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
850 * aggressively from the ext4 function in question, with a
851 * more appropriate error code.
852 */
853 ext4_lock_group(sb, grp);
854 return;
855}
856
857void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
858 ext4_group_t group,
859 unsigned int flags)
860{
861 struct ext4_sb_info *sbi = EXT4_SB(sb);
862 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
863 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
864 int ret;
865
866 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
867 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
868 &grp->bb_state);
869 if (!ret)
870 percpu_counter_sub(&sbi->s_freeclusters_counter,
871 grp->bb_free);
872 }
873
874 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
875 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
876 &grp->bb_state);
877 if (!ret && gdp) {
878 int count;
879
880 count = ext4_free_inodes_count(sb, gdp);
881 percpu_counter_sub(&sbi->s_freeinodes_counter,
882 count);
883 }
884 }
885}
886
887void ext4_update_dynamic_rev(struct super_block *sb)
888{
889 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
890
891 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
892 return;
893
894 ext4_warning(sb,
895 "updating to rev %d because of new feature flag, "
896 "running e2fsck is recommended",
897 EXT4_DYNAMIC_REV);
898
899 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
900 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
901 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
902 /* leave es->s_feature_*compat flags alone */
903 /* es->s_uuid will be set by e2fsck if empty */
904
905 /*
906 * The rest of the superblock fields should be zero, and if not it
907 * means they are likely already in use, so leave them alone. We
908 * can leave it up to e2fsck to clean up any inconsistencies there.
909 */
910}
911
912/*
913 * Open the external journal device
914 */
915static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
916{
917 struct block_device *bdev;
918
919 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
920 if (IS_ERR(bdev))
921 goto fail;
922 return bdev;
923
924fail:
925 ext4_msg(sb, KERN_ERR,
926 "failed to open journal device unknown-block(%u,%u) %ld",
927 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
928 return NULL;
929}
930
931/*
932 * Release the journal device
933 */
934static void ext4_blkdev_put(struct block_device *bdev)
935{
936 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
937}
938
939static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
940{
941 struct block_device *bdev;
942 bdev = sbi->journal_bdev;
943 if (bdev) {
944 ext4_blkdev_put(bdev);
945 sbi->journal_bdev = NULL;
946 }
947}
948
949static inline struct inode *orphan_list_entry(struct list_head *l)
950{
951 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
952}
953
954static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
955{
956 struct list_head *l;
957
958 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
959 le32_to_cpu(sbi->s_es->s_last_orphan));
960
961 printk(KERN_ERR "sb_info orphan list:\n");
962 list_for_each(l, &sbi->s_orphan) {
963 struct inode *inode = orphan_list_entry(l);
964 printk(KERN_ERR " "
965 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
966 inode->i_sb->s_id, inode->i_ino, inode,
967 inode->i_mode, inode->i_nlink,
968 NEXT_ORPHAN(inode));
969 }
970}
971
972#ifdef CONFIG_QUOTA
973static int ext4_quota_off(struct super_block *sb, int type);
974
975static inline void ext4_quota_off_umount(struct super_block *sb)
976{
977 int type;
978
979 /* Use our quota_off function to clear inode flags etc. */
980 for (type = 0; type < EXT4_MAXQUOTAS; type++)
981 ext4_quota_off(sb, type);
982}
983
984/*
985 * This is a helper function which is used in the mount/remount
986 * codepaths (which holds s_umount) to fetch the quota file name.
987 */
988static inline char *get_qf_name(struct super_block *sb,
989 struct ext4_sb_info *sbi,
990 int type)
991{
992 return rcu_dereference_protected(sbi->s_qf_names[type],
993 lockdep_is_held(&sb->s_umount));
994}
995#else
996static inline void ext4_quota_off_umount(struct super_block *sb)
997{
998}
999#endif
1000
1001static void ext4_put_super(struct super_block *sb)
1002{
1003 struct ext4_sb_info *sbi = EXT4_SB(sb);
1004 struct ext4_super_block *es = sbi->s_es;
1005 struct buffer_head **group_desc;
1006 struct flex_groups **flex_groups;
1007 int aborted = 0;
1008 int i, err;
1009
1010 ext4_unregister_li_request(sb);
1011 ext4_quota_off_umount(sb);
1012
1013 destroy_workqueue(sbi->rsv_conversion_wq);
1014
1015 /*
1016 * Unregister sysfs before destroying jbd2 journal.
1017 * Since we could still access attr_journal_task attribute via sysfs
1018 * path which could have sbi->s_journal->j_task as NULL
1019 */
1020 ext4_unregister_sysfs(sb);
1021
1022 if (sbi->s_journal) {
1023 aborted = is_journal_aborted(sbi->s_journal);
1024 err = jbd2_journal_destroy(sbi->s_journal);
1025 sbi->s_journal = NULL;
1026 if ((err < 0) && !aborted) {
1027 ext4_abort(sb, -err, "Couldn't clean up the journal");
1028 }
1029 }
1030
1031 ext4_es_unregister_shrinker(sbi);
1032 del_timer_sync(&sbi->s_err_report);
1033 ext4_release_system_zone(sb);
1034 ext4_mb_release(sb);
1035 ext4_ext_release(sb);
1036
1037 if (!sb_rdonly(sb) && !aborted) {
1038 ext4_clear_feature_journal_needs_recovery(sb);
1039 es->s_state = cpu_to_le16(sbi->s_mount_state);
1040 }
1041 if (!sb_rdonly(sb))
1042 ext4_commit_super(sb, 1);
1043
1044 rcu_read_lock();
1045 group_desc = rcu_dereference(sbi->s_group_desc);
1046 for (i = 0; i < sbi->s_gdb_count; i++)
1047 brelse(group_desc[i]);
1048 kvfree(group_desc);
1049 flex_groups = rcu_dereference(sbi->s_flex_groups);
1050 if (flex_groups) {
1051 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1052 kvfree(flex_groups[i]);
1053 kvfree(flex_groups);
1054 }
1055 rcu_read_unlock();
1056 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1057 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1058 percpu_counter_destroy(&sbi->s_dirs_counter);
1059 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1060 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1061#ifdef CONFIG_QUOTA
1062 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1063 kfree(get_qf_name(sb, sbi, i));
1064#endif
1065
1066 /* Debugging code just in case the in-memory inode orphan list
1067 * isn't empty. The on-disk one can be non-empty if we've
1068 * detected an error and taken the fs readonly, but the
1069 * in-memory list had better be clean by this point. */
1070 if (!list_empty(&sbi->s_orphan))
1071 dump_orphan_list(sb, sbi);
1072 J_ASSERT(list_empty(&sbi->s_orphan));
1073
1074 sync_blockdev(sb->s_bdev);
1075 invalidate_bdev(sb->s_bdev);
1076 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1077 /*
1078 * Invalidate the journal device's buffers. We don't want them
1079 * floating about in memory - the physical journal device may
1080 * hotswapped, and it breaks the `ro-after' testing code.
1081 */
1082 sync_blockdev(sbi->journal_bdev);
1083 invalidate_bdev(sbi->journal_bdev);
1084 ext4_blkdev_remove(sbi);
1085 }
1086
1087 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1088 sbi->s_ea_inode_cache = NULL;
1089
1090 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1091 sbi->s_ea_block_cache = NULL;
1092
1093 if (sbi->s_mmp_tsk)
1094 kthread_stop(sbi->s_mmp_tsk);
1095 brelse(sbi->s_sbh);
1096 sb->s_fs_info = NULL;
1097 /*
1098 * Now that we are completely done shutting down the
1099 * superblock, we need to actually destroy the kobject.
1100 */
1101 kobject_put(&sbi->s_kobj);
1102 wait_for_completion(&sbi->s_kobj_unregister);
1103 if (sbi->s_chksum_driver)
1104 crypto_free_shash(sbi->s_chksum_driver);
1105 kfree(sbi->s_blockgroup_lock);
1106 fs_put_dax(sbi->s_daxdev);
1107 fscrypt_free_dummy_context(&sbi->s_dummy_enc_ctx);
1108#ifdef CONFIG_UNICODE
1109 utf8_unload(sbi->s_encoding);
1110#endif
1111 kfree(sbi);
1112}
1113
1114static struct kmem_cache *ext4_inode_cachep;
1115
1116/*
1117 * Called inside transaction, so use GFP_NOFS
1118 */
1119static struct inode *ext4_alloc_inode(struct super_block *sb)
1120{
1121 struct ext4_inode_info *ei;
1122
1123 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1124 if (!ei)
1125 return NULL;
1126
1127 inode_set_iversion(&ei->vfs_inode, 1);
1128 spin_lock_init(&ei->i_raw_lock);
1129 INIT_LIST_HEAD(&ei->i_prealloc_list);
1130 atomic_set(&ei->i_prealloc_active, 0);
1131 spin_lock_init(&ei->i_prealloc_lock);
1132 ext4_es_init_tree(&ei->i_es_tree);
1133 rwlock_init(&ei->i_es_lock);
1134 INIT_LIST_HEAD(&ei->i_es_list);
1135 ei->i_es_all_nr = 0;
1136 ei->i_es_shk_nr = 0;
1137 ei->i_es_shrink_lblk = 0;
1138 ei->i_reserved_data_blocks = 0;
1139 spin_lock_init(&(ei->i_block_reservation_lock));
1140 ext4_init_pending_tree(&ei->i_pending_tree);
1141#ifdef CONFIG_QUOTA
1142 ei->i_reserved_quota = 0;
1143 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1144#endif
1145 ei->jinode = NULL;
1146 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1147 spin_lock_init(&ei->i_completed_io_lock);
1148 ei->i_sync_tid = 0;
1149 ei->i_datasync_tid = 0;
1150 atomic_set(&ei->i_unwritten, 0);
1151 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1152 return &ei->vfs_inode;
1153}
1154
1155static int ext4_drop_inode(struct inode *inode)
1156{
1157 int drop = generic_drop_inode(inode);
1158
1159 if (!drop)
1160 drop = fscrypt_drop_inode(inode);
1161
1162 trace_ext4_drop_inode(inode, drop);
1163 return drop;
1164}
1165
1166static void ext4_free_in_core_inode(struct inode *inode)
1167{
1168 fscrypt_free_inode(inode);
1169 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1170}
1171
1172static void ext4_destroy_inode(struct inode *inode)
1173{
1174 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1175 ext4_msg(inode->i_sb, KERN_ERR,
1176 "Inode %lu (%p): orphan list check failed!",
1177 inode->i_ino, EXT4_I(inode));
1178 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1179 EXT4_I(inode), sizeof(struct ext4_inode_info),
1180 true);
1181 dump_stack();
1182 }
1183}
1184
1185static void init_once(void *foo)
1186{
1187 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1188
1189 INIT_LIST_HEAD(&ei->i_orphan);
1190 init_rwsem(&ei->xattr_sem);
1191 init_rwsem(&ei->i_data_sem);
1192 init_rwsem(&ei->i_mmap_sem);
1193 inode_init_once(&ei->vfs_inode);
1194}
1195
1196static int __init init_inodecache(void)
1197{
1198 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1199 sizeof(struct ext4_inode_info), 0,
1200 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1201 SLAB_ACCOUNT),
1202 offsetof(struct ext4_inode_info, i_data),
1203 sizeof_field(struct ext4_inode_info, i_data),
1204 init_once);
1205 if (ext4_inode_cachep == NULL)
1206 return -ENOMEM;
1207 return 0;
1208}
1209
1210static void destroy_inodecache(void)
1211{
1212 /*
1213 * Make sure all delayed rcu free inodes are flushed before we
1214 * destroy cache.
1215 */
1216 rcu_barrier();
1217 kmem_cache_destroy(ext4_inode_cachep);
1218}
1219
1220void ext4_clear_inode(struct inode *inode)
1221{
1222 invalidate_inode_buffers(inode);
1223 clear_inode(inode);
1224 ext4_discard_preallocations(inode, 0);
1225 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1226 dquot_drop(inode);
1227 if (EXT4_I(inode)->jinode) {
1228 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1229 EXT4_I(inode)->jinode);
1230 jbd2_free_inode(EXT4_I(inode)->jinode);
1231 EXT4_I(inode)->jinode = NULL;
1232 }
1233 fscrypt_put_encryption_info(inode);
1234 fsverity_cleanup_inode(inode);
1235}
1236
1237static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1238 u64 ino, u32 generation)
1239{
1240 struct inode *inode;
1241
1242 /*
1243 * Currently we don't know the generation for parent directory, so
1244 * a generation of 0 means "accept any"
1245 */
1246 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1247 if (IS_ERR(inode))
1248 return ERR_CAST(inode);
1249 if (generation && inode->i_generation != generation) {
1250 iput(inode);
1251 return ERR_PTR(-ESTALE);
1252 }
1253
1254 return inode;
1255}
1256
1257static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1258 int fh_len, int fh_type)
1259{
1260 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1261 ext4_nfs_get_inode);
1262}
1263
1264static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1265 int fh_len, int fh_type)
1266{
1267 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1268 ext4_nfs_get_inode);
1269}
1270
1271static int ext4_nfs_commit_metadata(struct inode *inode)
1272{
1273 struct writeback_control wbc = {
1274 .sync_mode = WB_SYNC_ALL
1275 };
1276
1277 trace_ext4_nfs_commit_metadata(inode);
1278 return ext4_write_inode(inode, &wbc);
1279}
1280
1281/*
1282 * Try to release metadata pages (indirect blocks, directories) which are
1283 * mapped via the block device. Since these pages could have journal heads
1284 * which would prevent try_to_free_buffers() from freeing them, we must use
1285 * jbd2 layer's try_to_free_buffers() function to release them.
1286 */
1287static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1288 gfp_t wait)
1289{
1290 journal_t *journal = EXT4_SB(sb)->s_journal;
1291
1292 WARN_ON(PageChecked(page));
1293 if (!page_has_buffers(page))
1294 return 0;
1295 if (journal)
1296 return jbd2_journal_try_to_free_buffers(journal, page);
1297
1298 return try_to_free_buffers(page);
1299}
1300
1301#ifdef CONFIG_FS_ENCRYPTION
1302static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1303{
1304 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1305 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1306}
1307
1308static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1309 void *fs_data)
1310{
1311 handle_t *handle = fs_data;
1312 int res, res2, credits, retries = 0;
1313
1314 /*
1315 * Encrypting the root directory is not allowed because e2fsck expects
1316 * lost+found to exist and be unencrypted, and encrypting the root
1317 * directory would imply encrypting the lost+found directory as well as
1318 * the filename "lost+found" itself.
1319 */
1320 if (inode->i_ino == EXT4_ROOT_INO)
1321 return -EPERM;
1322
1323 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1324 return -EINVAL;
1325
1326 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1327 return -EOPNOTSUPP;
1328
1329 res = ext4_convert_inline_data(inode);
1330 if (res)
1331 return res;
1332
1333 /*
1334 * If a journal handle was specified, then the encryption context is
1335 * being set on a new inode via inheritance and is part of a larger
1336 * transaction to create the inode. Otherwise the encryption context is
1337 * being set on an existing inode in its own transaction. Only in the
1338 * latter case should the "retry on ENOSPC" logic be used.
1339 */
1340
1341 if (handle) {
1342 res = ext4_xattr_set_handle(handle, inode,
1343 EXT4_XATTR_INDEX_ENCRYPTION,
1344 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1345 ctx, len, 0);
1346 if (!res) {
1347 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1348 ext4_clear_inode_state(inode,
1349 EXT4_STATE_MAY_INLINE_DATA);
1350 /*
1351 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1352 * S_DAX may be disabled
1353 */
1354 ext4_set_inode_flags(inode, false);
1355 }
1356 return res;
1357 }
1358
1359 res = dquot_initialize(inode);
1360 if (res)
1361 return res;
1362retry:
1363 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1364 &credits);
1365 if (res)
1366 return res;
1367
1368 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1369 if (IS_ERR(handle))
1370 return PTR_ERR(handle);
1371
1372 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1373 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1374 ctx, len, 0);
1375 if (!res) {
1376 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1377 /*
1378 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1379 * S_DAX may be disabled
1380 */
1381 ext4_set_inode_flags(inode, false);
1382 res = ext4_mark_inode_dirty(handle, inode);
1383 if (res)
1384 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1385 }
1386 res2 = ext4_journal_stop(handle);
1387
1388 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1389 goto retry;
1390 if (!res)
1391 res = res2;
1392 return res;
1393}
1394
1395static const union fscrypt_context *
1396ext4_get_dummy_context(struct super_block *sb)
1397{
1398 return EXT4_SB(sb)->s_dummy_enc_ctx.ctx;
1399}
1400
1401static bool ext4_has_stable_inodes(struct super_block *sb)
1402{
1403 return ext4_has_feature_stable_inodes(sb);
1404}
1405
1406static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1407 int *ino_bits_ret, int *lblk_bits_ret)
1408{
1409 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1410 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1411}
1412
1413static const struct fscrypt_operations ext4_cryptops = {
1414 .key_prefix = "ext4:",
1415 .get_context = ext4_get_context,
1416 .set_context = ext4_set_context,
1417 .get_dummy_context = ext4_get_dummy_context,
1418 .empty_dir = ext4_empty_dir,
1419 .max_namelen = EXT4_NAME_LEN,
1420 .has_stable_inodes = ext4_has_stable_inodes,
1421 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1422};
1423#endif
1424
1425#ifdef CONFIG_QUOTA
1426static const char * const quotatypes[] = INITQFNAMES;
1427#define QTYPE2NAME(t) (quotatypes[t])
1428
1429static int ext4_write_dquot(struct dquot *dquot);
1430static int ext4_acquire_dquot(struct dquot *dquot);
1431static int ext4_release_dquot(struct dquot *dquot);
1432static int ext4_mark_dquot_dirty(struct dquot *dquot);
1433static int ext4_write_info(struct super_block *sb, int type);
1434static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1435 const struct path *path);
1436static int ext4_quota_on_mount(struct super_block *sb, int type);
1437static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1438 size_t len, loff_t off);
1439static ssize_t ext4_quota_write(struct super_block *sb, int type,
1440 const char *data, size_t len, loff_t off);
1441static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1442 unsigned int flags);
1443static int ext4_enable_quotas(struct super_block *sb);
1444
1445static struct dquot **ext4_get_dquots(struct inode *inode)
1446{
1447 return EXT4_I(inode)->i_dquot;
1448}
1449
1450static const struct dquot_operations ext4_quota_operations = {
1451 .get_reserved_space = ext4_get_reserved_space,
1452 .write_dquot = ext4_write_dquot,
1453 .acquire_dquot = ext4_acquire_dquot,
1454 .release_dquot = ext4_release_dquot,
1455 .mark_dirty = ext4_mark_dquot_dirty,
1456 .write_info = ext4_write_info,
1457 .alloc_dquot = dquot_alloc,
1458 .destroy_dquot = dquot_destroy,
1459 .get_projid = ext4_get_projid,
1460 .get_inode_usage = ext4_get_inode_usage,
1461 .get_next_id = dquot_get_next_id,
1462};
1463
1464static const struct quotactl_ops ext4_qctl_operations = {
1465 .quota_on = ext4_quota_on,
1466 .quota_off = ext4_quota_off,
1467 .quota_sync = dquot_quota_sync,
1468 .get_state = dquot_get_state,
1469 .set_info = dquot_set_dqinfo,
1470 .get_dqblk = dquot_get_dqblk,
1471 .set_dqblk = dquot_set_dqblk,
1472 .get_nextdqblk = dquot_get_next_dqblk,
1473};
1474#endif
1475
1476static const struct super_operations ext4_sops = {
1477 .alloc_inode = ext4_alloc_inode,
1478 .free_inode = ext4_free_in_core_inode,
1479 .destroy_inode = ext4_destroy_inode,
1480 .write_inode = ext4_write_inode,
1481 .dirty_inode = ext4_dirty_inode,
1482 .drop_inode = ext4_drop_inode,
1483 .evict_inode = ext4_evict_inode,
1484 .put_super = ext4_put_super,
1485 .sync_fs = ext4_sync_fs,
1486 .freeze_fs = ext4_freeze,
1487 .unfreeze_fs = ext4_unfreeze,
1488 .statfs = ext4_statfs,
1489 .remount_fs = ext4_remount,
1490 .show_options = ext4_show_options,
1491#ifdef CONFIG_QUOTA
1492 .quota_read = ext4_quota_read,
1493 .quota_write = ext4_quota_write,
1494 .get_dquots = ext4_get_dquots,
1495#endif
1496 .bdev_try_to_free_page = bdev_try_to_free_page,
1497};
1498
1499static const struct export_operations ext4_export_ops = {
1500 .fh_to_dentry = ext4_fh_to_dentry,
1501 .fh_to_parent = ext4_fh_to_parent,
1502 .get_parent = ext4_get_parent,
1503 .commit_metadata = ext4_nfs_commit_metadata,
1504};
1505
1506enum {
1507 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1508 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1509 Opt_nouid32, Opt_debug, Opt_removed,
1510 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1511 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1512 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1513 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1514 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1515 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1516 Opt_inlinecrypt,
1517 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1518 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1519 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1520 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1521 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1522 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1523 Opt_nowarn_on_error, Opt_mblk_io_submit,
1524 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1525 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1526 Opt_inode_readahead_blks, Opt_journal_ioprio,
1527 Opt_dioread_nolock, Opt_dioread_lock,
1528 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1529 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1530 Opt_prefetch_block_bitmaps,
1531};
1532
1533static const match_table_t tokens = {
1534 {Opt_bsd_df, "bsddf"},
1535 {Opt_minix_df, "minixdf"},
1536 {Opt_grpid, "grpid"},
1537 {Opt_grpid, "bsdgroups"},
1538 {Opt_nogrpid, "nogrpid"},
1539 {Opt_nogrpid, "sysvgroups"},
1540 {Opt_resgid, "resgid=%u"},
1541 {Opt_resuid, "resuid=%u"},
1542 {Opt_sb, "sb=%u"},
1543 {Opt_err_cont, "errors=continue"},
1544 {Opt_err_panic, "errors=panic"},
1545 {Opt_err_ro, "errors=remount-ro"},
1546 {Opt_nouid32, "nouid32"},
1547 {Opt_debug, "debug"},
1548 {Opt_removed, "oldalloc"},
1549 {Opt_removed, "orlov"},
1550 {Opt_user_xattr, "user_xattr"},
1551 {Opt_nouser_xattr, "nouser_xattr"},
1552 {Opt_acl, "acl"},
1553 {Opt_noacl, "noacl"},
1554 {Opt_noload, "norecovery"},
1555 {Opt_noload, "noload"},
1556 {Opt_removed, "nobh"},
1557 {Opt_removed, "bh"},
1558 {Opt_commit, "commit=%u"},
1559 {Opt_min_batch_time, "min_batch_time=%u"},
1560 {Opt_max_batch_time, "max_batch_time=%u"},
1561 {Opt_journal_dev, "journal_dev=%u"},
1562 {Opt_journal_path, "journal_path=%s"},
1563 {Opt_journal_checksum, "journal_checksum"},
1564 {Opt_nojournal_checksum, "nojournal_checksum"},
1565 {Opt_journal_async_commit, "journal_async_commit"},
1566 {Opt_abort, "abort"},
1567 {Opt_data_journal, "data=journal"},
1568 {Opt_data_ordered, "data=ordered"},
1569 {Opt_data_writeback, "data=writeback"},
1570 {Opt_data_err_abort, "data_err=abort"},
1571 {Opt_data_err_ignore, "data_err=ignore"},
