Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v4.10.11
 
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/delay.h>
 20#include <linux/kthread.h>
 21#include <linux/pagemap.h>
 22
 23#include "ctree.h"
 24#include "disk-io.h"
 25#include "free-space-cache.h"
 26#include "inode-map.h"
 27#include "transaction.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 28
 29static int caching_kthread(void *data)
 30{
 31	struct btrfs_root *root = data;
 32	struct btrfs_fs_info *fs_info = root->fs_info;
 33	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
 34	struct btrfs_key key;
 35	struct btrfs_path *path;
 36	struct extent_buffer *leaf;
 37	u64 last = (u64)-1;
 38	int slot;
 39	int ret;
 40
 41	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
 42		return 0;
 43
 44	path = btrfs_alloc_path();
 45	if (!path)
 
 46		return -ENOMEM;
 
 47
 48	/* Since the commit root is read-only, we can safely skip locking. */
 49	path->skip_locking = 1;
 50	path->search_commit_root = 1;
 51	path->reada = READA_FORWARD;
 52
 53	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
 54	key.offset = 0;
 55	key.type = BTRFS_INODE_ITEM_KEY;
 56again:
 57	/* need to make sure the commit_root doesn't disappear */
 58	down_read(&fs_info->commit_root_sem);
 59
 60	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 61	if (ret < 0)
 62		goto out;
 63
 64	while (1) {
 65		if (btrfs_fs_closing(fs_info))
 66			goto out;
 67
 68		leaf = path->nodes[0];
 69		slot = path->slots[0];
 70		if (slot >= btrfs_header_nritems(leaf)) {
 71			ret = btrfs_next_leaf(root, path);
 72			if (ret < 0)
 73				goto out;
 74			else if (ret > 0)
 75				break;
 76
 77			if (need_resched() ||
 78			    btrfs_transaction_in_commit(fs_info)) {
 79				leaf = path->nodes[0];
 80
 81				if (WARN_ON(btrfs_header_nritems(leaf) == 0))
 82					break;
 83
 84				/*
 85				 * Save the key so we can advances forward
 86				 * in the next search.
 87				 */
 88				btrfs_item_key_to_cpu(leaf, &key, 0);
 89				btrfs_release_path(path);
 90				root->ino_cache_progress = last;
 91				up_read(&fs_info->commit_root_sem);
 92				schedule_timeout(1);
 93				goto again;
 94			} else
 95				continue;
 96		}
 97
 98		btrfs_item_key_to_cpu(leaf, &key, slot);
 99
100		if (key.type != BTRFS_INODE_ITEM_KEY)
101			goto next;
102
103		if (key.objectid >= root->highest_objectid)
104			break;
105
106		if (last != (u64)-1 && last + 1 != key.objectid) {
107			__btrfs_add_free_space(fs_info, ctl, last + 1,
108					       key.objectid - last - 1);
109			wake_up(&root->ino_cache_wait);
110		}
111
112		last = key.objectid;
113next:
114		path->slots[0]++;
115	}
116
117	if (last < root->highest_objectid - 1) {
118		__btrfs_add_free_space(fs_info, ctl, last + 1,
119				       root->highest_objectid - last - 1);
120	}
121
122	spin_lock(&root->ino_cache_lock);
123	root->ino_cache_state = BTRFS_CACHE_FINISHED;
124	spin_unlock(&root->ino_cache_lock);
125
126	root->ino_cache_progress = (u64)-1;
127	btrfs_unpin_free_ino(root);
128out:
129	wake_up(&root->ino_cache_wait);
130	up_read(&fs_info->commit_root_sem);
131
132	btrfs_free_path(path);
133
134	return ret;
135}
136
137static void start_caching(struct btrfs_root *root)
138{
139	struct btrfs_fs_info *fs_info = root->fs_info;
140	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
141	struct task_struct *tsk;
142	int ret;
143	u64 objectid;
144
145	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
146		return;
147
148	spin_lock(&root->ino_cache_lock);
149	if (root->ino_cache_state != BTRFS_CACHE_NO) {
150		spin_unlock(&root->ino_cache_lock);
151		return;
152	}
153
154	root->ino_cache_state = BTRFS_CACHE_STARTED;
155	spin_unlock(&root->ino_cache_lock);
156
157	ret = load_free_ino_cache(fs_info, root);
158	if (ret == 1) {
159		spin_lock(&root->ino_cache_lock);
160		root->ino_cache_state = BTRFS_CACHE_FINISHED;
161		spin_unlock(&root->ino_cache_lock);
 
