Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/pagemap.h>
  21#include <linux/highmem.h>
  22#include <linux/time.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/backing-dev.h>
  26#include <linux/mpage.h>
  27#include <linux/falloc.h>
  28#include <linux/swap.h>
  29#include <linux/writeback.h>
  30#include <linux/compat.h>
  31#include <linux/slab.h>
  32#include <linux/btrfs.h>
  33#include <linux/uio.h>
 
  34#include "ctree.h"
  35#include "disk-io.h"
  36#include "transaction.h"
  37#include "btrfs_inode.h"
  38#include "print-tree.h"
  39#include "tree-log.h"
  40#include "locking.h"
  41#include "volumes.h"
  42#include "qgroup.h"
  43#include "compression.h"
 
 
  44
  45static struct kmem_cache *btrfs_inode_defrag_cachep;
  46/*
  47 * when auto defrag is enabled we
  48 * queue up these defrag structs to remember which
  49 * inodes need defragging passes
  50 */
  51struct inode_defrag {
  52	struct rb_node rb_node;
  53	/* objectid */
  54	u64 ino;
  55	/*
  56	 * transid where the defrag was added, we search for
  57	 * extents newer than this
  58	 */
  59	u64 transid;
  60
  61	/* root objectid */
  62	u64 root;
  63
  64	/* last offset we were able to defrag */
  65	u64 last_offset;
  66
  67	/* if we've wrapped around back to zero once already */
  68	int cycled;
  69};
  70
  71static int __compare_inode_defrag(struct inode_defrag *defrag1,
  72				  struct inode_defrag *defrag2)
  73{
  74	if (defrag1->root > defrag2->root)
  75		return 1;
  76	else if (defrag1->root < defrag2->root)
  77		return -1;
  78	else if (defrag1->ino > defrag2->ino)
  79		return 1;
  80	else if (defrag1->ino < defrag2->ino)
  81		return -1;
  82	else
  83		return 0;
  84}
  85
  86/* pop a record for an inode into the defrag tree.  The lock
  87 * must be held already
  88 *
  89 * If you're inserting a record for an older transid than an
  90 * existing record, the transid already in the tree is lowered
  91 *
  92 * If an existing record is found the defrag item you
  93 * pass in is freed
  94 */
  95static int __btrfs_add_inode_defrag(struct inode *inode,
  96				    struct inode_defrag *defrag)
  97{
  98	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  99	struct inode_defrag *entry;
 100	struct rb_node **p;
 101	struct rb_node *parent = NULL;
 102	int ret;
 103
 104	p = &fs_info->defrag_inodes.rb_node;
 105	while (*p) {
 106		parent = *p;
 107		entry = rb_entry(parent, struct inode_defrag, rb_node);
 108
 109		ret = __compare_inode_defrag(defrag, entry);
 110		if (ret < 0)
 111			p = &parent->rb_left;
 112		else if (ret > 0)
 113			p = &parent->rb_right;
 114		else {
 115			/* if we're reinserting an entry for
 116			 * an old defrag run, make sure to
 117			 * lower the transid of our existing record
 118			 */
 119			if (defrag->transid < entry->transid)
 120				entry->transid = defrag->transid;
 121			if (defrag->last_offset > entry->last_offset)
 122				entry->last_offset = defrag->last_offset;
 123			return -EEXIST;
 124		}
 125	}
 126	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 127	rb_link_node(&defrag->rb_node, parent, p);
 128	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
 129	return 0;
 130}
 131
 132static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
 133{
 134	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
 135		return 0;
 136
 137	if (btrfs_fs_closing(fs_info))
 138		return 0;
 139
 140	return 1;
 141}
 142
 143/*
 144 * insert a defrag record for this inode if auto defrag is
 145 * enabled
 146 */
 147int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 148			   struct inode *inode)
 149{
 150	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 151	struct btrfs_root *root = BTRFS_I(inode)->root;
 152	struct inode_defrag *defrag;
 153	u64 transid;
 154	int ret;
 155
 156	if (!__need_auto_defrag(fs_info))
 157		return 0;
 158
 159	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
 160		return 0;
 161
 162	if (trans)
 163		transid = trans->transid;
 164	else
 165		transid = BTRFS_I(inode)->root->last_trans;
 166
 167	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 168	if (!defrag)
 169		return -ENOMEM;
 170
 171	defrag->ino = btrfs_ino(inode);
 172	defrag->transid = transid;
 173	defrag->root = root->root_key.objectid;
 174
 175	spin_lock(&fs_info->defrag_inodes_lock);
 176	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
 177		/*
 178		 * If we set IN_DEFRAG flag and evict the inode from memory,
 179		 * and then re-read this inode, this new inode doesn't have
 180		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 181		 */
 182		ret = __btrfs_add_inode_defrag(inode, defrag);
 183		if (ret)
 184			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 185	} else {
 186		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 187	}
 188	spin_unlock(&fs_info->defrag_inodes_lock);
 189	return 0;
 190}
 191
 192/*
 193 * Requeue the defrag object. If there is a defrag object that points to
 194 * the same inode in the tree, we will merge them together (by
 195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 196 */
 197static void btrfs_requeue_inode_defrag(struct inode *inode,
 198				       struct inode_defrag *defrag)
 199{
 200	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 201	int ret;
 202
 203	if (!__need_auto_defrag(fs_info))
 204		goto out;
 205
 206	/*
 207	 * Here we don't check the IN_DEFRAG flag, because we need merge
 208	 * them together.
 209	 */
 210	spin_lock(&fs_info->defrag_inodes_lock);
 211	ret = __btrfs_add_inode_defrag(inode, defrag);
 212	spin_unlock(&fs_info->defrag_inodes_lock);
 213	if (ret)
 214		goto out;
 215	return;
 216out:
 217	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 218}
 219
 220/*
 221 * pick the defragable inode that we want, if it doesn't exist, we will get
 222 * the next one.
 223 */
 224static struct inode_defrag *
 225btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 226{
 227	struct inode_defrag *entry = NULL;
 228	struct inode_defrag tmp;
 229	struct rb_node *p;
 230	struct rb_node *parent = NULL;
 231	int ret;
 232
 233	tmp.ino = ino;
 234	tmp.root = root;
 235
 236	spin_lock(&fs_info->defrag_inodes_lock);
 237	p = fs_info->defrag_inodes.rb_node;
 238	while (p) {
 239		parent = p;
 240		entry = rb_entry(parent, struct inode_defrag, rb_node);
 241
 242		ret = __compare_inode_defrag(&tmp, entry);
 243		if (ret < 0)
 244			p = parent->rb_left;
 245		else if (ret > 0)
 246			p = parent->rb_right;
 247		else
 248			goto out;
 249	}
 250
 251	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 252		parent = rb_next(parent);
 253		if (parent)
 254			entry = rb_entry(parent, struct inode_defrag, rb_node);
 255		else
 256			entry = NULL;
 257	}
 258out:
 259	if (entry)
 260		rb_erase(parent, &fs_info->defrag_inodes);
 261	spin_unlock(&fs_info->defrag_inodes_lock);
 262	return entry;
 263}
 264
 265void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 266{
 267	struct inode_defrag *defrag;
 268	struct rb_node *node;
 269
 270	spin_lock(&fs_info->defrag_inodes_lock);
 271	node = rb_first(&fs_info->defrag_inodes);
 272	while (node) {
 273		rb_erase(node, &fs_info->defrag_inodes);
 274		defrag = rb_entry(node, struct inode_defrag, rb_node);
 275		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 276
 277		cond_resched_lock(&fs_info->defrag_inodes_lock);
 278
 279		node = rb_first(&fs_info->defrag_inodes);
 280	}
 281	spin_unlock(&fs_info->defrag_inodes_lock);
 282}
 283
 284#define BTRFS_DEFRAG_BATCH	1024
 285
 286static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 287				    struct inode_defrag *defrag)
 288{
 289	struct btrfs_root *inode_root;
 290	struct inode *inode;
 291	struct btrfs_key key;
 292	struct btrfs_ioctl_defrag_range_args range;
 293	int num_defrag;
 294	int index;
 295	int ret;
 296
 297	/* get the inode */
 298	key.objectid = defrag->root;
 299	key.type = BTRFS_ROOT_ITEM_KEY;
 300	key.offset = (u64)-1;
 301
 302	index = srcu_read_lock(&fs_info->subvol_srcu);
 303
 304	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
 305	if (IS_ERR(inode_root)) {
 306		ret = PTR_ERR(inode_root);
 307		goto cleanup;
 308	}
 309
 310	key.objectid = defrag->ino;
 311	key.type = BTRFS_INODE_ITEM_KEY;
 312	key.offset = 0;
 313	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
 314	if (IS_ERR(inode)) {
 315		ret = PTR_ERR(inode);
 316		goto cleanup;
 317	}
 318	srcu_read_unlock(&fs_info->subvol_srcu, index);
 319
 320	/* do a chunk of defrag */
 321	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 322	memset(&range, 0, sizeof(range));
 323	range.len = (u64)-1;
 324	range.start = defrag->last_offset;
 325
 326	sb_start_write(fs_info->sb);
 327	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 328				       BTRFS_DEFRAG_BATCH);
 329	sb_end_write(fs_info->sb);
 330	/*
 331	 * if we filled the whole defrag batch, there
 332	 * must be more work to do.  Queue this defrag
 333	 * again
 334	 */
 335	if (num_defrag == BTRFS_DEFRAG_BATCH) {
 336		defrag->last_offset = range.start;
 337		btrfs_requeue_inode_defrag(inode, defrag);
 338	} else if (defrag->last_offset && !defrag->cycled) {
 339		/*
 340		 * we didn't fill our defrag batch, but
 341		 * we didn't start at zero.  Make sure we loop
 342		 * around to the start of the file.
 343		 */
 344		defrag->last_offset = 0;
 345		defrag->cycled = 1;
 346		btrfs_requeue_inode_defrag(inode, defrag);
 347	} else {
 348		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 349	}
 350
 351	iput(inode);
 352	return 0;
 353cleanup:
 354	srcu_read_unlock(&fs_info->subvol_srcu, index);
 355	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 356	return ret;
 357}
 358
 359/*
 360 * run through the list of inodes in the FS that need
 361 * defragging
 362 */
 363int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 364{
 365	struct inode_defrag *defrag;
 366	u64 first_ino = 0;
 367	u64 root_objectid = 0;
 368
 369	atomic_inc(&fs_info->defrag_running);
 370	while (1) {
 371		/* Pause the auto defragger. */
 372		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 373			     &fs_info->fs_state))
 374			break;
 375
 376		if (!__need_auto_defrag(fs_info))
 377			break;
 378
 379		/* find an inode to defrag */
 380		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 381						 first_ino);
 382		if (!defrag) {
 383			if (root_objectid || first_ino) {
 384				root_objectid = 0;
 385				first_ino = 0;
 386				continue;
 387			} else {
 388				break;
 389			}
 390		}
 391
 392		first_ino = defrag->ino + 1;
 393		root_objectid = defrag->root;
 394
 395		__btrfs_run_defrag_inode(fs_info, defrag);
 396	}
 397	atomic_dec(&fs_info->defrag_running);
 398
 399	/*
 400	 * during unmount, we use the transaction_wait queue to
 401	 * wait for the defragger to stop
 402	 */
 403	wake_up(&fs_info->transaction_wait);
 404	return 0;
 405}
 406
 407/* simple helper to fault in pages and copy.  This should go away
 408 * and be replaced with calls into generic code.
 409 */
 410static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 411					 struct page **prepared_pages,
 412					 struct iov_iter *i)
 413{
 414	size_t copied = 0;
 415	size_t total_copied = 0;
 416	int pg = 0;
 417	int offset = pos & (PAGE_SIZE - 1);
 418
 419	while (write_bytes > 0) {
 420		size_t count = min_t(size_t,
 421				     PAGE_SIZE - offset, write_bytes);
 422		struct page *page = prepared_pages[pg];
 423		/*
 424		 * Copy data from userspace to the current page
 425		 */
 426		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 427
 428		/* Flush processor's dcache for this page */
 429		flush_dcache_page(page);
 430
 431		/*
 432		 * if we get a partial write, we can end up with
 433		 * partially up to date pages.  These add
 434		 * a lot of complexity, so make sure they don't
 435		 * happen by forcing this copy to be retried.
 436		 *
 437		 * The rest of the btrfs_file_write code will fall
 438		 * back to page at a time copies after we return 0.
 439		 */
 440		if (!PageUptodate(page) && copied < count)
 441			copied = 0;
 442
 443		iov_iter_advance(i, copied);
 444		write_bytes -= copied;
 445		total_copied += copied;
 446
 447		/* Return to btrfs_file_write_iter to fault page */
 448		if (unlikely(copied == 0))
 449			break;
 450
 451		if (copied < PAGE_SIZE - offset) {
 452			offset += copied;
 453		} else {
 454			pg++;
 455			offset = 0;
 456		}
 457	}
 458	return total_copied;
 459}
 460
 461/*
 462 * unlocks pages after btrfs_file_write is done with them
 463 */
 464static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 465{
 466	size_t i;
 467	for (i = 0; i < num_pages; i++) {
 468		/* page checked is some magic around finding pages that
 469		 * have been modified without going through btrfs_set_page_dirty
 470		 * clear it here. There should be no need to mark the pages
 471		 * accessed as prepare_pages should have marked them accessed
 472		 * in prepare_pages via find_or_create_page()
 473		 */
 474		ClearPageChecked(pages[i]);
 475		unlock_page(pages[i]);
 476		put_page(pages[i]);
 477	}
 478}
 479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 480/*
 481 * after copy_from_user, pages need to be dirtied and we need to make
 482 * sure holes are created between the current EOF and the start of
 483 * any next extents (if required).
 484 *
 485 * this also makes the decision about creating an inline extent vs
 486 * doing real data extents, marking pages dirty and delalloc as required.
 487 */
 488int btrfs_dirty_pages(struct inode *inode, struct page **pages,
 489		      size_t num_pages, loff_t pos, size_t write_bytes,
 490		      struct extent_state **cached)
 491{
 492	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 493	int err = 0;
 494	int i;
 495	u64 num_bytes;
 496	u64 start_pos;
 497	u64 end_of_last_block;
 498	u64 end_pos = pos + write_bytes;
 499	loff_t isize = i_size_read(inode);
 
 500
 501	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
 502	num_bytes = round_up(write_bytes + pos - start_pos,
 503			     fs_info->sectorsize);
 504
 505	end_of_last_block = start_pos + num_bytes - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 507					cached, 0);
 508	if (err)
 509		return err;
 510
 511	for (i = 0; i < num_pages; i++) {
 512		struct page *p = pages[i];
 513		SetPageUptodate(p);
 514		ClearPageChecked(p);
 515		set_page_dirty(p);
 516	}
 517
 518	/*
 519	 * we've only changed i_size in ram, and we haven't updated
 520	 * the disk i_size.  There is no need to log the inode
 521	 * at this time.
 522	 */
 523	if (end_pos > isize)
 524		i_size_write(inode, end_pos);
 525	return 0;
 526}
 527
 528/*
 529 * this drops all the extents in the cache that intersect the range
 530 * [start, end].  Existing extents are split as required.
 531 */
 532void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
 533			     int skip_pinned)
 534{
 535	struct extent_map *em;
 536	struct extent_map *split = NULL;
 537	struct extent_map *split2 = NULL;
 538	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 539	u64 len = end - start + 1;
 540	u64 gen;
 541	int ret;
 542	int testend = 1;
 543	unsigned long flags;
 544	int compressed = 0;
 545	bool modified;
 546
 547	WARN_ON(end < start);
 548	if (end == (u64)-1) {
 549		len = (u64)-1;
 550		testend = 0;
 551	}
 552	while (1) {
 553		int no_splits = 0;
 554
 555		modified = false;
 556		if (!split)
 557			split = alloc_extent_map();
 558		if (!split2)
 559			split2 = alloc_extent_map();
 560		if (!split || !split2)
 561			no_splits = 1;
 562
 563		write_lock(&em_tree->lock);
 564		em = lookup_extent_mapping(em_tree, start, len);
 565		if (!em) {
 566			write_unlock(&em_tree->lock);
 567			break;
 568		}
 569		flags = em->flags;
 570		gen = em->generation;
 571		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 572			if (testend && em->start + em->len >= start + len) {
 573				free_extent_map(em);
 574				write_unlock(&em_tree->lock);
 575				break;
 576			}
 577			start = em->start + em->len;
 578			if (testend)
 579				len = start + len - (em->start + em->len);
 580			free_extent_map(em);
 581			write_unlock(&em_tree->lock);
 582			continue;
 583		}
 584		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 585		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 586		clear_bit(EXTENT_FLAG_LOGGING, &flags);
 587		modified = !list_empty(&em->list);
 588		if (no_splits)
 589			goto next;
 590
 591		if (em->start < start) {
 592			split->start = em->start;
 593			split->len = start - em->start;
 594
 595			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 596				split->orig_start = em->orig_start;
 597				split->block_start = em->block_start;
 598
 599				if (compressed)
 600					split->block_len = em->block_len;
 601				else
 602					split->block_len = split->len;
 603				split->orig_block_len = max(split->block_len,
 604						em->orig_block_len);
 605				split->ram_bytes = em->ram_bytes;
 606			} else {
 607				split->orig_start = split->start;
 608				split->block_len = 0;
 609				split->block_start = em->block_start;
 610				split->orig_block_len = 0;
 611				split->ram_bytes = split->len;
 612			}
 613
 614			split->generation = gen;
 615			split->bdev = em->bdev;
 616			split->flags = flags;
 617			split->compress_type = em->compress_type;
 618			replace_extent_mapping(em_tree, em, split, modified);
 619			free_extent_map(split);
 620			split = split2;
 621			split2 = NULL;
 622		}
 623		if (testend && em->start + em->len > start + len) {
 624			u64 diff = start + len - em->start;
 625
 626			split->start = start + len;
 627			split->len = em->start + em->len - (start + len);
 628			split->bdev = em->bdev;
 629			split->flags = flags;
 630			split->compress_type = em->compress_type;
 631			split->generation = gen;
 632
 633			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 634				split->orig_block_len = max(em->block_len,
 635						    em->orig_block_len);
 636
 637				split->ram_bytes = em->ram_bytes;
 638				if (compressed) {
 639					split->block_len = em->block_len;
 640					split->block_start = em->block_start;
 641					split->orig_start = em->orig_start;
 642				} else {
 643					split->block_len = split->len;
 644					split->block_start = em->block_start
 645						+ diff;
 646					split->orig_start = em->orig_start;
 647				}
 648			} else {
 649				split->ram_bytes = split->len;
 650				split->orig_start = split->start;
 651				split->block_len = 0;
 652				split->block_start = em->block_start;
 653				split->orig_block_len = 0;
 654			}
 655
 656			if (extent_map_in_tree(em)) {
 657				replace_extent_mapping(em_tree, em, split,
 658						       modified);
 659			} else {
 660				ret = add_extent_mapping(em_tree, split,
 661							 modified);
 662				ASSERT(ret == 0); /* Logic error */
 663			}
 664			free_extent_map(split);
 665			split = NULL;
 666		}
 667next:
 668		if (extent_map_in_tree(em))
 669			remove_extent_mapping(em_tree, em);
 670		write_unlock(&em_tree->lock);
 671
 672		/* once for us */
 673		free_extent_map(em);
 674		/* once for the tree*/
 675		free_extent_map(em);
 676	}
 677	if (split)
 678		free_extent_map(split);
 679	if (split2)
 680		free_extent_map(split2);
 681}
 682
 683/*
 684 * this is very complex, but the basic idea is to drop all extents
 685 * in the range start - end.  hint_block is filled in with a block number
 686 * that would be a good hint to the block allocator for this file.
 687 *
 688 * If an extent intersects the range but is not entirely inside the range
 689 * it is either truncated or split.  Anything entirely inside the range
 690 * is deleted from the tree.
 691 */
 692int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 693			 struct btrfs_root *root, struct inode *inode,
 694			 struct btrfs_path *path, u64 start, u64 end,
 695			 u64 *drop_end, int drop_cache,
 696			 int replace_extent,
 697			 u32 extent_item_size,
 698			 int *key_inserted)
 699{
 700	struct btrfs_fs_info *fs_info = root->fs_info;
 701	struct extent_buffer *leaf;
 702	struct btrfs_file_extent_item *fi;
 
 703	struct btrfs_key key;
 704	struct btrfs_key new_key;
 
 705	u64 ino = btrfs_ino(inode);
 706	u64 search_start = start;
 707	u64 disk_bytenr = 0;
 708	u64 num_bytes = 0;
 709	u64 extent_offset = 0;
 710	u64 extent_end = 0;
 711	u64 last_end = start;
 712	int del_nr = 0;
 713	int del_slot = 0;
 714	int extent_type;
 715	int recow;
 716	int ret;
 717	int modify_tree = -1;
 718	int update_refs;
 719	int found = 0;
 720	int leafs_visited = 0;
 721
 722	if (drop_cache)
 723		btrfs_drop_extent_cache(inode, start, end - 1, 0);
 724
 725	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
 726		modify_tree = 0;
 727
 728	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 729		       root == fs_info->tree_root);
 730	while (1) {
 731		recow = 0;
 732		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 733					       search_start, modify_tree);
 734		if (ret < 0)
 735			break;
 736		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 737			leaf = path->nodes[0];
 738			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 739			if (key.objectid == ino &&
 740			    key.type == BTRFS_EXTENT_DATA_KEY)
 741				path->slots[0]--;
 742		}
 743		ret = 0;
 744		leafs_visited++;
 745next_slot:
 746		leaf = path->nodes[0];
 747		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 748			BUG_ON(del_nr > 0);
 749			ret = btrfs_next_leaf(root, path);
 750			if (ret < 0)
 751				break;
 752			if (ret > 0) {
 753				ret = 0;
 754				break;
 755			}
 756			leafs_visited++;
 757			leaf = path->nodes[0];
 758			recow = 1;
 759		}
 760
 761		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 762
 763		if (key.objectid > ino)
 764			break;
 765		if (WARN_ON_ONCE(key.objectid < ino) ||
 766		    key.type < BTRFS_EXTENT_DATA_KEY) {
 767			ASSERT(del_nr == 0);
 768			path->slots[0]++;
 769			goto next_slot;
 770		}
 771		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 772			break;
 773
 774		fi = btrfs_item_ptr(leaf, path->slots[0],
 775				    struct btrfs_file_extent_item);
 776		extent_type = btrfs_file_extent_type(leaf, fi);
 777
 778		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 779		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 780			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 781			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 782			extent_offset = btrfs_file_extent_offset(leaf, fi);
 783			extent_end = key.offset +
 784				btrfs_file_extent_num_bytes(leaf, fi);
 785		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 786			extent_end = key.offset +
 787				btrfs_file_extent_inline_len(leaf,
 788						     path->slots[0], fi);
 789		} else {
 790			/* can't happen */
 791			BUG();
 792		}
 793
 794		/*
 795		 * Don't skip extent items representing 0 byte lengths. They
 796		 * used to be created (bug) if while punching holes we hit
 797		 * -ENOSPC condition. So if we find one here, just ensure we
 798		 * delete it, otherwise we would insert a new file extent item
 799		 * with the same key (offset) as that 0 bytes length file
 800		 * extent item in the call to setup_items_for_insert() later
 801		 * in this function.
 802		 */
 803		if (extent_end == key.offset && extent_end >= search_start) {
 804			last_end = extent_end;
 805			goto delete_extent_item;
 806		}
 807
 808		if (extent_end <= search_start) {
 809			path->slots[0]++;
 810			goto next_slot;
 811		}
 812
 813		found = 1;
 814		search_start = max(key.offset, start);
 815		if (recow || !modify_tree) {
 816			modify_tree = -1;
 817			btrfs_release_path(path);
 818			continue;
 819		}
 820
 821		/*
 822		 *     | - range to drop - |
 823		 *  | -------- extent -------- |
 824		 */
 825		if (start > key.offset && end < extent_end) {
 826			BUG_ON(del_nr > 0);
 827			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 828				ret = -EOPNOTSUPP;
 829				break;
 830			}
 831
 832			memcpy(&new_key, &key, sizeof(new_key));
 833			new_key.offset = start;
 834			ret = btrfs_duplicate_item(trans, root, path,
 835						   &new_key);
 836			if (ret == -EAGAIN) {
 837				btrfs_release_path(path);
 838				continue;
 839			}
 840			if (ret < 0)
 841				break;
 842
 843			leaf = path->nodes[0];
 844			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 845					    struct btrfs_file_extent_item);
 846			btrfs_set_file_extent_num_bytes(leaf, fi,
 847							start - key.offset);
 848
 849			fi = btrfs_item_ptr(leaf, path->slots[0],
 850					    struct btrfs_file_extent_item);
 851
 852			extent_offset += start - key.offset;
 853			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 854			btrfs_set_file_extent_num_bytes(leaf, fi,
 855							extent_end - start);
 856			btrfs_mark_buffer_dirty(leaf);
 857
 858			if (update_refs && disk_bytenr > 0) {
 859				ret = btrfs_inc_extent_ref(trans, fs_info,
 860						disk_bytenr, num_bytes, 0,
 
 
 861						root->root_key.objectid,
 862						new_key.objectid,
 863						start - extent_offset);
 