1572 {Opt_offusrjquota, "usrjquota="},
1573 {Opt_usrjquota, "usrjquota=%s"},
1574 {Opt_offgrpjquota, "grpjquota="},
1575 {Opt_grpjquota, "grpjquota=%s"},
1576 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1577 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1578 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1579 {Opt_grpquota, "grpquota"},
1580 {Opt_noquota, "noquota"},
1581 {Opt_quota, "quota"},
1582 {Opt_usrquota, "usrquota"},
1583 {Opt_prjquota, "prjquota"},
1584 {Opt_barrier, "barrier=%u"},
1585 {Opt_barrier, "barrier"},
1586 {Opt_nobarrier, "nobarrier"},
1587 {Opt_i_version, "i_version"},
1588 {Opt_dax, "dax"},
1589 {Opt_dax_always, "dax=always"},
1590 {Opt_dax_inode, "dax=inode"},
1591 {Opt_dax_never, "dax=never"},
1592 {Opt_stripe, "stripe=%u"},
1593 {Opt_delalloc, "delalloc"},
1594 {Opt_warn_on_error, "warn_on_error"},
1595 {Opt_nowarn_on_error, "nowarn_on_error"},
1596 {Opt_lazytime, "lazytime"},
1597 {Opt_nolazytime, "nolazytime"},
1598 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1599 {Opt_nodelalloc, "nodelalloc"},
1600 {Opt_removed, "mblk_io_submit"},
1601 {Opt_removed, "nomblk_io_submit"},
1602 {Opt_block_validity, "block_validity"},
1603 {Opt_noblock_validity, "noblock_validity"},
1604 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1605 {Opt_journal_ioprio, "journal_ioprio=%u"},
1606 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1607 {Opt_auto_da_alloc, "auto_da_alloc"},
1608 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1609 {Opt_dioread_nolock, "dioread_nolock"},
1610 {Opt_dioread_lock, "nodioread_nolock"},
1611 {Opt_dioread_lock, "dioread_lock"},
1612 {Opt_discard, "discard"},
1613 {Opt_nodiscard, "nodiscard"},
1614 {Opt_init_itable, "init_itable=%u"},
1615 {Opt_init_itable, "init_itable"},
1616 {Opt_noinit_itable, "noinit_itable"},
1617 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1618 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1619 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1620 {Opt_inlinecrypt, "inlinecrypt"},
1621 {Opt_nombcache, "nombcache"},
1622 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1623 {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
1624 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1625 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1626 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1627 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1628 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1629 {Opt_err, NULL},
1630};
1631
1632static ext4_fsblk_t get_sb_block(void **data)
1633{
1634 ext4_fsblk_t sb_block;
1635 char *options = (char *) *data;
1636
1637 if (!options || strncmp(options, "sb=", 3) != 0)
1638 return 1; /* Default location */
1639
1640 options += 3;
1641 /* TODO: use simple_strtoll with >32bit ext4 */
1642 sb_block = simple_strtoul(options, &options, 0);
1643 if (*options && *options != ',') {
1644 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1645 (char *) *data);
1646 return 1;
1647 }
1648 if (*options == ',')
1649 options++;
1650 *data = (void *) options;
1651
1652 return sb_block;
1653}
1654
1655#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1656static const char deprecated_msg[] =
1657 "Mount option \"%s\" will be removed by %s\n"
1658 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1659
1660#ifdef CONFIG_QUOTA
1661static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1662{
1663 struct ext4_sb_info *sbi = EXT4_SB(sb);
1664 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1665 int ret = -1;
1666
1667 if (sb_any_quota_loaded(sb) && !old_qname) {
1668 ext4_msg(sb, KERN_ERR,
1669 "Cannot change journaled "
1670 "quota options when quota turned on");
1671 return -1;
1672 }
1673 if (ext4_has_feature_quota(sb)) {
1674 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1675 "ignored when QUOTA feature is enabled");
1676 return 1;
1677 }
1678 qname = match_strdup(args);
1679 if (!qname) {
1680 ext4_msg(sb, KERN_ERR,
1681 "Not enough memory for storing quotafile name");
1682 return -1;
1683 }
1684 if (old_qname) {
1685 if (strcmp(old_qname, qname) == 0)
1686 ret = 1;
1687 else
1688 ext4_msg(sb, KERN_ERR,
1689 "%s quota file already specified",
1690 QTYPE2NAME(qtype));
1691 goto errout;
1692 }
1693 if (strchr(qname, '/')) {
1694 ext4_msg(sb, KERN_ERR,
1695 "quotafile must be on filesystem root");
1696 goto errout;
1697 }
1698 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1699 set_opt(sb, QUOTA);
1700 return 1;
1701errout:
1702 kfree(qname);
1703 return ret;
1704}
1705
1706static int clear_qf_name(struct super_block *sb, int qtype)
1707{
1708
1709 struct ext4_sb_info *sbi = EXT4_SB(sb);
1710 char *old_qname = get_qf_name(sb, sbi, qtype);
1711
1712 if (sb_any_quota_loaded(sb) && old_qname) {
1713 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1714 " when quota turned on");
1715 return -1;
1716 }
1717 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1718 synchronize_rcu();
1719 kfree(old_qname);
1720 return 1;
1721}
1722#endif
1723
1724#define MOPT_SET 0x0001
1725#define MOPT_CLEAR 0x0002
1726#define MOPT_NOSUPPORT 0x0004
1727#define MOPT_EXPLICIT 0x0008
1728#define MOPT_CLEAR_ERR 0x0010
1729#define MOPT_GTE0 0x0020
1730#ifdef CONFIG_QUOTA
1731#define MOPT_Q 0
1732#define MOPT_QFMT 0x0040
1733#else
1734#define MOPT_Q MOPT_NOSUPPORT
1735#define MOPT_QFMT MOPT_NOSUPPORT
1736#endif
1737#define MOPT_DATAJ 0x0080
1738#define MOPT_NO_EXT2 0x0100
1739#define MOPT_NO_EXT3 0x0200
1740#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1741#define MOPT_STRING 0x0400
1742#define MOPT_SKIP 0x0800
1743
1744static const struct mount_opts {
1745 int token;
1746 int mount_opt;
1747 int flags;
1748} ext4_mount_opts[] = {
1749 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1750 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1751 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1752 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1753 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1754 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1755 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1756 MOPT_EXT4_ONLY | MOPT_SET},
1757 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1758 MOPT_EXT4_ONLY | MOPT_CLEAR},
1759 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1760 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1761 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1762 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1763 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1764 MOPT_EXT4_ONLY | MOPT_CLEAR},
1765 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1766 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1767 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1768 MOPT_EXT4_ONLY | MOPT_CLEAR},
1769 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1770 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1771 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1772 EXT4_MOUNT_JOURNAL_CHECKSUM),
1773 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1774 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1775 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1776 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1777 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1778 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1779 MOPT_NO_EXT2},
1780 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1781 MOPT_NO_EXT2},
1782 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1783 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1784 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1785 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1786 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1787 {Opt_commit, 0, MOPT_GTE0},
1788 {Opt_max_batch_time, 0, MOPT_GTE0},
1789 {Opt_min_batch_time, 0, MOPT_GTE0},
1790 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1791 {Opt_init_itable, 0, MOPT_GTE0},
1792 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1793 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1794 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1795 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1796 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1797 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1798 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1799 {Opt_stripe, 0, MOPT_GTE0},
1800 {Opt_resuid, 0, MOPT_GTE0},
1801 {Opt_resgid, 0, MOPT_GTE0},
1802 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1803 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1804 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1805 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1806 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1807 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1808 MOPT_NO_EXT2 | MOPT_DATAJ},
1809 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1810 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1811#ifdef CONFIG_EXT4_FS_POSIX_ACL
1812 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1813 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1814#else
1815 {Opt_acl, 0, MOPT_NOSUPPORT},
1816 {Opt_noacl, 0, MOPT_NOSUPPORT},
1817#endif
1818 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1819 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1820 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1821 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1822 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1823 MOPT_SET | MOPT_Q},
1824 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1825 MOPT_SET | MOPT_Q},
1826 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1827 MOPT_SET | MOPT_Q},
1828 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1829 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1830 MOPT_CLEAR | MOPT_Q},
1831 {Opt_usrjquota, 0, MOPT_Q},
1832 {Opt_grpjquota, 0, MOPT_Q},
1833 {Opt_offusrjquota, 0, MOPT_Q},
1834 {Opt_offgrpjquota, 0, MOPT_Q},
1835 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1836 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1837 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1838 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1839 {Opt_test_dummy_encryption, 0, MOPT_STRING},
1840 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1841 {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
1842 MOPT_SET},
1843 {Opt_err, 0, 0}
1844};
1845
1846#ifdef CONFIG_UNICODE
1847static const struct ext4_sb_encodings {
1848 __u16 magic;
1849 char *name;
1850 char *version;
1851} ext4_sb_encoding_map[] = {
1852 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1853};
1854
1855static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1856 const struct ext4_sb_encodings **encoding,
1857 __u16 *flags)
1858{
1859 __u16 magic = le16_to_cpu(es->s_encoding);
1860 int i;
1861
1862 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1863 if (magic == ext4_sb_encoding_map[i].magic)
1864 break;
1865
1866 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1867 return -EINVAL;
1868
1869 *encoding = &ext4_sb_encoding_map[i];
1870 *flags = le16_to_cpu(es->s_encoding_flags);
1871
1872 return 0;
1873}
1874#endif
1875
1876static int ext4_set_test_dummy_encryption(struct super_block *sb,
1877 const char *opt,
1878 const substring_t *arg,
1879 bool is_remount)
1880{
1881#ifdef CONFIG_FS_ENCRYPTION
1882 struct ext4_sb_info *sbi = EXT4_SB(sb);
1883 int err;
1884
1885 /*
1886 * This mount option is just for testing, and it's not worthwhile to
1887 * implement the extra complexity (e.g. RCU protection) that would be
1888 * needed to allow it to be set or changed during remount. We do allow
1889 * it to be specified during remount, but only if there is no change.
1890 */
1891 if (is_remount && !sbi->s_dummy_enc_ctx.ctx) {
1892 ext4_msg(sb, KERN_WARNING,
1893 "Can't set test_dummy_encryption on remount");
1894 return -1;
1895 }
1896 err = fscrypt_set_test_dummy_encryption(sb, arg, &sbi->s_dummy_enc_ctx);
1897 if (err) {
1898 if (err == -EEXIST)
1899 ext4_msg(sb, KERN_WARNING,
1900 "Can't change test_dummy_encryption on remount");
1901 else if (err == -EINVAL)
1902 ext4_msg(sb, KERN_WARNING,
1903 "Value of option \"%s\" is unrecognized", opt);
1904 else
1905 ext4_msg(sb, KERN_WARNING,
1906 "Error processing option \"%s\" [%d]",
1907 opt, err);
1908 return -1;
1909 }
1910 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
1911#else
1912 ext4_msg(sb, KERN_WARNING,
1913 "Test dummy encryption mount option ignored");
1914#endif
1915 return 1;
1916}
1917
1918static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1919 substring_t *args, unsigned long *journal_devnum,
1920 unsigned int *journal_ioprio, int is_remount)
1921{
1922 struct ext4_sb_info *sbi = EXT4_SB(sb);
1923 const struct mount_opts *m;
1924 kuid_t uid;
1925 kgid_t gid;
1926 int arg = 0;
1927
1928#ifdef CONFIG_QUOTA
1929 if (token == Opt_usrjquota)
1930 return set_qf_name(sb, USRQUOTA, &args[0]);
1931 else if (token == Opt_grpjquota)
1932 return set_qf_name(sb, GRPQUOTA, &args[0]);
1933 else if (token == Opt_offusrjquota)
1934 return clear_qf_name(sb, USRQUOTA);
1935 else if (token == Opt_offgrpjquota)
1936 return clear_qf_name(sb, GRPQUOTA);
1937#endif
1938 switch (token) {
1939 case Opt_noacl:
1940 case Opt_nouser_xattr:
1941 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1942 break;
1943 case Opt_sb:
1944 return 1; /* handled by get_sb_block() */
1945 case Opt_removed:
1946 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1947 return 1;
1948 case Opt_abort:
1949 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1950 return 1;
1951 case Opt_i_version:
1952 sb->s_flags |= SB_I_VERSION;
1953 return 1;
1954 case Opt_lazytime:
1955 sb->s_flags |= SB_LAZYTIME;
1956 return 1;
1957 case Opt_nolazytime:
1958 sb->s_flags &= ~SB_LAZYTIME;
1959 return 1;
1960 case Opt_inlinecrypt:
1961#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
1962 sb->s_flags |= SB_INLINECRYPT;
1963#else
1964 ext4_msg(sb, KERN_ERR, "inline encryption not supported");
1965#endif
1966 return 1;
1967 }
1968
1969 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1970 if (token == m->token)
1971 break;
1972
1973 if (m->token == Opt_err) {
1974 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1975 "or missing value", opt);
1976 return -1;
1977 }
1978
1979 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1980 ext4_msg(sb, KERN_ERR,
1981 "Mount option \"%s\" incompatible with ext2", opt);
1982 return -1;
1983 }
1984 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1985 ext4_msg(sb, KERN_ERR,
1986 "Mount option \"%s\" incompatible with ext3", opt);
1987 return -1;
1988 }
1989
1990 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1991 return -1;
1992 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1993 return -1;
1994 if (m->flags & MOPT_EXPLICIT) {
1995 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1996 set_opt2(sb, EXPLICIT_DELALLOC);
1997 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1998 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1999 } else
2000 return -1;
2001 }
2002 if (m->flags & MOPT_CLEAR_ERR)
2003 clear_opt(sb, ERRORS_MASK);
2004 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2005 ext4_msg(sb, KERN_ERR, "Cannot change quota "
2006 "options when quota turned on");
2007 return -1;
2008 }
2009
2010 if (m->flags & MOPT_NOSUPPORT) {
2011 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2012 } else if (token == Opt_commit) {
2013 if (arg == 0)
2014 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2015 else if (arg > INT_MAX / HZ) {
2016 ext4_msg(sb, KERN_ERR,
2017 "Invalid commit interval %d, "
2018 "must be smaller than %d",
2019 arg, INT_MAX / HZ);
2020 return -1;
2021 }
2022 sbi->s_commit_interval = HZ * arg;
2023 } else if (token == Opt_debug_want_extra_isize) {
2024 if ((arg & 1) ||
2025 (arg < 4) ||
2026 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2027 ext4_msg(sb, KERN_ERR,
2028 "Invalid want_extra_isize %d", arg);
2029 return -1;
2030 }
2031 sbi->s_want_extra_isize = arg;
2032 } else if (token == Opt_max_batch_time) {
2033 sbi->s_max_batch_time = arg;
2034 } else if (token == Opt_min_batch_time) {
2035 sbi->s_min_batch_time = arg;
2036 } else if (token == Opt_inode_readahead_blks) {
2037 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2038 ext4_msg(sb, KERN_ERR,
2039 "EXT4-fs: inode_readahead_blks must be "
2040 "0 or a power of 2 smaller than 2^31");
2041 return -1;
2042 }
2043 sbi->s_inode_readahead_blks = arg;
2044 } else if (token == Opt_init_itable) {
2045 set_opt(sb, INIT_INODE_TABLE);
2046 if (!args->from)
2047 arg = EXT4_DEF_LI_WAIT_MULT;
2048 sbi->s_li_wait_mult = arg;
2049 } else if (token == Opt_max_dir_size_kb) {
2050 sbi->s_max_dir_size_kb = arg;
2051 } else if (token == Opt_stripe) {
2052 sbi->s_stripe = arg;
2053 } else if (token == Opt_resuid) {
2054 uid = make_kuid(current_user_ns(), arg);
2055 if (!uid_valid(uid)) {
2056 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2057 return -1;
2058 }
2059 sbi->s_resuid = uid;
2060 } else if (token == Opt_resgid) {
2061 gid = make_kgid(current_user_ns(), arg);
2062 if (!gid_valid(gid)) {
2063 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2064 return -1;
2065 }
2066 sbi->s_resgid = gid;
2067 } else if (token == Opt_journal_dev) {
2068 if (is_remount) {
2069 ext4_msg(sb, KERN_ERR,
2070 "Cannot specify journal on remount");
2071 return -1;
2072 }
2073 *journal_devnum = arg;
2074 } else if (token == Opt_journal_path) {
2075 char *journal_path;
2076 struct inode *journal_inode;
2077 struct path path;
2078 int error;
2079
2080 if (is_remount) {
2081 ext4_msg(sb, KERN_ERR,
2082 "Cannot specify journal on remount");
2083 return -1;
2084 }
2085 journal_path = match_strdup(&args[0]);
2086 if (!journal_path) {
2087 ext4_msg(sb, KERN_ERR, "error: could not dup "
2088 "journal device string");
2089 return -1;
2090 }
2091
2092 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2093 if (error) {
2094 ext4_msg(sb, KERN_ERR, "error: could not find "
2095 "journal device path: error %d", error);
2096 kfree(journal_path);
2097 return -1;
2098 }
2099
2100 journal_inode = d_inode(path.dentry);
2101 if (!S_ISBLK(journal_inode->i_mode)) {
2102 ext4_msg(sb, KERN_ERR, "error: journal path %s "
2103 "is not a block device", journal_path);
2104 path_put(&path);
2105 kfree(journal_path);
2106 return -1;
2107 }
2108
2109 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
2110 path_put(&path);
2111 kfree(journal_path);
2112 } else if (token == Opt_journal_ioprio) {
2113 if (arg > 7) {
2114 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2115 " (must be 0-7)");
2116 return -1;
2117 }
2118 *journal_ioprio =
2119 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2120 } else if (token == Opt_test_dummy_encryption) {
2121 return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2122 is_remount);
2123 } else if (m->flags & MOPT_DATAJ) {
2124 if (is_remount) {
2125 if (!sbi->s_journal)
2126 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2127 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2128 ext4_msg(sb, KERN_ERR,
2129 "Cannot change data mode on remount");
2130 return -1;
2131 }
2132 } else {
2133 clear_opt(sb, DATA_FLAGS);
2134 sbi->s_mount_opt |= m->mount_opt;
2135 }
2136#ifdef CONFIG_QUOTA
2137 } else if (m->flags & MOPT_QFMT) {
2138 if (sb_any_quota_loaded(sb) &&
2139 sbi->s_jquota_fmt != m->mount_opt) {
2140 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2141 "quota options when quota turned on");
2142 return -1;
2143 }
2144 if (ext4_has_feature_quota(sb)) {
2145 ext4_msg(sb, KERN_INFO,
2146 "Quota format mount options ignored "
2147 "when QUOTA feature is enabled");
2148 return 1;
2149 }
2150 sbi->s_jquota_fmt = m->mount_opt;
2151#endif
2152 } else if (token == Opt_dax || token == Opt_dax_always ||
2153 token == Opt_dax_inode || token == Opt_dax_never) {
2154#ifdef CONFIG_FS_DAX
2155 switch (token) {
2156 case Opt_dax:
2157 case Opt_dax_always:
2158 if (is_remount &&
2159 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2160 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2161 fail_dax_change_remount:
2162 ext4_msg(sb, KERN_ERR, "can't change "
2163 "dax mount option while remounting");
2164 return -1;
2165 }
2166 if (is_remount &&
2167 (test_opt(sb, DATA_FLAGS) ==
2168 EXT4_MOUNT_JOURNAL_DATA)) {
2169 ext4_msg(sb, KERN_ERR, "can't mount with "
2170 "both data=journal and dax");
2171 return -1;
2172 }
2173 ext4_msg(sb, KERN_WARNING,
2174 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2175 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2176 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2177 break;
2178 case Opt_dax_never:
2179 if (is_remount &&
2180 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2181 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2182 goto fail_dax_change_remount;
2183 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2184 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2185 break;
2186 case Opt_dax_inode:
2187 if (is_remount &&
2188 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2189 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2190 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2191 goto fail_dax_change_remount;
2192 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2193 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2194 /* Strictly for printing options */
2195 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2196 break;
2197 }
2198#else
2199 ext4_msg(sb, KERN_INFO, "dax option not supported");
2200 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2201 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2202 return -1;
2203#endif
2204 } else if (token == Opt_data_err_abort) {
2205 sbi->s_mount_opt |= m->mount_opt;
2206 } else if (token == Opt_data_err_ignore) {
2207 sbi->s_mount_opt &= ~m->mount_opt;
2208 } else {
2209 if (!args->from)
2210 arg = 1;
2211 if (m->flags & MOPT_CLEAR)
2212 arg = !arg;
2213 else if (unlikely(!(m->flags & MOPT_SET))) {
2214 ext4_msg(sb, KERN_WARNING,
2215 "buggy handling of option %s", opt);
2216 WARN_ON(1);
2217 return -1;
2218 }
2219 if (arg != 0)
2220 sbi->s_mount_opt |= m->mount_opt;
2221 else
2222 sbi->s_mount_opt &= ~m->mount_opt;
2223 }
2224 return 1;
2225}
2226
2227static int parse_options(char *options, struct super_block *sb,
2228 unsigned long *journal_devnum,
2229 unsigned int *journal_ioprio,
2230 int is_remount)
2231{
2232 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2233 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2234 substring_t args[MAX_OPT_ARGS];
2235 int token;
2236
2237 if (!options)
2238 return 1;
2239
2240 while ((p = strsep(&options, ",")) != NULL) {
2241 if (!*p)
2242 continue;
2243 /*
2244 * Initialize args struct so we know whether arg was
2245 * found; some options take optional arguments.