162		return;
163	}
164
165	/*
166	 * It can be quite time-consuming to fill the cache by searching
167	 * through the extent tree, and this can keep ino allocation path
168	 * waiting. Therefore at start we quickly find out the highest
169	 * inode number and we know we can use inode numbers which fall in
170	 * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
171	 */
172	ret = btrfs_find_free_objectid(root, &objectid);
173	if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
174		__btrfs_add_free_space(fs_info, ctl, objectid,
175				       BTRFS_LAST_FREE_OBJECTID - objectid + 1);
 
 
176	}
177
178	tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
179			  root->root_key.objectid);
180	if (IS_ERR(tsk)) {
181		btrfs_warn(fs_info, "failed to start inode caching task");
182		btrfs_clear_pending_and_info(fs_info, INODE_MAP_CACHE,
183					     "disabling inode map caching");
184	}
185}
186
187int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
188{
189	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
190		return btrfs_find_free_objectid(root, objectid);
191
192again:
193	*objectid = btrfs_find_ino_for_alloc(root);
194
195	if (*objectid != 0)
196		return 0;
197
198	start_caching(root);
199
200	wait_event(root->ino_cache_wait,
201		   root->ino_cache_state == BTRFS_CACHE_FINISHED ||
 
202		   root->free_ino_ctl->free_space > 0);
203
204	if (root->ino_cache_state == BTRFS_CACHE_FINISHED &&
205	    root->free_ino_ctl->free_space == 0)
206		return -ENOSPC;
 
 
207	else
208		goto again;
209}
210
211void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
212{
213	struct btrfs_fs_info *fs_info = root->fs_info;
214	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
215
216	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
217		return;
218again:
219	if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
220		__btrfs_add_free_space(fs_info, pinned, objectid, 1);
221	} else {
222		down_write(&fs_info->commit_root_sem);
223		spin_lock(&root->ino_cache_lock);
224		if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
225			spin_unlock(&root->ino_cache_lock);
226			up_write(&fs_info->commit_root_sem);
227			goto again;
228		}
229		spin_unlock(&root->ino_cache_lock);
230
231		start_caching(root);
232
233		__btrfs_add_free_space(fs_info, pinned, objectid, 1);
234
235		up_write(&fs_info->commit_root_sem);
236	}
237}
238
239/*
240 * When a transaction is committed, we'll move those inode numbers which are
241 * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
242 * others will just be dropped, because the commit root we were searching has
243 * changed.
244 *
245 * Must be called with root->fs_info->commit_root_sem held
246 */
247void btrfs_unpin_free_ino(struct btrfs_root *root)
248{
249	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
250	struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
251	spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock;
252	struct btrfs_free_space *info;
253	struct rb_node *n;
254	u64 count;
255
256	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
257		return;
258
259	while (1) {
260		bool add_to_ctl = true;
261
262		spin_lock(rbroot_lock);
263		n = rb_first(rbroot);
264		if (!n) {
265			spin_unlock(rbroot_lock);
266			break;
267		}
268
269		info = rb_entry(n, struct btrfs_free_space, offset_index);
270		BUG_ON(info->bitmap); /* Logic error */
271
272		if (info->offset > root->ino_cache_progress)
273			add_to_ctl = false;
274		else if (info->offset + info->bytes > root->ino_cache_progress)
275			count = root->ino_cache_progress - info->offset + 1;
276		else
277			count = info->bytes;
 