 864				BUG_ON(ret); /* -ENOMEM */
 865			}
 866			key.offset = start;
 867		}
 868		/*
 869		 * From here on out we will have actually dropped something, so
 870		 * last_end can be updated.
 871		 */
 872		last_end = extent_end;
 873
 874		/*
 875		 *  | ---- range to drop ----- |
 876		 *      | -------- extent -------- |
 877		 */
 878		if (start <= key.offset && end < extent_end) {
 879			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 880				ret = -EOPNOTSUPP;
 881				break;
 882			}
 883
 884			memcpy(&new_key, &key, sizeof(new_key));
 885			new_key.offset = end;
 886			btrfs_set_item_key_safe(fs_info, path, &new_key);
 887
 888			extent_offset += end - key.offset;
 889			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 890			btrfs_set_file_extent_num_bytes(leaf, fi,
 891							extent_end - end);
 892			btrfs_mark_buffer_dirty(leaf);
 893			if (update_refs && disk_bytenr > 0)
 894				inode_sub_bytes(inode, end - key.offset);
 895			break;
 896		}
 897
 898		search_start = extent_end;
 899		/*
 900		 *       | ---- range to drop ----- |
 901		 *  | -------- extent -------- |
 902		 */
 903		if (start > key.offset && end >= extent_end) {
 904			BUG_ON(del_nr > 0);
 905			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 906				ret = -EOPNOTSUPP;
 907				break;
 908			}
 909
 910			btrfs_set_file_extent_num_bytes(leaf, fi,
 911							start - key.offset);
 912			btrfs_mark_buffer_dirty(leaf);
 913			if (update_refs && disk_bytenr > 0)
 914				inode_sub_bytes(inode, extent_end - start);
 915			if (end == extent_end)
 916				break;
 917
 918			path->slots[0]++;
 919			goto next_slot;
 920		}
 921
 922		/*
 923		 *  | ---- range to drop ----- |
 924		 *    | ------ extent ------ |
 925		 */
 926		if (start <= key.offset && end >= extent_end) {
 927delete_extent_item:
 928			if (del_nr == 0) {
 929				del_slot = path->slots[0];
 930				del_nr = 1;
 931			} else {
 932				BUG_ON(del_slot + del_nr != path->slots[0]);
 933				del_nr++;
 934			}
 935
 936			if (update_refs &&
 937			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 938				inode_sub_bytes(inode,
 939						extent_end - key.offset);
 940				extent_end = ALIGN(extent_end,
 941						   fs_info->sectorsize);
 942			} else if (update_refs && disk_bytenr > 0) {
 943				ret = btrfs_free_extent(trans, fs_info,
 944						disk_bytenr, num_bytes, 0,
 
 
 945						root->root_key.objectid,
 946						key.objectid, key.offset -
 947						extent_offset);
 
 948				BUG_ON(ret); /* -ENOMEM */
 949				inode_sub_bytes(inode,
 950						extent_end - key.offset);
 951			}
 952
 953			if (end == extent_end)
 954				break;
 955
 956			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 957				path->slots[0]++;
 958				goto next_slot;
 959			}
 960
 961			ret = btrfs_del_items(trans, root, path, del_slot,
 962					      del_nr);
 963			if (ret) {
 964				btrfs_abort_transaction(trans, ret);
 965				break;
 966			}
 967
 968			del_nr = 0;
 969			del_slot = 0;
 970
 971			btrfs_release_path(path);
 972			continue;
 973		}
 974
 975		BUG_ON(1);
 976	}
 977
 978	if (!ret && del_nr > 0) {
 979		/*
 980		 * Set path->slots[0] to first slot, so that after the delete
 981		 * if items are move off from our leaf to its immediate left or
 982		 * right neighbor leafs, we end up with a correct and adjusted
 983		 * path->slots[0] for our insertion (if replace_extent != 0).
 984		 */
 985		path->slots[0] = del_slot;
 986		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 987		if (ret)
 988			btrfs_abort_transaction(trans, ret);
 989	}
 990
 991	leaf = path->nodes[0];
 992	/*
 993	 * If btrfs_del_items() was called, it might have deleted a leaf, in
 994	 * which case it unlocked our path, so check path->locks[0] matches a
 995	 * write lock.
 996	 */
 997	if (!ret && replace_extent && leafs_visited == 1 &&
 998	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
 999	     path->locks[0] == BTRFS_WRITE_LOCK) &&
1000	    btrfs_leaf_free_space(fs_info, leaf) >=
1001	    sizeof(struct btrfs_item) + extent_item_size) {
1002
1003		key.objectid = ino;
1004		key.type = BTRFS_EXTENT_DATA_KEY;
1005		key.offset = start;
1006		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1007			struct btrfs_key slot_key;
1008
1009			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1010			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1011				path->slots[0]++;
1012		}
1013		setup_items_for_insert(root, path, &key,
1014				       &extent_item_size,
1015				       extent_item_size,
1016				       sizeof(struct btrfs_item) +
1017				       extent_item_size, 1);
1018		*key_inserted = 1;
1019	}
1020
1021	if (!replace_extent || !(*key_inserted))
1022		btrfs_release_path(path);
1023	if (drop_end)
1024		*drop_end = found ? min(end, last_end) : end;
1025	return ret;
1026}
1027
1028int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1029		       struct btrfs_root *root, struct inode *inode, u64 start,
1030		       u64 end, int drop_cache)
1031{
1032	struct btrfs_path *path;
1033	int ret;
1034
1035	path = btrfs_alloc_path();
1036	if (!path)
1037		return -ENOMEM;
1038	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1039				   drop_cache, 0, 0, NULL);
1040	btrfs_free_path(path);
1041	return ret;
1042}
1043
1044static int extent_mergeable(struct extent_buffer *leaf, int slot,
1045			    u64 objectid, u64 bytenr, u64 orig_offset,
1046			    u64 *start, u64 *end)
1047{
1048	struct btrfs_file_extent_item *fi;
1049	struct btrfs_key key;
1050	u64 extent_end;
1051
1052	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1053		return 0;
1054
1055	btrfs_item_key_to_cpu(leaf, &key, slot);
1056	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1057		return 0;
1058
1059	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1060	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1061	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1062	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1063	    btrfs_file_extent_compression(leaf, fi) ||
1064	    btrfs_file_extent_encryption(leaf, fi) ||
1065	    btrfs_file_extent_other_encoding(leaf, fi))
1066		return 0;
1067
1068	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1069	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1070		return 0;
1071
1072	*start = key.offset;
1073	*end = extent_end;
1074	return 1;
1075}
1076
1077/*
1078 * Mark extent in the range start - end as written.
1079 *
1080 * This changes extent type from 'pre-allocated' to 'regular'. If only
1081 * part of extent is marked as written, the extent will be split into
1082 * two or three.
1083 */
1084int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1085			      struct inode *inode, u64 start, u64 end)
1086{
1087	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1088	struct btrfs_root *root = BTRFS_I(inode)->root;
1089	struct extent_buffer *leaf;
1090	struct btrfs_path *path;
1091	struct btrfs_file_extent_item *fi;
 
1092	struct btrfs_key key;
1093	struct btrfs_key new_key;
1094	u64 bytenr;
1095	u64 num_bytes;
1096	u64 extent_end;
1097	u64 orig_offset;
1098	u64 other_start;
1099	u64 other_end;
1100	u64 split;
1101	int del_nr = 0;
1102	int del_slot = 0;
1103	int recow;
1104	int ret;
1105	u64 ino = btrfs_ino(inode);
1106
1107	path = btrfs_alloc_path();
1108	if (!path)
1109		return -ENOMEM;
1110again:
1111	recow = 0;
1112	split = start;
1113	key.objectid = ino;
1114	key.type = BTRFS_EXTENT_DATA_KEY;
1115	key.offset = split;
1116
1117	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1118	if (ret < 0)
1119		goto out;
1120	if (ret > 0 && path->slots[0] > 0)
1121		path->slots[0]--;
1122
1123	leaf = path->nodes[0];
1124	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1125	if (key.objectid != ino ||
1126	    key.type != BTRFS_EXTENT_DATA_KEY) {
1127		ret = -EINVAL;
1128		btrfs_abort_transaction(trans, ret);
1129		goto out;
1130	}
1131	fi = btrfs_item_ptr(leaf, path->slots[0],
1132			    struct btrfs_file_extent_item);
1133	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1134		ret = -EINVAL;
1135		btrfs_abort_transaction(trans, ret);
1136		goto out;
1137	}
1138	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1139	if (key.offset > start || extent_end < end) {
1140		ret = -EINVAL;
1141		btrfs_abort_transaction(trans, ret);
1142		goto out;
1143	}
1144
1145	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1146	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1147	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1148	memcpy(&new_key, &key, sizeof(new_key));
1149
1150	if (start == key.offset && end < extent_end) {
1151		other_start = 0;
1152		other_end = start;
1153		if (extent_mergeable(leaf, path->slots[0] - 1,
1154				     ino, bytenr, orig_offset,
1155				     &other_start, &other_end)) {
1156			new_key.offset = end;
1157			btrfs_set_item_key_safe(fs_info, path, &new_key);
1158			fi = btrfs_item_ptr(leaf, path->slots[0],
1159					    struct btrfs_file_extent_item);
1160			btrfs_set_file_extent_generation(leaf, fi,
1161							 trans->transid);
1162			btrfs_set_file_extent_num_bytes(leaf, fi,
1163							extent_end - end);
1164			btrfs_set_file_extent_offset(leaf, fi,
1165						     end - orig_offset);
1166			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1167					    struct btrfs_file_extent_item);
1168			btrfs_set_file_extent_generation(leaf, fi,
1169							 trans->transid);
1170			btrfs_set_file_extent_num_bytes(leaf, fi,
1171							end - other_start);
1172			btrfs_mark_buffer_dirty(leaf);
1173			goto out;
1174		}
1175	}
1176
1177	if (start > key.offset && end == extent_end) {
1178		other_start = end;
1179		other_end = 0;
1180		if (extent_mergeable(leaf, path->slots[0] + 1,
1181				     ino, bytenr, orig_offset,
1182				     &other_start, &other_end)) {
1183			fi = btrfs_item_ptr(leaf, path->slots[0],
1184					    struct btrfs_file_extent_item);
1185			btrfs_set_file_extent_num_bytes(leaf, fi,
1186							start - key.offset);
1187			btrfs_set_file_extent_generation(leaf, fi,
1188							 trans->transid);
1189			path->slots[0]++;
1190			new_key.offset = start;
1191			btrfs_set_item_key_safe(fs_info, path, &new_key);
1192
1193			fi = btrfs_item_ptr(leaf, path->slots[0],
1194					    struct btrfs_file_extent_item);
1195			btrfs_set_file_extent_generation(leaf, fi,
1196							 trans->transid);
1197			btrfs_set_file_extent_num_bytes(leaf, fi,
1198							other_end - start);
1199			btrfs_set_file_extent_offset(leaf, fi,
1200						     start - orig_offset);
1201			btrfs_mark_buffer_dirty(leaf);
1202			goto out;
1203		}
1204	}
1205
1206	while (start > key.offset || end < extent_end) {
1207		if (key.offset == start)
1208			split = end;
1209
1210		new_key.offset = split;
1211		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1212		if (ret == -EAGAIN) {
1213			btrfs_release_path(path);
1214			goto again;
1215		}
1216		if (ret < 0) {
1217			btrfs_abort_transaction(trans, ret);
1218			goto out;
1219		}
1220
1221		leaf = path->nodes[0];
1222		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1223				    struct btrfs_file_extent_item);
1224		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1225		btrfs_set_file_extent_num_bytes(leaf, fi,
1226						split - key.offset);
1227
1228		fi = btrfs_item_ptr(leaf, path->slots[0],
1229				    struct btrfs_file_extent_item);
1230
1231		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1232		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1233		btrfs_set_file_extent_num_bytes(leaf, fi,
1234						extent_end - split);
1235		btrfs_mark_buffer_dirty(leaf);
1236
1237		ret = btrfs_inc_extent_ref(trans, fs_info, bytenr, num_bytes,
1238					   0, root->root_key.objectid,
1239					   ino, orig_offset);
 
 
1240		if (ret) {
1241			btrfs_abort_transaction(trans, ret);
1242			goto out;
1243		}
1244
1245		if (split == start) {
1246			key.offset = start;
1247		} else {
1248			if (start != key.offset) {
1249				ret = -EINVAL;
1250				btrfs_abort_transaction(trans, ret);
1251				goto out;
1252			}
1253			path->slots[0]--;
1254			extent_end = end;
1255		}
1256		recow = 1;
1257	}
1258
1259	other_start = end;
1260	other_end = 0;
 
 
 
1261	if (extent_mergeable(leaf, path->slots[0] + 1,
1262			     ino, bytenr, orig_offset,
1263			     &other_start, &other_end)) {
1264		if (recow) {
1265			btrfs_release_path(path);
1266			goto again;
1267		}
1268		extent_end = other_end;
1269		del_slot = path->slots[0] + 1;
1270		del_nr++;
1271		ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1272					0, root->root_key.objectid,
1273					ino, orig_offset);
1274		if (ret) {
1275			btrfs_abort_transaction(trans, ret);
1276			goto out;
1277		}
1278	}
1279	other_start = 0;
1280	other_end = start;
1281	if (extent_mergeable(leaf, path->slots[0] - 1,
1282			     ino, bytenr, orig_offset,
1283			     &other_start, &other_end)) {
1284		if (recow) {
1285			btrfs_release_path(path);
1286			goto again;
1287		}
1288		key.offset = other_start;
1289		del_slot = path->slots[0];
1290		del_nr++;
1291		ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1292					0, root->root_key.objectid,
1293					ino, orig_offset);
1294		if (ret) {
1295			btrfs_abort_transaction(trans, ret);
1296			goto out;
1297		}
1298	}
1299	if (del_nr == 0) {
1300		fi = btrfs_item_ptr(leaf, path->slots[0],
1301			   struct btrfs_file_extent_item);
1302		btrfs_set_file_extent_type(leaf, fi,
1303					   BTRFS_FILE_EXTENT_REG);
1304		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1305		btrfs_mark_buffer_dirty(leaf);
1306	} else {
1307		fi = btrfs_item_ptr(leaf, del_slot - 1,
1308			   struct btrfs_file_extent_item);
1309		btrfs_set_file_extent_type(leaf, fi,
1310					   BTRFS_FILE_EXTENT_REG);
1311		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1312		btrfs_set_file_extent_num_bytes(leaf, fi,
1313						extent_end - key.offset);
1314		btrfs_mark_buffer_dirty(leaf);
1315
1316		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1317		if (ret < 0) {
1318			btrfs_abort_transaction(trans, ret);
1319			goto out;
1320		}
1321	}
1322out:
1323	btrfs_free_path(path);
1324	return 0;
1325}
1326
1327/*
1328 * on error we return an unlocked page and the error value
1329 * on success we return a locked page and 0
1330 */
1331static int prepare_uptodate_page(struct inode *inode,
1332				 struct page *page, u64 pos,
1333				 bool force_uptodate)
1334{
1335	int ret = 0;
1336
1337	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1338	    !PageUptodate(page)) {
1339		ret = btrfs_readpage(NULL, page);
1340		if (ret)
1341			return ret;
1342		lock_page(page);
1343		if (!PageUptodate(page)) {
1344			unlock_page(page);
1345			return -EIO;
1346		}
1347		if (page->mapping != inode->i_mapping) {
1348			unlock_page(page);
1349			return -EAGAIN;
1350		}
1351	}
1352	return 0;
1353}
1354
1355/*
1356 * this just gets pages into the page cache and locks them down.
1357 */
1358static noinline int prepare_pages(struct inode *inode, struct page **pages,
1359				  size_t num_pages, loff_t pos,
1360				  size_t write_bytes, bool force_uptodate)
1361{
1362	int i;
1363	unsigned long index = pos >> PAGE_SHIFT;
1364	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1365	int err = 0;
1366	int faili;
1367
1368	for (i = 0; i < num_pages; i++) {
1369again:
1370		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1371					       mask | __GFP_WRITE);
1372		if (!pages[i]) {
1373			faili = i - 1;
1374			err = -ENOMEM;
1375			goto fail;
1376		}
1377
1378		if (i == 0)
1379			err = prepare_uptodate_page(inode, pages[i], pos,
1380						    force_uptodate);
1381		if (!err && i == num_pages - 1)
1382			err = prepare_uptodate_page(inode, pages[i],
1383						    pos + write_bytes, false);
1384		if (err) {
1385			put_page(pages[i]);
1386			if (err == -EAGAIN) {
1387				err = 0;
1388				goto again;
1389			}
1390			faili = i - 1;
1391			goto fail;
1392		}
1393		wait_on_page_writeback(pages[i]);
1394	}
1395
1396	return 0;
1397fail:
1398	while (faili >= 0) {
1399		unlock_page(pages[faili]);
1400		put_page(pages[faili]);
1401		faili--;
1402	}
1403	return err;
1404
1405}
1406
1407/*
1408 * This function locks the extent and properly waits for data=ordered extents
1409 * to finish before allowing the pages to be modified if need.
1410 *
1411 * The return value:
1412 * 1 - the extent is locked
1413 * 0 - the extent is not locked, and everything is OK
1414 * -EAGAIN - need re-prepare the pages
1415 * the other < 0 number - Something wrong happens
1416 */
1417static noinline int
1418lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1419				size_t num_pages, loff_t pos,
1420				size_t write_bytes,
1421				u64 *lockstart, u64 *lockend,
1422				struct extent_state **cached_state)
1423{
1424	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1425	u64 start_pos;
1426	u64 last_pos;
1427	int i;
1428	int ret = 0;
1429
1430	start_pos = round_down(pos, fs_info->sectorsize);
1431	last_pos = start_pos
1432		+ round_up(pos + write_bytes - start_pos,
1433			   fs_info->sectorsize) - 1;
1434
1435	if (start_pos < inode->i_size) {
1436		struct btrfs_ordered_extent *ordered;
1437		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1438				 start_pos, last_pos, cached_state);
 
1439		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1440						     last_pos - start_pos + 1);
1441		if (ordered &&
1442		    ordered->file_offset + ordered->len > start_pos &&
1443		    ordered->file_offset <= last_pos) {
1444			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1445					     start_pos, last_pos,
1446					     cached_state, GFP_NOFS);
1447			for (i = 0; i < num_pages; i++) {
1448				unlock_page(pages[i]);
1449				put_page(pages[i]);
1450			}
1451			btrfs_start_ordered_extent(inode, ordered, 1);
 
1452			btrfs_put_ordered_extent(ordered);
1453			return -EAGAIN;
1454		}
1455		if (ordered)
1456			btrfs_put_ordered_extent(ordered);
1457
1458		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1459				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1460				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1461				  0, 0, cached_state, GFP_NOFS);
1462		*lockstart = start_pos;
1463		*lockend = last_pos;
1464		ret = 1;
1465	}
1466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1467	for (i = 0; i < num_pages; i++) {
1468		if (clear_page_dirty_for_io(pages[i]))
1469			account_page_redirty(pages[i]);
1470		set_page_extent_mapped(pages[i]);
1471		WARN_ON(!PageLocked(pages[i]));
1472	}
1473
1474	return ret;
1475}
1476
1477static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1478				    size_t *write_bytes)
1479{
1480	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1481	struct btrfs_root *root = BTRFS_I(inode)->root;
1482	struct btrfs_ordered_extent *ordered;
1483	u64 lockstart, lockend;
1484	u64 num_bytes;
1485	int ret;
1486
1487	ret = btrfs_start_write_no_snapshoting(root);
1488	if (!ret)
1489		return -ENOSPC;
 
 
1490
1491	lockstart = round_down(pos, fs_info->sectorsize);
1492	lockend = round_up(pos + *write_bytes,
1493			   fs_info->sectorsize) - 1;
 
 
 
 
 
 
 
1494
1495	while (1) {
1496		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1497		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1498						     lockend - lockstart + 1);
1499		if (!ordered) {
1500			break;
 
 
1501		}
1502		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1503		btrfs_start_ordered_extent(inode, ordered, 1);
1504		btrfs_put_ordered_extent(ordered);
1505	}
1506
1507	num_bytes = lockend - lockstart + 1;
1508	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1509	if (ret <= 0) {
1510		ret = 0;
1511		btrfs_end_write_no_snapshoting(root);
 
1512	} else {
1513		*write_bytes = min_t(size_t, *write_bytes ,
1514				     num_bytes - pos + lockstart);
1515	}
1516
1517	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1518
1519	return ret;
1520}
1521
1522static noinline ssize_t __btrfs_buffered_write(struct file *file,
1523					       struct iov_iter *i,
1524					       loff_t pos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1525{
 
 
 
 
 
 
 
 
1526	struct inode *inode = file_inode(file);
1527	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1528	struct btrfs_root *root = BTRFS_I(inode)->root;
1529	struct page **pages = NULL;
1530	struct extent_state *cached_state = NULL;
1531	u64 release_bytes = 0;
1532	u64 lockstart;
1533	u64 lockend;
1534	size_t num_written = 0;
1535	int nrptrs;
1536	int ret = 0;
1537	bool only_release_metadata = false;
1538	bool force_page_uptodate = false;
1539	bool need_unlock;
1540
1541	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1542			PAGE_SIZE / (sizeof(struct page *)));
1543	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1544	nrptrs = max(nrptrs, 8);
1545	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1546	if (!pages)
1547		return -ENOMEM;
1548
1549	while (iov_iter_count(i) > 0) {
1550		size_t offset = pos & (PAGE_SIZE - 1);
 
1551		size_t sector_offset;
1552		size_t write_bytes = min(iov_iter_count(i),
1553					 nrptrs * (size_t)PAGE_SIZE -
1554					 offset);
1555		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1556						PAGE_SIZE);
1557		size_t reserve_bytes;
1558		size_t dirty_pages;
1559		size_t copied;
1560		size_t dirty_sectors;
1561		size_t num_sectors;
 
1562
1563		WARN_ON(num_pages > nrptrs);
1564
1565		/*
1566		 * Fault pages before locking them in prepare_pages
1567		 * to avoid recursive lock
1568		 */
1569		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1570			ret = -EFAULT;
1571			break;
1572		}
1573
 
1574		sector_offset = pos & (fs_info->sectorsize - 1);
1575		reserve_bytes = round_up(write_bytes + sector_offset,
1576				fs_info->sectorsize);
1577
1578		ret = btrfs_check_data_free_space(inode, pos, write_bytes);
 
 
 
1579		if (ret < 0) {
1580			if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1581						      BTRFS_INODE_PREALLOC)) &&
1582			    check_can_nocow(inode, pos, &write_bytes) > 0) {
1583				/*
1584				 * For nodata cow case, no need to reserve
1585				 * data space.
1586				 */
1587				only_release_metadata = true;
1588				/*
1589				 * our prealloc extent may be smaller than
1590				 * write_bytes, so scale down.
1591				 */
1592				num_pages = DIV_ROUND_UP(write_bytes + offset,
1593							 PAGE_SIZE);
1594				reserve_bytes = round_up(write_bytes +
1595							 sector_offset,
1596							 fs_info->sectorsize);
1597			} else {
1598				break;
1599			}
1600		}
1601
1602		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
 
 
1603		if (ret) {
1604			if (!only_release_metadata)
1605				btrfs_free_reserved_data_space(inode, pos,
1606							       write_bytes);
 
1607			else
1608				btrfs_end_write_no_snapshoting(root);
1609			break;
1610		}
1611
1612		release_bytes = reserve_bytes;
1613		need_unlock = false;
1614again:
1615		/*
1616		 * This is going to setup the pages array with the number of
1617		 * pages we want, so we don't really need to worry about the
1618		 * contents of pages from loop to loop
1619		 */
1620		ret = prepare_pages(inode, pages, num_pages,
1621				    pos, write_bytes,
1622				    force_page_uptodate);
1623		if (ret)
 
 
1624			break;
 
1625
1626		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1627						pos, write_bytes, &lockstart,
1628						&lockend, &cached_state);
1629		if (ret < 0) {
1630			if (ret == -EAGAIN)
 
1631				goto again;
 
 
 
1632			break;
1633		} else if (ret > 0) {
1634			need_unlock = true;
1635			ret = 0;
1636		}
1637
1638		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1639
1640		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1641		dirty_sectors = round_up(copied + sector_offset,
1642					fs_info->sectorsize);
1643		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1644
1645		/*
1646		 * if we have trouble faulting in the pages, fall
1647		 * back to one page at a time
1648		 */
1649		if (copied < write_bytes)
1650			nrptrs = 1;
1651
1652		if (copied == 0) {
1653			force_page_uptodate = true;
1654			dirty_sectors = 0;
1655			dirty_pages = 0;
1656		} else {
1657			force_page_uptodate = false;
1658			dirty_pages = DIV_ROUND_UP(copied + offset,
1659						   PAGE_SIZE);
1660		}
1661
1662		/*
1663		 * If we had a short copy we need to release the excess delaloc
1664		 * bytes we reserved.  We need to increment outstanding_extents
1665		 * because btrfs_delalloc_release_space and
1666		 * btrfs_delalloc_release_metadata will decrement it, but
1667		 * we still have an outstanding extent for the chunk we actually
1668		 * managed to copy.
1669		 */
1670		if (num_sectors > dirty_sectors) {
1671			/* release everything except the sectors we dirtied */
1672			release_bytes -= dirty_sectors <<
1673						fs_info->sb->s_blocksize_bits;
1674			if (copied > 0) {
1675				spin_lock(&BTRFS_I(inode)->lock);
1676				BTRFS_I(inode)->outstanding_extents++;
1677				spin_unlock(&BTRFS_I(inode)->lock);
1678			}
1679			if (only_release_metadata) {
1680				btrfs_delalloc_release_metadata(inode,
1681								release_bytes);
1682			} else {
1683				u64 __pos;
1684
1685				__pos = round_down(pos,
1686						   fs_info->sectorsize) +
1687					(dirty_pages << PAGE_SHIFT);
1688				btrfs_delalloc_release_space(inode, __pos,
1689							     release_bytes);
 
1690			}
1691		}
1692
1693		release_bytes = round_up(copied + sector_offset,
1694					fs_info->sectorsize);
1695
1696		if (copied > 0)
1697			ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1698						pos, copied, NULL);
1699		if (need_unlock)
 
 
 
 
 
 
 
 
 
1700			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1701					     lockstart, lockend, &cached_state,
1702					     GFP_NOFS);
 
 
 