2246 */
2247 args[0].to = args[0].from = NULL;
2248 token = match_token(p, tokens, args);
2249 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2250 journal_ioprio, is_remount) < 0)
2251 return 0;
2252 }
2253#ifdef CONFIG_QUOTA
2254 /*
2255 * We do the test below only for project quotas. 'usrquota' and
2256 * 'grpquota' mount options are allowed even without quota feature
2257 * to support legacy quotas in quota files.
2258 */
2259 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2260 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2261 "Cannot enable project quota enforcement.");
2262 return 0;
2263 }
2264 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2265 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2266 if (usr_qf_name || grp_qf_name) {
2267 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2268 clear_opt(sb, USRQUOTA);
2269
2270 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2271 clear_opt(sb, GRPQUOTA);
2272
2273 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2274 ext4_msg(sb, KERN_ERR, "old and new quota "
2275 "format mixing");
2276 return 0;
2277 }
2278
2279 if (!sbi->s_jquota_fmt) {
2280 ext4_msg(sb, KERN_ERR, "journaled quota format "
2281 "not specified");
2282 return 0;
2283 }
2284 }
2285#endif
2286 if (test_opt(sb, DIOREAD_NOLOCK)) {
2287 int blocksize =
2288 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2289 if (blocksize < PAGE_SIZE)
2290 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2291 "experimental mount option 'dioread_nolock' "
2292 "for blocksize < PAGE_SIZE");
2293 }
2294 return 1;
2295}
2296
2297static inline void ext4_show_quota_options(struct seq_file *seq,
2298 struct super_block *sb)
2299{
2300#if defined(CONFIG_QUOTA)
2301 struct ext4_sb_info *sbi = EXT4_SB(sb);
2302 char *usr_qf_name, *grp_qf_name;
2303
2304 if (sbi->s_jquota_fmt) {
2305 char *fmtname = "";
2306
2307 switch (sbi->s_jquota_fmt) {
2308 case QFMT_VFS_OLD:
2309 fmtname = "vfsold";
2310 break;
2311 case QFMT_VFS_V0:
2312 fmtname = "vfsv0";
2313 break;
2314 case QFMT_VFS_V1:
2315 fmtname = "vfsv1";
2316 break;
2317 }
2318 seq_printf(seq, ",jqfmt=%s", fmtname);
2319 }
2320
2321 rcu_read_lock();
2322 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2323 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2324 if (usr_qf_name)
2325 seq_show_option(seq, "usrjquota", usr_qf_name);
2326 if (grp_qf_name)
2327 seq_show_option(seq, "grpjquota", grp_qf_name);
2328 rcu_read_unlock();
2329#endif
2330}
2331
2332static const char *token2str(int token)
2333{
2334 const struct match_token *t;
2335
2336 for (t = tokens; t->token != Opt_err; t++)
2337 if (t->token == token && !strchr(t->pattern, '='))
2338 break;
2339 return t->pattern;
2340}
2341
2342/*
2343 * Show an option if
2344 * - it's set to a non-default value OR
2345 * - if the per-sb default is different from the global default
2346 */
2347static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2348 int nodefs)
2349{
2350 struct ext4_sb_info *sbi = EXT4_SB(sb);
2351 struct ext4_super_block *es = sbi->s_es;
2352 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2353 const struct mount_opts *m;
2354 char sep = nodefs ? '\n' : ',';
2355
2356#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2357#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2358
2359 if (sbi->s_sb_block != 1)
2360 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2361
2362 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2363 int want_set = m->flags & MOPT_SET;
2364 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2365 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2366 continue;
2367 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2368 continue; /* skip if same as the default */
2369 if ((want_set &&
2370 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2371 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2372 continue; /* select Opt_noFoo vs Opt_Foo */
2373 SEQ_OPTS_PRINT("%s", token2str(m->token));
2374 }
2375
2376 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2377 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2378 SEQ_OPTS_PRINT("resuid=%u",
2379 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2380 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2381 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2382 SEQ_OPTS_PRINT("resgid=%u",
2383 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2384 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2385 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2386 SEQ_OPTS_PUTS("errors=remount-ro");
2387 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2388 SEQ_OPTS_PUTS("errors=continue");
2389 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2390 SEQ_OPTS_PUTS("errors=panic");
2391 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2392 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2393 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2394 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2395 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2396 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2397 if (sb->s_flags & SB_I_VERSION)
2398 SEQ_OPTS_PUTS("i_version");
2399 if (nodefs || sbi->s_stripe)
2400 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2401 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2402 (sbi->s_mount_opt ^ def_mount_opt)) {
2403 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2404 SEQ_OPTS_PUTS("data=journal");
2405 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2406 SEQ_OPTS_PUTS("data=ordered");
2407 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2408 SEQ_OPTS_PUTS("data=writeback");
2409 }
2410 if (nodefs ||
2411 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2412 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2413 sbi->s_inode_readahead_blks);
2414
2415 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2416 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2417 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2418 if (nodefs || sbi->s_max_dir_size_kb)
2419 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2420 if (test_opt(sb, DATA_ERR_ABORT))
2421 SEQ_OPTS_PUTS("data_err=abort");
2422
2423 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2424
2425 if (sb->s_flags & SB_INLINECRYPT)
2426 SEQ_OPTS_PUTS("inlinecrypt");
2427
2428 if (test_opt(sb, DAX_ALWAYS)) {
2429 if (IS_EXT2_SB(sb))
2430 SEQ_OPTS_PUTS("dax");
2431 else
2432 SEQ_OPTS_PUTS("dax=always");
2433 } else if (test_opt2(sb, DAX_NEVER)) {
2434 SEQ_OPTS_PUTS("dax=never");
2435 } else if (test_opt2(sb, DAX_INODE)) {
2436 SEQ_OPTS_PUTS("dax=inode");
2437 }
2438
2439 ext4_show_quota_options(seq, sb);
2440 return 0;
2441}
2442
2443static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2444{
2445 return _ext4_show_options(seq, root->d_sb, 0);
2446}
2447
2448int ext4_seq_options_show(struct seq_file *seq, void *offset)
2449{
2450 struct super_block *sb = seq->private;
2451 int rc;
2452
2453 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2454 rc = _ext4_show_options(seq, sb, 1);
2455 seq_puts(seq, "\n");
2456 return rc;
2457}
2458
2459static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2460 int read_only)
2461{
2462 struct ext4_sb_info *sbi = EXT4_SB(sb);
2463 int err = 0;
2464
2465 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2466 ext4_msg(sb, KERN_ERR, "revision level too high, "
2467 "forcing read-only mode");
2468 err = -EROFS;
2469 goto done;
2470 }
2471 if (read_only)
2472 goto done;
2473 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2474 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2475 "running e2fsck is recommended");
2476 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2477 ext4_msg(sb, KERN_WARNING,
2478 "warning: mounting fs with errors, "
2479 "running e2fsck is recommended");
2480 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2481 le16_to_cpu(es->s_mnt_count) >=
2482 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2483 ext4_msg(sb, KERN_WARNING,
2484 "warning: maximal mount count reached, "
2485 "running e2fsck is recommended");
2486 else if (le32_to_cpu(es->s_checkinterval) &&
2487 (ext4_get_tstamp(es, s_lastcheck) +
2488 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2489 ext4_msg(sb, KERN_WARNING,
2490 "warning: checktime reached, "
2491 "running e2fsck is recommended");
2492 if (!sbi->s_journal)
2493 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2494 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2495 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2496 le16_add_cpu(&es->s_mnt_count, 1);
2497 ext4_update_tstamp(es, s_mtime);
2498 if (sbi->s_journal)
2499 ext4_set_feature_journal_needs_recovery(sb);
2500
2501 err = ext4_commit_super(sb, 1);
2502done:
2503 if (test_opt(sb, DEBUG))
2504 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2505 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2506 sb->s_blocksize,
2507 sbi->s_groups_count,
2508 EXT4_BLOCKS_PER_GROUP(sb),
2509 EXT4_INODES_PER_GROUP(sb),
2510 sbi->s_mount_opt, sbi->s_mount_opt2);
2511
2512 cleancache_init_fs(sb);
2513 return err;
2514}
2515
2516int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2517{
2518 struct ext4_sb_info *sbi = EXT4_SB(sb);
2519 struct flex_groups **old_groups, **new_groups;
2520 int size, i, j;
2521
2522 if (!sbi->s_log_groups_per_flex)
2523 return 0;
2524
2525 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2526 if (size <= sbi->s_flex_groups_allocated)
2527 return 0;
2528
2529 new_groups = kvzalloc(roundup_pow_of_two(size *
2530 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2531 if (!new_groups) {
2532 ext4_msg(sb, KERN_ERR,
2533 "not enough memory for %d flex group pointers", size);
2534 return -ENOMEM;
2535 }
2536 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2537 new_groups[i] = kvzalloc(roundup_pow_of_two(
2538 sizeof(struct flex_groups)),
2539 GFP_KERNEL);
2540 if (!new_groups[i]) {
2541 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2542 kvfree(new_groups[j]);
2543 kvfree(new_groups);
2544 ext4_msg(sb, KERN_ERR,
2545 "not enough memory for %d flex groups", size);
2546 return -ENOMEM;
2547 }
2548 }
2549 rcu_read_lock();
2550 old_groups = rcu_dereference(sbi->s_flex_groups);
2551 if (old_groups)
2552 memcpy(new_groups, old_groups,
2553 (sbi->s_flex_groups_allocated *
2554 sizeof(struct flex_groups *)));
2555 rcu_read_unlock();
2556 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2557 sbi->s_flex_groups_allocated = size;
2558 if (old_groups)
2559 ext4_kvfree_array_rcu(old_groups);
2560 return 0;
2561}
2562
2563static int ext4_fill_flex_info(struct super_block *sb)
2564{
2565 struct ext4_sb_info *sbi = EXT4_SB(sb);
2566 struct ext4_group_desc *gdp = NULL;
2567 struct flex_groups *fg;
2568 ext4_group_t flex_group;
2569 int i, err;
2570
2571 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2572 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2573 sbi->s_log_groups_per_flex = 0;
2574 return 1;
2575 }
2576
2577 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2578 if (err)
2579 goto failed;
2580
2581 for (i = 0; i < sbi->s_groups_count; i++) {
2582 gdp = ext4_get_group_desc(sb, i, NULL);
2583
2584 flex_group = ext4_flex_group(sbi, i);
2585 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2586 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2587 atomic64_add(ext4_free_group_clusters(sb, gdp),
2588 &fg->free_clusters);
2589 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2590 }
2591
2592 return 1;
2593failed:
2594 return 0;
2595}
2596
2597static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2598 struct ext4_group_desc *gdp)
2599{
2600 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2601 __u16 crc = 0;
2602 __le32 le_group = cpu_to_le32(block_group);
2603 struct ext4_sb_info *sbi = EXT4_SB(sb);
2604
2605 if (ext4_has_metadata_csum(sbi->s_sb)) {
2606 /* Use new metadata_csum algorithm */
2607 __u32 csum32;
2608 __u16 dummy_csum = 0;
2609
2610 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2611 sizeof(le_group));
2612 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2613 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2614 sizeof(dummy_csum));
2615 offset += sizeof(dummy_csum);
2616 if (offset < sbi->s_desc_size)
2617 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2618 sbi->s_desc_size - offset);
2619
2620 crc = csum32 & 0xFFFF;
2621 goto out;
2622 }
2623
2624 /* old crc16 code */
2625 if (!ext4_has_feature_gdt_csum(sb))
2626 return 0;
2627
2628 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2629 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2630 crc = crc16(crc, (__u8 *)gdp, offset);
2631 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2632 /* for checksum of struct ext4_group_desc do the rest...*/
2633 if (ext4_has_feature_64bit(sb) &&
2634 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2635 crc = crc16(crc, (__u8 *)gdp + offset,
2636 le16_to_cpu(sbi->s_es->s_desc_size) -
2637 offset);
2638
2639out:
2640 return cpu_to_le16(crc);
2641}
2642
2643int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2644 struct ext4_group_desc *gdp)
2645{
2646 if (ext4_has_group_desc_csum(sb) &&
2647 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2648 return 0;
2649
2650 return 1;
2651}
2652
2653void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2654 struct ext4_group_desc *gdp)
2655{
2656 if (!ext4_has_group_desc_csum(sb))
2657 return;
2658 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2659}
2660
2661/* Called at mount-time, super-block is locked */
2662static int ext4_check_descriptors(struct super_block *sb,
2663 ext4_fsblk_t sb_block,
2664 ext4_group_t *first_not_zeroed)
2665{
2666 struct ext4_sb_info *sbi = EXT4_SB(sb);
2667 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2668 ext4_fsblk_t last_block;
2669 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2670 ext4_fsblk_t block_bitmap;
2671 ext4_fsblk_t inode_bitmap;
2672 ext4_fsblk_t inode_table;
2673 int flexbg_flag = 0;
2674 ext4_group_t i, grp = sbi->s_groups_count;
2675
2676 if (ext4_has_feature_flex_bg(sb))
2677 flexbg_flag = 1;
2678
2679 ext4_debug("Checking group descriptors");
2680
2681 for (i = 0; i < sbi->s_groups_count; i++) {
2682 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2683
2684 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2685 last_block = ext4_blocks_count(sbi->s_es) - 1;
2686 else
2687 last_block = first_block +
2688 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2689
2690 if ((grp == sbi->s_groups_count) &&
2691 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2692 grp = i;
2693
2694 block_bitmap = ext4_block_bitmap(sb, gdp);
2695 if (block_bitmap == sb_block) {
2696 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2697 "Block bitmap for group %u overlaps "
2698 "superblock", i);
2699 if (!sb_rdonly(sb))
2700 return 0;
2701 }
2702 if (block_bitmap >= sb_block + 1 &&
2703 block_bitmap <= last_bg_block) {
2704 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2705 "Block bitmap for group %u overlaps "
2706 "block group descriptors", i);
2707 if (!sb_rdonly(sb))
2708 return 0;
2709 }
2710 if (block_bitmap < first_block || block_bitmap > last_block) {
2711 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2712 "Block bitmap for group %u not in group "
2713 "(block %llu)!", i, block_bitmap);
2714 return 0;
2715 }
2716 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2717 if (inode_bitmap == sb_block) {
2718 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2719 "Inode bitmap for group %u overlaps "
2720 "superblock", i);
2721 if (!sb_rdonly(sb))
2722 return 0;
2723 }
2724 if (inode_bitmap >= sb_block + 1 &&
2725 inode_bitmap <= last_bg_block) {
2726 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2727 "Inode bitmap for group %u overlaps "
2728 "block group descriptors", i);
2729 if (!sb_rdonly(sb))
2730 return 0;
2731 }
2732 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2733 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2734 "Inode bitmap for group %u not in group "
2735 "(block %llu)!", i, inode_bitmap);
2736 return 0;
2737 }
2738 inode_table = ext4_inode_table(sb, gdp);
2739 if (inode_table == sb_block) {
2740 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2741 "Inode table for group %u overlaps "
2742 "superblock", i);
2743 if (!sb_rdonly(sb))
2744 return 0;
2745 }
2746 if (inode_table >= sb_block + 1 &&
2747 inode_table <= last_bg_block) {
2748 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2749 "Inode table for group %u overlaps "
2750 "block group descriptors", i);
2751 if (!sb_rdonly(sb))
2752 return 0;
2753 }
2754 if (inode_table < first_block ||
2755 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2756 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2757 "Inode table for group %u not in group "
2758 "(block %llu)!", i, inode_table);
2759 return 0;
2760 }
2761 ext4_lock_group(sb, i);
2762 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2763 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2764 "Checksum for group %u failed (%u!=%u)",
2765 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2766 gdp)), le16_to_cpu(gdp->bg_checksum));
2767 if (!sb_rdonly(sb)) {
2768 ext4_unlock_group(sb, i);
2769 return 0;
2770 }
2771 }
2772 ext4_unlock_group(sb, i);
2773 if (!flexbg_flag)
2774 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2775 }
2776 if (NULL != first_not_zeroed)
2777 *first_not_zeroed = grp;
2778 return 1;
2779}
2780
2781/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2782 * the superblock) which were deleted from all directories, but held open by
2783 * a process at the time of a crash. We walk the list and try to delete these
2784 * inodes at recovery time (only with a read-write filesystem).
2785 *
2786 * In order to keep the orphan inode chain consistent during traversal (in
2787 * case of crash during recovery), we link each inode into the superblock
2788 * orphan list_head and handle it the same way as an inode deletion during
2789 * normal operation (which journals the operations for us).
2790 *
2791 * We only do an iget() and an iput() on each inode, which is very safe if we
2792 * accidentally point at an in-use or already deleted inode. The worst that
2793 * can happen in this case is that we get a "bit already cleared" message from
2794 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2795 * e2fsck was run on this filesystem, and it must have already done the orphan
2796 * inode cleanup for us, so we can safely abort without any further action.
2797 */
2798static void ext4_orphan_cleanup(struct super_block *sb,
2799 struct ext4_super_block *es)
2800{
2801 unsigned int s_flags = sb->s_flags;
2802 int ret, nr_orphans = 0, nr_truncates = 0;
2803#ifdef CONFIG_QUOTA
2804 int quota_update = 0;
2805 int i;
2806#endif
2807 if (!es->s_last_orphan) {
2808 jbd_debug(4, "no orphan inodes to clean up\n");
2809 return;
2810 }
2811
2812 if (bdev_read_only(sb->s_bdev)) {
2813 ext4_msg(sb, KERN_ERR, "write access "
2814 "unavailable, skipping orphan cleanup");
2815 return;
2816 }
2817
2818 /* Check if feature set would not allow a r/w mount */
2819 if (!ext4_feature_set_ok(sb, 0)) {
2820 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2821 "unknown ROCOMPAT features");
2822 return;
2823 }
2824
2825 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2826 /* don't clear list on RO mount w/ errors */
2827 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2828 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2829 "clearing orphan list.\n");
2830 es->s_last_orphan = 0;
2831 }
2832 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2833 return;
2834 }
2835
2836 if (s_flags & SB_RDONLY) {
2837 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2838 sb->s_flags &= ~SB_RDONLY;
2839 }
2840#ifdef CONFIG_QUOTA
2841 /* Needed for iput() to work correctly and not trash data */
2842 sb->s_flags |= SB_ACTIVE;
2843
2844 /*
2845 * Turn on quotas which were not enabled for read-only mounts if
2846 * filesystem has quota feature, so that they are updated correctly.
2847 */
2848 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2849 int ret = ext4_enable_quotas(sb);
2850
2851 if (!ret)
2852 quota_update = 1;
2853 else
2854 ext4_msg(sb, KERN_ERR,
2855 "Cannot turn on quotas: error %d", ret);
2856 }
2857
2858 /* Turn on journaled quotas used for old sytle */
2859 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2860 if (EXT4_SB(sb)->s_qf_names[i]) {
2861 int ret = ext4_quota_on_mount(sb, i);
2862
2863 if (!ret)
2864 quota_update = 1;
2865 else
2866 ext4_msg(sb, KERN_ERR,
2867 "Cannot turn on journaled "
2868 "quota: type %d: error %d", i, ret);
2869 }
2870 }
2871#endif
2872
2873 while (es->s_last_orphan) {
2874 struct inode *inode;
2875
2876 /*
2877 * We may have encountered an error during cleanup; if
2878 * so, skip the rest.
2879 */
2880 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2881 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2882 es->s_last_orphan = 0;
2883 break;
2884 }
2885
2886 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2887 if (IS_ERR(inode)) {
2888 es->s_last_orphan = 0;
2889 break;
2890 }
2891
2892 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2893 dquot_initialize(inode);
2894 if (inode->i_nlink) {
2895 if (test_opt(sb, DEBUG))
2896 ext4_msg(sb, KERN_DEBUG,
2897 "%s: truncating inode %lu to %lld bytes",
2898 __func__, inode->i_ino, inode->i_size);
2899 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2900 inode->i_ino, inode->i_size);
2901 inode_lock(inode);
2902 truncate_inode_pages(inode->i_mapping, inode->i_size);
2903 ret = ext4_truncate(inode);
2904 if (ret)
2905 ext4_std_error(inode->i_sb, ret);
2906 inode_unlock(inode);
2907 nr_truncates++;
2908 } else {
2909 if (test_opt(sb, DEBUG))
2910 ext4_msg(sb, KERN_DEBUG,
2911 "%s: deleting unreferenced inode %lu",
2912 __func__, inode->i_ino);
2913 jbd_debug(2, "deleting unreferenced inode %lu\n",
2914 inode->i_ino);
2915 nr_orphans++;
2916 }
2917 iput(inode); /* The delete magic happens here! */
2918 }
2919
2920#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2921
2922 if (nr_orphans)
2923 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2924 PLURAL(nr_orphans));
2925 if (nr_truncates)
2926 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2927 PLURAL(nr_truncates));
2928#ifdef CONFIG_QUOTA
2929 /* Turn off quotas if they were enabled for orphan cleanup */
2930 if (quota_update) {
2931 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2932 if (sb_dqopt(sb)->files[i])
2933 dquot_quota_off(sb, i);
2934 }
2935 }
2936#endif
2937 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2938}
2939
2940/*
2941 * Maximal extent format file size.