278
279		rb_erase(&info->offset_index, rbroot);
280		spin_unlock(rbroot_lock);
281		if (add_to_ctl)
282			__btrfs_add_free_space(root->fs_info, ctl,
283					       info->offset, count);
284		kmem_cache_free(btrfs_free_space_cachep, info);
285	}
286}
287
288#define INIT_THRESHOLD	((SZ_32K / 2) / sizeof(struct btrfs_free_space))
289#define INODES_PER_BITMAP (PAGE_SIZE * 8)
290
291/*
292 * The goal is to keep the memory used by the free_ino tree won't
293 * exceed the memory if we use bitmaps only.
294 */
295static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
296{
297	struct btrfs_free_space *info;
298	struct rb_node *n;
299	int max_ino;
300	int max_bitmaps;
301
302	n = rb_last(&ctl->free_space_offset);
303	if (!n) {
304		ctl->extents_thresh = INIT_THRESHOLD;
305		return;
306	}
307	info = rb_entry(n, struct btrfs_free_space, offset_index);
308
309	/*
310	 * Find the maximum inode number in the filesystem. Note we
311	 * ignore the fact that this can be a bitmap, because we are
312	 * not doing precise calculation.
313	 */
314	max_ino = info->bytes - 1;
315
316	max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
317	if (max_bitmaps <= ctl->total_bitmaps) {
318		ctl->extents_thresh = 0;
319		return;
320	}
321
322	ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
323				PAGE_SIZE / sizeof(*info);
324}
325
326/*
327 * We don't fall back to bitmap, if we are below the extents threshold
328 * or this chunk of inode numbers is a big one.
329 */
330static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
331		       struct btrfs_free_space *info)
332{
333	if (ctl->free_extents < ctl->extents_thresh ||
334	    info->bytes > INODES_PER_BITMAP / 10)
335		return false;
336
337	return true;
338}
339
340static const struct btrfs_free_space_op free_ino_op = {
341	.recalc_thresholds	= recalculate_thresholds,
342	.use_bitmap		= use_bitmap,
343};
344
345static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
346{
347}
348
349static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
350			      struct btrfs_free_space *info)
351{
352	/*
353	 * We always use extents for two reasons:
354	 *
355	 * - The pinned tree is only used during the process of caching
356	 *   work.
357	 * - Make code simpler. See btrfs_unpin_free_ino().
358	 */
359	return false;
360}
361
362static const struct btrfs_free_space_op pinned_free_ino_op = {
363	.recalc_thresholds	= pinned_recalc_thresholds,
364	.use_bitmap		= pinned_use_bitmap,
365};
366
367void btrfs_init_free_ino_ctl(struct btrfs_root *root)
368{
369	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
370	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
371
372	spin_lock_init(&ctl->tree_lock);
373	ctl->unit = 1;
374	ctl->start = 0;
375	ctl->private = NULL;
376	ctl->op = &free_ino_op;
377	INIT_LIST_HEAD(&ctl->trimming_ranges);
378	mutex_init(&ctl->cache_writeout_mutex);
379
380	/*
381	 * Initially we allow to use 16K of ram to cache chunks of
382	 * inode numbers before we resort to bitmaps. This is somewhat
383	 * arbitrary, but it will be adjusted in runtime.
384	 */
385	ctl->extents_thresh = INIT_THRESHOLD;
386
387	spin_lock_init(&pinned->tree_lock);
388	pinned->unit = 1;
389	pinned->start = 0;
390	pinned->private = NULL;
391	pinned->extents_thresh = 0;
392	pinned->op = &pinned_free_ino_op;
393}
394
395int btrfs_save_ino_cache(struct btrfs_root *root,
396			 struct btrfs_trans_handle *trans)
397{
398	struct btrfs_fs_info *fs_info = root->fs_info;
399	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
400	struct btrfs_path *path;
401	struct inode *inode;
402	struct btrfs_block_rsv *rsv;
 