1703		if (ret) {
1704			btrfs_drop_pages(pages, num_pages);
1705			break;
1706		}
1707
1708		release_bytes = 0;
1709		if (only_release_metadata)
1710			btrfs_end_write_no_snapshoting(root);
1711
1712		if (only_release_metadata && copied > 0) {
1713			lockstart = round_down(pos,
1714					       fs_info->sectorsize);
1715			lockend = round_up(pos + copied,
1716					   fs_info->sectorsize) - 1;
1717
1718			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1719				       lockend, EXTENT_NORESERVE, NULL,
1720				       NULL, GFP_NOFS);
1721			only_release_metadata = false;
1722		}
1723
1724		btrfs_drop_pages(pages, num_pages);
1725
1726		cond_resched();
1727
1728		balance_dirty_pages_ratelimited(inode->i_mapping);
1729		if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1730			btrfs_btree_balance_dirty(fs_info);
1731
1732		pos += copied;
1733		num_written += copied;
1734	}
1735
1736	kfree(pages);
1737
1738	if (release_bytes) {
1739		if (only_release_metadata) {
1740			btrfs_end_write_no_snapshoting(root);
1741			btrfs_delalloc_release_metadata(inode, release_bytes);
 
1742		} else {
1743			btrfs_delalloc_release_space(inode,
1744						round_down(pos, fs_info->sectorsize),
1745						release_bytes);
 
1746		}
1747	}
1748
 
1749	return num_written ? num_written : ret;
1750}
1751
1752static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1753{
1754	struct file *file = iocb->ki_filp;
1755	struct inode *inode = file_inode(file);
1756	loff_t pos = iocb->ki_pos;
1757	ssize_t written;
1758	ssize_t written_buffered;
1759	loff_t endbyte;
1760	int err;
1761
1762	written = generic_file_direct_write(iocb, from);
1763
1764	if (written < 0 || !iov_iter_count(from))
1765		return written;
1766
1767	pos += written;
1768	written_buffered = __btrfs_buffered_write(file, from, pos);
1769	if (written_buffered < 0) {
1770		err = written_buffered;
1771		goto out;
1772	}
1773	/*
1774	 * Ensure all data is persisted. We want the next direct IO read to be
1775	 * able to read what was just written.
1776	 */
1777	endbyte = pos + written_buffered - 1;
1778	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1779	if (err)
1780		goto out;
1781	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1782	if (err)
1783		goto out;
1784	written += written_buffered;
1785	iocb->ki_pos = pos + written_buffered;
1786	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1787				 endbyte >> PAGE_SHIFT);
1788out:
1789	return written ? written : err;
1790}
1791
1792static void update_time_for_write(struct inode *inode)
1793{
1794	struct timespec now;
1795
1796	if (IS_NOCMTIME(inode))
1797		return;
1798
1799	now = current_time(inode);
1800	if (!timespec_equal(&inode->i_mtime, &now))
1801		inode->i_mtime = now;
1802
1803	if (!timespec_equal(&inode->i_ctime, &now))
1804		inode->i_ctime = now;
1805
1806	if (IS_I_VERSION(inode))
1807		inode_inc_iversion(inode);
1808}
1809
1810static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1811				    struct iov_iter *from)
1812{
1813	struct file *file = iocb->ki_filp;
1814	struct inode *inode = file_inode(file);
1815	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1816	struct btrfs_root *root = BTRFS_I(inode)->root;
1817	u64 start_pos;
1818	u64 end_pos;
1819	ssize_t num_written = 0;
1820	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1821	ssize_t err;
1822	loff_t pos;
1823	size_t count;
1824	loff_t oldsize;
1825	int clean_page = 0;
1826
1827	inode_lock(inode);
 
 
 
 
 
 
 
 
 
 
1828	err = generic_write_checks(iocb, from);
1829	if (err <= 0) {
1830		inode_unlock(inode);
1831		return err;
1832	}
1833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1834	current->backing_dev_info = inode_to_bdi(inode);
1835	err = file_remove_privs(file);
1836	if (err) {
1837		inode_unlock(inode);
1838		goto out;
1839	}
1840
1841	/*
1842	 * If BTRFS flips readonly due to some impossible error
1843	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1844	 * although we have opened a file as writable, we have
1845	 * to stop this write operation to ensure FS consistency.
1846	 */
1847	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1848		inode_unlock(inode);
1849		err = -EROFS;
1850		goto out;
1851	}
1852
1853	/*
1854	 * We reserve space for updating the inode when we reserve space for the
1855	 * extent we are going to write, so we will enospc out there.  We don't
1856	 * need to start yet another transaction to update the inode as we will
1857	 * update the inode when we finish writing whatever data we write.
1858	 */
1859	update_time_for_write(inode);
1860
1861	pos = iocb->ki_pos;
1862	count = iov_iter_count(from);
1863	start_pos = round_down(pos, fs_info->sectorsize);
1864	oldsize = i_size_read(inode);
1865	if (start_pos > oldsize) {
1866		/* Expand hole size to cover write data, preventing empty gap */
1867		end_pos = round_up(pos + count,
1868				   fs_info->sectorsize);
1869		err = btrfs_cont_expand(inode, oldsize, end_pos);
1870		if (err) {
1871			inode_unlock(inode);
1872			goto out;
1873		}
1874		if (start_pos > round_up(oldsize, fs_info->sectorsize))
1875			clean_page = 1;
1876	}
1877
1878	if (sync)
1879		atomic_inc(&BTRFS_I(inode)->sync_writers);
1880
1881	if (iocb->ki_flags & IOCB_DIRECT) {
1882		num_written = __btrfs_direct_write(iocb, from);
1883	} else {
1884		num_written = __btrfs_buffered_write(file, from, pos);
1885		if (num_written > 0)
1886			iocb->ki_pos = pos + num_written;
1887		if (clean_page)
1888			pagecache_isize_extended(inode, oldsize,
1889						i_size_read(inode));
1890	}
1891
1892	inode_unlock(inode);
1893
1894	/*
1895	 * We also have to set last_sub_trans to the current log transid,
1896	 * otherwise subsequent syncs to a file that's been synced in this
1897	 * transaction will appear to have already occurred.
1898	 */
1899	spin_lock(&BTRFS_I(inode)->lock);
1900	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1901	spin_unlock(&BTRFS_I(inode)->lock);
1902	if (num_written > 0)
1903		num_written = generic_write_sync(iocb, num_written);
1904
1905	if (sync)
1906		atomic_dec(&BTRFS_I(inode)->sync_writers);
1907out:
1908	current->backing_dev_info = NULL;
1909	return num_written ? num_written : err;
1910}
1911
1912int btrfs_release_file(struct inode *inode, struct file *filp)
1913{
1914	if (filp->private_data)
1915		btrfs_ioctl_trans_end(filp);
 
 
 
 
 
1916	/*
1917	 * ordered_data_close is set by settattr when we are about to truncate
1918	 * a file from a non-zero size to a zero size.  This tries to
1919	 * flush down new bytes that may have been written if the
1920	 * application were using truncate to replace a file in place.
1921	 */
1922	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1923			       &BTRFS_I(inode)->runtime_flags))
1924			filemap_flush(inode->i_mapping);
1925	return 0;
1926}
1927
1928static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1929{
1930	int ret;
 
1931
 
 
 
 
 
 
 
1932	atomic_inc(&BTRFS_I(inode)->sync_writers);
1933	ret = btrfs_fdatawrite_range(inode, start, end);
1934	atomic_dec(&BTRFS_I(inode)->sync_writers);
 
1935
1936	return ret;
1937}
1938
1939/*
1940 * fsync call for both files and directories.  This logs the inode into
1941 * the tree log instead of forcing full commits whenever possible.
1942 *
1943 * It needs to call filemap_fdatawait so that all ordered extent updates are
1944 * in the metadata btree are up to date for copying to the log.
1945 *
1946 * It drops the inode mutex before doing the tree log commit.  This is an
1947 * important optimization for directories because holding the mutex prevents
1948 * new operations on the dir while we write to disk.
1949 */
1950int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1951{
1952	struct dentry *dentry = file_dentry(file);
1953	struct inode *inode = d_inode(dentry);
1954	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1955	struct btrfs_root *root = BTRFS_I(inode)->root;
1956	struct btrfs_trans_handle *trans;
1957	struct btrfs_log_ctx ctx;
1958	int ret = 0;
1959	bool full_sync = 0;
1960	u64 len;
1961
1962	/*
1963	 * The range length can be represented by u64, we have to do the typecasts
1964	 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1965	 */
1966	len = (u64)end - (u64)start + 1;
1967	trace_btrfs_sync_file(file, datasync);
1968
 
 
 
 
 
 
 
 
 
 
 
 
1969	/*
1970	 * We write the dirty pages in the range and wait until they complete
1971	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1972	 * multi-task, and make the performance up.  See
1973	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1974	 */
1975	ret = start_ordered_ops(inode, start, end);
1976	if (ret)
1977		return ret;
1978
1979	inode_lock(inode);
1980	atomic_inc(&root->log_batch);
1981	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1982			     &BTRFS_I(inode)->runtime_flags);
1983	/*
1984	 * We might have have had more pages made dirty after calling
1985	 * start_ordered_ops and before acquiring the inode's i_mutex.
 
1986	 */
1987	if (full_sync) {
1988		/*
1989		 * For a full sync, we need to make sure any ordered operations
1990		 * start and finish before we start logging the inode, so that
1991		 * all extents are persisted and the respective file extent
1992		 * items are in the fs/subvol btree.
1993		 */
1994		ret = btrfs_wait_ordered_range(inode, start, len);
1995	} else {
1996		/*
1997		 * Start any new ordered operations before starting to log the
1998		 * inode. We will wait for them to finish in btrfs_sync_log().
1999		 *
2000		 * Right before acquiring the inode's mutex, we might have new
2001		 * writes dirtying pages, which won't immediately start the
2002		 * respective ordered operations - that is done through the
2003		 * fill_delalloc callbacks invoked from the writepage and
2004		 * writepages address space operations. So make sure we start
2005		 * all ordered operations before starting to log our inode. Not
2006		 * doing this means that while logging the inode, writeback
2007		 * could start and invoke writepage/writepages, which would call
2008		 * the fill_delalloc callbacks (cow_file_range,
2009		 * submit_compressed_extents). These callbacks add first an
2010		 * extent map to the modified list of extents and then create
2011		 * the respective ordered operation, which means in
2012		 * tree-log.c:btrfs_log_inode() we might capture all existing
2013		 * ordered operations (with btrfs_get_logged_extents()) before
2014		 * the fill_delalloc callback adds its ordered operation, and by
2015		 * the time we visit the modified list of extent maps (with
2016		 * btrfs_log_changed_extents()), we see and process the extent
2017		 * map they created. We then use the extent map to construct a
2018		 * file extent item for logging without waiting for the
2019		 * respective ordered operation to finish - this file extent
2020		 * item points to a disk location that might not have yet been
2021		 * written to, containing random data - so after a crash a log
2022		 * replay will make our inode have file extent items that point
2023		 * to disk locations containing invalid data, as we returned
2024		 * success to userspace without waiting for the respective
2025		 * ordered operation to finish, because it wasn't captured by
2026		 * btrfs_get_logged_extents().
2027		 */
2028		ret = start_ordered_ops(inode, start, end);
2029	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2030	if (ret) {
 
2031		inode_unlock(inode);
2032		goto out;
2033	}
2034	atomic_inc(&root->log_batch);
2035
2036	/*
2037	 * If the last transaction that changed this file was before the current
2038	 * transaction and we have the full sync flag set in our inode, we can
2039	 * bail out now without any syncing.
2040	 *
2041	 * Note that we can't bail out if the full sync flag isn't set. This is
2042	 * because when the full sync flag is set we start all ordered extents
2043	 * and wait for them to fully complete - when they complete they update
2044	 * the inode's last_trans field through:
2045	 *
2046	 *     btrfs_finish_ordered_io() ->
2047	 *         btrfs_update_inode_fallback() ->
2048	 *             btrfs_update_inode() ->
2049	 *                 btrfs_set_inode_last_trans()
2050	 *
2051	 * So we are sure that last_trans is up to date and can do this check to
2052	 * bail out safely. For the fast path, when the full sync flag is not
2053	 * set in our inode, we can not do it because we start only our ordered
2054	 * extents and don't wait for them to complete (that is when
2055	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2056	 * value might be less than or equals to fs_info->last_trans_committed,
2057	 * and setting a speculative last_trans for an inode when a buffered
2058	 * write is made (such as fs_info->generation + 1 for example) would not
2059	 * be reliable since after setting the value and before fsync is called
2060	 * any number of transactions can start and commit (transaction kthread
2061	 * commits the current transaction periodically), and a transaction
2062	 * commit does not start nor waits for ordered extents to complete.
2063	 */
 
 
 
 
 
 
 
 
2064	smp_mb();
2065	if (btrfs_inode_in_log(inode, fs_info->generation) ||
2066	    (full_sync && BTRFS_I(inode)->last_trans <=
2067	     fs_info->last_trans_committed) ||
2068	    (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2069	     BTRFS_I(inode)->last_trans
2070	     <= fs_info->last_trans_committed)) {
2071		/*
2072		 * We've had everything committed since the last time we were
2073		 * modified so clear this flag in case it was set for whatever
2074		 * reason, it's no longer relevant.
2075		 */
2076		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2077			  &BTRFS_I(inode)->runtime_flags);
2078		/*
2079		 * An ordered extent might have started before and completed
2080		 * already with io errors, in which case the inode was not
2081		 * updated and we end up here. So check the inode's mapping
2082		 * flags for any errors that might have happened while doing
2083		 * writeback of file data.
2084		 */
2085		ret = filemap_check_errors(inode->i_mapping);
 
2086		inode_unlock(inode);
2087		goto out;
2088	}
2089
2090	/*
2091	 * ok we haven't committed the transaction yet, lets do a commit
2092	 */
2093	if (file->private_data)
2094		btrfs_ioctl_trans_end(file);
2095
2096	/*
2097	 * We use start here because we will need to wait on the IO to complete
2098	 * in btrfs_sync_log, which could require joining a transaction (for
2099	 * example checking cross references in the nocow path).  If we use join
2100	 * here we could get into a situation where we're waiting on IO to
2101	 * happen that is blocked on a transaction trying to commit.  With start
2102	 * we inc the extwriter counter, so we wait for all extwriters to exit
2103	 * before we start blocking join'ers.  This comment is to keep somebody
2104	 * from thinking they are super smart and changing this to
2105	 * btrfs_join_transaction *cough*Josef*cough*.
2106	 */
2107	trans = btrfs_start_transaction(root, 0);
2108	if (IS_ERR(trans)) {
2109		ret = PTR_ERR(trans);
 
2110		inode_unlock(inode);
2111		goto out;
2112	}
2113	trans->sync = true;
2114
2115	btrfs_init_log_ctx(&ctx, inode);
2116
2117	ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2118	if (ret < 0) {
2119		/* Fallthrough and commit/free transaction. */
2120		ret = 1;
2121	}
2122
2123	/* we've logged all the items and now have a consistent
2124	 * version of the file in the log.  It is possible that
2125	 * someone will come in and modify the file, but that's
2126	 * fine because the log is consistent on disk, and we
2127	 * have references to all of the file's extents
2128	 *
2129	 * It is possible that someone will come in and log the
2130	 * file again, but that will end up using the synchronization
2131	 * inside btrfs_sync_log to keep things safe.
2132	 */
 
2133	inode_unlock(inode);
2134
2135	/*
2136	 * If any of the ordered extents had an error, just return it to user
2137	 * space, so that the application knows some writes didn't succeed and
2138	 * can take proper action (retry for e.g.). Blindly committing the
2139	 * transaction in this case, would fool userspace that everything was
2140	 * successful. And we also want to make sure our log doesn't contain
2141	 * file extent items pointing to extents that weren't fully written to -
2142	 * just like in the non fast fsync path, where we check for the ordered
2143	 * operation's error flag before writing to the log tree and return -EIO
2144	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2145	 * therefore we need to check for errors in the ordered operations,
2146	 * which are indicated by ctx.io_err.
2147	 */
2148	if (ctx.io_err) {
2149		btrfs_end_transaction(trans);
2150		ret = ctx.io_err;
2151		goto out;
2152	}
2153
2154	if (ret != BTRFS_NO_LOG_SYNC) {
2155		if (!ret) {
2156			ret = btrfs_sync_log(trans, root, &ctx);
2157			if (!ret) {
2158				ret = btrfs_end_transaction(trans);
2159				goto out;
2160			}
2161		}
2162		if (!full_sync) {
2163			ret = btrfs_wait_ordered_range(inode, start, len);
2164			if (ret) {
2165				btrfs_end_transaction(trans);
2166				goto out;
2167			}
2168		}
2169		ret = btrfs_commit_transaction(trans);
2170	} else {
2171		ret = btrfs_end_transaction(trans);
2172	}
2173out:
 
 
 
 
2174	return ret > 0 ? -EIO : ret;
2175}
2176
2177static const struct vm_operations_struct btrfs_file_vm_ops = {
2178	.fault		= filemap_fault,
2179	.map_pages	= filemap_map_pages,
2180	.page_mkwrite	= btrfs_page_mkwrite,
2181};
2182
2183static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2184{
2185	struct address_space *mapping = filp->f_mapping;
2186
2187	if (!mapping->a_ops->readpage)
2188		return -ENOEXEC;
2189
2190	file_accessed(filp);
2191	vma->vm_ops = &btrfs_file_vm_ops;
2192
2193	return 0;
2194}
2195
2196static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2197			  int slot, u64 start, u64 end)
2198{
2199	struct btrfs_file_extent_item *fi;
2200	struct btrfs_key key;
2201
2202	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2203		return 0;
2204
2205	btrfs_item_key_to_cpu(leaf, &key, slot);
2206	if (key.objectid != btrfs_ino(inode) ||
2207	    key.type != BTRFS_EXTENT_DATA_KEY)
2208		return 0;
2209
2210	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2211
2212	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2213		return 0;
2214
2215	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2216		return 0;
2217
2218	if (key.offset == end)
2219		return 1;
2220	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2221		return 1;
2222	return 0;
2223}
2224
2225static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2226		      struct btrfs_path *path, u64 offset, u64 end)
 
2227{
2228	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2229	struct btrfs_root *root = BTRFS_I(inode)->root;
2230	struct extent_buffer *leaf;
2231	struct btrfs_file_extent_item *fi;
2232	struct extent_map *hole_em;
2233	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2234	struct btrfs_key key;
2235	int ret;
2236
2237	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2238		goto out;
2239
2240	key.objectid = btrfs_ino(inode);
2241	key.type = BTRFS_EXTENT_DATA_KEY;
2242	key.offset = offset;
2243
2244	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2245	if (ret <= 0) {
2246		/*
2247		 * We should have dropped this offset, so if we find it then
2248		 * something has gone horribly wrong.
2249		 */
2250		if (ret == 0)
2251			ret = -EINVAL;
2252		return ret;
2253	}
2254
2255	leaf = path->nodes[0];
2256	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2257		u64 num_bytes;
2258
2259		path->slots[0]--;
2260		fi = btrfs_item_ptr(leaf, path->slots[0],
2261				    struct btrfs_file_extent_item);
2262		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2263			end - offset;
2264		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2265		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2266		btrfs_set_file_extent_offset(leaf, fi, 0);
2267		btrfs_mark_buffer_dirty(leaf);
2268		goto out;
2269	}
2270
2271	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2272		u64 num_bytes;
2273
2274		key.offset = offset;
2275		btrfs_set_item_key_safe(fs_info, path, &key);
2276		fi = btrfs_item_ptr(leaf, path->slots[0],
2277				    struct btrfs_file_extent_item);
2278		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2279			offset;
2280		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2281		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2282		btrfs_set_file_extent_offset(leaf, fi, 0);
2283		btrfs_mark_buffer_dirty(leaf);
2284		goto out;
2285	}
2286	btrfs_release_path(path);
2287
2288	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2289				       0, 0, end - offset, 0, end - offset,
2290				       0, 0, 0);
2291	if (ret)
2292		return ret;
2293
2294out:
2295	btrfs_release_path(path);
2296
2297	hole_em = alloc_extent_map();
2298	if (!hole_em) {
2299		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2300		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2301			&BTRFS_I(inode)->runtime_flags);
2302	} else {
2303		hole_em->start = offset;
2304		hole_em->len = end - offset;
2305		hole_em->ram_bytes = hole_em->len;
2306		hole_em->orig_start = offset;
2307
2308		hole_em->block_start = EXTENT_MAP_HOLE;
2309		hole_em->block_len = 0;
2310		hole_em->orig_block_len = 0;
2311		hole_em->bdev = fs_info->fs_devices->latest_bdev;
2312		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2313		hole_em->generation = trans->transid;
2314
2315		do {
2316			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2317			write_lock(&em_tree->lock);
2318			ret = add_extent_mapping(em_tree, hole_em, 1);
2319			write_unlock(&em_tree->lock);
2320		} while (ret == -EEXIST);
2321		free_extent_map(hole_em);
2322		if (ret)
2323			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2324				&BTRFS_I(inode)->runtime_flags);
2325	}
2326
2327	return 0;
2328}
2329
2330/*
2331 * Find a hole extent on given inode and change start/len to the end of hole
2332 * extent.(hole/vacuum extent whose em->start <= start &&
2333 *	   em->start + em->len > start)
2334 * When a hole extent is found, return 1 and modify start/len.
2335 */
2336static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2337{
 
2338	struct extent_map *em;
2339	int ret = 0;
2340
2341	em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2342	if (IS_ERR_OR_NULL(em)) {
2343		if (!em)
2344			ret = -ENOMEM;
2345		else
2346			ret = PTR_ERR(em);
2347		return ret;
2348	}
2349
2350	/* Hole or vacuum extent(only exists in no-hole mode) */
2351	if (em->block_start == EXTENT_MAP_HOLE) {
2352		ret = 1;
2353		*len = em->start + em->len > *start + *len ?
2354		       0 : *start + *len - em->start - em->len;
2355		*start = em->start + em->len;
2356	}
2357	free_extent_map(em);
2358	return ret;
2359}
2360
2361static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
 
 
 
2362{
2363	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2364	struct btrfs_root *root = BTRFS_I(inode)->root;
2365	struct extent_state *cached_state = NULL;
2366	struct btrfs_path *path;
2367	struct btrfs_block_rsv *rsv;
2368	struct btrfs_trans_handle *trans;
2369	u64 lockstart;
2370	u64 lockend;
2371	u64 tail_start;
2372	u64 tail_len;
2373	u64 orig_start = offset;
2374	u64 cur_offset;
2375	u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2376	u64 drop_end;
2377	int ret = 0;
2378	int err = 0;
2379	unsigned int rsv_count;
2380	bool same_block;
2381	bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2382	u64 ino_size;
2383	bool truncated_block = false;
2384	bool updated_inode = false;
2385
2386	ret = btrfs_wait_ordered_range(inode, offset, len);
2387	if (ret)
2388		return ret;
2389
2390	inode_lock(inode);
2391	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2392	ret = find_first_non_hole(inode, &offset, &len);
2393	if (ret < 0)
2394		goto out_only_mutex;
2395	if (ret && !len) {
2396		/* Already in a large hole */
2397		ret = 0;
2398		goto out_only_mutex;
2399	}
2400
2401	lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2402	lockend = round_down(offset + len,
2403			     btrfs_inode_sectorsize(inode)) - 1;
2404	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2405		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2406	/*
2407	 * We needn't truncate any block which is beyond the end of the file
2408	 * because we are sure there is no data there.
2409	 */
2410	/*
2411	 * Only do this if we are in the same block and we aren't doing the
2412	 * entire block.
2413	 */
2414	if (same_block && len < fs_info->sectorsize) {
2415		if (offset < ino_size) {
2416			truncated_block = true;
2417			ret = btrfs_truncate_block(inode, offset, len, 0);
2418		} else {
2419			ret = 0;
2420		}
2421		goto out_only_mutex;
2422	}
2423
2424	/* zero back part of the first block */
2425	if (offset < ino_size) {
2426		truncated_block = true;
2427		ret = btrfs_truncate_block(inode, offset, 0, 0);
2428		if (ret) {
2429			inode_unlock(inode);
2430			return ret;
2431		}
2432	}
2433
2434	/* Check the aligned pages after the first unaligned page,
2435	 * if offset != orig_start, which means the first unaligned page
2436	 * including several following pages are already in holes,
2437	 * the extra check can be skipped */
2438	if (offset == orig_start) {
2439		/* after truncate page, check hole again */
2440		len = offset + len - lockstart;
2441		offset = lockstart;
2442		ret = find_first_non_hole(inode, &offset, &len);
2443		if (ret < 0)
2444			goto out_only_mutex;
2445		if (ret && !len) {
2446			ret = 0;
2447			goto out_only_mutex;
2448		}
2449		lockstart = offset;
2450	}
2451
2452	/* Check the tail unaligned part is in a hole */
2453	tail_start = lockend + 1;
2454	tail_len = offset + len - tail_start;
2455	if (tail_len) {
2456		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2457		if (unlikely(ret < 0))
2458			goto out_only_mutex;
2459		if (!ret) {
2460			/* zero the front end of the last page */
2461			if (tail_start + tail_len < ino_size) {
2462				truncated_block = true;
2463				ret = btrfs_truncate_block(inode,
2464							tail_start + tail_len,
2465							0, 1);
2466				if (ret)
2467					goto out_only_mutex;
2468			}
2469		}
2470	}
2471
2472	if (lockend < lockstart) {
2473		ret = 0;
2474		goto out_only_mutex;
2475	}
2476
2477	while (1) {
2478		struct btrfs_ordered_extent *ordered;
 
2479
2480		truncate_pagecache_range(inode, lockstart, lockend);
2481
2482		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2483				 &cached_state);
2484		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2485
2486		/*
2487		 * We need to make sure we have no ordered extents in this range
2488		 * and nobody raced in and read a page in this range, if we did
2489		 * we need to try again.
2490		 */
2491		if ((!ordered ||
2492		    (ordered->file_offset + ordered->len <= lockstart ||
2493		     ordered->file_offset > lockend)) &&
2494		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
 
2495			if (ordered)
2496				btrfs_put_ordered_extent(ordered);
2497			break;
2498		}
2499		if (ordered)
2500			btrfs_put_ordered_extent(ordered);
2501		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2502				     lockend, &cached_state, GFP_NOFS);
2503		ret = btrfs_wait_ordered_range(inode, lockstart,
2504					       lockend - lockstart + 1);
2505		if (ret) {
2506			inode_unlock(inode);
2507			return ret;
2508		}
2509	}
 