2942 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2943 * extent format containers, within a sector_t, and within i_blocks
2944 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2945 * so that won't be a limiting factor.
2946 *
2947 * However there is other limiting factor. We do store extents in the form
2948 * of starting block and length, hence the resulting length of the extent
2949 * covering maximum file size must fit into on-disk format containers as
2950 * well. Given that length is always by 1 unit bigger than max unit (because
2951 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2952 *
2953 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2954 */
2955static loff_t ext4_max_size(int blkbits, int has_huge_files)
2956{
2957 loff_t res;
2958 loff_t upper_limit = MAX_LFS_FILESIZE;
2959
2960 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2961
2962 if (!has_huge_files) {
2963 upper_limit = (1LL << 32) - 1;
2964
2965 /* total blocks in file system block size */
2966 upper_limit >>= (blkbits - 9);
2967 upper_limit <<= blkbits;
2968 }
2969
2970 /*
2971 * 32-bit extent-start container, ee_block. We lower the maxbytes
2972 * by one fs block, so ee_len can cover the extent of maximum file
2973 * size
2974 */
2975 res = (1LL << 32) - 1;
2976 res <<= blkbits;
2977
2978 /* Sanity check against vm- & vfs- imposed limits */
2979 if (res > upper_limit)
2980 res = upper_limit;
2981
2982 return res;
2983}
2984
2985/*
2986 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2987 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2988 * We need to be 1 filesystem block less than the 2^48 sector limit.
2989 */
2990static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2991{
2992 loff_t res = EXT4_NDIR_BLOCKS;
2993 int meta_blocks;
2994 loff_t upper_limit;
2995 /* This is calculated to be the largest file size for a dense, block
2996 * mapped file such that the file's total number of 512-byte sectors,
2997 * including data and all indirect blocks, does not exceed (2^48 - 1).
2998 *
2999 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3000 * number of 512-byte sectors of the file.
3001 */
3002
3003 if (!has_huge_files) {
3004 /*
3005 * !has_huge_files or implies that the inode i_block field
3006 * represents total file blocks in 2^32 512-byte sectors ==
3007 * size of vfs inode i_blocks * 8
3008 */
3009 upper_limit = (1LL << 32) - 1;
3010
3011 /* total blocks in file system block size */
3012 upper_limit >>= (bits - 9);
3013
3014 } else {
3015 /*
3016 * We use 48 bit ext4_inode i_blocks
3017 * With EXT4_HUGE_FILE_FL set the i_blocks
3018 * represent total number of blocks in
3019 * file system block size
3020 */
3021 upper_limit = (1LL << 48) - 1;
3022
3023 }
3024
3025 /* indirect blocks */
3026 meta_blocks = 1;
3027 /* double indirect blocks */
3028 meta_blocks += 1 + (1LL << (bits-2));
3029 /* tripple indirect blocks */
3030 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3031
3032 upper_limit -= meta_blocks;
3033 upper_limit <<= bits;
3034
3035 res += 1LL << (bits-2);
3036 res += 1LL << (2*(bits-2));
3037 res += 1LL << (3*(bits-2));
3038 res <<= bits;
3039 if (res > upper_limit)
3040 res = upper_limit;
3041
3042 if (res > MAX_LFS_FILESIZE)
3043 res = MAX_LFS_FILESIZE;
3044
3045 return res;
3046}
3047
3048static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3049 ext4_fsblk_t logical_sb_block, int nr)
3050{
3051 struct ext4_sb_info *sbi = EXT4_SB(sb);
3052 ext4_group_t bg, first_meta_bg;
3053 int has_super = 0;
3054
3055 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3056
3057 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3058 return logical_sb_block + nr + 1;
3059 bg = sbi->s_desc_per_block * nr;
3060 if (ext4_bg_has_super(sb, bg))
3061 has_super = 1;
3062
3063 /*
3064 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3065 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3066 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3067 * compensate.
3068 */
3069 if (sb->s_blocksize == 1024 && nr == 0 &&
3070 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3071 has_super++;
3072
3073 return (has_super + ext4_group_first_block_no(sb, bg));
3074}
3075
3076/**
3077 * ext4_get_stripe_size: Get the stripe size.
3078 * @sbi: In memory super block info
3079 *
3080 * If we have specified it via mount option, then
3081 * use the mount option value. If the value specified at mount time is
3082 * greater than the blocks per group use the super block value.
3083 * If the super block value is greater than blocks per group return 0.
3084 * Allocator needs it be less than blocks per group.
3085 *
3086 */
3087static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3088{
3089 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3090 unsigned long stripe_width =
3091 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3092 int ret;
3093
3094 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3095 ret = sbi->s_stripe;
3096 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3097 ret = stripe_width;
3098 else if (stride && stride <= sbi->s_blocks_per_group)
3099 ret = stride;
3100 else
3101 ret = 0;
3102
3103 /*
3104 * If the stripe width is 1, this makes no sense and
3105 * we set it to 0 to turn off stripe handling code.
3106 */
3107 if (ret <= 1)
3108 ret = 0;
3109
3110 return ret;
3111}
3112
3113/*
3114 * Check whether this filesystem can be mounted based on
3115 * the features present and the RDONLY/RDWR mount requested.
3116 * Returns 1 if this filesystem can be mounted as requested,
3117 * 0 if it cannot be.
3118 */
3119static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3120{
3121 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3122 ext4_msg(sb, KERN_ERR,
3123 "Couldn't mount because of "
3124 "unsupported optional features (%x)",
3125 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3126 ~EXT4_FEATURE_INCOMPAT_SUPP));
3127 return 0;
3128 }
3129
3130#ifndef CONFIG_UNICODE
3131 if (ext4_has_feature_casefold(sb)) {
3132 ext4_msg(sb, KERN_ERR,
3133 "Filesystem with casefold feature cannot be "
3134 "mounted without CONFIG_UNICODE");
3135 return 0;
3136 }
3137#endif
3138
3139 if (readonly)
3140 return 1;
3141
3142 if (ext4_has_feature_readonly(sb)) {
3143 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3144 sb->s_flags |= SB_RDONLY;
3145 return 1;
3146 }
3147
3148 /* Check that feature set is OK for a read-write mount */
3149 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3150 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3151 "unsupported optional features (%x)",
3152 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3153 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3154 return 0;
3155 }
3156 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3157 ext4_msg(sb, KERN_ERR,
3158 "Can't support bigalloc feature without "
3159 "extents feature\n");
3160 return 0;
3161 }
3162
3163#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3164 if (!readonly && (ext4_has_feature_quota(sb) ||
3165 ext4_has_feature_project(sb))) {
3166 ext4_msg(sb, KERN_ERR,
3167 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3168 return 0;
3169 }
3170#endif /* CONFIG_QUOTA */
3171 return 1;
3172}
3173
3174/*
3175 * This function is called once a day if we have errors logged
3176 * on the file system
3177 */
3178static void print_daily_error_info(struct timer_list *t)
3179{
3180 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3181 struct super_block *sb = sbi->s_sb;
3182 struct ext4_super_block *es = sbi->s_es;
3183
3184 if (es->s_error_count)
3185 /* fsck newer than v1.41.13 is needed to clean this condition. */
3186 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3187 le32_to_cpu(es->s_error_count));
3188 if (es->s_first_error_time) {
3189 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3190 sb->s_id,
3191 ext4_get_tstamp(es, s_first_error_time),
3192 (int) sizeof(es->s_first_error_func),
3193 es->s_first_error_func,
3194 le32_to_cpu(es->s_first_error_line));
3195 if (es->s_first_error_ino)
3196 printk(KERN_CONT ": inode %u",
3197 le32_to_cpu(es->s_first_error_ino));
3198 if (es->s_first_error_block)
3199 printk(KERN_CONT ": block %llu", (unsigned long long)
3200 le64_to_cpu(es->s_first_error_block));
3201 printk(KERN_CONT "\n");
3202 }
3203 if (es->s_last_error_time) {
3204 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3205 sb->s_id,
3206 ext4_get_tstamp(es, s_last_error_time),
3207 (int) sizeof(es->s_last_error_func),
3208 es->s_last_error_func,
3209 le32_to_cpu(es->s_last_error_line));
3210 if (es->s_last_error_ino)
3211 printk(KERN_CONT ": inode %u",
3212 le32_to_cpu(es->s_last_error_ino));
3213 if (es->s_last_error_block)
3214 printk(KERN_CONT ": block %llu", (unsigned long long)
3215 le64_to_cpu(es->s_last_error_block));
3216 printk(KERN_CONT "\n");
3217 }
3218 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3219}
3220
3221/* Find next suitable group and run ext4_init_inode_table */
3222static int ext4_run_li_request(struct ext4_li_request *elr)
3223{
3224 struct ext4_group_desc *gdp = NULL;
3225 struct super_block *sb = elr->lr_super;
3226 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3227 ext4_group_t group = elr->lr_next_group;
3228 unsigned long timeout = 0;
3229 unsigned int prefetch_ios = 0;
3230 int ret = 0;
3231
3232 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3233 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3234 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3235 if (prefetch_ios)
3236 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3237 prefetch_ios);
3238 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3239 prefetch_ios);
3240 if (group >= elr->lr_next_group) {
3241 ret = 1;
3242 if (elr->lr_first_not_zeroed != ngroups &&
3243 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3244 elr->lr_next_group = elr->lr_first_not_zeroed;
3245 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3246 ret = 0;
3247 }
3248 }
3249 return ret;
3250 }
3251
3252 for (; group < ngroups; group++) {
3253 gdp = ext4_get_group_desc(sb, group, NULL);
3254 if (!gdp) {
3255 ret = 1;
3256 break;
3257 }
3258
3259 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3260 break;
3261 }
3262
3263 if (group >= ngroups)
3264 ret = 1;
3265
3266 if (!ret) {
3267 timeout = jiffies;
3268 ret = ext4_init_inode_table(sb, group,
3269 elr->lr_timeout ? 0 : 1);
3270 trace_ext4_lazy_itable_init(sb, group);
3271 if (elr->lr_timeout == 0) {
3272 timeout = (jiffies - timeout) *
3273 EXT4_SB(elr->lr_super)->s_li_wait_mult;
3274 elr->lr_timeout = timeout;
3275 }
3276 elr->lr_next_sched = jiffies + elr->lr_timeout;
3277 elr->lr_next_group = group + 1;
3278 }
3279 return ret;
3280}
3281
3282/*
3283 * Remove lr_request from the list_request and free the
3284 * request structure. Should be called with li_list_mtx held
3285 */
3286static void ext4_remove_li_request(struct ext4_li_request *elr)
3287{
3288 if (!elr)
3289 return;
3290
3291 list_del(&elr->lr_request);
3292 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3293 kfree(elr);
3294}
3295
3296static void ext4_unregister_li_request(struct super_block *sb)
3297{
3298 mutex_lock(&ext4_li_mtx);
3299 if (!ext4_li_info) {
3300 mutex_unlock(&ext4_li_mtx);
3301 return;
3302 }
3303
3304 mutex_lock(&ext4_li_info->li_list_mtx);
3305 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3306 mutex_unlock(&ext4_li_info->li_list_mtx);
3307 mutex_unlock(&ext4_li_mtx);
3308}
3309
3310static struct task_struct *ext4_lazyinit_task;
3311
3312/*
3313 * This is the function where ext4lazyinit thread lives. It walks
3314 * through the request list searching for next scheduled filesystem.
3315 * When such a fs is found, run the lazy initialization request
3316 * (ext4_rn_li_request) and keep track of the time spend in this
3317 * function. Based on that time we compute next schedule time of
3318 * the request. When walking through the list is complete, compute
3319 * next waking time and put itself into sleep.
3320 */
3321static int ext4_lazyinit_thread(void *arg)
3322{
3323 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3324 struct list_head *pos, *n;
3325 struct ext4_li_request *elr;
3326 unsigned long next_wakeup, cur;
3327
3328 BUG_ON(NULL == eli);
3329
3330cont_thread:
3331 while (true) {
3332 next_wakeup = MAX_JIFFY_OFFSET;
3333
3334 mutex_lock(&eli->li_list_mtx);
3335 if (list_empty(&eli->li_request_list)) {
3336 mutex_unlock(&eli->li_list_mtx);
3337 goto exit_thread;
3338 }
3339 list_for_each_safe(pos, n, &eli->li_request_list) {
3340 int err = 0;
3341 int progress = 0;
3342 elr = list_entry(pos, struct ext4_li_request,
3343 lr_request);
3344
3345 if (time_before(jiffies, elr->lr_next_sched)) {
3346 if (time_before(elr->lr_next_sched, next_wakeup))
3347 next_wakeup = elr->lr_next_sched;
3348 continue;
3349 }
3350 if (down_read_trylock(&elr->lr_super->s_umount)) {
3351 if (sb_start_write_trylock(elr->lr_super)) {
3352 progress = 1;
3353 /*
3354 * We hold sb->s_umount, sb can not
3355 * be removed from the list, it is
3356 * now safe to drop li_list_mtx
3357 */
3358 mutex_unlock(&eli->li_list_mtx);
3359 err = ext4_run_li_request(elr);
3360 sb_end_write(elr->lr_super);
3361 mutex_lock(&eli->li_list_mtx);
3362 n = pos->next;
3363 }
3364 up_read((&elr->lr_super->s_umount));
3365 }
3366 /* error, remove the lazy_init job */
3367 if (err) {
3368 ext4_remove_li_request(elr);
3369 continue;
3370 }
3371 if (!progress) {
3372 elr->lr_next_sched = jiffies +
3373 (prandom_u32()
3374 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3375 }
3376 if (time_before(elr->lr_next_sched, next_wakeup))
3377 next_wakeup = elr->lr_next_sched;
3378 }
3379 mutex_unlock(&eli->li_list_mtx);
3380
3381 try_to_freeze();
3382
3383 cur = jiffies;
3384 if ((time_after_eq(cur, next_wakeup)) ||
3385 (MAX_JIFFY_OFFSET == next_wakeup)) {
3386 cond_resched();
3387 continue;
3388 }
3389
3390 schedule_timeout_interruptible(next_wakeup - cur);
3391
3392 if (kthread_should_stop()) {
3393 ext4_clear_request_list();
3394 goto exit_thread;
3395 }
3396 }
3397
3398exit_thread:
3399 /*
3400 * It looks like the request list is empty, but we need
3401 * to check it under the li_list_mtx lock, to prevent any
3402 * additions into it, and of course we should lock ext4_li_mtx
3403 * to atomically free the list and ext4_li_info, because at
3404 * this point another ext4 filesystem could be registering
3405 * new one.
3406 */
3407 mutex_lock(&ext4_li_mtx);
3408 mutex_lock(&eli->li_list_mtx);
3409 if (!list_empty(&eli->li_request_list)) {
3410 mutex_unlock(&eli->li_list_mtx);
3411 mutex_unlock(&ext4_li_mtx);
3412 goto cont_thread;
3413 }
3414 mutex_unlock(&eli->li_list_mtx);
3415 kfree(ext4_li_info);
3416 ext4_li_info = NULL;
3417 mutex_unlock(&ext4_li_mtx);
3418
3419 return 0;
3420}
3421
3422static void ext4_clear_request_list(void)
3423{
3424 struct list_head *pos, *n;
3425 struct ext4_li_request *elr;
3426
3427 mutex_lock(&ext4_li_info->li_list_mtx);
3428 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3429 elr = list_entry(pos, struct ext4_li_request,
3430 lr_request);
3431 ext4_remove_li_request(elr);
3432 }
3433 mutex_unlock(&ext4_li_info->li_list_mtx);
3434}
3435
3436static int ext4_run_lazyinit_thread(void)
3437{
3438 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3439 ext4_li_info, "ext4lazyinit");
3440 if (IS_ERR(ext4_lazyinit_task)) {
3441 int err = PTR_ERR(ext4_lazyinit_task);
3442 ext4_clear_request_list();
3443 kfree(ext4_li_info);
3444 ext4_li_info = NULL;
3445 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3446 "initialization thread\n",
3447 err);
3448 return err;
3449 }
3450 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3451 return 0;
3452}
3453
3454/*
3455 * Check whether it make sense to run itable init. thread or not.
3456 * If there is at least one uninitialized inode table, return
3457 * corresponding group number, else the loop goes through all
3458 * groups and return total number of groups.
3459 */
3460static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3461{
3462 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3463 struct ext4_group_desc *gdp = NULL;
3464
3465 if (!ext4_has_group_desc_csum(sb))
3466 return ngroups;
3467
3468 for (group = 0; group < ngroups; group++) {
3469 gdp = ext4_get_group_desc(sb, group, NULL);
3470 if (!gdp)
3471 continue;
3472
3473 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3474 break;
3475 }
3476
3477 return group;
3478}
3479
3480static int ext4_li_info_new(void)
3481{
3482 struct ext4_lazy_init *eli = NULL;
3483
3484 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3485 if (!eli)
3486 return -ENOMEM;
3487
3488 INIT_LIST_HEAD(&eli->li_request_list);
3489 mutex_init(&eli->li_list_mtx);
3490
3491 eli->li_state |= EXT4_LAZYINIT_QUIT;
3492
3493 ext4_li_info = eli;
3494
3495 return 0;
3496}
3497
3498static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3499 ext4_group_t start)
3500{
3501 struct ext4_li_request *elr;
3502
3503 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3504 if (!elr)
3505 return NULL;
3506
3507 elr->lr_super = sb;
3508 elr->lr_first_not_zeroed = start;
3509 if (test_opt(sb, PREFETCH_BLOCK_BITMAPS))
3510 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3511 else {
3512 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3513 elr->lr_next_group = start;
3514 }
3515
3516 /*
3517 * Randomize first schedule time of the request to
3518 * spread the inode table initialization requests
3519 * better.
3520 */
3521 elr->lr_next_sched = jiffies + (prandom_u32() %
3522 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3523 return elr;
3524}
3525
3526int ext4_register_li_request(struct super_block *sb,
3527 ext4_group_t first_not_zeroed)
3528{
3529 struct ext4_sb_info *sbi = EXT4_SB(sb);
3530 struct ext4_li_request *elr = NULL;
3531 ext4_group_t ngroups = sbi->s_groups_count;
3532 int ret = 0;
3533
3534 mutex_lock(&ext4_li_mtx);
3535 if (sbi->s_li_request != NULL) {
3536 /*
3537 * Reset timeout so it can be computed again, because
3538 * s_li_wait_mult might have changed.
3539 */
3540 sbi->s_li_request->lr_timeout = 0;
3541 goto out;
3542 }
3543
3544 if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) &&
3545 (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3546 !test_opt(sb, INIT_INODE_TABLE)))
3547 goto out;
3548
3549 elr = ext4_li_request_new(sb, first_not_zeroed);
3550 if (!elr) {
3551 ret = -ENOMEM;
3552 goto out;
3553 }
3554
3555 if (NULL == ext4_li_info) {
3556 ret = ext4_li_info_new();
3557 if (ret)
3558 goto out;
3559 }
3560
3561 mutex_lock(&ext4_li_info->li_list_mtx);
3562 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3563 mutex_unlock(&ext4_li_info->li_list_mtx);
3564
3565 sbi->s_li_request = elr;
3566 /*
3567 * set elr to NULL here since it has been inserted to
3568 * the request_list and the removal and free of it is
3569 * handled by ext4_clear_request_list from now on.
3570 */
3571 elr = NULL;
3572
3573 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3574 ret = ext4_run_lazyinit_thread();
3575 if (ret)
3576 goto out;
3577 }
3578out:
3579 mutex_unlock(&ext4_li_mtx);
3580 if (ret)
3581 kfree(elr);
3582 return ret;
3583}
3584
3585/*
3586 * We do not need to lock anything since this is called on
3587 * module unload.
3588 */
3589static void ext4_destroy_lazyinit_thread(void)
3590{
3591 /*
3592 * If thread exited earlier
3593 * there's nothing to be done.
3594 */
3595 if (!ext4_li_info || !ext4_lazyinit_task)
3596 return;
3597
3598 kthread_stop(ext4_lazyinit_task);
3599}
3600
3601static int set_journal_csum_feature_set(struct super_block *sb)
3602{
3603 int ret = 1;
3604 int compat, incompat;
3605 struct ext4_sb_info *sbi = EXT4_SB(sb);
3606
3607 if (ext4_has_metadata_csum(sb)) {
3608 /* journal checksum v3 */
3609 compat = 0;
3610 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3611 } else {
3612 /* journal checksum v1 */
3613 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3614 incompat = 0;
3615 }
3616
3617 jbd2_journal_clear_features(sbi->s_journal,
3618 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3619 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3620 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3621 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3622 ret = jbd2_journal_set_features(sbi->s_journal,
3623 compat, 0,
3624 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3625 incompat);
3626 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3627 ret = jbd2_journal_set_features(sbi->s_journal,
3628 compat, 0,
3629 incompat);
3630 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3631 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3632 } else {
3633 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3634 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3635 }
3636
3637 return ret;
3638}
3639
3640/*
3641 * Note: calculating the overhead so we can be compatible with
3642 * historical BSD practice is quite difficult in the face of
3643 * clusters/bigalloc. This is because multiple metadata blocks from
3644 * different block group can end up in the same allocation cluster.
