Loading...
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3
4 Copyright (C) 2014 Intel Corporation
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
9
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
22*/
23
24#include <net/bluetooth/bluetooth.h>
25#include <net/bluetooth/hci_core.h>
26#include <net/bluetooth/mgmt.h>
27
28#include "smp.h"
29#include "hci_request.h"
30
31#define HCI_REQ_DONE 0
32#define HCI_REQ_PEND 1
33#define HCI_REQ_CANCELED 2
34
35void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
36{
37 skb_queue_head_init(&req->cmd_q);
38 req->hdev = hdev;
39 req->err = 0;
40}
41
42static int req_run(struct hci_request *req, hci_req_complete_t complete,
43 hci_req_complete_skb_t complete_skb)
44{
45 struct hci_dev *hdev = req->hdev;
46 struct sk_buff *skb;
47 unsigned long flags;
48
49 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
50
51 /* If an error occurred during request building, remove all HCI
52 * commands queued on the HCI request queue.
53 */
54 if (req->err) {
55 skb_queue_purge(&req->cmd_q);
56 return req->err;
57 }
58
59 /* Do not allow empty requests */
60 if (skb_queue_empty(&req->cmd_q))
61 return -ENODATA;
62
63 skb = skb_peek_tail(&req->cmd_q);
64 if (complete) {
65 bt_cb(skb)->hci.req_complete = complete;
66 } else if (complete_skb) {
67 bt_cb(skb)->hci.req_complete_skb = complete_skb;
68 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
69 }
70
71 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
72 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
73 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
74
75 queue_work(hdev->workqueue, &hdev->cmd_work);
76
77 return 0;
78}
79
80int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
81{
82 return req_run(req, complete, NULL);
83}
84
85int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
86{
87 return req_run(req, NULL, complete);
88}
89
90static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
91 struct sk_buff *skb)
92{
93 BT_DBG("%s result 0x%2.2x", hdev->name, result);
94
95 if (hdev->req_status == HCI_REQ_PEND) {
96 hdev->req_result = result;
97 hdev->req_status = HCI_REQ_DONE;
98 if (skb)
99 hdev->req_skb = skb_get(skb);
100 wake_up_interruptible(&hdev->req_wait_q);
101 }
102}
103
104void hci_req_sync_cancel(struct hci_dev *hdev, int err)
105{
106 BT_DBG("%s err 0x%2.2x", hdev->name, err);
107
108 if (hdev->req_status == HCI_REQ_PEND) {
109 hdev->req_result = err;
110 hdev->req_status = HCI_REQ_CANCELED;
111 wake_up_interruptible(&hdev->req_wait_q);
112 }
113}
114
115struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
116 const void *param, u8 event, u32 timeout)
117{
118 DECLARE_WAITQUEUE(wait, current);
119 struct hci_request req;
120 struct sk_buff *skb;
121 int err = 0;
122
123 BT_DBG("%s", hdev->name);
124
125 hci_req_init(&req, hdev);
126
127 hci_req_add_ev(&req, opcode, plen, param, event);
128
129 hdev->req_status = HCI_REQ_PEND;
130
131 add_wait_queue(&hdev->req_wait_q, &wait);
132 set_current_state(TASK_INTERRUPTIBLE);
133
134 err = hci_req_run_skb(&req, hci_req_sync_complete);
135 if (err < 0) {
136 remove_wait_queue(&hdev->req_wait_q, &wait);
137 set_current_state(TASK_RUNNING);
138 return ERR_PTR(err);
139 }
140
141 schedule_timeout(timeout);
142
143 remove_wait_queue(&hdev->req_wait_q, &wait);
144
145 if (signal_pending(current))
146 return ERR_PTR(-EINTR);
147
148 switch (hdev->req_status) {
149 case HCI_REQ_DONE:
150 err = -bt_to_errno(hdev->req_result);
151 break;
152
153 case HCI_REQ_CANCELED:
154 err = -hdev->req_result;
155 break;
156
157 default:
158 err = -ETIMEDOUT;
159 break;
160 }
161
162 hdev->req_status = hdev->req_result = 0;
163 skb = hdev->req_skb;
164 hdev->req_skb = NULL;
165
166 BT_DBG("%s end: err %d", hdev->name, err);
167
168 if (err < 0) {
169 kfree_skb(skb);
170 return ERR_PTR(err);
171 }
172
173 if (!skb)
174 return ERR_PTR(-ENODATA);
175
176 return skb;
177}
178EXPORT_SYMBOL(__hci_cmd_sync_ev);
179
180struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
181 const void *param, u32 timeout)
182{
183 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
184}
185EXPORT_SYMBOL(__hci_cmd_sync);
186
187/* Execute request and wait for completion. */
188int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
189 unsigned long opt),
190 unsigned long opt, u32 timeout, u8 *hci_status)
191{
192 struct hci_request req;
193 DECLARE_WAITQUEUE(wait, current);
194 int err = 0;
195
196 BT_DBG("%s start", hdev->name);
197
198 hci_req_init(&req, hdev);
199
200 hdev->req_status = HCI_REQ_PEND;
201
202 err = func(&req, opt);
203 if (err) {
204 if (hci_status)
205 *hci_status = HCI_ERROR_UNSPECIFIED;
206 return err;
207 }
208
209 add_wait_queue(&hdev->req_wait_q, &wait);
210 set_current_state(TASK_INTERRUPTIBLE);
211
212 err = hci_req_run_skb(&req, hci_req_sync_complete);
213 if (err < 0) {
214 hdev->req_status = 0;
215
216 remove_wait_queue(&hdev->req_wait_q, &wait);
217 set_current_state(TASK_RUNNING);
218
219 /* ENODATA means the HCI request command queue is empty.
220 * This can happen when a request with conditionals doesn't
221 * trigger any commands to be sent. This is normal behavior
222 * and should not trigger an error return.
223 */
224 if (err == -ENODATA) {
225 if (hci_status)
226 *hci_status = 0;
227 return 0;
228 }
229
230 if (hci_status)
231 *hci_status = HCI_ERROR_UNSPECIFIED;
232
233 return err;
234 }
235
236 schedule_timeout(timeout);
237
238 remove_wait_queue(&hdev->req_wait_q, &wait);
239
240 if (signal_pending(current))
241 return -EINTR;
242
243 switch (hdev->req_status) {
244 case HCI_REQ_DONE:
245 err = -bt_to_errno(hdev->req_result);
246 if (hci_status)
247 *hci_status = hdev->req_result;
248 break;
249
250 case HCI_REQ_CANCELED:
251 err = -hdev->req_result;
252 if (hci_status)
253 *hci_status = HCI_ERROR_UNSPECIFIED;
254 break;
255
256 default:
257 err = -ETIMEDOUT;
258 if (hci_status)
259 *hci_status = HCI_ERROR_UNSPECIFIED;
260 break;
261 }
262
263 kfree_skb(hdev->req_skb);
264 hdev->req_skb = NULL;
265 hdev->req_status = hdev->req_result = 0;
266
267 BT_DBG("%s end: err %d", hdev->name, err);
268
269 return err;
270}
271
272int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
273 unsigned long opt),
274 unsigned long opt, u32 timeout, u8 *hci_status)
275{
276 int ret;
277
278 if (!test_bit(HCI_UP, &hdev->flags))
279 return -ENETDOWN;
280
281 /* Serialize all requests */
282 hci_req_sync_lock(hdev);
283 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
284 hci_req_sync_unlock(hdev);
285
286 return ret;
287}
288
289struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
290 const void *param)
291{
292 int len = HCI_COMMAND_HDR_SIZE + plen;
293 struct hci_command_hdr *hdr;
294 struct sk_buff *skb;
295
296 skb = bt_skb_alloc(len, GFP_ATOMIC);
297 if (!skb)
298 return NULL;
299
300 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
301 hdr->opcode = cpu_to_le16(opcode);
302 hdr->plen = plen;
303
304 if (plen)
305 memcpy(skb_put(skb, plen), param, plen);
306
307 BT_DBG("skb len %d", skb->len);
308
309 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
310 hci_skb_opcode(skb) = opcode;
311
312 return skb;
313}
314
315/* Queue a command to an asynchronous HCI request */
316void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
317 const void *param, u8 event)
318{
319 struct hci_dev *hdev = req->hdev;
320 struct sk_buff *skb;
321
322 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
323
324 /* If an error occurred during request building, there is no point in
325 * queueing the HCI command. We can simply return.
326 */
327 if (req->err)
328 return;
329
330 skb = hci_prepare_cmd(hdev, opcode, plen, param);
331 if (!skb) {
332 BT_ERR("%s no memory for command (opcode 0x%4.4x)",
333 hdev->name, opcode);
334 req->err = -ENOMEM;
335 return;
336 }
337
338 if (skb_queue_empty(&req->cmd_q))
339 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
340
341 bt_cb(skb)->hci.req_event = event;
342
343 skb_queue_tail(&req->cmd_q, skb);
344}
345
346void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
347 const void *param)
348{
349 hci_req_add_ev(req, opcode, plen, param, 0);
350}
351
352void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
353{
354 struct hci_dev *hdev = req->hdev;
355 struct hci_cp_write_page_scan_activity acp;
356 u8 type;
357
358 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
359 return;
360
361 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
362 return;
363
364 if (enable) {
365 type = PAGE_SCAN_TYPE_INTERLACED;
366
367 /* 160 msec page scan interval */
368 acp.interval = cpu_to_le16(0x0100);
369 } else {
370 type = PAGE_SCAN_TYPE_STANDARD; /* default */
371
372 /* default 1.28 sec page scan */
373 acp.interval = cpu_to_le16(0x0800);
374 }
375
376 acp.window = cpu_to_le16(0x0012);
377
378 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
379 __cpu_to_le16(hdev->page_scan_window) != acp.window)
380 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
381 sizeof(acp), &acp);
382
383 if (hdev->page_scan_type != type)
384 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
385}
386
387/* This function controls the background scanning based on hdev->pend_le_conns
388 * list. If there are pending LE connection we start the background scanning,
389 * otherwise we stop it.
390 *
391 * This function requires the caller holds hdev->lock.
392 */
393static void __hci_update_background_scan(struct hci_request *req)
394{
395 struct hci_dev *hdev = req->hdev;
396
397 if (!test_bit(HCI_UP, &hdev->flags) ||
398 test_bit(HCI_INIT, &hdev->flags) ||
399 hci_dev_test_flag(hdev, HCI_SETUP) ||
400 hci_dev_test_flag(hdev, HCI_CONFIG) ||
401 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
402 hci_dev_test_flag(hdev, HCI_UNREGISTER))
403 return;
404
405 /* No point in doing scanning if LE support hasn't been enabled */
406 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
407 return;
408
409 /* If discovery is active don't interfere with it */
410 if (hdev->discovery.state != DISCOVERY_STOPPED)
411 return;
412
413 /* Reset RSSI and UUID filters when starting background scanning
414 * since these filters are meant for service discovery only.
415 *
416 * The Start Discovery and Start Service Discovery operations
417 * ensure to set proper values for RSSI threshold and UUID
418 * filter list. So it is safe to just reset them here.
419 */
420 hci_discovery_filter_clear(hdev);
421
422 if (list_empty(&hdev->pend_le_conns) &&
423 list_empty(&hdev->pend_le_reports)) {
424 /* If there is no pending LE connections or devices
425 * to be scanned for, we should stop the background
426 * scanning.
427 */
428
429 /* If controller is not scanning we are done. */
430 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
431 return;
432
433 hci_req_add_le_scan_disable(req);
434
435 BT_DBG("%s stopping background scanning", hdev->name);
436 } else {
437 /* If there is at least one pending LE connection, we should
438 * keep the background scan running.
439 */
440
441 /* If controller is connecting, we should not start scanning
442 * since some controllers are not able to scan and connect at
443 * the same time.
444 */
445 if (hci_lookup_le_connect(hdev))
446 return;
447
448 /* If controller is currently scanning, we stop it to ensure we
449 * don't miss any advertising (due to duplicates filter).