 
2510
2511	path = btrfs_alloc_path();
2512	if (!path) {
2513		ret = -ENOMEM;
2514		goto out;
2515	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2516
2517	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2518	if (!rsv) {
2519		ret = -ENOMEM;
2520		goto out_free;
2521	}
2522	rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2523	rsv->failfast = 1;
2524
2525	/*
2526	 * 1 - update the inode
2527	 * 1 - removing the extents in the range
2528	 * 1 - adding the hole extent if no_holes isn't set
 
2529	 */
2530	rsv_count = no_holes ? 2 : 3;
 
 
 
 
2531	trans = btrfs_start_transaction(root, rsv_count);
2532	if (IS_ERR(trans)) {
2533		err = PTR_ERR(trans);
 
2534		goto out_free;
2535	}
2536
2537	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2538				      min_size, 0);
2539	BUG_ON(ret);
2540	trans->block_rsv = rsv;
2541
2542	cur_offset = lockstart;
2543	len = lockend - cur_offset;
2544	while (cur_offset < lockend) {
2545		ret = __btrfs_drop_extents(trans, root, inode, path,
2546					   cur_offset, lockend + 1,
2547					   &drop_end, 1, 0, 0, NULL);
2548		if (ret != -ENOSPC)
 
 
 
 
 
 
 
 
2549			break;
 
2550
2551		trans->block_rsv = &fs_info->trans_block_rsv;
2552
2553		if (cur_offset < drop_end && cur_offset < ino_size) {
2554			ret = fill_holes(trans, inode, path, cur_offset,
2555					 drop_end);
 
2556			if (ret) {
2557				/*
2558				 * If we failed then we didn't insert our hole
2559				 * entries for the area we dropped, so now the
2560				 * fs is corrupted, so we must abort the
2561				 * transaction.
2562				 */
2563				btrfs_abort_transaction(trans, ret);
2564				err = ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2565				break;
2566			}
2567		}
2568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2569		cur_offset = drop_end;
2570
2571		ret = btrfs_update_inode(trans, root, inode);
2572		if (ret) {
2573			err = ret;
2574			break;
2575		}
2576
2577		btrfs_end_transaction(trans);
2578		btrfs_btree_balance_dirty(fs_info);
2579
2580		trans = btrfs_start_transaction(root, rsv_count);
2581		if (IS_ERR(trans)) {
2582			ret = PTR_ERR(trans);
2583			trans = NULL;
2584			break;
2585		}
2586
2587		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2588					      rsv, min_size, 0);
2589		BUG_ON(ret);	/* shouldn't happen */
2590		trans->block_rsv = rsv;
2591
2592		ret = find_first_non_hole(inode, &cur_offset, &len);
2593		if (unlikely(ret < 0))
2594			break;
2595		if (ret && !len) {
2596			ret = 0;
2597			break;
 
 
2598		}
2599	}
2600
2601	if (ret) {
2602		err = ret;
 
 
 
 
 
 
 
 
 
 
 
2603		goto out_trans;
2604	}
2605
2606	trans->block_rsv = &fs_info->trans_block_rsv;
2607	/*
2608	 * If we are using the NO_HOLES feature we might have had already an
2609	 * hole that overlaps a part of the region [lockstart, lockend] and
2610	 * ends at (or beyond) lockend. Since we have no file extent items to
2611	 * represent holes, drop_end can be less than lockend and so we must
2612	 * make sure we have an extent map representing the existing hole (the
2613	 * call to __btrfs_drop_extents() might have dropped the existing extent
2614	 * map representing the existing hole), otherwise the fast fsync path
2615	 * will not record the existence of the hole region
2616	 * [existing_hole_start, lockend].
2617	 */
2618	if (drop_end <= lockend)
2619		drop_end = lockend + 1;
2620	/*
2621	 * Don't insert file hole extent item if it's for a range beyond eof
2622	 * (because it's useless) or if it represents a 0 bytes range (when
2623	 * cur_offset == drop_end).
2624	 */
2625	if (cur_offset < ino_size && cur_offset < drop_end) {
2626		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
 
2627		if (ret) {
2628			/* Same comment as above. */
2629			btrfs_abort_transaction(trans, ret);
2630			err = ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2631			goto out_trans;
2632		}
2633	}
2634
2635out_trans:
2636	if (!trans)
2637		goto out_free;
2638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2639	inode_inc_iversion(inode);
2640	inode->i_mtime = inode->i_ctime = current_time(inode);
2641
2642	trans->block_rsv = &fs_info->trans_block_rsv;
2643	ret = btrfs_update_inode(trans, root, inode);
2644	updated_inode = true;
2645	btrfs_end_transaction(trans);
2646	btrfs_btree_balance_dirty(fs_info);
2647out_free:
2648	btrfs_free_path(path);
2649	btrfs_free_block_rsv(fs_info, rsv);
2650out:
2651	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2652			     &cached_state, GFP_NOFS);
2653out_only_mutex:
2654	if (!updated_inode && truncated_block && !ret && !err) {
2655		/*
2656		 * If we only end up zeroing part of a page, we still need to
2657		 * update the inode item, so that all the time fields are
2658		 * updated as well as the necessary btrfs inode in memory fields
2659		 * for detecting, at fsync time, if the inode isn't yet in the
2660		 * log tree or it's there but not up to date.
2661		 */
 
 
 
 
 
2662		trans = btrfs_start_transaction(root, 1);
2663		if (IS_ERR(trans)) {
2664			err = PTR_ERR(trans);
2665		} else {
2666			err = btrfs_update_inode(trans, root, inode);
2667			ret = btrfs_end_transaction(trans);
 
 
 
 
2668		}
2669	}
2670	inode_unlock(inode);
2671	if (ret && !err)
2672		err = ret;
2673	return err;
2674}
2675
2676/* Helper structure to record which range is already reserved */
2677struct falloc_range {
2678	struct list_head list;
2679	u64 start;
2680	u64 len;
2681};
2682
2683/*
2684 * Helper function to add falloc range
2685 *
2686 * Caller should have locked the larger range of extent containing
2687 * [start, len)
2688 */
2689static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2690{
2691	struct falloc_range *prev = NULL;
2692	struct falloc_range *range = NULL;
2693
2694	if (list_empty(head))
2695		goto insert;
2696
2697	/*
2698	 * As fallocate iterate by bytenr order, we only need to check
2699	 * the last range.
2700	 */
2701	prev = list_entry(head->prev, struct falloc_range, list);
2702	if (prev->start + prev->len == start) {
2703		prev->len += len;
2704		return 0;
2705	}
2706insert:
2707	range = kmalloc(sizeof(*range), GFP_KERNEL);
2708	if (!range)
2709		return -ENOMEM;
2710	range->start = start;
2711	range->len = len;
2712	list_add_tail(&range->list, head);
2713	return 0;
2714}
2715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2716static long btrfs_fallocate(struct file *file, int mode,
2717			    loff_t offset, loff_t len)
2718{
2719	struct inode *inode = file_inode(file);
2720	struct extent_state *cached_state = NULL;
 
2721	struct falloc_range *range;
2722	struct falloc_range *tmp;
2723	struct list_head reserve_list;
2724	u64 cur_offset;
2725	u64 last_byte;
2726	u64 alloc_start;
2727	u64 alloc_end;
2728	u64 alloc_hint = 0;
2729	u64 locked_end;
2730	u64 actual_end = 0;
2731	struct extent_map *em;
2732	int blocksize = btrfs_inode_sectorsize(inode);
2733	int ret;
2734
2735	alloc_start = round_down(offset, blocksize);
2736	alloc_end = round_up(offset + len, blocksize);
2737	cur_offset = alloc_start;
2738
2739	/* Make sure we aren't being give some crap mode */
2740	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 
2741		return -EOPNOTSUPP;
2742
2743	if (mode & FALLOC_FL_PUNCH_HOLE)
2744		return btrfs_punch_hole(inode, offset, len);
2745
2746	/*
2747	 * Only trigger disk allocation, don't trigger qgroup reserve
2748	 *
2749	 * For qgroup space, it will be checked later.
2750	 */
2751	ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2752	if (ret < 0)
2753		return ret;
 
 
 
2754
2755	inode_lock(inode);
2756
2757	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2758		ret = inode_newsize_ok(inode, offset + len);
2759		if (ret)
2760			goto out;
2761	}
2762
2763	/*
2764	 * TODO: Move these two operations after we have checked
2765	 * accurate reserved space, or fallocate can still fail but
2766	 * with page truncated or size expanded.
2767	 *
2768	 * But that's a minor problem and won't do much harm BTW.
2769	 */
2770	if (alloc_start > inode->i_size) {
2771		ret = btrfs_cont_expand(inode, i_size_read(inode),
2772					alloc_start);
2773		if (ret)
2774			goto out;
2775	} else if (offset + len > inode->i_size) {
2776		/*
2777		 * If we are fallocating from the end of the file onward we
2778		 * need to zero out the end of the block if i_size lands in the
2779		 * middle of a block.
2780		 */
2781		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2782		if (ret)
2783			goto out;
2784	}
2785
2786	/*
2787	 * wait for ordered IO before we have any locks.  We'll loop again
2788	 * below with the locks held.
2789	 */
2790	ret = btrfs_wait_ordered_range(inode, alloc_start,
2791				       alloc_end - alloc_start);
2792	if (ret)
2793		goto out;
2794
 
 
 
 
 
 
2795	locked_end = alloc_end - 1;
2796	while (1) {
2797		struct btrfs_ordered_extent *ordered;
2798
2799		/* the extent lock is ordered inside the running
2800		 * transaction
2801		 */
2802		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2803				 locked_end, &cached_state);
2804		ordered = btrfs_lookup_first_ordered_extent(inode,
2805							    alloc_end - 1);
2806		if (ordered &&
2807		    ordered->file_offset + ordered->len > alloc_start &&
2808		    ordered->file_offset < alloc_end) {
2809			btrfs_put_ordered_extent(ordered);
2810			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2811					     alloc_start, locked_end,
2812					     &cached_state, GFP_KERNEL);
2813			/*
2814			 * we can't wait on the range with the transaction
2815			 * running or with the extent lock held
2816			 */
2817			ret = btrfs_wait_ordered_range(inode, alloc_start,
2818						       alloc_end - alloc_start);
2819			if (ret)
2820				goto out;
2821		} else {
2822			if (ordered)
2823				btrfs_put_ordered_extent(ordered);
2824			break;
2825		}
2826	}
2827
2828	/* First, check if we exceed the qgroup limit */
2829	INIT_LIST_HEAD(&reserve_list);
2830	while (1) {
2831		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2832				      alloc_end - cur_offset, 0);
2833		if (IS_ERR_OR_NULL(em)) {
2834			if (!em)
2835				ret = -ENOMEM;
2836			else
2837				ret = PTR_ERR(em);
2838			break;
2839		}
2840		last_byte = min(extent_map_end(em), alloc_end);
2841		actual_end = min_t(u64, extent_map_end(em), offset + len);
2842		last_byte = ALIGN(last_byte, blocksize);
2843		if (em->block_start == EXTENT_MAP_HOLE ||
2844		    (cur_offset >= inode->i_size &&
2845		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2846			ret = add_falloc_range(&reserve_list, cur_offset,
2847					       last_byte - cur_offset);
2848			if (ret < 0) {
2849				free_extent_map(em);
2850				break;
2851			}
2852			ret = btrfs_qgroup_reserve_data(inode, cur_offset,
 
2853					last_byte - cur_offset);
2854			if (ret < 0)
 
 
2855				break;
 
2856		} else {
2857			/*
2858			 * Do not need to reserve unwritten extent for this
2859			 * range, free reserved data space first, otherwise
2860			 * it'll result in false ENOSPC error.
2861			 */
2862			btrfs_free_reserved_data_space(inode, cur_offset,
 
2863				last_byte - cur_offset);
2864		}
2865		free_extent_map(em);
2866		cur_offset = last_byte;
2867		if (cur_offset >= alloc_end)
2868			break;
2869	}
2870
2871	/*
2872	 * If ret is still 0, means we're OK to fallocate.
2873	 * Or just cleanup the list and exit.
2874	 */
2875	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2876		if (!ret)
2877			ret = btrfs_prealloc_file_range(inode, mode,
2878					range->start,
2879					range->len, 1 << inode->i_blkbits,
2880					offset + len, &alloc_hint);
2881		else
2882			btrfs_free_reserved_data_space(inode, range->start,
2883						       range->len);
 
2884		list_del(&range->list);
2885		kfree(range);
2886	}
2887	if (ret < 0)
2888		goto out_unlock;
2889
2890	if (actual_end > inode->i_size &&
2891	    !(mode & FALLOC_FL_KEEP_SIZE)) {
2892		struct btrfs_trans_handle *trans;
2893		struct btrfs_root *root = BTRFS_I(inode)->root;
2894
2895		/*
2896		 * We didn't need to allocate any more space, but we
2897		 * still extended the size of the file so we need to
2898		 * update i_size and the inode item.
2899		 */
2900		trans = btrfs_start_transaction(root, 1);
2901		if (IS_ERR(trans)) {
2902			ret = PTR_ERR(trans);
2903		} else {
2904			inode->i_ctime = current_time(inode);
2905			i_size_write(inode, actual_end);
2906			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2907			ret = btrfs_update_inode(trans, root, inode);
2908			if (ret)
2909				btrfs_end_transaction(trans);
2910			else
2911				ret = btrfs_end_transaction(trans);
2912		}
2913	}
2914out_unlock:
2915	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2916			     &cached_state, GFP_KERNEL);
2917out:
2918	inode_unlock(inode);
2919	/* Let go of our reservation. */
2920	if (ret != 0)
2921		btrfs_free_reserved_data_space(inode, alloc_start,
2922				       alloc_end - cur_offset);
 
2923	return ret;
2924}
2925
2926static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
 
2927{
2928	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2929	struct extent_map *em = NULL;
2930	struct extent_state *cached_state = NULL;
 
2931	u64 lockstart;
2932	u64 lockend;
2933	u64 start;
2934	u64 len;
2935	int ret = 0;
2936
2937	if (inode->i_size == 0)
2938		return -ENXIO;
2939
2940	/*
2941	 * *offset can be negative, in this case we start finding DATA/HOLE from
2942	 * the very start of the file.
2943	 */
2944	start = max_t(loff_t, 0, *offset);
2945
2946	lockstart = round_down(start, fs_info->sectorsize);
2947	lockend = round_up(i_size_read(inode),
2948			   fs_info->sectorsize);
2949	if (lockend <= lockstart)
2950		lockend = lockstart + fs_info->sectorsize;
2951	lockend--;
2952	len = lockend - lockstart + 1;
2953
2954	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2955			 &cached_state);
2956
2957	while (start < inode->i_size) {
2958		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2959		if (IS_ERR(em)) {
2960			ret = PTR_ERR(em);
2961			em = NULL;
2962			break;
2963		}
2964
2965		if (whence == SEEK_HOLE &&
2966		    (em->block_start == EXTENT_MAP_HOLE ||
2967		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2968			break;
2969		else if (whence == SEEK_DATA &&
2970			   (em->block_start != EXTENT_MAP_HOLE &&
2971			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2972			break;
2973
2974		start = em->start + em->len;
2975		free_extent_map(em);
2976		em = NULL;
2977		cond_resched();
2978	}
2979	free_extent_map(em);
2980	if (!ret) {
2981		if (whence == SEEK_DATA && start >= inode->i_size)
2982			ret = -ENXIO;
 
 
 
 
2983		else
2984			*offset = min_t(loff_t, start, inode->i_size);
2985	}
2986	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2987			     &cached_state, GFP_NOFS);
2988	return ret;
2989}
2990
2991static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2992{
2993	struct inode *inode = file->f_mapping->host;
2994	int ret;
2995
2996	inode_lock(inode);
2997	switch (whence) {
2998	case SEEK_END:
2999	case SEEK_CUR:
3000		offset = generic_file_llseek(file, offset, whence);
3001		goto out;
3002	case SEEK_DATA:
3003	case SEEK_HOLE:
3004		if (offset >= i_size_read(inode)) {
3005			inode_unlock(inode);
3006			return -ENXIO;
3007		}
3008
3009		ret = find_desired_extent(inode, &offset, whence);
3010		if (ret) {
3011			inode_unlock(inode);
3012			return ret;
3013		}
3014	}
3015
3016	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3017out:
3018	inode_unlock(inode);
3019	return offset;
 
 
 
 
 
 
3020}
3021
3022const struct file_operations btrfs_file_operations = {
3023	.llseek		= btrfs_file_llseek,
3024	.read_iter      = generic_file_read_iter,
3025	.splice_read	= generic_file_splice_read,
3026	.write_iter	= btrfs_file_write_iter,
 
3027	.mmap		= btrfs_file_mmap,
3028	.open		= generic_file_open,
3029	.release	= btrfs_release_file,
3030	.fsync		= btrfs_sync_file,
3031	.fallocate	= btrfs_fallocate,
3032	.unlocked_ioctl	= btrfs_ioctl,
3033#ifdef CONFIG_COMPAT
3034	.compat_ioctl	= btrfs_compat_ioctl,
3035#endif
3036	.clone_file_range = btrfs_clone_file_range,
3037	.dedupe_file_range = btrfs_dedupe_file_range,
3038};
3039
3040void btrfs_auto_defrag_exit(void)
3041{
3042	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3043}
3044
3045int btrfs_auto_defrag_init(void)
3046{
3047	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3048					sizeof(struct inode_defrag), 0,
3049					SLAB_MEM_SPREAD,
3050					NULL);
3051	if (!btrfs_inode_defrag_cachep)
3052		return -ENOMEM;
3053
3054	return 0;
3055}
3056
3057int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3058{
3059	int ret;
3060
3061	/*
3062	 * So with compression we will find and lock a dirty page and clear the
3063	 * first one as dirty, setup an async extent, and immediately return
3064	 * with the entire range locked but with nobody actually marked with
3065	 * writeback.  So we can't just filemap_write_and_wait_range() and
3066	 * expect it to work since it will just kick off a thread to do the
3067	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3068	 * since it will wait on the page lock, which won't be unlocked until
3069	 * after the pages have been marked as writeback and so we're good to go
3070	 * from there.  We have to do this otherwise we'll miss the ordered
3071	 * extents and that results in badness.  Please Josef, do not think you
3072	 * know better and pull this out at some point in the future, it is
3073	 * right and you are wrong.
3074	 */
3075	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3076	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3077			     &BTRFS_I(inode)->runtime_flags))
3078		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3079
3080	return ret;
3081}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/pagemap.h>
 
   8#include <linux/time.h>
   9#include <linux/init.h>
  10#include <linux/string.h>
  11#include <linux/backing-dev.h>
 
  12#include <linux/falloc.h>
 
  13#include <linux/writeback.h>
  14#include <linux/compat.h>
  15#include <linux/slab.h>
  16#include <linux/btrfs.h>
  17#include <linux/uio.h>
  18#include <linux/iversion.h>
  19#include "ctree.h"
  20#include "disk-io.h"
  21#include "transaction.h"
  22#include "btrfs_inode.h"
  23#include "print-tree.h"
  24#include "tree-log.h"
  25#include "locking.h"
  26#include "volumes.h"
  27#include "qgroup.h"
  28#include "compression.h"
  29#include "delalloc-space.h"
  30#include "reflink.h"
  31
  32static struct kmem_cache *btrfs_inode_defrag_cachep;
  33/*
  34 * when auto defrag is enabled we
  35 * queue up these defrag structs to remember which
  36 * inodes need defragging passes
  37 */
  38struct inode_defrag {
  39	struct rb_node rb_node;
  40	/* objectid */
  41	u64 ino;
  42	/*
  43	 * transid where the defrag was added, we search for
  44	 * extents newer than this
  45	 */
  46	u64 transid;
  47
  48	/* root objectid */
  49	u64 root;
  50
  51	/* last offset we were able to defrag */
  52	u64 last_offset;
  53
  54	/* if we've wrapped around back to zero once already */
  55	int cycled;
  56};
  57
  58static int __compare_inode_defrag(struct inode_defrag *defrag1,
  59				  struct inode_defrag *defrag2)
  60{
  61	if (defrag1->root > defrag2->root)
  62		return 1;
  63	else if (defrag1->root < defrag2->root)
  64		return -1;
  65	else if (defrag1->ino > defrag2->ino)
  66		return 1;
  67	else if (defrag1->ino < defrag2->ino)
  68		return -1;
  69	else
  70		return 0;
  71}
  72
  73/* pop a record for an inode into the defrag tree.  The lock
  74 * must be held already
  75 *
  76 * If you're inserting a record for an older transid than an
  77 * existing record, the transid already in the tree is lowered
  78 *
  79 * If an existing record is found the defrag item you
  80 * pass in is freed
  81 */
  82static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
  83				    struct inode_defrag *defrag)
  84{
  85	struct btrfs_fs_info *fs_info = inode->root->fs_info;
  86	struct inode_defrag *entry;
  87	struct rb_node **p;
  88	struct rb_node *parent = NULL;
  89	int ret;
  90
  91	p = &fs_info->defrag_inodes.rb_node;
  92	while (*p) {
  93		parent = *p;
  94		entry = rb_entry(parent, struct inode_defrag, rb_node);
  95
  96		ret = __compare_inode_defrag(defrag, entry);
  97		if (ret < 0)
  98			p = &parent->rb_left;
  99		else if (ret > 0)
 100			p = &parent->rb_right;
 101		else {
 102			/* if we're reinserting an entry for
 103			 * an old defrag run, make sure to
 104			 * lower the transid of our existing record
 105			 */
 106			if (defrag->transid < entry->transid)
 107				entry->transid = defrag->transid;
 108			if (defrag->last_offset > entry->last_offset)
 109				entry->last_offset = defrag->last_offset;
 110			return -EEXIST;
 111		}
 112	}
 113	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
 114	rb_link_node(&defrag->rb_node, parent, p);
 115	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
 116	return 0;
 117}
 118
 119static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
 120{
 121	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
 122		return 0;
 123
 124	if (btrfs_fs_closing(fs_info))
 125		return 0;
 126
 127	return 1;
 128}
 129
 130/*
 131 * insert a defrag record for this inode if auto defrag is
 132 * enabled
 133 */
 134int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 135			   struct btrfs_inode *inode)
 136{
 137	struct btrfs_root *root = inode->root;
 138	struct btrfs_fs_info *fs_info = root->fs_info;
 139	struct inode_defrag *defrag;
 140	u64 transid;
 141	int ret;
 142
 143	if (!__need_auto_defrag(fs_info))
 144		return 0;
 145
 146	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
 147		return 0;
 148
 149	if (trans)
 150		transid = trans->transid;
 151	else
 152		transid = inode->root->last_trans;
 153
 154	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 155	if (!defrag)
 156		return -ENOMEM;
 157
 158	defrag->ino = btrfs_ino(inode);
 159	defrag->transid = transid;
 160	defrag->root = root->root_key.objectid;
 161
 162	spin_lock(&fs_info->defrag_inodes_lock);
 163	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
 164		/*
 165		 * If we set IN_DEFRAG flag and evict the inode from memory,
 166		 * and then re-read this inode, this new inode doesn't have
 167		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 168		 */
 169		ret = __btrfs_add_inode_defrag(inode, defrag);
 170		if (ret)
 171			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 172	} else {
 173		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 174	}
 175	spin_unlock(&fs_info->defrag_inodes_lock);
 176	return 0;
 177}
 178
 179/*
 180 * Requeue the defrag object. If there is a defrag object that points to
 181 * the same inode in the tree, we will merge them together (by
 182 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 183 */
 184static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
 185				       struct inode_defrag *defrag)
 186{
 187	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 188	int ret;
 189
 190	if (!__need_auto_defrag(fs_info))
 191		goto out;
 192
 193	/*
 194	 * Here we don't check the IN_DEFRAG flag, because we need merge
 195	 * them together.
 196	 */
 197	spin_lock(&fs_info->defrag_inodes_lock);
 198	ret = __btrfs_add_inode_defrag(inode, defrag);
 199	spin_unlock(&fs_info->defrag_inodes_lock);
 200	if (ret)
 201		goto out;
 202	return;
 203out:
 204	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 205}
 206
 207/*
 208 * pick the defragable inode that we want, if it doesn't exist, we will get
 209 * the next one.
 210 */
 211static struct inode_defrag *
 212btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 213{
 214	struct inode_defrag *entry = NULL;
 215	struct inode_defrag tmp;
 216	struct rb_node *p;
 217	struct rb_node *parent = NULL;
 218	int ret;
 219
 220	tmp.ino = ino;
 221	tmp.root = root;
 222
 223	spin_lock(&fs_info->defrag_inodes_lock);
 224	p = fs_info->defrag_inodes.rb_node;
 225	while (p) {
 226		parent = p;
 227		entry = rb_entry(parent, struct inode_defrag, rb_node);
 228
 229		ret = __compare_inode_defrag(&tmp, entry);
 230		if (ret < 0)
 231			p = parent->rb_left;
 232		else if (ret > 0)
 233			p = parent->rb_right;
 234		else
 235			goto out;
 236	}
 237
 238	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 239		parent = rb_next(parent);
 240		if (parent)
 241			entry = rb_entry(parent, struct inode_defrag, rb_node);
 242		else
 243			entry = NULL;
 244	}
 245out:
 246	if (entry)
 247		rb_erase(parent, &fs_info->defrag_inodes);
 248	spin_unlock(&fs_info->defrag_inodes_lock);
 249	return entry;
 250}
 251
 252void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 253{
 254	struct inode_defrag *defrag;
 255	struct rb_node *node;
 256
 257	spin_lock(&fs_info->defrag_inodes_lock);
 258	node = rb_first(&fs_info->defrag_inodes);
 259	while (node) {
 260		rb_erase(node, &fs_info->defrag_inodes);
 261		defrag = rb_entry(node, struct inode_defrag, rb_node);
 262		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 263
 264		cond_resched_lock(&fs_info->defrag_inodes_lock);
 265
 266		node = rb_first(&fs_info->defrag_inodes);
 267	}
 268	spin_unlock(&fs_info->defrag_inodes_lock);
 269}
 270
 271#define BTRFS_DEFRAG_BATCH	1024
 272
 273static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 274				    struct inode_defrag *defrag)
 275{
 276	struct btrfs_root *inode_root;
 277	struct inode *inode;
 