3645 * Calculating the exact overhead in the face of clustered allocation
3646 * requires either O(all block bitmaps) in memory or O(number of block
3647 * groups**2) in time. We will still calculate the superblock for
3648 * older file systems --- and if we come across with a bigalloc file
3649 * system with zero in s_overhead_clusters the estimate will be close to
3650 * correct especially for very large cluster sizes --- but for newer
3651 * file systems, it's better to calculate this figure once at mkfs
3652 * time, and store it in the superblock. If the superblock value is
3653 * present (even for non-bigalloc file systems), we will use it.
3654 */
3655static int count_overhead(struct super_block *sb, ext4_group_t grp,
3656 char *buf)
3657{
3658 struct ext4_sb_info *sbi = EXT4_SB(sb);
3659 struct ext4_group_desc *gdp;
3660 ext4_fsblk_t first_block, last_block, b;
3661 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3662 int s, j, count = 0;
3663
3664 if (!ext4_has_feature_bigalloc(sb))
3665 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3666 sbi->s_itb_per_group + 2);
3667
3668 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3669 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3670 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3671 for (i = 0; i < ngroups; i++) {
3672 gdp = ext4_get_group_desc(sb, i, NULL);
3673 b = ext4_block_bitmap(sb, gdp);
3674 if (b >= first_block && b <= last_block) {
3675 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3676 count++;
3677 }
3678 b = ext4_inode_bitmap(sb, gdp);
3679 if (b >= first_block && b <= last_block) {
3680 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3681 count++;
3682 }
3683 b = ext4_inode_table(sb, gdp);
3684 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3685 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3686 int c = EXT4_B2C(sbi, b - first_block);
3687 ext4_set_bit(c, buf);
3688 count++;
3689 }
3690 if (i != grp)
3691 continue;
3692 s = 0;
3693 if (ext4_bg_has_super(sb, grp)) {
3694 ext4_set_bit(s++, buf);
3695 count++;
3696 }
3697 j = ext4_bg_num_gdb(sb, grp);
3698 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3699 ext4_error(sb, "Invalid number of block group "
3700 "descriptor blocks: %d", j);
3701 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3702 }
3703 count += j;
3704 for (; j > 0; j--)
3705 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3706 }
3707 if (!count)
3708 return 0;
3709 return EXT4_CLUSTERS_PER_GROUP(sb) -
3710 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3711}
3712
3713/*
3714 * Compute the overhead and stash it in sbi->s_overhead
3715 */
3716int ext4_calculate_overhead(struct super_block *sb)
3717{
3718 struct ext4_sb_info *sbi = EXT4_SB(sb);
3719 struct ext4_super_block *es = sbi->s_es;
3720 struct inode *j_inode;
3721 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3722 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3723 ext4_fsblk_t overhead = 0;
3724 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3725
3726 if (!buf)
3727 return -ENOMEM;
3728
3729 /*
3730 * Compute the overhead (FS structures). This is constant
3731 * for a given filesystem unless the number of block groups
3732 * changes so we cache the previous value until it does.
3733 */
3734
3735 /*
3736 * All of the blocks before first_data_block are overhead
3737 */
3738 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3739
3740 /*
3741 * Add the overhead found in each block group
3742 */
3743 for (i = 0; i < ngroups; i++) {
3744 int blks;
3745
3746 blks = count_overhead(sb, i, buf);
3747 overhead += blks;
3748 if (blks)
3749 memset(buf, 0, PAGE_SIZE);
3750 cond_resched();
3751 }
3752
3753 /*
3754 * Add the internal journal blocks whether the journal has been
3755 * loaded or not
3756 */
3757 if (sbi->s_journal && !sbi->journal_bdev)
3758 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3759 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3760 /* j_inum for internal journal is non-zero */
3761 j_inode = ext4_get_journal_inode(sb, j_inum);
3762 if (j_inode) {
3763 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3764 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3765 iput(j_inode);
3766 } else {
3767 ext4_msg(sb, KERN_ERR, "can't get journal size");
3768 }
3769 }
3770 sbi->s_overhead = overhead;
3771 smp_wmb();
3772 free_page((unsigned long) buf);
3773 return 0;
3774}
3775
3776static void ext4_set_resv_clusters(struct super_block *sb)
3777{
3778 ext4_fsblk_t resv_clusters;
3779 struct ext4_sb_info *sbi = EXT4_SB(sb);
3780
3781 /*
3782 * There's no need to reserve anything when we aren't using extents.
3783 * The space estimates are exact, there are no unwritten extents,
3784 * hole punching doesn't need new metadata... This is needed especially
3785 * to keep ext2/3 backward compatibility.
3786 */
3787 if (!ext4_has_feature_extents(sb))
3788 return;
3789 /*
3790 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3791 * This should cover the situations where we can not afford to run
3792 * out of space like for example punch hole, or converting
3793 * unwritten extents in delalloc path. In most cases such
3794 * allocation would require 1, or 2 blocks, higher numbers are
3795 * very rare.
3796 */
3797 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3798 sbi->s_cluster_bits);
3799
3800 do_div(resv_clusters, 50);
3801 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3802
3803 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3804}
3805
3806static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3807{
3808 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3809 char *orig_data = kstrdup(data, GFP_KERNEL);
3810 struct buffer_head *bh, **group_desc;
3811 struct ext4_super_block *es = NULL;
3812 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3813 struct flex_groups **flex_groups;
3814 ext4_fsblk_t block;
3815 ext4_fsblk_t sb_block = get_sb_block(&data);
3816 ext4_fsblk_t logical_sb_block;
3817 unsigned long offset = 0;
3818 unsigned long journal_devnum = 0;
3819 unsigned long def_mount_opts;
3820 struct inode *root;
3821 const char *descr;
3822 int ret = -ENOMEM;
3823 int blocksize, clustersize;
3824 unsigned int db_count;
3825 unsigned int i;
3826 int needs_recovery, has_huge_files;
3827 __u64 blocks_count;
3828 int err = 0;
3829 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3830 ext4_group_t first_not_zeroed;
3831
3832 if ((data && !orig_data) || !sbi)
3833 goto out_free_base;
3834
3835 sbi->s_daxdev = dax_dev;
3836 sbi->s_blockgroup_lock =
3837 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3838 if (!sbi->s_blockgroup_lock)
3839 goto out_free_base;
3840
3841 sb->s_fs_info = sbi;
3842 sbi->s_sb = sb;
3843 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3844 sbi->s_sb_block = sb_block;
3845 if (sb->s_bdev->bd_part)
3846 sbi->s_sectors_written_start =
3847 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3848
3849 /* Cleanup superblock name */
3850 strreplace(sb->s_id, '/', '!');
3851
3852 /* -EINVAL is default */
3853 ret = -EINVAL;
3854 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3855 if (!blocksize) {
3856 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3857 goto out_fail;
3858 }
3859
3860 /*
3861 * The ext4 superblock will not be buffer aligned for other than 1kB
3862 * block sizes. We need to calculate the offset from buffer start.
3863 */
3864 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3865 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3866 offset = do_div(logical_sb_block, blocksize);
3867 } else {
3868 logical_sb_block = sb_block;
3869 }
3870
3871 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3872 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3873 goto out_fail;
3874 }
3875 /*
3876 * Note: s_es must be initialized as soon as possible because
3877 * some ext4 macro-instructions depend on its value
3878 */
3879 es = (struct ext4_super_block *) (bh->b_data + offset);
3880 sbi->s_es = es;
3881 sb->s_magic = le16_to_cpu(es->s_magic);
3882 if (sb->s_magic != EXT4_SUPER_MAGIC)
3883 goto cantfind_ext4;
3884 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3885
3886 /* Warn if metadata_csum and gdt_csum are both set. */
3887 if (ext4_has_feature_metadata_csum(sb) &&
3888 ext4_has_feature_gdt_csum(sb))
3889 ext4_warning(sb, "metadata_csum and uninit_bg are "
3890 "redundant flags; please run fsck.");
3891
3892 /* Check for a known checksum algorithm */
3893 if (!ext4_verify_csum_type(sb, es)) {
3894 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3895 "unknown checksum algorithm.");
3896 silent = 1;
3897 goto cantfind_ext4;
3898 }
3899
3900 /* Load the checksum driver */
3901 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3902 if (IS_ERR(sbi->s_chksum_driver)) {
3903 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3904 ret = PTR_ERR(sbi->s_chksum_driver);
3905 sbi->s_chksum_driver = NULL;
3906 goto failed_mount;
3907 }
3908
3909 /* Check superblock checksum */
3910 if (!ext4_superblock_csum_verify(sb, es)) {
3911 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3912 "invalid superblock checksum. Run e2fsck?");
3913 silent = 1;
3914 ret = -EFSBADCRC;
3915 goto cantfind_ext4;
3916 }
3917
3918 /* Precompute checksum seed for all metadata */
3919 if (ext4_has_feature_csum_seed(sb))
3920 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3921 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3922 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3923 sizeof(es->s_uuid));
3924
3925 /* Set defaults before we parse the mount options */
3926 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3927 set_opt(sb, INIT_INODE_TABLE);
3928 if (def_mount_opts & EXT4_DEFM_DEBUG)
3929 set_opt(sb, DEBUG);
3930 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3931 set_opt(sb, GRPID);
3932 if (def_mount_opts & EXT4_DEFM_UID16)
3933 set_opt(sb, NO_UID32);
3934 /* xattr user namespace & acls are now defaulted on */
3935 set_opt(sb, XATTR_USER);
3936#ifdef CONFIG_EXT4_FS_POSIX_ACL
3937 set_opt(sb, POSIX_ACL);
3938#endif
3939 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3940 if (ext4_has_metadata_csum(sb))
3941 set_opt(sb, JOURNAL_CHECKSUM);
3942
3943 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3944 set_opt(sb, JOURNAL_DATA);
3945 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3946 set_opt(sb, ORDERED_DATA);
3947 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3948 set_opt(sb, WRITEBACK_DATA);
3949
3950 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3951 set_opt(sb, ERRORS_PANIC);
3952 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3953 set_opt(sb, ERRORS_CONT);
3954 else
3955 set_opt(sb, ERRORS_RO);
3956 /* block_validity enabled by default; disable with noblock_validity */
3957 set_opt(sb, BLOCK_VALIDITY);
3958 if (def_mount_opts & EXT4_DEFM_DISCARD)
3959 set_opt(sb, DISCARD);
3960
3961 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3962 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3963 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3964 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3965 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3966
3967 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3968 set_opt(sb, BARRIER);
3969
3970 /*
3971 * enable delayed allocation by default
3972 * Use -o nodelalloc to turn it off
3973 */
3974 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3975 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3976 set_opt(sb, DELALLOC);
3977
3978 /*
3979 * set default s_li_wait_mult for lazyinit, for the case there is
3980 * no mount option specified.
3981 */
3982 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3983
3984 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3985
3986 if (blocksize == PAGE_SIZE)
3987 set_opt(sb, DIOREAD_NOLOCK);
3988
3989 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3990 blocksize > EXT4_MAX_BLOCK_SIZE) {
3991 ext4_msg(sb, KERN_ERR,
3992 "Unsupported filesystem blocksize %d (%d log_block_size)",
3993 blocksize, le32_to_cpu(es->s_log_block_size));
3994 goto failed_mount;
3995 }
3996
3997 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3998 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3999 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4000 } else {
4001 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4002 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4003 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4004 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4005 sbi->s_first_ino);
4006 goto failed_mount;
4007 }
4008 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4009 (!is_power_of_2(sbi->s_inode_size)) ||
4010 (sbi->s_inode_size > blocksize)) {
4011 ext4_msg(sb, KERN_ERR,
4012 "unsupported inode size: %d",
4013 sbi->s_inode_size);
4014 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4015 goto failed_mount;
4016 }
4017 /*
4018 * i_atime_extra is the last extra field available for
4019 * [acm]times in struct ext4_inode. Checking for that
4020 * field should suffice to ensure we have extra space
4021 * for all three.
4022 */
4023 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4024 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4025 sb->s_time_gran = 1;
4026 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4027 } else {
4028 sb->s_time_gran = NSEC_PER_SEC;
4029 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4030 }
4031 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4032 }
4033 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4034 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4035 EXT4_GOOD_OLD_INODE_SIZE;
4036 if (ext4_has_feature_extra_isize(sb)) {
4037 unsigned v, max = (sbi->s_inode_size -
4038 EXT4_GOOD_OLD_INODE_SIZE);
4039
4040 v = le16_to_cpu(es->s_want_extra_isize);
4041 if (v > max) {
4042 ext4_msg(sb, KERN_ERR,
4043 "bad s_want_extra_isize: %d", v);
4044 goto failed_mount;
4045 }
4046 if (sbi->s_want_extra_isize < v)
4047 sbi->s_want_extra_isize = v;
4048
4049 v = le16_to_cpu(es->s_min_extra_isize);
4050 if (v > max) {
4051 ext4_msg(sb, KERN_ERR,
4052 "bad s_min_extra_isize: %d", v);
4053 goto failed_mount;
4054 }
4055 if (sbi->s_want_extra_isize < v)
4056 sbi->s_want_extra_isize = v;
4057 }
4058 }
4059
4060 if (sbi->s_es->s_mount_opts[0]) {
4061 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4062 sizeof(sbi->s_es->s_mount_opts),
4063 GFP_KERNEL);
4064 if (!s_mount_opts)
4065 goto failed_mount;
4066 if (!parse_options(s_mount_opts, sb, &journal_devnum,
4067 &journal_ioprio, 0)) {
4068 ext4_msg(sb, KERN_WARNING,
4069 "failed to parse options in superblock: %s",
4070 s_mount_opts);
4071 }
4072 kfree(s_mount_opts);
4073 }
4074 sbi->s_def_mount_opt = sbi->s_mount_opt;
4075 if (!parse_options((char *) data, sb, &journal_devnum,
4076 &journal_ioprio, 0))
4077 goto failed_mount;
4078
4079#ifdef CONFIG_UNICODE
4080 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
4081 const struct ext4_sb_encodings *encoding_info;
4082 struct unicode_map *encoding;
4083 __u16 encoding_flags;
4084
4085 if (ext4_has_feature_encrypt(sb)) {
4086 ext4_msg(sb, KERN_ERR,
4087 "Can't mount with encoding and encryption");
4088 goto failed_mount;
4089 }
4090
4091 if (ext4_sb_read_encoding(es, &encoding_info,
4092 &encoding_flags)) {
4093 ext4_msg(sb, KERN_ERR,
4094 "Encoding requested by superblock is unknown");
4095 goto failed_mount;
4096 }
4097
4098 encoding = utf8_load(encoding_info->version);
4099 if (IS_ERR(encoding)) {
4100 ext4_msg(sb, KERN_ERR,
4101 "can't mount with superblock charset: %s-%s "
4102 "not supported by the kernel. flags: 0x%x.",
4103 encoding_info->name, encoding_info->version,
4104 encoding_flags);
4105 goto failed_mount;
4106 }
4107 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4108 "%s-%s with flags 0x%hx", encoding_info->name,
4109 encoding_info->version?:"\b", encoding_flags);
4110
4111 sbi->s_encoding = encoding;
4112 sbi->s_encoding_flags = encoding_flags;
4113 }
4114#endif
4115
4116 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4117 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n");
4118 /* can't mount with both data=journal and dioread_nolock. */
4119 clear_opt(sb, DIOREAD_NOLOCK);
4120 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4121 ext4_msg(sb, KERN_ERR, "can't mount with "
4122 "both data=journal and delalloc");
4123 goto failed_mount;
4124 }
4125 if (test_opt(sb, DAX_ALWAYS)) {
4126 ext4_msg(sb, KERN_ERR, "can't mount with "
4127 "both data=journal and dax");
4128 goto failed_mount;
4129 }
4130 if (ext4_has_feature_encrypt(sb)) {
4131 ext4_msg(sb, KERN_WARNING,
4132 "encrypted files will use data=ordered "
4133 "instead of data journaling mode");
4134 }
4135 if (test_opt(sb, DELALLOC))
4136 clear_opt(sb, DELALLOC);
4137 } else {
4138 sb->s_iflags |= SB_I_CGROUPWB;
4139 }
4140
4141 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4142 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4143
4144 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4145 (ext4_has_compat_features(sb) ||
4146 ext4_has_ro_compat_features(sb) ||
4147 ext4_has_incompat_features(sb)))
4148 ext4_msg(sb, KERN_WARNING,
4149 "feature flags set on rev 0 fs, "
4150 "running e2fsck is recommended");
4151
4152 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4153 set_opt2(sb, HURD_COMPAT);
4154 if (ext4_has_feature_64bit(sb)) {
4155 ext4_msg(sb, KERN_ERR,
4156 "The Hurd can't support 64-bit file systems");
4157 goto failed_mount;
4158 }
4159
4160 /*
4161 * ea_inode feature uses l_i_version field which is not
4162 * available in HURD_COMPAT mode.
4163 */
4164 if (ext4_has_feature_ea_inode(sb)) {
4165 ext4_msg(sb, KERN_ERR,
4166 "ea_inode feature is not supported for Hurd");
4167 goto failed_mount;
4168 }
4169 }
4170
4171 if (IS_EXT2_SB(sb)) {
4172 if (ext2_feature_set_ok(sb))
4173 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4174 "using the ext4 subsystem");
4175 else {
4176 /*
4177 * If we're probing be silent, if this looks like
4178 * it's actually an ext[34] filesystem.
4179 */
4180 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4181 goto failed_mount;
4182 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4183 "to feature incompatibilities");
4184 goto failed_mount;
4185 }
4186 }
4187
4188 if (IS_EXT3_SB(sb)) {
4189 if (ext3_feature_set_ok(sb))
4190 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4191 "using the ext4 subsystem");
4192 else {
4193 /*
4194 * If we're probing be silent, if this looks like
4195 * it's actually an ext4 filesystem.
4196 */
4197 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4198 goto failed_mount;
4199 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4200 "to feature incompatibilities");
4201 goto failed_mount;
4202 }
4203 }
4204
4205 /*
4206 * Check feature flags regardless of the revision level, since we
4207 * previously didn't change the revision level when setting the flags,
4208 * so there is a chance incompat flags are set on a rev 0 filesystem.
4209 */
4210 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4211 goto failed_mount;
4212
4213 if (le32_to_cpu(es->s_log_block_size) >
4214 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4215 ext4_msg(sb, KERN_ERR,
4216 "Invalid log block size: %u",
4217 le32_to_cpu(es->s_log_block_size));
4218 goto failed_mount;
4219 }
4220 if (le32_to_cpu(es->s_log_cluster_size) >
4221 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4222 ext4_msg(sb, KERN_ERR,
4223 "Invalid log cluster size: %u",
4224 le32_to_cpu(es->s_log_cluster_size));
4225 goto failed_mount;
4226 }
4227
4228 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4229 ext4_msg(sb, KERN_ERR,
4230 "Number of reserved GDT blocks insanely large: %d",
4231 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4232 goto failed_mount;
4233 }
4234
4235 if (bdev_dax_supported(sb->s_bdev, blocksize))
4236 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4237
4238 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4239 if (ext4_has_feature_inline_data(sb)) {
4240 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4241 " that may contain inline data");
4242 goto failed_mount;
4243 }
4244 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4245 ext4_msg(sb, KERN_ERR,
4246 "DAX unsupported by block device.");
4247 goto failed_mount;
4248 }
4249 }
4250
4251 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4252 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4253 es->s_encryption_level);
4254 goto failed_mount;
4255 }
4256
4257 if (sb->s_blocksize != blocksize) {
4258 /* Validate the filesystem blocksize */
4259 if (!sb_set_blocksize(sb, blocksize)) {
4260 ext4_msg(sb, KERN_ERR, "bad block size %d",
4261 blocksize);
4262 goto failed_mount;
4263 }
4264
4265 brelse(bh);
4266 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4267 offset = do_div(logical_sb_block, blocksize);
4268 bh = sb_bread_unmovable(sb, logical_sb_block);
4269 if (!bh) {
4270 ext4_msg(sb, KERN_ERR,
4271 "Can't read superblock on 2nd try");
4272 goto failed_mount;
4273 }
4274 es = (struct ext4_super_block *)(bh->b_data + offset);
4275 sbi->s_es = es;
4276 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4277 ext4_msg(sb, KERN_ERR,
4278 "Magic mismatch, very weird!");
4279 goto failed_mount;
4280 }
4281 }
4282
4283 has_huge_files = ext4_has_feature_huge_file(sb);
4284 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4285 has_huge_files);
4286 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4287
4288 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4289 if (ext4_has_feature_64bit(sb)) {
4290 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4291 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4292 !is_power_of_2(sbi->s_desc_size)) {
4293 ext4_msg(sb, KERN_ERR,
4294 "unsupported descriptor size %lu",
4295 sbi->s_desc_size);
4296 goto failed_mount;
4297 }
4298 } else
4299 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4300
4301 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4302 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4303
4304 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4305 if (sbi->s_inodes_per_block == 0)
4306 goto cantfind_ext4;
4307 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4308 sbi->s_inodes_per_group > blocksize * 8) {
4309 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4310 sbi->s_inodes_per_group);
4311 goto failed_mount;
4312 }
4313 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4314 sbi->s_inodes_per_block;
4315 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4316 sbi->s_sbh = bh;
4317 sbi->s_mount_state = le16_to_cpu(es->s_state);
4318 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4319 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4320
4321 for (i = 0; i < 4; i++)
4322 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4323 sbi->s_def_hash_version = es->s_def_hash_version;
4324 if (ext4_has_feature_dir_index(sb)) {
4325 i = le32_to_cpu(es->s_flags);
4326 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4327 sbi->s_hash_unsigned = 3;
4328 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4329#ifdef __CHAR_UNSIGNED__
4330 if (!sb_rdonly(sb))
4331 es->s_flags |=
4332 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4333 sbi->s_hash_unsigned = 3;
4334#else
4335 if (!sb_rdonly(sb))
4336 es->s_flags |=
4337 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4338#endif
4339 }
4340 }
4341
4342 /* Handle clustersize */
4343 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4344 if (ext4_has_feature_bigalloc(sb)) {
4345 if (clustersize < blocksize) {
4346 ext4_msg(sb, KERN_ERR,
4347 "cluster size (%d) smaller than "
4348 "block size (%d)", clustersize, blocksize);
4349 goto failed_mount;
4350 }
4351 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4352 le32_to_cpu(es->s_log_block_size);
4353 sbi->s_clusters_per_group =
4354 le32_to_cpu(es->s_clusters_per_group);
4355 if (sbi->s_clusters_per_group > blocksize * 8) {
4356 ext4_msg(sb, KERN_ERR,
4357 "#clusters per group too big: %lu",
4358 sbi->s_clusters_per_group);
4359 goto failed_mount;
4360 }
4361 if (sbi->s_blocks_per_group !=
4362 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4363 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4364 "clusters per group (%lu) inconsistent",
4365 sbi->s_blocks_per_group,
4366 sbi->s_clusters_per_group);
4367 goto failed_mount;
4368 }
4369 } else {
4370 if (clustersize != blocksize) {
4371 ext4_msg(sb, KERN_ERR,
4372 "fragment/cluster size (%d) != "
4373 "block size (%d)", clustersize, blocksize);
4374 goto failed_mount;
4375 }
4376 if (sbi->s_blocks_per_group > blocksize * 8) {
4377 ext4_msg(sb, KERN_ERR,
4378 "#blocks per group too big: %lu",
4379 sbi->s_blocks_per_group);
4380 goto failed_mount;
4381 }
4382 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4383 sbi->s_cluster_bits = 0;
4384 }
4385 sbi->s_cluster_ratio = clustersize / blocksize;
4386
4387 /* Do we have standard group size of clustersize * 8 blocks ? */
4388 if (sbi->s_blocks_per_group == clustersize << 3)
4389 set_opt2(sb, STD_GROUP_SIZE);
4390
4391 /*
4392 * Test whether we have more sectors than will fit in sector_t,
4393 * and whether the max offset is addressable by the page cache.