450 */
451 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
452 hci_req_add_le_scan_disable(req);
453
454 hci_req_add_le_passive_scan(req);
455
456 BT_DBG("%s starting background scanning", hdev->name);
457 }
458}
459
460void __hci_req_update_name(struct hci_request *req)
461{
462 struct hci_dev *hdev = req->hdev;
463 struct hci_cp_write_local_name cp;
464
465 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
466
467 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
468}
469
470#define PNP_INFO_SVCLASS_ID 0x1200
471
472static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
473{
474 u8 *ptr = data, *uuids_start = NULL;
475 struct bt_uuid *uuid;
476
477 if (len < 4)
478 return ptr;
479
480 list_for_each_entry(uuid, &hdev->uuids, list) {
481 u16 uuid16;
482
483 if (uuid->size != 16)
484 continue;
485
486 uuid16 = get_unaligned_le16(&uuid->uuid[12]);
487 if (uuid16 < 0x1100)
488 continue;
489
490 if (uuid16 == PNP_INFO_SVCLASS_ID)
491 continue;
492
493 if (!uuids_start) {
494 uuids_start = ptr;
495 uuids_start[0] = 1;
496 uuids_start[1] = EIR_UUID16_ALL;
497 ptr += 2;
498 }
499
500 /* Stop if not enough space to put next UUID */
501 if ((ptr - data) + sizeof(u16) > len) {
502 uuids_start[1] = EIR_UUID16_SOME;
503 break;
504 }
505
506 *ptr++ = (uuid16 & 0x00ff);
507 *ptr++ = (uuid16 & 0xff00) >> 8;
508 uuids_start[0] += sizeof(uuid16);
509 }
510
511 return ptr;
512}
513
514static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
515{
516 u8 *ptr = data, *uuids_start = NULL;
517 struct bt_uuid *uuid;
518
519 if (len < 6)
520 return ptr;
521
522 list_for_each_entry(uuid, &hdev->uuids, list) {
523 if (uuid->size != 32)
524 continue;
525
526 if (!uuids_start) {
527 uuids_start = ptr;
528 uuids_start[0] = 1;
529 uuids_start[1] = EIR_UUID32_ALL;
530 ptr += 2;
531 }
532
533 /* Stop if not enough space to put next UUID */
534 if ((ptr - data) + sizeof(u32) > len) {
535 uuids_start[1] = EIR_UUID32_SOME;
536 break;
537 }
538
539 memcpy(ptr, &uuid->uuid[12], sizeof(u32));
540 ptr += sizeof(u32);
541 uuids_start[0] += sizeof(u32);
542 }
543
544 return ptr;
545}
546
547static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
548{
549 u8 *ptr = data, *uuids_start = NULL;
550 struct bt_uuid *uuid;
551
552 if (len < 18)
553 return ptr;
554
555 list_for_each_entry(uuid, &hdev->uuids, list) {
556 if (uuid->size != 128)
557 continue;
558
559 if (!uuids_start) {
560 uuids_start = ptr;
561 uuids_start[0] = 1;
562 uuids_start[1] = EIR_UUID128_ALL;
563 ptr += 2;
564 }
565
566 /* Stop if not enough space to put next UUID */
567 if ((ptr - data) + 16 > len) {
568 uuids_start[1] = EIR_UUID128_SOME;
569 break;
570 }
571
572 memcpy(ptr, uuid->uuid, 16);
573 ptr += 16;
574 uuids_start[0] += 16;
575 }
576
577 return ptr;
578}
579
580static void create_eir(struct hci_dev *hdev, u8 *data)
581{
582 u8 *ptr = data;
583 size_t name_len;
584
585 name_len = strlen(hdev->dev_name);
586
587 if (name_len > 0) {
588 /* EIR Data type */
589 if (name_len > 48) {
590 name_len = 48;
591 ptr[1] = EIR_NAME_SHORT;
592 } else
593 ptr[1] = EIR_NAME_COMPLETE;
594
595 /* EIR Data length */
596 ptr[0] = name_len + 1;
597
598 memcpy(ptr + 2, hdev->dev_name, name_len);
599
600 ptr += (name_len + 2);
601 }
602
603 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
604 ptr[0] = 2;
605 ptr[1] = EIR_TX_POWER;
606 ptr[2] = (u8) hdev->inq_tx_power;
607
608 ptr += 3;
609 }
610
611 if (hdev->devid_source > 0) {
612 ptr[0] = 9;
613 ptr[1] = EIR_DEVICE_ID;
614
615 put_unaligned_le16(hdev->devid_source, ptr + 2);
616 put_unaligned_le16(hdev->devid_vendor, ptr + 4);
617 put_unaligned_le16(hdev->devid_product, ptr + 6);
618 put_unaligned_le16(hdev->devid_version, ptr + 8);
619
620 ptr += 10;
621 }
622
623 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
624 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
625 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
626}
627
628void __hci_req_update_eir(struct hci_request *req)
629{
630 struct hci_dev *hdev = req->hdev;
631 struct hci_cp_write_eir cp;
632
633 if (!hdev_is_powered(hdev))
634 return;
635
636 if (!lmp_ext_inq_capable(hdev))
637 return;
638
639 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
640 return;
641
642 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
643 return;
644
645 memset(&cp, 0, sizeof(cp));
646
647 create_eir(hdev, cp.data);
648
649 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
650 return;
651
652 memcpy(hdev->eir, cp.data, sizeof(cp.data));
653
654 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
655}
656
657void hci_req_add_le_scan_disable(struct hci_request *req)
658{
659 struct hci_cp_le_set_scan_enable cp;
660
661 memset(&cp, 0, sizeof(cp));
662 cp.enable = LE_SCAN_DISABLE;
663 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
664}
665
666static void add_to_white_list(struct hci_request *req,
667 struct hci_conn_params *params)
668{
669 struct hci_cp_le_add_to_white_list cp;
670
671 cp.bdaddr_type = params->addr_type;
672 bacpy(&cp.bdaddr, ¶ms->addr);
673
674 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
675}
676
677static u8 update_white_list(struct hci_request *req)
678{
679 struct hci_dev *hdev = req->hdev;
680 struct hci_conn_params *params;
681 struct bdaddr_list *b;
682 uint8_t white_list_entries = 0;
683
684 /* Go through the current white list programmed into the
685 * controller one by one and check if that address is still
686 * in the list of pending connections or list of devices to
687 * report. If not present in either list, then queue the
688 * command to remove it from the controller.
689 */
690 list_for_each_entry(b, &hdev->le_white_list, list) {
691 /* If the device is neither in pend_le_conns nor
692 * pend_le_reports then remove it from the whitelist.
693 */
694 if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
695 &b->bdaddr, b->bdaddr_type) &&
696 !hci_pend_le_action_lookup(&hdev->pend_le_reports,
697 &b->bdaddr, b->bdaddr_type)) {
698 struct hci_cp_le_del_from_white_list cp;
699
700 cp.bdaddr_type = b->bdaddr_type;
701 bacpy(&cp.bdaddr, &b->bdaddr);
702
703 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
704 sizeof(cp), &cp);
705 continue;
706 }
707
708 if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
709 /* White list can not be used with RPAs */
710 return 0x00;
711 }
712
713 white_list_entries++;
714 }
715
716 /* Since all no longer valid white list entries have been
717 * removed, walk through the list of pending connections
718 * and ensure that any new device gets programmed into
719 * the controller.
720 *
721 * If the list of the devices is larger than the list of
722 * available white list entries in the controller, then
723 * just abort and return filer policy value to not use the
724 * white list.
725 */
726 list_for_each_entry(params, &hdev->pend_le_conns, action) {
727 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
728 ¶ms->addr, params->addr_type))
729 continue;
730
731 if (white_list_entries >= hdev->le_white_list_size) {
732 /* Select filter policy to accept all advertising */
733 return 0x00;
734 }
735
736 if (hci_find_irk_by_addr(hdev, ¶ms->addr,
737 params->addr_type)) {
738 /* White list can not be used with RPAs */
739 return 0x00;
740 }
741
742 white_list_entries++;
743 add_to_white_list(req, params);
744 }
745
746 /* After adding all new pending connections, walk through
747 * the list of pending reports and also add these to the
748 * white list if there is still space.
749 */
750 list_for_each_entry(params, &hdev->pend_le_reports, action) {
751 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
752 ¶ms->addr, params->addr_type))
753 continue;
754
755 if (white_list_entries >= hdev->le_white_list_size) {
756 /* Select filter policy to accept all advertising */
757 return 0x00;
758 }
759
760 if (hci_find_irk_by_addr(hdev, ¶ms->addr,
761 params->addr_type)) {
762 /* White list can not be used with RPAs */
763 return 0x00;
764 }
765
766 white_list_entries++;
767 add_to_white_list(req, params);
768 }
769
770 /* Select filter policy to use white list */
771 return 0x01;
772}
773
774static bool scan_use_rpa(struct hci_dev *hdev)
775{
776 return hci_dev_test_flag(hdev, HCI_PRIVACY);
777}
778
779void hci_req_add_le_passive_scan(struct hci_request *req)
780{
781 struct hci_cp_le_set_scan_param param_cp;
782 struct hci_cp_le_set_scan_enable enable_cp;
783 struct hci_dev *hdev = req->hdev;
784 u8 own_addr_type;
785 u8 filter_policy;
786
787 /* Set require_privacy to false since no SCAN_REQ are send
788 * during passive scanning. Not using an non-resolvable address
789 * here is important so that peer devices using direct
790 * advertising with our address will be correctly reported
791 * by the controller.
792 */
793 if (hci_update_random_address(req, false, scan_use_rpa(hdev),
794 &own_addr_type))
795 return;
796
797 /* Adding or removing entries from the white list must
798 * happen before enabling scanning. The controller does
799 * not allow white list modification while scanning.
800 */
801 filter_policy = update_white_list(req);
802
803 /* When the controller is using random resolvable addresses and
804 * with that having LE privacy enabled, then controllers with
805 * Extended Scanner Filter Policies support can now enable support
806 * for handling directed advertising.
807 *
808 * So instead of using filter polices 0x00 (no whitelist)
809 * and 0x01 (whitelist enabled) use the new filter policies
810 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
811 */
812 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
813 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
814 filter_policy |= 0x02;
815
816 memset(¶m_cp, 0, sizeof(param_cp));
817 param_cp.type = LE_SCAN_PASSIVE;
818 param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
819 param_cp.window = cpu_to_le16(hdev->le_scan_window);
820 param_cp.own_address_type = own_addr_type;
821 param_cp.filter_policy = filter_policy;
822 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
823 ¶m_cp);
824
825 memset(&enable_cp, 0, sizeof(enable_cp));
826 enable_cp.enable = LE_SCAN_ENABLE;
827 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
828 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
829 &enable_cp);
830}
831
832static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
833{
834 u8 instance = hdev->cur_adv_instance;
835 struct adv_info *adv_instance;
836
837 /* Ignore instance 0 */
838 if (instance == 0x00)
839 return 0;
840
841 adv_instance = hci_find_adv_instance(hdev, instance);
842 if (!adv_instance)
843 return 0;
844
845 /* TODO: Take into account the "appearance" and "local-name" flags here.
846 * These are currently being ignored as they are not supported.
847 */
848 return adv_instance->scan_rsp_len;
849}
850
851void __hci_req_disable_advertising(struct hci_request *req)
852{
853 u8 enable = 0x00;
854
855 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
856}
857
858static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
859{
860 u32 flags;
861 struct adv_info *adv_instance;
862
863 if (instance == 0x00) {
864 /* Instance 0 always manages the "Tx Power" and "Flags"
865 * fields
866 */
867 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
868
869 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
870 * corresponds to the "connectable" instance flag.
871 */
872 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
873 flags |= MGMT_ADV_FLAG_CONNECTABLE;
874
875 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
876 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
877 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
878 flags |= MGMT_ADV_FLAG_DISCOV;
879
880 return flags;
881 }
882
883 adv_instance = hci_find_adv_instance(hdev, instance);
884
885 /* Return 0 when we got an invalid instance identifier. */
886 if (!adv_instance)
887 return 0;
888
889 return adv_instance->flags;
890}
891
892static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
893{
894 /* If privacy is not enabled don't use RPA */
895 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
896 return false;
897
898 /* If basic privacy mode is enabled use RPA */
899 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
900 return true;
901
902 /* If limited privacy mode is enabled don't use RPA if we're
903 * both discoverable and bondable.
904 */
905 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
906 hci_dev_test_flag(hdev, HCI_BONDABLE))
907 return false;
908
909 /* We're neither bondable nor discoverable in the limited
910 * privacy mode, therefore use RPA.
911 */
912 return true;
913}
914
915void __hci_req_enable_advertising(struct hci_request *req)
916{
917 struct hci_dev *hdev = req->hdev;
918 struct hci_cp_le_set_adv_param cp;
919 u8 own_addr_type, enable = 0x01;
920 bool connectable;
921 u32 flags;
922
923 if (hci_conn_num(hdev, LE_LINK) > 0)
924 return;
925
926 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
927 __hci_req_disable_advertising(req);
928
929 /* Clear the HCI_LE_ADV bit temporarily so that the
930 * hci_update_random_address knows that it's safe to go ahead
931 * and write a new random address. The flag will be set back on
932 * as soon as the SET_ADV_ENABLE HCI command completes.
933 */
934 hci_dev_clear_flag(hdev, HCI_LE_ADV);
935
936 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
937
938 /* If the "connectable" instance flag was not set, then choose between
939 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
940 */
941 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
942 mgmt_get_connectable(hdev);
943
944 /* Set require_privacy to true only when non-connectable
945 * advertising is used. In that case it is fine to use a
946 * non-resolvable private address.
947 */
948 if (hci_update_random_address(req, !connectable,
949 adv_use_rpa(hdev, flags),
950 &own_addr_type) < 0)
951 return;
952
953 memset(&cp, 0, sizeof(cp));
954 cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval);
955 cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval);
956
957 if (connectable)
958 cp.type = LE_ADV_IND;
959 else if (get_cur_adv_instance_scan_rsp_len(hdev))
960 cp.type = LE_ADV_SCAN_IND;
961 else
962 cp.type = LE_ADV_NONCONN_IND;
963
964 cp.own_address_type = own_addr_type;
965 cp.channel_map = hdev->le_adv_channel_map;
966
967 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
968
969 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
970}
971
972u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
973{
974 size_t short_len;
975 size_t complete_len;
976
977 /* no space left for name (+ NULL + type + len) */
978 if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
979 return ad_len;
980
981 /* use complete name if present and fits */
982 complete_len = strlen(hdev->dev_name);
983 if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
984 return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
985 hdev->dev_name, complete_len + 1);
986
987 /* use short name if present */
988 short_len = strlen(hdev->short_name);
989 if (short_len)
990 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
991 hdev->short_name, short_len + 1);
992
993 /* use shortened full name if present, we already know that name
994 * is longer then HCI_MAX_SHORT_NAME_LENGTH
995 */
996 if (complete_len) {
997 u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
998
999 memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1000 name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1001
1002 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1003 sizeof(name));
1004 }
1005
1006 return ad_len;
1007}
1008
1009static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1010{
1011 return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1012}
1013
1014static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1015{
1016 u8 scan_rsp_len = 0;
1017
1018 if (hdev->appearance) {
1019 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1020 }
1021
1022 return append_local_name(hdev, ptr, scan_rsp_len);
1023}
1024
1025static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1026 u8 *ptr)
1027{
1028 struct adv_info *adv_instance;
1029 u32 instance_flags;
1030 u8 scan_rsp_len = 0;
1031
1032 adv_instance = hci_find_adv_instance(hdev, instance);
1033 if (!adv_instance)
1034 return 0;
1035
1036 instance_flags = adv_instance->flags;
1037
1038 if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1039 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1040 }
1041
1042 memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1043 adv_instance->scan_rsp_len);
1044
1045 scan_rsp_len += adv_instance->scan_rsp_len;
1046
1047 if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1048 scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1049
1050 return scan_rsp_len;
1051}
1052
1053void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1054{
1055 struct hci_dev *hdev = req->hdev;
1056 struct hci_cp_le_set_scan_rsp_data cp;
1057 u8 len;
1058
1059 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1060 return;
1061
1062 memset(&cp, 0, sizeof(cp));
1063
1064 if (instance)
1065 len = create_instance_scan_rsp_data(hdev, instance, cp.data);
1066 else
1067 len = create_default_scan_rsp_data(hdev, cp.data);
1068
1069 if (hdev->scan_rsp_data_len == len &&
1070 !memcmp(cp.data, hdev->scan_rsp_data, len))
1071 return;
1072
1073 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1074 hdev->scan_rsp_data_len = len;
1075
1076 cp.length = len;
1077
1078 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1079}
1080
1081static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1082{
1083 struct adv_info *adv_instance = NULL;
1084 u8 ad_len = 0, flags = 0;
1085 u32 instance_flags;
1086
1087 /* Return 0 when the current instance identifier is invalid. */
1088 if (instance) {
1089 adv_instance = hci_find_adv_instance(hdev, instance);
1090 if (!adv_instance)
1091 return 0;
1092 }
1093
1094 instance_flags = get_adv_instance_flags(hdev, instance);
1095
1096 /* The Add Advertising command allows userspace to set both the general
1097 * and limited discoverable flags.