 278	struct btrfs_ioctl_defrag_range_args range;
 279	int num_defrag;
 
 280	int ret;
 281
 282	/* get the inode */
 283	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
 
 
 
 
 
 
 284	if (IS_ERR(inode_root)) {
 285		ret = PTR_ERR(inode_root);
 286		goto cleanup;
 287	}
 288
 289	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
 290	btrfs_put_root(inode_root);
 
 
 291	if (IS_ERR(inode)) {
 292		ret = PTR_ERR(inode);
 293		goto cleanup;
 294	}
 
 295
 296	/* do a chunk of defrag */
 297	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 298	memset(&range, 0, sizeof(range));
 299	range.len = (u64)-1;
 300	range.start = defrag->last_offset;
 301
 302	sb_start_write(fs_info->sb);
 303	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 304				       BTRFS_DEFRAG_BATCH);
 305	sb_end_write(fs_info->sb);
 306	/*
 307	 * if we filled the whole defrag batch, there
 308	 * must be more work to do.  Queue this defrag
 309	 * again
 310	 */
 311	if (num_defrag == BTRFS_DEFRAG_BATCH) {
 312		defrag->last_offset = range.start;
 313		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 314	} else if (defrag->last_offset && !defrag->cycled) {
 315		/*
 316		 * we didn't fill our defrag batch, but
 317		 * we didn't start at zero.  Make sure we loop
 318		 * around to the start of the file.
 319		 */
 320		defrag->last_offset = 0;
 321		defrag->cycled = 1;
 322		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 323	} else {
 324		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 325	}
 326
 327	iput(inode);
 328	return 0;
 329cleanup:
 
 330	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 331	return ret;
 332}
 333
 334/*
 335 * run through the list of inodes in the FS that need
 336 * defragging
 337 */
 338int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 339{
 340	struct inode_defrag *defrag;
 341	u64 first_ino = 0;
 342	u64 root_objectid = 0;
 343
 344	atomic_inc(&fs_info->defrag_running);
 345	while (1) {
 346		/* Pause the auto defragger. */
 347		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 348			     &fs_info->fs_state))
 349			break;
 350
 351		if (!__need_auto_defrag(fs_info))
 352			break;
 353
 354		/* find an inode to defrag */
 355		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 356						 first_ino);
 357		if (!defrag) {
 358			if (root_objectid || first_ino) {
 359				root_objectid = 0;
 360				first_ino = 0;
 361				continue;
 362			} else {
 363				break;
 364			}
 365		}
 366
 367		first_ino = defrag->ino + 1;
 368		root_objectid = defrag->root;
 369
 370		__btrfs_run_defrag_inode(fs_info, defrag);
 371	}
 372	atomic_dec(&fs_info->defrag_running);
 373
 374	/*
 375	 * during unmount, we use the transaction_wait queue to
 376	 * wait for the defragger to stop
 377	 */
 378	wake_up(&fs_info->transaction_wait);
 379	return 0;
 380}
 381
 382/* simple helper to fault in pages and copy.  This should go away
 383 * and be replaced with calls into generic code.
 384 */
 385static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 386					 struct page **prepared_pages,
 387					 struct iov_iter *i)
 388{
 389	size_t copied = 0;
 390	size_t total_copied = 0;
 391	int pg = 0;
 392	int offset = offset_in_page(pos);
 393
 394	while (write_bytes > 0) {
 395		size_t count = min_t(size_t,
 396				     PAGE_SIZE - offset, write_bytes);
 397		struct page *page = prepared_pages[pg];
 398		/*
 399		 * Copy data from userspace to the current page
 400		 */
 401		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 402
 403		/* Flush processor's dcache for this page */
 404		flush_dcache_page(page);
 405
 406		/*
 407		 * if we get a partial write, we can end up with
 408		 * partially up to date pages.  These add
 409		 * a lot of complexity, so make sure they don't
 410		 * happen by forcing this copy to be retried.
 411		 *
 412		 * The rest of the btrfs_file_write code will fall
 413		 * back to page at a time copies after we return 0.
 414		 */
 415		if (!PageUptodate(page) && copied < count)
 416			copied = 0;
 417
 418		iov_iter_advance(i, copied);
 419		write_bytes -= copied;
 420		total_copied += copied;
 421
 422		/* Return to btrfs_file_write_iter to fault page */
 423		if (unlikely(copied == 0))
 424			break;
 425
 426		if (copied < PAGE_SIZE - offset) {
 427			offset += copied;
 428		} else {
 429			pg++;
 430			offset = 0;
 431		}
 432	}
 433	return total_copied;
 434}
 435
 436/*
 437 * unlocks pages after btrfs_file_write is done with them
 438 */
 439static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 440{
 441	size_t i;
 442	for (i = 0; i < num_pages; i++) {
 443		/* page checked is some magic around finding pages that
 444		 * have been modified without going through btrfs_set_page_dirty
 445		 * clear it here. There should be no need to mark the pages
 446		 * accessed as prepare_pages should have marked them accessed
 447		 * in prepare_pages via find_or_create_page()
 448		 */
 449		ClearPageChecked(pages[i]);
 450		unlock_page(pages[i]);
 451		put_page(pages[i]);
 452	}
 453}
 454
 455static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
 456					 const u64 start,
 457					 const u64 len,
 458					 struct extent_state **cached_state)
 459{
 460	u64 search_start = start;
 461	const u64 end = start + len - 1;
 462
 463	while (search_start < end) {
 464		const u64 search_len = end - search_start + 1;
 465		struct extent_map *em;
 466		u64 em_len;
 467		int ret = 0;
 468
 469		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
 470		if (IS_ERR(em))
 471			return PTR_ERR(em);
 472
 473		if (em->block_start != EXTENT_MAP_HOLE)
 474			goto next;
 475
 476		em_len = em->len;
 477		if (em->start < search_start)
 478			em_len -= search_start - em->start;
 479		if (em_len > search_len)
 480			em_len = search_len;
 481
 482		ret = set_extent_bit(&inode->io_tree, search_start,
 483				     search_start + em_len - 1,
 484				     EXTENT_DELALLOC_NEW,
 485				     NULL, cached_state, GFP_NOFS);
 486next:
 487		search_start = extent_map_end(em);
 488		free_extent_map(em);
 489		if (ret)
 490			return ret;
 491	}
 492	return 0;
 493}
 494
 495/*
 496 * after copy_from_user, pages need to be dirtied and we need to make
 497 * sure holes are created between the current EOF and the start of
 498 * any next extents (if required).
 499 *
 500 * this also makes the decision about creating an inline extent vs
 501 * doing real data extents, marking pages dirty and delalloc as required.
 502 */
 503int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
 504		      size_t num_pages, loff_t pos, size_t write_bytes,
 505		      struct extent_state **cached)
 506{
 507	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 508	int err = 0;
 509	int i;
 510	u64 num_bytes;
 511	u64 start_pos;
 512	u64 end_of_last_block;
 513	u64 end_pos = pos + write_bytes;
 514	loff_t isize = i_size_read(&inode->vfs_inode);
 515	unsigned int extra_bits = 0;
 516
 517	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
 518	num_bytes = round_up(write_bytes + pos - start_pos,
 519			     fs_info->sectorsize);
 520
 521	end_of_last_block = start_pos + num_bytes - 1;
 522
 523	/*
 524	 * The pages may have already been dirty, clear out old accounting so
 525	 * we can set things up properly
 526	 */
 527	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
 528			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 529			 0, 0, cached);
 530
 531	if (!btrfs_is_free_space_inode(inode)) {
 532		if (start_pos >= isize &&
 533		    !(inode->flags & BTRFS_INODE_PREALLOC)) {
 534			/*
 535			 * There can't be any extents following eof in this case
 536			 * so just set the delalloc new bit for the range
 537			 * directly.
 538			 */
 539			extra_bits |= EXTENT_DELALLOC_NEW;
 540		} else {
 541			err = btrfs_find_new_delalloc_bytes(inode, start_pos,
 542							    num_bytes, cached);
 543			if (err)
 544				return err;
 545		}
 546	}
 547
 548	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 549					extra_bits, cached);
 550	if (err)
 551		return err;
 552
 553	for (i = 0; i < num_pages; i++) {
 554		struct page *p = pages[i];
 555		SetPageUptodate(p);
 556		ClearPageChecked(p);
 557		set_page_dirty(p);
 558	}
 559
 560	/*
 561	 * we've only changed i_size in ram, and we haven't updated
 562	 * the disk i_size.  There is no need to log the inode
 563	 * at this time.
 564	 */
 565	if (end_pos > isize)
 566		i_size_write(&inode->vfs_inode, end_pos);
 567	return 0;
 568}
 569
 570/*
 571 * this drops all the extents in the cache that intersect the range
 572 * [start, end].  Existing extents are split as required.
 573 */
 574void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
 575			     int skip_pinned)
 576{
 577	struct extent_map *em;
 578	struct extent_map *split = NULL;
 579	struct extent_map *split2 = NULL;
 580	struct extent_map_tree *em_tree = &inode->extent_tree;
 581	u64 len = end - start + 1;
 582	u64 gen;
 583	int ret;
 584	int testend = 1;
 585	unsigned long flags;
 586	int compressed = 0;
 587	bool modified;
 588
 589	WARN_ON(end < start);
 590	if (end == (u64)-1) {
 591		len = (u64)-1;
 592		testend = 0;
 593	}
 594	while (1) {
 595		int no_splits = 0;
 596
 597		modified = false;
 598		if (!split)
 599			split = alloc_extent_map();
 600		if (!split2)
 601			split2 = alloc_extent_map();
 602		if (!split || !split2)
 603			no_splits = 1;
 604
 605		write_lock(&em_tree->lock);
 606		em = lookup_extent_mapping(em_tree, start, len);
 607		if (!em) {
 608			write_unlock(&em_tree->lock);
 609			break;
 610		}
 611		flags = em->flags;
 612		gen = em->generation;
 613		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 614			if (testend && em->start + em->len >= start + len) {
 615				free_extent_map(em);
 616				write_unlock(&em_tree->lock);
 617				break;
 618			}
 619			start = em->start + em->len;
 620			if (testend)
 621				len = start + len - (em->start + em->len);
 622			free_extent_map(em);
 623			write_unlock(&em_tree->lock);
 624			continue;
 625		}
 626		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 627		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 628		clear_bit(EXTENT_FLAG_LOGGING, &flags);
 629		modified = !list_empty(&em->list);
 630		if (no_splits)
 631			goto next;
 632
 633		if (em->start < start) {
 634			split->start = em->start;
 635			split->len = start - em->start;
 636
 637			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 638				split->orig_start = em->orig_start;
 639				split->block_start = em->block_start;
 640
 641				if (compressed)
 642					split->block_len = em->block_len;
 643				else
 644					split->block_len = split->len;
 645				split->orig_block_len = max(split->block_len,
 646						em->orig_block_len);
 647				split->ram_bytes = em->ram_bytes;
 648			} else {
 649				split->orig_start = split->start;
 650				split->block_len = 0;
 651				split->block_start = em->block_start;
 652				split->orig_block_len = 0;
 653				split->ram_bytes = split->len;
 654			}
 655
 656			split->generation = gen;
 
 657			split->flags = flags;
 658			split->compress_type = em->compress_type;
 659			replace_extent_mapping(em_tree, em, split, modified);
 660			free_extent_map(split);
 661			split = split2;
 662			split2 = NULL;
 663		}
 664		if (testend && em->start + em->len > start + len) {
 665			u64 diff = start + len - em->start;
 666
 667			split->start = start + len;
 668			split->len = em->start + em->len - (start + len);
 
 669			split->flags = flags;
 670			split->compress_type = em->compress_type;
 671			split->generation = gen;
 672
 673			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 674				split->orig_block_len = max(em->block_len,
 675						    em->orig_block_len);
 676
 677				split->ram_bytes = em->ram_bytes;
 678				if (compressed) {
 679					split->block_len = em->block_len;
 680					split->block_start = em->block_start;
 681					split->orig_start = em->orig_start;
 682				} else {
 683					split->block_len = split->len;
 684					split->block_start = em->block_start
 685						+ diff;
 686					split->orig_start = em->orig_start;
 687				}
 688			} else {
 689				split->ram_bytes = split->len;
 690				split->orig_start = split->start;
 691				split->block_len = 0;
 692				split->block_start = em->block_start;
 693				split->orig_block_len = 0;
 694			}
 695
 696			if (extent_map_in_tree(em)) {
 697				replace_extent_mapping(em_tree, em, split,
 698						       modified);
 699			} else {
 700				ret = add_extent_mapping(em_tree, split,
 701							 modified);
 702				ASSERT(ret == 0); /* Logic error */
 703			}
 704			free_extent_map(split);
 705			split = NULL;
 706		}
 707next:
 708		if (extent_map_in_tree(em))
 709			remove_extent_mapping(em_tree, em);
 710		write_unlock(&em_tree->lock);
 711
 712		/* once for us */
 713		free_extent_map(em);
 714		/* once for the tree*/
 715		free_extent_map(em);
 716	}
 717	if (split)
 718		free_extent_map(split);
 719	if (split2)
 720		free_extent_map(split2);
 721}
 722
 723/*
 724 * this is very complex, but the basic idea is to drop all extents
 725 * in the range start - end.  hint_block is filled in with a block number
 726 * that would be a good hint to the block allocator for this file.
 727 *
 728 * If an extent intersects the range but is not entirely inside the range
 729 * it is either truncated or split.  Anything entirely inside the range
 730 * is deleted from the tree.
 731 */
 732int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 733			 struct btrfs_root *root, struct btrfs_inode *inode,
 734			 struct btrfs_path *path, u64 start, u64 end,
 735			 u64 *drop_end, int drop_cache,
 736			 int replace_extent,
 737			 u32 extent_item_size,
 738			 int *key_inserted)
 739{
 740	struct btrfs_fs_info *fs_info = root->fs_info;
 741	struct extent_buffer *leaf;
 742	struct btrfs_file_extent_item *fi;
 743	struct btrfs_ref ref = { 0 };
 744	struct btrfs_key key;
 745	struct btrfs_key new_key;
 746	struct inode *vfs_inode = &inode->vfs_inode;
 747	u64 ino = btrfs_ino(inode);
 748	u64 search_start = start;
 749	u64 disk_bytenr = 0;
 750	u64 num_bytes = 0;
 751	u64 extent_offset = 0;
 752	u64 extent_end = 0;
 753	u64 last_end = start;
 754	int del_nr = 0;
 755	int del_slot = 0;
 756	int extent_type;
 757	int recow;
 758	int ret;
 759	int modify_tree = -1;
 760	int update_refs;
 761	int found = 0;
 762	int leafs_visited = 0;
 763
 764	if (drop_cache)
 765		btrfs_drop_extent_cache(inode, start, end - 1, 0);
 766
 767	if (start >= inode->disk_i_size && !replace_extent)
 768		modify_tree = 0;
 769
 770	update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
 771		       root == fs_info->tree_root);
 772	while (1) {
 773		recow = 0;
 774		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 775					       search_start, modify_tree);
 776		if (ret < 0)
 777			break;
 778		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 779			leaf = path->nodes[0];
 780			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 781			if (key.objectid == ino &&
 782			    key.type == BTRFS_EXTENT_DATA_KEY)
 783				path->slots[0]--;
 784		}
 785		ret = 0;
 786		leafs_visited++;
 787next_slot:
 788		leaf = path->nodes[0];
 789		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 790			BUG_ON(del_nr > 0);
 791			ret = btrfs_next_leaf(root, path);
 792			if (ret < 0)
 793				break;
 794			if (ret > 0) {
 795				ret = 0;
 796				break;
 797			}
 798			leafs_visited++;
 799			leaf = path->nodes[0];
 800			recow = 1;
 801		}
 802
 803		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 804
 805		if (key.objectid > ino)
 806			break;
 807		if (WARN_ON_ONCE(key.objectid < ino) ||
 808		    key.type < BTRFS_EXTENT_DATA_KEY) {
 809			ASSERT(del_nr == 0);
 810			path->slots[0]++;
 811			goto next_slot;
 812		}
 813		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 814			break;
 815
 816		fi = btrfs_item_ptr(leaf, path->slots[0],
 817				    struct btrfs_file_extent_item);
 818		extent_type = btrfs_file_extent_type(leaf, fi);
 819
 820		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 821		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 822			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 823			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 824			extent_offset = btrfs_file_extent_offset(leaf, fi);
 825			extent_end = key.offset +
 826				btrfs_file_extent_num_bytes(leaf, fi);
 827		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 828			extent_end = key.offset +
 829				btrfs_file_extent_ram_bytes(leaf, fi);
 
 830		} else {
 831			/* can't happen */
 832			BUG();
 833		}
 834
 835		/*
 836		 * Don't skip extent items representing 0 byte lengths. They
 837		 * used to be created (bug) if while punching holes we hit
 838		 * -ENOSPC condition. So if we find one here, just ensure we
 839		 * delete it, otherwise we would insert a new file extent item
 840		 * with the same key (offset) as that 0 bytes length file
 841		 * extent item in the call to setup_items_for_insert() later
 842		 * in this function.
 843		 */
 844		if (extent_end == key.offset && extent_end >= search_start) {
 845			last_end = extent_end;
 846			goto delete_extent_item;
 847		}
 848
 849		if (extent_end <= search_start) {
 850			path->slots[0]++;
 851			goto next_slot;
 852		}
 853
 854		found = 1;
 855		search_start = max(key.offset, start);
 856		if (recow || !modify_tree) {
 857			modify_tree = -1;
 858			btrfs_release_path(path);
 859			continue;
 860		}
 861
 862		/*
 863		 *     | - range to drop - |
 864		 *  | -------- extent -------- |
 865		 */
 866		if (start > key.offset && end < extent_end) {
 867			BUG_ON(del_nr > 0);
 868			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 869				ret = -EOPNOTSUPP;
 870				break;
 871			}
 872
 873			memcpy(&new_key, &key, sizeof(new_key));
 874			new_key.offset = start;
 875			ret = btrfs_duplicate_item(trans, root, path,
 876						   &new_key);
 877			if (ret == -EAGAIN) {
 878				btrfs_release_path(path);
 879				continue;
 880			}
 881			if (ret < 0)
 882				break;
 883
 884			leaf = path->nodes[0];
 885			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 886					    struct btrfs_file_extent_item);
 887			btrfs_set_file_extent_num_bytes(leaf, fi,
 888							start - key.offset);
 889
 890			fi = btrfs_item_ptr(leaf, path->slots[0],
 891					    struct btrfs_file_extent_item);
 892
 893			extent_offset += start - key.offset;
 894			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 895			btrfs_set_file_extent_num_bytes(leaf, fi,
 896							extent_end - start);
 897			btrfs_mark_buffer_dirty(leaf);
 898
 899			if (update_refs && disk_bytenr > 0) {
 900				btrfs_init_generic_ref(&ref,
 901						BTRFS_ADD_DELAYED_REF,
 902						disk_bytenr, num_bytes, 0);
 903				btrfs_init_data_ref(&ref,
 904						root->root_key.objectid,
 905						new_key.objectid,
 906						start - extent_offset);
 907				ret = btrfs_inc_extent_ref(trans, &ref);
 908				BUG_ON(ret); /* -ENOMEM */
 909			}
 910			key.offset = start;
 911		}
 912		/*
 913		 * From here on out we will have actually dropped something, so
 914		 * last_end can be updated.
 915		 */
 916		last_end = extent_end;
 917
 918		/*
 919		 *  | ---- range to drop ----- |
 920		 *      | -------- extent -------- |
 921		 */
 922		if (start <= key.offset && end < extent_end) {
 923			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 924				ret = -EOPNOTSUPP;
 925				break;
 926			}
 927
 928			memcpy(&new_key, &key, sizeof(new_key));
 929			new_key.offset = end;
 930			btrfs_set_item_key_safe(fs_info, path, &new_key);
 931
 932			extent_offset += end - key.offset;
 933			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 934			btrfs_set_file_extent_num_bytes(leaf, fi,
 935							extent_end - end);
 936			btrfs_mark_buffer_dirty(leaf);
 937			if (update_refs && disk_bytenr > 0)
 938				inode_sub_bytes(vfs_inode, end - key.offset);
 939			break;
 940		}
 941
 942		search_start = extent_end;
 943		/*
 944		 *       | ---- range to drop ----- |
 945		 *  | -------- extent -------- |
 946		 */
 947		if (start > key.offset && end >= extent_end) {
 948			BUG_ON(del_nr > 0);
 949			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 950				ret = -EOPNOTSUPP;
 951				break;
 952			}
 953
 954			btrfs_set_file_extent_num_bytes(leaf, fi,
 955							start - key.offset);
 956			btrfs_mark_buffer_dirty(leaf);
 957			if (update_refs && disk_bytenr > 0)
 958				inode_sub_bytes(vfs_inode, extent_end - start);
 959			if (end == extent_end)
 960				break;
 961
 962			path->slots[0]++;
 963			goto next_slot;
 964		}
 965
 966		/*
 967		 *  | ---- range to drop ----- |
 968		 *    | ------ extent ------ |
 969		 */
 970		if (start <= key.offset && end >= extent_end) {
 971delete_extent_item:
 972			if (del_nr == 0) {
 973				del_slot = path->slots[0];
 974				del_nr = 1;
 975			} else {
 976				BUG_ON(del_slot + del_nr != path->slots[0]);
 977				del_nr++;
 978			}
 979
 980			if (update_refs &&
 981			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 982				inode_sub_bytes(vfs_inode,
 983						extent_end - key.offset);
 984				extent_end = ALIGN(extent_end,
 985						   fs_info->sectorsize);
 986			} else if (update_refs && disk_bytenr > 0) {
 987				btrfs_init_generic_ref(&ref,
 988						BTRFS_DROP_DELAYED_REF,
 989						disk_bytenr, num_bytes, 0);
 990				btrfs_init_data_ref(&ref,
 991						root->root_key.objectid,
 992						key.objectid,
 993						key.offset - extent_offset);
 994				ret = btrfs_free_extent(trans, &ref);
 995				BUG_ON(ret); /* -ENOMEM */
 996				inode_sub_bytes(vfs_inode,
 997						extent_end - key.offset);
 998			}
 999
1000			if (end == extent_end)
1001				break;
1002
1003			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1004				path->slots[0]++;
1005				goto next_slot;
1006			}
1007
1008			ret = btrfs_del_items(trans, root, path, del_slot,
1009					      del_nr);
1010			if (ret) {
1011				btrfs_abort_transaction(trans, ret);
1012				break;
1013			}
1014
1015			del_nr = 0;
1016			del_slot = 0;
1017
1018			btrfs_release_path(path);
1019			continue;
1020		}
1021
1022		BUG();
1023	}
1024
1025	if (!ret && del_nr > 0) {
1026		/*
1027		 * Set path->slots[0] to first slot, so that after the delete
1028		 * if items are move off from our leaf to its immediate left or
1029		 * right neighbor leafs, we end up with a correct and adjusted
1030		 * path->slots[0] for our insertion (if replace_extent != 0).
1031		 */
1032		path->slots[0] = del_slot;
1033		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1034		if (ret)
1035			btrfs_abort_transaction(trans, ret);
1036	}
1037
1038	leaf = path->nodes[0];
1039	/*
1040	 * If btrfs_del_items() was called, it might have deleted a leaf, in
1041	 * which case it unlocked our path, so check path->locks[0] matches a
1042	 * write lock.
1043	 */
1044	if (!ret && replace_extent && leafs_visited == 1 &&
1045	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1046	     path->locks[0] == BTRFS_WRITE_LOCK) &&
1047	    btrfs_leaf_free_space(leaf) >=
1048	    sizeof(struct btrfs_item) + extent_item_size) {
1049
1050		key.objectid = ino;
1051		key.type = BTRFS_EXTENT_DATA_KEY;
1052		key.offset = start;
1053		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1054			struct btrfs_key slot_key;
1055
1056			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1057			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1058				path->slots[0]++;
1059		}
1060		setup_items_for_insert(root, path, &key,
1061				       &extent_item_size,
1062				       extent_item_size,
1063				       sizeof(struct btrfs_item) +
1064				       extent_item_size, 1);
1065		*key_inserted = 1;
1066	}
1067
1068	if (!replace_extent || !(*key_inserted))
1069		btrfs_release_path(path);
1070	if (drop_end)
1071		*drop_end = found ? min(end, last_end) : end;
1072	return ret;
1073}
1074
1075int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1076		       struct btrfs_root *root, struct inode *inode, u64 start,
1077		       u64 end, int drop_cache)
1078{
1079	struct btrfs_path *path;
1080	int ret;
1081
1082	path = btrfs_alloc_path();
1083	if (!path)
1084		return -ENOMEM;
1085	ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path, start,
1086				   end, NULL, drop_cache, 0, 0, NULL);
1087	btrfs_free_path(path);
1088	return ret;
1089}
1090
1091static int extent_mergeable(struct extent_buffer *leaf, int slot,
1092			    u64 objectid, u64 bytenr, u64 orig_offset,
1093			    u64 *start, u64 *end)
1094{
1095	struct btrfs_file_extent_item *fi;
1096	struct btrfs_key key;
1097	u64 extent_end;
1098
1099	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1100		return 0;
1101
1102	btrfs_item_key_to_cpu(leaf, &key, slot);
1103	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1104		return 0;
1105
1106	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1107	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1108	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1109	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1110	    btrfs_file_extent_compression(leaf, fi) ||
1111	    btrfs_file_extent_encryption(leaf, fi) ||
1112	    btrfs_file_extent_other_encoding(leaf, fi))
1113		return 0;
1114
1115	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1116	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1117		return 0;
1118
1119	*start = key.offset;
1120	*end = extent_end;
1121	return 1;
1122}
1123
1124/*
1125 * Mark extent in the range start - end as written.
1126 *
1127 * This changes extent type from 'pre-allocated' to 'regular'. If only
1128 * part of extent is marked as written, the extent will be split into
1129 * two or three.
1130 */
1131int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1132			      struct btrfs_inode *inode, u64 start, u64 end)
1133{
1134	struct btrfs_fs_info *fs_info = trans->fs_info;
1135	struct btrfs_root *root = inode->root;
1136	struct extent_buffer *leaf;
1137	struct btrfs_path *path;
1138	struct btrfs_file_extent_item *fi;
1139	struct btrfs_ref ref = { 0 };
1140	struct btrfs_key key;
1141	struct btrfs_key new_key;
1142	u64 bytenr;
1143	u64 num_bytes;
1144	u64 extent_end;
1145	u64 orig_offset;
1146	u64 other_start;
1147	u64 other_end;
1148	u64 split;
1149	int del_nr = 0;
1150	int del_slot = 0;
1151	int recow;
1152	int ret;
1153	u64 ino = btrfs_ino(inode);
1154
1155	path = btrfs_alloc_path();
1156	if (!path)
1157		return -ENOMEM;
1158again:
1159	recow = 0;
1160	split = start;
1161	key.objectid = ino;
1162	key.type = BTRFS_EXTENT_DATA_KEY;
1163	key.offset = split;
1164
1165	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1166	if (ret < 0)
1167		goto out;
1168	if (ret > 0 && path->slots[0] > 0)
1169		path->slots[0]--;
1170
1171	leaf = path->nodes[0];
1172	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1173	if (key.objectid != ino ||
1174	    key.type != BTRFS_EXTENT_DATA_KEY) {
1175		ret = -EINVAL;
1176		btrfs_abort_transaction(trans, ret);
1177		goto out;
1178	}
1179	fi = btrfs_item_ptr(leaf, path->slots[0],
1180			    struct btrfs_file_extent_item);
1181	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1182		ret = -EINVAL;
1183		btrfs_abort_transaction(trans, ret);
1184		goto out;
1185	}
1186	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1187	if (key.offset > start || extent_end < end) {
1188		ret = -EINVAL;
1189		btrfs_abort_transaction(trans, ret);
1190		goto out;
1191	}
1192
1193	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1194	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1195	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1196	memcpy(&new_key, &key, sizeof(new_key));
1197
1198	if (start == key.offset && end < extent_end) {
1199		other_start = 0;
1200		other_end = start;
1201		if (extent_mergeable(leaf, path->slots[0] - 1,
1202				     ino, bytenr, orig_offset,
1203				     &other_start, &other_end)) {
1204			new_key.offset = end;
1205			btrfs_set_item_key_safe(fs_info, path, &new_key);
1206			fi = btrfs_item_ptr(leaf, path->slots[0],
1207					    struct btrfs_file_extent_item);
1208			btrfs_set_file_extent_generation(leaf, fi,
1209							 trans->transid);
1210			btrfs_set_file_extent_num_bytes(leaf, fi,
1211							extent_end - end);
1212			btrfs_set_file_extent_offset(leaf, fi,
1213						     end - orig_offset);
1214			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1215					    struct btrfs_file_extent_item);
1216			btrfs_set_file_extent_generation(leaf, fi,
1217							 trans->transid);
1218			btrfs_set_file_extent_num_bytes(leaf, fi,
1219							end - other_start);
1220			btrfs_mark_buffer_dirty(leaf);
1221			goto out;
1222		}
1223	}
1224
1225	if (start > key.offset && end == extent_end) {
1226		other_start = end;
1227		other_end = 0;
1228		if (extent_mergeable(leaf, path->slots[0] + 1,
1229				     ino, bytenr, orig_offset,
1230				     &other_start, &other_end)) {
1231			fi = btrfs_item_ptr(leaf, path->slots[0],
1232					    struct btrfs_file_extent_item);
1233			btrfs_set_file_extent_num_bytes(leaf, fi,
1234							start - key.offset);
1235			btrfs_set_file_extent_generation(leaf, fi,
1236							 trans->transid);
1237			path->slots[0]++;
1238			new_key.offset = start;
1239			btrfs_set_item_key_safe(fs_info, path, &new_key);
1240
1241			fi = btrfs_item_ptr(leaf, path->slots[0],
1242					    struct btrfs_file_extent_item);
1243			btrfs_set_file_extent_generation(leaf, fi,
1244							 trans->transid);
1245			btrfs_set_file_extent_num_bytes(leaf, fi,
1246							other_end - start);
1247			btrfs_set_file_extent_offset(leaf, fi,
1248						     start - orig_offset);
1249			btrfs_mark_buffer_dirty(leaf);
1250			goto out;
1251		}
1252	}
1253
1254	while (start > key.offset || end < extent_end) {
1255		if (key.offset == start)
1256			split = end;
1257
1258		new_key.offset = split;
1259		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1260		if (ret == -EAGAIN) {
1261			btrfs_release_path(path);
1262			goto again;
1263		}
1264		if (ret < 0) {
1265			btrfs_abort_transaction(trans, ret);
1266			goto out;
1267		}
1268
1269		leaf = path->nodes[0];
1270		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1271				    struct btrfs_file_extent_item);
1272		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1273		btrfs_set_file_extent_num_bytes(leaf, fi,
1274						split - key.offset);
1275
1276		fi = btrfs_item_ptr(leaf, path->slots[0],
1277				    struct btrfs_file_extent_item);
1278
1279		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1280		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1281		btrfs_set_file_extent_num_bytes(leaf, fi,
1282						extent_end - split);
1283		btrfs_mark_buffer_dirty(leaf);
1284
1285		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1286				       num_bytes, 0);
1287		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1288				    orig_offset);
1289		ret = btrfs_inc_extent_ref(trans, &ref);
1290		if (ret) {
1291			btrfs_abort_transaction(trans, ret);
1292			goto out;
1293		}
1294
1295		if (split == start) {
1296			key.offset = start;
1297		} else {
1298			if (start != key.offset) {
1299				ret = -EINVAL;
1300				btrfs_abort_transaction(trans, ret);
1301				goto out;
1302			}
1303			path->slots[0]--;
1304			extent_end = end;
1305		}
1306		recow = 1;
1307	}
1308
1309	other_start = end;
1310	other_end = 0;
1311	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1312			       num_bytes, 0);
1313	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1314	if (extent_mergeable(leaf, path->slots[0] + 1,
1315			     ino, bytenr, orig_offset,
1316			     &other_start, &other_end)) {
1317		if (recow) {
1318			btrfs_release_path(path);
1319			goto again;
1320		}
1321		extent_end = other_end;
1322		del_slot = path->slots[0] + 1;
1323		del_nr++;
1324		ret = btrfs_free_extent(trans, &ref);
 
