Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *      sd.c Copyright (C) 1992 Drew Eckhardt
   3 *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
   4 *
   5 *      Linux scsi disk driver
   6 *              Initial versions: Drew Eckhardt
   7 *              Subsequent revisions: Eric Youngdale
   8 *	Modification history:
   9 *       - Drew Eckhardt <drew@colorado.edu> original
  10 *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
  11 *         outstanding request, and other enhancements.
  12 *         Support loadable low-level scsi drivers.
  13 *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
  14 *         eight major numbers.
  15 *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
  16 *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
  17 *	   sd_init and cleanups.
  18 *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
  19 *	   not being read in sd_open. Fix problem where removable media 
  20 *	   could be ejected after sd_open.
  21 *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
  22 *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
  23 *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
  24 *	   Support 32k/1M disks.
  25 *
  26 *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
  27 *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
  28 *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
  29 *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
  30 *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
  31 *	Note: when the logging level is set by the user, it must be greater
  32 *	than the level indicated above to trigger output.	
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/fs.h>
  37#include <linux/kernel.h>
  38#include <linux/mm.h>
  39#include <linux/bio.h>
  40#include <linux/genhd.h>
  41#include <linux/hdreg.h>
  42#include <linux/errno.h>
  43#include <linux/idr.h>
  44#include <linux/interrupt.h>
  45#include <linux/init.h>
  46#include <linux/blkdev.h>
  47#include <linux/blkpg.h>
 
  48#include <linux/delay.h>
  49#include <linux/mutex.h>
  50#include <linux/string_helpers.h>
  51#include <linux/async.h>
  52#include <linux/slab.h>
 
  53#include <linux/pm_runtime.h>
  54#include <linux/pr.h>
  55#include <linux/t10-pi.h>
  56#include <linux/uaccess.h>
  57#include <asm/unaligned.h>
  58
  59#include <scsi/scsi.h>
  60#include <scsi/scsi_cmnd.h>
  61#include <scsi/scsi_dbg.h>
  62#include <scsi/scsi_device.h>
  63#include <scsi/scsi_driver.h>
  64#include <scsi/scsi_eh.h>
  65#include <scsi/scsi_host.h>
  66#include <scsi/scsi_ioctl.h>
  67#include <scsi/scsicam.h>
  68
  69#include "sd.h"
  70#include "scsi_priv.h"
  71#include "scsi_logging.h"
  72
  73MODULE_AUTHOR("Eric Youngdale");
  74MODULE_DESCRIPTION("SCSI disk (sd) driver");
  75MODULE_LICENSE("GPL");
  76
  77MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
  78MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
  79MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
  80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
  81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
  82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
  83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
  84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
  85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
  86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
  87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
  88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
  89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
  90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
  91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
  92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
  93MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
  94MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
  95MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
  96MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
  97
  98#if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
  99#define SD_MINORS	16
 100#else
 101#define SD_MINORS	0
 102#endif
 103
 104static void sd_config_discard(struct scsi_disk *, unsigned int);
 105static void sd_config_write_same(struct scsi_disk *);
 106static int  sd_revalidate_disk(struct gendisk *);
 107static void sd_unlock_native_capacity(struct gendisk *disk);
 108static int  sd_probe(struct device *);
 109static int  sd_remove(struct device *);
 110static void sd_shutdown(struct device *);
 111static int sd_suspend_system(struct device *);
 112static int sd_suspend_runtime(struct device *);
 113static int sd_resume(struct device *);
 114static void sd_rescan(struct device *);
 115static int sd_init_command(struct scsi_cmnd *SCpnt);
 116static void sd_uninit_command(struct scsi_cmnd *SCpnt);
 117static int sd_done(struct scsi_cmnd *);
 
 118static int sd_eh_action(struct scsi_cmnd *, int);
 119static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
 120static void scsi_disk_release(struct device *cdev);
 121static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
 122static void sd_print_result(const struct scsi_disk *, const char *, int);
 123
 124static DEFINE_SPINLOCK(sd_index_lock);
 125static DEFINE_IDA(sd_index_ida);
 126
 127/* This semaphore is used to mediate the 0->1 reference get in the
 128 * face of object destruction (i.e. we can't allow a get on an
 129 * object after last put) */
 130static DEFINE_MUTEX(sd_ref_mutex);
 131
 132static struct kmem_cache *sd_cdb_cache;
 133static mempool_t *sd_cdb_pool;
 
 134
 135static const char *sd_cache_types[] = {
 136	"write through", "none", "write back",
 137	"write back, no read (daft)"
 138};
 139
 140static void sd_set_flush_flag(struct scsi_disk *sdkp)
 141{
 142	bool wc = false, fua = false;
 143
 144	if (sdkp->WCE) {
 145		wc = true;
 146		if (sdkp->DPOFUA)
 147			fua = true;
 148	}
 149
 150	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
 151}
 152
 153static ssize_t
 154cache_type_store(struct device *dev, struct device_attribute *attr,
 155		 const char *buf, size_t count)
 156{
 157	int i, ct = -1, rcd, wce, sp;
 158	struct scsi_disk *sdkp = to_scsi_disk(dev);
 159	struct scsi_device *sdp = sdkp->device;
 160	char buffer[64];
 161	char *buffer_data;
 162	struct scsi_mode_data data;
 163	struct scsi_sense_hdr sshdr;
 164	static const char temp[] = "temporary ";
 165	int len;
 166
 167	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 168		/* no cache control on RBC devices; theoretically they
 169		 * can do it, but there's probably so many exceptions
 170		 * it's not worth the risk */
 171		return -EINVAL;
 172
 173	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
 174		buf += sizeof(temp) - 1;
 175		sdkp->cache_override = 1;
 176	} else {
 177		sdkp->cache_override = 0;
 178	}
 179
 180	for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
 181		len = strlen(sd_cache_types[i]);
 182		if (strncmp(sd_cache_types[i], buf, len) == 0 &&
 183		    buf[len] == '\n') {
 184			ct = i;
 185			break;
 186		}
 187	}
 188	if (ct < 0)
 189		return -EINVAL;
 
 190	rcd = ct & 0x01 ? 1 : 0;
 191	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
 192
 193	if (sdkp->cache_override) {
 194		sdkp->WCE = wce;
 195		sdkp->RCD = rcd;
 196		sd_set_flush_flag(sdkp);
 197		return count;
 198	}
 199
 200	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
 201			    SD_MAX_RETRIES, &data, NULL))
 202		return -EINVAL;
 203	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
 204		  data.block_descriptor_length);
 205	buffer_data = buffer + data.header_length +
 206		data.block_descriptor_length;
 207	buffer_data[2] &= ~0x05;
 208	buffer_data[2] |= wce << 2 | rcd;
 209	sp = buffer_data[0] & 0x80 ? 1 : 0;
 210	buffer_data[0] &= ~0x80;
 211
 
 
 
 
 
 
 212	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
 213			     SD_MAX_RETRIES, &data, &sshdr)) {
 214		if (scsi_sense_valid(&sshdr))
 215			sd_print_sense_hdr(sdkp, &sshdr);
 216		return -EINVAL;
 217	}
 218	revalidate_disk(sdkp->disk);
 219	return count;
 220}
 221
 222static ssize_t
 223manage_start_stop_show(struct device *dev, struct device_attribute *attr,
 224		       char *buf)
 225{
 226	struct scsi_disk *sdkp = to_scsi_disk(dev);
 227	struct scsi_device *sdp = sdkp->device;
 228
 229	return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
 230}
 231
 232static ssize_t
 233manage_start_stop_store(struct device *dev, struct device_attribute *attr,
 234			const char *buf, size_t count)
 235{
 236	struct scsi_disk *sdkp = to_scsi_disk(dev);
 237	struct scsi_device *sdp = sdkp->device;
 
 238
 239	if (!capable(CAP_SYS_ADMIN))
 240		return -EACCES;
 241
 242	sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
 
 
 
 243
 244	return count;
 245}
 246static DEVICE_ATTR_RW(manage_start_stop);
 247
 248static ssize_t
 249allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
 250{
 251	struct scsi_disk *sdkp = to_scsi_disk(dev);
 252
 253	return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
 254}
 255
 256static ssize_t
 257allow_restart_store(struct device *dev, struct device_attribute *attr,
 258		    const char *buf, size_t count)
 259{
 
 260	struct scsi_disk *sdkp = to_scsi_disk(dev);
 261	struct scsi_device *sdp = sdkp->device;
 262
 263	if (!capable(CAP_SYS_ADMIN))
 264		return -EACCES;
 265
 266	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 267		return -EINVAL;
 268
 269	sdp->allow_restart = simple_strtoul(buf, NULL, 10);
 
 
 
 270
 271	return count;
 272}
 273static DEVICE_ATTR_RW(allow_restart);
 274
 275static ssize_t
 276cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
 277{
 278	struct scsi_disk *sdkp = to_scsi_disk(dev);
 279	int ct = sdkp->RCD + 2*sdkp->WCE;
 280
 281	return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
 282}
 283static DEVICE_ATTR_RW(cache_type);
 284
 285static ssize_t
 286FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
 287{
 288	struct scsi_disk *sdkp = to_scsi_disk(dev);
 289
 290	return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
 291}
 292static DEVICE_ATTR_RO(FUA);
 293
 294static ssize_t
 295protection_type_show(struct device *dev, struct device_attribute *attr,
 296		     char *buf)
 297{
 298	struct scsi_disk *sdkp = to_scsi_disk(dev);
 299
 300	return snprintf(buf, 20, "%u\n", sdkp->protection_type);
 301}
 302
 303static ssize_t
 304protection_type_store(struct device *dev, struct device_attribute *attr,
 305		      const char *buf, size_t count)
 306{
 307	struct scsi_disk *sdkp = to_scsi_disk(dev);
 308	unsigned int val;
 309	int err;
 310
 311	if (!capable(CAP_SYS_ADMIN))
 312		return -EACCES;
 313
 314	err = kstrtouint(buf, 10, &val);
 315
 316	if (err)
 317		return err;
 318
 319	if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION)
 320		sdkp->protection_type = val;
 321
 322	return count;
 323}
 324static DEVICE_ATTR_RW(protection_type);
 325
 326static ssize_t
 327protection_mode_show(struct device *dev, struct device_attribute *attr,
 328		     char *buf)
 329{
 330	struct scsi_disk *sdkp = to_scsi_disk(dev);
 331	struct scsi_device *sdp = sdkp->device;
 332	unsigned int dif, dix;
 333
 334	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
 335	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
 336
 337	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
 338		dif = 0;
 339		dix = 1;
 340	}
 341
 342	if (!dif && !dix)
 343		return snprintf(buf, 20, "none\n");
 344
 345	return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
 346}
 347static DEVICE_ATTR_RO(protection_mode);
 348
 349static ssize_t
 350app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
 351{
 352	struct scsi_disk *sdkp = to_scsi_disk(dev);
 353
 354	return snprintf(buf, 20, "%u\n", sdkp->ATO);
 355}
 356static DEVICE_ATTR_RO(app_tag_own);
 357
 358static ssize_t
 359thin_provisioning_show(struct device *dev, struct device_attribute *attr,
 360		       char *buf)
 361{
 362	struct scsi_disk *sdkp = to_scsi_disk(dev);
 363
 364	return snprintf(buf, 20, "%u\n", sdkp->lbpme);
 365}
 366static DEVICE_ATTR_RO(thin_provisioning);
 367
 
 368static const char *lbp_mode[] = {
 369	[SD_LBP_FULL]		= "full",
 370	[SD_LBP_UNMAP]		= "unmap",
 371	[SD_LBP_WS16]		= "writesame_16",
 372	[SD_LBP_WS10]		= "writesame_10",
 373	[SD_LBP_ZERO]		= "writesame_zero",
 374	[SD_LBP_DISABLE]	= "disabled",
 375};
 376
 377static ssize_t
 378provisioning_mode_show(struct device *dev, struct device_attribute *attr,
 379		       char *buf)
 380{
 381	struct scsi_disk *sdkp = to_scsi_disk(dev);
 382
 383	return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
 384}
 385
 386static ssize_t
 387provisioning_mode_store(struct device *dev, struct device_attribute *attr,
 388			const char *buf, size_t count)
 389{
 390	struct scsi_disk *sdkp = to_scsi_disk(dev);
 391	struct scsi_device *sdp = sdkp->device;
 
 392
 393	if (!capable(CAP_SYS_ADMIN))
 394		return -EACCES;
 395
 396	if (sd_is_zoned(sdkp)) {
 397		sd_config_discard(sdkp, SD_LBP_DISABLE);
 398		return count;
 399	}
 400
 401	if (sdp->type != TYPE_DISK)
 402		return -EINVAL;
 403
 404	if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
 405		sd_config_discard(sdkp, SD_LBP_UNMAP);
 406	else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
 407		sd_config_discard(sdkp, SD_LBP_WS16);
 408	else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
 409		sd_config_discard(sdkp, SD_LBP_WS10);
 410	else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
 411		sd_config_discard(sdkp, SD_LBP_ZERO);
 412	else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
 413		sd_config_discard(sdkp, SD_LBP_DISABLE);
 414	else
 415		return -EINVAL;
 416
 
 
 417	return count;
 418}
 419static DEVICE_ATTR_RW(provisioning_mode);
 420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421static ssize_t
 422max_medium_access_timeouts_show(struct device *dev,
 423				struct device_attribute *attr, char *buf)
 424{
 425	struct scsi_disk *sdkp = to_scsi_disk(dev);
 426
 427	return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
 428}
 429
 430static ssize_t
 431max_medium_access_timeouts_store(struct device *dev,
 432				 struct device_attribute *attr, const char *buf,
 433				 size_t count)
 434{
 435	struct scsi_disk *sdkp = to_scsi_disk(dev);
 436	int err;
 437
 438	if (!capable(CAP_SYS_ADMIN))
 439		return -EACCES;
 440
 441	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
 442
 443	return err ? err : count;
 444}
 445static DEVICE_ATTR_RW(max_medium_access_timeouts);
 446
 447static ssize_t
 448max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
 449			   char *buf)
 450{
 451	struct scsi_disk *sdkp = to_scsi_disk(dev);
 452
 453	return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
 454}
 455
 456static ssize_t
 457max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
 458			    const char *buf, size_t count)
 459{
 460	struct scsi_disk *sdkp = to_scsi_disk(dev);
 461	struct scsi_device *sdp = sdkp->device;
 462	unsigned long max;
 463	int err;
 464
 465	if (!capable(CAP_SYS_ADMIN))
 466		return -EACCES;
 467
 468	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 469		return -EINVAL;
 470
 471	err = kstrtoul(buf, 10, &max);
 472
 473	if (err)
 474		return err;
 475
 476	if (max == 0)
 477		sdp->no_write_same = 1;
 478	else if (max <= SD_MAX_WS16_BLOCKS) {
 479		sdp->no_write_same = 0;
 480		sdkp->max_ws_blocks = max;
 481	}
 482
 483	sd_config_write_same(sdkp);
 484
 485	return count;
 486}
 487static DEVICE_ATTR_RW(max_write_same_blocks);
 488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 489static struct attribute *sd_disk_attrs[] = {
 490	&dev_attr_cache_type.attr,
 491	&dev_attr_FUA.attr,
 492	&dev_attr_allow_restart.attr,
 493	&dev_attr_manage_start_stop.attr,
 494	&dev_attr_protection_type.attr,
 495	&dev_attr_protection_mode.attr,
 496	&dev_attr_app_tag_own.attr,
 497	&dev_attr_thin_provisioning.attr,
 498	&dev_attr_provisioning_mode.attr,
 
 499	&dev_attr_max_write_same_blocks.attr,
 500	&dev_attr_max_medium_access_timeouts.attr,
 
 501	NULL,
 502};
 503ATTRIBUTE_GROUPS(sd_disk);
 504
 505static struct class sd_disk_class = {
 506	.name		= "scsi_disk",
 507	.owner		= THIS_MODULE,
 508	.dev_release	= scsi_disk_release,
 509	.dev_groups	= sd_disk_groups,
 510};
 511
 512static const struct dev_pm_ops sd_pm_ops = {
 513	.suspend		= sd_suspend_system,
 514	.resume			= sd_resume,
 515	.poweroff		= sd_suspend_system,
 516	.restore		= sd_resume,
 517	.runtime_suspend	= sd_suspend_runtime,
 518	.runtime_resume		= sd_resume,
 519};
 520
 521static struct scsi_driver sd_template = {
 522	.gendrv = {
 523		.name		= "sd",
 524		.owner		= THIS_MODULE,
 525		.probe		= sd_probe,
 
 526		.remove		= sd_remove,
 527		.shutdown	= sd_shutdown,
 528		.pm		= &sd_pm_ops,
 529	},
 530	.rescan			= sd_rescan,
 531	.init_command		= sd_init_command,
 532	.uninit_command		= sd_uninit_command,
 533	.done			= sd_done,
 534	.eh_action		= sd_eh_action,
 
 535};
 536
 537/*
 538 * Dummy kobj_map->probe function.
 539 * The default ->probe function will call modprobe, which is
 540 * pointless as this module is already loaded.
 541 */
 542static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
 543{
 544	return NULL;
 545}
 546
 547/*
 548 * Device no to disk mapping:
 549 * 
 550 *       major         disc2     disc  p1
 551 *   |............|.............|....|....| <- dev_t
 552 *    31        20 19          8 7  4 3  0
 553 * 
 554 * Inside a major, we have 16k disks, however mapped non-
 555 * contiguously. The first 16 disks are for major0, the next
 556 * ones with major1, ... Disk 256 is for major0 again, disk 272 
 557 * for major1, ... 
 558 * As we stay compatible with our numbering scheme, we can reuse 
 559 * the well-know SCSI majors 8, 65--71, 136--143.
 560 */
 561static int sd_major(int major_idx)
 562{
 563	switch (major_idx) {
 564	case 0:
 565		return SCSI_DISK0_MAJOR;
 566	case 1 ... 7:
 567		return SCSI_DISK1_MAJOR + major_idx - 1;
 568	case 8 ... 15:
 569		return SCSI_DISK8_MAJOR + major_idx - 8;
 570	default:
 571		BUG();
 572		return 0;	/* shut up gcc */
 573	}
 574}
 575
 576static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
 577{
 578	struct scsi_disk *sdkp = NULL;
 579
 580	mutex_lock(&sd_ref_mutex);
 581
 582	if (disk->private_data) {
 583		sdkp = scsi_disk(disk);
 584		if (scsi_device_get(sdkp->device) == 0)
 585			get_device(&sdkp->dev);
 586		else
 587			sdkp = NULL;
 588	}
 589	mutex_unlock(&sd_ref_mutex);
 590	return sdkp;
 591}
 592
 593static void scsi_disk_put(struct scsi_disk *sdkp)
 594{
 595	struct scsi_device *sdev = sdkp->device;
 596
 597	mutex_lock(&sd_ref_mutex);
 598	put_device(&sdkp->dev);
 599	scsi_device_put(sdev);
 600	mutex_unlock(&sd_ref_mutex);
 601}
 602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
 604					   unsigned int dix, unsigned int dif)
 605{
 606	struct bio *bio = scmd->request->bio;
 607	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
 608	unsigned int protect = 0;
 609
 610	if (dix) {				/* DIX Type 0, 1, 2, 3 */
 611		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
 612			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
 613
 614		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 615			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
 616	}
 617
 618	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
 619		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
 620
 621		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 622			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
 623	}
 624
 625	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
 626		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
 627
 628		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
 629			protect = 3 << 5;	/* Disable target PI checking */
 630		else
 631			protect = 1 << 5;	/* Enable target PI checking */
 632	}
 633
 634	scsi_set_prot_op(scmd, prot_op);
 635	scsi_set_prot_type(scmd, dif);
 636	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
 637
 638	return protect;
 639}
 640
 641static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
 642{
 643	struct request_queue *q = sdkp->disk->queue;
 644	unsigned int logical_block_size = sdkp->device->sector_size;
 645	unsigned int max_blocks = 0;
 646
 647	q->limits.discard_zeroes_data = 0;
 648
 649	/*
 650	 * When LBPRZ is reported, discard alignment and granularity
 651	 * must be fixed to the logical block size. Otherwise the block
 652	 * layer will drop misaligned portions of the request which can
 653	 * lead to data corruption. If LBPRZ is not set, we honor the
 654	 * device preference.
 655	 */
 656	if (sdkp->lbprz) {
 657		q->limits.discard_alignment = 0;
 658		q->limits.discard_granularity = logical_block_size;
 659	} else {
 660		q->limits.discard_alignment = sdkp->unmap_alignment *
 661			logical_block_size;
 662		q->limits.discard_granularity =
 663			max(sdkp->physical_block_size,
 664			    sdkp->unmap_granularity * logical_block_size);
 665	}
 666
 667	sdkp->provisioning_mode = mode;
 668
 669	switch (mode) {
 670
 
 671	case SD_LBP_DISABLE:
 672		blk_queue_max_discard_sectors(q, 0);
 673		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
 674		return;
 675
 676	case SD_LBP_UNMAP:
 677		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
 678					  (u32)SD_MAX_WS16_BLOCKS);
 679		break;
 680
 681	case SD_LBP_WS16:
 682		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 683					  (u32)SD_MAX_WS16_BLOCKS);
 684		q->limits.discard_zeroes_data = sdkp->lbprz;
 
 
 
 685		break;
 686
 687	case SD_LBP_WS10:
 688		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 689					  (u32)SD_MAX_WS10_BLOCKS);
 690		q->limits.discard_zeroes_data = sdkp->lbprz;
 
 
 
 691		break;
 692
 693	case SD_LBP_ZERO:
 694		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 695					  (u32)SD_MAX_WS10_BLOCKS);
 696		q->limits.discard_zeroes_data = 1;
 697		break;
 698	}
 699
 700	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
 701	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
 702}
 703
 704/**
 705 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device
 706 * @sdp: scsi device to operate one
 707 * @rq: Request to prepare
 708 *
 709 * Will issue either UNMAP or WRITE SAME(16) depending on preference
 710 * indicated by target device.
 711 **/
 712static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd)
 713{
 714	struct request *rq = cmd->request;
 715	struct scsi_device *sdp = cmd->device;
 716	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
 717	sector_t sector = blk_rq_pos(rq);
 718	unsigned int nr_sectors = blk_rq_sectors(rq);
 719	unsigned int len;
 720	int ret;
 721	char *buf;
 722	struct page *page;
 723
 724	sector >>= ilog2(sdp->sector_size) - 9;
 725	nr_sectors >>= ilog2(sdp->sector_size) - 9;
 
 
 
 
 
 726
 727	page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
 728	if (!page)
 729		return BLKPREP_DEFER;
 730
 731	switch (sdkp->provisioning_mode) {
 732	case SD_LBP_UNMAP:
 733		buf = page_address(page);
 
 
 734
 735		cmd->cmd_len = 10;
 736		cmd->cmnd[0] = UNMAP;
 737		cmd->cmnd[8] = 24;
 738
 739		put_unaligned_be16(6 + 16, &buf[0]);
 740		put_unaligned_be16(16, &buf[2]);
 741		put_unaligned_be64(sector, &buf[8]);
 742		put_unaligned_be32(nr_sectors, &buf[16]);
 743
 744		len = 24;
 745		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 746
 747	case SD_LBP_WS16:
 748		cmd->cmd_len = 16;
 749		cmd->cmnd[0] = WRITE_SAME_16;
 750		cmd->cmnd[1] = 0x8; /* UNMAP */
 751		put_unaligned_be64(sector, &cmd->cmnd[2]);
 752		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
 753
 754		len = sdkp->device->sector_size;
 755		break;
 756
 757	case SD_LBP_WS10:
 758	case SD_LBP_ZERO:
 759		cmd->cmd_len = 10;
 760		cmd->cmnd[0] = WRITE_SAME;
 761		if (sdkp->provisioning_mode == SD_LBP_WS10)
 762			cmd->cmnd[1] = 0x8; /* UNMAP */
 763		put_unaligned_be32(sector, &cmd->cmnd[2]);
 764		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
 765
 766		len = sdkp->device->sector_size;
 767		break;
 768
 769	default:
 770		ret = BLKPREP_INVALID;
 771		goto out;
 772	}
 
 
 
 
 
 
 
 
 
 
 
 
 773
 774	rq->timeout = SD_TIMEOUT;
 
 
 
 
 
 775
 776	cmd->transfersize = len;
 777	cmd->allowed = SD_MAX_RETRIES;
 
 
 778
 779	rq->special_vec.bv_page = page;
 780	rq->special_vec.bv_offset = 0;
 781	rq->special_vec.bv_len = len;
 782
 783	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 784	rq->resid_len = len;
 
 
 
 
 
 785
 786	ret = scsi_init_io(cmd);
 787out:
 788	if (ret != BLKPREP_OK)
 789		__free_page(page);
 790	return ret;
 
 
 
 
 
 
 
 
 
 
 
 791}
 792
 793static void sd_config_write_same(struct scsi_disk *sdkp)
 794{
 795	struct request_queue *q = sdkp->disk->queue;
 796	unsigned int logical_block_size = sdkp->device->sector_size;
 797
 798	if (sdkp->device->no_write_same) {
 799		sdkp->max_ws_blocks = 0;
 800		goto out;
 801	}
 802
 803	/* Some devices can not handle block counts above 0xffff despite
 804	 * supporting WRITE SAME(16). Consequently we default to 64k
 805	 * blocks per I/O unless the device explicitly advertises a
 806	 * bigger limit.
 807	 */
 808	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
 809		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 810						   (u32)SD_MAX_WS16_BLOCKS);
 811	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
 812		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 813						   (u32)SD_MAX_WS10_BLOCKS);
 814	else {
 815		sdkp->device->no_write_same = 1;
 816		sdkp->max_ws_blocks = 0;
 817	}
 818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 819out:
 820	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
 821					 (logical_block_size >> 9));
 
 
 822}
 823
 824/**
 825 * sd_setup_write_same_cmnd - write the same data to multiple blocks
 826 * @cmd: command to prepare
 827 *
 828 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on
 829 * preference indicated by target device.
 830 **/
 831static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
 832{
 833	struct request *rq = cmd->request;
 834	struct scsi_device *sdp = cmd->device;
 835	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
 836	struct bio *bio = rq->bio;
 837	sector_t sector = blk_rq_pos(rq);
 838	unsigned int nr_sectors = blk_rq_sectors(rq);
 839	unsigned int nr_bytes = blk_rq_bytes(rq);
 840	int ret;
 841
 842	if (sdkp->device->no_write_same)
 843		return BLKPREP_INVALID;
 844
 845	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
 846
 847	if (sd_is_zoned(sdkp)) {
 848		ret = sd_zbc_setup_write_cmnd(cmd);
 849		if (ret != BLKPREP_OK)
 850			return ret;
 851	}
 852
 853	sector >>= ilog2(sdp->sector_size) - 9;
 854	nr_sectors >>= ilog2(sdp->sector_size) - 9;
 855
 856	rq->timeout = SD_WRITE_SAME_TIMEOUT;
 857
 858	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
 859		cmd->cmd_len = 16;
 860		cmd->cmnd[0] = WRITE_SAME_16;
 861		put_unaligned_be64(sector, &cmd->cmnd[2]);
 862		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
 863	} else {
 864		cmd->cmd_len = 10;
 865		cmd->cmnd[0] = WRITE_SAME;
 866		put_unaligned_be32(sector, &cmd->cmnd[2]);
 867		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
 868	}
 869
 870	cmd->transfersize = sdp->sector_size;
 871	cmd->allowed = SD_MAX_RETRIES;
 872
 873	/*
 874	 * For WRITE SAME the data transferred via the DATA OUT buffer is
 875	 * different from the amount of data actually written to the target.
 876	 *
 877	 * We set up __data_len to the amount of data transferred via the
 878	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
 879	 * to transfer a single sector of data first, but then reset it to
 880	 * the amount of data to be written right after so that the I/O path
 881	 * knows how much to actually write.
 882	 */
 883	rq->__data_len = sdp->sector_size;
 884	ret = scsi_init_io(cmd);
 885	rq->__data_len = nr_bytes;
 