1098 */
1099 if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1100 flags |= LE_AD_GENERAL;
1101
1102 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1103 flags |= LE_AD_LIMITED;
1104
1105 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1106 flags |= LE_AD_NO_BREDR;
1107
1108 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1109 /* If a discovery flag wasn't provided, simply use the global
1110 * settings.
1111 */
1112 if (!flags)
1113 flags |= mgmt_get_adv_discov_flags(hdev);
1114
1115 /* If flags would still be empty, then there is no need to
1116 * include the "Flags" AD field".
1117 */
1118 if (flags) {
1119 ptr[0] = 0x02;
1120 ptr[1] = EIR_FLAGS;
1121 ptr[2] = flags;
1122
1123 ad_len += 3;
1124 ptr += 3;
1125 }
1126 }
1127
1128 if (adv_instance) {
1129 memcpy(ptr, adv_instance->adv_data,
1130 adv_instance->adv_data_len);
1131 ad_len += adv_instance->adv_data_len;
1132 ptr += adv_instance->adv_data_len;
1133 }
1134
1135 /* Provide Tx Power only if we can provide a valid value for it */
1136 if (hdev->adv_tx_power != HCI_TX_POWER_INVALID &&
1137 (instance_flags & MGMT_ADV_FLAG_TX_POWER)) {
1138 ptr[0] = 0x02;
1139 ptr[1] = EIR_TX_POWER;
1140 ptr[2] = (u8)hdev->adv_tx_power;
1141
1142 ad_len += 3;
1143 ptr += 3;
1144 }
1145
1146 return ad_len;
1147}
1148
1149void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1150{
1151 struct hci_dev *hdev = req->hdev;
1152 struct hci_cp_le_set_adv_data cp;
1153 u8 len;
1154
1155 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1156 return;
1157
1158 memset(&cp, 0, sizeof(cp));
1159
1160 len = create_instance_adv_data(hdev, instance, cp.data);
1161
1162 /* There's nothing to do if the data hasn't changed */
1163 if (hdev->adv_data_len == len &&
1164 memcmp(cp.data, hdev->adv_data, len) == 0)
1165 return;
1166
1167 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1168 hdev->adv_data_len = len;
1169
1170 cp.length = len;
1171
1172 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1173}
1174
1175int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1176{
1177 struct hci_request req;
1178
1179 hci_req_init(&req, hdev);
1180 __hci_req_update_adv_data(&req, instance);
1181
1182 return hci_req_run(&req, NULL);
1183}
1184
1185static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1186{
1187 BT_DBG("%s status %u", hdev->name, status);
1188}
1189
1190void hci_req_reenable_advertising(struct hci_dev *hdev)
1191{
1192 struct hci_request req;
1193
1194 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1195 list_empty(&hdev->adv_instances))
1196 return;
1197
1198 hci_req_init(&req, hdev);
1199
1200 if (hdev->cur_adv_instance) {
1201 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1202 true);
1203 } else {
1204 __hci_req_update_adv_data(&req, 0x00);
1205 __hci_req_update_scan_rsp_data(&req, 0x00);
1206 __hci_req_enable_advertising(&req);
1207 }
1208
1209 hci_req_run(&req, adv_enable_complete);
1210}
1211
1212static void adv_timeout_expire(struct work_struct *work)
1213{
1214 struct hci_dev *hdev = container_of(work, struct hci_dev,
1215 adv_instance_expire.work);
1216
1217 struct hci_request req;
1218 u8 instance;
1219
1220 BT_DBG("%s", hdev->name);
1221
1222 hci_dev_lock(hdev);
1223
1224 hdev->adv_instance_timeout = 0;
1225
1226 instance = hdev->cur_adv_instance;
1227 if (instance == 0x00)
1228 goto unlock;
1229
1230 hci_req_init(&req, hdev);
1231
1232 hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1233
1234 if (list_empty(&hdev->adv_instances))
1235 __hci_req_disable_advertising(&req);
1236
1237 hci_req_run(&req, NULL);
1238
1239unlock:
1240 hci_dev_unlock(hdev);
1241}
1242
1243int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1244 bool force)
1245{
1246 struct hci_dev *hdev = req->hdev;
1247 struct adv_info *adv_instance = NULL;
1248 u16 timeout;
1249
1250 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1251 list_empty(&hdev->adv_instances))
1252 return -EPERM;
1253
1254 if (hdev->adv_instance_timeout)
1255 return -EBUSY;
1256
1257 adv_instance = hci_find_adv_instance(hdev, instance);
1258 if (!adv_instance)
1259 return -ENOENT;
1260
1261 /* A zero timeout means unlimited advertising. As long as there is
1262 * only one instance, duration should be ignored. We still set a timeout
1263 * in case further instances are being added later on.
1264 *
1265 * If the remaining lifetime of the instance is more than the duration
1266 * then the timeout corresponds to the duration, otherwise it will be
1267 * reduced to the remaining instance lifetime.
1268 */
1269 if (adv_instance->timeout == 0 ||
1270 adv_instance->duration <= adv_instance->remaining_time)
1271 timeout = adv_instance->duration;
1272 else
1273 timeout = adv_instance->remaining_time;
1274
1275 /* The remaining time is being reduced unless the instance is being
1276 * advertised without time limit.
1277 */
1278 if (adv_instance->timeout)
1279 adv_instance->remaining_time =
1280 adv_instance->remaining_time - timeout;
1281
1282 hdev->adv_instance_timeout = timeout;
1283 queue_delayed_work(hdev->req_workqueue,
1284 &hdev->adv_instance_expire,
1285 msecs_to_jiffies(timeout * 1000));
1286
1287 /* If we're just re-scheduling the same instance again then do not
1288 * execute any HCI commands. This happens when a single instance is
1289 * being advertised.
1290 */
1291 if (!force && hdev->cur_adv_instance == instance &&
1292 hci_dev_test_flag(hdev, HCI_LE_ADV))
1293 return 0;
1294
1295 hdev->cur_adv_instance = instance;
1296 __hci_req_update_adv_data(req, instance);
1297 __hci_req_update_scan_rsp_data(req, instance);
1298 __hci_req_enable_advertising(req);
1299
1300 return 0;
1301}
1302
1303static void cancel_adv_timeout(struct hci_dev *hdev)
1304{
1305 if (hdev->adv_instance_timeout) {
1306 hdev->adv_instance_timeout = 0;
1307 cancel_delayed_work(&hdev->adv_instance_expire);
1308 }
1309}
1310
1311/* For a single instance:
1312 * - force == true: The instance will be removed even when its remaining
1313 * lifetime is not zero.
1314 * - force == false: the instance will be deactivated but kept stored unless
1315 * the remaining lifetime is zero.
1316 *
1317 * For instance == 0x00:
1318 * - force == true: All instances will be removed regardless of their timeout
1319 * setting.
1320 * - force == false: Only instances that have a timeout will be removed.
1321 */
1322void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
1323 struct hci_request *req, u8 instance,
1324 bool force)
1325{
1326 struct adv_info *adv_instance, *n, *next_instance = NULL;
1327 int err;
1328 u8 rem_inst;
1329
1330 /* Cancel any timeout concerning the removed instance(s). */
1331 if (!instance || hdev->cur_adv_instance == instance)
1332 cancel_adv_timeout(hdev);
1333
1334 /* Get the next instance to advertise BEFORE we remove
1335 * the current one. This can be the same instance again
1336 * if there is only one instance.
1337 */
1338 if (instance && hdev->cur_adv_instance == instance)
1339 next_instance = hci_get_next_instance(hdev, instance);
1340
1341 if (instance == 0x00) {
1342 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1343 list) {
1344 if (!(force || adv_instance->timeout))
1345 continue;
1346
1347 rem_inst = adv_instance->instance;
1348 err = hci_remove_adv_instance(hdev, rem_inst);
1349 if (!err)
1350 mgmt_advertising_removed(sk, hdev, rem_inst);
1351 }
1352 } else {
1353 adv_instance = hci_find_adv_instance(hdev, instance);
1354
1355 if (force || (adv_instance && adv_instance->timeout &&
1356 !adv_instance->remaining_time)) {
1357 /* Don't advertise a removed instance. */
1358 if (next_instance &&
1359 next_instance->instance == instance)
1360 next_instance = NULL;
1361
1362 err = hci_remove_adv_instance(hdev, instance);
1363 if (!err)
1364 mgmt_advertising_removed(sk, hdev, instance);
1365 }
1366 }
1367
1368 if (!req || !hdev_is_powered(hdev) ||
1369 hci_dev_test_flag(hdev, HCI_ADVERTISING))
1370 return;
1371
1372 if (next_instance)
1373 __hci_req_schedule_adv_instance(req, next_instance->instance,
1374 false);
1375}
1376
1377static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1378{
1379 struct hci_dev *hdev = req->hdev;
1380
1381 /* If we're advertising or initiating an LE connection we can't
1382 * go ahead and change the random address at this time. This is
1383 * because the eventual initiator address used for the
1384 * subsequently created connection will be undefined (some
1385 * controllers use the new address and others the one we had
1386 * when the operation started).
1387 *
1388 * In this kind of scenario skip the update and let the random
1389 * address be updated at the next cycle.
1390 */
1391 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1392 hci_lookup_le_connect(hdev)) {
1393 BT_DBG("Deferring random address update");
1394 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1395 return;
1396 }
1397
1398 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1399}
1400
1401int hci_update_random_address(struct hci_request *req, bool require_privacy,
1402 bool use_rpa, u8 *own_addr_type)
1403{
1404 struct hci_dev *hdev = req->hdev;
1405 int err;
1406
1407 /* If privacy is enabled use a resolvable private address. If
1408 * current RPA has expired or there is something else than
1409 * the current RPA in use, then generate a new one.
1410 */
1411 if (use_rpa) {
1412 int to;
1413
1414 *own_addr_type = ADDR_LE_DEV_RANDOM;
1415
1416 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1417 !bacmp(&hdev->random_addr, &hdev->rpa))
1418 return 0;
1419
1420 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1421 if (err < 0) {
1422 BT_ERR("%s failed to generate new RPA", hdev->name);
1423 return err;
1424 }
1425
1426 set_random_addr(req, &hdev->rpa);
1427
1428 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1429 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1430
1431 return 0;
1432 }
1433
1434 /* In case of required privacy without resolvable private address,
1435 * use an non-resolvable private address. This is useful for active
1436 * scanning and non-connectable advertising.
1437 */
1438 if (require_privacy) {
1439 bdaddr_t nrpa;
1440
1441 while (true) {
1442 /* The non-resolvable private address is generated
1443 * from random six bytes with the two most significant
1444 * bits cleared.
1445 */
1446 get_random_bytes(&nrpa, 6);
1447 nrpa.b[5] &= 0x3f;
1448
1449 /* The non-resolvable private address shall not be
1450 * equal to the public address.
1451 */
1452 if (bacmp(&hdev->bdaddr, &nrpa))
1453 break;
1454 }
1455
1456 *own_addr_type = ADDR_LE_DEV_RANDOM;
1457 set_random_addr(req, &nrpa);
1458 return 0;
1459 }
1460
1461 /* If forcing static address is in use or there is no public
1462 * address use the static address as random address (but skip
1463 * the HCI command if the current random address is already the
1464 * static one.
1465 *
1466 * In case BR/EDR has been disabled on a dual-mode controller
1467 * and a static address has been configured, then use that
1468 * address instead of the public BR/EDR address.
1469 */
1470 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1471 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1472 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1473 bacmp(&hdev->static_addr, BDADDR_ANY))) {
1474 *own_addr_type = ADDR_LE_DEV_RANDOM;
1475 if (bacmp(&hdev->static_addr, &hdev->random_addr))
1476 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1477 &hdev->static_addr);
1478 return 0;
1479 }
1480
1481 /* Neither privacy nor static address is being used so use a
1482 * public address.