 
1325		if (ret) {
1326			btrfs_abort_transaction(trans, ret);
1327			goto out;
1328		}
1329	}
1330	other_start = 0;
1331	other_end = start;
1332	if (extent_mergeable(leaf, path->slots[0] - 1,
1333			     ino, bytenr, orig_offset,
1334			     &other_start, &other_end)) {
1335		if (recow) {
1336			btrfs_release_path(path);
1337			goto again;
1338		}
1339		key.offset = other_start;
1340		del_slot = path->slots[0];
1341		del_nr++;
1342		ret = btrfs_free_extent(trans, &ref);
 
 
1343		if (ret) {
1344			btrfs_abort_transaction(trans, ret);
1345			goto out;
1346		}
1347	}
1348	if (del_nr == 0) {
1349		fi = btrfs_item_ptr(leaf, path->slots[0],
1350			   struct btrfs_file_extent_item);
1351		btrfs_set_file_extent_type(leaf, fi,
1352					   BTRFS_FILE_EXTENT_REG);
1353		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1354		btrfs_mark_buffer_dirty(leaf);
1355	} else {
1356		fi = btrfs_item_ptr(leaf, del_slot - 1,
1357			   struct btrfs_file_extent_item);
1358		btrfs_set_file_extent_type(leaf, fi,
1359					   BTRFS_FILE_EXTENT_REG);
1360		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1361		btrfs_set_file_extent_num_bytes(leaf, fi,
1362						extent_end - key.offset);
1363		btrfs_mark_buffer_dirty(leaf);
1364
1365		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1366		if (ret < 0) {
1367			btrfs_abort_transaction(trans, ret);
1368			goto out;
1369		}
1370	}
1371out:
1372	btrfs_free_path(path);
1373	return 0;
1374}
1375
1376/*
1377 * on error we return an unlocked page and the error value
1378 * on success we return a locked page and 0
1379 */
1380static int prepare_uptodate_page(struct inode *inode,
1381				 struct page *page, u64 pos,
1382				 bool force_uptodate)
1383{
1384	int ret = 0;
1385
1386	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1387	    !PageUptodate(page)) {
1388		ret = btrfs_readpage(NULL, page);
1389		if (ret)
1390			return ret;
1391		lock_page(page);
1392		if (!PageUptodate(page)) {
1393			unlock_page(page);
1394			return -EIO;
1395		}
1396		if (page->mapping != inode->i_mapping) {
1397			unlock_page(page);
1398			return -EAGAIN;
1399		}
1400	}
1401	return 0;
1402}
1403
1404/*
1405 * this just gets pages into the page cache and locks them down.
1406 */
1407static noinline int prepare_pages(struct inode *inode, struct page **pages,
1408				  size_t num_pages, loff_t pos,
1409				  size_t write_bytes, bool force_uptodate)
1410{
1411	int i;
1412	unsigned long index = pos >> PAGE_SHIFT;
1413	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1414	int err = 0;
1415	int faili;
1416
1417	for (i = 0; i < num_pages; i++) {
1418again:
1419		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1420					       mask | __GFP_WRITE);
1421		if (!pages[i]) {
1422			faili = i - 1;
1423			err = -ENOMEM;
1424			goto fail;
1425		}
1426
1427		if (i == 0)
1428			err = prepare_uptodate_page(inode, pages[i], pos,
1429						    force_uptodate);
1430		if (!err && i == num_pages - 1)
1431			err = prepare_uptodate_page(inode, pages[i],
1432						    pos + write_bytes, false);
1433		if (err) {
1434			put_page(pages[i]);
1435			if (err == -EAGAIN) {
1436				err = 0;
1437				goto again;
1438			}
1439			faili = i - 1;
1440			goto fail;
1441		}
1442		wait_on_page_writeback(pages[i]);
1443	}
1444
1445	return 0;
1446fail:
1447	while (faili >= 0) {
1448		unlock_page(pages[faili]);
1449		put_page(pages[faili]);
1450		faili--;
1451	}
1452	return err;
1453
1454}
1455
1456/*
1457 * This function locks the extent and properly waits for data=ordered extents
1458 * to finish before allowing the pages to be modified if need.
1459 *
1460 * The return value:
1461 * 1 - the extent is locked
1462 * 0 - the extent is not locked, and everything is OK
1463 * -EAGAIN - need re-prepare the pages
1464 * the other < 0 number - Something wrong happens
1465 */
1466static noinline int
1467lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1468				size_t num_pages, loff_t pos,
1469				size_t write_bytes,
1470				u64 *lockstart, u64 *lockend,
1471				struct extent_state **cached_state)
1472{
1473	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1474	u64 start_pos;
1475	u64 last_pos;
1476	int i;
1477	int ret = 0;
1478
1479	start_pos = round_down(pos, fs_info->sectorsize);
1480	last_pos = start_pos
1481		+ round_up(pos + write_bytes - start_pos,
1482			   fs_info->sectorsize) - 1;
1483
1484	if (start_pos < inode->vfs_inode.i_size) {
1485		struct btrfs_ordered_extent *ordered;
1486
1487		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1488				cached_state);
1489		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1490						     last_pos - start_pos + 1);
1491		if (ordered &&
1492		    ordered->file_offset + ordered->num_bytes > start_pos &&
1493		    ordered->file_offset <= last_pos) {
1494			unlock_extent_cached(&inode->io_tree, start_pos,
1495					last_pos, cached_state);
 
1496			for (i = 0; i < num_pages; i++) {
1497				unlock_page(pages[i]);
1498				put_page(pages[i]);
1499			}
1500			btrfs_start_ordered_extent(&inode->vfs_inode,
1501					ordered, 1);
1502			btrfs_put_ordered_extent(ordered);
1503			return -EAGAIN;
1504		}
1505		if (ordered)
1506			btrfs_put_ordered_extent(ordered);
1507
 
 
 
 
1508		*lockstart = start_pos;
1509		*lockend = last_pos;
1510		ret = 1;
1511	}
1512
1513	/*
1514	 * It's possible the pages are dirty right now, but we don't want
1515	 * to clean them yet because copy_from_user may catch a page fault
1516	 * and we might have to fall back to one page at a time.  If that
1517	 * happens, we'll unlock these pages and we'd have a window where
1518	 * reclaim could sneak in and drop the once-dirty page on the floor
1519	 * without writing it.
1520	 *
1521	 * We have the pages locked and the extent range locked, so there's
1522	 * no way someone can start IO on any dirty pages in this range.
1523	 *
1524	 * We'll call btrfs_dirty_pages() later on, and that will flip around
1525	 * delalloc bits and dirty the pages as required.
1526	 */
1527	for (i = 0; i < num_pages; i++) {
 
 
1528		set_page_extent_mapped(pages[i]);
1529		WARN_ON(!PageLocked(pages[i]));
1530	}
1531
1532	return ret;
1533}
1534
1535static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1536			   size_t *write_bytes, bool nowait)
1537{
1538	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1539	struct btrfs_root *root = inode->root;
 
1540	u64 lockstart, lockend;
1541	u64 num_bytes;
1542	int ret;
1543
1544	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1545		return 0;
1546
1547	if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1548		return -EAGAIN;
1549
1550	lockstart = round_down(pos, fs_info->sectorsize);
1551	lockend = round_up(pos + *write_bytes,
1552			   fs_info->sectorsize) - 1;
1553	num_bytes = lockend - lockstart + 1;
1554
1555	if (nowait) {
1556		struct btrfs_ordered_extent *ordered;
1557
1558		if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1559			return -EAGAIN;
1560
 
 
1561		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1562						     num_bytes);
1563		if (ordered) {
1564			btrfs_put_ordered_extent(ordered);
1565			ret = -EAGAIN;
1566			goto out_unlock;
1567		}
1568	} else {
1569		btrfs_lock_and_flush_ordered_range(inode, lockstart,
1570						   lockend, NULL);
1571	}
1572
1573	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1574			NULL, NULL, NULL, false);
1575	if (ret <= 0) {
1576		ret = 0;
1577		if (!nowait)
1578			btrfs_drew_write_unlock(&root->snapshot_lock);
1579	} else {
1580		*write_bytes = min_t(size_t, *write_bytes ,
1581				     num_bytes - pos + lockstart);
1582	}
1583out_unlock:
1584	unlock_extent(&inode->io_tree, lockstart, lockend);
1585
1586	return ret;
1587}
1588
1589static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1590			      size_t *write_bytes)
1591{
1592	return check_can_nocow(inode, pos, write_bytes, true);
1593}
1594
1595/*
1596 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1597 *
1598 * @pos:	 File offset
1599 * @write_bytes: The length to write, will be updated to the nocow writeable
1600 *		 range
1601 *
1602 * This function will flush ordered extents in the range to ensure proper
1603 * nocow checks.
1604 *
1605 * Return:
1606 * >0		and update @write_bytes if we can do nocow write
1607 *  0		if we can't do nocow write
1608 * -EAGAIN	if we can't get the needed lock or there are ordered extents
1609 * 		for * (nowait == true) case
1610 * <0		if other error happened
1611 *
1612 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1613 */
1614int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1615			   size_t *write_bytes)
1616{
1617	return check_can_nocow(inode, pos, write_bytes, false);
1618}
1619
1620void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1621{
1622	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1623}
1624
1625static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1626					       struct iov_iter *i)
1627{
1628	struct file *file = iocb->ki_filp;
1629	loff_t pos = iocb->ki_pos;
1630	struct inode *inode = file_inode(file);
1631	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 
1632	struct page **pages = NULL;
1633	struct extent_changeset *data_reserved = NULL;
1634	u64 release_bytes = 0;
1635	u64 lockstart;
1636	u64 lockend;
1637	size_t num_written = 0;
1638	int nrptrs;
1639	int ret = 0;
1640	bool only_release_metadata = false;
1641	bool force_page_uptodate = false;
 
1642
1643	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1644			PAGE_SIZE / (sizeof(struct page *)));
1645	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1646	nrptrs = max(nrptrs, 8);
1647	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1648	if (!pages)
1649		return -ENOMEM;
1650
1651	while (iov_iter_count(i) > 0) {
1652		struct extent_state *cached_state = NULL;
1653		size_t offset = offset_in_page(pos);
1654		size_t sector_offset;
1655		size_t write_bytes = min(iov_iter_count(i),
1656					 nrptrs * (size_t)PAGE_SIZE -
1657					 offset);
1658		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1659						PAGE_SIZE);
1660		size_t reserve_bytes;
1661		size_t dirty_pages;
1662		size_t copied;
1663		size_t dirty_sectors;
1664		size_t num_sectors;
1665		int extents_locked;
1666
1667		WARN_ON(num_pages > nrptrs);
1668
1669		/*
1670		 * Fault pages before locking them in prepare_pages
1671		 * to avoid recursive lock
1672		 */
1673		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1674			ret = -EFAULT;
1675			break;
1676		}
1677
1678		only_release_metadata = false;
1679		sector_offset = pos & (fs_info->sectorsize - 1);
1680		reserve_bytes = round_up(write_bytes + sector_offset,
1681				fs_info->sectorsize);
1682
1683		extent_changeset_release(data_reserved);
1684		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1685						  &data_reserved, pos,
1686						  write_bytes);
1687		if (ret < 0) {
1688			if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1689						   &write_bytes) > 0) {
 
1690				/*
1691				 * For nodata cow case, no need to reserve
1692				 * data space.
1693				 */
1694				only_release_metadata = true;
1695				/*
1696				 * our prealloc extent may be smaller than
1697				 * write_bytes, so scale down.
1698				 */
1699				num_pages = DIV_ROUND_UP(write_bytes + offset,
1700							 PAGE_SIZE);
1701				reserve_bytes = round_up(write_bytes +
1702							 sector_offset,
1703							 fs_info->sectorsize);
1704			} else {
1705				break;
1706			}
1707		}
1708
1709		WARN_ON(reserve_bytes == 0);
1710		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1711				reserve_bytes);
1712		if (ret) {
1713			if (!only_release_metadata)
1714				btrfs_free_reserved_data_space(BTRFS_I(inode),
1715						data_reserved, pos,
1716						write_bytes);
1717			else
1718				btrfs_check_nocow_unlock(BTRFS_I(inode));
1719			break;
1720		}
1721
1722		release_bytes = reserve_bytes;
 
1723again:
1724		/*
1725		 * This is going to setup the pages array with the number of
1726		 * pages we want, so we don't really need to worry about the
1727		 * contents of pages from loop to loop
1728		 */
1729		ret = prepare_pages(inode, pages, num_pages,
1730				    pos, write_bytes,
1731				    force_page_uptodate);
1732		if (ret) {
1733			btrfs_delalloc_release_extents(BTRFS_I(inode),
1734						       reserve_bytes);
1735			break;
1736		}
1737
1738		extents_locked = lock_and_cleanup_extent_if_need(
1739				BTRFS_I(inode), pages,
1740				num_pages, pos, write_bytes, &lockstart,
1741				&lockend, &cached_state);
1742		if (extents_locked < 0) {
1743			if (extents_locked == -EAGAIN)
1744				goto again;
1745			btrfs_delalloc_release_extents(BTRFS_I(inode),
1746						       reserve_bytes);
1747			ret = extents_locked;
1748			break;
 
 
 
1749		}
1750
1751		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1752
1753		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1754		dirty_sectors = round_up(copied + sector_offset,
1755					fs_info->sectorsize);
1756		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1757
1758		/*
1759		 * if we have trouble faulting in the pages, fall
1760		 * back to one page at a time
1761		 */
1762		if (copied < write_bytes)
1763			nrptrs = 1;
1764
1765		if (copied == 0) {
1766			force_page_uptodate = true;
1767			dirty_sectors = 0;
1768			dirty_pages = 0;
1769		} else {
1770			force_page_uptodate = false;
1771			dirty_pages = DIV_ROUND_UP(copied + offset,
1772						   PAGE_SIZE);
1773		}
1774
 
 
 
 
 
 
 
 
1775		if (num_sectors > dirty_sectors) {
1776			/* release everything except the sectors we dirtied */
1777			release_bytes -= dirty_sectors <<
1778						fs_info->sb->s_blocksize_bits;
 
 
 
 
 
1779			if (only_release_metadata) {
1780				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1781							release_bytes, true);
1782			} else {
1783				u64 __pos;
1784
1785				__pos = round_down(pos,
1786						   fs_info->sectorsize) +
1787					(dirty_pages << PAGE_SHIFT);
1788				btrfs_delalloc_release_space(BTRFS_I(inode),
1789						data_reserved, __pos,
1790						release_bytes, true);
1791			}
1792		}
1793
1794		release_bytes = round_up(copied + sector_offset,
1795					fs_info->sectorsize);
1796
1797		if (copied > 0)
1798			ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1799						dirty_pages, pos, copied,
1800						&cached_state);
1801
1802		/*
1803		 * If we have not locked the extent range, because the range's
1804		 * start offset is >= i_size, we might still have a non-NULL
1805		 * cached extent state, acquired while marking the extent range
1806		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1807		 * possible cached extent state to avoid a memory leak.
1808		 */
1809		if (extents_locked)
1810			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1811					     lockstart, lockend, &cached_state);
1812		else
1813			free_extent_state(cached_state);
1814
1815		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1816		if (ret) {
1817			btrfs_drop_pages(pages, num_pages);
1818			break;
1819		}
1820
1821		release_bytes = 0;
1822		if (only_release_metadata)
1823			btrfs_check_nocow_unlock(BTRFS_I(inode));
1824
1825		if (only_release_metadata && copied > 0) {
1826			lockstart = round_down(pos,
1827					       fs_info->sectorsize);
1828			lockend = round_up(pos + copied,
1829					   fs_info->sectorsize) - 1;
1830
1831			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1832				       lockend, EXTENT_NORESERVE, NULL,
1833				       NULL, GFP_NOFS);
 
1834		}
1835
1836		btrfs_drop_pages(pages, num_pages);
1837
1838		cond_resched();
1839
1840		balance_dirty_pages_ratelimited(inode->i_mapping);
 
 
1841
1842		pos += copied;
1843		num_written += copied;
1844	}
1845
1846	kfree(pages);
1847
1848	if (release_bytes) {
1849		if (only_release_metadata) {
1850			btrfs_check_nocow_unlock(BTRFS_I(inode));
1851			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1852					release_bytes, true);
1853		} else {
1854			btrfs_delalloc_release_space(BTRFS_I(inode),
1855					data_reserved,
1856					round_down(pos, fs_info->sectorsize),
1857					release_bytes, true);
1858		}
1859	}
1860
1861	extent_changeset_free(data_reserved);
1862	return num_written ? num_written : ret;
1863}
1864
1865static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1866{
1867	struct file *file = iocb->ki_filp;
1868	struct inode *inode = file_inode(file);
1869	loff_t pos;
1870	ssize_t written;
1871	ssize_t written_buffered;
1872	loff_t endbyte;
1873	int err;
1874
1875	written = generic_file_direct_write(iocb, from);
1876
1877	if (written < 0 || !iov_iter_count(from))
1878		return written;
1879
1880	pos = iocb->ki_pos;
1881	written_buffered = btrfs_buffered_write(iocb, from);
1882	if (written_buffered < 0) {
1883		err = written_buffered;
1884		goto out;
1885	}
1886	/*
1887	 * Ensure all data is persisted. We want the next direct IO read to be
1888	 * able to read what was just written.
1889	 */
1890	endbyte = pos + written_buffered - 1;
1891	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1892	if (err)
1893		goto out;
1894	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1895	if (err)
1896		goto out;
1897	written += written_buffered;
1898	iocb->ki_pos = pos + written_buffered;
1899	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1900				 endbyte >> PAGE_SHIFT);
1901out:
1902	return written ? written : err;
1903}
1904
1905static void update_time_for_write(struct inode *inode)
1906{
1907	struct timespec64 now;
1908
1909	if (IS_NOCMTIME(inode))
1910		return;
1911
1912	now = current_time(inode);
1913	if (!timespec64_equal(&inode->i_mtime, &now))
1914		inode->i_mtime = now;
1915
1916	if (!timespec64_equal(&inode->i_ctime, &now))
1917		inode->i_ctime = now;
1918
1919	if (IS_I_VERSION(inode))
1920		inode_inc_iversion(inode);
1921}
1922
1923static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1924				    struct iov_iter *from)
1925{
1926	struct file *file = iocb->ki_filp;
1927	struct inode *inode = file_inode(file);
1928	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1929	struct btrfs_root *root = BTRFS_I(inode)->root;
1930	u64 start_pos;
1931	u64 end_pos;
1932	ssize_t num_written = 0;
1933	const bool sync = iocb->ki_flags & IOCB_DSYNC;
1934	ssize_t err;
1935	loff_t pos;
1936	size_t count;
1937	loff_t oldsize;
1938	int clean_page = 0;
1939
1940	if (!(iocb->ki_flags & IOCB_DIRECT) &&
1941	    (iocb->ki_flags & IOCB_NOWAIT))
1942		return -EOPNOTSUPP;
1943
1944	if (iocb->ki_flags & IOCB_NOWAIT) {
1945		if (!inode_trylock(inode))
1946			return -EAGAIN;
1947	} else {
1948		inode_lock(inode);
1949	}
1950
1951	err = generic_write_checks(iocb, from);
1952	if (err <= 0) {
1953		inode_unlock(inode);
1954		return err;
1955	}
1956
1957	pos = iocb->ki_pos;
1958	count = iov_iter_count(from);
1959	if (iocb->ki_flags & IOCB_NOWAIT) {
1960		size_t nocow_bytes = count;
1961
1962		/*
1963		 * We will allocate space in case nodatacow is not set,
1964		 * so bail
1965		 */
1966		if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes)
1967		    <= 0) {
1968			inode_unlock(inode);
1969			return -EAGAIN;
1970		}
1971		/*
1972		 * There are holes in the range or parts of the range that must
1973		 * be COWed (shared extents, RO block groups, etc), so just bail
1974		 * out.
1975		 */
1976		if (nocow_bytes < count) {
1977			inode_unlock(inode);
1978			return -EAGAIN;
1979		}
1980	}
1981
1982	current->backing_dev_info = inode_to_bdi(inode);
1983	err = file_remove_privs(file);
1984	if (err) {
1985		inode_unlock(inode);
1986		goto out;
1987	}
1988
1989	/*
1990	 * If BTRFS flips readonly due to some impossible error
1991	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1992	 * although we have opened a file as writable, we have
1993	 * to stop this write operation to ensure FS consistency.
1994	 */
1995	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1996		inode_unlock(inode);
1997		err = -EROFS;
1998		goto out;
1999	}
2000
2001	/*
2002	 * We reserve space for updating the inode when we reserve space for the
2003	 * extent we are going to write, so we will enospc out there.  We don't
2004	 * need to start yet another transaction to update the inode as we will
2005	 * update the inode when we finish writing whatever data we write.
2006	 */
2007	update_time_for_write(inode);
2008
 