 886	return ret;
 887}
 888
 889static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
 890{
 891	struct request *rq = cmd->request;
 892
 893	/* flush requests don't perform I/O, zero the S/G table */
 894	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 895
 896	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
 897	cmd->cmd_len = 10;
 898	cmd->transfersize = 0;
 899	cmd->allowed = SD_MAX_RETRIES;
 900
 901	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
 902	return BLKPREP_OK;
 903}
 904
 905static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
 
 
 906{
 907	struct request *rq = SCpnt->request;
 908	struct scsi_device *sdp = SCpnt->device;
 909	struct gendisk *disk = rq->rq_disk;
 910	struct scsi_disk *sdkp = scsi_disk(disk);
 911	sector_t block = blk_rq_pos(rq);
 912	sector_t threshold;
 913	unsigned int this_count = blk_rq_sectors(rq);
 914	unsigned int dif, dix;
 915	bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
 916	int ret;
 917	unsigned char protect;
 918
 919	if (zoned_write) {
 920		ret = sd_zbc_setup_write_cmnd(SCpnt);
 921		if (ret != BLKPREP_OK)
 922			return ret;
 923	}
 924
 925	ret = scsi_init_io(SCpnt);
 926	if (ret != BLKPREP_OK)
 927		goto out;
 928	SCpnt = rq->special;
 
 
 
 929
 930	/* from here on until we're complete, any goto out
 931	 * is used for a killable error condition */
 932	ret = BLKPREP_KILL;
 933
 934	SCSI_LOG_HLQUEUE(1,
 935		scmd_printk(KERN_INFO, SCpnt,
 936			"%s: block=%llu, count=%d\n",
 937			__func__, (unsigned long long)block, this_count));
 938
 939	if (!sdp || !scsi_device_online(sdp) ||
 940	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
 941		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
 942						"Finishing %u sectors\n",
 943						blk_rq_sectors(rq)));
 944		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
 945						"Retry with 0x%p\n", SCpnt));
 946		goto out;
 947	}
 948
 949	if (sdp->changed) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950		/*
 951		 * quietly refuse to do anything to a changed disc until 
 952		 * the changed bit has been reset
 
 953		 */
 954		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
 955		goto out;
 956	}
 957
 958	/*
 959	 * Some SD card readers can't handle multi-sector accesses which touch
 960	 * the last one or two hardware sectors.  Split accesses as needed.
 961	 */
 962	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
 963		(sdp->sector_size / 512);
 
 964
 965	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
 966		if (block < threshold) {
 967			/* Access up to the threshold but not beyond */
 968			this_count = threshold - block;
 969		} else {
 970			/* Access only a single hardware sector */
 971			this_count = sdp->sector_size / 512;
 972		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973	}
 974
 975	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
 976					(unsigned long long)block));
 
 
 977
 978	/*
 979	 * If we have a 1K hardware sectorsize, prevent access to single
 980	 * 512 byte sectors.  In theory we could handle this - in fact
 981	 * the scsi cdrom driver must be able to handle this because
 982	 * we typically use 1K blocksizes, and cdroms typically have
 983	 * 2K hardware sectorsizes.  Of course, things are simpler
 984	 * with the cdrom, since it is read-only.  For performance
 985	 * reasons, the filesystems should be able to handle this
 986	 * and not force the scsi disk driver to use bounce buffers
 987	 * for this.
 988	 */
 989	if (sdp->sector_size == 1024) {
 990		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
 991			scmd_printk(KERN_ERR, SCpnt,
 992				    "Bad block number requested\n");
 993			goto out;
 994		} else {
 995			block = block >> 1;
 996			this_count = this_count >> 1;
 997		}
 998	}
 999	if (sdp->sector_size == 2048) {
1000		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1001			scmd_printk(KERN_ERR, SCpnt,
1002				    "Bad block number requested\n");
1003			goto out;
1004		} else {
1005			block = block >> 2;
1006			this_count = this_count >> 2;
1007		}
1008	}
1009	if (sdp->sector_size == 4096) {
1010		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1011			scmd_printk(KERN_ERR, SCpnt,
1012				    "Bad block number requested\n");
1013			goto out;
1014		} else {
1015			block = block >> 3;
1016			this_count = this_count >> 3;
1017		}
1018	}
1019	if (rq_data_dir(rq) == WRITE) {
1020		SCpnt->cmnd[0] = WRITE_6;
1021
1022		if (blk_integrity_rq(rq))
1023			sd_dif_prepare(SCpnt);
1024
1025	} else if (rq_data_dir(rq) == READ) {
1026		SCpnt->cmnd[0] = READ_6;
1027	} else {
1028		scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1029		goto out;
1030	}
1031
1032	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1033					"%s %d/%u 512 byte blocks.\n",
1034					(rq_data_dir(rq) == WRITE) ?
1035					"writing" : "reading", this_count,
1036					blk_rq_sectors(rq)));
1037
1038	dix = scsi_prot_sg_count(SCpnt);
1039	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1040
1041	if (dif || dix)
1042		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1043	else
1044		protect = 0;
1045
1046	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1047		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1048
1049		if (unlikely(SCpnt->cmnd == NULL)) {
1050			ret = BLKPREP_DEFER;
1051			goto out;
1052		}
1053
1054		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1055		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1056		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1057		SCpnt->cmnd[7] = 0x18;
1058		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1059		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1060
1061		/* LBA */
1062		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1063		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1064		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1065		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1066		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1067		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1068		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1069		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1070
1071		/* Expected Indirect LBA */
1072		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1073		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1074		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1075		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1076
1077		/* Transfer length */
1078		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1079		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1080		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1081		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1082	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1083		SCpnt->cmnd[0] += READ_16 - READ_6;
1084		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1085		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1086		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1087		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1088		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1089		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1090		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1091		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1092		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1093		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1094		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1095		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1096		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1097		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1098	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1099		   scsi_device_protection(SCpnt->device) ||
1100		   SCpnt->device->use_10_for_rw) {
1101		SCpnt->cmnd[0] += READ_10 - READ_6;
1102		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1103		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1104		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1105		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1106		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1107		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1108		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1109		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1110	} else {
1111		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1112			/*
1113			 * This happens only if this drive failed
1114			 * 10byte rw command with ILLEGAL_REQUEST
1115			 * during operation and thus turned off
1116			 * use_10_for_rw.
1117			 */
1118			scmd_printk(KERN_ERR, SCpnt,
1119				    "FUA write on READ/WRITE(6) drive\n");
1120			goto out;
1121		}
1122
1123		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1124		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1125		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1126		SCpnt->cmnd[4] = (unsigned char) this_count;
1127		SCpnt->cmnd[5] = 0;
1128	}
1129	SCpnt->sdb.length = this_count * sdp->sector_size;
 
 
1130
1131	/*
1132	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1133	 * host adapter, it's safe to assume that we can at least transfer
1134	 * this many bytes between each connect / disconnect.
1135	 */
1136	SCpnt->transfersize = sdp->sector_size;
1137	SCpnt->underflow = this_count << 9;
1138	SCpnt->allowed = SD_MAX_RETRIES;
 
 
 
 
 
 
 
 
 
 
 
 
1139
1140	/*
1141	 * This indicates that the command is ready from our end to be
1142	 * queued.
1143	 */
1144	ret = BLKPREP_OK;
1145 out:
1146	if (zoned_write && ret != BLKPREP_OK)
1147		sd_zbc_cancel_write_cmnd(SCpnt);
1148
1149	return ret;
1150}
1151
1152static int sd_init_command(struct scsi_cmnd *cmd)
1153{
1154	struct request *rq = cmd->request;
1155
1156	switch (req_op(rq)) {
1157	case REQ_OP_DISCARD:
1158		return sd_setup_discard_cmnd(cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
1159	case REQ_OP_WRITE_SAME:
1160		return sd_setup_write_same_cmnd(cmd);
1161	case REQ_OP_FLUSH:
1162		return sd_setup_flush_cmnd(cmd);
1163	case REQ_OP_READ:
1164	case REQ_OP_WRITE:
 
1165		return sd_setup_read_write_cmnd(cmd);
1166	case REQ_OP_ZONE_REPORT:
1167		return sd_zbc_setup_report_cmnd(cmd);
1168	case REQ_OP_ZONE_RESET:
1169		return sd_zbc_setup_reset_cmnd(cmd);
 
 
 
 
 
 
 
 
 
 
1170	default:
1171		BUG();
 
1172	}
1173}
1174
1175static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1176{
1177	struct request *rq = SCpnt->request;
 
1178
1179	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1180		__free_page(rq->special_vec.bv_page);
1181
1182	if (SCpnt->cmnd != rq->cmd) {
1183		mempool_free(SCpnt->cmnd, sd_cdb_pool);
1184		SCpnt->cmnd = NULL;
1185		SCpnt->cmd_len = 0;
 
1186	}
1187}
1188
1189/**
1190 *	sd_open - open a scsi disk device
1191 *	@inode: only i_rdev member may be used
1192 *	@filp: only f_mode and f_flags may be used
1193 *
1194 *	Returns 0 if successful. Returns a negated errno value in case 
1195 *	of error.
1196 *
1197 *	Note: This can be called from a user context (e.g. fsck(1) )
1198 *	or from within the kernel (e.g. as a result of a mount(1) ).
1199 *	In the latter case @inode and @filp carry an abridged amount
1200 *	of information as noted above.
1201 *
1202 *	Locking: called with bdev->bd_mutex held.
1203 **/
1204static int sd_open(struct block_device *bdev, fmode_t mode)
1205{
1206	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1207	struct scsi_device *sdev;
1208	int retval;
1209
1210	if (!sdkp)
1211		return -ENXIO;
1212
1213	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1214
1215	sdev = sdkp->device;
1216
1217	/*
1218	 * If the device is in error recovery, wait until it is done.
1219	 * If the device is offline, then disallow any access to it.
1220	 */
1221	retval = -ENXIO;
1222	if (!scsi_block_when_processing_errors(sdev))
1223		goto error_out;
1224
1225	if (sdev->removable || sdkp->write_prot)
1226		check_disk_change(bdev);
1227
1228	/*
1229	 * If the drive is empty, just let the open fail.
1230	 */
1231	retval = -ENOMEDIUM;
1232	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1233		goto error_out;
1234
1235	/*
1236	 * If the device has the write protect tab set, have the open fail
1237	 * if the user expects to be able to write to the thing.
1238	 */
1239	retval = -EROFS;
1240	if (sdkp->write_prot && (mode & FMODE_WRITE))
1241		goto error_out;
1242
1243	/*
1244	 * It is possible that the disk changing stuff resulted in
1245	 * the device being taken offline.  If this is the case,
1246	 * report this to the user, and don't pretend that the
1247	 * open actually succeeded.
1248	 */
1249	retval = -ENXIO;
1250	if (!scsi_device_online(sdev))
1251		goto error_out;
1252
1253	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1254		if (scsi_block_when_processing_errors(sdev))
1255			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1256	}
1257
1258	return 0;
1259
1260error_out:
1261	scsi_disk_put(sdkp);
1262	return retval;	
1263}
1264
1265/**
1266 *	sd_release - invoked when the (last) close(2) is called on this
1267 *	scsi disk.
1268 *	@inode: only i_rdev member may be used
1269 *	@filp: only f_mode and f_flags may be used
1270 *
1271 *	Returns 0. 
1272 *
1273 *	Note: may block (uninterruptible) if error recovery is underway
1274 *	on this disk.
1275 *
1276 *	Locking: called with bdev->bd_mutex held.
1277 **/
1278static void sd_release(struct gendisk *disk, fmode_t mode)
1279{
1280	struct scsi_disk *sdkp = scsi_disk(disk);
1281	struct scsi_device *sdev = sdkp->device;
1282
1283	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1284
1285	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1286		if (scsi_block_when_processing_errors(sdev))
1287			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1288	}
1289
1290	/*
1291	 * XXX and what if there are packets in flight and this close()
1292	 * XXX is followed by a "rmmod sd_mod"?
1293	 */
1294
1295	scsi_disk_put(sdkp);
1296}
1297
1298static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1299{
1300	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1301	struct scsi_device *sdp = sdkp->device;
1302	struct Scsi_Host *host = sdp->host;
1303	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1304	int diskinfo[4];
1305
1306	/* default to most commonly used values */
1307	diskinfo[0] = 0x40;	/* 1 << 6 */
1308	diskinfo[1] = 0x20;	/* 1 << 5 */
1309	diskinfo[2] = capacity >> 11;
1310
1311	/* override with calculated, extended default, or driver values */
1312	if (host->hostt->bios_param)
1313		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1314	else
1315		scsicam_bios_param(bdev, capacity, diskinfo);
1316
1317	geo->heads = diskinfo[0];
1318	geo->sectors = diskinfo[1];
1319	geo->cylinders = diskinfo[2];
1320	return 0;
1321}
1322
1323/**
1324 *	sd_ioctl - process an ioctl
1325 *	@inode: only i_rdev/i_bdev members may be used
1326 *	@filp: only f_mode and f_flags may be used
1327 *	@cmd: ioctl command number
1328 *	@arg: this is third argument given to ioctl(2) system call.
1329 *	Often contains a pointer.
1330 *
1331 *	Returns 0 if successful (some ioctls return positive numbers on
1332 *	success as well). Returns a negated errno value in case of error.
1333 *
1334 *	Note: most ioctls are forward onto the block subsystem or further
1335 *	down in the scsi subsystem.
1336 **/
1337static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1338		    unsigned int cmd, unsigned long arg)
1339{
1340	struct gendisk *disk = bdev->bd_disk;
1341	struct scsi_disk *sdkp = scsi_disk(disk);
1342	struct scsi_device *sdp = sdkp->device;
1343	void __user *p = (void __user *)arg;
1344	int error;
1345    
1346	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1347				    "cmd=0x%x\n", disk->disk_name, cmd));
1348
1349	error = scsi_verify_blk_ioctl(bdev, cmd);
1350	if (error < 0)
1351		return error;
1352
1353	/*
1354	 * If we are in the middle of error recovery, don't let anyone
1355	 * else try and use this device.  Also, if error recovery fails, it
1356	 * may try and take the device offline, in which case all further
1357	 * access to the device is prohibited.
1358	 */
1359	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1360			(mode & FMODE_NDELAY) != 0);
1361	if (error)
1362		goto out;
1363
 
 
 
1364	/*
1365	 * Send SCSI addressing ioctls directly to mid level, send other
1366	 * ioctls to block level and then onto mid level if they can't be
1367	 * resolved.
1368	 */
1369	switch (cmd) {
1370		case SCSI_IOCTL_GET_IDLUN:
1371		case SCSI_IOCTL_GET_BUS_NUMBER:
1372			error = scsi_ioctl(sdp, cmd, p);
1373			break;
1374		default:
1375			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1376			if (error != -ENOTTY)
1377				break;
1378			error = scsi_ioctl(sdp, cmd, p);
1379			break;
1380	}
1381out:
1382	return error;
1383}
1384
1385static void set_media_not_present(struct scsi_disk *sdkp)
1386{
1387	if (sdkp->media_present)
1388		sdkp->device->changed = 1;
1389
1390	if (sdkp->device->removable) {
1391		sdkp->media_present = 0;
1392		sdkp->capacity = 0;
1393	}
1394}
1395
1396static int media_not_present(struct scsi_disk *sdkp,
1397			     struct scsi_sense_hdr *sshdr)
1398{
1399	if (!scsi_sense_valid(sshdr))
1400		return 0;
1401
1402	/* not invoked for commands that could return deferred errors */
1403	switch (sshdr->sense_key) {
1404	case UNIT_ATTENTION:
1405	case NOT_READY:
1406		/* medium not present */
1407		if (sshdr->asc == 0x3A) {
1408			set_media_not_present(sdkp);
1409			return 1;
1410		}
1411	}
1412	return 0;
1413}
1414
1415/**
1416 *	sd_check_events - check media events
1417 *	@disk: kernel device descriptor
1418 *	@clearing: disk events currently being cleared
1419 *
1420 *	Returns mask of DISK_EVENT_*.
1421 *
1422 *	Note: this function is invoked from the block subsystem.
1423 **/
1424static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1425{
1426	struct scsi_disk *sdkp = scsi_disk_get(disk);
1427	struct scsi_device *sdp;
1428	struct scsi_sense_hdr *sshdr = NULL;
1429	int retval;
1430
1431	if (!sdkp)
1432		return 0;
1433
1434	sdp = sdkp->device;
1435	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1436
1437	/*
1438	 * If the device is offline, don't send any commands - just pretend as
1439	 * if the command failed.  If the device ever comes back online, we
1440	 * can deal with it then.  It is only because of unrecoverable errors
1441	 * that we would ever take a device offline in the first place.
1442	 */
1443	if (!scsi_device_online(sdp)) {
1444		set_media_not_present(sdkp);
1445		goto out;
1446	}
1447
1448	/*
1449	 * Using TEST_UNIT_READY enables differentiation between drive with
1450	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1451	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1452	 *
1453	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1454	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1455	 * sd_revalidate() is called.
1456	 */
1457	retval = -ENODEV;
1458
1459	if (scsi_block_when_processing_errors(sdp)) {
1460		sshdr  = kzalloc(sizeof(*sshdr), GFP_KERNEL);
 
1461		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1462					      sshdr);
1463	}
1464
1465	/* failed to execute TUR, assume media not present */
1466	if (host_byte(retval)) {
1467		set_media_not_present(sdkp);
1468		goto out;
1469	}
1470
1471	if (media_not_present(sdkp, sshdr))
1472		goto out;
 
1473
1474	/*
1475	 * For removable scsi disk we have to recognise the presence
1476	 * of a disk in the drive.
1477	 */
1478	if (!sdkp->media_present)
1479		sdp->changed = 1;
1480	sdkp->media_present = 1;
1481out:
1482	/*
1483	 * sdp->changed is set under the following conditions:
1484	 *
1485	 *	Medium present state has changed in either direction.
1486	 *	Device has indicated UNIT_ATTENTION.
1487	 */
1488	kfree(sshdr);
1489	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1490	sdp->changed = 0;
1491	scsi_disk_put(sdkp);
1492	return retval;
1493}
1494
1495static int sd_sync_cache(struct scsi_disk *sdkp)
1496{
1497	int retries, res;
1498	struct scsi_device *sdp = sdkp->device;
1499	const int timeout = sdp->request_queue->rq_timeout
1500		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1501	struct scsi_sense_hdr sshdr;
1502
1503	if (!scsi_device_online(sdp))
1504		return -ENODEV;
1505
 
 
 
 
1506	for (retries = 3; retries > 0; --retries) {
1507		unsigned char cmd[10] = { 0 };
1508
1509		cmd[0] = SYNCHRONIZE_CACHE;
1510		/*
1511		 * Leave the rest of the command zero to indicate
1512		 * flush everything.
1513		 */
1514		res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0,
1515					     &sshdr, timeout, SD_MAX_RETRIES,
1516					     NULL, 0, RQF_PM);
1517		if (res == 0)
1518			break;
1519	}
1520
1521	if (res) {
1522		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1523
1524		if (driver_byte(res) & DRIVER_SENSE)
1525			sd_print_sense_hdr(sdkp, &sshdr);
 
1526		/* we need to evaluate the error return  */
1527		if (scsi_sense_valid(&sshdr) &&
1528			(sshdr.asc == 0x3a ||	/* medium not present */
1529			 sshdr.asc == 0x20))	/* invalid command */
 
1530				/* this is no error here */
1531				return 0;
1532
1533		switch (host_byte(res)) {
1534		/* ignore errors due to racing a disconnection */
1535		case DID_BAD_TARGET:
1536		case DID_NO_CONNECT:
1537			return 0;
1538		/* signal the upper layer it might try again */
1539		case DID_BUS_BUSY:
1540		case DID_IMM_RETRY:
1541		case DID_REQUEUE:
1542		case DID_SOFT_ERROR:
1543			return -EBUSY;
1544		default:
1545			return -EIO;
1546		}
1547	}
1548	return 0;
1549}
1550
1551static void sd_rescan(struct device *dev)
1552{
1553	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1554
1555	revalidate_disk(sdkp->disk);
1556}
1557
 
 
 
 
 
 
 
 
 
 
 
 
1558
1559#ifdef CONFIG_COMPAT
1560/* 
1561 * This gets directly called from VFS. When the ioctl 
1562 * is not recognized we go back to the other translation paths. 
1563 */
1564static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1565			   unsigned int cmd, unsigned long arg)
1566{
1567	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1568	int error;
1569
1570	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1571			(mode & FMODE_NDELAY) != 0);
1572	if (error)
1573		return error;
1574	       
1575	/* 
1576	 * Let the static ioctl translation table take care of it.
1577	 */
1578	if (!sdev->host->hostt->compat_ioctl)
1579		return -ENOIOCTLCMD; 
1580	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1581}
1582#endif
1583
1584static char sd_pr_type(enum pr_type type)
1585{
1586	switch (type) {
1587	case PR_WRITE_EXCLUSIVE:
1588		return 0x01;
1589	case PR_EXCLUSIVE_ACCESS:
1590		return 0x03;
1591	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1592		return 0x05;
1593	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1594		return 0x06;
1595	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1596		return 0x07;
1597	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1598		return 0x08;
1599	default:
1600		return 0;
1601	}
1602};
1603
1604static int sd_pr_command(struct block_device *bdev, u8 sa,
1605		u64 key, u64 sa_key, u8 type, u8 flags)
1606{
1607	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1608	struct scsi_sense_hdr sshdr;
1609	int result;
1610	u8 cmd[16] = { 0, };
1611	u8 data[24] = { 0, };
1612
1613	cmd[0] = PERSISTENT_RESERVE_OUT;
1614	cmd[1] = sa;
1615	cmd[2] = type;
1616	put_unaligned_be32(sizeof(data), &cmd[5]);
1617
1618	put_unaligned_be64(key, &data[0]);
1619	put_unaligned_be64(sa_key, &data[8]);
1620	data[20] = flags;
1621
1622	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1623			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1624
1625	if ((driver_byte(result) & DRIVER_SENSE) &&
1626	    (scsi_sense_valid(&sshdr))) {
1627		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1628		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1629	}
1630
1631	return result;
1632}
1633
1634static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1635		u32 flags)
1636{
1637	if (flags & ~PR_FL_IGNORE_KEY)
1638		return -EOPNOTSUPP;
1639	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1640			old_key, new_key, 0,
1641			(1 << 0) /* APTPL */);
1642}
1643
1644static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1645		u32 flags)
1646{
1647	if (flags)
1648		return -EOPNOTSUPP;
1649	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1650}
1651
1652static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1653{
1654	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1655}
1656
1657static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1658		enum pr_type type, bool abort)
1659{
1660	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1661			     sd_pr_type(type), 0);
1662}
1663
1664static int sd_pr_clear(struct block_device *bdev, u64 key)
1665{
1666	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1667}
1668
1669static const struct pr_ops sd_pr_ops = {
1670	.pr_register	= sd_pr_register,
1671	.pr_reserve	= sd_pr_reserve,
1672	.pr_release	= sd_pr_release,
1673	.pr_preempt	= sd_pr_preempt,
1674	.pr_clear	= sd_pr_clear,
1675};
1676
1677static const struct block_device_operations sd_fops = {
1678	.owner			= THIS_MODULE,
1679	.open			= sd_open,
1680	.release		= sd_release,
1681	.ioctl			= sd_ioctl,
1682	.getgeo			= sd_getgeo,
1683#ifdef CONFIG_COMPAT
1684	.compat_ioctl		= sd_compat_ioctl,
1685#endif
1686	.check_events		= sd_check_events,
1687	.revalidate_disk	= sd_revalidate_disk,
1688	.unlock_native_capacity	= sd_unlock_native_capacity,
 
1689	.pr_ops			= &sd_pr_ops,
1690};
1691
1692/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1693 *	sd_eh_action - error handling callback
1694 *	@scmd:		sd-issued command that has failed
1695 *	@eh_disp:	The recovery disposition suggested by the midlayer
1696 *
1697 *	This function is called by the SCSI midlayer upon completion of an
1698 *	error test command (currently TEST UNIT READY). The result of sending
1699 *	the eh command is passed in eh_disp.  We're looking for devices that
1700 *	fail medium access commands but are OK with non access commands like
1701 *	test unit ready (so wrongly see the device as having a successful
1702 *	recovery)
1703 **/
1704static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1705{
1706	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
 
1707
1708	if (!scsi_device_online(scmd->device) ||
1709	    !scsi_medium_access_command(scmd) ||
1710	    host_byte(scmd->result) != DID_TIME_OUT ||
1711	    eh_disp != SUCCESS)
1712		return eh_disp;
1713
1714	/*
1715	 * The device has timed out executing a medium access command.
1716	 * However, the TEST UNIT READY command sent during error
1717	 * handling completed successfully. Either the device is in the
1718	 * process of recovering or has it suffered an internal failure
1719	 * that prevents access to the storage medium.
1720	 */
1721	sdkp->medium_access_timed_out++;
 
 
 
1722
1723	/*
1724	 * If the device keeps failing read/write commands but TEST UNIT
1725	 * READY always completes successfully we assume that medium
1726	 * access is no longer possible and take the device offline.
1727	 */
1728	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1729		scmd_printk(KERN_ERR, scmd,
1730			    "Medium access timeout failure. Offlining disk!\n");
1731		scsi_device_set_state(scmd->device, SDEV_OFFLINE);
 
 
1732
1733		return FAILED;
1734	}
1735
1736	return eh_disp;
1737}
1738
1739static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1740{
1741	u64 start_lba = blk_rq_pos(scmd->request);
1742	u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512);
1743	u64 factor = scmd->device->sector_size / 512;
1744	u64 bad_lba;
1745	int info_valid;
1746	/*
1747	 * resid is optional but mostly filled in.  When it's unused,
1748	 * its value is zero, so we assume the whole buffer transferred
1749	 */
1750	unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1751	unsigned int good_bytes;
1752
1753	if (scmd->request->cmd_type != REQ_TYPE_FS)
1754		return 0;
1755
1756	info_valid = scsi_get_sense_info_fld(scmd->sense_buffer,
1757					     SCSI_SENSE_BUFFERSIZE,
1758					     &bad_lba);
1759	if (!info_valid)
1760		return 0;
1761
1762	if (scsi_bufflen(scmd) <= scmd->device->sector_size)
1763		return 0;
1764
1765	/* be careful ... don't want any overflows */
1766	do_div(start_lba, factor);
1767	do_div(end_lba, factor);
1768
1769	/* The bad lba was reported incorrectly, we have no idea where
1770	 * the error is.
1771	 */
1772	if (bad_lba < start_lba  || bad_lba >= end_lba)
 
 
1773		return 0;
1774
1775	/* This computation should always be done in terms of
1776	 * the resolution of the device's medium.
 