1483 */
1484 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1485
1486 return 0;
1487}
1488
1489static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1490{
1491 struct bdaddr_list *b;
1492
1493 list_for_each_entry(b, &hdev->whitelist, list) {
1494 struct hci_conn *conn;
1495
1496 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1497 if (!conn)
1498 return true;
1499
1500 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1501 return true;
1502 }
1503
1504 return false;
1505}
1506
1507void __hci_req_update_scan(struct hci_request *req)
1508{
1509 struct hci_dev *hdev = req->hdev;
1510 u8 scan;
1511
1512 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1513 return;
1514
1515 if (!hdev_is_powered(hdev))
1516 return;
1517
1518 if (mgmt_powering_down(hdev))
1519 return;
1520
1521 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1522 disconnected_whitelist_entries(hdev))
1523 scan = SCAN_PAGE;
1524 else
1525 scan = SCAN_DISABLED;
1526
1527 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1528 scan |= SCAN_INQUIRY;
1529
1530 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
1531 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
1532 return;
1533
1534 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1535}
1536
1537static int update_scan(struct hci_request *req, unsigned long opt)
1538{
1539 hci_dev_lock(req->hdev);
1540 __hci_req_update_scan(req);
1541 hci_dev_unlock(req->hdev);
1542 return 0;
1543}
1544
1545static void scan_update_work(struct work_struct *work)
1546{
1547 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
1548
1549 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1550}
1551
1552static int connectable_update(struct hci_request *req, unsigned long opt)
1553{
1554 struct hci_dev *hdev = req->hdev;
1555
1556 hci_dev_lock(hdev);
1557
1558 __hci_req_update_scan(req);
1559
1560 /* If BR/EDR is not enabled and we disable advertising as a
1561 * by-product of disabling connectable, we need to update the
1562 * advertising flags.
1563 */
1564 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1565 __hci_req_update_adv_data(req, hdev->cur_adv_instance);
1566
1567 /* Update the advertising parameters if necessary */
1568 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1569 !list_empty(&hdev->adv_instances))
1570 __hci_req_enable_advertising(req);
1571
1572 __hci_update_background_scan(req);
1573
1574 hci_dev_unlock(hdev);
1575
1576 return 0;
1577}
1578
1579static void connectable_update_work(struct work_struct *work)
1580{
1581 struct hci_dev *hdev = container_of(work, struct hci_dev,
1582 connectable_update);
1583 u8 status;
1584
1585 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
1586 mgmt_set_connectable_complete(hdev, status);
1587}
1588
1589static u8 get_service_classes(struct hci_dev *hdev)
1590{
1591 struct bt_uuid *uuid;
1592 u8 val = 0;
1593
1594 list_for_each_entry(uuid, &hdev->uuids, list)
1595 val |= uuid->svc_hint;
1596
1597 return val;
1598}
1599
1600void __hci_req_update_class(struct hci_request *req)
1601{
1602 struct hci_dev *hdev = req->hdev;
1603 u8 cod[3];
1604
1605 BT_DBG("%s", hdev->name);
1606
1607 if (!hdev_is_powered(hdev))
1608 return;
1609
1610 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1611 return;
1612
1613 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
1614 return;
1615
1616 cod[0] = hdev->minor_class;
1617 cod[1] = hdev->major_class;
1618 cod[2] = get_service_classes(hdev);
1619
1620 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1621 cod[1] |= 0x20;
1622
1623 if (memcmp(cod, hdev->dev_class, 3) == 0)
1624 return;
1625
1626 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
1627}
1628
1629static void write_iac(struct hci_request *req)
1630{
1631 struct hci_dev *hdev = req->hdev;
1632 struct hci_cp_write_current_iac_lap cp;
1633
1634 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1635 return;
1636
1637 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1638 /* Limited discoverable mode */
1639 cp.num_iac = min_t(u8, hdev->num_iac, 2);
1640 cp.iac_lap[0] = 0x00; /* LIAC */
1641 cp.iac_lap[1] = 0x8b;
1642 cp.iac_lap[2] = 0x9e;
1643 cp.iac_lap[3] = 0x33; /* GIAC */
1644 cp.iac_lap[4] = 0x8b;
1645 cp.iac_lap[5] = 0x9e;
1646 } else {
1647 /* General discoverable mode */
1648 cp.num_iac = 1;
1649 cp.iac_lap[0] = 0x33; /* GIAC */
1650 cp.iac_lap[1] = 0x8b;
1651 cp.iac_lap[2] = 0x9e;
1652 }
1653
1654 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
1655 (cp.num_iac * 3) + 1, &cp);
1656}
1657
1658static int discoverable_update(struct hci_request *req, unsigned long opt)
1659{
1660 struct hci_dev *hdev = req->hdev;
1661
1662 hci_dev_lock(hdev);
1663
1664 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1665 write_iac(req);
1666 __hci_req_update_scan(req);
1667 __hci_req_update_class(req);
1668 }
1669
1670 /* Advertising instances don't use the global discoverable setting, so
1671 * only update AD if advertising was enabled using Set Advertising.
1672 */
1673 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
1674 __hci_req_update_adv_data(req, 0x00);
1675
1676 /* Discoverable mode affects the local advertising
1677 * address in limited privacy mode.
1678 */
1679 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1680 __hci_req_enable_advertising(req);
1681 }
1682
1683 hci_dev_unlock(hdev);
1684
1685 return 0;
1686}
1687
1688static void discoverable_update_work(struct work_struct *work)
1689{
1690 struct hci_dev *hdev = container_of(work, struct hci_dev,
1691 discoverable_update);
1692 u8 status;
1693
1694 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
1695 mgmt_set_discoverable_complete(hdev, status);
1696}
1697
1698void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
1699 u8 reason)
1700{
1701 switch (conn->state) {
1702 case BT_CONNECTED:
1703 case BT_CONFIG:
1704 if (conn->type == AMP_LINK) {
1705 struct hci_cp_disconn_phy_link cp;
1706
1707 cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
1708 cp.reason = reason;
1709 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
1710 &cp);
1711 } else {
1712 struct hci_cp_disconnect dc;
1713
1714 dc.handle = cpu_to_le16(conn->handle);
1715 dc.reason = reason;
1716 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
1717 }
1718
1719 conn->state = BT_DISCONN;
1720
1721 break;
1722 case BT_CONNECT:
1723 if (conn->type == LE_LINK) {
1724 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
1725 break;
1726 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
1727 0, NULL);
1728 } else if (conn->type == ACL_LINK) {
1729 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
1730 break;
1731 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
1732 6, &conn->dst);
1733 }
1734 break;
1735 case BT_CONNECT2:
1736 if (conn->type == ACL_LINK) {
1737 struct hci_cp_reject_conn_req rej;
1738
1739 bacpy(&rej.bdaddr, &conn->dst);
1740 rej.reason = reason;
1741
1742 hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
1743 sizeof(rej), &rej);
1744 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
1745 struct hci_cp_reject_sync_conn_req rej;
1746
1747 bacpy(&rej.bdaddr, &conn->dst);
1748
1749 /* SCO rejection has its own limited set of
1750 * allowed error values (0x0D-0x0F) which isn't
1751 * compatible with most values passed to this
1752 * function. To be safe hard-code one of the
1753 * values that's suitable for SCO.
1754 */
1755 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
1756
1757 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
1758 sizeof(rej), &rej);
1759 }
1760 break;
1761 default:
1762 conn->state = BT_CLOSED;
1763 break;
1764 }
1765}
1766
1767static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1768{
1769 if (status)
1770 BT_DBG("Failed to abort connection: status 0x%2.2x", status);
1771}
1772
1773int hci_abort_conn(struct hci_conn *conn, u8 reason)
1774{
1775 struct hci_request req;
1776 int err;
1777
1778 hci_req_init(&req, conn->hdev);
1779
1780 __hci_abort_conn(&req, conn, reason);
1781
1782 err = hci_req_run(&req, abort_conn_complete);
1783 if (err && err != -ENODATA) {
1784 BT_ERR("Failed to run HCI request: err %d", err);
1785 return err;
1786 }
1787
1788 return 0;
1789}
1790
1791static int update_bg_scan(struct hci_request *req, unsigned long opt)
1792{
1793 hci_dev_lock(req->hdev);
1794 __hci_update_background_scan(req);
1795 hci_dev_unlock(req->hdev);
1796 return 0;
1797}
1798
1799static void bg_scan_update(struct work_struct *work)
1800{
1801 struct hci_dev *hdev = container_of(work, struct hci_dev,
1802 bg_scan_update);
1803 struct hci_conn *conn;
1804 u8 status;
1805 int err;
1806
1807 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
1808 if (!err)
1809 return;
1810
1811 hci_dev_lock(hdev);
1812
1813 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
1814 if (conn)
1815 hci_le_conn_failed(conn, status);
1816
1817 hci_dev_unlock(hdev);
1818}
1819
1820static int le_scan_disable(struct hci_request *req, unsigned long opt)
1821{
1822 hci_req_add_le_scan_disable(req);
1823 return 0;
1824}
1825
1826static int bredr_inquiry(struct hci_request *req, unsigned long opt)
1827{
1828 u8 length = opt;
1829 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
1830 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
1831 struct hci_cp_inquiry cp;
1832
1833 BT_DBG("%s", req->hdev->name);
1834
1835 hci_dev_lock(req->hdev);
1836 hci_inquiry_cache_flush(req->hdev);
1837 hci_dev_unlock(req->hdev);
1838
1839 memset(&cp, 0, sizeof(cp));
1840
1841 if (req->hdev->discovery.limited)
1842 memcpy(&cp.lap, liac, sizeof(cp.lap));
1843 else
1844 memcpy(&cp.lap, giac, sizeof(cp.lap));
1845
1846 cp.length = length;
1847
1848 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1849
1850 return 0;
1851}
1852
1853static void le_scan_disable_work(struct work_struct *work)
1854{
1855 struct hci_dev *hdev = container_of(work, struct hci_dev,
1856 le_scan_disable.work);
1857 u8 status;
1858
1859 BT_DBG("%s", hdev->name);
1860
1861 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1862 return;
1863
1864 cancel_delayed_work(&hdev->le_scan_restart);
1865
1866 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
1867 if (status) {
1868 BT_ERR("Failed to disable LE scan: status 0x%02x", status);
1869 return;
1870 }
1871
1872 hdev->discovery.scan_start = 0;
1873
1874 /* If we were running LE only scan, change discovery state. If
1875 * we were running both LE and BR/EDR inquiry simultaneously,
1876 * and BR/EDR inquiry is already finished, stop discovery,
1877 * otherwise BR/EDR inquiry will stop discovery when finished.
1878 * If we will resolve remote device name, do not change
1879 * discovery state.
1880 */
1881
1882 if (hdev->discovery.type == DISCOV_TYPE_LE)
1883 goto discov_stopped;
1884
1885 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
1886 return;
1887
1888 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
1889 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
1890 hdev->discovery.state != DISCOVERY_RESOLVING)
1891 goto discov_stopped;
1892
1893 return;
1894 }
1895
1896 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
1897 HCI_CMD_TIMEOUT, &status);
1898 if (status) {
1899 BT_ERR("Inquiry failed: status 0x%02x", status);
1900 goto discov_stopped;
1901 }
1902
1903 return;
1904
1905discov_stopped:
1906 hci_dev_lock(hdev);
1907 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1908 hci_dev_unlock(hdev);
1909}
1910
1911static int le_scan_restart(struct hci_request *req, unsigned long opt)
1912{
1913 struct hci_dev *hdev = req->hdev;
1914 struct hci_cp_le_set_scan_enable cp;
1915
1916 /* If controller is not scanning we are done. */
1917 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1918 return 0;
1919
1920 hci_req_add_le_scan_disable(req);
1921
1922 memset(&cp, 0, sizeof(cp));
1923 cp.enable = LE_SCAN_ENABLE;
1924 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
1925 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1926
1927 return 0;
1928}
1929
1930static void le_scan_restart_work(struct work_struct *work)
1931{
1932 struct hci_dev *hdev = container_of(work, struct hci_dev,
1933 le_scan_restart.work);
1934 unsigned long timeout, duration, scan_start, now;
1935 u8 status;
1936
1937 BT_DBG("%s", hdev->name);
1938
1939 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
1940 if (status) {
1941 BT_ERR("Failed to restart LE scan: status %d", status);
1942 return;
1943 }
1944
1945 hci_dev_lock(hdev);
1946
1947 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
1948 !hdev->discovery.scan_start)
1949 goto unlock;
1950
1951 /* When the scan was started, hdev->le_scan_disable has been queued
1952 * after duration from scan_start. During scan restart this job
1953 * has been canceled, and we need to queue it again after proper
1954 * timeout, to make sure that scan does not run indefinitely.
1955 */
1956 duration = hdev->discovery.scan_duration;
1957 scan_start = hdev->discovery.scan_start;
1958 now = jiffies;
1959 if (now - scan_start <= duration) {
1960 int elapsed;
1961
1962 if (now >= scan_start)
1963 elapsed = now - scan_start;
1964 else
1965 elapsed = ULONG_MAX - scan_start + now;
1966
1967 timeout = duration - elapsed;
1968 } else {
1969 timeout = 0;
1970 }
1971
1972 queue_delayed_work(hdev->req_workqueue,
1973 &hdev->le_scan_disable, timeout);
1974
1975unlock:
1976 hci_dev_unlock(hdev);
1977}
1978
1979static void disable_advertising(struct hci_request *req)
1980{
1981 u8 enable = 0x00;
1982
1983 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1984}
1985
1986static int active_scan(struct hci_request *req, unsigned long opt)
1987{
1988 uint16_t interval = opt;
1989 struct hci_dev *hdev = req->hdev;
1990 struct hci_cp_le_set_scan_param param_cp;
1991 struct hci_cp_le_set_scan_enable enable_cp;
1992 u8 own_addr_type;
1993 int err;
1994
1995 BT_DBG("%s", hdev->name);
1996
1997 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
1998 hci_dev_lock(hdev);
1999
2000 /* Don't let discovery abort an outgoing connection attempt
2001 * that's using directed advertising.