4394 */
4395 err = generic_check_addressable(sb->s_blocksize_bits,
4396 ext4_blocks_count(es));
4397 if (err) {
4398 ext4_msg(sb, KERN_ERR, "filesystem"
4399 " too large to mount safely on this system");
4400 goto failed_mount;
4401 }
4402
4403 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4404 goto cantfind_ext4;
4405
4406 /* check blocks count against device size */
4407 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4408 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4409 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4410 "exceeds size of device (%llu blocks)",
4411 ext4_blocks_count(es), blocks_count);
4412 goto failed_mount;
4413 }
4414
4415 /*
4416 * It makes no sense for the first data block to be beyond the end
4417 * of the filesystem.
4418 */
4419 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4420 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4421 "block %u is beyond end of filesystem (%llu)",
4422 le32_to_cpu(es->s_first_data_block),
4423 ext4_blocks_count(es));
4424 goto failed_mount;
4425 }
4426 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4427 (sbi->s_cluster_ratio == 1)) {
4428 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4429 "block is 0 with a 1k block and cluster size");
4430 goto failed_mount;
4431 }
4432
4433 blocks_count = (ext4_blocks_count(es) -
4434 le32_to_cpu(es->s_first_data_block) +
4435 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4436 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4437 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4438 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4439 "(block count %llu, first data block %u, "
4440 "blocks per group %lu)", blocks_count,
4441 ext4_blocks_count(es),
4442 le32_to_cpu(es->s_first_data_block),
4443 EXT4_BLOCKS_PER_GROUP(sb));
4444 goto failed_mount;
4445 }
4446 sbi->s_groups_count = blocks_count;
4447 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4448 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4449 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4450 le32_to_cpu(es->s_inodes_count)) {
4451 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4452 le32_to_cpu(es->s_inodes_count),
4453 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4454 ret = -EINVAL;
4455 goto failed_mount;
4456 }
4457 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4458 EXT4_DESC_PER_BLOCK(sb);
4459 if (ext4_has_feature_meta_bg(sb)) {
4460 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4461 ext4_msg(sb, KERN_WARNING,
4462 "first meta block group too large: %u "
4463 "(group descriptor block count %u)",
4464 le32_to_cpu(es->s_first_meta_bg), db_count);
4465 goto failed_mount;
4466 }
4467 }
4468 rcu_assign_pointer(sbi->s_group_desc,
4469 kvmalloc_array(db_count,
4470 sizeof(struct buffer_head *),
4471 GFP_KERNEL));
4472 if (sbi->s_group_desc == NULL) {
4473 ext4_msg(sb, KERN_ERR, "not enough memory");
4474 ret = -ENOMEM;
4475 goto failed_mount;
4476 }
4477
4478 bgl_lock_init(sbi->s_blockgroup_lock);
4479
4480 /* Pre-read the descriptors into the buffer cache */
4481 for (i = 0; i < db_count; i++) {
4482 block = descriptor_loc(sb, logical_sb_block, i);
4483 sb_breadahead_unmovable(sb, block);
4484 }
4485
4486 for (i = 0; i < db_count; i++) {
4487 struct buffer_head *bh;
4488
4489 block = descriptor_loc(sb, logical_sb_block, i);
4490 bh = sb_bread_unmovable(sb, block);
4491 if (!bh) {
4492 ext4_msg(sb, KERN_ERR,
4493 "can't read group descriptor %d", i);
4494 db_count = i;
4495 goto failed_mount2;
4496 }
4497 rcu_read_lock();
4498 rcu_dereference(sbi->s_group_desc)[i] = bh;
4499 rcu_read_unlock();
4500 }
4501 sbi->s_gdb_count = db_count;
4502 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4503 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4504 ret = -EFSCORRUPTED;
4505 goto failed_mount2;
4506 }
4507
4508 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4509
4510 /* Register extent status tree shrinker */
4511 if (ext4_es_register_shrinker(sbi))
4512 goto failed_mount3;
4513
4514 sbi->s_stripe = ext4_get_stripe_size(sbi);
4515 sbi->s_extent_max_zeroout_kb = 32;
4516
4517 /*
4518 * set up enough so that it can read an inode
4519 */
4520 sb->s_op = &ext4_sops;
4521 sb->s_export_op = &ext4_export_ops;
4522 sb->s_xattr = ext4_xattr_handlers;
4523#ifdef CONFIG_FS_ENCRYPTION
4524 sb->s_cop = &ext4_cryptops;
4525#endif
4526#ifdef CONFIG_FS_VERITY
4527 sb->s_vop = &ext4_verityops;
4528#endif
4529#ifdef CONFIG_QUOTA
4530 sb->dq_op = &ext4_quota_operations;
4531 if (ext4_has_feature_quota(sb))
4532 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4533 else
4534 sb->s_qcop = &ext4_qctl_operations;
4535 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4536#endif
4537 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4538
4539 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4540 mutex_init(&sbi->s_orphan_lock);
4541
4542 sb->s_root = NULL;
4543
4544 needs_recovery = (es->s_last_orphan != 0 ||
4545 ext4_has_feature_journal_needs_recovery(sb));
4546
4547 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4548 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4549 goto failed_mount3a;
4550
4551 /*
4552 * The first inode we look at is the journal inode. Don't try
4553 * root first: it may be modified in the journal!
4554 */
4555 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4556 err = ext4_load_journal(sb, es, journal_devnum);
4557 if (err)
4558 goto failed_mount3a;
4559 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4560 ext4_has_feature_journal_needs_recovery(sb)) {
4561 ext4_msg(sb, KERN_ERR, "required journal recovery "
4562 "suppressed and not mounted read-only");
4563 goto failed_mount_wq;
4564 } else {
4565 /* Nojournal mode, all journal mount options are illegal */
4566 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4567 ext4_msg(sb, KERN_ERR, "can't mount with "
4568 "journal_checksum, fs mounted w/o journal");
4569 goto failed_mount_wq;
4570 }
4571 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4572 ext4_msg(sb, KERN_ERR, "can't mount with "
4573 "journal_async_commit, fs mounted w/o journal");
4574 goto failed_mount_wq;
4575 }
4576 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4577 ext4_msg(sb, KERN_ERR, "can't mount with "
4578 "commit=%lu, fs mounted w/o journal",
4579 sbi->s_commit_interval / HZ);
4580 goto failed_mount_wq;
4581 }
4582 if (EXT4_MOUNT_DATA_FLAGS &
4583 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4584 ext4_msg(sb, KERN_ERR, "can't mount with "
4585 "data=, fs mounted w/o journal");
4586 goto failed_mount_wq;
4587 }
4588 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4589 clear_opt(sb, JOURNAL_CHECKSUM);
4590 clear_opt(sb, DATA_FLAGS);
4591 sbi->s_journal = NULL;
4592 needs_recovery = 0;
4593 goto no_journal;
4594 }
4595
4596 if (ext4_has_feature_64bit(sb) &&
4597 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4598 JBD2_FEATURE_INCOMPAT_64BIT)) {
4599 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4600 goto failed_mount_wq;
4601 }
4602
4603 if (!set_journal_csum_feature_set(sb)) {
4604 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4605 "feature set");
4606 goto failed_mount_wq;
4607 }
4608
4609 /* We have now updated the journal if required, so we can
4610 * validate the data journaling mode. */
4611 switch (test_opt(sb, DATA_FLAGS)) {
4612 case 0:
4613 /* No mode set, assume a default based on the journal
4614 * capabilities: ORDERED_DATA if the journal can
4615 * cope, else JOURNAL_DATA
4616 */
4617 if (jbd2_journal_check_available_features
4618 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4619 set_opt(sb, ORDERED_DATA);
4620 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4621 } else {
4622 set_opt(sb, JOURNAL_DATA);
4623 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4624 }
4625 break;
4626
4627 case EXT4_MOUNT_ORDERED_DATA:
4628 case EXT4_MOUNT_WRITEBACK_DATA:
4629 if (!jbd2_journal_check_available_features
4630 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4631 ext4_msg(sb, KERN_ERR, "Journal does not support "
4632 "requested data journaling mode");
4633 goto failed_mount_wq;
4634 }
4635 default:
4636 break;
4637 }
4638
4639 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4640 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4641 ext4_msg(sb, KERN_ERR, "can't mount with "
4642 "journal_async_commit in data=ordered mode");
4643 goto failed_mount_wq;
4644 }
4645
4646 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4647
4648 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4649
4650no_journal:
4651 if (!test_opt(sb, NO_MBCACHE)) {
4652 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4653 if (!sbi->s_ea_block_cache) {
4654 ext4_msg(sb, KERN_ERR,
4655 "Failed to create ea_block_cache");
4656 goto failed_mount_wq;
4657 }
4658
4659 if (ext4_has_feature_ea_inode(sb)) {
4660 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4661 if (!sbi->s_ea_inode_cache) {
4662 ext4_msg(sb, KERN_ERR,
4663 "Failed to create ea_inode_cache");
4664 goto failed_mount_wq;
4665 }
4666 }
4667 }
4668
4669 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4670 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4671 goto failed_mount_wq;
4672 }
4673
4674 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4675 !ext4_has_feature_encrypt(sb)) {
4676 ext4_set_feature_encrypt(sb);
4677 ext4_commit_super(sb, 1);
4678 }
4679
4680 /*
4681 * Get the # of file system overhead blocks from the
4682 * superblock if present.
4683 */
4684 if (es->s_overhead_clusters)
4685 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4686 else {
4687 err = ext4_calculate_overhead(sb);
4688 if (err)
4689 goto failed_mount_wq;
4690 }
4691
4692 /*
4693 * The maximum number of concurrent works can be high and
4694 * concurrency isn't really necessary. Limit it to 1.
4695 */
4696 EXT4_SB(sb)->rsv_conversion_wq =
4697 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4698 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4699 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4700 ret = -ENOMEM;
4701 goto failed_mount4;
4702 }
4703
4704 /*
4705 * The jbd2_journal_load will have done any necessary log recovery,
4706 * so we can safely mount the rest of the filesystem now.
4707 */
4708
4709 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4710 if (IS_ERR(root)) {
4711 ext4_msg(sb, KERN_ERR, "get root inode failed");
4712 ret = PTR_ERR(root);
4713 root = NULL;
4714 goto failed_mount4;
4715 }
4716 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4717 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4718 iput(root);
4719 goto failed_mount4;
4720 }
4721
4722#ifdef CONFIG_UNICODE
4723 if (sbi->s_encoding)
4724 sb->s_d_op = &ext4_dentry_ops;
4725#endif
4726
4727 sb->s_root = d_make_root(root);
4728 if (!sb->s_root) {
4729 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4730 ret = -ENOMEM;
4731 goto failed_mount4;
4732 }
4733
4734 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4735 if (ret == -EROFS) {
4736 sb->s_flags |= SB_RDONLY;
4737 ret = 0;
4738 } else if (ret)
4739 goto failed_mount4a;
4740
4741 ext4_set_resv_clusters(sb);
4742
4743 if (test_opt(sb, BLOCK_VALIDITY)) {
4744 err = ext4_setup_system_zone(sb);
4745 if (err) {
4746 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4747 "zone (%d)", err);
4748 goto failed_mount4a;
4749 }
4750 }
4751
4752 ext4_ext_init(sb);
4753 err = ext4_mb_init(sb);
4754 if (err) {
4755 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4756 err);
4757 goto failed_mount5;
4758 }
4759
4760 block = ext4_count_free_clusters(sb);
4761 ext4_free_blocks_count_set(sbi->s_es,
4762 EXT4_C2B(sbi, block));
4763 ext4_superblock_csum_set(sb);
4764 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4765 GFP_KERNEL);
4766 if (!err) {
4767 unsigned long freei = ext4_count_free_inodes(sb);
4768 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4769 ext4_superblock_csum_set(sb);
4770 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4771 GFP_KERNEL);
4772 }
4773 if (!err)
4774 err = percpu_counter_init(&sbi->s_dirs_counter,
4775 ext4_count_dirs(sb), GFP_KERNEL);
4776 if (!err)
4777 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4778 GFP_KERNEL);
4779 if (!err)
4780 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4781
4782 if (err) {
4783 ext4_msg(sb, KERN_ERR, "insufficient memory");
4784 goto failed_mount6;
4785 }
4786
4787 if (ext4_has_feature_flex_bg(sb))
4788 if (!ext4_fill_flex_info(sb)) {
4789 ext4_msg(sb, KERN_ERR,
4790 "unable to initialize "
4791 "flex_bg meta info!");
4792 goto failed_mount6;
4793 }
4794
4795 err = ext4_register_li_request(sb, first_not_zeroed);
4796 if (err)
4797 goto failed_mount6;
4798
4799 err = ext4_register_sysfs(sb);
4800 if (err)
4801 goto failed_mount7;
4802
4803#ifdef CONFIG_QUOTA
4804 /* Enable quota usage during mount. */
4805 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4806 err = ext4_enable_quotas(sb);
4807 if (err)
4808 goto failed_mount8;
4809 }
4810#endif /* CONFIG_QUOTA */
4811
4812 /*
4813 * Save the original bdev mapping's wb_err value which could be
4814 * used to detect the metadata async write error.
4815 */
4816 spin_lock_init(&sbi->s_bdev_wb_lock);
4817 if (!sb_rdonly(sb))
4818 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
4819 &sbi->s_bdev_wb_err);
4820 sb->s_bdev->bd_super = sb;
4821 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4822 ext4_orphan_cleanup(sb, es);
4823 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4824 if (needs_recovery) {
4825 ext4_msg(sb, KERN_INFO, "recovery complete");
4826 err = ext4_mark_recovery_complete(sb, es);
4827 if (err)
4828 goto failed_mount8;
4829 }
4830 if (EXT4_SB(sb)->s_journal) {
4831 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4832 descr = " journalled data mode";
4833 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4834 descr = " ordered data mode";
4835 else
4836 descr = " writeback data mode";
4837 } else
4838 descr = "out journal";
4839
4840 if (test_opt(sb, DISCARD)) {
4841 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4842 if (!blk_queue_discard(q))
4843 ext4_msg(sb, KERN_WARNING,
4844 "mounting with \"discard\" option, but "
4845 "the device does not support discard");
4846 }
4847
4848 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4849 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4850 "Opts: %.*s%s%s", descr,
4851 (int) sizeof(sbi->s_es->s_mount_opts),
4852 sbi->s_es->s_mount_opts,
4853 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4854
4855 if (es->s_error_count)
4856 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4857
4858 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4859 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4860 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4861 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4862 atomic_set(&sbi->s_warning_count, 0);
4863 atomic_set(&sbi->s_msg_count, 0);
4864
4865 kfree(orig_data);
4866 return 0;
4867
4868cantfind_ext4:
4869 if (!silent)
4870 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4871 goto failed_mount;
4872
4873failed_mount8:
4874 ext4_unregister_sysfs(sb);
4875failed_mount7:
4876 ext4_unregister_li_request(sb);
4877failed_mount6:
4878 ext4_mb_release(sb);
4879 rcu_read_lock();
4880 flex_groups = rcu_dereference(sbi->s_flex_groups);
4881 if (flex_groups) {
4882 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
4883 kvfree(flex_groups[i]);
4884 kvfree(flex_groups);
4885 }
4886 rcu_read_unlock();
4887 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4888 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4889 percpu_counter_destroy(&sbi->s_dirs_counter);
4890 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4891 percpu_free_rwsem(&sbi->s_writepages_rwsem);
4892failed_mount5:
4893 ext4_ext_release(sb);
4894 ext4_release_system_zone(sb);
4895failed_mount4a:
4896 dput(sb->s_root);
4897 sb->s_root = NULL;
4898failed_mount4:
4899 ext4_msg(sb, KERN_ERR, "mount failed");
4900 if (EXT4_SB(sb)->rsv_conversion_wq)
4901 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4902failed_mount_wq:
4903 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4904 sbi->s_ea_inode_cache = NULL;
4905
4906 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4907 sbi->s_ea_block_cache = NULL;
4908
4909 if (sbi->s_journal) {
4910 jbd2_journal_destroy(sbi->s_journal);
4911 sbi->s_journal = NULL;
4912 }
4913failed_mount3a:
4914 ext4_es_unregister_shrinker(sbi);
4915failed_mount3:
4916 del_timer_sync(&sbi->s_err_report);
4917 if (sbi->s_mmp_tsk)
4918 kthread_stop(sbi->s_mmp_tsk);
4919failed_mount2:
4920 rcu_read_lock();
4921 group_desc = rcu_dereference(sbi->s_group_desc);
4922 for (i = 0; i < db_count; i++)
4923 brelse(group_desc[i]);
4924 kvfree(group_desc);
4925 rcu_read_unlock();
4926failed_mount:
4927 if (sbi->s_chksum_driver)
4928 crypto_free_shash(sbi->s_chksum_driver);
4929
4930#ifdef CONFIG_UNICODE
4931 utf8_unload(sbi->s_encoding);
4932#endif
4933
4934#ifdef CONFIG_QUOTA
4935 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4936 kfree(get_qf_name(sb, sbi, i));
4937#endif
4938 fscrypt_free_dummy_context(&sbi->s_dummy_enc_ctx);
4939 ext4_blkdev_remove(sbi);
4940 brelse(bh);
4941out_fail:
4942 sb->s_fs_info = NULL;
4943 kfree(sbi->s_blockgroup_lock);
4944out_free_base:
4945 kfree(sbi);
4946 kfree(orig_data);
4947 fs_put_dax(dax_dev);
4948 return err ? err : ret;
4949}
4950
4951/*
4952 * Setup any per-fs journal parameters now. We'll do this both on
4953 * initial mount, once the journal has been initialised but before we've
4954 * done any recovery; and again on any subsequent remount.
4955 */
4956static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4957{
4958 struct ext4_sb_info *sbi = EXT4_SB(sb);
4959
4960 journal->j_commit_interval = sbi->s_commit_interval;
4961 journal->j_min_batch_time = sbi->s_min_batch_time;
4962 journal->j_max_batch_time = sbi->s_max_batch_time;
4963
4964 write_lock(&journal->j_state_lock);
4965 if (test_opt(sb, BARRIER))
4966 journal->j_flags |= JBD2_BARRIER;
4967 else
4968 journal->j_flags &= ~JBD2_BARRIER;
4969 if (test_opt(sb, DATA_ERR_ABORT))
4970 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4971 else
4972 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4973 write_unlock(&journal->j_state_lock);
4974}
4975
4976static struct inode *ext4_get_journal_inode(struct super_block *sb,
4977 unsigned int journal_inum)
4978{
4979 struct inode *journal_inode;
4980
4981 /*
4982 * Test for the existence of a valid inode on disk. Bad things
4983 * happen if we iget() an unused inode, as the subsequent iput()
4984 * will try to delete it.