1777	 */
1778	good_bytes = (bad_lba - start_lba) * scmd->device->sector_size;
 
 
 
 
 
 
1779	return min(good_bytes, transferred);
1780}
1781
1782/**
1783 *	sd_done - bottom half handler: called when the lower level
1784 *	driver has completed (successfully or otherwise) a scsi command.
1785 *	@SCpnt: mid-level's per command structure.
1786 *
1787 *	Note: potentially run from within an ISR. Must not block.
1788 **/
1789static int sd_done(struct scsi_cmnd *SCpnt)
1790{
1791	int result = SCpnt->result;
1792	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1793	unsigned int sector_size = SCpnt->device->sector_size;
1794	unsigned int resid;
1795	struct scsi_sense_hdr sshdr;
1796	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1797	struct request *req = SCpnt->request;
1798	int sense_valid = 0;
1799	int sense_deferred = 0;
1800	unsigned char op = SCpnt->cmnd[0];
1801	unsigned char unmap = SCpnt->cmnd[1] & 8;
1802
1803	switch (req_op(req)) {
1804	case REQ_OP_DISCARD:
 
1805	case REQ_OP_WRITE_SAME:
1806	case REQ_OP_ZONE_RESET:
 
 
 
 
1807		if (!result) {
1808			good_bytes = blk_rq_bytes(req);
1809			scsi_set_resid(SCpnt, 0);
1810		} else {
1811			good_bytes = 0;
1812			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1813		}
1814		break;
1815	case REQ_OP_ZONE_REPORT:
1816		if (!result) {
1817			good_bytes = scsi_bufflen(SCpnt)
1818				- scsi_get_resid(SCpnt);
1819			scsi_set_resid(SCpnt, 0);
1820		} else {
1821			good_bytes = 0;
1822			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1823		}
1824		break;
1825	default:
1826		/*
1827		 * In case of bogus fw or device, we could end up having
1828		 * an unaligned partial completion. Check this here and force
1829		 * alignment.
1830		 */
1831		resid = scsi_get_resid(SCpnt);
1832		if (resid & (sector_size - 1)) {
1833			sd_printk(KERN_INFO, sdkp,
1834				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1835				resid, sector_size);
 
1836			resid = min(scsi_bufflen(SCpnt),
1837				    round_up(resid, sector_size));
1838			scsi_set_resid(SCpnt, resid);
1839		}
1840	}
1841
1842	if (result) {
1843		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1844		if (sense_valid)
1845			sense_deferred = scsi_sense_is_deferred(&sshdr);
1846	}
1847	sdkp->medium_access_timed_out = 0;
1848
1849	if (driver_byte(result) != DRIVER_SENSE &&
1850	    (!sense_valid || sense_deferred))
1851		goto out;
1852
1853	switch (sshdr.sense_key) {
1854	case HARDWARE_ERROR:
1855	case MEDIUM_ERROR:
1856		good_bytes = sd_completed_bytes(SCpnt);
1857		break;
1858	case RECOVERED_ERROR:
1859		good_bytes = scsi_bufflen(SCpnt);
1860		break;
1861	case NO_SENSE:
1862		/* This indicates a false check condition, so ignore it.  An
1863		 * unknown amount of data was transferred so treat it as an
1864		 * error.
1865		 */
1866		SCpnt->result = 0;
1867		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1868		break;
1869	case ABORTED_COMMAND:
1870		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
1871			good_bytes = sd_completed_bytes(SCpnt);
1872		break;
1873	case ILLEGAL_REQUEST:
1874		if (sshdr.asc == 0x10)  /* DIX: Host detected corruption */
 
1875			good_bytes = sd_completed_bytes(SCpnt);
1876		/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
1877		if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
1878			switch (op) {
 
1879			case UNMAP:
1880				sd_config_discard(sdkp, SD_LBP_DISABLE);
1881				break;
1882			case WRITE_SAME_16:
1883			case WRITE_SAME:
1884				if (unmap)
1885					sd_config_discard(sdkp, SD_LBP_DISABLE);
1886				else {
1887					sdkp->device->no_write_same = 1;
1888					sd_config_write_same(sdkp);
1889
1890					good_bytes = 0;
1891					req->__data_len = blk_rq_bytes(req);
1892					req->rq_flags |= RQF_QUIET;
1893				}
 
1894			}
1895		}
1896		break;
1897	default:
1898		break;
1899	}
1900
1901 out:
1902	if (sd_is_zoned(sdkp))
1903		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
1904
1905	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
1906					   "sd_done: completed %d of %d bytes\n",
1907					   good_bytes, scsi_bufflen(SCpnt)));
1908
1909	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
1910		sd_dif_complete(SCpnt, good_bytes);
1911
1912	return good_bytes;
1913}
1914
1915/*
1916 * spinup disk - called only in sd_revalidate_disk()
1917 */
1918static void
1919sd_spinup_disk(struct scsi_disk *sdkp)
1920{
1921	unsigned char cmd[10];
1922	unsigned long spintime_expire = 0;
1923	int retries, spintime;
1924	unsigned int the_result;
1925	struct scsi_sense_hdr sshdr;
1926	int sense_valid = 0;
1927
1928	spintime = 0;
1929
1930	/* Spin up drives, as required.  Only do this at boot time */
1931	/* Spinup needs to be done for module loads too. */
1932	do {
1933		retries = 0;
1934
1935		do {
1936			cmd[0] = TEST_UNIT_READY;
1937			memset((void *) &cmd[1], 0, 9);
1938
1939			the_result = scsi_execute_req(sdkp->device, cmd,
1940						      DMA_NONE, NULL, 0,
1941						      &sshdr, SD_TIMEOUT,
1942						      SD_MAX_RETRIES, NULL);
1943
1944			/*
1945			 * If the drive has indicated to us that it
1946			 * doesn't have any media in it, don't bother
1947			 * with any more polling.
1948			 */
1949			if (media_not_present(sdkp, &sshdr))
1950				return;
1951
1952			if (the_result)
1953				sense_valid = scsi_sense_valid(&sshdr);
1954			retries++;
1955		} while (retries < 3 && 
1956			 (!scsi_status_is_good(the_result) ||
1957			  ((driver_byte(the_result) & DRIVER_SENSE) &&
1958			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
1959
1960		if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
1961			/* no sense, TUR either succeeded or failed
1962			 * with a status error */
1963			if(!spintime && !scsi_status_is_good(the_result)) {
1964				sd_print_result(sdkp, "Test Unit Ready failed",
1965						the_result);
1966			}
1967			break;
1968		}
1969
1970		/*
1971		 * The device does not want the automatic start to be issued.
1972		 */
1973		if (sdkp->device->no_start_on_add)
1974			break;
1975
1976		if (sense_valid && sshdr.sense_key == NOT_READY) {
1977			if (sshdr.asc == 4 && sshdr.ascq == 3)
1978				break;	/* manual intervention required */
1979			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
1980				break;	/* standby */
1981			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
1982				break;	/* unavailable */
 
 
1983			/*
1984			 * Issue command to spin up drive when not ready
1985			 */
1986			if (!spintime) {
1987				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
1988				cmd[0] = START_STOP;
1989				cmd[1] = 1;	/* Return immediately */
1990				memset((void *) &cmd[2], 0, 8);
1991				cmd[4] = 1;	/* Start spin cycle */
1992				if (sdkp->device->start_stop_pwr_cond)
1993					cmd[4] |= 1 << 4;
1994				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
1995						 NULL, 0, &sshdr,
1996						 SD_TIMEOUT, SD_MAX_RETRIES,
1997						 NULL);
1998				spintime_expire = jiffies + 100 * HZ;
1999				spintime = 1;
2000			}
2001			/* Wait 1 second for next try */
2002			msleep(1000);
2003			printk(".");
2004
2005		/*
2006		 * Wait for USB flash devices with slow firmware.
2007		 * Yes, this sense key/ASC combination shouldn't
2008		 * occur here.  It's characteristic of these devices.
2009		 */
2010		} else if (sense_valid &&
2011				sshdr.sense_key == UNIT_ATTENTION &&
2012				sshdr.asc == 0x28) {
2013			if (!spintime) {
2014				spintime_expire = jiffies + 5 * HZ;
2015				spintime = 1;
2016			}
2017			/* Wait 1 second for next try */
2018			msleep(1000);
2019		} else {
2020			/* we don't understand the sense code, so it's
2021			 * probably pointless to loop */
2022			if(!spintime) {
2023				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2024				sd_print_sense_hdr(sdkp, &sshdr);
2025			}
2026			break;
2027		}
2028				
2029	} while (spintime && time_before_eq(jiffies, spintime_expire));
2030
2031	if (spintime) {
2032		if (scsi_status_is_good(the_result))
2033			printk("ready\n");
2034		else
2035			printk("not responding...\n");
2036	}
2037}
2038
2039/*
2040 * Determine whether disk supports Data Integrity Field.
2041 */
2042static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2043{
2044	struct scsi_device *sdp = sdkp->device;
2045	u8 type;
2046	int ret = 0;
2047
2048	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
 
2049		return ret;
 
2050
2051	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2052
2053	if (type > T10_PI_TYPE3_PROTECTION)
2054		ret = -ENODEV;
2055	else if (scsi_host_dif_capable(sdp->host, type))
2056		ret = 1;
2057
2058	if (sdkp->first_scan || type != sdkp->protection_type)
2059		switch (ret) {
2060		case -ENODEV:
2061			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2062				  " protection type %u. Disabling disk!\n",
2063				  type);
2064			break;
2065		case 1:
2066			sd_printk(KERN_NOTICE, sdkp,
2067				  "Enabling DIF Type %u protection\n", type);
2068			break;
2069		case 0:
2070			sd_printk(KERN_NOTICE, sdkp,
2071				  "Disabling DIF Type %u protection\n", type);
2072			break;
2073		}
2074
2075	sdkp->protection_type = type;
2076
2077	return ret;
2078}
2079
2080static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2081			struct scsi_sense_hdr *sshdr, int sense_valid,
2082			int the_result)
2083{
2084	if (driver_byte(the_result) & DRIVER_SENSE)
2085		sd_print_sense_hdr(sdkp, sshdr);
2086	else
2087		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2088
2089	/*
2090	 * Set dirty bit for removable devices if not ready -
2091	 * sometimes drives will not report this properly.
2092	 */
2093	if (sdp->removable &&
2094	    sense_valid && sshdr->sense_key == NOT_READY)
2095		set_media_not_present(sdkp);
2096
2097	/*
2098	 * We used to set media_present to 0 here to indicate no media
2099	 * in the drive, but some drives fail read capacity even with
2100	 * media present, so we can't do that.
2101	 */
2102	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2103}
2104
2105#define RC16_LEN 32
2106#if RC16_LEN > SD_BUF_SIZE
2107#error RC16_LEN must not be more than SD_BUF_SIZE
2108#endif
2109
2110#define READ_CAPACITY_RETRIES_ON_RESET	10
2111
2112static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2113						unsigned char *buffer)
2114{
2115	unsigned char cmd[16];
2116	struct scsi_sense_hdr sshdr;
2117	int sense_valid = 0;
2118	int the_result;
2119	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2120	unsigned int alignment;
2121	unsigned long long lba;
2122	unsigned sector_size;
2123
2124	if (sdp->no_read_capacity_16)
2125		return -EINVAL;
2126
2127	do {
2128		memset(cmd, 0, 16);
2129		cmd[0] = SERVICE_ACTION_IN_16;
2130		cmd[1] = SAI_READ_CAPACITY_16;
2131		cmd[13] = RC16_LEN;
2132		memset(buffer, 0, RC16_LEN);
2133
2134		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2135					buffer, RC16_LEN, &sshdr,
2136					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2137
2138		if (media_not_present(sdkp, &sshdr))
2139			return -ENODEV;
2140
2141		if (the_result) {
2142			sense_valid = scsi_sense_valid(&sshdr);
2143			if (sense_valid &&
2144			    sshdr.sense_key == ILLEGAL_REQUEST &&
2145			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2146			    sshdr.ascq == 0x00)
2147				/* Invalid Command Operation Code or
2148				 * Invalid Field in CDB, just retry
2149				 * silently with RC10 */
2150				return -EINVAL;
2151			if (sense_valid &&
2152			    sshdr.sense_key == UNIT_ATTENTION &&
2153			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2154				/* Device reset might occur several times,
2155				 * give it one more chance */
2156				if (--reset_retries > 0)
2157					continue;
2158		}
2159		retries--;
2160
2161	} while (the_result && retries);
2162
2163	if (the_result) {
2164		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2165		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2166		return -EINVAL;
2167	}
2168
2169	sector_size = get_unaligned_be32(&buffer[8]);
2170	lba = get_unaligned_be64(&buffer[0]);
2171
2172	if (sd_read_protection_type(sdkp, buffer) < 0) {
2173		sdkp->capacity = 0;
2174		return -ENODEV;
2175	}
2176
2177	if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) {
2178		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2179			"kernel compiled with support for large block "
2180			"devices.\n");
2181		sdkp->capacity = 0;
2182		return -EOVERFLOW;
2183	}
2184
2185	/* Logical blocks per physical block exponent */
2186	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2187
2188	/* RC basis */
2189	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2190
2191	/* Lowest aligned logical block */
2192	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2193	blk_queue_alignment_offset(sdp->request_queue, alignment);
2194	if (alignment && sdkp->first_scan)
2195		sd_printk(KERN_NOTICE, sdkp,
2196			  "physical block alignment offset: %u\n", alignment);
2197
2198	if (buffer[14] & 0x80) { /* LBPME */
2199		sdkp->lbpme = 1;
2200
2201		if (buffer[14] & 0x40) /* LBPRZ */
2202			sdkp->lbprz = 1;
2203
2204		sd_config_discard(sdkp, SD_LBP_WS16);
2205	}
2206
2207	sdkp->capacity = lba + 1;
2208	return sector_size;
2209}
2210
2211static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2212						unsigned char *buffer)
2213{
2214	unsigned char cmd[16];
2215	struct scsi_sense_hdr sshdr;
2216	int sense_valid = 0;
2217	int the_result;
2218	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2219	sector_t lba;
2220	unsigned sector_size;
2221
2222	do {
2223		cmd[0] = READ_CAPACITY;
2224		memset(&cmd[1], 0, 9);
2225		memset(buffer, 0, 8);
2226
2227		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2228					buffer, 8, &sshdr,
2229					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2230
2231		if (media_not_present(sdkp, &sshdr))
2232			return -ENODEV;
2233
2234		if (the_result) {
2235			sense_valid = scsi_sense_valid(&sshdr);
2236			if (sense_valid &&
2237			    sshdr.sense_key == UNIT_ATTENTION &&
2238			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2239				/* Device reset might occur several times,
2240				 * give it one more chance */
2241				if (--reset_retries > 0)
2242					continue;
2243		}
2244		retries--;
2245
2246	} while (the_result && retries);
2247
2248	if (the_result) {
2249		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2250		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2251		return -EINVAL;
2252	}
2253
2254	sector_size = get_unaligned_be32(&buffer[4]);
2255	lba = get_unaligned_be32(&buffer[0]);
2256
2257	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2258		/* Some buggy (usb cardreader) devices return an lba of
2259		   0xffffffff when the want to report a size of 0 (with
2260		   which they really mean no media is present) */
2261		sdkp->capacity = 0;
2262		sdkp->physical_block_size = sector_size;
2263		return sector_size;
2264	}
2265
2266	if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) {
2267		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2268			"kernel compiled with support for large block "
2269			"devices.\n");
2270		sdkp->capacity = 0;
2271		return -EOVERFLOW;
2272	}
2273
2274	sdkp->capacity = lba + 1;
2275	sdkp->physical_block_size = sector_size;
2276	return sector_size;
2277}
2278
2279static int sd_try_rc16_first(struct scsi_device *sdp)
2280{
2281	if (sdp->host->max_cmd_len < 16)
2282		return 0;
2283	if (sdp->try_rc_10_first)
2284		return 0;
2285	if (sdp->scsi_level > SCSI_SPC_2)
2286		return 1;
2287	if (scsi_device_protection(sdp))
2288		return 1;
2289	return 0;
2290}
2291
2292/*
2293 * read disk capacity
2294 */
2295static void
2296sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2297{
2298	int sector_size;
2299	struct scsi_device *sdp = sdkp->device;
2300
2301	if (sd_try_rc16_first(sdp)) {
2302		sector_size = read_capacity_16(sdkp, sdp, buffer);
2303		if (sector_size == -EOVERFLOW)
2304			goto got_data;
2305		if (sector_size == -ENODEV)
2306			return;
2307		if (sector_size < 0)
2308			sector_size = read_capacity_10(sdkp, sdp, buffer);
2309		if (sector_size < 0)
2310			return;
2311	} else {
2312		sector_size = read_capacity_10(sdkp, sdp, buffer);
2313		if (sector_size == -EOVERFLOW)
2314			goto got_data;
2315		if (sector_size < 0)
2316			return;
2317		if ((sizeof(sdkp->capacity) > 4) &&
2318		    (sdkp->capacity > 0xffffffffULL)) {
2319			int old_sector_size = sector_size;
2320			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2321					"Trying to use READ CAPACITY(16).\n");
2322			sector_size = read_capacity_16(sdkp, sdp, buffer);
2323			if (sector_size < 0) {
2324				sd_printk(KERN_NOTICE, sdkp,
2325					"Using 0xffffffff as device size\n");
2326				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2327				sector_size = old_sector_size;
2328				goto got_data;
2329			}
 
 
2330		}
2331	}
2332
2333	/* Some devices are known to return the total number of blocks,
2334	 * not the highest block number.  Some devices have versions
2335	 * which do this and others which do not.  Some devices we might
2336	 * suspect of doing this but we don't know for certain.
2337	 *
2338	 * If we know the reported capacity is wrong, decrement it.  If
2339	 * we can only guess, then assume the number of blocks is even
2340	 * (usually true but not always) and err on the side of lowering
2341	 * the capacity.
2342	 */
2343	if (sdp->fix_capacity ||
2344	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2345		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2346				"from its reported value: %llu\n",
2347				(unsigned long long) sdkp->capacity);
2348		--sdkp->capacity;
2349	}
2350
2351got_data:
2352	if (sector_size == 0) {
2353		sector_size = 512;
2354		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2355			  "assuming 512.\n");
2356	}
2357
2358	if (sector_size != 512 &&
2359	    sector_size != 1024 &&
2360	    sector_size != 2048 &&
2361	    sector_size != 4096) {
2362		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2363			  sector_size);
2364		/*
2365		 * The user might want to re-format the drive with
2366		 * a supported sectorsize.  Once this happens, it
2367		 * would be relatively trivial to set the thing up.
2368		 * For this reason, we leave the thing in the table.
2369		 */
2370		sdkp->capacity = 0;
2371		/*
2372		 * set a bogus sector size so the normal read/write
2373		 * logic in the block layer will eventually refuse any
2374		 * request on this device without tripping over power
2375		 * of two sector size assumptions
2376		 */
2377		sector_size = 512;
2378	}
2379	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2380	blk_queue_physical_block_size(sdp->request_queue,
2381				      sdkp->physical_block_size);
2382	sdkp->device->sector_size = sector_size;
2383
2384	if (sdkp->capacity > 0xffffffff)
2385		sdp->use_16_for_rw = 1;
2386
2387}
2388
2389/*
2390 * Print disk capacity
2391 */
2392static void
2393sd_print_capacity(struct scsi_disk *sdkp,
2394		  sector_t old_capacity)
2395{
2396	int sector_size = sdkp->device->sector_size;
2397	char cap_str_2[10], cap_str_10[10];
2398
 
 
 
2399	string_get_size(sdkp->capacity, sector_size,
2400			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2401	string_get_size(sdkp->capacity, sector_size,
2402			STRING_UNITS_10, cap_str_10,
2403			sizeof(cap_str_10));
2404
2405	if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2406		sd_printk(KERN_NOTICE, sdkp,
2407			  "%llu %d-byte logical blocks: (%s/%s)\n",
2408			  (unsigned long long)sdkp->capacity,
2409			  sector_size, cap_str_10, cap_str_2);
2410
2411		if (sdkp->physical_block_size != sector_size)
2412			sd_printk(KERN_NOTICE, sdkp,
2413				  "%u-byte physical blocks\n",
2414				  sdkp->physical_block_size);
2415
2416		sd_zbc_print_zones(sdkp);
2417	}
 
 
2418}
2419
2420/* called with buffer of length 512 */
2421static inline int
2422sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2423		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2424		 struct scsi_sense_hdr *sshdr)
2425{
2426	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2427			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2428			       sshdr);
2429}
2430
2431/*
2432 * read write protect setting, if possible - called only in sd_revalidate_disk()
2433 * called with buffer of length SD_BUF_SIZE
2434 */
2435static void
2436sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2437{
2438	int res;
2439	struct scsi_device *sdp = sdkp->device;
2440	struct scsi_mode_data data;
2441	int old_wp = sdkp->write_prot;
2442
2443	set_disk_ro(sdkp->disk, 0);
2444	if (sdp->skip_ms_page_3f) {
2445		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2446		return;
2447	}
2448
2449	if (sdp->use_192_bytes_for_3f) {
2450		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2451	} else {
2452		/*
2453		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2454		 * We have to start carefully: some devices hang if we ask
2455		 * for more than is available.
2456		 */
2457		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2458
2459		/*
2460		 * Second attempt: ask for page 0 When only page 0 is
2461		 * implemented, a request for page 3F may return Sense Key
2462		 * 5: Illegal Request, Sense Code 24: Invalid field in
2463		 * CDB.
2464		 */
2465		if (!scsi_status_is_good(res))
2466			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2467
2468		/*
2469		 * Third attempt: ask 255 bytes, as we did earlier.
2470		 */
2471		if (!scsi_status_is_good(res))
2472			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2473					       &data, NULL);
2474	}
2475
2476	if (!scsi_status_is_good(res)) {
2477		sd_first_printk(KERN_WARNING, sdkp,
2478			  "Test WP failed, assume Write Enabled\n");
2479	} else {
2480		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2481		set_disk_ro(sdkp->disk, sdkp->write_prot);
2482		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2483			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2484				  sdkp->write_prot ? "on" : "off");
2485			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2486		}
2487	}
2488}
2489
2490/*
2491 * sd_read_cache_type - called only from sd_revalidate_disk()
2492 * called with buffer of length SD_BUF_SIZE
2493 */
2494static void
2495sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2496{
2497	int len = 0, res;
2498	struct scsi_device *sdp = sdkp->device;
2499
2500	int dbd;
2501	int modepage;
2502	int first_len;
2503	struct scsi_mode_data data;
2504	struct scsi_sense_hdr sshdr;
2505	int old_wce = sdkp->WCE;
2506	int old_rcd = sdkp->RCD;
2507	int old_dpofua = sdkp->DPOFUA;
2508
2509
2510	if (sdkp->cache_override)
2511		return;
2512
2513	first_len = 4;
2514	if (sdp->skip_ms_page_8) {
2515		if (sdp->type == TYPE_RBC)
2516			goto defaults;
2517		else {
2518			if (sdp->skip_ms_page_3f)
2519				goto defaults;
2520			modepage = 0x3F;
2521			if (sdp->use_192_bytes_for_3f)
2522				first_len = 192;
2523			dbd = 0;
2524		}
2525	} else if (sdp->type == TYPE_RBC) {
2526		modepage = 6;
2527		dbd = 8;
2528	} else {
2529		modepage = 8;
2530		dbd = 0;
2531	}
2532
2533	/* cautiously ask */
2534	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2535			&data, &sshdr);
2536
2537	if (!scsi_status_is_good(res))
2538		goto bad_sense;
2539
2540	if (!data.header_length) {
2541		modepage = 6;
2542		first_len = 0;
2543		sd_first_printk(KERN_ERR, sdkp,
2544				"Missing header in MODE_SENSE response\n");
2545	}
2546
2547	/* that went OK, now ask for the proper length */
2548	len = data.length;
2549
2550	/*
2551	 * We're only interested in the first three bytes, actually.
2552	 * But the data cache page is defined for the first 20.
2553	 */
2554	if (len < 3)
2555		goto bad_sense;
2556	else if (len > SD_BUF_SIZE) {
2557		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2558			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2559		len = SD_BUF_SIZE;
2560	}
2561	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2562		len = 192;
2563
2564	/* Get the data */
2565	if (len > first_len)
2566		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2567				&data, &sshdr);
2568
2569	if (scsi_status_is_good(res)) {
2570		int offset = data.header_length + data.block_descriptor_length;
2571
2572		while (offset < len) {
2573			u8 page_code = buffer[offset] & 0x3F;
2574			u8 spf       = buffer[offset] & 0x40;
2575
2576			if (page_code == 8 || page_code == 6) {
2577				/* We're interested only in the first 3 bytes.
2578				 */
2579				if (len - offset <= 2) {
2580					sd_first_printk(KERN_ERR, sdkp,
2581						"Incomplete mode parameter "
2582							"data\n");
2583					goto defaults;
2584				} else {
2585					modepage = page_code;
2586					goto Page_found;
2587				}
2588			} else {
2589				/* Go to the next page */
2590				if (spf && len - offset > 3)
2591					offset += 4 + (buffer[offset+2] << 8) +
2592						buffer[offset+3];
2593				else if (!spf && len - offset > 1)
2594					offset += 2 + buffer[offset+1];
2595				else {
2596					sd_first_printk(KERN_ERR, sdkp,
2597							"Incomplete mode "
2598							"parameter data\n");
2599					goto defaults;
2600				}
2601			}
2602		}
2603
2604		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2605		goto defaults;
2606
2607	Page_found:
2608		if (modepage == 8) {
2609			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2610			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2611		} else {
2612			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2613			sdkp->RCD = 0;
2614		}
2615
2616		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2617		if (sdp->broken_fua) {
2618			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2619			sdkp->DPOFUA = 0;
2620		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2621			   !sdkp->device->use_16_for_rw) {
2622			sd_first_printk(KERN_NOTICE, sdkp,
2623				  "Uses READ/WRITE(6), disabling FUA\n");
2624			sdkp->DPOFUA = 0;
2625		}
2626
2627		/* No cache flush allowed for write protected devices */
2628		if (sdkp->WCE && sdkp->write_prot)
2629			sdkp->WCE = 0;
2630
2631		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2632		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2633			sd_printk(KERN_NOTICE, sdkp,
2634				  "Write cache: %s, read cache: %s, %s\n",
2635				  sdkp->WCE ? "enabled" : "disabled",
2636				  sdkp->RCD ? "disabled" : "enabled",
2637				  sdkp->DPOFUA ? "supports DPO and FUA"
2638				  : "doesn't support DPO or FUA");
2639
2640		return;
2641	}
2642
2643bad_sense:
2644	if (scsi_sense_valid(&sshdr) &&
2645	    sshdr.sense_key == ILLEGAL_REQUEST &&
2646	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2647		/* Invalid field in CDB */
2648		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2649	else
2650		sd_first_printk(KERN_ERR, sdkp,
2651				"Asking for cache data failed\n");
2652
2653defaults:
2654	if (sdp->wce_default_on) {
2655		sd_first_printk(KERN_NOTICE, sdkp,
2656				"Assuming drive cache: write back\n");
2657		sdkp->WCE = 1;
2658	} else {
2659		sd_first_printk(KERN_ERR, sdkp,
2660				"Assuming drive cache: write through\n");
2661		sdkp->WCE = 0;
2662	}
2663	sdkp->RCD = 0;
2664	sdkp->DPOFUA = 0;
2665}
2666
2667/*
2668 * The ATO bit indicates whether the DIF application tag is available
2669 * for use by the operating system.
2670 */
2671static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2672{
2673	int res, offset;
2674	struct scsi_device *sdp = sdkp->device;
2675	struct scsi_mode_data data;
2676	struct scsi_sense_hdr sshdr;
2677
2678	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2679		return;
2680
2681	if (sdkp->protection_type == 0)
2682		return;
2683
2684	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2685			      SD_MAX_RETRIES, &data, &sshdr);
2686
2687	if (!scsi_status_is_good(res) || !data.header_length ||
2688	    data.length < 6) {
2689		sd_first_printk(KERN_WARNING, sdkp,
2690			  "getting Control mode page failed, assume no ATO\n");
2691
2692		if (scsi_sense_valid(&sshdr))
2693			sd_print_sense_hdr(sdkp, &sshdr);
2694
2695		return;
2696	}
2697
2698	offset = data.header_length + data.block_descriptor_length;
2699
2700	if ((buffer[offset] & 0x3f) != 0x0a) {
2701		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2702		return;
2703	}
2704
2705	if ((buffer[offset + 5] & 0x80) == 0)
2706		return;
2707
2708	sdkp->ATO = 1;
2709
2710	return;
2711}
2712
2713/**
2714 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2715 * @disk: disk to query
2716 */
2717static void sd_read_block_limits(struct scsi_disk *sdkp)
2718{
2719	unsigned int sector_sz = sdkp->device->sector_size;
2720	const int vpd_len = 64;
2721	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2722
2723	if (!buffer ||
2724	    /* Block Limits VPD */
2725	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2726		goto out;
2727
2728	blk_queue_io_min(sdkp->disk->queue,
2729			 get_unaligned_be16(&buffer[6]) * sector_sz);
2730
2731	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2732	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2733
2734	if (buffer[3] == 0x3c) {
2735		unsigned int lba_count, desc_count;
2736
2737		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2738
2739		if (!sdkp->lbpme)
2740			goto out;
2741
2742		lba_count = get_unaligned_be32(&buffer[20]);
2743		desc_count = get_unaligned_be32(&buffer[24]);
2744
2745		if (lba_count && desc_count)
2746			sdkp->max_unmap_blocks = lba_count;
2747
2748		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2749
2750		if (buffer[32] & 0x80)
2751			sdkp->unmap_alignment =
2752				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2753
2754		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2755
2756			if (sdkp->max_unmap_blocks)
2757				sd_config_discard(sdkp, SD_LBP_UNMAP);
2758			else
2759				sd_config_discard(sdkp, SD_LBP_WS16);
2760
2761		} else {	/* LBP VPD page tells us what to use */
2762			if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz)
2763				sd_config_discard(sdkp, SD_LBP_UNMAP);
2764			else if (sdkp->lbpws)
2765				sd_config_discard(sdkp, SD_LBP_WS16);
2766			else if (sdkp->lbpws10)
2767				sd_config_discard(sdkp, SD_LBP_WS10);
2768			else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2769				sd_config_discard(sdkp, SD_LBP_UNMAP);
2770			else
2771				sd_config_discard(sdkp, SD_LBP_DISABLE);
2772		}
2773	}
2774
2775 out:
2776	kfree(buffer);
2777}
2778
2779/**
2780 * sd_read_block_characteristics - Query block dev. characteristics
2781 * @disk: disk to query
2782 */
2783static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2784{
2785	struct request_queue *q = sdkp->disk->queue;
2786	unsigned char *buffer;
2787	u16 rot;
2788	const int vpd_len = 64;
2789
2790	buffer = kmalloc(vpd_len, GFP_KERNEL);
2791
2792	if (!buffer ||
2793	    /* Block Device Characteristics VPD */
2794	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2795		goto out;
2796
2797	rot = get_unaligned_be16(&buffer[4]);
2798
2799	if (rot == 1) {
2800		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2801		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2802	}
2803
2804	if (sdkp->device->type == TYPE_ZBC) {
2805		/* Host-managed */
2806		q->limits.zoned = BLK_ZONED_HM;
2807	} else {
2808		sdkp->zoned = (buffer[8] >> 4) & 3;
2809		if (sdkp->zoned == 1)
2810			/* Host-aware */
2811			q->limits.zoned = BLK_ZONED_HA;
2812		else
2813			/*
2814			 * Treat drive-managed devices as
2815			 * regular block devices.
2816			 */
2817			q->limits.zoned = BLK_ZONED_NONE;
2818	}
2819	if (blk_queue_is_zoned(q) && sdkp->first_scan)
 