 
2009	start_pos = round_down(pos, fs_info->sectorsize);
2010	oldsize = i_size_read(inode);
2011	if (start_pos > oldsize) {
2012		/* Expand hole size to cover write data, preventing empty gap */
2013		end_pos = round_up(pos + count,
2014				   fs_info->sectorsize);
2015		err = btrfs_cont_expand(inode, oldsize, end_pos);
2016		if (err) {
2017			inode_unlock(inode);
2018			goto out;
2019		}
2020		if (start_pos > round_up(oldsize, fs_info->sectorsize))
2021			clean_page = 1;
2022	}
2023
2024	if (sync)
2025		atomic_inc(&BTRFS_I(inode)->sync_writers);
2026
2027	if (iocb->ki_flags & IOCB_DIRECT) {
2028		num_written = __btrfs_direct_write(iocb, from);
2029	} else {
2030		num_written = btrfs_buffered_write(iocb, from);
2031		if (num_written > 0)
2032			iocb->ki_pos = pos + num_written;
2033		if (clean_page)
2034			pagecache_isize_extended(inode, oldsize,
2035						i_size_read(inode));
2036	}
2037
2038	inode_unlock(inode);
2039
2040	/*
2041	 * We also have to set last_sub_trans to the current log transid,
2042	 * otherwise subsequent syncs to a file that's been synced in this
2043	 * transaction will appear to have already occurred.
2044	 */
2045	spin_lock(&BTRFS_I(inode)->lock);
2046	BTRFS_I(inode)->last_sub_trans = root->log_transid;
2047	spin_unlock(&BTRFS_I(inode)->lock);
2048	if (num_written > 0)
2049		num_written = generic_write_sync(iocb, num_written);
2050
2051	if (sync)
2052		atomic_dec(&BTRFS_I(inode)->sync_writers);
2053out:
2054	current->backing_dev_info = NULL;
2055	return num_written ? num_written : err;
2056}
2057
2058int btrfs_release_file(struct inode *inode, struct file *filp)
2059{
2060	struct btrfs_file_private *private = filp->private_data;
2061
2062	if (private && private->filldir_buf)
2063		kfree(private->filldir_buf);
2064	kfree(private);
2065	filp->private_data = NULL;
2066
2067	/*
2068	 * ordered_data_close is set by setattr when we are about to truncate
2069	 * a file from a non-zero size to a zero size.  This tries to
2070	 * flush down new bytes that may have been written if the
2071	 * application were using truncate to replace a file in place.
2072	 */
2073	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2074			       &BTRFS_I(inode)->runtime_flags))
2075			filemap_flush(inode->i_mapping);
2076	return 0;
2077}
2078
2079static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2080{
2081	int ret;
2082	struct blk_plug plug;
2083
2084	/*
2085	 * This is only called in fsync, which would do synchronous writes, so
2086	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2087	 * multiple disks using raid profile, a large IO can be split to
2088	 * several segments of stripe length (currently 64K).
2089	 */
2090	blk_start_plug(&plug);
2091	atomic_inc(&BTRFS_I(inode)->sync_writers);
2092	ret = btrfs_fdatawrite_range(inode, start, end);
2093	atomic_dec(&BTRFS_I(inode)->sync_writers);
2094	blk_finish_plug(&plug);
2095
2096	return ret;
2097}
2098
2099/*
2100 * fsync call for both files and directories.  This logs the inode into
2101 * the tree log instead of forcing full commits whenever possible.
2102 *
2103 * It needs to call filemap_fdatawait so that all ordered extent updates are
2104 * in the metadata btree are up to date for copying to the log.
2105 *
2106 * It drops the inode mutex before doing the tree log commit.  This is an
2107 * important optimization for directories because holding the mutex prevents
2108 * new operations on the dir while we write to disk.
2109 */
2110int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2111{
2112	struct dentry *dentry = file_dentry(file);
2113	struct inode *inode = d_inode(dentry);
2114	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2115	struct btrfs_root *root = BTRFS_I(inode)->root;
2116	struct btrfs_trans_handle *trans;
2117	struct btrfs_log_ctx ctx;
2118	int ret = 0, err;
 
 
2119
 
 
 
 
 
2120	trace_btrfs_sync_file(file, datasync);
2121
2122	btrfs_init_log_ctx(&ctx, inode);
2123
2124	/*
2125	 * Set the range to full if the NO_HOLES feature is not enabled.
2126	 * This is to avoid missing file extent items representing holes after
2127	 * replaying the log.
2128	 */
2129	if (!btrfs_fs_incompat(fs_info, NO_HOLES)) {
2130		start = 0;
2131		end = LLONG_MAX;
2132	}
2133
2134	/*
2135	 * We write the dirty pages in the range and wait until they complete
2136	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2137	 * multi-task, and make the performance up.  See
2138	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2139	 */
2140	ret = start_ordered_ops(inode, start, end);
2141	if (ret)
2142		goto out;
2143
2144	inode_lock(inode);
2145
 
 
2146	/*
2147	 * We take the dio_sem here because the tree log stuff can race with
2148	 * lockless dio writes and get an extent map logged for an extent we
2149	 * never waited on.  We need it this high up for lockdep reasons.
2150	 */
2151	down_write(&BTRFS_I(inode)->dio_sem);
2152
2153	atomic_inc(&root->log_batch);
2154
2155	/*
2156	 * If the inode needs a full sync, make sure we use a full range to
2157	 * avoid log tree corruption, due to hole detection racing with ordered
2158	 * extent completion for adjacent ranges and races between logging and
2159	 * completion of ordered extents for adjancent ranges - both races
2160	 * could lead to file extent items in the log with overlapping ranges.
2161	 * Do this while holding the inode lock, to avoid races with other
2162	 * tasks.
2163	 */
2164	if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2165		     &BTRFS_I(inode)->runtime_flags)) {
2166		start = 0;
2167		end = LLONG_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168	}
2169
2170	/*
2171	 * Before we acquired the inode's lock, someone may have dirtied more
2172	 * pages in the target range. We need to make sure that writeback for
2173	 * any such pages does not start while we are logging the inode, because
2174	 * if it does, any of the following might happen when we are not doing a
2175	 * full inode sync:
2176	 *
2177	 * 1) We log an extent after its writeback finishes but before its
2178	 *    checksums are added to the csum tree, leading to -EIO errors
2179	 *    when attempting to read the extent after a log replay.
2180	 *
2181	 * 2) We can end up logging an extent before its writeback finishes.
2182	 *    Therefore after the log replay we will have a file extent item
2183	 *    pointing to an unwritten extent (and no data checksums as well).
2184	 *
2185	 * So trigger writeback for any eventual new dirty pages and then we
2186	 * wait for all ordered extents to complete below.
2187	 */
2188	ret = start_ordered_ops(inode, start, end);
2189	if (ret) {
2190		up_write(&BTRFS_I(inode)->dio_sem);
2191		inode_unlock(inode);
2192		goto out;
2193	}
 
2194
2195	/*
2196	 * We have to do this here to avoid the priority inversion of waiting on
2197	 * IO of a lower priority task while holding a transaction open.
 
 
 
 
 
 
 
 
 
 
 
2198	 *
2199	 * Also, the range length can be represented by u64, we have to do the
2200	 * typecasts to avoid signed overflow if it's [0, LLONG_MAX].
 
 
 
 
 
 
 
 
 
 
2201	 */
2202	ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
2203	if (ret) {
2204		up_write(&BTRFS_I(inode)->dio_sem);
2205		inode_unlock(inode);
2206		goto out;
2207	}
2208	atomic_inc(&root->log_batch);
2209
2210	smp_mb();
2211	if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2212	    BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
 
 
 
 
2213		/*
2214		 * We've had everything committed since the last time we were
2215		 * modified so clear this flag in case it was set for whatever
2216		 * reason, it's no longer relevant.
2217		 */
2218		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2219			  &BTRFS_I(inode)->runtime_flags);
2220		/*
2221		 * An ordered extent might have started before and completed
2222		 * already with io errors, in which case the inode was not
2223		 * updated and we end up here. So check the inode's mapping
2224		 * for any errors that might have happened since we last
2225		 * checked called fsync.
2226		 */
2227		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2228		up_write(&BTRFS_I(inode)->dio_sem);
2229		inode_unlock(inode);
2230		goto out;
2231	}
2232
2233	/*
 
 
 
 
 
 
2234	 * We use start here because we will need to wait on the IO to complete
2235	 * in btrfs_sync_log, which could require joining a transaction (for
2236	 * example checking cross references in the nocow path).  If we use join
2237	 * here we could get into a situation where we're waiting on IO to
2238	 * happen that is blocked on a transaction trying to commit.  With start
2239	 * we inc the extwriter counter, so we wait for all extwriters to exit
2240	 * before we start blocking joiners.  This comment is to keep somebody
2241	 * from thinking they are super smart and changing this to
2242	 * btrfs_join_transaction *cough*Josef*cough*.
2243	 */
2244	trans = btrfs_start_transaction(root, 0);
2245	if (IS_ERR(trans)) {
2246		ret = PTR_ERR(trans);
2247		up_write(&BTRFS_I(inode)->dio_sem);
2248		inode_unlock(inode);
2249		goto out;
2250	}
 
 
 
2251
2252	ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2253	if (ret < 0) {
2254		/* Fallthrough and commit/free transaction. */
2255		ret = 1;
2256	}
2257
2258	/* we've logged all the items and now have a consistent
2259	 * version of the file in the log.  It is possible that
2260	 * someone will come in and modify the file, but that's
2261	 * fine because the log is consistent on disk, and we
2262	 * have references to all of the file's extents
2263	 *
2264	 * It is possible that someone will come in and log the
2265	 * file again, but that will end up using the synchronization
2266	 * inside btrfs_sync_log to keep things safe.
2267	 */
2268	up_write(&BTRFS_I(inode)->dio_sem);
2269	inode_unlock(inode);
2270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2271	if (ret != BTRFS_NO_LOG_SYNC) {
2272		if (!ret) {
2273			ret = btrfs_sync_log(trans, root, &ctx);
2274			if (!ret) {
2275				ret = btrfs_end_transaction(trans);
2276				goto out;
2277			}
2278		}
 
 
 
 
 
 
 
2279		ret = btrfs_commit_transaction(trans);
2280	} else {
2281		ret = btrfs_end_transaction(trans);
2282	}
2283out:
2284	ASSERT(list_empty(&ctx.list));
2285	err = file_check_and_advance_wb_err(file);
2286	if (!ret)
2287		ret = err;
2288	return ret > 0 ? -EIO : ret;
2289}
2290
2291static const struct vm_operations_struct btrfs_file_vm_ops = {
2292	.fault		= filemap_fault,
2293	.map_pages	= filemap_map_pages,
2294	.page_mkwrite	= btrfs_page_mkwrite,
2295};
2296
2297static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2298{
2299	struct address_space *mapping = filp->f_mapping;
2300
2301	if (!mapping->a_ops->readpage)
2302		return -ENOEXEC;
2303
2304	file_accessed(filp);
2305	vma->vm_ops = &btrfs_file_vm_ops;
2306
2307	return 0;
2308}
2309
2310static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2311			  int slot, u64 start, u64 end)
2312{
2313	struct btrfs_file_extent_item *fi;
2314	struct btrfs_key key;
2315
2316	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2317		return 0;
2318
2319	btrfs_item_key_to_cpu(leaf, &key, slot);
2320	if (key.objectid != btrfs_ino(inode) ||
2321	    key.type != BTRFS_EXTENT_DATA_KEY)
2322		return 0;
2323
2324	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2325
2326	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2327		return 0;
2328
2329	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2330		return 0;
2331
2332	if (key.offset == end)
2333		return 1;
2334	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2335		return 1;
2336	return 0;
2337}
2338
2339static int fill_holes(struct btrfs_trans_handle *trans,
2340		struct btrfs_inode *inode,
2341		struct btrfs_path *path, u64 offset, u64 end)
2342{
2343	struct btrfs_fs_info *fs_info = trans->fs_info;
2344	struct btrfs_root *root = inode->root;
2345	struct extent_buffer *leaf;
2346	struct btrfs_file_extent_item *fi;
2347	struct extent_map *hole_em;
2348	struct extent_map_tree *em_tree = &inode->extent_tree;
2349	struct btrfs_key key;
2350	int ret;
2351
2352	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2353		goto out;
2354
2355	key.objectid = btrfs_ino(inode);
2356	key.type = BTRFS_EXTENT_DATA_KEY;
2357	key.offset = offset;
2358
2359	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2360	if (ret <= 0) {
2361		/*
2362		 * We should have dropped this offset, so if we find it then
2363		 * something has gone horribly wrong.
2364		 */
2365		if (ret == 0)
2366			ret = -EINVAL;
2367		return ret;
2368	}
2369
2370	leaf = path->nodes[0];
2371	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2372		u64 num_bytes;
2373
2374		path->slots[0]--;
2375		fi = btrfs_item_ptr(leaf, path->slots[0],
2376				    struct btrfs_file_extent_item);
2377		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2378			end - offset;
2379		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2380		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2381		btrfs_set_file_extent_offset(leaf, fi, 0);
2382		btrfs_mark_buffer_dirty(leaf);
2383		goto out;
2384	}
2385
2386	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2387		u64 num_bytes;
2388
2389		key.offset = offset;
2390		btrfs_set_item_key_safe(fs_info, path, &key);
2391		fi = btrfs_item_ptr(leaf, path->slots[0],
2392				    struct btrfs_file_extent_item);
2393		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2394			offset;
2395		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2396		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2397		btrfs_set_file_extent_offset(leaf, fi, 0);
2398		btrfs_mark_buffer_dirty(leaf);
2399		goto out;
2400	}
2401	btrfs_release_path(path);
2402
2403	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2404			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
 
2405	if (ret)
2406		return ret;
2407
2408out:
2409	btrfs_release_path(path);
2410
2411	hole_em = alloc_extent_map();
2412	if (!hole_em) {
2413		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2414		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
 
2415	} else {
2416		hole_em->start = offset;
2417		hole_em->len = end - offset;
2418		hole_em->ram_bytes = hole_em->len;
2419		hole_em->orig_start = offset;
2420
2421		hole_em->block_start = EXTENT_MAP_HOLE;
2422		hole_em->block_len = 0;
2423		hole_em->orig_block_len = 0;
 
2424		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2425		hole_em->generation = trans->transid;
2426
2427		do {
2428			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2429			write_lock(&em_tree->lock);
2430			ret = add_extent_mapping(em_tree, hole_em, 1);
2431			write_unlock(&em_tree->lock);
2432		} while (ret == -EEXIST);
2433		free_extent_map(hole_em);
2434		if (ret)
2435			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2436					&inode->runtime_flags);
2437	}
2438
2439	return 0;
2440}
2441
2442/*
2443 * Find a hole extent on given inode and change start/len to the end of hole
2444 * extent.(hole/vacuum extent whose em->start <= start &&
2445 *	   em->start + em->len > start)
2446 * When a hole extent is found, return 1 and modify start/len.
2447 */
2448static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2449{
2450	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2451	struct extent_map *em;
2452	int ret = 0;
2453
2454	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2455			      round_down(*start, fs_info->sectorsize),
2456			      round_up(*len, fs_info->sectorsize));
2457	if (IS_ERR(em))
2458		return PTR_ERR(em);
 
 
 
2459
2460	/* Hole or vacuum extent(only exists in no-hole mode) */
2461	if (em->block_start == EXTENT_MAP_HOLE) {
2462		ret = 1;
2463		*len = em->start + em->len > *start + *len ?
2464		       0 : *start + *len - em->start - em->len;
2465		*start = em->start + em->len;
2466	}
2467	free_extent_map(em);
2468	return ret;
2469}
2470
2471static int btrfs_punch_hole_lock_range(struct inode *inode,
2472				       const u64 lockstart,
2473				       const u64 lockend,
2474				       struct extent_state **cached_state)
2475{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2476	while (1) {
2477		struct btrfs_ordered_extent *ordered;
2478		int ret;
2479
2480		truncate_pagecache_range(inode, lockstart, lockend);
2481
2482		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2483				 cached_state);
2484		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2485
2486		/*
2487		 * We need to make sure we have no ordered extents in this range
2488		 * and nobody raced in and read a page in this range, if we did
2489		 * we need to try again.
2490		 */
2491		if ((!ordered ||
2492		    (ordered->file_offset + ordered->num_bytes <= lockstart ||
2493		     ordered->file_offset > lockend)) &&
2494		     !filemap_range_has_page(inode->i_mapping,
2495					     lockstart, lockend)) {
2496			if (ordered)
2497				btrfs_put_ordered_extent(ordered);
2498			break;
2499		}
2500		if (ordered)
2501			btrfs_put_ordered_extent(ordered);
2502		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2503				     lockend, cached_state);
2504		ret = btrfs_wait_ordered_range(inode, lockstart,
2505					       lockend - lockstart + 1);
2506		if (ret)
 
2507			return ret;
 
2508	}
2509	return 0;
2510}
2511
2512static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
2513				     struct inode *inode,
2514				     struct btrfs_path *path,
2515				     struct btrfs_clone_extent_info *clone_info,
2516				     const u64 clone_len)
2517{
2518	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2519	struct btrfs_root *root = BTRFS_I(inode)->root;
2520	struct btrfs_file_extent_item *extent;
2521	struct extent_buffer *leaf;
2522	struct btrfs_key key;
2523	int slot;
2524	struct btrfs_ref ref = { 0 };
2525	u64 ref_offset;
2526	int ret;
2527
2528	if (clone_len == 0)
2529		return 0;
2530
2531	if (clone_info->disk_offset == 0 &&
2532	    btrfs_fs_incompat(fs_info, NO_HOLES))
2533		return 0;
2534
2535	key.objectid = btrfs_ino(BTRFS_I(inode));
2536	key.type = BTRFS_EXTENT_DATA_KEY;
2537	key.offset = clone_info->file_offset;
2538	ret = btrfs_insert_empty_item(trans, root, path, &key,
2539				      clone_info->item_size);
2540	if (ret)
2541		return ret;
2542	leaf = path->nodes[0];
2543	slot = path->slots[0];
2544	write_extent_buffer(leaf, clone_info->extent_buf,
2545			    btrfs_item_ptr_offset(leaf, slot),
2546			    clone_info->item_size);
2547	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2548	btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
2549	btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
2550	btrfs_mark_buffer_dirty(leaf);
2551	btrfs_release_path(path);
2552
2553	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2554			clone_info->file_offset, clone_len);
2555	if (ret)
2556		return ret;
2557
2558	/* If it's a hole, nothing more needs to be done. */
2559	if (clone_info->disk_offset == 0)
2560		return 0;
2561
2562	inode_add_bytes(inode, clone_len);
2563	btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2564			       clone_info->disk_offset,
2565			       clone_info->disk_len, 0);
2566	ref_offset = clone_info->file_offset - clone_info->data_offset;
2567	btrfs_init_data_ref(&ref, root->root_key.objectid,
2568			    btrfs_ino(BTRFS_I(inode)), ref_offset);
2569	ret = btrfs_inc_extent_ref(trans, &ref);
2570
2571	return ret;
2572}
2573
2574/*
2575 * The respective range must have been previously locked, as well as the inode.
2576 * The end offset is inclusive (last byte of the range).
2577 * @clone_info is NULL for fallocate's hole punching and non-NULL for extent
2578 * cloning.
2579 * When cloning, we don't want to end up in a state where we dropped extents
2580 * without inserting a new one, so we must abort the transaction to avoid a
2581 * corruption.
2582 */
2583int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
2584			   const u64 start, const u64 end,
2585			   struct btrfs_clone_extent_info *clone_info,
2586			   struct btrfs_trans_handle **trans_out)
2587{
2588	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2589	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2590	u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2591	struct btrfs_root *root = BTRFS_I(inode)->root;
2592	struct btrfs_trans_handle *trans = NULL;
2593	struct btrfs_block_rsv *rsv;
2594	unsigned int rsv_count;
2595	u64 cur_offset;
2596	u64 drop_end;
2597	u64 len = end - start;
2598	int ret = 0;
2599
2600	if (end <= start)
2601		return -EINVAL;
2602
2603	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2604	if (!rsv) {
2605		ret = -ENOMEM;
2606		goto out;
2607	}
2608	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2609	rsv->failfast = 1;
2610
2611	/*
2612	 * 1 - update the inode
2613	 * 1 - removing the extents in the range
2614	 * 1 - adding the hole extent if no_holes isn't set or if we are cloning
2615	 *     an extent
2616	 */
2617	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
2618		rsv_count = 3;
2619	else
2620		rsv_count = 2;
2621
2622	trans = btrfs_start_transaction(root, rsv_count);
2623	if (IS_ERR(trans)) {
2624		ret = PTR_ERR(trans);
2625		trans = NULL;
2626		goto out_free;
2627	}
2628
2629	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2630				      min_size, false);
2631	BUG_ON(ret);
2632	trans->block_rsv = rsv;
2633
2634	cur_offset = start;
2635	while (cur_offset < end) {
2636		ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path,
2637					   cur_offset, end + 1, &drop_end,
2638					   1, 0, 0, NULL);
2639		if (ret != -ENOSPC) {
2640			/*
2641			 * When cloning we want to avoid transaction aborts when
2642			 * nothing was done and we are attempting to clone parts
2643			 * of inline extents, in such cases -EOPNOTSUPP is
2644			 * returned by __btrfs_drop_extents() without having
2645			 * changed anything in the file.
2646			 */
2647			if (clone_info && ret && ret != -EOPNOTSUPP)
2648				btrfs_abort_transaction(trans, ret);
2649			break;
2650		}
2651
2652		trans->block_rsv = &fs_info->trans_block_rsv;
2653
2654		if (!clone_info && cur_offset < drop_end &&
2655		    cur_offset < ino_size) {
2656			ret = fill_holes(trans, BTRFS_I(inode), path,
2657					cur_offset, drop_end);
2658			if (ret) {
2659				/*
2660				 * If we failed then we didn't insert our hole
2661				 * entries for the area we dropped, so now the
2662				 * fs is corrupted, so we must abort the
2663				 * transaction.
2664				 */
2665				btrfs_abort_transaction(trans, ret);
2666				break;
2667			}
2668		} else if (!clone_info && cur_offset < drop_end) {
2669			/*
2670			 * We are past the i_size here, but since we didn't
2671			 * insert holes we need to clear the mapped area so we
2672			 * know to not set disk_i_size in this area until a new
2673			 * file extent is inserted here.
2674			 */
2675			ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2676					cur_offset, drop_end - cur_offset);
2677			if (ret) {
2678				/*
2679				 * We couldn't clear our area, so we could
2680				 * presumably adjust up and corrupt the fs, so
2681				 * we need to abort.
2682				 */
2683				btrfs_abort_transaction(trans, ret);
2684				break;
2685			}
2686		}
2687
2688		if (clone_info && drop_end > clone_info->file_offset) {
2689			u64 clone_len = drop_end - clone_info->file_offset;
2690
2691			ret = btrfs_insert_clone_extent(trans, inode, path,
2692							clone_info, clone_len);
2693			if (ret) {
2694				btrfs_abort_transaction(trans, ret);
2695				break;
2696			}
2697			clone_info->data_len -= clone_len;
2698			clone_info->data_offset += clone_len;
2699			clone_info->file_offset += clone_len;
2700		}
2701
2702		cur_offset = drop_end;
2703
2704		ret = btrfs_update_inode(trans, root, inode);
2705		if (ret)
 
2706			break;
 
2707
2708		btrfs_end_transaction(trans);
2709		btrfs_btree_balance_dirty(fs_info);
2710
2711		trans = btrfs_start_transaction(root, rsv_count);
2712		if (IS_ERR(trans)) {
2713			ret = PTR_ERR(trans);
2714			trans = NULL;
2715			break;
2716		}
2717
2718		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2719					      rsv, min_size, false);
2720		BUG_ON(ret);	/* shouldn't happen */
2721		trans->block_rsv = rsv;
2722
2723		if (!clone_info) {
2724			ret = find_first_non_hole(inode, &cur_offset, &len);
2725			if (unlikely(ret < 0))
2726				break;
2727			if (ret && !len) {
2728				ret = 0;
2729				break;
2730			}
2731		}
2732	}
2733
2734	/*
2735	 * If we were cloning, force the next fsync to be a full one since we
2736	 * we replaced (or just dropped in the case of cloning holes when
2737	 * NO_HOLES is enabled) extents and extent maps.
2738	 * This is for the sake of simplicity, and cloning into files larger
2739	 * than 16Mb would force the full fsync any way (when
2740	 * try_release_extent_mapping() is invoked during page cache truncation.
2741	 */
2742	if (clone_info)
2743		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2744			&BTRFS_I(inode)->runtime_flags);
2745
2746	if (ret)
2747		goto out_trans;
 