4985 */
4986 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4987 if (IS_ERR(journal_inode)) {
4988 ext4_msg(sb, KERN_ERR, "no journal found");
4989 return NULL;
4990 }
4991 if (!journal_inode->i_nlink) {
4992 make_bad_inode(journal_inode);
4993 iput(journal_inode);
4994 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4995 return NULL;
4996 }
4997
4998 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4999 journal_inode, journal_inode->i_size);
5000 if (!S_ISREG(journal_inode->i_mode)) {
5001 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5002 iput(journal_inode);
5003 return NULL;
5004 }
5005 return journal_inode;
5006}
5007
5008static journal_t *ext4_get_journal(struct super_block *sb,
5009 unsigned int journal_inum)
5010{
5011 struct inode *journal_inode;
5012 journal_t *journal;
5013
5014 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5015 return NULL;
5016
5017 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5018 if (!journal_inode)
5019 return NULL;
5020
5021 journal = jbd2_journal_init_inode(journal_inode);
5022 if (!journal) {
5023 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5024 iput(journal_inode);
5025 return NULL;
5026 }
5027 journal->j_private = sb;
5028 ext4_init_journal_params(sb, journal);
5029 return journal;
5030}
5031
5032static journal_t *ext4_get_dev_journal(struct super_block *sb,
5033 dev_t j_dev)
5034{
5035 struct buffer_head *bh;
5036 journal_t *journal;
5037 ext4_fsblk_t start;
5038 ext4_fsblk_t len;
5039 int hblock, blocksize;
5040 ext4_fsblk_t sb_block;
5041 unsigned long offset;
5042 struct ext4_super_block *es;
5043 struct block_device *bdev;
5044
5045 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5046 return NULL;
5047
5048 bdev = ext4_blkdev_get(j_dev, sb);
5049 if (bdev == NULL)
5050 return NULL;
5051
5052 blocksize = sb->s_blocksize;
5053 hblock = bdev_logical_block_size(bdev);
5054 if (blocksize < hblock) {
5055 ext4_msg(sb, KERN_ERR,
5056 "blocksize too small for journal device");
5057 goto out_bdev;
5058 }
5059
5060 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5061 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5062 set_blocksize(bdev, blocksize);
5063 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5064 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5065 "external journal");
5066 goto out_bdev;
5067 }
5068
5069 es = (struct ext4_super_block *) (bh->b_data + offset);
5070 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5071 !(le32_to_cpu(es->s_feature_incompat) &
5072 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5073 ext4_msg(sb, KERN_ERR, "external journal has "
5074 "bad superblock");
5075 brelse(bh);
5076 goto out_bdev;
5077 }
5078
5079 if ((le32_to_cpu(es->s_feature_ro_compat) &
5080 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5081 es->s_checksum != ext4_superblock_csum(sb, es)) {
5082 ext4_msg(sb, KERN_ERR, "external journal has "
5083 "corrupt superblock");
5084 brelse(bh);
5085 goto out_bdev;
5086 }
5087
5088 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5089 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5090 brelse(bh);
5091 goto out_bdev;
5092 }
5093
5094 len = ext4_blocks_count(es);
5095 start = sb_block + 1;
5096 brelse(bh); /* we're done with the superblock */
5097
5098 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5099 start, len, blocksize);
5100 if (!journal) {
5101 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5102 goto out_bdev;
5103 }
5104 journal->j_private = sb;
5105 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
5106 wait_on_buffer(journal->j_sb_buffer);
5107 if (!buffer_uptodate(journal->j_sb_buffer)) {
5108 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5109 goto out_journal;
5110 }
5111 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5112 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5113 "user (unsupported) - %d",
5114 be32_to_cpu(journal->j_superblock->s_nr_users));
5115 goto out_journal;
5116 }
5117 EXT4_SB(sb)->journal_bdev = bdev;
5118 ext4_init_journal_params(sb, journal);
5119 return journal;
5120
5121out_journal:
5122 jbd2_journal_destroy(journal);
5123out_bdev:
5124 ext4_blkdev_put(bdev);
5125 return NULL;
5126}
5127
5128static int ext4_load_journal(struct super_block *sb,
5129 struct ext4_super_block *es,
5130 unsigned long journal_devnum)
5131{
5132 journal_t *journal;
5133 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5134 dev_t journal_dev;
5135 int err = 0;
5136 int really_read_only;
5137 int journal_dev_ro;
5138
5139 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5140 return -EFSCORRUPTED;
5141
5142 if (journal_devnum &&
5143 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5144 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5145 "numbers have changed");
5146 journal_dev = new_decode_dev(journal_devnum);
5147 } else
5148 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5149
5150 if (journal_inum && journal_dev) {
5151 ext4_msg(sb, KERN_ERR,
5152 "filesystem has both journal inode and journal device!");
5153 return -EINVAL;
5154 }
5155
5156 if (journal_inum) {
5157 journal = ext4_get_journal(sb, journal_inum);
5158 if (!journal)
5159 return -EINVAL;
5160 } else {
5161 journal = ext4_get_dev_journal(sb, journal_dev);
5162 if (!journal)
5163 return -EINVAL;
5164 }
5165
5166 journal_dev_ro = bdev_read_only(journal->j_dev);
5167 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5168
5169 if (journal_dev_ro && !sb_rdonly(sb)) {
5170 ext4_msg(sb, KERN_ERR,
5171 "journal device read-only, try mounting with '-o ro'");
5172 err = -EROFS;
5173 goto err_out;
5174 }
5175
5176 /*
5177 * Are we loading a blank journal or performing recovery after a
5178 * crash? For recovery, we need to check in advance whether we
5179 * can get read-write access to the device.
5180 */
5181 if (ext4_has_feature_journal_needs_recovery(sb)) {
5182 if (sb_rdonly(sb)) {
5183 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5184 "required on readonly filesystem");
5185 if (really_read_only) {
5186 ext4_msg(sb, KERN_ERR, "write access "
5187 "unavailable, cannot proceed "
5188 "(try mounting with noload)");
5189 err = -EROFS;
5190 goto err_out;
5191 }
5192 ext4_msg(sb, KERN_INFO, "write access will "
5193 "be enabled during recovery");
5194 }
5195 }
5196
5197 if (!(journal->j_flags & JBD2_BARRIER))
5198 ext4_msg(sb, KERN_INFO, "barriers disabled");
5199
5200 if (!ext4_has_feature_journal_needs_recovery(sb))
5201 err = jbd2_journal_wipe(journal, !really_read_only);
5202 if (!err) {
5203 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5204 if (save)
5205 memcpy(save, ((char *) es) +
5206 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5207 err = jbd2_journal_load(journal);
5208 if (save)
5209 memcpy(((char *) es) + EXT4_S_ERR_START,
5210 save, EXT4_S_ERR_LEN);
5211 kfree(save);
5212 }
5213
5214 if (err) {
5215 ext4_msg(sb, KERN_ERR, "error loading journal");
5216 goto err_out;
5217 }
5218
5219 EXT4_SB(sb)->s_journal = journal;
5220 err = ext4_clear_journal_err(sb, es);
5221 if (err) {
5222 EXT4_SB(sb)->s_journal = NULL;
5223 jbd2_journal_destroy(journal);
5224 return err;
5225 }
5226
5227 if (!really_read_only && journal_devnum &&
5228 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5229 es->s_journal_dev = cpu_to_le32(journal_devnum);
5230
5231 /* Make sure we flush the recovery flag to disk. */
5232 ext4_commit_super(sb, 1);
5233 }
5234
5235 return 0;
5236
5237err_out:
5238 jbd2_journal_destroy(journal);
5239 return err;
5240}
5241
5242static int ext4_commit_super(struct super_block *sb, int sync)
5243{
5244 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5245 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5246 int error = 0;
5247
5248 if (!sbh || block_device_ejected(sb))
5249 return error;
5250
5251 /*
5252 * If the file system is mounted read-only, don't update the
5253 * superblock write time. This avoids updating the superblock
5254 * write time when we are mounting the root file system
5255 * read/only but we need to replay the journal; at that point,
5256 * for people who are east of GMT and who make their clock
5257 * tick in localtime for Windows bug-for-bug compatibility,
5258 * the clock is set in the future, and this will cause e2fsck
5259 * to complain and force a full file system check.
5260 */
5261 if (!(sb->s_flags & SB_RDONLY))
5262 ext4_update_tstamp(es, s_wtime);
5263 if (sb->s_bdev->bd_part)
5264 es->s_kbytes_written =
5265 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5266 ((part_stat_read(sb->s_bdev->bd_part,
5267 sectors[STAT_WRITE]) -
5268 EXT4_SB(sb)->s_sectors_written_start) >> 1));
5269 else
5270 es->s_kbytes_written =
5271 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5272 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5273 ext4_free_blocks_count_set(es,
5274 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5275 &EXT4_SB(sb)->s_freeclusters_counter)));
5276 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5277 es->s_free_inodes_count =
5278 cpu_to_le32(percpu_counter_sum_positive(
5279 &EXT4_SB(sb)->s_freeinodes_counter));
5280 BUFFER_TRACE(sbh, "marking dirty");
5281 ext4_superblock_csum_set(sb);
5282 if (sync)
5283 lock_buffer(sbh);
5284 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5285 /*
5286 * Oh, dear. A previous attempt to write the
5287 * superblock failed. This could happen because the
5288 * USB device was yanked out. Or it could happen to
5289 * be a transient write error and maybe the block will
5290 * be remapped. Nothing we can do but to retry the
5291 * write and hope for the best.
5292 */
5293 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5294 "superblock detected");
5295 clear_buffer_write_io_error(sbh);
5296 set_buffer_uptodate(sbh);
5297 }
5298 mark_buffer_dirty(sbh);
5299 if (sync) {
5300 unlock_buffer(sbh);
5301 error = __sync_dirty_buffer(sbh,
5302 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5303 if (buffer_write_io_error(sbh)) {
5304 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5305 "superblock");
5306 clear_buffer_write_io_error(sbh);
5307 set_buffer_uptodate(sbh);
5308 }
5309 }
5310 return error;
5311}
5312
5313/*
5314 * Have we just finished recovery? If so, and if we are mounting (or
5315 * remounting) the filesystem readonly, then we will end up with a
5316 * consistent fs on disk. Record that fact.
5317 */
5318static int ext4_mark_recovery_complete(struct super_block *sb,
5319 struct ext4_super_block *es)
5320{
5321 int err;
5322 journal_t *journal = EXT4_SB(sb)->s_journal;
5323
5324 if (!ext4_has_feature_journal(sb)) {
5325 if (journal != NULL) {
5326 ext4_error(sb, "Journal got removed while the fs was "
5327 "mounted!");
5328 return -EFSCORRUPTED;
5329 }
5330 return 0;
5331 }
5332 jbd2_journal_lock_updates(journal);
5333 err = jbd2_journal_flush(journal);
5334 if (err < 0)
5335 goto out;
5336
5337 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5338 ext4_clear_feature_journal_needs_recovery(sb);
5339 ext4_commit_super(sb, 1);
5340 }
5341out:
5342 jbd2_journal_unlock_updates(journal);
5343 return err;
5344}
5345
5346/*
5347 * If we are mounting (or read-write remounting) a filesystem whose journal
5348 * has recorded an error from a previous lifetime, move that error to the
5349 * main filesystem now.
5350 */
5351static int ext4_clear_journal_err(struct super_block *sb,
5352 struct ext4_super_block *es)
5353{
5354 journal_t *journal;
5355 int j_errno;
5356 const char *errstr;
5357
5358 if (!ext4_has_feature_journal(sb)) {
5359 ext4_error(sb, "Journal got removed while the fs was mounted!");
5360 return -EFSCORRUPTED;
5361 }
5362
5363 journal = EXT4_SB(sb)->s_journal;
5364
5365 /*
5366 * Now check for any error status which may have been recorded in the
5367 * journal by a prior ext4_error() or ext4_abort()
5368 */
5369
5370 j_errno = jbd2_journal_errno(journal);
5371 if (j_errno) {
5372 char nbuf[16];
5373
5374 errstr = ext4_decode_error(sb, j_errno, nbuf);
5375 ext4_warning(sb, "Filesystem error recorded "
5376 "from previous mount: %s", errstr);
5377 ext4_warning(sb, "Marking fs in need of filesystem check.");
5378
5379 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5380 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5381 ext4_commit_super(sb, 1);
5382
5383 jbd2_journal_clear_err(journal);
5384 jbd2_journal_update_sb_errno(journal);
5385 }
5386 return 0;
5387}
5388
5389/*
5390 * Force the running and committing transactions to commit,
5391 * and wait on the commit.
5392 */
5393int ext4_force_commit(struct super_block *sb)
5394{
5395 journal_t *journal;
5396
5397 if (sb_rdonly(sb))
5398 return 0;
5399
5400 journal = EXT4_SB(sb)->s_journal;
5401 return ext4_journal_force_commit(journal);
5402}
5403
5404static int ext4_sync_fs(struct super_block *sb, int wait)
5405{
5406 int ret = 0;
5407 tid_t target;
5408 bool needs_barrier = false;
5409 struct ext4_sb_info *sbi = EXT4_SB(sb);
5410
5411 if (unlikely(ext4_forced_shutdown(sbi)))
5412 return 0;
5413
5414 trace_ext4_sync_fs(sb, wait);
5415 flush_workqueue(sbi->rsv_conversion_wq);
5416 /*
5417 * Writeback quota in non-journalled quota case - journalled quota has
5418 * no dirty dquots
5419 */
5420 dquot_writeback_dquots(sb, -1);
5421 /*
5422 * Data writeback is possible w/o journal transaction, so barrier must
5423 * being sent at the end of the function. But we can skip it if
5424 * transaction_commit will do it for us.
5425 */
5426 if (sbi->s_journal) {
5427 target = jbd2_get_latest_transaction(sbi->s_journal);
5428 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5429 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5430 needs_barrier = true;
5431
5432 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5433 if (wait)
5434 ret = jbd2_log_wait_commit(sbi->s_journal,
5435 target);
5436 }
5437 } else if (wait && test_opt(sb, BARRIER))
5438 needs_barrier = true;
5439 if (needs_barrier) {
5440 int err;
5441 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
5442 if (!ret)
5443 ret = err;
5444 }
5445
5446 return ret;
5447}
5448
5449/*
5450 * LVM calls this function before a (read-only) snapshot is created. This
5451 * gives us a chance to flush the journal completely and mark the fs clean.
5452 *
5453 * Note that only this function cannot bring a filesystem to be in a clean
5454 * state independently. It relies on upper layer to stop all data & metadata
5455 * modifications.
5456 */
5457static int ext4_freeze(struct super_block *sb)
5458{
5459 int error = 0;
5460 journal_t *journal;
5461
5462 if (sb_rdonly(sb))
5463 return 0;
5464
5465 journal = EXT4_SB(sb)->s_journal;
5466
5467 if (journal) {
5468 /* Now we set up the journal barrier. */
5469 jbd2_journal_lock_updates(journal);
5470
5471 /*
5472 * Don't clear the needs_recovery flag if we failed to
5473 * flush the journal.
5474 */
5475 error = jbd2_journal_flush(journal);
5476 if (error < 0)
5477 goto out;
5478
5479 /* Journal blocked and flushed, clear needs_recovery flag. */
5480 ext4_clear_feature_journal_needs_recovery(sb);
5481 }
5482
5483 error = ext4_commit_super(sb, 1);
5484out:
5485 if (journal)
5486 /* we rely on upper layer to stop further updates */
5487 jbd2_journal_unlock_updates(journal);
5488 return error;
5489}
5490
5491/*
5492 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5493 * flag here, even though the filesystem is not technically dirty yet.
5494 */
5495static int ext4_unfreeze(struct super_block *sb)
5496{
5497 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5498 return 0;
5499
5500 if (EXT4_SB(sb)->s_journal) {
5501 /* Reset the needs_recovery flag before the fs is unlocked. */
5502 ext4_set_feature_journal_needs_recovery(sb);
5503 }
5504
5505 ext4_commit_super(sb, 1);
5506 return 0;
5507}
5508
5509/*
5510 * Structure to save mount options for ext4_remount's benefit
5511 */
5512struct ext4_mount_options {
5513 unsigned long s_mount_opt;
5514 unsigned long s_mount_opt2;
5515 kuid_t s_resuid;
5516 kgid_t s_resgid;
5517 unsigned long s_commit_interval;
5518 u32 s_min_batch_time, s_max_batch_time;
5519#ifdef CONFIG_QUOTA
5520 int s_jquota_fmt;
5521 char *s_qf_names[EXT4_MAXQUOTAS];
5522#endif
5523};
5524
5525static int ext4_remount(struct super_block *sb, int *flags, char *data)
5526{
5527 struct ext4_super_block *es;
5528 struct ext4_sb_info *sbi = EXT4_SB(sb);
5529 unsigned long old_sb_flags, vfs_flags;
5530 struct ext4_mount_options old_opts;
5531 int enable_quota = 0;
5532 ext4_group_t g;
5533 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5534 int err = 0;
5535#ifdef CONFIG_QUOTA
5536 int i, j;
5537 char *to_free[EXT4_MAXQUOTAS];
5538#endif
5539 char *orig_data = kstrdup(data, GFP_KERNEL);
5540
5541 if (data && !orig_data)
5542 return -ENOMEM;
5543
5544 /* Store the original options */
5545 old_sb_flags = sb->s_flags;
5546 old_opts.s_mount_opt = sbi->s_mount_opt;
5547 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5548 old_opts.s_resuid = sbi->s_resuid;
5549 old_opts.s_resgid = sbi->s_resgid;
5550 old_opts.s_commit_interval = sbi->s_commit_interval;
5551 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5552 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5553#ifdef CONFIG_QUOTA
5554 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5555 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5556 if (sbi->s_qf_names[i]) {
5557 char *qf_name = get_qf_name(sb, sbi, i);
5558
5559 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5560 if (!old_opts.s_qf_names[i]) {
5561 for (j = 0; j < i; j++)
5562 kfree(old_opts.s_qf_names[j]);
5563 kfree(orig_data);
5564 return -ENOMEM;
5565 }
5566 } else
5567 old_opts.s_qf_names[i] = NULL;
5568#endif
5569 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5570 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5571
5572 /*
5573 * Some options can be enabled by ext4 and/or by VFS mount flag
5574 * either way we need to make sure it matches in both *flags and
5575 * s_flags. Copy those selected flags from *flags to s_flags
5576 */
5577 vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5578 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5579
5580 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5581 err = -EINVAL;
5582 goto restore_opts;
5583 }
5584
5585 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5586 test_opt(sb, JOURNAL_CHECKSUM)) {
5587 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5588 "during remount not supported; ignoring");
5589 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5590 }
5591
5592 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5593 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5594 ext4_msg(sb, KERN_ERR, "can't mount with "
5595 "both data=journal and delalloc");
5596 err = -EINVAL;
5597 goto restore_opts;
5598 }
5599 if (test_opt(sb, DIOREAD_NOLOCK)) {
5600 ext4_msg(sb, KERN_ERR, "can't mount with "
5601 "both data=journal and dioread_nolock");
5602 err = -EINVAL;
5603 goto restore_opts;
5604 }
5605 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5606 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5607 ext4_msg(sb, KERN_ERR, "can't mount with "
5608 "journal_async_commit in data=ordered mode");
5609 err = -EINVAL;
5610 goto restore_opts;
5611 }
5612 }
5613
5614 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5615 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5616 err = -EINVAL;
5617 goto restore_opts;
5618 }
5619
5620 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5621 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5622
5623 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5624 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5625
5626 es = sbi->s_es;
5627
5628 if (sbi->s_journal) {
5629 ext4_init_journal_params(sb, sbi->s_journal);
5630 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5631 }
5632
5633 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5634 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5635 err = -EROFS;
5636 goto restore_opts;
5637 }
5638
5639 if (*flags & SB_RDONLY) {
5640 err = sync_filesystem(sb);
5641 if (err < 0)
5642 goto restore_opts;
5643 err = dquot_suspend(sb, -1);
5644 if (err < 0)
5645 goto restore_opts;
5646
5647 /*
5648 * First of all, the unconditional stuff we have to do
5649 * to disable replay of the journal when we next remount
5650 */
5651 sb->s_flags |= SB_RDONLY;
5652
5653 /*
5654 * OK, test if we are remounting a valid rw partition
5655 * readonly, and if so set the rdonly flag and then
5656 * mark the partition as valid again.
5657 */
5658 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5659 (sbi->s_mount_state & EXT4_VALID_FS))
5660 es->s_state = cpu_to_le16(sbi->s_mount_state);
5661
5662 if (sbi->s_journal) {
5663 /*
5664 * We let remount-ro finish even if marking fs
5665 * as clean failed...
5666 */
5667 ext4_mark_recovery_complete(sb, es);
5668 }
5669 if (sbi->s_mmp_tsk)
5670 kthread_stop(sbi->s_mmp_tsk);
5671 } else {
5672 /* Make sure we can mount this feature set readwrite */
5673 if (ext4_has_feature_readonly(sb) ||
5674 !ext4_feature_set_ok(sb, 0)) {
5675 err = -EROFS;
5676 goto restore_opts;
5677 }
5678 /*
5679 * Make sure the group descriptor checksums
5680 * are sane. If they aren't, refuse to remount r/w.
5681 */
5682 for (g = 0; g < sbi->s_groups_count; g++) {
5683 struct ext4_group_desc *gdp =
5684 ext4_get_group_desc(sb, g, NULL);
5685
5686 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5687 ext4_msg(sb, KERN_ERR,
5688 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5689 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5690 le16_to_cpu(gdp->bg_checksum));
5691 err = -EFSBADCRC;
5692 goto restore_opts;
5693 }
5694 }
5695
5696 /*
5697 * If we have an unprocessed orphan list hanging
5698 * around from a previously readonly bdev mount,
5699 * require a full umount/remount for now.
5700 */
5701 if (es->s_last_orphan) {
5702 ext4_msg(sb, KERN_WARNING, "Couldn't "
5703 "remount RDWR because of unprocessed "
5704 "orphan inode list. Please "
5705 "umount/remount instead");
5706 err = -EINVAL;
5707 goto restore_opts;
5708 }
5709
5710 /*
5711 * Update the original bdev mapping's wb_err value
5712 * which could be used to detect the metadata async
5713 * write error.
5714 */
5715 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5716 &sbi->s_bdev_wb_err);
5717
5718 /*
5719 * Mounting a RDONLY partition read-write, so reread
5720 * and store the current valid flag. (It may have
5721 * been changed by e2fsck since we originally mounted
5722 * the partition.)