 
 
 
2820		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2821		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
 
 
 
 
 
 
 
 
2822
2823 out:
2824	kfree(buffer);
2825}
2826
2827/**
2828 * sd_read_block_provisioning - Query provisioning VPD page
2829 * @disk: disk to query
2830 */
2831static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2832{
2833	unsigned char *buffer;
2834	const int vpd_len = 8;
2835
2836	if (sdkp->lbpme == 0)
2837		return;
2838
2839	buffer = kmalloc(vpd_len, GFP_KERNEL);
2840
2841	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2842		goto out;
2843
2844	sdkp->lbpvpd	= 1;
2845	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
2846	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
2847	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
2848
2849 out:
2850	kfree(buffer);
2851}
2852
2853static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2854{
2855	struct scsi_device *sdev = sdkp->device;
2856
2857	if (sdev->host->no_write_same) {
2858		sdev->no_write_same = 1;
2859
2860		return;
2861	}
2862
2863	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2864		/* too large values might cause issues with arcmsr */
2865		int vpd_buf_len = 64;
2866
2867		sdev->no_report_opcodes = 1;
2868
2869		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2870		 * CODES is unsupported and the device has an ATA
2871		 * Information VPD page (SAT).
2872		 */
2873		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
2874			sdev->no_write_same = 1;
2875	}
2876
2877	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
2878		sdkp->ws16 = 1;
2879
2880	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
2881		sdkp->ws10 = 1;
2882}
2883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2884/**
2885 *	sd_revalidate_disk - called the first time a new disk is seen,
2886 *	performs disk spin up, read_capacity, etc.
2887 *	@disk: struct gendisk we care about
2888 **/
2889static int sd_revalidate_disk(struct gendisk *disk)
2890{
2891	struct scsi_disk *sdkp = scsi_disk(disk);
2892	struct scsi_device *sdp = sdkp->device;
2893	struct request_queue *q = sdkp->disk->queue;
2894	sector_t old_capacity = sdkp->capacity;
2895	unsigned char *buffer;
2896	unsigned int dev_max, rw_max;
2897
2898	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
2899				      "sd_revalidate_disk\n"));
2900
2901	/*
2902	 * If the device is offline, don't try and read capacity or any
2903	 * of the other niceties.
2904	 */
2905	if (!scsi_device_online(sdp))
2906		goto out;
2907
2908	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
2909	if (!buffer) {
2910		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
2911			  "allocation failure.\n");
2912		goto out;
2913	}
2914
2915	sd_spinup_disk(sdkp);
2916
2917	/*
2918	 * Without media there is no reason to ask; moreover, some devices
2919	 * react badly if we do.
2920	 */
2921	if (sdkp->media_present) {
2922		sd_read_capacity(sdkp, buffer);
2923
 
 
 
 
 
 
 
 
 
2924		if (scsi_device_supports_vpd(sdp)) {
2925			sd_read_block_provisioning(sdkp);
2926			sd_read_block_limits(sdkp);
2927			sd_read_block_characteristics(sdkp);
2928			sd_zbc_read_zones(sdkp, buffer);
2929		}
2930
2931		sd_print_capacity(sdkp, old_capacity);
2932
2933		sd_read_write_protect_flag(sdkp, buffer);
2934		sd_read_cache_type(sdkp, buffer);
2935		sd_read_app_tag_own(sdkp, buffer);
2936		sd_read_write_same(sdkp, buffer);
 
2937	}
2938
2939	sdkp->first_scan = 0;
2940
2941	/*
2942	 * We now have all cache related info, determine how we deal
2943	 * with flush requests.
2944	 */
2945	sd_set_flush_flag(sdkp);
2946
2947	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
2948	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
2949
2950	/* Some devices report a maximum block count for READ/WRITE requests. */
2951	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
2952	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
2953
2954	/*
2955	 * Use the device's preferred I/O size for reads and writes
2956	 * unless the reported value is unreasonably small, large, or
2957	 * garbage.
2958	 */
2959	if (sdkp->opt_xfer_blocks &&
2960	    sdkp->opt_xfer_blocks <= dev_max &&
2961	    sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
2962	    logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
2963		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
2964		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
2965	} else
2966		rw_max = BLK_DEF_MAX_SECTORS;
 
 
 
 
 
 
2967
2968	/* Combine with controller limits */
2969	q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q));
 
 
 
 
 
 
 
 
2970
2971	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
 
2972	sd_config_write_same(sdkp);
2973	kfree(buffer);
2974
 
 
 
 
 
 
 
 
2975 out:
2976	return 0;
2977}
2978
2979/**
2980 *	sd_unlock_native_capacity - unlock native capacity
2981 *	@disk: struct gendisk to set capacity for
2982 *
2983 *	Block layer calls this function if it detects that partitions
2984 *	on @disk reach beyond the end of the device.  If the SCSI host
2985 *	implements ->unlock_native_capacity() method, it's invoked to
2986 *	give it a chance to adjust the device capacity.
2987 *
2988 *	CONTEXT:
2989 *	Defined by block layer.  Might sleep.
2990 */
2991static void sd_unlock_native_capacity(struct gendisk *disk)
2992{
2993	struct scsi_device *sdev = scsi_disk(disk)->device;
2994
2995	if (sdev->host->hostt->unlock_native_capacity)
2996		sdev->host->hostt->unlock_native_capacity(sdev);
2997}
2998
2999/**
3000 *	sd_format_disk_name - format disk name
3001 *	@prefix: name prefix - ie. "sd" for SCSI disks
3002 *	@index: index of the disk to format name for
3003 *	@buf: output buffer
3004 *	@buflen: length of the output buffer
3005 *
3006 *	SCSI disk names starts at sda.  The 26th device is sdz and the
3007 *	27th is sdaa.  The last one for two lettered suffix is sdzz
3008 *	which is followed by sdaaa.
3009 *
3010 *	This is basically 26 base counting with one extra 'nil' entry
3011 *	at the beginning from the second digit on and can be
3012 *	determined using similar method as 26 base conversion with the
3013 *	index shifted -1 after each digit is computed.
3014 *
3015 *	CONTEXT:
3016 *	Don't care.
3017 *
3018 *	RETURNS:
3019 *	0 on success, -errno on failure.
3020 */
3021static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3022{
3023	const int base = 'z' - 'a' + 1;
3024	char *begin = buf + strlen(prefix);
3025	char *end = buf + buflen;
3026	char *p;
3027	int unit;
3028
3029	p = end - 1;
3030	*p = '\0';
3031	unit = base;
3032	do {
3033		if (p == begin)
3034			return -EINVAL;
3035		*--p = 'a' + (index % unit);
3036		index = (index / unit) - 1;
3037	} while (index >= 0);
3038
3039	memmove(begin, p, end - p);
3040	memcpy(buf, prefix, strlen(prefix));
3041
3042	return 0;
3043}
3044
3045/*
3046 * The asynchronous part of sd_probe
3047 */
3048static void sd_probe_async(void *data, async_cookie_t cookie)
3049{
3050	struct scsi_disk *sdkp = data;
3051	struct scsi_device *sdp;
3052	struct gendisk *gd;
3053	u32 index;
3054	struct device *dev;
3055
3056	sdp = sdkp->device;
3057	gd = sdkp->disk;
3058	index = sdkp->index;
3059	dev = &sdp->sdev_gendev;
3060
3061	gd->major = sd_major((index & 0xf0) >> 4);
3062	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3063	gd->minors = SD_MINORS;
3064
3065	gd->fops = &sd_fops;
3066	gd->private_data = &sdkp->driver;
3067	gd->queue = sdkp->device->request_queue;
3068
3069	/* defaults, until the device tells us otherwise */
3070	sdp->sector_size = 512;
3071	sdkp->capacity = 0;
3072	sdkp->media_present = 1;
3073	sdkp->write_prot = 0;
3074	sdkp->cache_override = 0;
3075	sdkp->WCE = 0;
3076	sdkp->RCD = 0;
3077	sdkp->ATO = 0;
3078	sdkp->first_scan = 1;
3079	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3080
3081	sd_revalidate_disk(gd);
3082
3083	gd->flags = GENHD_FL_EXT_DEVT;
3084	if (sdp->removable) {
3085		gd->flags |= GENHD_FL_REMOVABLE;
3086		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3087	}
3088
3089	blk_pm_runtime_init(sdp->request_queue, dev);
3090	device_add_disk(dev, gd);
3091	if (sdkp->capacity)
3092		sd_dif_config_host(sdkp);
3093
3094	sd_revalidate_disk(gd);
3095
3096	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3097		  sdp->removable ? "removable " : "");
3098	scsi_autopm_put_device(sdp);
3099	put_device(&sdkp->dev);
3100}
3101
3102/**
3103 *	sd_probe - called during driver initialization and whenever a
3104 *	new scsi device is attached to the system. It is called once
3105 *	for each scsi device (not just disks) present.
3106 *	@dev: pointer to device object
3107 *
3108 *	Returns 0 if successful (or not interested in this scsi device 
3109 *	(e.g. scanner)); 1 when there is an error.
3110 *
3111 *	Note: this function is invoked from the scsi mid-level.
3112 *	This function sets up the mapping between a given 
3113 *	<host,channel,id,lun> (found in sdp) and new device name 
3114 *	(e.g. /dev/sda). More precisely it is the block device major 
3115 *	and minor number that is chosen here.
3116 *
3117 *	Assume sd_probe is not re-entrant (for time being)
3118 *	Also think about sd_probe() and sd_remove() running coincidentally.
3119 **/
3120static int sd_probe(struct device *dev)
3121{
3122	struct scsi_device *sdp = to_scsi_device(dev);
3123	struct scsi_disk *sdkp;
3124	struct gendisk *gd;
3125	int index;
3126	int error;
3127
3128	scsi_autopm_get_device(sdp);
3129	error = -ENODEV;
3130	if (sdp->type != TYPE_DISK &&
3131	    sdp->type != TYPE_ZBC &&
3132	    sdp->type != TYPE_MOD &&
3133	    sdp->type != TYPE_RBC)
3134		goto out;
3135
3136#ifndef CONFIG_BLK_DEV_ZONED
3137	if (sdp->type == TYPE_ZBC)
3138		goto out;
3139#endif
3140	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3141					"sd_probe\n"));
3142
3143	error = -ENOMEM;
3144	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3145	if (!sdkp)
3146		goto out;
3147
3148	gd = alloc_disk(SD_MINORS);
3149	if (!gd)
3150		goto out_free;
3151
3152	do {
3153		if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3154			goto out_put;
3155
3156		spin_lock(&sd_index_lock);
3157		error = ida_get_new(&sd_index_ida, &index);
3158		spin_unlock(&sd_index_lock);
3159	} while (error == -EAGAIN);
3160
3161	if (error) {
3162		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3163		goto out_put;
3164	}
3165
3166	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3167	if (error) {
3168		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3169		goto out_free_index;
3170	}
3171
3172	sdkp->device = sdp;
3173	sdkp->driver = &sd_template;
3174	sdkp->disk = gd;
3175	sdkp->index = index;
3176	atomic_set(&sdkp->openers, 0);
3177	atomic_set(&sdkp->device->ioerr_cnt, 0);
3178
3179	if (!sdp->request_queue->rq_timeout) {
3180		if (sdp->type != TYPE_MOD)
3181			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3182		else
3183			blk_queue_rq_timeout(sdp->request_queue,
3184					     SD_MOD_TIMEOUT);
3185	}
3186
3187	device_initialize(&sdkp->dev);
3188	sdkp->dev.parent = dev;
3189	sdkp->dev.class = &sd_disk_class;
3190	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3191
3192	error = device_add(&sdkp->dev);
3193	if (error)
3194		goto out_free_index;
3195
3196	get_device(dev);
3197	dev_set_drvdata(dev, sdkp);
3198
3199	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3200	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3201
3202	return 0;
3203
3204 out_free_index:
3205	spin_lock(&sd_index_lock);
3206	ida_remove(&sd_index_ida, index);
3207	spin_unlock(&sd_index_lock);
3208 out_put:
3209	put_disk(gd);
3210 out_free:
 
3211	kfree(sdkp);
3212 out:
3213	scsi_autopm_put_device(sdp);
3214	return error;
3215}
3216
3217/**
3218 *	sd_remove - called whenever a scsi disk (previously recognized by
3219 *	sd_probe) is detached from the system. It is called (potentially
3220 *	multiple times) during sd module unload.
3221 *	@sdp: pointer to mid level scsi device object
3222 *
3223 *	Note: this function is invoked from the scsi mid-level.
3224 *	This function potentially frees up a device name (e.g. /dev/sdc)
3225 *	that could be re-used by a subsequent sd_probe().
3226 *	This function is not called when the built-in sd driver is "exit-ed".
3227 **/
3228static int sd_remove(struct device *dev)
3229{
3230	struct scsi_disk *sdkp;
3231	dev_t devt;
3232
3233	sdkp = dev_get_drvdata(dev);
3234	devt = disk_devt(sdkp->disk);
3235	scsi_autopm_get_device(sdkp->device);
3236
3237	async_synchronize_full_domain(&scsi_sd_pm_domain);
3238	async_synchronize_full_domain(&scsi_sd_probe_domain);
3239	device_del(&sdkp->dev);
3240	del_gendisk(sdkp->disk);
3241	sd_shutdown(dev);
3242
3243	sd_zbc_remove(sdkp);
3244
3245	blk_register_region(devt, SD_MINORS, NULL,
3246			    sd_default_probe, NULL, NULL);
3247
3248	mutex_lock(&sd_ref_mutex);
3249	dev_set_drvdata(dev, NULL);
3250	put_device(&sdkp->dev);
3251	mutex_unlock(&sd_ref_mutex);
3252
3253	return 0;
3254}
3255
3256/**
3257 *	scsi_disk_release - Called to free the scsi_disk structure
3258 *	@dev: pointer to embedded class device
3259 *
3260 *	sd_ref_mutex must be held entering this routine.  Because it is
3261 *	called on last put, you should always use the scsi_disk_get()
3262 *	scsi_disk_put() helpers which manipulate the semaphore directly
3263 *	and never do a direct put_device.
3264 **/
3265static void scsi_disk_release(struct device *dev)
3266{
3267	struct scsi_disk *sdkp = to_scsi_disk(dev);
3268	struct gendisk *disk = sdkp->disk;
3269	
3270	spin_lock(&sd_index_lock);
3271	ida_remove(&sd_index_ida, sdkp->index);
3272	spin_unlock(&sd_index_lock);
 
 
 
 
 
 
 
 
 
 
3273
3274	disk->private_data = NULL;
3275	put_disk(disk);
3276	put_device(&sdkp->device->sdev_gendev);
3277
 
 
3278	kfree(sdkp);
3279}
3280
3281static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3282{
3283	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3284	struct scsi_sense_hdr sshdr;
3285	struct scsi_device *sdp = sdkp->device;
3286	int res;
3287
3288	if (start)
3289		cmd[4] |= 1;	/* START */
3290
3291	if (sdp->start_stop_pwr_cond)
3292		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3293
3294	if (!scsi_device_online(sdp))
3295		return -ENODEV;
3296
3297	res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr,
3298			       SD_TIMEOUT, SD_MAX_RETRIES, NULL, 0, RQF_PM);
3299	if (res) {
3300		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3301		if (driver_byte(res) & DRIVER_SENSE)
3302			sd_print_sense_hdr(sdkp, &sshdr);
3303		if (scsi_sense_valid(&sshdr) &&
3304			/* 0x3a is medium not present */
3305			sshdr.asc == 0x3a)
3306			res = 0;
3307	}
3308
3309	/* SCSI error codes must not go to the generic layer */
3310	if (res)
3311		return -EIO;
3312
3313	return 0;
3314}
3315
3316/*
3317 * Send a SYNCHRONIZE CACHE instruction down to the device through
3318 * the normal SCSI command structure.  Wait for the command to
3319 * complete.
3320 */
3321static void sd_shutdown(struct device *dev)
3322{
3323	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3324
3325	if (!sdkp)
3326		return;         /* this can happen */
3327
3328	if (pm_runtime_suspended(dev))
3329		return;
3330
3331	if (sdkp->WCE && sdkp->media_present) {
3332		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3333		sd_sync_cache(sdkp);
3334	}
3335
3336	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3337		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3338		sd_start_stop_device(sdkp, 0);
3339	}
3340}
3341
3342static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3343{
3344	struct scsi_disk *sdkp = dev_get_drvdata(dev);
 
3345	int ret = 0;
3346
3347	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3348		return 0;
3349
3350	if (sdkp->WCE && sdkp->media_present) {
3351		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3352		ret = sd_sync_cache(sdkp);
 
3353		if (ret) {
3354			/* ignore OFFLINE device */
3355			if (ret == -ENODEV)
3356				ret = 0;
3357			goto done;
 
 
 
 
 
 
 
 
 
 
3358		}
3359	}
3360
3361	if (sdkp->device->manage_start_stop) {
3362		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3363		/* an error is not worth aborting a system sleep */
3364		ret = sd_start_stop_device(sdkp, 0);
3365		if (ignore_stop_errors)
3366			ret = 0;
3367	}
3368
3369done:
3370	return ret;
3371}
3372
3373static int sd_suspend_system(struct device *dev)
3374{
3375	return sd_suspend_common(dev, true);
3376}
3377
3378static int sd_suspend_runtime(struct device *dev)
3379{
3380	return sd_suspend_common(dev, false);
3381}
3382
3383static int sd_resume(struct device *dev)
3384{
3385	struct scsi_disk *sdkp = dev_get_drvdata(dev);
 
3386
3387	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3388		return 0;
3389
3390	if (!sdkp->device->manage_start_stop)
3391		return 0;
3392
3393	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3394	return sd_start_stop_device(sdkp, 1);
 
 
 
3395}
3396
3397/**
3398 *	init_sd - entry point for this driver (both when built in or when
3399 *	a module).
3400 *
3401 *	Note: this function registers this driver with the scsi mid-level.
3402 **/
3403static int __init init_sd(void)
3404{
3405	int majors = 0, i, err;
3406
3407	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3408
3409	for (i = 0; i < SD_MAJORS; i++) {
3410		if (register_blkdev(sd_major(i), "sd") != 0)
3411			continue;
3412		majors++;
3413		blk_register_region(sd_major(i), SD_MINORS, NULL,
3414				    sd_default_probe, NULL, NULL);
3415	}
3416
3417	if (!majors)
3418		return -ENODEV;
3419
3420	err = class_register(&sd_disk_class);
3421	if (err)
3422		goto err_out;
3423
3424	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3425					 0, 0, NULL);
3426	if (!sd_cdb_cache) {
3427		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3428		err = -ENOMEM;
3429		goto err_out_class;
3430	}
3431
3432	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3433	if (!sd_cdb_pool) {
3434		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3435		err = -ENOMEM;
3436		goto err_out_cache;
3437	}
3438
 
 
 
 
 
 
 
3439	err = scsi_register_driver(&sd_template.gendrv);
3440	if (err)
3441		goto err_out_driver;
3442
3443	return 0;
3444
3445err_out_driver:
 
 
 
3446	mempool_destroy(sd_cdb_pool);
3447
3448err_out_cache:
3449	kmem_cache_destroy(sd_cdb_cache);
3450
3451err_out_class:
3452	class_unregister(&sd_disk_class);
3453err_out:
3454	for (i = 0; i < SD_MAJORS; i++)
3455		unregister_blkdev(sd_major(i), "sd");
3456	return err;
3457}
3458
3459/**
3460 *	exit_sd - exit point for this driver (when it is a module).
3461 *
3462 *	Note: this function unregisters this driver from the scsi mid-level.
3463 **/
3464static void __exit exit_sd(void)
3465{
3466	int i;
3467
3468	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3469
3470	scsi_unregister_driver(&sd_template.gendrv);
3471	mempool_destroy(sd_cdb_pool);
 
3472	kmem_cache_destroy(sd_cdb_cache);
3473
3474	class_unregister(&sd_disk_class);
3475
3476	for (i = 0; i < SD_MAJORS; i++) {
3477		blk_unregister_region(sd_major(i), SD_MINORS);
3478		unregister_blkdev(sd_major(i), "sd");
3479	}
3480}
3481
3482module_init(init_sd);
3483module_exit(exit_sd);
3484
3485static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3486			       struct scsi_sense_hdr *sshdr)
3487{
3488	scsi_print_sense_hdr(sdkp->device,
3489			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3490}
3491
3492static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3493			    int result)
3494{
3495	const char *hb_string = scsi_hostbyte_string(result);
3496	const char *db_string = scsi_driverbyte_string(result);
3497
3498	if (hb_string || db_string)
3499		sd_printk(KERN_INFO, sdkp,
3500			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3501			  hb_string ? hb_string : "invalid",
3502			  db_string ? db_string : "invalid");
3503	else
3504		sd_printk(KERN_INFO, sdkp,
3505			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3506			  msg, host_byte(result), driver_byte(result));
3507}
3508
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      sd.c Copyright (C) 1992 Drew Eckhardt
   4 *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
   5 *
   6 *      Linux scsi disk driver
   7 *              Initial versions: Drew Eckhardt
   8 *              Subsequent revisions: Eric Youngdale
   9 *	Modification history:
  10 *       - Drew Eckhardt <drew@colorado.edu> original
  11 *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
  12 *         outstanding request, and other enhancements.
  13 *         Support loadable low-level scsi drivers.
  14 *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
  15 *         eight major numbers.
  16 *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
  17 *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
  18 *	   sd_init and cleanups.
  19 *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
  20 *	   not being read in sd_open. Fix problem where removable media 
  21 *	   could be ejected after sd_open.
  22 *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
  23 *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
  24 *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
  25 *	   Support 32k/1M disks.
  26 *
  27 *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
  28 *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
  29 *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
  30 *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
  31 *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
  32 *	Note: when the logging level is set by the user, it must be greater
  33 *	than the level indicated above to trigger output.	
  34 */
  35
  36#include <linux/module.h>
  37#include <linux/fs.h>
  38#include <linux/kernel.h>
  39#include <linux/mm.h>
  40#include <linux/bio.h>
  41#include <linux/genhd.h>
  42#include <linux/hdreg.h>
  43#include <linux/errno.h>
  44#include <linux/idr.h>
  45#include <linux/interrupt.h>
  46#include <linux/init.h>
  47#include <linux/blkdev.h>
  48#include <linux/blkpg.h>
  49#include <linux/blk-pm.h>
  50#include <linux/delay.h>
  51#include <linux/mutex.h>
  52#include <linux/string_helpers.h>
  53#include <linux/async.h>
  54#include <linux/slab.h>
  55#include <linux/sed-opal.h>
  56#include <linux/pm_runtime.h>
  57#include <linux/pr.h>
  58#include <linux/t10-pi.h>
  59#include <linux/uaccess.h>
  60#include <asm/unaligned.h>
  61
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_dbg.h>
  65#include <scsi/scsi_device.h>
  66#include <scsi/scsi_driver.h>
  67#include <scsi/scsi_eh.h>
  68#include <scsi/scsi_host.h>
  69#include <scsi/scsi_ioctl.h>
  70#include <scsi/scsicam.h>
  71
  72#include "sd.h"
  73#include "scsi_priv.h"
  74#include "scsi_logging.h"
  75
  76MODULE_AUTHOR("Eric Youngdale");
  77MODULE_DESCRIPTION("SCSI disk (sd) driver");
  78MODULE_LICENSE("GPL");
  79
  80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
  81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
  82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
  83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
  84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
  85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
  86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
  87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
  88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
  89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
  90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
  91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
  92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
  93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
  94MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
  95MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
  96MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
  97MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
  98MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
  99MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
 100
 101#if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
 102#define SD_MINORS	16
 103#else
 104#define SD_MINORS	0
 105#endif
 106
 107static void sd_config_discard(struct scsi_disk *, unsigned int);
 108static void sd_config_write_same(struct scsi_disk *);
 109static int  sd_revalidate_disk(struct gendisk *);
 110static void sd_unlock_native_capacity(struct gendisk *disk);
 111static int  sd_probe(struct device *);
 112static int  sd_remove(struct device *);
 113static void sd_shutdown(struct device *);
 114static int sd_suspend_system(struct device *);
 115static int sd_suspend_runtime(struct device *);
 116static int sd_resume(struct device *);
 117static void sd_rescan(struct device *);
 118static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
 119static void sd_uninit_command(struct scsi_cmnd *SCpnt);
 120static int sd_done(struct scsi_cmnd *);
 121static void sd_eh_reset(struct scsi_cmnd *);
 122static int sd_eh_action(struct scsi_cmnd *, int);
 123static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
 124static void scsi_disk_release(struct device *cdev);
 