2748
2749	trans->block_rsv = &fs_info->trans_block_rsv;
2750	/*
2751	 * If we are using the NO_HOLES feature we might have had already an
2752	 * hole that overlaps a part of the region [lockstart, lockend] and
2753	 * ends at (or beyond) lockend. Since we have no file extent items to
2754	 * represent holes, drop_end can be less than lockend and so we must
2755	 * make sure we have an extent map representing the existing hole (the
2756	 * call to __btrfs_drop_extents() might have dropped the existing extent
2757	 * map representing the existing hole), otherwise the fast fsync path
2758	 * will not record the existence of the hole region
2759	 * [existing_hole_start, lockend].
2760	 */
2761	if (drop_end <= end)
2762		drop_end = end + 1;
2763	/*
2764	 * Don't insert file hole extent item if it's for a range beyond eof
2765	 * (because it's useless) or if it represents a 0 bytes range (when
2766	 * cur_offset == drop_end).
2767	 */
2768	if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
2769		ret = fill_holes(trans, BTRFS_I(inode), path,
2770				cur_offset, drop_end);
2771		if (ret) {
2772			/* Same comment as above. */
2773			btrfs_abort_transaction(trans, ret);
2774			goto out_trans;
2775		}
2776	} else if (!clone_info && cur_offset < drop_end) {
2777		/* See the comment in the loop above for the reasoning here. */
2778		ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2779					cur_offset, drop_end - cur_offset);
2780		if (ret) {
2781			btrfs_abort_transaction(trans, ret);
2782			goto out_trans;
2783		}
2784
2785	}
2786	if (clone_info) {
2787		ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
2788						clone_info->data_len);
2789		if (ret) {
2790			btrfs_abort_transaction(trans, ret);
2791			goto out_trans;
2792		}
2793	}
2794
2795out_trans:
2796	if (!trans)
2797		goto out_free;
2798
2799	trans->block_rsv = &fs_info->trans_block_rsv;
2800	if (ret)
2801		btrfs_end_transaction(trans);
2802	else
2803		*trans_out = trans;
2804out_free:
2805	btrfs_free_block_rsv(fs_info, rsv);
2806out:
2807	return ret;
2808}
2809
2810static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2811{
2812	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2813	struct btrfs_root *root = BTRFS_I(inode)->root;
2814	struct extent_state *cached_state = NULL;
2815	struct btrfs_path *path;
2816	struct btrfs_trans_handle *trans = NULL;
2817	u64 lockstart;
2818	u64 lockend;
2819	u64 tail_start;
2820	u64 tail_len;
2821	u64 orig_start = offset;
2822	int ret = 0;
2823	bool same_block;
2824	u64 ino_size;
2825	bool truncated_block = false;
2826	bool updated_inode = false;
2827
2828	ret = btrfs_wait_ordered_range(inode, offset, len);
2829	if (ret)
2830		return ret;
2831
2832	inode_lock(inode);
2833	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2834	ret = find_first_non_hole(inode, &offset, &len);
2835	if (ret < 0)
2836		goto out_only_mutex;
2837	if (ret && !len) {
2838		/* Already in a large hole */
2839		ret = 0;
2840		goto out_only_mutex;
2841	}
2842
2843	lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2844	lockend = round_down(offset + len,
2845			     btrfs_inode_sectorsize(inode)) - 1;
2846	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2847		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2848	/*
2849	 * We needn't truncate any block which is beyond the end of the file
2850	 * because we are sure there is no data there.
2851	 */
2852	/*
2853	 * Only do this if we are in the same block and we aren't doing the
2854	 * entire block.
2855	 */
2856	if (same_block && len < fs_info->sectorsize) {
2857		if (offset < ino_size) {
2858			truncated_block = true;
2859			ret = btrfs_truncate_block(inode, offset, len, 0);
2860		} else {
2861			ret = 0;
2862		}
2863		goto out_only_mutex;
2864	}
2865
2866	/* zero back part of the first block */
2867	if (offset < ino_size) {
2868		truncated_block = true;
2869		ret = btrfs_truncate_block(inode, offset, 0, 0);
2870		if (ret) {
2871			inode_unlock(inode);
2872			return ret;
2873		}
2874	}
2875
2876	/* Check the aligned pages after the first unaligned page,
2877	 * if offset != orig_start, which means the first unaligned page
2878	 * including several following pages are already in holes,
2879	 * the extra check can be skipped */
2880	if (offset == orig_start) {
2881		/* after truncate page, check hole again */
2882		len = offset + len - lockstart;
2883		offset = lockstart;
2884		ret = find_first_non_hole(inode, &offset, &len);
2885		if (ret < 0)
2886			goto out_only_mutex;
2887		if (ret && !len) {
2888			ret = 0;
2889			goto out_only_mutex;
2890		}
2891		lockstart = offset;
2892	}
2893
2894	/* Check the tail unaligned part is in a hole */
2895	tail_start = lockend + 1;
2896	tail_len = offset + len - tail_start;
2897	if (tail_len) {
2898		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2899		if (unlikely(ret < 0))
2900			goto out_only_mutex;
2901		if (!ret) {
2902			/* zero the front end of the last page */
2903			if (tail_start + tail_len < ino_size) {
2904				truncated_block = true;
2905				ret = btrfs_truncate_block(inode,
2906							tail_start + tail_len,
2907							0, 1);
2908				if (ret)
2909					goto out_only_mutex;
2910			}
2911		}
2912	}
2913
2914	if (lockend < lockstart) {
2915		ret = 0;
2916		goto out_only_mutex;
2917	}
2918
2919	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2920					  &cached_state);
2921	if (ret)
2922		goto out_only_mutex;
2923
2924	path = btrfs_alloc_path();
2925	if (!path) {
2926		ret = -ENOMEM;
2927		goto out;
2928	}
2929
2930	ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
2931				     &trans);
2932	btrfs_free_path(path);
2933	if (ret)
2934		goto out;
2935
2936	ASSERT(trans != NULL);
2937	inode_inc_iversion(inode);
2938	inode->i_mtime = inode->i_ctime = current_time(inode);
 
 
2939	ret = btrfs_update_inode(trans, root, inode);
2940	updated_inode = true;
2941	btrfs_end_transaction(trans);
2942	btrfs_btree_balance_dirty(fs_info);
 
 
 
2943out:
2944	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2945			     &cached_state);
2946out_only_mutex:
2947	if (!updated_inode && truncated_block && !ret) {
2948		/*
2949		 * If we only end up zeroing part of a page, we still need to
2950		 * update the inode item, so that all the time fields are
2951		 * updated as well as the necessary btrfs inode in memory fields
2952		 * for detecting, at fsync time, if the inode isn't yet in the
2953		 * log tree or it's there but not up to date.
2954		 */
2955		struct timespec64 now = current_time(inode);
2956
2957		inode_inc_iversion(inode);
2958		inode->i_mtime = now;
2959		inode->i_ctime = now;
2960		trans = btrfs_start_transaction(root, 1);
2961		if (IS_ERR(trans)) {
2962			ret = PTR_ERR(trans);
2963		} else {
2964			int ret2;
2965
2966			ret = btrfs_update_inode(trans, root, inode);
2967			ret2 = btrfs_end_transaction(trans);
2968			if (!ret)
2969				ret = ret2;
2970		}
2971	}
2972	inode_unlock(inode);
2973	return ret;
 
 
2974}
2975
2976/* Helper structure to record which range is already reserved */
2977struct falloc_range {
2978	struct list_head list;
2979	u64 start;
2980	u64 len;
2981};
2982
2983/*
2984 * Helper function to add falloc range
2985 *
2986 * Caller should have locked the larger range of extent containing
2987 * [start, len)
2988 */
2989static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2990{
2991	struct falloc_range *prev = NULL;
2992	struct falloc_range *range = NULL;
2993
2994	if (list_empty(head))
2995		goto insert;
2996
2997	/*
2998	 * As fallocate iterate by bytenr order, we only need to check
2999	 * the last range.
3000	 */
3001	prev = list_entry(head->prev, struct falloc_range, list);
3002	if (prev->start + prev->len == start) {
3003		prev->len += len;
3004		return 0;
3005	}
3006insert:
3007	range = kmalloc(sizeof(*range), GFP_KERNEL);
3008	if (!range)
3009		return -ENOMEM;
3010	range->start = start;
3011	range->len = len;
3012	list_add_tail(&range->list, head);
3013	return 0;
3014}
3015
3016static int btrfs_fallocate_update_isize(struct inode *inode,
3017					const u64 end,
3018					const int mode)
3019{
3020	struct btrfs_trans_handle *trans;
3021	struct btrfs_root *root = BTRFS_I(inode)->root;
3022	int ret;
3023	int ret2;
3024
3025	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3026		return 0;
3027
3028	trans = btrfs_start_transaction(root, 1);
3029	if (IS_ERR(trans))
3030		return PTR_ERR(trans);
3031
3032	inode->i_ctime = current_time(inode);
3033	i_size_write(inode, end);
3034	btrfs_inode_safe_disk_i_size_write(inode, 0);
3035	ret = btrfs_update_inode(trans, root, inode);
3036	ret2 = btrfs_end_transaction(trans);
3037
3038	return ret ? ret : ret2;
3039}
3040
3041enum {
3042	RANGE_BOUNDARY_WRITTEN_EXTENT,
3043	RANGE_BOUNDARY_PREALLOC_EXTENT,
3044	RANGE_BOUNDARY_HOLE,
3045};
3046
3047static int btrfs_zero_range_check_range_boundary(struct inode *inode,
3048						 u64 offset)
3049{
3050	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3051	struct extent_map *em;
3052	int ret;
3053
3054	offset = round_down(offset, sectorsize);
3055	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize);
3056	if (IS_ERR(em))
3057		return PTR_ERR(em);
3058
3059	if (em->block_start == EXTENT_MAP_HOLE)
3060		ret = RANGE_BOUNDARY_HOLE;
3061	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3062		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3063	else
3064		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3065
3066	free_extent_map(em);
3067	return ret;
3068}
3069
3070static int btrfs_zero_range(struct inode *inode,
3071			    loff_t offset,
3072			    loff_t len,
3073			    const int mode)
3074{
3075	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3076	struct extent_map *em;
3077	struct extent_changeset *data_reserved = NULL;
3078	int ret;
3079	u64 alloc_hint = 0;
3080	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3081	u64 alloc_start = round_down(offset, sectorsize);
3082	u64 alloc_end = round_up(offset + len, sectorsize);
3083	u64 bytes_to_reserve = 0;
3084	bool space_reserved = false;
3085
3086	inode_dio_wait(inode);
3087
3088	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3089			      alloc_end - alloc_start);
3090	if (IS_ERR(em)) {
3091		ret = PTR_ERR(em);
3092		goto out;
3093	}
3094
3095	/*
3096	 * Avoid hole punching and extent allocation for some cases. More cases
3097	 * could be considered, but these are unlikely common and we keep things
3098	 * as simple as possible for now. Also, intentionally, if the target
3099	 * range contains one or more prealloc extents together with regular
3100	 * extents and holes, we drop all the existing extents and allocate a
3101	 * new prealloc extent, so that we get a larger contiguous disk extent.
3102	 */
3103	if (em->start <= alloc_start &&
3104	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3105		const u64 em_end = em->start + em->len;
3106
3107		if (em_end >= offset + len) {
3108			/*
3109			 * The whole range is already a prealloc extent,
3110			 * do nothing except updating the inode's i_size if
3111			 * needed.
3112			 */
3113			free_extent_map(em);
3114			ret = btrfs_fallocate_update_isize(inode, offset + len,
3115							   mode);
3116			goto out;
3117		}
3118		/*
3119		 * Part of the range is already a prealloc extent, so operate
3120		 * only on the remaining part of the range.
3121		 */
3122		alloc_start = em_end;
3123		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3124		len = offset + len - alloc_start;
3125		offset = alloc_start;
3126		alloc_hint = em->block_start + em->len;
3127	}
3128	free_extent_map(em);
3129
3130	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3131	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3132		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3133				      sectorsize);
3134		if (IS_ERR(em)) {
3135			ret = PTR_ERR(em);
3136			goto out;
3137		}
3138
3139		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3140			free_extent_map(em);
3141			ret = btrfs_fallocate_update_isize(inode, offset + len,
3142							   mode);
3143			goto out;
3144		}
3145		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3146			free_extent_map(em);
3147			ret = btrfs_truncate_block(inode, offset, len, 0);
3148			if (!ret)
3149				ret = btrfs_fallocate_update_isize(inode,
3150								   offset + len,
3151								   mode);
3152			return ret;
3153		}
3154		free_extent_map(em);
3155		alloc_start = round_down(offset, sectorsize);
3156		alloc_end = alloc_start + sectorsize;
3157		goto reserve_space;
3158	}
3159
3160	alloc_start = round_up(offset, sectorsize);
3161	alloc_end = round_down(offset + len, sectorsize);
3162
3163	/*
3164	 * For unaligned ranges, check the pages at the boundaries, they might
3165	 * map to an extent, in which case we need to partially zero them, or
3166	 * they might map to a hole, in which case we need our allocation range
3167	 * to cover them.
3168	 */
3169	if (!IS_ALIGNED(offset, sectorsize)) {
3170		ret = btrfs_zero_range_check_range_boundary(inode, offset);
3171		if (ret < 0)
3172			goto out;
3173		if (ret == RANGE_BOUNDARY_HOLE) {
3174			alloc_start = round_down(offset, sectorsize);
3175			ret = 0;
3176		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3177			ret = btrfs_truncate_block(inode, offset, 0, 0);
3178			if (ret)
3179				goto out;
3180		} else {
3181			ret = 0;
3182		}
3183	}
3184
3185	if (!IS_ALIGNED(offset + len, sectorsize)) {
3186		ret = btrfs_zero_range_check_range_boundary(inode,
3187							    offset + len);
3188		if (ret < 0)
3189			goto out;
3190		if (ret == RANGE_BOUNDARY_HOLE) {
3191			alloc_end = round_up(offset + len, sectorsize);
3192			ret = 0;
3193		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3194			ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3195			if (ret)
3196				goto out;
3197		} else {
3198			ret = 0;
3199		}
3200	}
3201
3202reserve_space:
3203	if (alloc_start < alloc_end) {
3204		struct extent_state *cached_state = NULL;
3205		const u64 lockstart = alloc_start;
3206		const u64 lockend = alloc_end - 1;
3207
3208		bytes_to_reserve = alloc_end - alloc_start;
3209		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3210						      bytes_to_reserve);
3211		if (ret < 0)
3212			goto out;
3213		space_reserved = true;
3214		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3215						  &cached_state);
3216		if (ret)
3217			goto out;
3218		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3219						alloc_start, bytes_to_reserve);
3220		if (ret)
3221			goto out;
3222		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3223						alloc_end - alloc_start,
3224						i_blocksize(inode),
3225						offset + len, &alloc_hint);
3226		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3227				     lockend, &cached_state);
3228		/* btrfs_prealloc_file_range releases reserved space on error */
3229		if (ret) {
3230			space_reserved = false;
3231			goto out;
3232		}
3233	}
3234	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3235 out:
3236	if (ret && space_reserved)
3237		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3238					       alloc_start, bytes_to_reserve);
3239	extent_changeset_free(data_reserved);
3240
3241	return ret;
3242}
3243
3244static long btrfs_fallocate(struct file *file, int mode,
3245			    loff_t offset, loff_t len)
3246{
3247	struct inode *inode = file_inode(file);
3248	struct extent_state *cached_state = NULL;
3249	struct extent_changeset *data_reserved = NULL;
3250	struct falloc_range *range;
3251	struct falloc_range *tmp;
3252	struct list_head reserve_list;
3253	u64 cur_offset;
3254	u64 last_byte;
3255	u64 alloc_start;
3256	u64 alloc_end;
3257	u64 alloc_hint = 0;
3258	u64 locked_end;
3259	u64 actual_end = 0;
3260	struct extent_map *em;
3261	int blocksize = btrfs_inode_sectorsize(inode);
3262	int ret;
3263
3264	alloc_start = round_down(offset, blocksize);
3265	alloc_end = round_up(offset + len, blocksize);
3266	cur_offset = alloc_start;
3267
3268	/* Make sure we aren't being give some crap mode */
3269	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3270		     FALLOC_FL_ZERO_RANGE))
3271		return -EOPNOTSUPP;
3272
3273	if (mode & FALLOC_FL_PUNCH_HOLE)
3274		return btrfs_punch_hole(inode, offset, len);
3275
3276	/*
3277	 * Only trigger disk allocation, don't trigger qgroup reserve
3278	 *
3279	 * For qgroup space, it will be checked later.
3280	 */
3281	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3282		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3283						      alloc_end - alloc_start);
3284		if (ret < 0)
3285			return ret;
3286	}
3287
3288	inode_lock(inode);
3289
3290	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3291		ret = inode_newsize_ok(inode, offset + len);
3292		if (ret)
3293			goto out;
3294	}
3295
3296	/*
3297	 * TODO: Move these two operations after we have checked
3298	 * accurate reserved space, or fallocate can still fail but
3299	 * with page truncated or size expanded.
3300	 *
3301	 * But that's a minor problem and won't do much harm BTW.
3302	 */
3303	if (alloc_start > inode->i_size) {
3304		ret = btrfs_cont_expand(inode, i_size_read(inode),
3305					alloc_start);
3306		if (ret)
3307			goto out;
3308	} else if (offset + len > inode->i_size) {
3309		/*
3310		 * If we are fallocating from the end of the file onward we
3311		 * need to zero out the end of the block if i_size lands in the
3312		 * middle of a block.
3313		 */
3314		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3315		if (ret)
3316			goto out;
3317	}
3318
3319	/*
3320	 * wait for ordered IO before we have any locks.  We'll loop again
3321	 * below with the locks held.
3322	 */
3323	ret = btrfs_wait_ordered_range(inode, alloc_start,
3324				       alloc_end - alloc_start);
3325	if (ret)
3326		goto out;
3327
3328	if (mode & FALLOC_FL_ZERO_RANGE) {
3329		ret = btrfs_zero_range(inode, offset, len, mode);
3330		inode_unlock(inode);
3331		return ret;
3332	}
3333
3334	locked_end = alloc_end - 1;
3335	while (1) {
3336		struct btrfs_ordered_extent *ordered;
3337
3338		/* the extent lock is ordered inside the running
3339		 * transaction
3340		 */
3341		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3342				 locked_end, &cached_state);
3343		ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3344
3345		if (ordered &&
3346		    ordered->file_offset + ordered->num_bytes > alloc_start &&
3347		    ordered->file_offset < alloc_end) {
3348			btrfs_put_ordered_extent(ordered);
3349			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3350					     alloc_start, locked_end,
3351					     &cached_state);
3352			/*
3353			 * we can't wait on the range with the transaction
3354			 * running or with the extent lock held
3355			 */
3356			ret = btrfs_wait_ordered_range(inode, alloc_start,
3357						       alloc_end - alloc_start);
3358			if (ret)
3359				goto out;
3360		} else {
3361			if (ordered)
3362				btrfs_put_ordered_extent(ordered);
3363			break;
3364		}
3365	}
3366
3367	/* First, check if we exceed the qgroup limit */
3368	INIT_LIST_HEAD(&reserve_list);
3369	while (cur_offset < alloc_end) {
3370		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3371				      alloc_end - cur_offset);
3372		if (IS_ERR(em)) {
3373			ret = PTR_ERR(em);
 
 
 
3374			break;
3375		}
3376		last_byte = min(extent_map_end(em), alloc_end);
3377		actual_end = min_t(u64, extent_map_end(em), offset + len);
3378		last_byte = ALIGN(last_byte, blocksize);
3379		if (em->block_start == EXTENT_MAP_HOLE ||
3380		    (cur_offset >= inode->i_size &&
3381		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3382			ret = add_falloc_range(&reserve_list, cur_offset,
3383					       last_byte - cur_offset);
3384			if (ret < 0) {
3385				free_extent_map(em);
3386				break;
3387			}
3388			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3389					&data_reserved, cur_offset,
3390					last_byte - cur_offset);
3391			if (ret < 0) {
3392				cur_offset = last_byte;
3393				free_extent_map(em);
3394				break;
3395			}
3396		} else {
3397			/*
3398			 * Do not need to reserve unwritten extent for this
3399			 * range, free reserved data space first, otherwise
3400			 * it'll result in false ENOSPC error.
3401			 */
3402			btrfs_free_reserved_data_space(BTRFS_I(inode),
3403				data_reserved, cur_offset,
3404				last_byte - cur_offset);
3405		}
3406		free_extent_map(em);
3407		cur_offset = last_byte;
 
 
3408	}
3409
3410	/*
3411	 * If ret is still 0, means we're OK to fallocate.
3412	 * Or just cleanup the list and exit.
3413	 */
3414	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3415		if (!ret)
3416			ret = btrfs_prealloc_file_range(inode, mode,
3417					range->start,
3418					range->len, i_blocksize(inode),
3419					offset + len, &alloc_hint);
3420		else
3421			btrfs_free_reserved_data_space(BTRFS_I(inode),
3422					data_reserved, range->start,
3423					range->len);
3424		list_del(&range->list);
3425		kfree(range);
3426	}
3427	if (ret < 0)
3428		goto out_unlock;
3429
3430	/*
3431	 * We didn't need to allocate any more space, but we still extended the
3432	 * size of the file so we need to update i_size and the inode item.
3433	 */
3434	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3435out_unlock:
3436	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3437			     &cached_state);
3438out:
3439	inode_unlock(inode);
3440	/* Let go of our reservation. */
3441	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3442		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3443				cur_offset, alloc_end - cur_offset);
3444	extent_changeset_free(data_reserved);
3445	return ret;
3446}
3447
3448static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3449				  int whence)
3450{
3451	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3452	struct extent_map *em = NULL;
3453	struct extent_state *cached_state = NULL;
3454	loff_t i_size = inode->i_size;
3455	u64 lockstart;
3456	u64 lockend;
3457	u64 start;
3458	u64 len;
3459	int ret = 0;
3460
3461	if (i_size == 0 || offset >= i_size)
3462		return -ENXIO;
3463
3464	/*
3465	 * offset can be negative, in this case we start finding DATA/HOLE from
3466	 * the very start of the file.
3467	 */
3468	start = max_t(loff_t, 0, offset);
3469
3470	lockstart = round_down(start, fs_info->sectorsize);
3471	lockend = round_up(i_size, fs_info->sectorsize);
 
3472	if (lockend <= lockstart)
3473		lockend = lockstart + fs_info->sectorsize;
3474	lockend--;
3475	len = lockend - lockstart + 1;
3476
3477	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3478			 &cached_state);
3479
3480	while (start < i_size) {
3481		em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3482		if (IS_ERR(em)) {
3483			ret = PTR_ERR(em);
3484			em = NULL;
3485			break;
3486		}
3487
3488		if (whence == SEEK_HOLE &&
3489		    (em->block_start == EXTENT_MAP_HOLE ||
3490		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3491			break;
3492		else if (whence == SEEK_DATA &&
3493			   (em->block_start != EXTENT_MAP_HOLE &&
3494			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3495			break;
3496
3497		start = em->start + em->len;
3498		free_extent_map(em);
3499		em = NULL;
3500		cond_resched();
3501	}
3502	free_extent_map(em);
3503	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3504			     &cached_state);
3505	if (ret) {
3506		offset = ret;
3507	} else {
3508		if (whence == SEEK_DATA && start >= i_size)
3509			offset = -ENXIO;
3510		else
3511			offset = min_t(loff_t, start, i_size);
3512	}
3513
3514	return offset;
 
3515}
3516
3517static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3518{
3519	struct inode *inode = file->f_mapping->host;
 
3520
 
3521	switch (whence) {
3522	default:
3523		return generic_file_llseek(file, offset, whence);
 
 
3524	case SEEK_DATA:
3525	case SEEK_HOLE:
3526		inode_lock_shared(inode);
3527		offset = find_desired_extent(inode, offset, whence);
3528		inode_unlock_shared(inode);
3529		break;
 
 
 
 
 
 
3530	}
3531
3532	if (offset < 0)
3533		return offset;
3534
3535	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3536}
3537
3538static int btrfs_file_open(struct inode *inode, struct file *filp)
3539{
3540	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3541	return generic_file_open(inode, filp);
3542}
3543
3544const struct file_operations btrfs_file_operations = {
3545	.llseek		= btrfs_file_llseek,
3546	.read_iter      = generic_file_read_iter,
3547	.splice_read	= generic_file_splice_read,
3548	.write_iter	= btrfs_file_write_iter,
3549	.splice_write	= iter_file_splice_write,
3550	.mmap		= btrfs_file_mmap,
3551	.open		= btrfs_file_open,
3552	.release	= btrfs_release_file,
3553	.fsync		= btrfs_sync_file,
3554	.fallocate	= btrfs_fallocate,
3555	.unlocked_ioctl	= btrfs_ioctl,
3556#ifdef CONFIG_COMPAT
3557	.compat_ioctl	= btrfs_compat_ioctl,
3558#endif
3559	.remap_file_range = btrfs_remap_file_range,
 
3560};
3561
3562void __cold btrfs_auto_defrag_exit(void)
3563{
3564	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3565}
3566
3567int __init btrfs_auto_defrag_init(void)
3568{
3569	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3570					sizeof(struct inode_defrag), 0,
3571					SLAB_MEM_SPREAD,
3572					NULL);
3573	if (!btrfs_inode_defrag_cachep)
3574		return -ENOMEM;
3575
3576	return 0;
3577}
3578
3579int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3580{
3581	int ret;
3582
3583	/*
3584	 * So with compression we will find and lock a dirty page and clear the
3585	 * first one as dirty, setup an async extent, and immediately return
3586	 * with the entire range locked but with nobody actually marked with
3587	 * writeback.  So we can't just filemap_write_and_wait_range() and
3588	 * expect it to work since it will just kick off a thread to do the
3589	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3590	 * since it will wait on the page lock, which won't be unlocked until
3591	 * after the pages have been marked as writeback and so we're good to go
3592	 * from there.  We have to do this otherwise we'll miss the ordered
3593	 * extents and that results in badness.  Please Josef, do not think you
3594	 * know better and pull this out at some point in the future, it is
3595	 * right and you are wrong.
3596	 */
3597	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3598	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3599			     &BTRFS_I(inode)->runtime_flags))
3600		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3601
3602	return ret;
3603}