5723 */
5724 if (sbi->s_journal) {
5725 err = ext4_clear_journal_err(sb, es);
5726 if (err)
5727 goto restore_opts;
5728 }
5729 sbi->s_mount_state = le16_to_cpu(es->s_state);
5730
5731 err = ext4_setup_super(sb, es, 0);
5732 if (err)
5733 goto restore_opts;
5734
5735 sb->s_flags &= ~SB_RDONLY;
5736 if (ext4_has_feature_mmp(sb))
5737 if (ext4_multi_mount_protect(sb,
5738 le64_to_cpu(es->s_mmp_block))) {
5739 err = -EROFS;
5740 goto restore_opts;
5741 }
5742 enable_quota = 1;
5743 }
5744 }
5745
5746 /*
5747 * Reinitialize lazy itable initialization thread based on
5748 * current settings
5749 */
5750 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5751 ext4_unregister_li_request(sb);
5752 else {
5753 ext4_group_t first_not_zeroed;
5754 first_not_zeroed = ext4_has_uninit_itable(sb);
5755 ext4_register_li_request(sb, first_not_zeroed);
5756 }
5757
5758 /*
5759 * Handle creation of system zone data early because it can fail.
5760 * Releasing of existing data is done when we are sure remount will
5761 * succeed.
5762 */
5763 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->system_blks) {
5764 err = ext4_setup_system_zone(sb);
5765 if (err)
5766 goto restore_opts;
5767 }
5768
5769 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5770 err = ext4_commit_super(sb, 1);
5771 if (err)
5772 goto restore_opts;
5773 }
5774
5775#ifdef CONFIG_QUOTA
5776 /* Release old quota file names */
5777 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5778 kfree(old_opts.s_qf_names[i]);
5779 if (enable_quota) {
5780 if (sb_any_quota_suspended(sb))
5781 dquot_resume(sb, -1);
5782 else if (ext4_has_feature_quota(sb)) {
5783 err = ext4_enable_quotas(sb);
5784 if (err)
5785 goto restore_opts;
5786 }
5787 }
5788#endif
5789 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->system_blks)
5790 ext4_release_system_zone(sb);
5791
5792 /*
5793 * Some options can be enabled by ext4 and/or by VFS mount flag
5794 * either way we need to make sure it matches in both *flags and
5795 * s_flags. Copy those selected flags from s_flags to *flags
5796 */
5797 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
5798
5799 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5800 kfree(orig_data);
5801 return 0;
5802
5803restore_opts:
5804 sb->s_flags = old_sb_flags;
5805 sbi->s_mount_opt = old_opts.s_mount_opt;
5806 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5807 sbi->s_resuid = old_opts.s_resuid;
5808 sbi->s_resgid = old_opts.s_resgid;
5809 sbi->s_commit_interval = old_opts.s_commit_interval;
5810 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5811 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5812 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->system_blks)
5813 ext4_release_system_zone(sb);
5814#ifdef CONFIG_QUOTA
5815 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5816 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5817 to_free[i] = get_qf_name(sb, sbi, i);
5818 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5819 }
5820 synchronize_rcu();
5821 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5822 kfree(to_free[i]);
5823#endif
5824 kfree(orig_data);
5825 return err;
5826}
5827
5828#ifdef CONFIG_QUOTA
5829static int ext4_statfs_project(struct super_block *sb,
5830 kprojid_t projid, struct kstatfs *buf)
5831{
5832 struct kqid qid;
5833 struct dquot *dquot;
5834 u64 limit;
5835 u64 curblock;
5836
5837 qid = make_kqid_projid(projid);
5838 dquot = dqget(sb, qid);
5839 if (IS_ERR(dquot))
5840 return PTR_ERR(dquot);
5841 spin_lock(&dquot->dq_dqb_lock);
5842
5843 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
5844 dquot->dq_dqb.dqb_bhardlimit);
5845 limit >>= sb->s_blocksize_bits;
5846
5847 if (limit && buf->f_blocks > limit) {
5848 curblock = (dquot->dq_dqb.dqb_curspace +
5849 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5850 buf->f_blocks = limit;
5851 buf->f_bfree = buf->f_bavail =
5852 (buf->f_blocks > curblock) ?
5853 (buf->f_blocks - curblock) : 0;
5854 }
5855
5856 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
5857 dquot->dq_dqb.dqb_ihardlimit);
5858 if (limit && buf->f_files > limit) {
5859 buf->f_files = limit;
5860 buf->f_ffree =
5861 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5862 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5863 }
5864
5865 spin_unlock(&dquot->dq_dqb_lock);
5866 dqput(dquot);
5867 return 0;
5868}
5869#endif
5870
5871static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5872{
5873 struct super_block *sb = dentry->d_sb;
5874 struct ext4_sb_info *sbi = EXT4_SB(sb);
5875 struct ext4_super_block *es = sbi->s_es;
5876 ext4_fsblk_t overhead = 0, resv_blocks;
5877 u64 fsid;
5878 s64 bfree;
5879 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5880
5881 if (!test_opt(sb, MINIX_DF))
5882 overhead = sbi->s_overhead;
5883
5884 buf->f_type = EXT4_SUPER_MAGIC;
5885 buf->f_bsize = sb->s_blocksize;
5886 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5887 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5888 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5889 /* prevent underflow in case that few free space is available */
5890 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5891 buf->f_bavail = buf->f_bfree -
5892 (ext4_r_blocks_count(es) + resv_blocks);
5893 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5894 buf->f_bavail = 0;
5895 buf->f_files = le32_to_cpu(es->s_inodes_count);
5896 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5897 buf->f_namelen = EXT4_NAME_LEN;
5898 fsid = le64_to_cpup((void *)es->s_uuid) ^
5899 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5900 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5901 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5902
5903#ifdef CONFIG_QUOTA
5904 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5905 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5906 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5907#endif
5908 return 0;
5909}
5910
5911
5912#ifdef CONFIG_QUOTA
5913
5914/*
5915 * Helper functions so that transaction is started before we acquire dqio_sem
5916 * to keep correct lock ordering of transaction > dqio_sem
5917 */
5918static inline struct inode *dquot_to_inode(struct dquot *dquot)
5919{
5920 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5921}
5922
5923static int ext4_write_dquot(struct dquot *dquot)
5924{
5925 int ret, err;
5926 handle_t *handle;
5927 struct inode *inode;
5928
5929 inode = dquot_to_inode(dquot);
5930 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5931 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5932 if (IS_ERR(handle))
5933 return PTR_ERR(handle);
5934 ret = dquot_commit(dquot);
5935 err = ext4_journal_stop(handle);
5936 if (!ret)
5937 ret = err;
5938 return ret;
5939}
5940
5941static int ext4_acquire_dquot(struct dquot *dquot)
5942{
5943 int ret, err;
5944 handle_t *handle;
5945
5946 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5947 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5948 if (IS_ERR(handle))
5949 return PTR_ERR(handle);
5950 ret = dquot_acquire(dquot);
5951 err = ext4_journal_stop(handle);
5952 if (!ret)
5953 ret = err;
5954 return ret;
5955}
5956
5957static int ext4_release_dquot(struct dquot *dquot)
5958{
5959 int ret, err;
5960 handle_t *handle;
5961
5962 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5963 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5964 if (IS_ERR(handle)) {
5965 /* Release dquot anyway to avoid endless cycle in dqput() */
5966 dquot_release(dquot);
5967 return PTR_ERR(handle);
5968 }
5969 ret = dquot_release(dquot);
5970 err = ext4_journal_stop(handle);
5971 if (!ret)
5972 ret = err;
5973 return ret;
5974}
5975
5976static int ext4_mark_dquot_dirty(struct dquot *dquot)
5977{
5978 struct super_block *sb = dquot->dq_sb;
5979 struct ext4_sb_info *sbi = EXT4_SB(sb);
5980
5981 /* Are we journaling quotas? */
5982 if (ext4_has_feature_quota(sb) ||
5983 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5984 dquot_mark_dquot_dirty(dquot);
5985 return ext4_write_dquot(dquot);
5986 } else {
5987 return dquot_mark_dquot_dirty(dquot);
5988 }
5989}
5990
5991static int ext4_write_info(struct super_block *sb, int type)
5992{
5993 int ret, err;
5994 handle_t *handle;
5995
5996 /* Data block + inode block */
5997 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5998 if (IS_ERR(handle))
5999 return PTR_ERR(handle);
6000 ret = dquot_commit_info(sb, type);
6001 err = ext4_journal_stop(handle);
6002 if (!ret)
6003 ret = err;
6004 return ret;
6005}
6006
6007/*
6008 * Turn on quotas during mount time - we need to find
6009 * the quota file and such...
6010 */
6011static int ext4_quota_on_mount(struct super_block *sb, int type)
6012{
6013 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6014 EXT4_SB(sb)->s_jquota_fmt, type);
6015}
6016
6017static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6018{
6019 struct ext4_inode_info *ei = EXT4_I(inode);
6020
6021 /* The first argument of lockdep_set_subclass has to be
6022 * *exactly* the same as the argument to init_rwsem() --- in
6023 * this case, in init_once() --- or lockdep gets unhappy
6024 * because the name of the lock is set using the
6025 * stringification of the argument to init_rwsem().
6026 */
6027 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6028 lockdep_set_subclass(&ei->i_data_sem, subclass);
6029}
6030
6031/*
6032 * Standard function to be called on quota_on
6033 */
6034static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6035 const struct path *path)
6036{
6037 int err;
6038
6039 if (!test_opt(sb, QUOTA))
6040 return -EINVAL;
6041
6042 /* Quotafile not on the same filesystem? */
6043 if (path->dentry->d_sb != sb)
6044 return -EXDEV;
6045 /* Journaling quota? */
6046 if (EXT4_SB(sb)->s_qf_names[type]) {
6047 /* Quotafile not in fs root? */
6048 if (path->dentry->d_parent != sb->s_root)
6049 ext4_msg(sb, KERN_WARNING,
6050 "Quota file not on filesystem root. "
6051 "Journaled quota will not work");
6052 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6053 } else {
6054 /*
6055 * Clear the flag just in case mount options changed since
6056 * last time.
6057 */
6058 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6059 }
6060
6061 /*
6062 * When we journal data on quota file, we have to flush journal to see
6063 * all updates to the file when we bypass pagecache...
6064 */
6065 if (EXT4_SB(sb)->s_journal &&
6066 ext4_should_journal_data(d_inode(path->dentry))) {
6067 /*
6068 * We don't need to lock updates but journal_flush() could
6069 * otherwise be livelocked...
6070 */
6071 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6072 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6073 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6074 if (err)
6075 return err;
6076 }
6077
6078 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6079 err = dquot_quota_on(sb, type, format_id, path);
6080 if (err) {
6081 lockdep_set_quota_inode(path->dentry->d_inode,
6082 I_DATA_SEM_NORMAL);
6083 } else {
6084 struct inode *inode = d_inode(path->dentry);
6085 handle_t *handle;
6086
6087 /*
6088 * Set inode flags to prevent userspace from messing with quota
6089 * files. If this fails, we return success anyway since quotas
6090 * are already enabled and this is not a hard failure.
6091 */
6092 inode_lock(inode);
6093 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6094 if (IS_ERR(handle))
6095 goto unlock_inode;
6096 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6097 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6098 S_NOATIME | S_IMMUTABLE);
6099 err = ext4_mark_inode_dirty(handle, inode);
6100 ext4_journal_stop(handle);
6101 unlock_inode:
6102 inode_unlock(inode);
6103 }
6104 return err;
6105}
6106
6107static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6108 unsigned int flags)
6109{
6110 int err;
6111 struct inode *qf_inode;
6112 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6113 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6114 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6115 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6116 };
6117
6118 BUG_ON(!ext4_has_feature_quota(sb));
6119
6120 if (!qf_inums[type])
6121 return -EPERM;
6122
6123 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6124 if (IS_ERR(qf_inode)) {
6125 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6126 return PTR_ERR(qf_inode);
6127 }
6128
6129 /* Don't account quota for quota files to avoid recursion */
6130 qf_inode->i_flags |= S_NOQUOTA;
6131 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6132 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6133 if (err)
6134 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6135 iput(qf_inode);
6136
6137 return err;
6138}
6139
6140/* Enable usage tracking for all quota types. */
6141static int ext4_enable_quotas(struct super_block *sb)
6142{
6143 int type, err = 0;
6144 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6145 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6146 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6147 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6148 };
6149 bool quota_mopt[EXT4_MAXQUOTAS] = {
6150 test_opt(sb, USRQUOTA),
6151 test_opt(sb, GRPQUOTA),
6152 test_opt(sb, PRJQUOTA),
6153 };
6154
6155 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6156 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6157 if (qf_inums[type]) {
6158 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6159 DQUOT_USAGE_ENABLED |
6160 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6161 if (err) {
6162 ext4_warning(sb,
6163 "Failed to enable quota tracking "
6164 "(type=%d, err=%d). Please run "
6165 "e2fsck to fix.", type, err);
6166 for (type--; type >= 0; type--)
6167 dquot_quota_off(sb, type);
6168
6169 return err;
6170 }
6171 }
6172 }
6173 return 0;
6174}
6175
6176static int ext4_quota_off(struct super_block *sb, int type)
6177{
6178 struct inode *inode = sb_dqopt(sb)->files[type];
6179 handle_t *handle;
6180 int err;
6181
6182 /* Force all delayed allocation blocks to be allocated.
6183 * Caller already holds s_umount sem */
6184 if (test_opt(sb, DELALLOC))
6185 sync_filesystem(sb);
6186
6187 if (!inode || !igrab(inode))
6188 goto out;
6189
6190 err = dquot_quota_off(sb, type);
6191 if (err || ext4_has_feature_quota(sb))
6192 goto out_put;
6193
6194 inode_lock(inode);
6195 /*
6196 * Update modification times of quota files when userspace can
6197 * start looking at them. If we fail, we return success anyway since
6198 * this is not a hard failure and quotas are already disabled.
6199 */
6200 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6201 if (IS_ERR(handle)) {
6202 err = PTR_ERR(handle);
6203 goto out_unlock;
6204 }
6205 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6206 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6207 inode->i_mtime = inode->i_ctime = current_time(inode);
6208 err = ext4_mark_inode_dirty(handle, inode);
6209 ext4_journal_stop(handle);
6210out_unlock:
6211 inode_unlock(inode);
6212out_put:
6213 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6214 iput(inode);
6215 return err;
6216out:
6217 return dquot_quota_off(sb, type);
6218}
6219
6220/* Read data from quotafile - avoid pagecache and such because we cannot afford
6221 * acquiring the locks... As quota files are never truncated and quota code
6222 * itself serializes the operations (and no one else should touch the files)
6223 * we don't have to be afraid of races */
6224static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6225 size_t len, loff_t off)
6226{
6227 struct inode *inode = sb_dqopt(sb)->files[type];
6228 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6229 int offset = off & (sb->s_blocksize - 1);
6230 int tocopy;
6231 size_t toread;
6232 struct buffer_head *bh;
6233 loff_t i_size = i_size_read(inode);
6234
6235 if (off > i_size)
6236 return 0;
6237 if (off+len > i_size)
6238 len = i_size-off;
6239 toread = len;
6240 while (toread > 0) {
6241 tocopy = sb->s_blocksize - offset < toread ?
6242 sb->s_blocksize - offset : toread;
6243 bh = ext4_bread(NULL, inode, blk, 0);
6244 if (IS_ERR(bh))
6245 return PTR_ERR(bh);
6246 if (!bh) /* A hole? */
6247 memset(data, 0, tocopy);
6248 else
6249 memcpy(data, bh->b_data+offset, tocopy);
6250 brelse(bh);
6251 offset = 0;
6252 toread -= tocopy;
6253 data += tocopy;
6254 blk++;
6255 }
6256 return len;
6257}
6258
6259/* Write to quotafile (we know the transaction is already started and has
6260 * enough credits) */
6261static ssize_t ext4_quota_write(struct super_block *sb, int type,
6262 const char *data, size_t len, loff_t off)
6263{
6264 struct inode *inode = sb_dqopt(sb)->files[type];
6265 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6266 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6267 int retries = 0;
6268 struct buffer_head *bh;
6269 handle_t *handle = journal_current_handle();
6270
6271 if (EXT4_SB(sb)->s_journal && !handle) {
6272 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6273 " cancelled because transaction is not started",
6274 (unsigned long long)off, (unsigned long long)len);
6275 return -EIO;
6276 }
6277 /*
6278 * Since we account only one data block in transaction credits,
6279 * then it is impossible to cross a block boundary.
6280 */
6281 if (sb->s_blocksize - offset < len) {
6282 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6283 " cancelled because not block aligned",
6284 (unsigned long long)off, (unsigned long long)len);
6285 return -EIO;
6286 }
6287
6288 do {
6289 bh = ext4_bread(handle, inode, blk,
6290 EXT4_GET_BLOCKS_CREATE |
6291 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6292 } while (PTR_ERR(bh) == -ENOSPC &&
6293 ext4_should_retry_alloc(inode->i_sb, &retries));
6294 if (IS_ERR(bh))
6295 return PTR_ERR(bh);
6296 if (!bh)
6297 goto out;
6298 BUFFER_TRACE(bh, "get write access");
6299 err = ext4_journal_get_write_access(handle, bh);
6300 if (err) {
6301 brelse(bh);
6302 return err;
6303 }
6304 lock_buffer(bh);
6305 memcpy(bh->b_data+offset, data, len);
6306 flush_dcache_page(bh->b_page);
6307 unlock_buffer(bh);
6308 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6309 brelse(bh);
6310out:
6311 if (inode->i_size < off + len) {
6312 i_size_write(inode, off + len);
6313 EXT4_I(inode)->i_disksize = inode->i_size;
6314 err2 = ext4_mark_inode_dirty(handle, inode);
6315 if (unlikely(err2 && !err))
6316 err = err2;
6317 }
6318 return err ? err : len;
6319}
6320#endif
6321
6322static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6323 const char *dev_name, void *data)
6324{
6325 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6326}
6327
6328#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6329static inline void register_as_ext2(void)
6330{
6331 int err = register_filesystem(&ext2_fs_type);
6332 if (err)
6333 printk(KERN_WARNING
6334 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6335}
6336
6337static inline void unregister_as_ext2(void)
6338{
6339 unregister_filesystem(&ext2_fs_type);
6340}
6341
6342static inline int ext2_feature_set_ok(struct super_block *sb)
6343{
6344 if (ext4_has_unknown_ext2_incompat_features(sb))
6345 return 0;
6346 if (sb_rdonly(sb))
6347 return 1;
6348 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6349 return 0;
6350 return 1;
6351}
6352#else
6353static inline void register_as_ext2(void) { }
6354static inline void unregister_as_ext2(void) { }
6355static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6356#endif
6357
6358static inline void register_as_ext3(void)
6359{
6360 int err = register_filesystem(&ext3_fs_type);
6361 if (err)
6362 printk(KERN_WARNING
6363 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6364}
6365
6366static inline void unregister_as_ext3(void)
6367{
6368 unregister_filesystem(&ext3_fs_type);
6369}
6370
6371static inline int ext3_feature_set_ok(struct super_block *sb)
6372{
6373 if (ext4_has_unknown_ext3_incompat_features(sb))
6374 return 0;
6375 if (!ext4_has_feature_journal(sb))
6376 return 0;
6377 if (sb_rdonly(sb))
6378 return 1;
6379 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6380 return 0;
6381 return 1;
6382}
6383
6384static struct file_system_type ext4_fs_type = {
6385 .owner = THIS_MODULE,
6386 .name = "ext4",
6387 .mount = ext4_mount,
6388 .kill_sb = kill_block_super,
6389 .fs_flags = FS_REQUIRES_DEV,
6390};
6391MODULE_ALIAS_FS("ext4");
6392
6393/* Shared across all ext4 file systems */
6394wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6395
6396static int __init ext4_init_fs(void)
6397{
6398 int i, err;
6399
6400 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6401 ext4_li_info = NULL;
6402 mutex_init(&ext4_li_mtx);
6403
6404 /* Build-time check for flags consistency */
6405 ext4_check_flag_values();
6406
6407 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6408 init_waitqueue_head(&ext4__ioend_wq[i]);
6409
6410 err = ext4_init_es();
6411 if (err)
6412 return err;
6413
6414 err = ext4_init_pending();
6415 if (err)
6416 goto out7;
6417
6418 err = ext4_init_post_read_processing();
6419 if (err)
6420 goto out6;
6421
6422 err = ext4_init_pageio();
6423 if (err)
6424 goto out5;
6425
6426 err = ext4_init_system_zone();
6427 if (err)
6428 goto out4;
6429
6430 err = ext4_init_sysfs();
6431 if (err)
6432 goto out3;
6433
6434 err = ext4_init_mballoc();
6435 if (err)
6436 goto out2;
6437 err = init_inodecache();
6438 if (err)
6439 goto out1;
6440 register_as_ext3();
6441 register_as_ext2();
6442 err = register_filesystem(&ext4_fs_type);
6443 if (err)
6444 goto out;
6445
6446 return 0;
6447out:
6448 unregister_as_ext2();
6449 unregister_as_ext3();
6450 destroy_inodecache();
6451out1:
6452 ext4_exit_mballoc();
6453out2:
6454 ext4_exit_sysfs();
6455out3:
6456 ext4_exit_system_zone();
6457out4:
6458 ext4_exit_pageio();
6459out5:
6460 ext4_exit_post_read_processing();
6461out6:
6462 ext4_exit_pending();
6463out7:
6464 ext4_exit_es();
6465
6466 return err;
6467}
6468
6469static void __exit ext4_exit_fs(void)
6470{
6471 ext4_destroy_lazyinit_thread();
6472 unregister_as_ext2();
6473 unregister_as_ext3();
6474 unregister_filesystem(&ext4_fs_type);
6475 destroy_inodecache();
6476 ext4_exit_mballoc();
6477 ext4_exit_sysfs();
6478 ext4_exit_system_zone();
6479 ext4_exit_pageio();
6480 ext4_exit_post_read_processing();
6481 ext4_exit_es();
6482 ext4_exit_pending();
6483}
6484
6485MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6486MODULE_DESCRIPTION("Fourth Extended Filesystem");
6487MODULE_LICENSE("GPL");
6488MODULE_SOFTDEP("pre: crc32c");
6489module_init(ext4_init_fs)
6490module_exit(ext4_exit_fs)