 
 125
 
 126static DEFINE_IDA(sd_index_ida);
 127
 128/* This semaphore is used to mediate the 0->1 reference get in the
 129 * face of object destruction (i.e. we can't allow a get on an
 130 * object after last put) */
 131static DEFINE_MUTEX(sd_ref_mutex);
 132
 133static struct kmem_cache *sd_cdb_cache;
 134static mempool_t *sd_cdb_pool;
 135static mempool_t *sd_page_pool;
 136
 137static const char *sd_cache_types[] = {
 138	"write through", "none", "write back",
 139	"write back, no read (daft)"
 140};
 141
 142static void sd_set_flush_flag(struct scsi_disk *sdkp)
 143{
 144	bool wc = false, fua = false;
 145
 146	if (sdkp->WCE) {
 147		wc = true;
 148		if (sdkp->DPOFUA)
 149			fua = true;
 150	}
 151
 152	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
 153}
 154
 155static ssize_t
 156cache_type_store(struct device *dev, struct device_attribute *attr,
 157		 const char *buf, size_t count)
 158{
 159	int ct, rcd, wce, sp;
 160	struct scsi_disk *sdkp = to_scsi_disk(dev);
 161	struct scsi_device *sdp = sdkp->device;
 162	char buffer[64];
 163	char *buffer_data;
 164	struct scsi_mode_data data;
 165	struct scsi_sense_hdr sshdr;
 166	static const char temp[] = "temporary ";
 167	int len;
 168
 169	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 170		/* no cache control on RBC devices; theoretically they
 171		 * can do it, but there's probably so many exceptions
 172		 * it's not worth the risk */
 173		return -EINVAL;
 174
 175	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
 176		buf += sizeof(temp) - 1;
 177		sdkp->cache_override = 1;
 178	} else {
 179		sdkp->cache_override = 0;
 180	}
 181
 182	ct = sysfs_match_string(sd_cache_types, buf);
 
 
 
 
 
 
 
 183	if (ct < 0)
 184		return -EINVAL;
 185
 186	rcd = ct & 0x01 ? 1 : 0;
 187	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
 188
 189	if (sdkp->cache_override) {
 190		sdkp->WCE = wce;
 191		sdkp->RCD = rcd;
 192		sd_set_flush_flag(sdkp);
 193		return count;
 194	}
 195
 196	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
 197			    SD_MAX_RETRIES, &data, NULL))
 198		return -EINVAL;
 199	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
 200		  data.block_descriptor_length);
 201	buffer_data = buffer + data.header_length +
 202		data.block_descriptor_length;
 203	buffer_data[2] &= ~0x05;
 204	buffer_data[2] |= wce << 2 | rcd;
 205	sp = buffer_data[0] & 0x80 ? 1 : 0;
 206	buffer_data[0] &= ~0x80;
 207
 208	/*
 209	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
 210	 * received mode parameter buffer before doing MODE SELECT.
 211	 */
 212	data.device_specific = 0;
 213
 214	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
 215			     SD_MAX_RETRIES, &data, &sshdr)) {
 216		if (scsi_sense_valid(&sshdr))
 217			sd_print_sense_hdr(sdkp, &sshdr);
 218		return -EINVAL;
 219	}
 220	revalidate_disk(sdkp->disk);
 221	return count;
 222}
 223
 224static ssize_t
 225manage_start_stop_show(struct device *dev, struct device_attribute *attr,
 226		       char *buf)
 227{
 228	struct scsi_disk *sdkp = to_scsi_disk(dev);
 229	struct scsi_device *sdp = sdkp->device;
 230
 231	return sprintf(buf, "%u\n", sdp->manage_start_stop);
 232}
 233
 234static ssize_t
 235manage_start_stop_store(struct device *dev, struct device_attribute *attr,
 236			const char *buf, size_t count)
 237{
 238	struct scsi_disk *sdkp = to_scsi_disk(dev);
 239	struct scsi_device *sdp = sdkp->device;
 240	bool v;
 241
 242	if (!capable(CAP_SYS_ADMIN))
 243		return -EACCES;
 244
 245	if (kstrtobool(buf, &v))
 246		return -EINVAL;
 247
 248	sdp->manage_start_stop = v;
 249
 250	return count;
 251}
 252static DEVICE_ATTR_RW(manage_start_stop);
 253
 254static ssize_t
 255allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
 256{
 257	struct scsi_disk *sdkp = to_scsi_disk(dev);
 258
 259	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
 260}
 261
 262static ssize_t
 263allow_restart_store(struct device *dev, struct device_attribute *attr,
 264		    const char *buf, size_t count)
 265{
 266	bool v;
 267	struct scsi_disk *sdkp = to_scsi_disk(dev);
 268	struct scsi_device *sdp = sdkp->device;
 269
 270	if (!capable(CAP_SYS_ADMIN))
 271		return -EACCES;
 272
 273	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 274		return -EINVAL;
 275
 276	if (kstrtobool(buf, &v))
 277		return -EINVAL;
 278
 279	sdp->allow_restart = v;
 280
 281	return count;
 282}
 283static DEVICE_ATTR_RW(allow_restart);
 284
 285static ssize_t
 286cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
 287{
 288	struct scsi_disk *sdkp = to_scsi_disk(dev);
 289	int ct = sdkp->RCD + 2*sdkp->WCE;
 290
 291	return sprintf(buf, "%s\n", sd_cache_types[ct]);
 292}
 293static DEVICE_ATTR_RW(cache_type);
 294
 295static ssize_t
 296FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
 297{
 298	struct scsi_disk *sdkp = to_scsi_disk(dev);
 299
 300	return sprintf(buf, "%u\n", sdkp->DPOFUA);
 301}
 302static DEVICE_ATTR_RO(FUA);
 303
 304static ssize_t
 305protection_type_show(struct device *dev, struct device_attribute *attr,
 306		     char *buf)
 307{
 308	struct scsi_disk *sdkp = to_scsi_disk(dev);
 309
 310	return sprintf(buf, "%u\n", sdkp->protection_type);
 311}
 312
 313static ssize_t
 314protection_type_store(struct device *dev, struct device_attribute *attr,
 315		      const char *buf, size_t count)
 316{
 317	struct scsi_disk *sdkp = to_scsi_disk(dev);
 318	unsigned int val;
 319	int err;
 320
 321	if (!capable(CAP_SYS_ADMIN))
 322		return -EACCES;
 323
 324	err = kstrtouint(buf, 10, &val);
 325
 326	if (err)
 327		return err;
 328
 329	if (val <= T10_PI_TYPE3_PROTECTION)
 330		sdkp->protection_type = val;
 331
 332	return count;
 333}
 334static DEVICE_ATTR_RW(protection_type);
 335
 336static ssize_t
 337protection_mode_show(struct device *dev, struct device_attribute *attr,
 338		     char *buf)
 339{
 340	struct scsi_disk *sdkp = to_scsi_disk(dev);
 341	struct scsi_device *sdp = sdkp->device;
 342	unsigned int dif, dix;
 343
 344	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
 345	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
 346
 347	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
 348		dif = 0;
 349		dix = 1;
 350	}
 351
 352	if (!dif && !dix)
 353		return sprintf(buf, "none\n");
 354
 355	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
 356}
 357static DEVICE_ATTR_RO(protection_mode);
 358
 359static ssize_t
 360app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
 361{
 362	struct scsi_disk *sdkp = to_scsi_disk(dev);
 363
 364	return sprintf(buf, "%u\n", sdkp->ATO);
 365}
 366static DEVICE_ATTR_RO(app_tag_own);
 367
 368static ssize_t
 369thin_provisioning_show(struct device *dev, struct device_attribute *attr,
 370		       char *buf)
 371{
 372	struct scsi_disk *sdkp = to_scsi_disk(dev);
 373
 374	return sprintf(buf, "%u\n", sdkp->lbpme);
 375}
 376static DEVICE_ATTR_RO(thin_provisioning);
 377
 378/* sysfs_match_string() requires dense arrays */
 379static const char *lbp_mode[] = {
 380	[SD_LBP_FULL]		= "full",
 381	[SD_LBP_UNMAP]		= "unmap",
 382	[SD_LBP_WS16]		= "writesame_16",
 383	[SD_LBP_WS10]		= "writesame_10",
 384	[SD_LBP_ZERO]		= "writesame_zero",
 385	[SD_LBP_DISABLE]	= "disabled",
 386};
 387
 388static ssize_t
 389provisioning_mode_show(struct device *dev, struct device_attribute *attr,
 390		       char *buf)
 391{
 392	struct scsi_disk *sdkp = to_scsi_disk(dev);
 393
 394	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
 395}
 396
 397static ssize_t
 398provisioning_mode_store(struct device *dev, struct device_attribute *attr,
 399			const char *buf, size_t count)
 400{
 401	struct scsi_disk *sdkp = to_scsi_disk(dev);
 402	struct scsi_device *sdp = sdkp->device;
 403	int mode;
 404
 405	if (!capable(CAP_SYS_ADMIN))
 406		return -EACCES;
 407
 408	if (sd_is_zoned(sdkp)) {
 409		sd_config_discard(sdkp, SD_LBP_DISABLE);
 410		return count;
 411	}
 412
 413	if (sdp->type != TYPE_DISK)
 414		return -EINVAL;
 415
 416	mode = sysfs_match_string(lbp_mode, buf);
 417	if (mode < 0)
 
 
 
 
 
 
 
 
 
 418		return -EINVAL;
 419
 420	sd_config_discard(sdkp, mode);
 421
 422	return count;
 423}
 424static DEVICE_ATTR_RW(provisioning_mode);
 425
 426/* sysfs_match_string() requires dense arrays */
 427static const char *zeroing_mode[] = {
 428	[SD_ZERO_WRITE]		= "write",
 429	[SD_ZERO_WS]		= "writesame",
 430	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
 431	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
 432};
 433
 434static ssize_t
 435zeroing_mode_show(struct device *dev, struct device_attribute *attr,
 436		  char *buf)
 437{
 438	struct scsi_disk *sdkp = to_scsi_disk(dev);
 439
 440	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
 441}
 442
 443static ssize_t
 444zeroing_mode_store(struct device *dev, struct device_attribute *attr,
 445		   const char *buf, size_t count)
 446{
 447	struct scsi_disk *sdkp = to_scsi_disk(dev);
 448	int mode;
 449
 450	if (!capable(CAP_SYS_ADMIN))
 451		return -EACCES;
 452
 453	mode = sysfs_match_string(zeroing_mode, buf);
 454	if (mode < 0)
 455		return -EINVAL;
 456
 457	sdkp->zeroing_mode = mode;
 458
 459	return count;
 460}
 461static DEVICE_ATTR_RW(zeroing_mode);
 462
 463static ssize_t
 464max_medium_access_timeouts_show(struct device *dev,
 465				struct device_attribute *attr, char *buf)
 466{
 467	struct scsi_disk *sdkp = to_scsi_disk(dev);
 468
 469	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
 470}
 471
 472static ssize_t
 473max_medium_access_timeouts_store(struct device *dev,
 474				 struct device_attribute *attr, const char *buf,
 475				 size_t count)
 476{
 477	struct scsi_disk *sdkp = to_scsi_disk(dev);
 478	int err;
 479
 480	if (!capable(CAP_SYS_ADMIN))
 481		return -EACCES;
 482
 483	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
 484
 485	return err ? err : count;
 486}
 487static DEVICE_ATTR_RW(max_medium_access_timeouts);
 488
 489static ssize_t
 490max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
 491			   char *buf)
 492{
 493	struct scsi_disk *sdkp = to_scsi_disk(dev);
 494
 495	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
 496}
 497
 498static ssize_t
 499max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
 500			    const char *buf, size_t count)
 501{
 502	struct scsi_disk *sdkp = to_scsi_disk(dev);
 503	struct scsi_device *sdp = sdkp->device;
 504	unsigned long max;
 505	int err;
 506
 507	if (!capable(CAP_SYS_ADMIN))
 508		return -EACCES;
 509
 510	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 511		return -EINVAL;
 512
 513	err = kstrtoul(buf, 10, &max);
 514
 515	if (err)
 516		return err;
 517
 518	if (max == 0)
 519		sdp->no_write_same = 1;
 520	else if (max <= SD_MAX_WS16_BLOCKS) {
 521		sdp->no_write_same = 0;
 522		sdkp->max_ws_blocks = max;
 523	}
 524
 525	sd_config_write_same(sdkp);
 526
 527	return count;
 528}
 529static DEVICE_ATTR_RW(max_write_same_blocks);
 530
 531static ssize_t
 532zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
 533{
 534	struct scsi_disk *sdkp = to_scsi_disk(dev);
 535
 536	if (sdkp->device->type == TYPE_ZBC)
 537		return sprintf(buf, "host-managed\n");
 538	if (sdkp->zoned == 1)
 539		return sprintf(buf, "host-aware\n");
 540	if (sdkp->zoned == 2)
 541		return sprintf(buf, "drive-managed\n");
 542	return sprintf(buf, "none\n");
 543}
 544static DEVICE_ATTR_RO(zoned_cap);
 545
 546static struct attribute *sd_disk_attrs[] = {
 547	&dev_attr_cache_type.attr,
 548	&dev_attr_FUA.attr,
 549	&dev_attr_allow_restart.attr,
 550	&dev_attr_manage_start_stop.attr,
 551	&dev_attr_protection_type.attr,
 552	&dev_attr_protection_mode.attr,
 553	&dev_attr_app_tag_own.attr,
 554	&dev_attr_thin_provisioning.attr,
 555	&dev_attr_provisioning_mode.attr,
 556	&dev_attr_zeroing_mode.attr,
 557	&dev_attr_max_write_same_blocks.attr,
 558	&dev_attr_max_medium_access_timeouts.attr,
 559	&dev_attr_zoned_cap.attr,
 560	NULL,
 561};
 562ATTRIBUTE_GROUPS(sd_disk);
 563
 564static struct class sd_disk_class = {
 565	.name		= "scsi_disk",
 566	.owner		= THIS_MODULE,
 567	.dev_release	= scsi_disk_release,
 568	.dev_groups	= sd_disk_groups,
 569};
 570
 571static const struct dev_pm_ops sd_pm_ops = {
 572	.suspend		= sd_suspend_system,
 573	.resume			= sd_resume,
 574	.poweroff		= sd_suspend_system,
 575	.restore		= sd_resume,
 576	.runtime_suspend	= sd_suspend_runtime,
 577	.runtime_resume		= sd_resume,
 578};
 579
 580static struct scsi_driver sd_template = {
 581	.gendrv = {
 582		.name		= "sd",
 583		.owner		= THIS_MODULE,
 584		.probe		= sd_probe,
 585		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
 586		.remove		= sd_remove,
 587		.shutdown	= sd_shutdown,
 588		.pm		= &sd_pm_ops,
 589	},
 590	.rescan			= sd_rescan,
 591	.init_command		= sd_init_command,
 592	.uninit_command		= sd_uninit_command,
 593	.done			= sd_done,
 594	.eh_action		= sd_eh_action,
 595	.eh_reset		= sd_eh_reset,
 596};
 597
 598/*
 599 * Dummy kobj_map->probe function.
 600 * The default ->probe function will call modprobe, which is
 601 * pointless as this module is already loaded.
 602 */
 603static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
 604{
 605	return NULL;
 606}
 607
 608/*
 609 * Device no to disk mapping:
 610 * 
 611 *       major         disc2     disc  p1
 612 *   |............|.............|....|....| <- dev_t
 613 *    31        20 19          8 7  4 3  0
 614 * 
 615 * Inside a major, we have 16k disks, however mapped non-
 616 * contiguously. The first 16 disks are for major0, the next
 617 * ones with major1, ... Disk 256 is for major0 again, disk 272 
 618 * for major1, ... 
 619 * As we stay compatible with our numbering scheme, we can reuse 
 620 * the well-know SCSI majors 8, 65--71, 136--143.
 621 */
 622static int sd_major(int major_idx)
 623{
 624	switch (major_idx) {
 625	case 0:
 626		return SCSI_DISK0_MAJOR;
 627	case 1 ... 7:
 628		return SCSI_DISK1_MAJOR + major_idx - 1;
 629	case 8 ... 15:
 630		return SCSI_DISK8_MAJOR + major_idx - 8;
 631	default:
 632		BUG();
 633		return 0;	/* shut up gcc */
 634	}
 635}
 636
 637static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
 638{
 639	struct scsi_disk *sdkp = NULL;
 640
 641	mutex_lock(&sd_ref_mutex);
 642
 643	if (disk->private_data) {
 644		sdkp = scsi_disk(disk);
 645		if (scsi_device_get(sdkp->device) == 0)
 646			get_device(&sdkp->dev);
 647		else
 648			sdkp = NULL;
 649	}
 650	mutex_unlock(&sd_ref_mutex);
 651	return sdkp;
 652}
 653
 654static void scsi_disk_put(struct scsi_disk *sdkp)
 655{
 656	struct scsi_device *sdev = sdkp->device;
 657
 658	mutex_lock(&sd_ref_mutex);
 659	put_device(&sdkp->dev);
 660	scsi_device_put(sdev);
 661	mutex_unlock(&sd_ref_mutex);
 662}
 663
 664#ifdef CONFIG_BLK_SED_OPAL
 665static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
 666		size_t len, bool send)
 667{
 668	struct scsi_device *sdev = data;
 669	u8 cdb[12] = { 0, };
 670	int ret;
 671
 672	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
 673	cdb[1] = secp;
 674	put_unaligned_be16(spsp, &cdb[2]);
 675	put_unaligned_be32(len, &cdb[6]);
 676
 677	ret = scsi_execute_req(sdev, cdb,
 678			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
 679			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
 680	return ret <= 0 ? ret : -EIO;
 681}
 682#endif /* CONFIG_BLK_SED_OPAL */
 683
 684/*
 685 * Look up the DIX operation based on whether the command is read or
 686 * write and whether dix and dif are enabled.
 687 */
 688static unsigned int sd_prot_op(bool write, bool dix, bool dif)
 689{
 690	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
 691	static const unsigned int ops[] = {	/* wrt dix dif */
 692		SCSI_PROT_NORMAL,		/*  0	0   0  */
 693		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
 694		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
 695		SCSI_PROT_READ_PASS,		/*  0	1   1  */
 696		SCSI_PROT_NORMAL,		/*  1	0   0  */
 697		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
 698		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
 699		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
 700	};
 701
 702	return ops[write << 2 | dix << 1 | dif];
 703}
 704
 705/*
 706 * Returns a mask of the protection flags that are valid for a given DIX
 707 * operation.
 708 */
 709static unsigned int sd_prot_flag_mask(unsigned int prot_op)
 710{
 711	static const unsigned int flag_mask[] = {
 712		[SCSI_PROT_NORMAL]		= 0,
 713
 714		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
 715						  SCSI_PROT_GUARD_CHECK |
 716						  SCSI_PROT_REF_CHECK |
 717						  SCSI_PROT_REF_INCREMENT,
 718
 719		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
 720						  SCSI_PROT_IP_CHECKSUM,
 721
 722		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
 723						  SCSI_PROT_GUARD_CHECK |
 724						  SCSI_PROT_REF_CHECK |
 725						  SCSI_PROT_REF_INCREMENT |
 726						  SCSI_PROT_IP_CHECKSUM,
 727
 728		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
 729						  SCSI_PROT_REF_INCREMENT,
 730
 731		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
 732						  SCSI_PROT_REF_CHECK |
 733						  SCSI_PROT_REF_INCREMENT |
 734						  SCSI_PROT_IP_CHECKSUM,
 735
 736		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
 737						  SCSI_PROT_GUARD_CHECK |
 738						  SCSI_PROT_REF_CHECK |
 739						  SCSI_PROT_REF_INCREMENT |
 740						  SCSI_PROT_IP_CHECKSUM,
 741	};
 742
 743	return flag_mask[prot_op];
 744}
 745
 746static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
 747					   unsigned int dix, unsigned int dif)
 748{
 749	struct bio *bio = scmd->request->bio;
 750	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
 751	unsigned int protect = 0;
 752
 753	if (dix) {				/* DIX Type 0, 1, 2, 3 */
 754		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
 755			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
 756
 757		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 758			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
 759	}
 760
 761	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
 762		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
 763
 764		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 765			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
 766	}
 767
 768	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
 769		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
 770
 771		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
 772			protect = 3 << 5;	/* Disable target PI checking */
 773		else
 774			protect = 1 << 5;	/* Enable target PI checking */
 775	}
 776
 777	scsi_set_prot_op(scmd, prot_op);
 778	scsi_set_prot_type(scmd, dif);
 779	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
 780
 781	return protect;
 782}
 783
 784static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
 785{
 786	struct request_queue *q = sdkp->disk->queue;
 787	unsigned int logical_block_size = sdkp->device->sector_size;
 788	unsigned int max_blocks = 0;
 789
 790	q->limits.discard_alignment =
 791		sdkp->unmap_alignment * logical_block_size;
 792	q->limits.discard_granularity =
 793		max(sdkp->physical_block_size,
 794		    sdkp->unmap_granularity * logical_block_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 795	sdkp->provisioning_mode = mode;
 796
 797	switch (mode) {
 798
 799	case SD_LBP_FULL:
 800	case SD_LBP_DISABLE:
 801		blk_queue_max_discard_sectors(q, 0);
 802		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
 803		return;
 804
 805	case SD_LBP_UNMAP:
 806		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
 807					  (u32)SD_MAX_WS16_BLOCKS);
 808		break;
 809
 810	case SD_LBP_WS16:
 811		if (sdkp->device->unmap_limit_for_ws)
 812			max_blocks = sdkp->max_unmap_blocks;
 813		else
 814			max_blocks = sdkp->max_ws_blocks;
 815
 816		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
 817		break;
 818
 819	case SD_LBP_WS10:
 820		if (sdkp->device->unmap_limit_for_ws)
 821			max_blocks = sdkp->max_unmap_blocks;
 822		else
 823			max_blocks = sdkp->max_ws_blocks;
 824
 825		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
 826		break;
 827
 828	case SD_LBP_ZERO:
 829		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 830					  (u32)SD_MAX_WS10_BLOCKS);
 
 831		break;
 832	}
 833
 834	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
 835	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
 836}
 837
 838static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
 
 
 
 
 
 
 
 
 839{
 
 840	struct scsi_device *sdp = cmd->device;
 841	struct request *rq = cmd->request;
 842	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 843	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 844	unsigned int data_len = 24;
 
 845	char *buf;
 
 846
 847	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 848	if (!rq->special_vec.bv_page)
 849		return BLK_STS_RESOURCE;
 850	clear_highpage(rq->special_vec.bv_page);
 851	rq->special_vec.bv_offset = 0;
 852	rq->special_vec.bv_len = data_len;
 853	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 854
 855	cmd->cmd_len = 10;
 856	cmd->cmnd[0] = UNMAP;
 857	cmd->cmnd[8] = 24;
 858
 859	buf = page_address(rq->special_vec.bv_page);
 860	put_unaligned_be16(6 + 16, &buf[0]);
 861	put_unaligned_be16(16, &buf[2]);
 862	put_unaligned_be64(lba, &buf[8]);
 863	put_unaligned_be32(nr_blocks, &buf[16]);
 864
 865	cmd->allowed = SD_MAX_RETRIES;
 866	cmd->transfersize = data_len;
 867	rq->timeout = SD_TIMEOUT;
 868
 869	return scsi_init_io(cmd);
 870}
 
 
 871
 872static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
 873		bool unmap)
 874{
 875	struct scsi_device *sdp = cmd->device;
 876	struct request *rq = cmd->request;
 877	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 878	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 879	u32 data_len = sdp->sector_size;
 880
 881	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 882	if (!rq->special_vec.bv_page)
 883		return BLK_STS_RESOURCE;
 884	clear_highpage(rq->special_vec.bv_page);
 885	rq->special_vec.bv_offset = 0;
 886	rq->special_vec.bv_len = data_len;
 887	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 888
 889	cmd->cmd_len = 16;
 890	cmd->cmnd[0] = WRITE_SAME_16;
 891	if (unmap)
 892		cmd->cmnd[1] = 0x8; /* UNMAP */
 893	put_unaligned_be64(lba, &cmd->cmnd[2]);
 894	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
 895
 896	cmd->allowed = SD_MAX_RETRIES;
 897	cmd->transfersize = data_len;
 898	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 
 
 
 
 
 
 
 
 899
 900	return scsi_init_io(cmd);
 901}
 902
 903static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
 904		bool unmap)
 905{
 906	struct scsi_device *sdp = cmd->device;
 907	struct request *rq = cmd->request;
 908	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 909	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 910	u32 data_len = sdp->sector_size;
 911
 912	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 913	if (!rq->special_vec.bv_page)
 914		return BLK_STS_RESOURCE;
 915	clear_highpage(rq->special_vec.bv_page);
 916	rq->special_vec.bv_offset = 0;
 917	rq->special_vec.bv_len = data_len;
 918	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 919
 920	cmd->cmd_len = 10;
 921	cmd->cmnd[0] = WRITE_SAME;
 922	if (unmap)
 923		cmd->cmnd[1] = 0x8; /* UNMAP */
 924	put_unaligned_be32(lba, &cmd->cmnd[2]);
 925	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
 926
 
 927	cmd->allowed = SD_MAX_RETRIES;
 928	cmd->transfersize = data_len;
 929	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 930
 931	return scsi_init_io(cmd);
 932}
 
 933
 934static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
 935{
 936	struct request *rq = cmd->request;
 937	struct scsi_device *sdp = cmd->device;
 938	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
 939	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 940	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 941
 942	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
 943		switch (sdkp->zeroing_mode) {
 944		case SD_ZERO_WS16_UNMAP:
 945			return sd_setup_write_same16_cmnd(cmd, true);
 946		case SD_ZERO_WS10_UNMAP:
 947			return sd_setup_write_same10_cmnd(cmd, true);
 948		}
 949	}
 950
 951	if (sdp->no_write_same)
 952		return BLK_STS_TARGET;
 953
 954	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
 955		return sd_setup_write_same16_cmnd(cmd, false);
 956
 957	return sd_setup_write_same10_cmnd(cmd, false);
 958}
 959
 960static void sd_config_write_same(struct scsi_disk *sdkp)
 961{
 962	struct request_queue *q = sdkp->disk->queue;
 963	unsigned int logical_block_size = sdkp->device->sector_size;
 964
 965	if (sdkp->device->no_write_same) {
 966		sdkp->max_ws_blocks = 0;
 967		goto out;
 968	}
 969
 970	/* Some devices can not handle block counts above 0xffff despite
 971	 * supporting WRITE SAME(16). Consequently we default to 64k
 972	 * blocks per I/O unless the device explicitly advertises a
 973	 * bigger limit.
 974	 */
 975	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
 976		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 977						   (u32)SD_MAX_WS16_BLOCKS);
 978	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
 979		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 980						   (u32)SD_MAX_WS10_BLOCKS);
 981	else {
 982		sdkp->device->no_write_same = 1;
 983		sdkp->max_ws_blocks = 0;
 984	}
 985
 986	if (sdkp->lbprz && sdkp->lbpws)
 987		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
 988	else if (sdkp->lbprz && sdkp->lbpws10)
 989		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
 990	else if (sdkp->max_ws_blocks)
 991		sdkp->zeroing_mode = SD_ZERO_WS;
 992	else
 993		sdkp->zeroing_mode = SD_ZERO_WRITE;
 994
 995	if (sdkp->max_ws_blocks &&
 996	    sdkp->physical_block_size > logical_block_size) {
 997		/*
 998		 * Reporting a maximum number of blocks that is not aligned
 999		 * on the device physical size would cause a large write same
1000		 * request to be split into physically unaligned chunks by
1001		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1002		 * even if the caller of these functions took care to align the
1003		 * large request. So make sure the maximum reported is aligned
1004		 * to the device physical block size. This is only an optional
1005		 * optimization for regular disks, but this is mandatory to
1006		 * avoid failure of large write same requests directed at
1007		 * sequential write required zones of host-managed ZBC disks.
1008		 */
1009		sdkp->max_ws_blocks =
1010			round_down(sdkp->max_ws_blocks,
1011				   bytes_to_logical(sdkp->device,
1012						    sdkp->physical_block_size));
1013	}
1014
1015out:
1016	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1017					 (logical_block_size >> 9));
1018	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1019					 (logical_block_size >> 9));
1020}
1021
1022/**
1023 * sd_setup_write_same_cmnd - write the same data to multiple blocks
1024 * @cmd: command to prepare
1025 *
1026 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1027 * the preference indicated by the target device.
1028 **/
1029static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1030{
1031	struct request *rq = cmd->request;
1032	struct scsi_device *sdp = cmd->device;
1033	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1034	struct bio *bio = rq->bio;
1035	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1036	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1037	blk_status_t ret;
 