2002 */
2003 if (hci_lookup_le_connect(hdev)) {
2004 hci_dev_unlock(hdev);
2005 return -EBUSY;
2006 }
2007
2008 cancel_adv_timeout(hdev);
2009 hci_dev_unlock(hdev);
2010
2011 disable_advertising(req);
2012 }
2013
2014 /* If controller is scanning, it means the background scanning is
2015 * running. Thus, we should temporarily stop it in order to set the
2016 * discovery scanning parameters.
2017 */
2018 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2019 hci_req_add_le_scan_disable(req);
2020
2021 /* All active scans will be done with either a resolvable private
2022 * address (when privacy feature has been enabled) or non-resolvable
2023 * private address.
2024 */
2025 err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2026 &own_addr_type);
2027 if (err < 0)
2028 own_addr_type = ADDR_LE_DEV_PUBLIC;
2029
2030 memset(¶m_cp, 0, sizeof(param_cp));
2031 param_cp.type = LE_SCAN_ACTIVE;
2032 param_cp.interval = cpu_to_le16(interval);
2033 param_cp.window = cpu_to_le16(DISCOV_LE_SCAN_WIN);
2034 param_cp.own_address_type = own_addr_type;
2035
2036 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
2037 ¶m_cp);
2038
2039 memset(&enable_cp, 0, sizeof(enable_cp));
2040 enable_cp.enable = LE_SCAN_ENABLE;
2041 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2042
2043 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
2044 &enable_cp);
2045
2046 return 0;
2047}
2048
2049static int interleaved_discov(struct hci_request *req, unsigned long opt)
2050{
2051 int err;
2052
2053 BT_DBG("%s", req->hdev->name);
2054
2055 err = active_scan(req, opt);
2056 if (err)
2057 return err;
2058
2059 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2060}
2061
2062static void start_discovery(struct hci_dev *hdev, u8 *status)
2063{
2064 unsigned long timeout;
2065
2066 BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2067
2068 switch (hdev->discovery.type) {
2069 case DISCOV_TYPE_BREDR:
2070 if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2071 hci_req_sync(hdev, bredr_inquiry,
2072 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2073 status);
2074 return;
2075 case DISCOV_TYPE_INTERLEAVED:
2076 /* When running simultaneous discovery, the LE scanning time
2077 * should occupy the whole discovery time sine BR/EDR inquiry
2078 * and LE scanning are scheduled by the controller.
2079 *
2080 * For interleaving discovery in comparison, BR/EDR inquiry
2081 * and LE scanning are done sequentially with separate
2082 * timeouts.
2083 */
2084 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2085 &hdev->quirks)) {
2086 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2087 /* During simultaneous discovery, we double LE scan
2088 * interval. We must leave some time for the controller
2089 * to do BR/EDR inquiry.
2090 */
2091 hci_req_sync(hdev, interleaved_discov,
2092 DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2093 status);
2094 break;
2095 }
2096
2097 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2098 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2099 HCI_CMD_TIMEOUT, status);
2100 break;
2101 case DISCOV_TYPE_LE:
2102 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2103 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2104 HCI_CMD_TIMEOUT, status);
2105 break;
2106 default:
2107 *status = HCI_ERROR_UNSPECIFIED;
2108 return;
2109 }
2110
2111 if (*status)
2112 return;
2113
2114 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2115
2116 /* When service discovery is used and the controller has a
2117 * strict duplicate filter, it is important to remember the
2118 * start and duration of the scan. This is required for
2119 * restarting scanning during the discovery phase.
2120 */
2121 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2122 hdev->discovery.result_filtering) {
2123 hdev->discovery.scan_start = jiffies;
2124 hdev->discovery.scan_duration = timeout;
2125 }
2126
2127 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2128 timeout);
2129}
2130
2131bool hci_req_stop_discovery(struct hci_request *req)
2132{
2133 struct hci_dev *hdev = req->hdev;
2134 struct discovery_state *d = &hdev->discovery;
2135 struct hci_cp_remote_name_req_cancel cp;
2136 struct inquiry_entry *e;
2137 bool ret = false;
2138
2139 BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2140
2141 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2142 if (test_bit(HCI_INQUIRY, &hdev->flags))
2143 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2144
2145 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2146 cancel_delayed_work(&hdev->le_scan_disable);
2147 hci_req_add_le_scan_disable(req);
2148 }
2149
2150 ret = true;
2151 } else {
2152 /* Passive scanning */
2153 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2154 hci_req_add_le_scan_disable(req);
2155 ret = true;
2156 }
2157 }
2158
2159 /* No further actions needed for LE-only discovery */
2160 if (d->type == DISCOV_TYPE_LE)
2161 return ret;
2162
2163 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2164 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2165 NAME_PENDING);
2166 if (!e)
2167 return ret;
2168
2169 bacpy(&cp.bdaddr, &e->data.bdaddr);
2170 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2171 &cp);
2172 ret = true;
2173 }
2174
2175 return ret;
2176}
2177
2178static int stop_discovery(struct hci_request *req, unsigned long opt)
2179{
2180 hci_dev_lock(req->hdev);
2181 hci_req_stop_discovery(req);
2182 hci_dev_unlock(req->hdev);
2183
2184 return 0;
2185}
2186
2187static void discov_update(struct work_struct *work)
2188{
2189 struct hci_dev *hdev = container_of(work, struct hci_dev,
2190 discov_update);
2191 u8 status = 0;
2192
2193 switch (hdev->discovery.state) {
2194 case DISCOVERY_STARTING:
2195 start_discovery(hdev, &status);
2196 mgmt_start_discovery_complete(hdev, status);
2197 if (status)
2198 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2199 else
2200 hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2201 break;
2202 case DISCOVERY_STOPPING:
2203 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2204 mgmt_stop_discovery_complete(hdev, status);
2205 if (!status)
2206 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2207 break;
2208 case DISCOVERY_STOPPED:
2209 default:
2210 return;
2211 }
2212}
2213
2214static void discov_off(struct work_struct *work)
2215{
2216 struct hci_dev *hdev = container_of(work, struct hci_dev,
2217 discov_off.work);
2218
2219 BT_DBG("%s", hdev->name);
2220
2221 hci_dev_lock(hdev);
2222
2223 /* When discoverable timeout triggers, then just make sure
2224 * the limited discoverable flag is cleared. Even in the case
2225 * of a timeout triggered from general discoverable, it is
2226 * safe to unconditionally clear the flag.
2227 */
2228 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2229 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2230 hdev->discov_timeout = 0;
2231
2232 hci_dev_unlock(hdev);
2233
2234 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2235 mgmt_new_settings(hdev);
2236}
2237
2238static int powered_update_hci(struct hci_request *req, unsigned long opt)
2239{
2240 struct hci_dev *hdev = req->hdev;
2241 u8 link_sec;
2242
2243 hci_dev_lock(hdev);
2244
2245 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2246 !lmp_host_ssp_capable(hdev)) {
2247 u8 mode = 0x01;
2248
2249 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2250
2251 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2252 u8 support = 0x01;
2253
2254 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2255 sizeof(support), &support);
2256 }
2257 }
2258
2259 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2260 lmp_bredr_capable(hdev)) {
2261 struct hci_cp_write_le_host_supported cp;
2262
2263 cp.le = 0x01;
2264 cp.simul = 0x00;
2265
2266 /* Check first if we already have the right
2267 * host state (host features set)
2268 */
2269 if (cp.le != lmp_host_le_capable(hdev) ||
2270 cp.simul != lmp_host_le_br_capable(hdev))
2271 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2272 sizeof(cp), &cp);
2273 }
2274
2275 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2276 /* Make sure the controller has a good default for
2277 * advertising data. This also applies to the case
2278 * where BR/EDR was toggled during the AUTO_OFF phase.
2279 */
2280 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2281 list_empty(&hdev->adv_instances)) {
2282 __hci_req_update_adv_data(req, 0x00);
2283 __hci_req_update_scan_rsp_data(req, 0x00);
2284
2285 if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2286 __hci_req_enable_advertising(req);
2287 } else if (!list_empty(&hdev->adv_instances)) {
2288 struct adv_info *adv_instance;
2289
2290 adv_instance = list_first_entry(&hdev->adv_instances,
2291 struct adv_info, list);
2292 __hci_req_schedule_adv_instance(req,
2293 adv_instance->instance,
2294 true);
2295 }
2296 }
2297
2298 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2299 if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2300 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2301 sizeof(link_sec), &link_sec);
2302
2303 if (lmp_bredr_capable(hdev)) {
2304 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2305 __hci_req_write_fast_connectable(req, true);
2306 else
2307 __hci_req_write_fast_connectable(req, false);
2308 __hci_req_update_scan(req);
2309 __hci_req_update_class(req);
2310 __hci_req_update_name(req);
2311 __hci_req_update_eir(req);
2312 }
2313
2314 hci_dev_unlock(hdev);
2315 return 0;
2316}
2317
2318int __hci_req_hci_power_on(struct hci_dev *hdev)
2319{
2320 /* Register the available SMP channels (BR/EDR and LE) only when
2321 * successfully powering on the controller. This late
2322 * registration is required so that LE SMP can clearly decide if
2323 * the public address or static address is used.
2324 */
2325 smp_register(hdev);
2326
2327 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2328 NULL);
2329}
2330
2331void hci_request_setup(struct hci_dev *hdev)
2332{
2333 INIT_WORK(&hdev->discov_update, discov_update);
2334 INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2335 INIT_WORK(&hdev->scan_update, scan_update_work);
2336 INIT_WORK(&hdev->connectable_update, connectable_update_work);
2337 INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2338 INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2339 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2340 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2341 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2342}
2343
2344void hci_request_cancel_all(struct hci_dev *hdev)
2345{
2346 hci_req_sync_cancel(hdev, ENODEV);
2347
2348 cancel_work_sync(&hdev->discov_update);
2349 cancel_work_sync(&hdev->bg_scan_update);
2350 cancel_work_sync(&hdev->scan_update);
2351 cancel_work_sync(&hdev->connectable_update);
2352 cancel_work_sync(&hdev->discoverable_update);
2353 cancel_delayed_work_sync(&hdev->discov_off);
2354 cancel_delayed_work_sync(&hdev->le_scan_disable);
2355 cancel_delayed_work_sync(&hdev->le_scan_restart);
2356
2357 if (hdev->adv_instance_timeout) {
2358 cancel_delayed_work_sync(&hdev->adv_instance_expire);
2359 hdev->adv_instance_timeout = 0;
2360 }
2361}
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3
4 Copyright (C) 2014 Intel Corporation
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
9
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
22*/
23
24#include <linux/sched/signal.h>
25
26#include <net/bluetooth/bluetooth.h>
27#include <net/bluetooth/hci_core.h>
28#include <net/bluetooth/mgmt.h>
29
30#include "smp.h"
31#include "hci_request.h"
32
33#define HCI_REQ_DONE 0
34#define HCI_REQ_PEND 1
35#define HCI_REQ_CANCELED 2
36
37void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
38{
39 skb_queue_head_init(&req->cmd_q);
40 req->hdev = hdev;
41 req->err = 0;
42}
43
44void hci_req_purge(struct hci_request *req)
45{
46 skb_queue_purge(&req->cmd_q);
47}
48
49bool hci_req_status_pend(struct hci_dev *hdev)
50{
51 return hdev->req_status == HCI_REQ_PEND;
52}
53
54static int req_run(struct hci_request *req, hci_req_complete_t complete,
55 hci_req_complete_skb_t complete_skb)
56{
57 struct hci_dev *hdev = req->hdev;
58 struct sk_buff *skb;
59 unsigned long flags;
60
61 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
62
63 /* If an error occurred during request building, remove all HCI
64 * commands queued on the HCI request queue.
65 */
66 if (req->err) {
67 skb_queue_purge(&req->cmd_q);
68 return req->err;
69 }
70
71 /* Do not allow empty requests */
72 if (skb_queue_empty(&req->cmd_q))
73 return -ENODATA;
74
75 skb = skb_peek_tail(&req->cmd_q);
76 if (complete) {
77 bt_cb(skb)->hci.req_complete = complete;
78 } else if (complete_skb) {
79 bt_cb(skb)->hci.req_complete_skb = complete_skb;
80 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
81 }
82
83 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
84 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
85 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
86
87 queue_work(hdev->workqueue, &hdev->cmd_work);
88
89 return 0;
90}
91
92int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
93{
94 return req_run(req, complete, NULL);
95}
96
97int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
98{
99 return req_run(req, NULL, complete);
100}
101
102static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
103 struct sk_buff *skb)
104{
105 BT_DBG("%s result 0x%2.2x", hdev->name, result);
106
107 if (hdev->req_status == HCI_REQ_PEND) {
108 hdev->req_result = result;
109 hdev->req_status = HCI_REQ_DONE;
110 if (skb)
111 hdev->req_skb = skb_get(skb);
112 wake_up_interruptible(&hdev->req_wait_q);
113 }
114}
115
116void hci_req_sync_cancel(struct hci_dev *hdev, int err)
117{
118 BT_DBG("%s err 0x%2.2x", hdev->name, err);
119
120 if (hdev->req_status == HCI_REQ_PEND) {
121 hdev->req_result = err;
122 hdev->req_status = HCI_REQ_CANCELED;
123 wake_up_interruptible(&hdev->req_wait_q);
124 }
125}
126
127struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
128 const void *param, u8 event, u32 timeout)
129{
130 struct hci_request req;
131 struct sk_buff *skb;
132 int err = 0;
133
134 BT_DBG("%s", hdev->name);
135
136 hci_req_init(&req, hdev);
137
138 hci_req_add_ev(&req, opcode, plen, param, event);
139
140 hdev->req_status = HCI_REQ_PEND;
141
142 err = hci_req_run_skb(&req, hci_req_sync_complete);
143 if (err < 0)
144 return ERR_PTR(err);
145
146 err = wait_event_interruptible_timeout(hdev->req_wait_q,
147 hdev->req_status != HCI_REQ_PEND, timeout);
148
149 if (err == -ERESTARTSYS)
150 return ERR_PTR(-EINTR);
151
152 switch (hdev->req_status) {
153 case HCI_REQ_DONE:
154 err = -bt_to_errno(hdev->req_result);
155 break;
156
157 case HCI_REQ_CANCELED:
158 err = -hdev->req_result;
159 break;
160
161 default:
162 err = -ETIMEDOUT;
163 break;
164 }
165
166 hdev->req_status = hdev->req_result = 0;
167 skb = hdev->req_skb;
168 hdev->req_skb = NULL;
169
170 BT_DBG("%s end: err %d", hdev->name, err);
171
172 if (err < 0) {
173 kfree_skb(skb);
174 return ERR_PTR(err);
175 }
176
177 if (!skb)
178 return ERR_PTR(-ENODATA);
179
180 return skb;
181}
182EXPORT_SYMBOL(__hci_cmd_sync_ev);
183
184struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
185 const void *param, u32 timeout)
186{
187 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
188}
189EXPORT_SYMBOL(__hci_cmd_sync);
190
191/* Execute request and wait for completion. */
192int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
193 unsigned long opt),
194 unsigned long opt, u32 timeout, u8 *hci_status)
195{
196 struct hci_request req;
197 int err = 0;
198
199 BT_DBG("%s start", hdev->name);
200
201 hci_req_init(&req, hdev);
202
203 hdev->req_status = HCI_REQ_PEND;
204
205 err = func(&req, opt);
206 if (err) {
207 if (hci_status)
208 *hci_status = HCI_ERROR_UNSPECIFIED;
209 return err;
210 }
211
212 err = hci_req_run_skb(&req, hci_req_sync_complete);
213 if (err < 0) {
214 hdev->req_status = 0;
215
216 /* ENODATA means the HCI request command queue is empty.