403	u64 num_bytes;
404	u64 alloc_hint = 0;
405	int ret;
406	int prealloc;
407	bool retry = false;
408
409	/* only fs tree and subvol/snap needs ino cache */
410	if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
411	    (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
412	     root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
413		return 0;
414
415	/* Don't save inode cache if we are deleting this root */
416	if (btrfs_root_refs(&root->root_item) == 0)
417		return 0;
418
419	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
420		return 0;
421
422	path = btrfs_alloc_path();
423	if (!path)
424		return -ENOMEM;
425
426	rsv = trans->block_rsv;
427	trans->block_rsv = &fs_info->trans_block_rsv;
428
429	num_bytes = trans->bytes_reserved;
430	/*
431	 * 1 item for inode item insertion if need
432	 * 4 items for inode item update (in the worst case)
433	 * 1 items for slack space if we need do truncation
434	 * 1 item for free space object
435	 * 3 items for pre-allocation
436	 */
437	trans->bytes_reserved = btrfs_calc_trans_metadata_size(fs_info, 10);
438	ret = btrfs_block_rsv_add(root, trans->block_rsv,
439				  trans->bytes_reserved,
440				  BTRFS_RESERVE_NO_FLUSH);
441	if (ret)
442		goto out;
443	trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
444				      trans->bytes_reserved, 1);
445again:
446	inode = lookup_free_ino_inode(root, path);
447	if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
448		ret = PTR_ERR(inode);
449		goto out_release;
450	}
451
452	if (IS_ERR(inode)) {
453		BUG_ON(retry); /* Logic error */
454		retry = true;
455
456		ret = create_free_ino_inode(root, trans, path);
457		if (ret)
458			goto out_release;
459		goto again;
460	}
461
462	BTRFS_I(inode)->generation = 0;
463	ret = btrfs_update_inode(trans, root, inode);
464	if (ret) {
465		btrfs_abort_transaction(trans, ret);
466		goto out_put;
467	}
468
469	if (i_size_read(inode) > 0) {
470		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
471		if (ret) {
472			if (ret != -ENOSPC)
473				btrfs_abort_transaction(trans, ret);
474			goto out_put;
475		}
476	}
477
478	spin_lock(&root->ino_cache_lock);
479	if (root->ino_cache_state != BTRFS_CACHE_FINISHED) {
480		ret = -1;
481		spin_unlock(&root->ino_cache_lock);
482		goto out_put;
483	}
484	spin_unlock(&root->ino_cache_lock);
485
486	spin_lock(&ctl->tree_lock);
487	prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
488	prealloc = ALIGN(prealloc, PAGE_SIZE);
489	prealloc += ctl->total_bitmaps * PAGE_SIZE;
490	spin_unlock(&ctl->tree_lock);
491
492	/* Just to make sure we have enough space */
493	prealloc += 8 * PAGE_SIZE;
494
495	ret = btrfs_delalloc_reserve_space(inode, 0, prealloc);
 
496	if (ret)
497		goto out_put;
498
499	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
500					      prealloc, prealloc, &alloc_hint);
501	if (ret) {
502		btrfs_delalloc_release_metadata(inode, prealloc);
 
503		goto out_put;
504	}
505
506	ret = btrfs_write_out_ino_cache(root, trans, path, inode);
 
507out_put:
508	iput(inode);
509out_release:
510	trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
511				      trans->bytes_reserved, 0);
512	btrfs_block_rsv_release(fs_info, trans->block_rsv,
513				trans->bytes_reserved);
514out:
515	trans->block_rsv = rsv;
516	trans->bytes_reserved = num_bytes;
517
518	btrfs_free_path(path);
 
519	return ret;
520}
521
522int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
523{
524	struct btrfs_path *path;
525	int ret;
526	struct extent_buffer *l;
527	struct btrfs_key search_key;
528	struct btrfs_key found_key;
529	int slot;
530
531	path = btrfs_alloc_path();
532	if (!path)
533		return -ENOMEM;
534
535	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
536	search_key.type = -1;
537	search_key.offset = (u64)-1;
538	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
539	if (ret < 0)
540		goto error;
541	BUG_ON(ret == 0); /* Corruption */
542	if (path->slots[0] > 0) {
543		slot = path->slots[0] - 1;
544		l = path->nodes[0];
545		btrfs_item_key_to_cpu(l, &found_key, slot);
546		*objectid = max_t(u64, found_key.objectid,
547				  BTRFS_FIRST_FREE_OBJECTID - 1);
548	} else {
549		*objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
550	}
551	ret = 0;
552error:
553	btrfs_free_path(path);
554	return ret;
555}
556
557int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
558{
559	int ret;
560	mutex_lock(&root->objectid_mutex);
561
562	if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
563		btrfs_warn(root->fs_info,
564			   "the objectid of root %llu reaches its highest value",
565			   root->root_key.objectid);
566		ret = -ENOSPC;
567		goto out;
568	}
569
570	*objectid = ++root->highest_objectid;
571	ret = 0;
572out:
573	mutex_unlock(&root->objectid_mutex);
574	return ret;
575}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
 