1038
1039	if (sdkp->device->no_write_same)
1040		return BLK_STS_TARGET;
1041
1042	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1043
 
 
 
 
 
 
 
 
 
1044	rq->timeout = SD_WRITE_SAME_TIMEOUT;
1045
1046	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1047		cmd->cmd_len = 16;
1048		cmd->cmnd[0] = WRITE_SAME_16;
1049		put_unaligned_be64(lba, &cmd->cmnd[2]);
1050		put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1051	} else {
1052		cmd->cmd_len = 10;
1053		cmd->cmnd[0] = WRITE_SAME;
1054		put_unaligned_be32(lba, &cmd->cmnd[2]);
1055		put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1056	}
1057
1058	cmd->transfersize = sdp->sector_size;
1059	cmd->allowed = SD_MAX_RETRIES;
1060
1061	/*
1062	 * For WRITE SAME the data transferred via the DATA OUT buffer is
1063	 * different from the amount of data actually written to the target.
1064	 *
1065	 * We set up __data_len to the amount of data transferred via the
1066	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1067	 * to transfer a single sector of data first, but then reset it to
1068	 * the amount of data to be written right after so that the I/O path
1069	 * knows how much to actually write.
1070	 */
1071	rq->__data_len = sdp->sector_size;
1072	ret = scsi_init_io(cmd);
1073	rq->__data_len = blk_rq_bytes(rq);
1074
1075	return ret;
1076}
1077
1078static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1079{
1080	struct request *rq = cmd->request;
1081
1082	/* flush requests don't perform I/O, zero the S/G table */
1083	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1084
1085	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1086	cmd->cmd_len = 10;
1087	cmd->transfersize = 0;
1088	cmd->allowed = SD_MAX_RETRIES;
1089
1090	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1091	return BLK_STS_OK;
1092}
1093
1094static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1095				       sector_t lba, unsigned int nr_blocks,
1096				       unsigned char flags)
1097{
1098	cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1099	if (unlikely(cmd->cmnd == NULL))
1100		return BLK_STS_RESOURCE;
 
 
 
 
 
 
 
 
1101
1102	cmd->cmd_len = SD_EXT_CDB_SIZE;
1103	memset(cmd->cmnd, 0, cmd->cmd_len);
 
 
 
1104
1105	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1106	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1107	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1108	cmd->cmnd[10] = flags;
1109	put_unaligned_be64(lba, &cmd->cmnd[12]);
1110	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1111	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1112
1113	return BLK_STS_OK;
1114}
 
1115
1116static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1117				       sector_t lba, unsigned int nr_blocks,
1118				       unsigned char flags)
1119{
1120	cmd->cmd_len  = 16;
1121	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1122	cmd->cmnd[1]  = flags;
1123	cmd->cmnd[14] = 0;
1124	cmd->cmnd[15] = 0;
1125	put_unaligned_be64(lba, &cmd->cmnd[2]);
1126	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1127
1128	return BLK_STS_OK;
1129}
1130
1131static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1132				       sector_t lba, unsigned int nr_blocks,
1133				       unsigned char flags)
1134{
1135	cmd->cmd_len = 10;
1136	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1137	cmd->cmnd[1] = flags;
1138	cmd->cmnd[6] = 0;
1139	cmd->cmnd[9] = 0;
1140	put_unaligned_be32(lba, &cmd->cmnd[2]);
1141	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1142
1143	return BLK_STS_OK;
1144}
1145
1146static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1147				      sector_t lba, unsigned int nr_blocks,
1148				      unsigned char flags)
1149{
1150	/* Avoid that 0 blocks gets translated into 256 blocks. */
1151	if (WARN_ON_ONCE(nr_blocks == 0))
1152		return BLK_STS_IOERR;
1153
1154	if (unlikely(flags & 0x8)) {
1155		/*
1156		 * This happens only if this drive failed 10byte rw
1157		 * command with ILLEGAL_REQUEST during operation and
1158		 * thus turned off use_10_for_rw.
1159		 */
1160		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1161		return BLK_STS_IOERR;
1162	}
1163
1164	cmd->cmd_len = 6;
1165	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1166	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1167	cmd->cmnd[2] = (lba >> 8) & 0xff;
1168	cmd->cmnd[3] = lba & 0xff;
1169	cmd->cmnd[4] = nr_blocks;
1170	cmd->cmnd[5] = 0;
1171
1172	return BLK_STS_OK;
1173}
1174
1175static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1176{
1177	struct request *rq = cmd->request;
1178	struct scsi_device *sdp = cmd->device;
1179	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1180	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1181	sector_t threshold;
1182	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1183	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1184	bool write = rq_data_dir(rq) == WRITE;
1185	unsigned char protect, fua;
1186	blk_status_t ret;
1187	unsigned int dif;
1188	bool dix;
1189
1190	ret = scsi_init_io(cmd);
1191	if (ret != BLK_STS_OK)
1192		return ret;
1193
1194	if (!scsi_device_online(sdp) || sdp->changed) {
1195		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1196		return BLK_STS_IOERR;
1197	}
1198
1199	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1200		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1201		return BLK_STS_IOERR;
1202	}
1203
1204	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1205		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1206		return BLK_STS_IOERR;
1207	}
1208
1209	/*
1210	 * Some SD card readers can't handle accesses which touch the
1211	 * last one or two logical blocks. Split accesses as needed.
 
 
 
 
 
 
 
1212	 */
1213	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1214
1215	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1216		if (lba < threshold) {
1217			/* Access up to the threshold but not beyond */
1218			nr_blocks = threshold - lba;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1219		} else {
1220			/* Access only a single logical block */
1221			nr_blocks = 1;
1222		}
1223	}
 
 
 
 
 
1224
1225	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1226		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1227		if (ret)
1228			return ret;
 
1229	}
1230
1231	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1232	dix = scsi_prot_sg_count(cmd);
1233	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
 
 
 
 
 
1234
1235	if (dif || dix)
1236		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1237	else
1238		protect = 0;
1239
1240	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1241		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1242					 protect | fua);
1243	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1244		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1245					 protect | fua);
1246	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1247		   sdp->use_10_for_rw || protect) {
1248		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1249					 protect | fua);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1250	} else {
1251		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1252					protect | fua);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253	}
1254
1255	if (unlikely(ret != BLK_STS_OK))
1256		return ret;
1257
1258	/*
1259	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1260	 * host adapter, it's safe to assume that we can at least transfer
1261	 * this many bytes between each connect / disconnect.
1262	 */
1263	cmd->transfersize = sdp->sector_size;
1264	cmd->underflow = nr_blocks << 9;
1265	cmd->allowed = SD_MAX_RETRIES;
1266	cmd->sdb.length = nr_blocks * sdp->sector_size;
1267
1268	SCSI_LOG_HLQUEUE(1,
1269			 scmd_printk(KERN_INFO, cmd,
1270				     "%s: block=%llu, count=%d\n", __func__,
1271				     (unsigned long long)blk_rq_pos(rq),
1272				     blk_rq_sectors(rq)));
1273	SCSI_LOG_HLQUEUE(2,
1274			 scmd_printk(KERN_INFO, cmd,
1275				     "%s %d/%u 512 byte blocks.\n",
1276				     write ? "writing" : "reading", nr_blocks,
1277				     blk_rq_sectors(rq)));
1278
1279	/*
1280	 * This indicates that the command is ready from our end to be
1281	 * queued.
1282	 */
1283	return BLK_STS_OK;
 
 
 
 
 
1284}
1285
1286static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1287{
1288	struct request *rq = cmd->request;
1289
1290	switch (req_op(rq)) {
1291	case REQ_OP_DISCARD:
1292		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1293		case SD_LBP_UNMAP:
1294			return sd_setup_unmap_cmnd(cmd);
1295		case SD_LBP_WS16:
1296			return sd_setup_write_same16_cmnd(cmd, true);
1297		case SD_LBP_WS10:
1298			return sd_setup_write_same10_cmnd(cmd, true);
1299		case SD_LBP_ZERO:
1300			return sd_setup_write_same10_cmnd(cmd, false);
1301		default:
1302			return BLK_STS_TARGET;
1303		}
1304	case REQ_OP_WRITE_ZEROES:
1305		return sd_setup_write_zeroes_cmnd(cmd);
1306	case REQ_OP_WRITE_SAME:
1307		return sd_setup_write_same_cmnd(cmd);
1308	case REQ_OP_FLUSH:
1309		return sd_setup_flush_cmnd(cmd);
1310	case REQ_OP_READ:
1311	case REQ_OP_WRITE:
1312	case REQ_OP_ZONE_APPEND:
1313		return sd_setup_read_write_cmnd(cmd);
 
 
1314	case REQ_OP_ZONE_RESET:
1315		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1316						   false);
1317	case REQ_OP_ZONE_RESET_ALL:
1318		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1319						   true);
1320	case REQ_OP_ZONE_OPEN:
1321		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1322	case REQ_OP_ZONE_CLOSE:
1323		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1324	case REQ_OP_ZONE_FINISH:
1325		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1326	default:
1327		WARN_ON_ONCE(1);
1328		return BLK_STS_NOTSUPP;
1329	}
1330}
1331
1332static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1333{
1334	struct request *rq = SCpnt->request;
1335	u8 *cmnd;
1336
1337	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1338		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1339
1340	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1341		cmnd = SCpnt->cmnd;
1342		SCpnt->cmnd = NULL;
1343		SCpnt->cmd_len = 0;
1344		mempool_free(cmnd, sd_cdb_pool);
1345	}
1346}
1347
1348/**
1349 *	sd_open - open a scsi disk device
1350 *	@bdev: Block device of the scsi disk to open
1351 *	@mode: FMODE_* mask
1352 *
1353 *	Returns 0 if successful. Returns a negated errno value in case 
1354 *	of error.
1355 *
1356 *	Note: This can be called from a user context (e.g. fsck(1) )
1357 *	or from within the kernel (e.g. as a result of a mount(1) ).
1358 *	In the latter case @inode and @filp carry an abridged amount
1359 *	of information as noted above.
1360 *
1361 *	Locking: called with bdev->bd_mutex held.
1362 **/
1363static int sd_open(struct block_device *bdev, fmode_t mode)
1364{
1365	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1366	struct scsi_device *sdev;
1367	int retval;
1368
1369	if (!sdkp)
1370		return -ENXIO;
1371
1372	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1373
1374	sdev = sdkp->device;
1375
1376	/*
1377	 * If the device is in error recovery, wait until it is done.
1378	 * If the device is offline, then disallow any access to it.
1379	 */
1380	retval = -ENXIO;
1381	if (!scsi_block_when_processing_errors(sdev))
1382		goto error_out;
1383
1384	if (sdev->removable || sdkp->write_prot)
1385		check_disk_change(bdev);
1386
1387	/*
1388	 * If the drive is empty, just let the open fail.
1389	 */
1390	retval = -ENOMEDIUM;
1391	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1392		goto error_out;
1393
1394	/*
1395	 * If the device has the write protect tab set, have the open fail
1396	 * if the user expects to be able to write to the thing.
1397	 */
1398	retval = -EROFS;
1399	if (sdkp->write_prot && (mode & FMODE_WRITE))
1400		goto error_out;
1401
1402	/*
1403	 * It is possible that the disk changing stuff resulted in
1404	 * the device being taken offline.  If this is the case,
1405	 * report this to the user, and don't pretend that the
1406	 * open actually succeeded.
1407	 */
1408	retval = -ENXIO;
1409	if (!scsi_device_online(sdev))
1410		goto error_out;
1411
1412	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1413		if (scsi_block_when_processing_errors(sdev))
1414			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1415	}
1416
1417	return 0;
1418
1419error_out:
1420	scsi_disk_put(sdkp);
1421	return retval;	
1422}
1423
1424/**
1425 *	sd_release - invoked when the (last) close(2) is called on this
1426 *	scsi disk.
1427 *	@disk: disk to release
1428 *	@mode: FMODE_* mask
1429 *
1430 *	Returns 0. 
1431 *
1432 *	Note: may block (uninterruptible) if error recovery is underway
1433 *	on this disk.
1434 *
1435 *	Locking: called with bdev->bd_mutex held.
1436 **/
1437static void sd_release(struct gendisk *disk, fmode_t mode)
1438{
1439	struct scsi_disk *sdkp = scsi_disk(disk);
1440	struct scsi_device *sdev = sdkp->device;
1441
1442	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1443
1444	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1445		if (scsi_block_when_processing_errors(sdev))
1446			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1447	}
1448
 
 
 
 
 
1449	scsi_disk_put(sdkp);
1450}
1451
1452static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1453{
1454	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1455	struct scsi_device *sdp = sdkp->device;
1456	struct Scsi_Host *host = sdp->host;
1457	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1458	int diskinfo[4];
1459
1460	/* default to most commonly used values */
1461	diskinfo[0] = 0x40;	/* 1 << 6 */
1462	diskinfo[1] = 0x20;	/* 1 << 5 */
1463	diskinfo[2] = capacity >> 11;
1464
1465	/* override with calculated, extended default, or driver values */
1466	if (host->hostt->bios_param)
1467		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1468	else
1469		scsicam_bios_param(bdev, capacity, diskinfo);
1470
1471	geo->heads = diskinfo[0];
1472	geo->sectors = diskinfo[1];
1473	geo->cylinders = diskinfo[2];
1474	return 0;
1475}
1476
1477/**
1478 *	sd_ioctl - process an ioctl
1479 *	@bdev: target block device
1480 *	@mode: FMODE_* mask
1481 *	@cmd: ioctl command number
1482 *	@p: this is third argument given to ioctl(2) system call.
1483 *	Often contains a pointer.
1484 *
1485 *	Returns 0 if successful (some ioctls return positive numbers on
1486 *	success as well). Returns a negated errno value in case of error.
1487 *
1488 *	Note: most ioctls are forward onto the block subsystem or further
1489 *	down in the scsi subsystem.
1490 **/
1491static int sd_ioctl_common(struct block_device *bdev, fmode_t mode,
1492			   unsigned int cmd, void __user *p)
1493{
1494	struct gendisk *disk = bdev->bd_disk;
1495	struct scsi_disk *sdkp = scsi_disk(disk);
1496	struct scsi_device *sdp = sdkp->device;
 
1497	int error;
1498    
1499	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1500				    "cmd=0x%x\n", disk->disk_name, cmd));
1501
1502	error = scsi_verify_blk_ioctl(bdev, cmd);
1503	if (error < 0)
1504		return error;
1505
1506	/*
1507	 * If we are in the middle of error recovery, don't let anyone
1508	 * else try and use this device.  Also, if error recovery fails, it
1509	 * may try and take the device offline, in which case all further
1510	 * access to the device is prohibited.
1511	 */
1512	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1513			(mode & FMODE_NDELAY) != 0);
1514	if (error)
1515		goto out;
1516
1517	if (is_sed_ioctl(cmd))
1518		return sed_ioctl(sdkp->opal_dev, cmd, p);
1519
1520	/*
1521	 * Send SCSI addressing ioctls directly to mid level, send other
1522	 * ioctls to block level and then onto mid level if they can't be
1523	 * resolved.
1524	 */
1525	switch (cmd) {
1526		case SCSI_IOCTL_GET_IDLUN:
1527		case SCSI_IOCTL_GET_BUS_NUMBER:
1528			error = scsi_ioctl(sdp, cmd, p);
1529			break;
1530		default:
1531			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
 
 
 
1532			break;
1533	}
1534out:
1535	return error;
1536}
1537
1538static void set_media_not_present(struct scsi_disk *sdkp)
1539{
1540	if (sdkp->media_present)
1541		sdkp->device->changed = 1;
1542
1543	if (sdkp->device->removable) {
1544		sdkp->media_present = 0;
1545		sdkp->capacity = 0;
1546	}
1547}
1548
1549static int media_not_present(struct scsi_disk *sdkp,
1550			     struct scsi_sense_hdr *sshdr)
1551{
1552	if (!scsi_sense_valid(sshdr))
1553		return 0;
1554
1555	/* not invoked for commands that could return deferred errors */
1556	switch (sshdr->sense_key) {
1557	case UNIT_ATTENTION:
1558	case NOT_READY:
1559		/* medium not present */
1560		if (sshdr->asc == 0x3A) {
1561			set_media_not_present(sdkp);
1562			return 1;
1563		}
1564	}
1565	return 0;
1566}
1567
1568/**
1569 *	sd_check_events - check media events
1570 *	@disk: kernel device descriptor
1571 *	@clearing: disk events currently being cleared
1572 *
1573 *	Returns mask of DISK_EVENT_*.
1574 *
1575 *	Note: this function is invoked from the block subsystem.
1576 **/
1577static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1578{
1579	struct scsi_disk *sdkp = scsi_disk_get(disk);
1580	struct scsi_device *sdp;
 
1581	int retval;
1582
1583	if (!sdkp)
1584		return 0;
1585
1586	sdp = sdkp->device;
1587	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1588
1589	/*
1590	 * If the device is offline, don't send any commands - just pretend as
1591	 * if the command failed.  If the device ever comes back online, we
1592	 * can deal with it then.  It is only because of unrecoverable errors
1593	 * that we would ever take a device offline in the first place.
1594	 */
1595	if (!scsi_device_online(sdp)) {
1596		set_media_not_present(sdkp);
1597		goto out;
1598	}
1599
1600	/*
1601	 * Using TEST_UNIT_READY enables differentiation between drive with
1602	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1603	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1604	 *
1605	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1606	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1607	 * sd_revalidate() is called.
1608	 */
 
 
1609	if (scsi_block_when_processing_errors(sdp)) {
1610		struct scsi_sense_hdr sshdr = { 0, };
1611
1612		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1613					      &sshdr);
 
1614
1615		/* failed to execute TUR, assume media not present */
1616		if (host_byte(retval)) {
1617			set_media_not_present(sdkp);
1618			goto out;
1619		}
1620
1621		if (media_not_present(sdkp, &sshdr))
1622			goto out;
1623	}
1624
1625	/*
1626	 * For removable scsi disk we have to recognise the presence
1627	 * of a disk in the drive.
1628	 */
1629	if (!sdkp->media_present)
1630		sdp->changed = 1;
1631	sdkp->media_present = 1;
1632out:
1633	/*
1634	 * sdp->changed is set under the following conditions:
1635	 *
1636	 *	Medium present state has changed in either direction.
1637	 *	Device has indicated UNIT_ATTENTION.
1638	 */
 
1639	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1640	sdp->changed = 0;
1641	scsi_disk_put(sdkp);
1642	return retval;
1643}
1644
1645static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1646{
1647	int retries, res;
1648	struct scsi_device *sdp = sdkp->device;
1649	const int timeout = sdp->request_queue->rq_timeout
1650		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1651	struct scsi_sense_hdr my_sshdr;
1652
1653	if (!scsi_device_online(sdp))
1654		return -ENODEV;
1655
1656	/* caller might not be interested in sense, but we need it */
1657	if (!sshdr)
1658		sshdr = &my_sshdr;
1659
1660	for (retries = 3; retries > 0; --retries) {
1661		unsigned char cmd[10] = { 0 };
1662
1663		cmd[0] = SYNCHRONIZE_CACHE;
1664		/*
1665		 * Leave the rest of the command zero to indicate
1666		 * flush everything.
1667		 */
1668		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1669				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
 
1670		if (res == 0)
1671			break;
1672	}
1673
1674	if (res) {
1675		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1676
1677		if (driver_byte(res) == DRIVER_SENSE)
1678			sd_print_sense_hdr(sdkp, sshdr);
1679
1680		/* we need to evaluate the error return  */
1681		if (scsi_sense_valid(sshdr) &&
1682			(sshdr->asc == 0x3a ||	/* medium not present */
1683			 sshdr->asc == 0x20 ||	/* invalid command */
1684			 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)))	/* drive is password locked */
1685				/* this is no error here */
1686				return 0;
1687
1688		switch (host_byte(res)) {
1689		/* ignore errors due to racing a disconnection */
1690		case DID_BAD_TARGET:
1691		case DID_NO_CONNECT:
1692			return 0;
1693		/* signal the upper layer it might try again */
1694		case DID_BUS_BUSY:
1695		case DID_IMM_RETRY:
1696		case DID_REQUEUE:
1697		case DID_SOFT_ERROR:
1698			return -EBUSY;
1699		default:
1700			return -EIO;
1701		}
1702	}
1703	return 0;
1704}
1705
1706static void sd_rescan(struct device *dev)
1707{
1708	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1709
1710	revalidate_disk(sdkp->disk);
1711}
1712
1713static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1714		    unsigned int cmd, unsigned long arg)
1715{
1716	void __user *p = (void __user *)arg;
1717	int ret;
1718
1719	ret = sd_ioctl_common(bdev, mode, cmd, p);
1720	if (ret != -ENOTTY)
1721		return ret;
1722
1723	return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1724}
1725
1726#ifdef CONFIG_COMPAT
 
 
 
 
1727static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1728			   unsigned int cmd, unsigned long arg)
1729{
1730	void __user *p = compat_ptr(arg);
1731	int ret;
1732
1733	ret = sd_ioctl_common(bdev, mode, cmd, p);
1734	if (ret != -ENOTTY)
1735		return ret;
1736
1737	return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
 
 
 
 
 
 
1738}
1739#endif
1740
1741static char sd_pr_type(enum pr_type type)
1742{
1743	switch (type) {
1744	case PR_WRITE_EXCLUSIVE:
1745		return 0x01;
1746	case PR_EXCLUSIVE_ACCESS:
1747		return 0x03;
1748	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1749		return 0x05;
1750	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1751		return 0x06;
1752	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1753		return 0x07;
1754	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1755		return 0x08;
1756	default:
1757		return 0;
1758	}
1759};
1760
1761static int sd_pr_command(struct block_device *bdev, u8 sa,
1762		u64 key, u64 sa_key, u8 type, u8 flags)
1763{
1764	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1765	struct scsi_sense_hdr sshdr;
1766	int result;
1767	u8 cmd[16] = { 0, };
1768	u8 data[24] = { 0, };
1769
1770	cmd[0] = PERSISTENT_RESERVE_OUT;
1771	cmd[1] = sa;
1772	cmd[2] = type;
1773	put_unaligned_be32(sizeof(data), &cmd[5]);
1774
1775	put_unaligned_be64(key, &data[0]);
1776	put_unaligned_be64(sa_key, &data[8]);
1777	data[20] = flags;
1778
1779	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1780			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1781
1782	if (driver_byte(result) == DRIVER_SENSE &&
1783	    scsi_sense_valid(&sshdr)) {
1784		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1785		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1786	}
1787
1788	return result;
1789}
1790
1791static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1792		u32 flags)
1793{
1794	if (flags & ~PR_FL_IGNORE_KEY)
1795		return -EOPNOTSUPP;
1796	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1797			old_key, new_key, 0,
1798			(1 << 0) /* APTPL */);
1799}
1800
1801static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1802		u32 flags)
1803{
1804	if (flags)
1805		return -EOPNOTSUPP;
1806	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1807}
1808
1809static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1810{
1811	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1812}
1813
1814static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1815		enum pr_type type, bool abort)
1816{
1817	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1818			     sd_pr_type(type), 0);
1819}
1820
1821static int sd_pr_clear(struct block_device *bdev, u64 key)
1822{
1823	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1824}
1825
1826static const struct pr_ops sd_pr_ops = {
1827	.pr_register	= sd_pr_register,
1828	.pr_reserve	= sd_pr_reserve,
1829	.pr_release	= sd_pr_release,
1830	.pr_preempt	= sd_pr_preempt,
1831	.pr_clear	= sd_pr_clear,
1832};
1833
1834static const struct block_device_operations sd_fops = {
1835	.owner			= THIS_MODULE,
1836	.open			= sd_open,
1837	.release		= sd_release,
1838	.ioctl			= sd_ioctl,
1839	.getgeo			= sd_getgeo,
1840#ifdef CONFIG_COMPAT
1841	.compat_ioctl		= sd_compat_ioctl,
1842#endif
1843	.check_events		= sd_check_events,
1844	.revalidate_disk	= sd_revalidate_disk,
1845	.unlock_native_capacity	= sd_unlock_native_capacity,
1846	.report_zones		= sd_zbc_report_zones,
1847	.pr_ops			= &sd_pr_ops,
1848};
1849
1850/**
1851 *	sd_eh_reset - reset error handling callback
1852 *	@scmd:		sd-issued command that has failed
1853 *
1854 *	This function is called by the SCSI midlayer before starting
1855 *	SCSI EH. When counting medium access failures we have to be
1856 *	careful to register it only only once per device and SCSI EH run;
1857 *	there might be several timed out commands which will cause the
1858 *	'max_medium_access_timeouts' counter to trigger after the first
1859 *	SCSI EH run already and set the device to offline.
1860 *	So this function resets the internal counter before starting SCSI EH.
1861 **/
1862static void sd_eh_reset(struct scsi_cmnd *scmd)
1863{
1864	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1865
1866	/* New SCSI EH run, reset gate variable */
1867	sdkp->ignore_medium_access_errors = false;
1868}
1869
1870/**
1871 *	sd_eh_action - error handling callback
1872 *	@scmd:		sd-issued command that has failed
1873 *	@eh_disp:	The recovery disposition suggested by the midlayer
1874 *
1875 *	This function is called by the SCSI midlayer upon completion of an
1876 *	error test command (currently TEST UNIT READY). The result of sending
1877 *	the eh command is passed in eh_disp.  We're looking for devices that
1878 *	fail medium access commands but are OK with non access commands like
1879 *	test unit ready (so wrongly see the device as having a successful
1880 *	recovery)
1881 **/
1882static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1883{
1884	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1885	struct scsi_device *sdev = scmd->device;
1886
1887	if (!scsi_device_online(sdev) ||
1888	    !scsi_medium_access_command(scmd) ||
1889	    host_byte(scmd->result) != DID_TIME_OUT ||
1890	    eh_disp != SUCCESS)
1891		return eh_disp;
1892
1893	/*
1894	 * The device has timed out executing a medium access command.
1895	 * However, the TEST UNIT READY command sent during error
1896	 * handling completed successfully. Either the device is in the
1897	 * process of recovering or has it suffered an internal failure
1898	 * that prevents access to the storage medium.
1899	 */
1900	if (!sdkp->ignore_medium_access_errors) {
1901		sdkp->medium_access_timed_out++;
1902		sdkp->ignore_medium_access_errors = true;
1903	}
1904
1905	/*
1906	 * If the device keeps failing read/write commands but TEST UNIT
1907	 * READY always completes successfully we assume that medium
1908	 * access is no longer possible and take the device offline.
1909	 */
1910	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1911		scmd_printk(KERN_ERR, scmd,
1912			    "Medium access timeout failure. Offlining disk!\n");
1913		mutex_lock(&sdev->state_mutex);
1914		scsi_device_set_state(sdev, SDEV_OFFLINE);
1915		mutex_unlock(&sdev->state_mutex);
1916
1917		return SUCCESS;
1918	}
1919
1920	return eh_disp;
1921}
1922
1923static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1924{
1925	struct request *req = scmd->request;
1926	struct scsi_device *sdev = scmd->device;
1927	unsigned int transferred, good_bytes;
1928	u64 start_lba, end_lba, bad_lba;
1929
1930	/*
1931	 * Some commands have a payload smaller than the device logical
1932	 * block size (e.g. INQUIRY on a 4K disk).
1933	 */
1934	if (scsi_bufflen(scmd) <= sdev->sector_size)
 
 
 
1935		return 0;
1936
1937	/* Check if we have a 'bad_lba' information */
1938	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1939				     SCSI_SENSE_BUFFERSIZE,
1940				     &bad_lba))
1941		return 0;
1942
1943	/*
1944	 * If the bad lba was reported incorrectly, we have no idea where
 
 
 
 
 