217 * This can happen when a request with conditionals doesn't
218 * trigger any commands to be sent. This is normal behavior
219 * and should not trigger an error return.
220 */
221 if (err == -ENODATA) {
222 if (hci_status)
223 *hci_status = 0;
224 return 0;
225 }
226
227 if (hci_status)
228 *hci_status = HCI_ERROR_UNSPECIFIED;
229
230 return err;
231 }
232
233 err = wait_event_interruptible_timeout(hdev->req_wait_q,
234 hdev->req_status != HCI_REQ_PEND, timeout);
235
236 if (err == -ERESTARTSYS)
237 return -EINTR;
238
239 switch (hdev->req_status) {
240 case HCI_REQ_DONE:
241 err = -bt_to_errno(hdev->req_result);
242 if (hci_status)
243 *hci_status = hdev->req_result;
244 break;
245
246 case HCI_REQ_CANCELED:
247 err = -hdev->req_result;
248 if (hci_status)
249 *hci_status = HCI_ERROR_UNSPECIFIED;
250 break;
251
252 default:
253 err = -ETIMEDOUT;
254 if (hci_status)
255 *hci_status = HCI_ERROR_UNSPECIFIED;
256 break;
257 }
258
259 kfree_skb(hdev->req_skb);
260 hdev->req_skb = NULL;
261 hdev->req_status = hdev->req_result = 0;
262
263 BT_DBG("%s end: err %d", hdev->name, err);
264
265 return err;
266}
267
268int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
269 unsigned long opt),
270 unsigned long opt, u32 timeout, u8 *hci_status)
271{
272 int ret;
273
274 if (!test_bit(HCI_UP, &hdev->flags))
275 return -ENETDOWN;
276
277 /* Serialize all requests */
278 hci_req_sync_lock(hdev);
279 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
280 hci_req_sync_unlock(hdev);
281
282 return ret;
283}
284
285struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
286 const void *param)
287{
288 int len = HCI_COMMAND_HDR_SIZE + plen;
289 struct hci_command_hdr *hdr;
290 struct sk_buff *skb;
291
292 skb = bt_skb_alloc(len, GFP_ATOMIC);
293 if (!skb)
294 return NULL;
295
296 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
297 hdr->opcode = cpu_to_le16(opcode);
298 hdr->plen = plen;
299
300 if (plen)
301 skb_put_data(skb, param, plen);
302
303 BT_DBG("skb len %d", skb->len);
304
305 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
306 hci_skb_opcode(skb) = opcode;
307
308 return skb;
309}
310
311/* Queue a command to an asynchronous HCI request */
312void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
313 const void *param, u8 event)
314{
315 struct hci_dev *hdev = req->hdev;
316 struct sk_buff *skb;
317
318 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
319
320 /* If an error occurred during request building, there is no point in
321 * queueing the HCI command. We can simply return.
322 */
323 if (req->err)
324 return;
325
326 skb = hci_prepare_cmd(hdev, opcode, plen, param);
327 if (!skb) {
328 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
329 opcode);
330 req->err = -ENOMEM;
331 return;
332 }
333
334 if (skb_queue_empty(&req->cmd_q))
335 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
336
337 bt_cb(skb)->hci.req_event = event;
338
339 skb_queue_tail(&req->cmd_q, skb);
340}
341
342void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
343 const void *param)
344{
345 hci_req_add_ev(req, opcode, plen, param, 0);
346}
347
348void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
349{
350 struct hci_dev *hdev = req->hdev;
351 struct hci_cp_write_page_scan_activity acp;
352 u8 type;
353
354 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
355 return;
356
357 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
358 return;
359
360 if (enable) {
361 type = PAGE_SCAN_TYPE_INTERLACED;
362
363 /* 160 msec page scan interval */
364 acp.interval = cpu_to_le16(0x0100);
365 } else {
366 type = hdev->def_page_scan_type;
367 acp.interval = cpu_to_le16(hdev->def_page_scan_int);
368 }
369
370 acp.window = cpu_to_le16(hdev->def_page_scan_window);
371
372 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
373 __cpu_to_le16(hdev->page_scan_window) != acp.window)
374 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
375 sizeof(acp), &acp);
376
377 if (hdev->page_scan_type != type)
378 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
379}
380
381/* This function controls the background scanning based on hdev->pend_le_conns
382 * list. If there are pending LE connection we start the background scanning,
383 * otherwise we stop it.
384 *
385 * This function requires the caller holds hdev->lock.
386 */
387static void __hci_update_background_scan(struct hci_request *req)
388{
389 struct hci_dev *hdev = req->hdev;
390
391 if (!test_bit(HCI_UP, &hdev->flags) ||
392 test_bit(HCI_INIT, &hdev->flags) ||
393 hci_dev_test_flag(hdev, HCI_SETUP) ||
394 hci_dev_test_flag(hdev, HCI_CONFIG) ||
395 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
396 hci_dev_test_flag(hdev, HCI_UNREGISTER))
397 return;
398
399 /* No point in doing scanning if LE support hasn't been enabled */
400 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
401 return;
402
403 /* If discovery is active don't interfere with it */
404 if (hdev->discovery.state != DISCOVERY_STOPPED)
405 return;
406
407 /* Reset RSSI and UUID filters when starting background scanning
408 * since these filters are meant for service discovery only.
409 *
410 * The Start Discovery and Start Service Discovery operations
411 * ensure to set proper values for RSSI threshold and UUID
412 * filter list. So it is safe to just reset them here.
413 */
414 hci_discovery_filter_clear(hdev);
415
416 BT_DBG("%s ADV monitoring is %s", hdev->name,
417 hci_is_adv_monitoring(hdev) ? "on" : "off");
418
419 if (list_empty(&hdev->pend_le_conns) &&
420 list_empty(&hdev->pend_le_reports) &&
421 !hci_is_adv_monitoring(hdev)) {
422 /* If there is no pending LE connections or devices
423 * to be scanned for or no ADV monitors, we should stop the
424 * background scanning.
425 */
426
427 /* If controller is not scanning we are done. */
428 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
429 return;
430
431 hci_req_add_le_scan_disable(req, false);
432
433 BT_DBG("%s stopping background scanning", hdev->name);
434 } else {
435 /* If there is at least one pending LE connection, we should
436 * keep the background scan running.
437 */
438
439 /* If controller is connecting, we should not start scanning
440 * since some controllers are not able to scan and connect at
441 * the same time.
442 */
443 if (hci_lookup_le_connect(hdev))
444 return;
445
446 /* If controller is currently scanning, we stop it to ensure we
447 * don't miss any advertising (due to duplicates filter).
448 */
449 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
450 hci_req_add_le_scan_disable(req, false);
451
452 hci_req_add_le_passive_scan(req);
453
454 BT_DBG("%s starting background scanning", hdev->name);
455 }
456}
457
458void __hci_req_update_name(struct hci_request *req)
459{
460 struct hci_dev *hdev = req->hdev;
461 struct hci_cp_write_local_name cp;
462
463 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
464
465 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
466}
467
468#define PNP_INFO_SVCLASS_ID 0x1200
469
470static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
471{
472 u8 *ptr = data, *uuids_start = NULL;
473 struct bt_uuid *uuid;
474
475 if (len < 4)
476 return ptr;
477
478 list_for_each_entry(uuid, &hdev->uuids, list) {
479 u16 uuid16;
480
481 if (uuid->size != 16)
482 continue;
483
484 uuid16 = get_unaligned_le16(&uuid->uuid[12]);
485 if (uuid16 < 0x1100)
486 continue;
487
488 if (uuid16 == PNP_INFO_SVCLASS_ID)
489 continue;
490
491 if (!uuids_start) {
492 uuids_start = ptr;
493 uuids_start[0] = 1;
494 uuids_start[1] = EIR_UUID16_ALL;
495 ptr += 2;
496 }
497
498 /* Stop if not enough space to put next UUID */
499 if ((ptr - data) + sizeof(u16) > len) {
500 uuids_start[1] = EIR_UUID16_SOME;
501 break;
502 }
503
504 *ptr++ = (uuid16 & 0x00ff);
505 *ptr++ = (uuid16 & 0xff00) >> 8;
506 uuids_start[0] += sizeof(uuid16);
507 }
508
509 return ptr;
510}
511
512static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
513{
514 u8 *ptr = data, *uuids_start = NULL;
515 struct bt_uuid *uuid;
516
517 if (len < 6)
518 return ptr;
519
520 list_for_each_entry(uuid, &hdev->uuids, list) {
521 if (uuid->size != 32)
522 continue;
523
524 if (!uuids_start) {
525 uuids_start = ptr;
526 uuids_start[0] = 1;
527 uuids_start[1] = EIR_UUID32_ALL;
528 ptr += 2;
529 }
530
531 /* Stop if not enough space to put next UUID */
532 if ((ptr - data) + sizeof(u32) > len) {
533 uuids_start[1] = EIR_UUID32_SOME;
534 break;
535 }
536
537 memcpy(ptr, &uuid->uuid[12], sizeof(u32));
538 ptr += sizeof(u32);
539 uuids_start[0] += sizeof(u32);
540 }
541
542 return ptr;
543}
544
545static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
546{
547 u8 *ptr = data, *uuids_start = NULL;
548 struct bt_uuid *uuid;
549
550 if (len < 18)
551 return ptr;
552
553 list_for_each_entry(uuid, &hdev->uuids, list) {
554 if (uuid->size != 128)
555 continue;
556
557 if (!uuids_start) {
558 uuids_start = ptr;
559 uuids_start[0] = 1;
560 uuids_start[1] = EIR_UUID128_ALL;
561 ptr += 2;
562 }
563
564 /* Stop if not enough space to put next UUID */
565 if ((ptr - data) + 16 > len) {
566 uuids_start[1] = EIR_UUID128_SOME;
567 break;
568 }
569
570 memcpy(ptr, uuid->uuid, 16);
571 ptr += 16;
572 uuids_start[0] += 16;
573 }
574
575 return ptr;
576}
577
578static void create_eir(struct hci_dev *hdev, u8 *data)
579{
580 u8 *ptr = data;
581 size_t name_len;
582
583 name_len = strlen(hdev->dev_name);
584
585 if (name_len > 0) {
586 /* EIR Data type */
587 if (name_len > 48) {
588 name_len = 48;
589 ptr[1] = EIR_NAME_SHORT;
590 } else
591 ptr[1] = EIR_NAME_COMPLETE;
592
593 /* EIR Data length */
594 ptr[0] = name_len + 1;
595
596 memcpy(ptr + 2, hdev->dev_name, name_len);
597
598 ptr += (name_len + 2);
599 }
600
601 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
602 ptr[0] = 2;
603 ptr[1] = EIR_TX_POWER;
604 ptr[2] = (u8) hdev->inq_tx_power;
605
606 ptr += 3;
607 }
608
609 if (hdev->devid_source > 0) {
610 ptr[0] = 9;
611 ptr[1] = EIR_DEVICE_ID;
612
613 put_unaligned_le16(hdev->devid_source, ptr + 2);
614 put_unaligned_le16(hdev->devid_vendor, ptr + 4);
615 put_unaligned_le16(hdev->devid_product, ptr + 6);
616 put_unaligned_le16(hdev->devid_version, ptr + 8);
617
618 ptr += 10;
619 }
620
621 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
622 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
623 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
624}
625
626void __hci_req_update_eir(struct hci_request *req)
627{
628 struct hci_dev *hdev = req->hdev;
629 struct hci_cp_write_eir cp;
630
631 if (!hdev_is_powered(hdev))
632 return;
633
634 if (!lmp_ext_inq_capable(hdev))
635 return;
636
637 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
638 return;
639
640 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
641 return;
642
643 memset(&cp, 0, sizeof(cp));
644
645 create_eir(hdev, cp.data);
646
647 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
648 return;
649
650 memcpy(hdev->eir, cp.data, sizeof(cp.data));
651
652 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
653}
654
655void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn)
656{
657 struct hci_dev *hdev = req->hdev;
658
659 if (hdev->scanning_paused) {
660 bt_dev_dbg(hdev, "Scanning is paused for suspend");
661 return;
662 }
663
664 if (use_ext_scan(hdev)) {
665 struct hci_cp_le_set_ext_scan_enable cp;
666
667 memset(&cp, 0, sizeof(cp));
668 cp.enable = LE_SCAN_DISABLE;
669 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
670 &cp);
671 } else {
672 struct hci_cp_le_set_scan_enable cp;
673
674 memset(&cp, 0, sizeof(cp));
675 cp.enable = LE_SCAN_DISABLE;
676 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
677 }
678
679 /* Disable address resolution */
680 if (use_ll_privacy(hdev) &&
681 hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
682 hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) {
683 __u8 enable = 0x00;
684
685 hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
686 }
687}
688
689static void del_from_white_list(struct hci_request *req, bdaddr_t *bdaddr,
690 u8 bdaddr_type)
691{
692 struct hci_cp_le_del_from_white_list cp;
693
694 cp.bdaddr_type = bdaddr_type;
695 bacpy(&cp.bdaddr, bdaddr);
696
697 bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from whitelist", &cp.bdaddr,
698 cp.bdaddr_type);
699 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, sizeof(cp), &cp);
700
701 if (use_ll_privacy(req->hdev)) {
702 struct smp_irk *irk;
703
704 irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type);
705 if (irk) {
706 struct hci_cp_le_del_from_resolv_list cp;
707
708 cp.bdaddr_type = bdaddr_type;
709 bacpy(&cp.bdaddr, bdaddr);
710
711 hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
712 sizeof(cp), &cp);
713 }
714 }
715}
716
717/* Adds connection to white list if needed. On error, returns -1. */
718static int add_to_white_list(struct hci_request *req,
719 struct hci_conn_params *params, u8 *num_entries,
720 bool allow_rpa)
721{
722 struct hci_cp_le_add_to_white_list cp;
723 struct hci_dev *hdev = req->hdev;
724
725 /* Already in white list */
726 if (hci_bdaddr_list_lookup(&hdev->le_white_list, ¶ms->addr,
727 params->addr_type))
728 return 0;
729
730 /* Select filter policy to accept all advertising */
731 if (*num_entries >= hdev->le_white_list_size)
732 return -1;
733
734 /* White list can not be used with RPAs */
735 if (!allow_rpa && !use_ll_privacy(hdev) &&
736 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) {
737 return -1;
738 }
739
740 /* During suspend, only wakeable devices can be in whitelist */
741 if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
742 params->current_flags))
743 return 0;
744
745 *num_entries += 1;
746 cp.bdaddr_type = params->addr_type;
747 bacpy(&cp.bdaddr, ¶ms->addr);
748
749 bt_dev_dbg(hdev, "Add %pMR (0x%x) to whitelist", &cp.bdaddr,
750 cp.bdaddr_type);
751 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
752
753 if (use_ll_privacy(hdev)) {
754 struct smp_irk *irk;
755
756 irk = hci_find_irk_by_addr(hdev, ¶ms->addr,
757 params->addr_type);
758 if (irk) {
759 struct hci_cp_le_add_to_resolv_list cp;
760
761 cp.bdaddr_type = params->addr_type;
762 bacpy(&cp.bdaddr, ¶ms->addr);
763 memcpy(cp.peer_irk, irk->val, 16);
764
765 if (hci_dev_test_flag(hdev, HCI_PRIVACY))
766 memcpy(cp.local_irk, hdev->irk, 16);
767 else
768 memset(cp.local_irk, 0, 16);
769
770 hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST,
771 sizeof(cp), &cp);
772 }
773 }
774
775 return 0;
776}
777
778static u8 update_white_list(struct hci_request *req)
779{
780 struct hci_dev *hdev = req->hdev;
781 struct hci_conn_params *params;
782 struct bdaddr_list *b;
783 u8 num_entries = 0;
784 bool pend_conn, pend_report;
785 /* We allow whitelisting even with RPAs in suspend. In the worst case,
786 * we won't be able to wake from devices that use the privacy1.2
787 * features. Additionally, once we support privacy1.2 and IRK
788 * offloading, we can update this to also check for those conditions.