  6#include <linux/kthread.h>
  7#include <linux/pagemap.h>
  8
  9#include "ctree.h"
 10#include "disk-io.h"
 11#include "free-space-cache.h"
 12#include "inode-map.h"
 13#include "transaction.h"
 14#include "delalloc-space.h"
 15
 16static void fail_caching_thread(struct btrfs_root *root)
 17{
 18	struct btrfs_fs_info *fs_info = root->fs_info;
 19
 20	btrfs_warn(fs_info, "failed to start inode caching task");
 21	btrfs_clear_pending_and_info(fs_info, INODE_MAP_CACHE,
 22				     "disabling inode map caching");
 23	spin_lock(&root->ino_cache_lock);
 24	root->ino_cache_state = BTRFS_CACHE_ERROR;
 25	spin_unlock(&root->ino_cache_lock);
 26	wake_up(&root->ino_cache_wait);
 27}
 28
 29static int caching_kthread(void *data)
 30{
 31	struct btrfs_root *root = data;
 32	struct btrfs_fs_info *fs_info = root->fs_info;
 33	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
 34	struct btrfs_key key;
 35	struct btrfs_path *path;
 36	struct extent_buffer *leaf;
 37	u64 last = (u64)-1;
 38	int slot;
 39	int ret;
 40
 41	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
 42		return 0;
 43
 44	path = btrfs_alloc_path();
 45	if (!path) {
 46		fail_caching_thread(root);
 47		return -ENOMEM;
 48	}
 49
 50	/* Since the commit root is read-only, we can safely skip locking. */
 51	path->skip_locking = 1;
 52	path->search_commit_root = 1;
 53	path->reada = READA_FORWARD;
 54
 55	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
 56	key.offset = 0;
 57	key.type = BTRFS_INODE_ITEM_KEY;
 58again:
 59	/* need to make sure the commit_root doesn't disappear */
 60	down_read(&fs_info->commit_root_sem);
 61
 62	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 63	if (ret < 0)
 64		goto out;
 65
 66	while (1) {
 67		if (btrfs_fs_closing(fs_info))
 68			goto out;
 69
 70		leaf = path->nodes[0];
 71		slot = path->slots[0];
 72		if (slot >= btrfs_header_nritems(leaf)) {
 73			ret = btrfs_next_leaf(root, path);
 74			if (ret < 0)
 75				goto out;
 76			else if (ret > 0)
 77				break;
 78
 79			if (need_resched() ||
 80			    btrfs_transaction_in_commit(fs_info)) {
 81				leaf = path->nodes[0];
 82
 83				if (WARN_ON(btrfs_header_nritems(leaf) == 0))
 84					break;
 85
 86				/*
 87				 * Save the key so we can advances forward
 88				 * in the next search.
 89				 */
 90				btrfs_item_key_to_cpu(leaf, &key, 0);
 91				btrfs_release_path(path);
 92				root->ino_cache_progress = last;
 93				up_read(&fs_info->commit_root_sem);
 94				schedule_timeout(1);
 95				goto again;
 96			} else
 97				continue;
 98		}
 99
100		btrfs_item_key_to_cpu(leaf, &key, slot);
101
102		if (key.type != BTRFS_INODE_ITEM_KEY)
103			goto next;
104
105		if (key.objectid >= root->highest_objectid)
106			break;
107
108		if (last != (u64)-1 && last + 1 != key.objectid) {
109			__btrfs_add_free_space(fs_info, ctl, last + 1,
110					       key.objectid - last - 1, 0);
111			wake_up(&root->ino_cache_wait);
112		}
113
114		last = key.objectid;
115next:
116		path->slots[0]++;
117	}
118
119	if (last < root->highest_objectid - 1) {
120		__btrfs_add_free_space(fs_info, ctl, last + 1,
121				       root->highest_objectid - last - 1, 0);
122	}
123
124	spin_lock(&root->ino_cache_lock);
125	root->ino_cache_state = BTRFS_CACHE_FINISHED;
126	spin_unlock(&root->ino_cache_lock);
127
128	root->ino_cache_progress = (u64)-1;
129	btrfs_unpin_free_ino(root);
130out:
131	wake_up(&root->ino_cache_wait);
132	up_read(&fs_info->commit_root_sem);
133
134	btrfs_free_path(path);
135
136	return ret;
137}
138
139static void start_caching(struct btrfs_root *root)
140{
141	struct btrfs_fs_info *fs_info = root->fs_info;
142	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
143	struct task_struct *tsk;
144	int ret;
145	u64 objectid;
146
147	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
148		return;
149
150	spin_lock(&root->ino_cache_lock);
151	if (root->ino_cache_state != BTRFS_CACHE_NO) {
152		spin_unlock(&root->ino_cache_lock);
153		return;
154	}
155
156	root->ino_cache_state = BTRFS_CACHE_STARTED;
157	spin_unlock(&root->ino_cache_lock);
158
159	ret = load_free_ino_cache(fs_info, root);
160	if (ret == 1) {
161		spin_lock(&root->ino_cache_lock);
162		root->ino_cache_state = BTRFS_CACHE_FINISHED;
163		spin_unlock(&root->ino_cache_lock);
164		wake_up(&root->ino_cache_wait);
165		return;
166	}
167
168	/*
169	 * It can be quite time-consuming to fill the cache by searching
170	 * through the extent tree, and this can keep ino allocation path
171	 * waiting. Therefore at start we quickly find out the highest
172	 * inode number and we know we can use inode numbers which fall in
173	 * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
174	 */
175	ret = btrfs_find_free_objectid(root, &objectid);
176	if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
177		__btrfs_add_free_space(fs_info, ctl, objectid,
178				       BTRFS_LAST_FREE_OBJECTID - objectid + 1,
179				       0);
180		wake_up(&root->ino_cache_wait);
181	}
182
183	tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
184			  root->root_key.objectid);
185	if (IS_ERR(tsk))
186		fail_caching_thread(root);
 