 
1945	 * the error is.
1946	 */
1947	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1948	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1949	if (bad_lba < start_lba || bad_lba >= end_lba)
1950		return 0;
1951
1952	/*
1953	 * resid is optional but mostly filled in.  When it's unused,
1954	 * its value is zero, so we assume the whole buffer transferred
1955	 */
1956	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1957
1958	/* This computation should always be done in terms of the
1959	 * resolution of the device's medium.
1960	 */
1961	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1962
1963	return min(good_bytes, transferred);
1964}
1965
1966/**
1967 *	sd_done - bottom half handler: called when the lower level
1968 *	driver has completed (successfully or otherwise) a scsi command.
1969 *	@SCpnt: mid-level's per command structure.
1970 *
1971 *	Note: potentially run from within an ISR. Must not block.
1972 **/
1973static int sd_done(struct scsi_cmnd *SCpnt)
1974{
1975	int result = SCpnt->result;
1976	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1977	unsigned int sector_size = SCpnt->device->sector_size;
1978	unsigned int resid;
1979	struct scsi_sense_hdr sshdr;
1980	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1981	struct request *req = SCpnt->request;
1982	int sense_valid = 0;
1983	int sense_deferred = 0;
 
 
1984
1985	switch (req_op(req)) {
1986	case REQ_OP_DISCARD:
1987	case REQ_OP_WRITE_ZEROES:
1988	case REQ_OP_WRITE_SAME:
1989	case REQ_OP_ZONE_RESET:
1990	case REQ_OP_ZONE_RESET_ALL:
1991	case REQ_OP_ZONE_OPEN:
1992	case REQ_OP_ZONE_CLOSE:
1993	case REQ_OP_ZONE_FINISH:
1994		if (!result) {
1995			good_bytes = blk_rq_bytes(req);
1996			scsi_set_resid(SCpnt, 0);
1997		} else {
1998			good_bytes = 0;
1999			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2000		}
2001		break;
 
 
 
 
 
 
 
 
 
 
2002	default:
2003		/*
2004		 * In case of bogus fw or device, we could end up having
2005		 * an unaligned partial completion. Check this here and force
2006		 * alignment.
2007		 */
2008		resid = scsi_get_resid(SCpnt);
2009		if (resid & (sector_size - 1)) {
2010			sd_printk(KERN_INFO, sdkp,
2011				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2012				resid, sector_size);
2013			scsi_print_command(SCpnt);
2014			resid = min(scsi_bufflen(SCpnt),
2015				    round_up(resid, sector_size));
2016			scsi_set_resid(SCpnt, resid);
2017		}
2018	}
2019
2020	if (result) {
2021		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2022		if (sense_valid)
2023			sense_deferred = scsi_sense_is_deferred(&sshdr);
2024	}
2025	sdkp->medium_access_timed_out = 0;
2026
2027	if (driver_byte(result) != DRIVER_SENSE &&
2028	    (!sense_valid || sense_deferred))
2029		goto out;
2030
2031	switch (sshdr.sense_key) {
2032	case HARDWARE_ERROR:
2033	case MEDIUM_ERROR:
2034		good_bytes = sd_completed_bytes(SCpnt);
2035		break;
2036	case RECOVERED_ERROR:
2037		good_bytes = scsi_bufflen(SCpnt);
2038		break;
2039	case NO_SENSE:
2040		/* This indicates a false check condition, so ignore it.  An
2041		 * unknown amount of data was transferred so treat it as an
2042		 * error.
2043		 */
2044		SCpnt->result = 0;
2045		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2046		break;
2047	case ABORTED_COMMAND:
2048		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2049			good_bytes = sd_completed_bytes(SCpnt);
2050		break;
2051	case ILLEGAL_REQUEST:
2052		switch (sshdr.asc) {
2053		case 0x10:	/* DIX: Host detected corruption */
2054			good_bytes = sd_completed_bytes(SCpnt);
2055			break;
2056		case 0x20:	/* INVALID COMMAND OPCODE */
2057		case 0x24:	/* INVALID FIELD IN CDB */
2058			switch (SCpnt->cmnd[0]) {
2059			case UNMAP:
2060				sd_config_discard(sdkp, SD_LBP_DISABLE);
2061				break;
2062			case WRITE_SAME_16:
2063			case WRITE_SAME:
2064				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2065					sd_config_discard(sdkp, SD_LBP_DISABLE);
2066				} else {
2067					sdkp->device->no_write_same = 1;
2068					sd_config_write_same(sdkp);
 
 
 
2069					req->rq_flags |= RQF_QUIET;
2070				}
2071				break;
2072			}
2073		}
2074		break;
2075	default:
2076		break;
2077	}
2078
2079 out:
2080	if (sd_is_zoned(sdkp))
2081		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2082
2083	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2084					   "sd_done: completed %d of %d bytes\n",
2085					   good_bytes, scsi_bufflen(SCpnt)));
2086
 
 
 
2087	return good_bytes;
2088}
2089
2090/*
2091 * spinup disk - called only in sd_revalidate_disk()
2092 */
2093static void
2094sd_spinup_disk(struct scsi_disk *sdkp)
2095{
2096	unsigned char cmd[10];
2097	unsigned long spintime_expire = 0;
2098	int retries, spintime;
2099	unsigned int the_result;
2100	struct scsi_sense_hdr sshdr;
2101	int sense_valid = 0;
2102
2103	spintime = 0;
2104
2105	/* Spin up drives, as required.  Only do this at boot time */
2106	/* Spinup needs to be done for module loads too. */
2107	do {
2108		retries = 0;
2109
2110		do {
2111			cmd[0] = TEST_UNIT_READY;
2112			memset((void *) &cmd[1], 0, 9);
2113
2114			the_result = scsi_execute_req(sdkp->device, cmd,
2115						      DMA_NONE, NULL, 0,
2116						      &sshdr, SD_TIMEOUT,
2117						      SD_MAX_RETRIES, NULL);
2118
2119			/*
2120			 * If the drive has indicated to us that it
2121			 * doesn't have any media in it, don't bother
2122			 * with any more polling.
2123			 */
2124			if (media_not_present(sdkp, &sshdr))
2125				return;
2126
2127			if (the_result)
2128				sense_valid = scsi_sense_valid(&sshdr);
2129			retries++;
2130		} while (retries < 3 && 
2131			 (!scsi_status_is_good(the_result) ||
2132			  ((driver_byte(the_result) == DRIVER_SENSE) &&
2133			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2134
2135		if (driver_byte(the_result) != DRIVER_SENSE) {
2136			/* no sense, TUR either succeeded or failed
2137			 * with a status error */
2138			if(!spintime && !scsi_status_is_good(the_result)) {
2139				sd_print_result(sdkp, "Test Unit Ready failed",
2140						the_result);
2141			}
2142			break;
2143		}
2144
2145		/*
2146		 * The device does not want the automatic start to be issued.
2147		 */
2148		if (sdkp->device->no_start_on_add)
2149			break;
2150
2151		if (sense_valid && sshdr.sense_key == NOT_READY) {
2152			if (sshdr.asc == 4 && sshdr.ascq == 3)
2153				break;	/* manual intervention required */
2154			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2155				break;	/* standby */
2156			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2157				break;	/* unavailable */
2158			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2159				break;	/* sanitize in progress */
2160			/*
2161			 * Issue command to spin up drive when not ready
2162			 */
2163			if (!spintime) {
2164				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2165				cmd[0] = START_STOP;
2166				cmd[1] = 1;	/* Return immediately */
2167				memset((void *) &cmd[2], 0, 8);
2168				cmd[4] = 1;	/* Start spin cycle */
2169				if (sdkp->device->start_stop_pwr_cond)
2170					cmd[4] |= 1 << 4;
2171				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2172						 NULL, 0, &sshdr,
2173						 SD_TIMEOUT, SD_MAX_RETRIES,
2174						 NULL);
2175				spintime_expire = jiffies + 100 * HZ;
2176				spintime = 1;
2177			}
2178			/* Wait 1 second for next try */
2179			msleep(1000);
2180			printk(KERN_CONT ".");
2181
2182		/*
2183		 * Wait for USB flash devices with slow firmware.
2184		 * Yes, this sense key/ASC combination shouldn't
2185		 * occur here.  It's characteristic of these devices.
2186		 */
2187		} else if (sense_valid &&
2188				sshdr.sense_key == UNIT_ATTENTION &&
2189				sshdr.asc == 0x28) {
2190			if (!spintime) {
2191				spintime_expire = jiffies + 5 * HZ;
2192				spintime = 1;
2193			}
2194			/* Wait 1 second for next try */
2195			msleep(1000);
2196		} else {
2197			/* we don't understand the sense code, so it's
2198			 * probably pointless to loop */
2199			if(!spintime) {
2200				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2201				sd_print_sense_hdr(sdkp, &sshdr);
2202			}
2203			break;
2204		}
2205				
2206	} while (spintime && time_before_eq(jiffies, spintime_expire));
2207
2208	if (spintime) {
2209		if (scsi_status_is_good(the_result))
2210			printk(KERN_CONT "ready\n");
2211		else
2212			printk(KERN_CONT "not responding...\n");
2213	}
2214}
2215
2216/*
2217 * Determine whether disk supports Data Integrity Field.
2218 */
2219static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2220{
2221	struct scsi_device *sdp = sdkp->device;
2222	u8 type;
2223	int ret = 0;
2224
2225	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2226		sdkp->protection_type = 0;
2227		return ret;
2228	}
2229
2230	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2231
2232	if (type > T10_PI_TYPE3_PROTECTION)
2233		ret = -ENODEV;
2234	else if (scsi_host_dif_capable(sdp->host, type))
2235		ret = 1;
2236
2237	if (sdkp->first_scan || type != sdkp->protection_type)
2238		switch (ret) {
2239		case -ENODEV:
2240			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2241				  " protection type %u. Disabling disk!\n",
2242				  type);
2243			break;
2244		case 1:
2245			sd_printk(KERN_NOTICE, sdkp,
2246				  "Enabling DIF Type %u protection\n", type);
2247			break;
2248		case 0:
2249			sd_printk(KERN_NOTICE, sdkp,
2250				  "Disabling DIF Type %u protection\n", type);
2251			break;
2252		}
2253
2254	sdkp->protection_type = type;
2255
2256	return ret;
2257}
2258
2259static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2260			struct scsi_sense_hdr *sshdr, int sense_valid,
2261			int the_result)
2262{
2263	if (driver_byte(the_result) == DRIVER_SENSE)
2264		sd_print_sense_hdr(sdkp, sshdr);
2265	else
2266		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2267
2268	/*
2269	 * Set dirty bit for removable devices if not ready -
2270	 * sometimes drives will not report this properly.
2271	 */
2272	if (sdp->removable &&
2273	    sense_valid && sshdr->sense_key == NOT_READY)
2274		set_media_not_present(sdkp);
2275
2276	/*
2277	 * We used to set media_present to 0 here to indicate no media
2278	 * in the drive, but some drives fail read capacity even with
2279	 * media present, so we can't do that.
2280	 */
2281	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2282}
2283
2284#define RC16_LEN 32
2285#if RC16_LEN > SD_BUF_SIZE
2286#error RC16_LEN must not be more than SD_BUF_SIZE
2287#endif
2288
2289#define READ_CAPACITY_RETRIES_ON_RESET	10
2290
2291static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2292						unsigned char *buffer)
2293{
2294	unsigned char cmd[16];
2295	struct scsi_sense_hdr sshdr;
2296	int sense_valid = 0;
2297	int the_result;
2298	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2299	unsigned int alignment;
2300	unsigned long long lba;
2301	unsigned sector_size;
2302
2303	if (sdp->no_read_capacity_16)
2304		return -EINVAL;
2305
2306	do {
2307		memset(cmd, 0, 16);
2308		cmd[0] = SERVICE_ACTION_IN_16;
2309		cmd[1] = SAI_READ_CAPACITY_16;
2310		cmd[13] = RC16_LEN;
2311		memset(buffer, 0, RC16_LEN);
2312
2313		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2314					buffer, RC16_LEN, &sshdr,
2315					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2316
2317		if (media_not_present(sdkp, &sshdr))
2318			return -ENODEV;
2319
2320		if (the_result) {
2321			sense_valid = scsi_sense_valid(&sshdr);
2322			if (sense_valid &&
2323			    sshdr.sense_key == ILLEGAL_REQUEST &&
2324			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2325			    sshdr.ascq == 0x00)
2326				/* Invalid Command Operation Code or
2327				 * Invalid Field in CDB, just retry
2328				 * silently with RC10 */
2329				return -EINVAL;
2330			if (sense_valid &&
2331			    sshdr.sense_key == UNIT_ATTENTION &&
2332			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2333				/* Device reset might occur several times,
2334				 * give it one more chance */
2335				if (--reset_retries > 0)
2336					continue;
2337		}
2338		retries--;
2339
2340	} while (the_result && retries);
2341
2342	if (the_result) {
2343		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2344		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2345		return -EINVAL;
2346	}
2347
2348	sector_size = get_unaligned_be32(&buffer[8]);
2349	lba = get_unaligned_be64(&buffer[0]);
2350
2351	if (sd_read_protection_type(sdkp, buffer) < 0) {
2352		sdkp->capacity = 0;
2353		return -ENODEV;
2354	}
2355
 
 
 
 
 
 
 
 
2356	/* Logical blocks per physical block exponent */
2357	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2358
2359	/* RC basis */
2360	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2361
2362	/* Lowest aligned logical block */
2363	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2364	blk_queue_alignment_offset(sdp->request_queue, alignment);
2365	if (alignment && sdkp->first_scan)
2366		sd_printk(KERN_NOTICE, sdkp,
2367			  "physical block alignment offset: %u\n", alignment);
2368
2369	if (buffer[14] & 0x80) { /* LBPME */
2370		sdkp->lbpme = 1;
2371
2372		if (buffer[14] & 0x40) /* LBPRZ */
2373			sdkp->lbprz = 1;
2374
2375		sd_config_discard(sdkp, SD_LBP_WS16);
2376	}
2377
2378	sdkp->capacity = lba + 1;
2379	return sector_size;
2380}
2381
2382static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2383						unsigned char *buffer)
2384{
2385	unsigned char cmd[16];
2386	struct scsi_sense_hdr sshdr;
2387	int sense_valid = 0;
2388	int the_result;
2389	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2390	sector_t lba;
2391	unsigned sector_size;
2392
2393	do {
2394		cmd[0] = READ_CAPACITY;
2395		memset(&cmd[1], 0, 9);
2396		memset(buffer, 0, 8);
2397
2398		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2399					buffer, 8, &sshdr,
2400					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2401
2402		if (media_not_present(sdkp, &sshdr))
2403			return -ENODEV;
2404
2405		if (the_result) {
2406			sense_valid = scsi_sense_valid(&sshdr);
2407			if (sense_valid &&
2408			    sshdr.sense_key == UNIT_ATTENTION &&
2409			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2410				/* Device reset might occur several times,
2411				 * give it one more chance */
2412				if (--reset_retries > 0)
2413					continue;
2414		}
2415		retries--;
2416
2417	} while (the_result && retries);
2418
2419	if (the_result) {
2420		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2421		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2422		return -EINVAL;
2423	}
2424
2425	sector_size = get_unaligned_be32(&buffer[4]);
2426	lba = get_unaligned_be32(&buffer[0]);
2427
2428	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2429		/* Some buggy (usb cardreader) devices return an lba of
2430		   0xffffffff when the want to report a size of 0 (with
2431		   which they really mean no media is present) */
2432		sdkp->capacity = 0;
2433		sdkp->physical_block_size = sector_size;
2434		return sector_size;
2435	}
2436
 
 
 
 
 
 
 
 
2437	sdkp->capacity = lba + 1;
2438	sdkp->physical_block_size = sector_size;
2439	return sector_size;
2440}
2441
2442static int sd_try_rc16_first(struct scsi_device *sdp)
2443{
2444	if (sdp->host->max_cmd_len < 16)
2445		return 0;
2446	if (sdp->try_rc_10_first)
2447		return 0;
2448	if (sdp->scsi_level > SCSI_SPC_2)
2449		return 1;
2450	if (scsi_device_protection(sdp))
2451		return 1;
2452	return 0;
2453}
2454
2455/*
2456 * read disk capacity
2457 */
2458static void
2459sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2460{
2461	int sector_size;
2462	struct scsi_device *sdp = sdkp->device;
2463
2464	if (sd_try_rc16_first(sdp)) {
2465		sector_size = read_capacity_16(sdkp, sdp, buffer);
2466		if (sector_size == -EOVERFLOW)
2467			goto got_data;
2468		if (sector_size == -ENODEV)
2469			return;
2470		if (sector_size < 0)
2471			sector_size = read_capacity_10(sdkp, sdp, buffer);
2472		if (sector_size < 0)
2473			return;
2474	} else {
2475		sector_size = read_capacity_10(sdkp, sdp, buffer);
2476		if (sector_size == -EOVERFLOW)
2477			goto got_data;
2478		if (sector_size < 0)
2479			return;
2480		if ((sizeof(sdkp->capacity) > 4) &&
2481		    (sdkp->capacity > 0xffffffffULL)) {
2482			int old_sector_size = sector_size;
2483			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2484					"Trying to use READ CAPACITY(16).\n");
2485			sector_size = read_capacity_16(sdkp, sdp, buffer);
2486			if (sector_size < 0) {
2487				sd_printk(KERN_NOTICE, sdkp,
2488					"Using 0xffffffff as device size\n");
2489				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2490				sector_size = old_sector_size;
2491				goto got_data;
2492			}
2493			/* Remember that READ CAPACITY(16) succeeded */
2494			sdp->try_rc_10_first = 0;
2495		}
2496	}
2497
2498	/* Some devices are known to return the total number of blocks,
2499	 * not the highest block number.  Some devices have versions
2500	 * which do this and others which do not.  Some devices we might
2501	 * suspect of doing this but we don't know for certain.
2502	 *
2503	 * If we know the reported capacity is wrong, decrement it.  If
2504	 * we can only guess, then assume the number of blocks is even
2505	 * (usually true but not always) and err on the side of lowering
2506	 * the capacity.
2507	 */
2508	if (sdp->fix_capacity ||
2509	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2510		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2511				"from its reported value: %llu\n",
2512				(unsigned long long) sdkp->capacity);
2513		--sdkp->capacity;
2514	}
2515
2516got_data:
2517	if (sector_size == 0) {
2518		sector_size = 512;
2519		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2520			  "assuming 512.\n");
2521	}
2522
2523	if (sector_size != 512 &&
2524	    sector_size != 1024 &&
2525	    sector_size != 2048 &&
2526	    sector_size != 4096) {
2527		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2528			  sector_size);
2529		/*
2530		 * The user might want to re-format the drive with
2531		 * a supported sectorsize.  Once this happens, it
2532		 * would be relatively trivial to set the thing up.
2533		 * For this reason, we leave the thing in the table.
2534		 */
2535		sdkp->capacity = 0;
2536		/*
2537		 * set a bogus sector size so the normal read/write
2538		 * logic in the block layer will eventually refuse any
2539		 * request on this device without tripping over power
2540		 * of two sector size assumptions
2541		 */
2542		sector_size = 512;
2543	}
2544	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2545	blk_queue_physical_block_size(sdp->request_queue,
2546				      sdkp->physical_block_size);
2547	sdkp->device->sector_size = sector_size;
2548
2549	if (sdkp->capacity > 0xffffffff)
2550		sdp->use_16_for_rw = 1;
2551
2552}
2553
2554/*
2555 * Print disk capacity
2556 */
2557static void
2558sd_print_capacity(struct scsi_disk *sdkp,
2559		  sector_t old_capacity)
2560{
2561	int sector_size = sdkp->device->sector_size;
2562	char cap_str_2[10], cap_str_10[10];
2563
2564	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2565		return;
2566
2567	string_get_size(sdkp->capacity, sector_size,
2568			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2569	string_get_size(sdkp->capacity, sector_size,
2570			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
 
 
 
 
 
 
 
2571
2572	sd_printk(KERN_NOTICE, sdkp,
2573		  "%llu %d-byte logical blocks: (%s/%s)\n",
2574		  (unsigned long long)sdkp->capacity,
2575		  sector_size, cap_str_10, cap_str_2);
2576
2577	if (sdkp->physical_block_size != sector_size)
2578		sd_printk(KERN_NOTICE, sdkp,
2579			  "%u-byte physical blocks\n",
2580			  sdkp->physical_block_size);
2581}
2582
2583/* called with buffer of length 512 */
2584static inline int
2585sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2586		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2587		 struct scsi_sense_hdr *sshdr)
2588{
2589	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2590			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2591			       sshdr);
2592}
2593
2594/*
2595 * read write protect setting, if possible - called only in sd_revalidate_disk()
2596 * called with buffer of length SD_BUF_SIZE
2597 */
2598static void
2599sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2600{
2601	int res;
2602	struct scsi_device *sdp = sdkp->device;
2603	struct scsi_mode_data data;
2604	int old_wp = sdkp->write_prot;
2605
2606	set_disk_ro(sdkp->disk, 0);
2607	if (sdp->skip_ms_page_3f) {
2608		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2609		return;
2610	}
2611
2612	if (sdp->use_192_bytes_for_3f) {
2613		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2614	} else {
2615		/*
2616		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2617		 * We have to start carefully: some devices hang if we ask
2618		 * for more than is available.
2619		 */
2620		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2621
2622		/*
2623		 * Second attempt: ask for page 0 When only page 0 is
2624		 * implemented, a request for page 3F may return Sense Key
2625		 * 5: Illegal Request, Sense Code 24: Invalid field in
2626		 * CDB.
2627		 */
2628		if (!scsi_status_is_good(res))
2629			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2630
2631		/*
2632		 * Third attempt: ask 255 bytes, as we did earlier.
2633		 */
2634		if (!scsi_status_is_good(res))
2635			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2636					       &data, NULL);
2637	}
2638
2639	if (!scsi_status_is_good(res)) {
2640		sd_first_printk(KERN_WARNING, sdkp,
2641			  "Test WP failed, assume Write Enabled\n");
2642	} else {
2643		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2644		set_disk_ro(sdkp->disk, sdkp->write_prot);
2645		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2646			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2647				  sdkp->write_prot ? "on" : "off");
2648			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2649		}
2650	}
2651}
2652
2653/*
2654 * sd_read_cache_type - called only from sd_revalidate_disk()
2655 * called with buffer of length SD_BUF_SIZE
2656 */
2657static void
2658sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2659{
2660	int len = 0, res;
2661	struct scsi_device *sdp = sdkp->device;
2662
2663	int dbd;
2664	int modepage;
2665	int first_len;
2666	struct scsi_mode_data data;
2667	struct scsi_sense_hdr sshdr;
2668	int old_wce = sdkp->WCE;
2669	int old_rcd = sdkp->RCD;
2670	int old_dpofua = sdkp->DPOFUA;
2671
2672
2673	if (sdkp->cache_override)
2674		return;
2675
2676	first_len = 4;
2677	if (sdp->skip_ms_page_8) {
2678		if (sdp->type == TYPE_RBC)
2679			goto defaults;
2680		else {
2681			if (sdp->skip_ms_page_3f)
2682				goto defaults;
2683			modepage = 0x3F;
2684			if (sdp->use_192_bytes_for_3f)
2685				first_len = 192;
2686			dbd = 0;
2687		}
2688	} else if (sdp->type == TYPE_RBC) {
2689		modepage = 6;
2690		dbd = 8;
2691	} else {
2692		modepage = 8;
2693		dbd = 0;
2694	}
2695
2696	/* cautiously ask */
2697	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2698			&data, &sshdr);
2699
2700	if (!scsi_status_is_good(res))
2701		goto bad_sense;
2702
2703	if (!data.header_length) {
2704		modepage = 6;
2705		first_len = 0;
2706		sd_first_printk(KERN_ERR, sdkp,
2707				"Missing header in MODE_SENSE response\n");
2708	}
2709
2710	/* that went OK, now ask for the proper length */
2711	len = data.length;
2712
2713	/*
2714	 * We're only interested in the first three bytes, actually.
2715	 * But the data cache page is defined for the first 20.
2716	 */
2717	if (len < 3)
2718		goto bad_sense;
2719	else if (len > SD_BUF_SIZE) {
2720		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2721			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2722		len = SD_BUF_SIZE;
2723	}
2724	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2725		len = 192;
2726
2727	/* Get the data */
2728	if (len > first_len)
2729		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2730				&data, &sshdr);
2731
2732	if (scsi_status_is_good(res)) {
2733		int offset = data.header_length + data.block_descriptor_length;
2734
2735		while (offset < len) {
2736			u8 page_code = buffer[offset] & 0x3F;
2737			u8 spf       = buffer[offset] & 0x40;
2738
2739			if (page_code == 8 || page_code == 6) {
2740				/* We're interested only in the first 3 bytes.
2741				 */
2742				if (len - offset <= 2) {
2743					sd_first_printk(KERN_ERR, sdkp,
2744						"Incomplete mode parameter "
2745							"data\n");
2746					goto defaults;
2747				} else {
2748					modepage = page_code;
2749					goto Page_found;
2750				}
2751			} else {
2752				/* Go to the next page */
2753				if (spf && len - offset > 3)
2754					offset += 4 + (buffer[offset+2] << 8) +
2755						buffer[offset+3];
2756				else if (!spf && len - offset > 1)
2757					offset += 2 + buffer[offset+1];
2758				else {
2759					sd_first_printk(KERN_ERR, sdkp,
2760							"Incomplete mode "
2761							"parameter data\n");
2762					goto defaults;
2763				}
2764			}
2765		}
2766
2767		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2768		goto defaults;
2769
2770	Page_found:
2771		if (modepage == 8) {
2772			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2773			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2774		} else {
2775			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2776			sdkp->RCD = 0;
2777		}
2778
2779		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2780		if (sdp->broken_fua) {
2781			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2782			sdkp->DPOFUA = 0;
2783		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2784			   !sdkp->device->use_16_for_rw) {
2785			sd_first_printk(KERN_NOTICE, sdkp,
2786				  "Uses READ/WRITE(6), disabling FUA\n");
2787			sdkp->DPOFUA = 0;
2788		}
2789
2790		/* No cache flush allowed for write protected devices */
2791		if (sdkp->WCE && sdkp->write_prot)
2792			sdkp->WCE = 0;
2793
2794		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2795		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2796			sd_printk(KERN_NOTICE, sdkp,
2797				  "Write cache: %s, read cache: %s, %s\n",
2798				  sdkp->WCE ? "enabled" : "disabled",
2799				  sdkp->RCD ? "disabled" : "enabled",
2800				  sdkp->DPOFUA ? "supports DPO and FUA"
2801				  : "doesn't support DPO or FUA");
2802
2803		return;
2804	}
2805
2806bad_sense:
2807	if (scsi_sense_valid(&sshdr) &&
2808	    sshdr.sense_key == ILLEGAL_REQUEST &&
2809	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2810		/* Invalid field in CDB */
2811		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2812	else
2813		sd_first_printk(KERN_ERR, sdkp,
2814				"Asking for cache data failed\n");
2815
2816defaults:
2817	if (sdp->wce_default_on) {
2818		sd_first_printk(KERN_NOTICE, sdkp,
2819				"Assuming drive cache: write back\n");
2820		sdkp->WCE = 1;
2821	} else {
2822		sd_first_printk(KERN_ERR, sdkp,
2823				"Assuming drive cache: write through\n");
2824		sdkp->WCE = 0;
2825	}
2826	sdkp->RCD = 0;
2827	sdkp->DPOFUA = 0;
2828}
2829
2830/*
2831 * The ATO bit indicates whether the DIF application tag is available
2832 * for use by the operating system.
2833 */
2834static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2835{
2836	int res, offset;
2837	struct scsi_device *sdp = sdkp->device;
2838	struct scsi_mode_data data;
2839	struct scsi_sense_hdr sshdr;
2840
2841	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2842		return;
2843
2844	if (sdkp->protection_type == 0)
2845		return;
2846
2847	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2848			      SD_MAX_RETRIES, &data, &sshdr);
2849
2850	if (!scsi_status_is_good(res) || !data.header_length ||
2851	    data.length < 6) {
2852		sd_first_printk(KERN_WARNING, sdkp,
2853			  "getting Control mode page failed, assume no ATO\n");
2854
2855		if (scsi_sense_valid(&sshdr))
2856			sd_print_sense_hdr(sdkp, &sshdr);
2857
2858		return;
2859	}
2860
2861	offset = data.header_length + data.block_descriptor_length;
2862
2863	if ((buffer[offset] & 0x3f) != 0x0a) {
2864		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2865		return;
2866	}
2867
2868	if ((buffer[offset + 5] & 0x80) == 0)
2869		return;
2870
2871	sdkp->ATO = 1;
2872
2873	return;
2874}
2875
2876/**
2877 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2878 * @sdkp: disk to query
2879 */
2880static void sd_read_block_limits(struct scsi_disk *sdkp)
2881{
2882	unsigned int sector_sz = sdkp->device->sector_size;
2883	const int vpd_len = 64;
2884	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2885
2886	if (!buffer ||
2887	    /* Block Limits VPD */
2888	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2889		goto out;
2890
2891	blk_queue_io_min(sdkp->disk->queue,
2892			 get_unaligned_be16(&buffer[6]) * sector_sz);
2893
2894	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2895	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2896
2897	if (buffer[3] == 0x3c) {
2898		unsigned int lba_count, desc_count;
2899
2900		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2901
2902		if (!sdkp->lbpme)
2903			goto out;
2904
2905		lba_count = get_unaligned_be32(&buffer[20]);
2906		desc_count = get_unaligned_be32(&buffer[24]);
2907
2908		if (lba_count && desc_count)
2909			sdkp->max_unmap_blocks = lba_count;
2910
2911		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2912
2913		if (buffer[32] & 0x80)
2914			sdkp->unmap_alignment =
2915				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2916
2917		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2918
2919			if (sdkp->max_unmap_blocks)
2920				sd_config_discard(sdkp, SD_LBP_UNMAP);
2921			else
2922				sd_config_discard(sdkp, SD_LBP_WS16);
2923
2924		} else {	/* LBP VPD page tells us what to use */
2925			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2926				sd_config_discard(sdkp, SD_LBP_UNMAP);
2927			else if (sdkp->lbpws)
2928				sd_config_discard(sdkp, SD_LBP_WS16);
2929			else if (sdkp->lbpws10)
2930				sd_config_discard(sdkp, SD_LBP_WS10);
 