789 */
790 bool allow_rpa = hdev->suspended;
791
792 /* Go through the current white list programmed into the
793 * controller one by one and check if that address is still
794 * in the list of pending connections or list of devices to
795 * report. If not present in either list, then queue the
796 * command to remove it from the controller.
797 */
798 list_for_each_entry(b, &hdev->le_white_list, list) {
799 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
800 &b->bdaddr,
801 b->bdaddr_type);
802 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
803 &b->bdaddr,
804 b->bdaddr_type);
805
806 /* If the device is not likely to connect or report,
807 * remove it from the whitelist.
808 */
809 if (!pend_conn && !pend_report) {
810 del_from_white_list(req, &b->bdaddr, b->bdaddr_type);
811 continue;
812 }
813
814 /* White list can not be used with RPAs */
815 if (!allow_rpa && !use_ll_privacy(hdev) &&
816 hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
817 return 0x00;
818 }
819
820 num_entries++;
821 }
822
823 /* Since all no longer valid white list entries have been
824 * removed, walk through the list of pending connections
825 * and ensure that any new device gets programmed into
826 * the controller.
827 *
828 * If the list of the devices is larger than the list of
829 * available white list entries in the controller, then
830 * just abort and return filer policy value to not use the
831 * white list.
832 */
833 list_for_each_entry(params, &hdev->pend_le_conns, action) {
834 if (add_to_white_list(req, params, &num_entries, allow_rpa))
835 return 0x00;
836 }
837
838 /* After adding all new pending connections, walk through
839 * the list of pending reports and also add these to the
840 * white list if there is still space. Abort if space runs out.
841 */
842 list_for_each_entry(params, &hdev->pend_le_reports, action) {
843 if (add_to_white_list(req, params, &num_entries, allow_rpa))
844 return 0x00;
845 }
846
847 /* Once the controller offloading of advertisement monitor is in place,
848 * the if condition should include the support of MSFT extension
849 * support. If suspend is ongoing, whitelist should be the default to
850 * prevent waking by random advertisements.
851 */
852 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended)
853 return 0x00;
854
855 /* Select filter policy to use white list */
856 return 0x01;
857}
858
859static bool scan_use_rpa(struct hci_dev *hdev)
860{
861 return hci_dev_test_flag(hdev, HCI_PRIVACY);
862}
863
864static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
865 u16 window, u8 own_addr_type, u8 filter_policy,
866 bool addr_resolv)
867{
868 struct hci_dev *hdev = req->hdev;
869
870 if (hdev->scanning_paused) {
871 bt_dev_dbg(hdev, "Scanning is paused for suspend");
872 return;
873 }
874
875 if (use_ll_privacy(hdev) &&
876 hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
877 addr_resolv) {
878 u8 enable = 0x01;
879
880 hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
881 }
882
883 /* Use ext scanning if set ext scan param and ext scan enable is
884 * supported
885 */
886 if (use_ext_scan(hdev)) {
887 struct hci_cp_le_set_ext_scan_params *ext_param_cp;
888 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
889 struct hci_cp_le_scan_phy_params *phy_params;
890 u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
891 u32 plen;
892
893 ext_param_cp = (void *)data;
894 phy_params = (void *)ext_param_cp->data;
895
896 memset(ext_param_cp, 0, sizeof(*ext_param_cp));
897 ext_param_cp->own_addr_type = own_addr_type;
898 ext_param_cp->filter_policy = filter_policy;
899
900 plen = sizeof(*ext_param_cp);
901
902 if (scan_1m(hdev) || scan_2m(hdev)) {
903 ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;
904
905 memset(phy_params, 0, sizeof(*phy_params));
906 phy_params->type = type;
907 phy_params->interval = cpu_to_le16(interval);
908 phy_params->window = cpu_to_le16(window);
909
910 plen += sizeof(*phy_params);
911 phy_params++;
912 }
913
914 if (scan_coded(hdev)) {
915 ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;
916
917 memset(phy_params, 0, sizeof(*phy_params));
918 phy_params->type = type;
919 phy_params->interval = cpu_to_le16(interval);
920 phy_params->window = cpu_to_le16(window);
921
922 plen += sizeof(*phy_params);
923 phy_params++;
924 }
925
926 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
927 plen, ext_param_cp);
928
929 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
930 ext_enable_cp.enable = LE_SCAN_ENABLE;
931 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
932
933 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
934 sizeof(ext_enable_cp), &ext_enable_cp);
935 } else {
936 struct hci_cp_le_set_scan_param param_cp;
937 struct hci_cp_le_set_scan_enable enable_cp;
938
939 memset(¶m_cp, 0, sizeof(param_cp));
940 param_cp.type = type;
941 param_cp.interval = cpu_to_le16(interval);
942 param_cp.window = cpu_to_le16(window);
943 param_cp.own_address_type = own_addr_type;
944 param_cp.filter_policy = filter_policy;
945 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
946 ¶m_cp);
947
948 memset(&enable_cp, 0, sizeof(enable_cp));
949 enable_cp.enable = LE_SCAN_ENABLE;
950 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
951 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
952 &enable_cp);
953 }
954}
955
956/* Returns true if an le connection is in the scanning state */
957static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
958{
959 struct hci_conn_hash *h = &hdev->conn_hash;
960 struct hci_conn *c;
961
962 rcu_read_lock();
963
964 list_for_each_entry_rcu(c, &h->list, list) {
965 if (c->type == LE_LINK && c->state == BT_CONNECT &&
966 test_bit(HCI_CONN_SCANNING, &c->flags)) {
967 rcu_read_unlock();
968 return true;
969 }
970 }
971
972 rcu_read_unlock();
973
974 return false;
975}
976
977/* Ensure to call hci_req_add_le_scan_disable() first to disable the
978 * controller based address resolution to be able to reconfigure
979 * resolving list.
980 */
981void hci_req_add_le_passive_scan(struct hci_request *req)
982{
983 struct hci_dev *hdev = req->hdev;
984 u8 own_addr_type;
985 u8 filter_policy;
986 u16 window, interval;
987 /* Background scanning should run with address resolution */
988 bool addr_resolv = true;
989
990 if (hdev->scanning_paused) {
991 bt_dev_dbg(hdev, "Scanning is paused for suspend");
992 return;
993 }
994
995 /* Set require_privacy to false since no SCAN_REQ are send
996 * during passive scanning. Not using an non-resolvable address
997 * here is important so that peer devices using direct
998 * advertising with our address will be correctly reported
999 * by the controller.
1000 */
1001 if (hci_update_random_address(req, false, scan_use_rpa(hdev),
1002 &own_addr_type))
1003 return;
1004
1005 /* Adding or removing entries from the white list must
1006 * happen before enabling scanning. The controller does
1007 * not allow white list modification while scanning.
1008 */
1009 filter_policy = update_white_list(req);
1010
1011 /* When the controller is using random resolvable addresses and
1012 * with that having LE privacy enabled, then controllers with
1013 * Extended Scanner Filter Policies support can now enable support
1014 * for handling directed advertising.
1015 *
1016 * So instead of using filter polices 0x00 (no whitelist)
1017 * and 0x01 (whitelist enabled) use the new filter policies
1018 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
1019 */
1020 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
1021 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
1022 filter_policy |= 0x02;
1023
1024 if (hdev->suspended) {
1025 window = hdev->le_scan_window_suspend;
1026 interval = hdev->le_scan_int_suspend;
1027 } else if (hci_is_le_conn_scanning(hdev)) {
1028 window = hdev->le_scan_window_connect;
1029 interval = hdev->le_scan_int_connect;
1030 } else {
1031 window = hdev->le_scan_window;
1032 interval = hdev->le_scan_interval;
1033 }
1034
1035 bt_dev_dbg(hdev, "LE passive scan with whitelist = %d", filter_policy);
1036 hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
1037 own_addr_type, filter_policy, addr_resolv);
1038}
1039
1040static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance)
1041{
1042 struct adv_info *adv_instance;
1043
1044 /* Instance 0x00 always set local name */
1045 if (instance == 0x00)
1046 return 1;
1047
1048 adv_instance = hci_find_adv_instance(hdev, instance);
1049 if (!adv_instance)
1050 return 0;
1051
1052 /* TODO: Take into account the "appearance" and "local-name" flags here.
1053 * These are currently being ignored as they are not supported.
1054 */
1055 return adv_instance->scan_rsp_len;
1056}
1057
1058static void hci_req_clear_event_filter(struct hci_request *req)
1059{
1060 struct hci_cp_set_event_filter f;
1061
1062 memset(&f, 0, sizeof(f));
1063 f.flt_type = HCI_FLT_CLEAR_ALL;
1064 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &f);
1065
1066 /* Update page scan state (since we may have modified it when setting
1067 * the event filter).