 
 
187}
188
189int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
190{
191	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
192		return btrfs_find_free_objectid(root, objectid);
193
194again:
195	*objectid = btrfs_find_ino_for_alloc(root);
196
197	if (*objectid != 0)
198		return 0;
199
200	start_caching(root);
201
202	wait_event(root->ino_cache_wait,
203		   root->ino_cache_state == BTRFS_CACHE_FINISHED ||
204		   root->ino_cache_state == BTRFS_CACHE_ERROR ||
205		   root->free_ino_ctl->free_space > 0);
206
207	if (root->ino_cache_state == BTRFS_CACHE_FINISHED &&
208	    root->free_ino_ctl->free_space == 0)
209		return -ENOSPC;
210	else if (root->ino_cache_state == BTRFS_CACHE_ERROR)
211		return btrfs_find_free_objectid(root, objectid);
212	else
213		goto again;
214}
215
216void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
217{
218	struct btrfs_fs_info *fs_info = root->fs_info;
219	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
220
221	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
222		return;
223again:
224	if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
225		__btrfs_add_free_space(fs_info, pinned, objectid, 1, 0);
226	} else {
227		down_write(&fs_info->commit_root_sem);
228		spin_lock(&root->ino_cache_lock);
229		if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
230			spin_unlock(&root->ino_cache_lock);
231			up_write(&fs_info->commit_root_sem);
232			goto again;
233		}
234		spin_unlock(&root->ino_cache_lock);
235
236		start_caching(root);
237
238		__btrfs_add_free_space(fs_info, pinned, objectid, 1, 0);
239
240		up_write(&fs_info->commit_root_sem);
241	}
242}
243
244/*
245 * When a transaction is committed, we'll move those inode numbers which are
246 * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
247 * others will just be dropped, because the commit root we were searching has
248 * changed.
249 *
250 * Must be called with root->fs_info->commit_root_sem held
251 */
252void btrfs_unpin_free_ino(struct btrfs_root *root)
253{
254	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
255	struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
256	spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock;
257	struct btrfs_free_space *info;
258	struct rb_node *n;
259	u64 count;
260
261	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
262		return;
263
264	while (1) {
 
 
265		spin_lock(rbroot_lock);
266		n = rb_first(rbroot);
267		if (!n) {
268			spin_unlock(rbroot_lock);
269			break;
270		}
271
272		info = rb_entry(n, struct btrfs_free_space, offset_index);
273		BUG_ON(info->bitmap); /* Logic error */
274
275		if (info->offset > root->ino_cache_progress)
276			count = 0;
 