 
2931			else
2932				sd_config_discard(sdkp, SD_LBP_DISABLE);
2933		}
2934	}
2935
2936 out:
2937	kfree(buffer);
2938}
2939
2940/**
2941 * sd_read_block_characteristics - Query block dev. characteristics
2942 * @sdkp: disk to query
2943 */
2944static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2945{
2946	struct request_queue *q = sdkp->disk->queue;
2947	unsigned char *buffer;
2948	u16 rot;
2949	const int vpd_len = 64;
2950
2951	buffer = kmalloc(vpd_len, GFP_KERNEL);
2952
2953	if (!buffer ||
2954	    /* Block Device Characteristics VPD */
2955	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2956		goto out;
2957
2958	rot = get_unaligned_be16(&buffer[4]);
2959
2960	if (rot == 1) {
2961		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2962		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2963	}
2964
2965	if (sdkp->device->type == TYPE_ZBC) {
2966		/* Host-managed */
2967		blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
2968	} else {
2969		sdkp->zoned = (buffer[8] >> 4) & 3;
2970		if (sdkp->zoned == 1) {
2971			/* Host-aware */
2972			blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
2973		} else {
2974			/* Regular disk or drive managed disk */
2975			blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
2976		}
 
 
2977	}
2978
2979	if (!sdkp->first_scan)
2980		goto out;
2981
2982	if (blk_queue_is_zoned(q)) {
2983		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2984		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2985	} else {
2986		if (sdkp->zoned == 1)
2987			sd_printk(KERN_NOTICE, sdkp,
2988				  "Host-aware SMR disk used as regular disk\n");
2989		else if (sdkp->zoned == 2)
2990			sd_printk(KERN_NOTICE, sdkp,
2991				  "Drive-managed SMR disk\n");
2992	}
2993
2994 out:
2995	kfree(buffer);
2996}
2997
2998/**
2999 * sd_read_block_provisioning - Query provisioning VPD page
3000 * @sdkp: disk to query
3001 */
3002static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3003{
3004	unsigned char *buffer;
3005	const int vpd_len = 8;
3006
3007	if (sdkp->lbpme == 0)
3008		return;
3009
3010	buffer = kmalloc(vpd_len, GFP_KERNEL);
3011
3012	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3013		goto out;
3014
3015	sdkp->lbpvpd	= 1;
3016	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3017	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3018	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3019
3020 out:
3021	kfree(buffer);
3022}
3023
3024static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3025{
3026	struct scsi_device *sdev = sdkp->device;
3027
3028	if (sdev->host->no_write_same) {
3029		sdev->no_write_same = 1;
3030
3031		return;
3032	}
3033
3034	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3035		/* too large values might cause issues with arcmsr */
3036		int vpd_buf_len = 64;
3037
3038		sdev->no_report_opcodes = 1;
3039
3040		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3041		 * CODES is unsupported and the device has an ATA
3042		 * Information VPD page (SAT).
3043		 */
3044		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3045			sdev->no_write_same = 1;
3046	}
3047
3048	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3049		sdkp->ws16 = 1;
3050
3051	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3052		sdkp->ws10 = 1;
3053}
3054
3055static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3056{
3057	struct scsi_device *sdev = sdkp->device;
3058
3059	if (!sdev->security_supported)
3060		return;
3061
3062	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3063			SECURITY_PROTOCOL_IN) == 1 &&
3064	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3065			SECURITY_PROTOCOL_OUT) == 1)
3066		sdkp->security = 1;
3067}
3068
3069/*
3070 * Determine the device's preferred I/O size for reads and writes
3071 * unless the reported value is unreasonably small, large, not a
3072 * multiple of the physical block size, or simply garbage.
3073 */
3074static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3075				      unsigned int dev_max)
3076{
3077	struct scsi_device *sdp = sdkp->device;
3078	unsigned int opt_xfer_bytes =
3079		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3080
3081	if (sdkp->opt_xfer_blocks == 0)
3082		return false;
3083
3084	if (sdkp->opt_xfer_blocks > dev_max) {
3085		sd_first_printk(KERN_WARNING, sdkp,
3086				"Optimal transfer size %u logical blocks " \
3087				"> dev_max (%u logical blocks)\n",
3088				sdkp->opt_xfer_blocks, dev_max);
3089		return false;
3090	}
3091
3092	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3093		sd_first_printk(KERN_WARNING, sdkp,
3094				"Optimal transfer size %u logical blocks " \
3095				"> sd driver limit (%u logical blocks)\n",
3096				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3097		return false;
3098	}
3099
3100	if (opt_xfer_bytes < PAGE_SIZE) {
3101		sd_first_printk(KERN_WARNING, sdkp,
3102				"Optimal transfer size %u bytes < " \
3103				"PAGE_SIZE (%u bytes)\n",
3104				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3105		return false;
3106	}
3107
3108	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3109		sd_first_printk(KERN_WARNING, sdkp,
3110				"Optimal transfer size %u bytes not a " \
3111				"multiple of physical block size (%u bytes)\n",
3112				opt_xfer_bytes, sdkp->physical_block_size);
3113		return false;
3114	}
3115
3116	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3117			opt_xfer_bytes);
3118	return true;
3119}
3120
3121/**
3122 *	sd_revalidate_disk - called the first time a new disk is seen,
3123 *	performs disk spin up, read_capacity, etc.
3124 *	@disk: struct gendisk we care about
3125 **/
3126static int sd_revalidate_disk(struct gendisk *disk)
3127{
3128	struct scsi_disk *sdkp = scsi_disk(disk);
3129	struct scsi_device *sdp = sdkp->device;
3130	struct request_queue *q = sdkp->disk->queue;
3131	sector_t old_capacity = sdkp->capacity;
3132	unsigned char *buffer;
3133	unsigned int dev_max, rw_max;
3134
3135	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3136				      "sd_revalidate_disk\n"));
3137
3138	/*
3139	 * If the device is offline, don't try and read capacity or any
3140	 * of the other niceties.
3141	 */
3142	if (!scsi_device_online(sdp))
3143		goto out;
3144
3145	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3146	if (!buffer) {
3147		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3148			  "allocation failure.\n");
3149		goto out;
3150	}
3151
3152	sd_spinup_disk(sdkp);
3153
3154	/*
3155	 * Without media there is no reason to ask; moreover, some devices
3156	 * react badly if we do.
3157	 */
3158	if (sdkp->media_present) {
3159		sd_read_capacity(sdkp, buffer);
3160
3161		/*
3162		 * set the default to rotational.  All non-rotational devices
3163		 * support the block characteristics VPD page, which will
3164		 * cause this to be updated correctly and any device which
3165		 * doesn't support it should be treated as rotational.
3166		 */
3167		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3168		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3169
3170		if (scsi_device_supports_vpd(sdp)) {
3171			sd_read_block_provisioning(sdkp);
3172			sd_read_block_limits(sdkp);
3173			sd_read_block_characteristics(sdkp);
3174			sd_zbc_read_zones(sdkp, buffer);
3175		}
3176
3177		sd_print_capacity(sdkp, old_capacity);
3178
3179		sd_read_write_protect_flag(sdkp, buffer);
3180		sd_read_cache_type(sdkp, buffer);
3181		sd_read_app_tag_own(sdkp, buffer);
3182		sd_read_write_same(sdkp, buffer);
3183		sd_read_security(sdkp, buffer);
3184	}
3185
 
 
3186	/*
3187	 * We now have all cache related info, determine how we deal
3188	 * with flush requests.
3189	 */
3190	sd_set_flush_flag(sdkp);
3191
3192	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3193	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3194
3195	/* Some devices report a maximum block count for READ/WRITE requests. */
3196	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3197	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3198
3199	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
 
 
 
 
 
 
 
 
3200		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3201		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3202	} else {
3203		q->limits.io_opt = 0;
3204		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3205				      (sector_t)BLK_DEF_MAX_SECTORS);
3206	}
3207
3208	/* Do not exceed controller limit */
3209	rw_max = min(rw_max, queue_max_hw_sectors(q));
3210
3211	/*
3212	 * Only update max_sectors if previously unset or if the current value
3213	 * exceeds the capabilities of the hardware.
3214	 */
3215	if (sdkp->first_scan ||
3216	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3217	    q->limits.max_sectors > q->limits.max_hw_sectors)
3218		q->limits.max_sectors = rw_max;
3219
3220	sdkp->first_scan = 0;
3221
3222	set_capacity_revalidate_and_notify(disk,
3223		logical_to_sectors(sdp, sdkp->capacity), false);
3224	sd_config_write_same(sdkp);
3225	kfree(buffer);
3226
3227	/*
3228	 * For a zoned drive, revalidating the zones can be done only once
3229	 * the gendisk capacity is set. So if this fails, set back the gendisk
3230	 * capacity to 0.
3231	 */
3232	if (sd_zbc_revalidate_zones(sdkp))
3233		set_capacity_revalidate_and_notify(disk, 0, false);
3234
3235 out:
3236	return 0;
3237}
3238
3239/**
3240 *	sd_unlock_native_capacity - unlock native capacity
3241 *	@disk: struct gendisk to set capacity for
3242 *
3243 *	Block layer calls this function if it detects that partitions
3244 *	on @disk reach beyond the end of the device.  If the SCSI host
3245 *	implements ->unlock_native_capacity() method, it's invoked to
3246 *	give it a chance to adjust the device capacity.
3247 *
3248 *	CONTEXT:
3249 *	Defined by block layer.  Might sleep.
3250 */
3251static void sd_unlock_native_capacity(struct gendisk *disk)
3252{
3253	struct scsi_device *sdev = scsi_disk(disk)->device;
3254
3255	if (sdev->host->hostt->unlock_native_capacity)
3256		sdev->host->hostt->unlock_native_capacity(sdev);
3257}
3258
3259/**
3260 *	sd_format_disk_name - format disk name
3261 *	@prefix: name prefix - ie. "sd" for SCSI disks
3262 *	@index: index of the disk to format name for
3263 *	@buf: output buffer
3264 *	@buflen: length of the output buffer
3265 *
3266 *	SCSI disk names starts at sda.  The 26th device is sdz and the
3267 *	27th is sdaa.  The last one for two lettered suffix is sdzz
3268 *	which is followed by sdaaa.
3269 *
3270 *	This is basically 26 base counting with one extra 'nil' entry
3271 *	at the beginning from the second digit on and can be
3272 *	determined using similar method as 26 base conversion with the
3273 *	index shifted -1 after each digit is computed.
3274 *
3275 *	CONTEXT:
3276 *	Don't care.
3277 *
3278 *	RETURNS:
3279 *	0 on success, -errno on failure.
3280 */
3281static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3282{
3283	const int base = 'z' - 'a' + 1;
3284	char *begin = buf + strlen(prefix);
3285	char *end = buf + buflen;
3286	char *p;
3287	int unit;
3288
3289	p = end - 1;
3290	*p = '\0';
3291	unit = base;
3292	do {
3293		if (p == begin)
3294			return -EINVAL;
3295		*--p = 'a' + (index % unit);
3296		index = (index / unit) - 1;
3297	} while (index >= 0);
3298
3299	memmove(begin, p, end - p);
3300	memcpy(buf, prefix, strlen(prefix));
3301
3302	return 0;
3303}
3304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3305/**
3306 *	sd_probe - called during driver initialization and whenever a
3307 *	new scsi device is attached to the system. It is called once
3308 *	for each scsi device (not just disks) present.
3309 *	@dev: pointer to device object
3310 *
3311 *	Returns 0 if successful (or not interested in this scsi device 
3312 *	(e.g. scanner)); 1 when there is an error.
3313 *
3314 *	Note: this function is invoked from the scsi mid-level.
3315 *	This function sets up the mapping between a given 
3316 *	<host,channel,id,lun> (found in sdp) and new device name 
3317 *	(e.g. /dev/sda). More precisely it is the block device major 
3318 *	and minor number that is chosen here.
3319 *
3320 *	Assume sd_probe is not re-entrant (for time being)
3321 *	Also think about sd_probe() and sd_remove() running coincidentally.
3322 **/
3323static int sd_probe(struct device *dev)
3324{
3325	struct scsi_device *sdp = to_scsi_device(dev);
3326	struct scsi_disk *sdkp;
3327	struct gendisk *gd;
3328	int index;
3329	int error;
3330
3331	scsi_autopm_get_device(sdp);
3332	error = -ENODEV;
3333	if (sdp->type != TYPE_DISK &&
3334	    sdp->type != TYPE_ZBC &&
3335	    sdp->type != TYPE_MOD &&
3336	    sdp->type != TYPE_RBC)
3337		goto out;
3338
3339#ifndef CONFIG_BLK_DEV_ZONED
3340	if (sdp->type == TYPE_ZBC)
3341		goto out;
3342#endif
3343	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3344					"sd_probe\n"));
3345
3346	error = -ENOMEM;
3347	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3348	if (!sdkp)
3349		goto out;
3350
3351	gd = alloc_disk(SD_MINORS);
3352	if (!gd)
3353		goto out_free;
3354
3355	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3356	if (index < 0) {
 
 
 
 
 
 
 
 
3357		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3358		goto out_put;
3359	}
3360
3361	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3362	if (error) {
3363		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3364		goto out_free_index;
3365	}
3366
3367	sdkp->device = sdp;
3368	sdkp->driver = &sd_template;
3369	sdkp->disk = gd;
3370	sdkp->index = index;
3371	atomic_set(&sdkp->openers, 0);
3372	atomic_set(&sdkp->device->ioerr_cnt, 0);
3373
3374	if (!sdp->request_queue->rq_timeout) {
3375		if (sdp->type != TYPE_MOD)
3376			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3377		else
3378			blk_queue_rq_timeout(sdp->request_queue,
3379					     SD_MOD_TIMEOUT);
3380	}
3381
3382	device_initialize(&sdkp->dev);
3383	sdkp->dev.parent = dev;
3384	sdkp->dev.class = &sd_disk_class;
3385	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3386
3387	error = device_add(&sdkp->dev);
3388	if (error)
3389		goto out_free_index;
3390
3391	get_device(dev);
3392	dev_set_drvdata(dev, sdkp);
3393
3394	gd->major = sd_major((index & 0xf0) >> 4);
3395	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3396
3397	gd->fops = &sd_fops;
3398	gd->private_data = &sdkp->driver;
3399	gd->queue = sdkp->device->request_queue;
3400
3401	/* defaults, until the device tells us otherwise */
3402	sdp->sector_size = 512;
3403	sdkp->capacity = 0;
3404	sdkp->media_present = 1;
3405	sdkp->write_prot = 0;
3406	sdkp->cache_override = 0;
3407	sdkp->WCE = 0;
3408	sdkp->RCD = 0;
3409	sdkp->ATO = 0;
3410	sdkp->first_scan = 1;
3411	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3412
3413	sd_revalidate_disk(gd);
3414
3415	gd->flags = GENHD_FL_EXT_DEVT;
3416	if (sdp->removable) {
3417		gd->flags |= GENHD_FL_REMOVABLE;
3418		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3419		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3420	}
3421
3422	blk_pm_runtime_init(sdp->request_queue, dev);
3423	if (sdp->rpm_autosuspend) {
3424		pm_runtime_set_autosuspend_delay(dev,
3425			sdp->host->hostt->rpm_autosuspend_delay);
3426	}
3427	device_add_disk(dev, gd, NULL);
3428	if (sdkp->capacity)
3429		sd_dif_config_host(sdkp);
3430
3431	sd_revalidate_disk(gd);
3432
3433	if (sdkp->security) {
3434		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3435		if (sdkp->opal_dev)
3436			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3437	}
3438
3439	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3440		  sdp->removable ? "removable " : "");
3441	scsi_autopm_put_device(sdp);
3442
3443	return 0;
3444
3445 out_free_index:
3446	ida_free(&sd_index_ida, index);
 
 
3447 out_put:
3448	put_disk(gd);
3449 out_free:
3450	sd_zbc_release_disk(sdkp);
3451	kfree(sdkp);
3452 out:
3453	scsi_autopm_put_device(sdp);
3454	return error;
3455}
3456
3457/**
3458 *	sd_remove - called whenever a scsi disk (previously recognized by
3459 *	sd_probe) is detached from the system. It is called (potentially
3460 *	multiple times) during sd module unload.
3461 *	@dev: pointer to device object
3462 *
3463 *	Note: this function is invoked from the scsi mid-level.
3464 *	This function potentially frees up a device name (e.g. /dev/sdc)
3465 *	that could be re-used by a subsequent sd_probe().
3466 *	This function is not called when the built-in sd driver is "exit-ed".
3467 **/
3468static int sd_remove(struct device *dev)
3469{
3470	struct scsi_disk *sdkp;
3471	dev_t devt;
3472
3473	sdkp = dev_get_drvdata(dev);
3474	devt = disk_devt(sdkp->disk);
3475	scsi_autopm_get_device(sdkp->device);
3476
3477	async_synchronize_full_domain(&scsi_sd_pm_domain);
 
3478	device_del(&sdkp->dev);
3479	del_gendisk(sdkp->disk);
3480	sd_shutdown(dev);
3481
3482	free_opal_dev(sdkp->opal_dev);
3483
3484	blk_register_region(devt, SD_MINORS, NULL,
3485			    sd_default_probe, NULL, NULL);
3486
3487	mutex_lock(&sd_ref_mutex);
3488	dev_set_drvdata(dev, NULL);
3489	put_device(&sdkp->dev);
3490	mutex_unlock(&sd_ref_mutex);
3491
3492	return 0;
3493}
3494
3495/**
3496 *	scsi_disk_release - Called to free the scsi_disk structure
3497 *	@dev: pointer to embedded class device
3498 *
3499 *	sd_ref_mutex must be held entering this routine.  Because it is
3500 *	called on last put, you should always use the scsi_disk_get()
3501 *	scsi_disk_put() helpers which manipulate the semaphore directly
3502 *	and never do a direct put_device.
3503 **/
3504static void scsi_disk_release(struct device *dev)
3505{
3506	struct scsi_disk *sdkp = to_scsi_disk(dev);
3507	struct gendisk *disk = sdkp->disk;
3508	struct request_queue *q = disk->queue;
3509
3510	ida_free(&sd_index_ida, sdkp->index);
3511
3512	/*
3513	 * Wait until all requests that are in progress have completed.
3514	 * This is necessary to avoid that e.g. scsi_end_request() crashes
3515	 * due to clearing the disk->private_data pointer. Wait from inside
3516	 * scsi_disk_release() instead of from sd_release() to avoid that
3517	 * freezing and unfreezing the request queue affects user space I/O
3518	 * in case multiple processes open a /dev/sd... node concurrently.
3519	 */
3520	blk_mq_freeze_queue(q);
3521	blk_mq_unfreeze_queue(q);
3522
3523	disk->private_data = NULL;
3524	put_disk(disk);
3525	put_device(&sdkp->device->sdev_gendev);
3526
3527	sd_zbc_release_disk(sdkp);
3528
3529	kfree(sdkp);
3530}
3531
3532static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3533{
3534	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3535	struct scsi_sense_hdr sshdr;
3536	struct scsi_device *sdp = sdkp->device;
3537	int res;
3538
3539	if (start)
3540		cmd[4] |= 1;	/* START */
3541
3542	if (sdp->start_stop_pwr_cond)
3543		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3544
3545	if (!scsi_device_online(sdp))
3546		return -ENODEV;
3547
3548	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3549			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3550	if (res) {
3551		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3552		if (driver_byte(res) == DRIVER_SENSE)
3553			sd_print_sense_hdr(sdkp, &sshdr);
3554		if (scsi_sense_valid(&sshdr) &&
3555			/* 0x3a is medium not present */
3556			sshdr.asc == 0x3a)
3557			res = 0;
3558	}
3559
3560	/* SCSI error codes must not go to the generic layer */
3561	if (res)
3562		return -EIO;
3563
3564	return 0;
3565}
3566
3567/*
3568 * Send a SYNCHRONIZE CACHE instruction down to the device through
3569 * the normal SCSI command structure.  Wait for the command to
3570 * complete.
3571 */
3572static void sd_shutdown(struct device *dev)
3573{
3574	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3575
3576	if (!sdkp)
3577		return;         /* this can happen */
3578
3579	if (pm_runtime_suspended(dev))
3580		return;
3581
3582	if (sdkp->WCE && sdkp->media_present) {
3583		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3584		sd_sync_cache(sdkp, NULL);
3585	}
3586
3587	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3588		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3589		sd_start_stop_device(sdkp, 0);
3590	}
3591}
3592
3593static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3594{
3595	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3596	struct scsi_sense_hdr sshdr;
3597	int ret = 0;
3598
3599	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3600		return 0;
3601
3602	if (sdkp->WCE && sdkp->media_present) {
3603		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3604		ret = sd_sync_cache(sdkp, &sshdr);
3605
3606		if (ret) {
3607			/* ignore OFFLINE device */
3608			if (ret == -ENODEV)
3609				return 0;
3610
3611			if (!scsi_sense_valid(&sshdr) ||
3612			    sshdr.sense_key != ILLEGAL_REQUEST)
3613				return ret;
3614
3615			/*
3616			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3617			 * doesn't support sync. There's not much to do and
3618			 * suspend shouldn't fail.
3619			 */
3620			ret = 0;
3621		}
3622	}
3623
3624	if (sdkp->device->manage_start_stop) {
3625		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3626		/* an error is not worth aborting a system sleep */
3627		ret = sd_start_stop_device(sdkp, 0);
3628		if (ignore_stop_errors)
3629			ret = 0;
3630	}
3631
 
3632	return ret;
3633}
3634
3635static int sd_suspend_system(struct device *dev)
3636{
3637	return sd_suspend_common(dev, true);
3638}
3639
3640static int sd_suspend_runtime(struct device *dev)
3641{
3642	return sd_suspend_common(dev, false);
3643}
3644
3645static int sd_resume(struct device *dev)
3646{
3647	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3648	int ret;
3649
3650	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3651		return 0;
3652
3653	if (!sdkp->device->manage_start_stop)
3654		return 0;
3655
3656	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3657	ret = sd_start_stop_device(sdkp, 1);
3658	if (!ret)
3659		opal_unlock_from_suspend(sdkp->opal_dev);
3660	return ret;
3661}
3662
3663/**
3664 *	init_sd - entry point for this driver (both when built in or when
3665 *	a module).
3666 *
3667 *	Note: this function registers this driver with the scsi mid-level.
3668 **/
3669static int __init init_sd(void)
3670{
3671	int majors = 0, i, err;
3672
3673	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3674
3675	for (i = 0; i < SD_MAJORS; i++) {
3676		if (register_blkdev(sd_major(i), "sd") != 0)
3677			continue;
3678		majors++;
3679		blk_register_region(sd_major(i), SD_MINORS, NULL,
3680				    sd_default_probe, NULL, NULL);
3681	}
3682
3683	if (!majors)
3684		return -ENODEV;
3685
3686	err = class_register(&sd_disk_class);
3687	if (err)
3688		goto err_out;
3689
3690	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3691					 0, 0, NULL);
3692	if (!sd_cdb_cache) {
3693		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3694		err = -ENOMEM;
3695		goto err_out_class;
3696	}
3697
3698	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3699	if (!sd_cdb_pool) {
3700		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3701		err = -ENOMEM;
3702		goto err_out_cache;
3703	}
3704
3705	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3706	if (!sd_page_pool) {
3707		printk(KERN_ERR "sd: can't init discard page pool\n");
3708		err = -ENOMEM;
3709		goto err_out_ppool;
3710	}
3711
3712	err = scsi_register_driver(&sd_template.gendrv);
3713	if (err)
3714		goto err_out_driver;
3715
3716	return 0;
3717
3718err_out_driver:
3719	mempool_destroy(sd_page_pool);
3720
3721err_out_ppool:
3722	mempool_destroy(sd_cdb_pool);
3723
3724err_out_cache:
3725	kmem_cache_destroy(sd_cdb_cache);
3726
3727err_out_class:
3728	class_unregister(&sd_disk_class);
3729err_out:
3730	for (i = 0; i < SD_MAJORS; i++)
3731		unregister_blkdev(sd_major(i), "sd");
3732	return err;
3733}
3734
3735/**
3736 *	exit_sd - exit point for this driver (when it is a module).
3737 *
3738 *	Note: this function unregisters this driver from the scsi mid-level.
3739 **/
3740static void __exit exit_sd(void)
3741{
3742	int i;
3743
3744	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3745
3746	scsi_unregister_driver(&sd_template.gendrv);
3747	mempool_destroy(sd_cdb_pool);
3748	mempool_destroy(sd_page_pool);
3749	kmem_cache_destroy(sd_cdb_cache);
3750
3751	class_unregister(&sd_disk_class);
3752
3753	for (i = 0; i < SD_MAJORS; i++) {
3754		blk_unregister_region(sd_major(i), SD_MINORS);
3755		unregister_blkdev(sd_major(i), "sd");
3756	}
3757}
3758
3759module_init(init_sd);
3760module_exit(exit_sd);
3761
3762void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
 
3763{
3764	scsi_print_sense_hdr(sdkp->device,
3765			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3766}
3767
3768void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
 
3769{
3770	const char *hb_string = scsi_hostbyte_string(result);
3771	const char *db_string = scsi_driverbyte_string(result);
3772
3773	if (hb_string || db_string)
3774		sd_printk(KERN_INFO, sdkp,
3775			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3776			  hb_string ? hb_string : "invalid",
3777			  db_string ? db_string : "invalid");
3778	else
3779		sd_printk(KERN_INFO, sdkp,
3780			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3781			  msg, host_byte(result), driver_byte(result));
3782}