 
277		else
278			count = min(root->ino_cache_progress - info->offset + 1,
279				    info->bytes);
280
281		rb_erase(&info->offset_index, rbroot);
282		spin_unlock(rbroot_lock);
283		if (count)
284			__btrfs_add_free_space(root->fs_info, ctl,
285					       info->offset, count, 0);
286		kmem_cache_free(btrfs_free_space_cachep, info);
287	}
288}
289
290#define INIT_THRESHOLD	((SZ_32K / 2) / sizeof(struct btrfs_free_space))
291#define INODES_PER_BITMAP (PAGE_SIZE * 8)
292
293/*
294 * The goal is to keep the memory used by the free_ino tree won't
295 * exceed the memory if we use bitmaps only.
296 */
297static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
298{
299	struct btrfs_free_space *info;
300	struct rb_node *n;
301	int max_ino;
302	int max_bitmaps;
303
304	n = rb_last(&ctl->free_space_offset);
305	if (!n) {
306		ctl->extents_thresh = INIT_THRESHOLD;
307		return;
308	}
309	info = rb_entry(n, struct btrfs_free_space, offset_index);
310
311	/*
312	 * Find the maximum inode number in the filesystem. Note we
313	 * ignore the fact that this can be a bitmap, because we are
314	 * not doing precise calculation.
315	 */
316	max_ino = info->bytes - 1;
317
318	max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
319	if (max_bitmaps <= ctl->total_bitmaps) {
320		ctl->extents_thresh = 0;
321		return;
322	}
323
324	ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
325				PAGE_SIZE / sizeof(*info);
326}
327
328/*
329 * We don't fall back to bitmap, if we are below the extents threshold
330 * or this chunk of inode numbers is a big one.
331 */
332static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
333		       struct btrfs_free_space *info)
334{
335	if (ctl->free_extents < ctl->extents_thresh ||
336	    info->bytes > INODES_PER_BITMAP / 10)
337		return false;
338
339	return true;
340}
341
342static const struct btrfs_free_space_op free_ino_op = {
343	.recalc_thresholds	= recalculate_thresholds,
344	.use_bitmap		= use_bitmap,
345};
346
347static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
348{
349}
350
351static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
352			      struct btrfs_free_space *info)
353{
354	/*
355	 * We always use extents for two reasons:
356	 *
357	 * - The pinned tree is only used during the process of caching
358	 *   work.
359	 * - Make code simpler. See btrfs_unpin_free_ino().
360	 */
361	return false;
362}
363
364static const struct btrfs_free_space_op pinned_free_ino_op = {
365	.recalc_thresholds	= pinned_recalc_thresholds,
366	.use_bitmap		= pinned_use_bitmap,
367};
368
369void btrfs_init_free_ino_ctl(struct btrfs_root *root)
370{
371	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
372	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
373
374	spin_lock_init(&ctl->tree_lock);
375	ctl->unit = 1;
376	ctl->start = 0;
377	ctl->private = NULL;
378	ctl->op = &free_ino_op;
379	INIT_LIST_HEAD(&ctl->trimming_ranges);
380	mutex_init(&ctl->cache_writeout_mutex);
381
382	/*
383	 * Initially we allow to use 16K of ram to cache chunks of
384	 * inode numbers before we resort to bitmaps. This is somewhat
385	 * arbitrary, but it will be adjusted in runtime.
386	 */
387	ctl->extents_thresh = INIT_THRESHOLD;
388
389	spin_lock_init(&pinned->tree_lock);
390	pinned->unit = 1;
391	pinned->start = 0;
392	pinned->private = NULL;
393	pinned->extents_thresh = 0;
394	pinned->op = &pinned_free_ino_op;
395}
396
397int btrfs_save_ino_cache(struct btrfs_root *root,
398			 struct btrfs_trans_handle *trans)
399{
400	struct btrfs_fs_info *fs_info = root->fs_info;
401	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
402	struct btrfs_path *path;
403	struct inode *inode;
404	struct btrfs_block_rsv *rsv;
405	struct extent_changeset *data_reserved = NULL;
406	u64 num_bytes;
407	u64 alloc_hint = 0;
408	int ret;
409	int prealloc;
410	bool retry = false;
411
412	/* only fs tree and subvol/snap needs ino cache */
413	if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
414	    (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
415	     root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
416		return 0;
417
418	/* Don't save inode cache if we are deleting this root */
419	if (btrfs_root_refs(&root->root_item) == 0)
420		return 0;
421
422	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
423		return 0;
424
425	path = btrfs_alloc_path();
426	if (!path)
427		return -ENOMEM;
428
429	rsv = trans->block_rsv;
430	trans->block_rsv = &fs_info->trans_block_rsv;
431
432	num_bytes = trans->bytes_reserved;
433	/*
434	 * 1 item for inode item insertion if need
435	 * 4 items for inode item update (in the worst case)
436	 * 1 items for slack space if we need do truncation
437	 * 1 item for free space object
438	 * 3 items for pre-allocation
439	 */
440	trans->bytes_reserved = btrfs_calc_insert_metadata_size(fs_info, 10);
441	ret = btrfs_block_rsv_add(root, trans->block_rsv,
442				  trans->bytes_reserved,
443				  BTRFS_RESERVE_NO_FLUSH);
444	if (ret)
445		goto out;
446	trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
447				      trans->bytes_reserved, 1);
448again:
449	inode = lookup_free_ino_inode(root, path);
450	if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
451		ret = PTR_ERR(inode);
452		goto out_release;
453	}
454
455	if (IS_ERR(inode)) {
456		BUG_ON(retry); /* Logic error */
457		retry = true;
458
459		ret = create_free_ino_inode(root, trans, path);
460		if (ret)
461			goto out_release;
462		goto again;
463	}
464
465	BTRFS_I(inode)->generation = 0;
466	ret = btrfs_update_inode(trans, root, inode);
467	if (ret) {
468		btrfs_abort_transaction(trans, ret);
469		goto out_put;
470	}
471
472	if (i_size_read(inode) > 0) {
473		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
474		if (ret) {
475			if (ret != -ENOSPC)
476				btrfs_abort_transaction(trans, ret);
477			goto out_put;
478		}
479	}
480
481	spin_lock(&root->ino_cache_lock);
482	if (root->ino_cache_state != BTRFS_CACHE_FINISHED) {
483		ret = -1;
484		spin_unlock(&root->ino_cache_lock);
485		goto out_put;
486	}
487	spin_unlock(&root->ino_cache_lock);
488
489	spin_lock(&ctl->tree_lock);
490	prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
491	prealloc = ALIGN(prealloc, PAGE_SIZE);
492	prealloc += ctl->total_bitmaps * PAGE_SIZE;
493	spin_unlock(&ctl->tree_lock);
494
495	/* Just to make sure we have enough space */
496	prealloc += 8 * PAGE_SIZE;
497
498	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 0,
499					   prealloc);
500	if (ret)
501		goto out_put;
502
503	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
504					      prealloc, prealloc, &alloc_hint);
505	if (ret) {
506		btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc);
507		btrfs_delalloc_release_metadata(BTRFS_I(inode), prealloc, true);
508		goto out_put;
509	}
510
511	ret = btrfs_write_out_ino_cache(root, trans, path, inode);
512	btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc);
513out_put:
514	iput(inode);
515out_release:
516	trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
517				      trans->bytes_reserved, 0);
518	btrfs_block_rsv_release(fs_info, trans->block_rsv,
519				trans->bytes_reserved, NULL);
520out:
521	trans->block_rsv = rsv;
522	trans->bytes_reserved = num_bytes;
523
524	btrfs_free_path(path);
525	extent_changeset_free(data_reserved);
526	return ret;
527}
528
529int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
530{
531	struct btrfs_path *path;
532	int ret;
533	struct extent_buffer *l;
534	struct btrfs_key search_key;
535	struct btrfs_key found_key;
536	int slot;
537
538	path = btrfs_alloc_path();
539	if (!path)
540		return -ENOMEM;
541
542	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
543	search_key.type = -1;
544	search_key.offset = (u64)-1;
545	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
546	if (ret < 0)
547		goto error;
548	BUG_ON(ret == 0); /* Corruption */
549	if (path->slots[0] > 0) {
550		slot = path->slots[0] - 1;
551		l = path->nodes[0];
552		btrfs_item_key_to_cpu(l, &found_key, slot);
553		*objectid = max_t(u64, found_key.objectid,
554				  BTRFS_FIRST_FREE_OBJECTID - 1);
555	} else {
556		*objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
557	}
558	ret = 0;
559error:
560	btrfs_free_path(path);
561	return ret;
562}
563
564int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
565{
566	int ret;
567	mutex_lock(&root->objectid_mutex);
568
569	if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
570		btrfs_warn(root->fs_info,
571			   "the objectid of root %llu reaches its highest value",
572			   root->root_key.objectid);
573		ret = -ENOSPC;
574		goto out;
575	}
576
577	*objectid = ++root->highest_objectid;
578	ret = 0;
579out:
580	mutex_unlock(&root->objectid_mutex);
581	return ret;
582}