1068 */
1069 __hci_req_update_scan(req);
1070}
1071
1072static void hci_req_set_event_filter(struct hci_request *req)
1073{
1074 struct bdaddr_list_with_flags *b;
1075 struct hci_cp_set_event_filter f;
1076 struct hci_dev *hdev = req->hdev;
1077 u8 scan = SCAN_DISABLED;
1078
1079 /* Always clear event filter when starting */
1080 hci_req_clear_event_filter(req);
1081
1082 list_for_each_entry(b, &hdev->whitelist, list) {
1083 if (!hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
1084 b->current_flags))
1085 continue;
1086
1087 memset(&f, 0, sizeof(f));
1088 bacpy(&f.addr_conn_flt.bdaddr, &b->bdaddr);
1089 f.flt_type = HCI_FLT_CONN_SETUP;
1090 f.cond_type = HCI_CONN_SETUP_ALLOW_BDADDR;
1091 f.addr_conn_flt.auto_accept = HCI_CONN_SETUP_AUTO_ON;
1092
1093 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
1094 hci_req_add(req, HCI_OP_SET_EVENT_FLT, sizeof(f), &f);
1095 scan = SCAN_PAGE;
1096 }
1097
1098 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1099}
1100
1101static void hci_req_config_le_suspend_scan(struct hci_request *req)
1102{
1103 /* Before changing params disable scan if enabled */
1104 if (hci_dev_test_flag(req->hdev, HCI_LE_SCAN))
1105 hci_req_add_le_scan_disable(req, false);
1106
1107 /* Configure params and enable scanning */
1108 hci_req_add_le_passive_scan(req);
1109
1110 /* Block suspend notifier on response */
1111 set_bit(SUSPEND_SCAN_ENABLE, req->hdev->suspend_tasks);
1112}
1113
1114static void suspend_req_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1115{
1116 bt_dev_dbg(hdev, "Request complete opcode=0x%x, status=0x%x", opcode,
1117 status);
1118 if (test_and_clear_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks) ||
1119 test_and_clear_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks)) {
1120 wake_up(&hdev->suspend_wait_q);
1121 }
1122}
1123
1124/* Call with hci_dev_lock */
1125void hci_req_prepare_suspend(struct hci_dev *hdev, enum suspended_state next)
1126{
1127 int old_state;
1128 struct hci_conn *conn;
1129 struct hci_request req;
1130 u8 page_scan;
1131 int disconnect_counter;
1132
1133 if (next == hdev->suspend_state) {
1134 bt_dev_dbg(hdev, "Same state before and after: %d", next);
1135 goto done;
1136 }
1137
1138 hdev->suspend_state = next;
1139 hci_req_init(&req, hdev);
1140
1141 if (next == BT_SUSPEND_DISCONNECT) {
1142 /* Mark device as suspended */
1143 hdev->suspended = true;
1144
1145 /* Pause discovery if not already stopped */
1146 old_state = hdev->discovery.state;
1147 if (old_state != DISCOVERY_STOPPED) {
1148 set_bit(SUSPEND_PAUSE_DISCOVERY, hdev->suspend_tasks);
1149 hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
1150 queue_work(hdev->req_workqueue, &hdev->discov_update);
1151 }
1152
1153 hdev->discovery_paused = true;
1154 hdev->discovery_old_state = old_state;
1155
1156 /* Stop advertising */
1157 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
1158 if (old_state) {
1159 set_bit(SUSPEND_PAUSE_ADVERTISING, hdev->suspend_tasks);
1160 cancel_delayed_work(&hdev->discov_off);
1161 queue_delayed_work(hdev->req_workqueue,
1162 &hdev->discov_off, 0);
1163 }
1164
1165 hdev->advertising_paused = true;
1166 hdev->advertising_old_state = old_state;
1167 /* Disable page scan */
1168 page_scan = SCAN_DISABLED;
1169 hci_req_add(&req, HCI_OP_WRITE_SCAN_ENABLE, 1, &page_scan);
1170
1171 /* Disable LE passive scan if enabled */
1172 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
1173 hci_req_add_le_scan_disable(&req, false);
1174
1175 /* Mark task needing completion */
1176 set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
1177
1178 /* Prevent disconnects from causing scanning to be re-enabled */
1179 hdev->scanning_paused = true;
1180
1181 /* Run commands before disconnecting */
1182 hci_req_run(&req, suspend_req_complete);
1183
1184 disconnect_counter = 0;
1185 /* Soft disconnect everything (power off) */
1186 list_for_each_entry(conn, &hdev->conn_hash.list, list) {
1187 hci_disconnect(conn, HCI_ERROR_REMOTE_POWER_OFF);
1188 disconnect_counter++;
1189 }
1190
1191 if (disconnect_counter > 0) {
1192 bt_dev_dbg(hdev,
1193 "Had %d disconnects. Will wait on them",
1194 disconnect_counter);
1195 set_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks);
1196 }
1197 } else if (next == BT_SUSPEND_CONFIGURE_WAKE) {
1198 /* Unpause to take care of updating scanning params */
1199 hdev->scanning_paused = false;
1200 /* Enable event filter for paired devices */
1201 hci_req_set_event_filter(&req);
1202 /* Enable passive scan at lower duty cycle */
1203 hci_req_config_le_suspend_scan(&req);
1204 /* Pause scan changes again. */
1205 hdev->scanning_paused = true;
1206 hci_req_run(&req, suspend_req_complete);
1207 } else {
1208 hdev->suspended = false;
1209 hdev->scanning_paused = false;
1210
1211 hci_req_clear_event_filter(&req);
1212 /* Reset passive/background scanning to normal */
1213 hci_req_config_le_suspend_scan(&req);
1214
1215 /* Unpause advertising */
1216 hdev->advertising_paused = false;
1217 if (hdev->advertising_old_state) {
1218 set_bit(SUSPEND_UNPAUSE_ADVERTISING,
1219 hdev->suspend_tasks);
1220 hci_dev_set_flag(hdev, HCI_ADVERTISING);
1221 queue_work(hdev->req_workqueue,
1222 &hdev->discoverable_update);
1223 hdev->advertising_old_state = 0;
1224 }
1225
1226 /* Unpause discovery */
1227 hdev->discovery_paused = false;
1228 if (hdev->discovery_old_state != DISCOVERY_STOPPED &&
1229 hdev->discovery_old_state != DISCOVERY_STOPPING) {
1230 set_bit(SUSPEND_UNPAUSE_DISCOVERY, hdev->suspend_tasks);
1231 hci_discovery_set_state(hdev, DISCOVERY_STARTING);
1232 queue_work(hdev->req_workqueue, &hdev->discov_update);
1233 }
1234
1235 hci_req_run(&req, suspend_req_complete);
1236 }
1237
1238 hdev->suspend_state = next;
1239
1240done:
1241 clear_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
1242 wake_up(&hdev->suspend_wait_q);
1243}
1244
1245static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
1246{
1247 u8 instance = hdev->cur_adv_instance;
1248 struct adv_info *adv_instance;
1249
1250 /* Instance 0x00 always set local name */
1251 if (instance == 0x00)
1252 return 1;
1253
1254 adv_instance = hci_find_adv_instance(hdev, instance);
1255 if (!adv_instance)
1256 return 0;
1257
1258 /* TODO: Take into account the "appearance" and "local-name" flags here.
1259 * These are currently being ignored as they are not supported.
1260 */
1261 return adv_instance->scan_rsp_len;
1262}
1263
1264void __hci_req_disable_advertising(struct hci_request *req)
1265{
1266 if (ext_adv_capable(req->hdev)) {
1267 __hci_req_disable_ext_adv_instance(req, 0x00);
1268
1269 } else {
1270 u8 enable = 0x00;
1271
1272 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1273 }
1274}
1275
1276static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1277{
1278 u32 flags;
1279 struct adv_info *adv_instance;
1280
1281 if (instance == 0x00) {
1282 /* Instance 0 always manages the "Tx Power" and "Flags"
1283 * fields
1284 */
1285 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1286
1287 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1288 * corresponds to the "connectable" instance flag.
1289 */
1290 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1291 flags |= MGMT_ADV_FLAG_CONNECTABLE;
1292
1293 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1294 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1295 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1296 flags |= MGMT_ADV_FLAG_DISCOV;
1297
1298 return flags;
1299 }
1300
1301 adv_instance = hci_find_adv_instance(hdev, instance);
1302
1303 /* Return 0 when we got an invalid instance identifier. */
1304 if (!adv_instance)
1305 return 0;
1306
1307 return adv_instance->flags;
1308}
1309
1310static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
1311{
1312 /* If privacy is not enabled don't use RPA */
1313 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
1314 return false;
1315
1316 /* If basic privacy mode is enabled use RPA */
1317 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1318 return true;
1319
1320 /* If limited privacy mode is enabled don't use RPA if we're
1321 * both discoverable and bondable.
1322 */
1323 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1324 hci_dev_test_flag(hdev, HCI_BONDABLE))
1325 return false;
1326
1327 /* We're neither bondable nor discoverable in the limited
1328 * privacy mode, therefore use RPA.
1329 */
1330 return true;
1331}
1332
1333static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
1334{
1335 /* If there is no connection we are OK to advertise. */
1336 if (hci_conn_num(hdev, LE_LINK) == 0)
1337 return true;
1338
1339 /* Check le_states if there is any connection in slave role. */
1340 if (hdev->conn_hash.le_num_slave > 0) {
1341 /* Slave connection state and non connectable mode bit 20. */
1342 if (!connectable && !(hdev->le_states[2] & 0x10))
1343 return false;
1344
1345 /* Slave connection state and connectable mode bit 38
1346 * and scannable bit 21.
1347 */
1348 if (connectable && (!(hdev->le_states[4] & 0x40) ||
1349 !(hdev->le_states[2] & 0x20)))
1350 return false;
1351 }
1352
1353 /* Check le_states if there is any connection in master role. */
1354 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
1355 /* Master connection state and non connectable mode bit 18. */
1356 if (!connectable && !(hdev->le_states[2] & 0x02))
1357 return false;
1358
1359 /* Master connection state and connectable mode bit 35 and
1360 * scannable 19.
1361 */
1362 if (connectable && (!(hdev->le_states[4] & 0x08) ||
1363 !(hdev->le_states[2] & 0x08)))
1364 return false;
1365 }
1366
1367 return true;
1368}
1369
1370void __hci_req_enable_advertising(struct hci_request *req)
1371{
1372 struct hci_dev *hdev = req->hdev;
1373 struct hci_cp_le_set_adv_param cp;
1374 u8 own_addr_type, enable = 0x01;
1375 bool connectable;
1376 u16 adv_min_interval, adv_max_interval;
1377 u32 flags;
1378
1379 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
1380
1381 /* If the "connectable" instance flag was not set, then choose between
1382 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1383 */
1384 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1385 mgmt_get_connectable(hdev);
1386
1387 if (!is_advertising_allowed(hdev, connectable))
1388 return;
1389
1390 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1391 __hci_req_disable_advertising(req);
1392
1393 /* Clear the HCI_LE_ADV bit temporarily so that the
1394 * hci_update_random_address knows that it's safe to go ahead
1395 * and write a new random address. The flag will be set back on
1396 * as soon as the SET_ADV_ENABLE HCI command completes.
1397 */
1398 hci_dev_clear_flag(hdev, HCI_LE_ADV);
1399
1400 /* Set require_privacy to true only when non-connectable
1401 * advertising is used. In that case it is fine to use a
1402 * non-resolvable private address.
1403 */
1404 if (hci_update_random_address(req, !connectable,
1405 adv_use_rpa(hdev, flags),
1406 &own_addr_type) < 0)
1407 return;
1408
1409 memset(&cp, 0, sizeof(cp));
1410
1411 if (connectable) {
1412 cp.type = LE_ADV_IND;
1413
1414 adv_min_interval = hdev->le_adv_min_interval;
1415 adv_max_interval = hdev->le_adv_max_interval;
1416 } else {
1417 if (get_cur_adv_instance_scan_rsp_len(hdev))
1418 cp.type = LE_ADV_SCAN_IND;
1419 else
1420 cp.type = LE_ADV_NONCONN_IND;
1421
1422 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1423 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1424 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1425 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1426 } else {
1427 adv_min_interval = hdev->le_adv_min_interval;
1428 adv_max_interval = hdev->le_adv_max_interval;
1429 }
1430 }
1431
1432 cp.min_interval = cpu_to_le16(adv_min_interval);
1433 cp.max_interval = cpu_to_le16(adv_max_interval);
1434 cp.own_address_type = own_addr_type;
1435 cp.channel_map = hdev->le_adv_channel_map;
1436
1437 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1438
1439 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1440}
1441
1442u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1443{
1444 size_t short_len;
1445 size_t complete_len;
1446
1447 /* no space left for name (+ NULL + type + len) */
1448 if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1449 return ad_len;
1450
1451 /* use complete name if present and fits */
1452 complete_len = strlen(hdev->dev_name);
1453 if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1454 return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1455 hdev->dev_name, complete_len + 1);
1456
1457 /* use short name if present */
1458 short_len = strlen(hdev->short_name);
1459 if (short_len)
1460 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1461 hdev->short_name, short_len + 1);
1462
1463 /* use shortened full name if present, we already know that name
1464 * is longer then HCI_MAX_SHORT_NAME_LENGTH
1465 */
1466 if (complete_len) {
1467 u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1468
1469 memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1470 name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1471
1472 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1473 sizeof(name));
1474 }
1475
1476 return ad_len;
1477}
1478
1479static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1480{
1481 return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1482}
1483
1484static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1485{
1486 u8 scan_rsp_len = 0;
1487
1488 if (hdev->appearance) {
1489 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1490 }
1491
1492 return append_local_name(hdev, ptr, scan_rsp_len);
1493}
1494
1495static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1496 u8 *ptr)
1497{
1498 struct adv_info *adv_instance;
1499 u32 instance_flags;
1500 u8 scan_rsp_len = 0;
1501
1502 adv_instance = hci_find_adv_instance(hdev, instance);
1503 if (!adv_instance)
1504 return 0;
1505
1506 instance_flags = adv_instance->flags;
1507
1508 if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1509 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1510 }
1511
1512 memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1513 adv_instance->scan_rsp_len);
1514
1515 scan_rsp_len += adv_instance->scan_rsp_len;
1516
1517 if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1518 scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1519
1520 return scan_rsp_len;
1521}
1522
1523void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1524{
1525 struct hci_dev *hdev = req->hdev;
1526 u8 len;
1527
1528 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1529 return;
1530
1531 if (ext_adv_capable(hdev)) {
1532 struct hci_cp_le_set_ext_scan_rsp_data cp;
1533
1534 memset(&cp, 0, sizeof(cp));
1535
1536 if (instance)
1537 len = create_instance_scan_rsp_data(hdev, instance,
1538 cp.data);
1539 else
1540 len = create_default_scan_rsp_data(hdev, cp.data);
1541
1542 if (hdev->scan_rsp_data_len == len &&
1543 !memcmp(cp.data, hdev->scan_rsp_data, len))
1544 return;
1545
1546 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1547 hdev->scan_rsp_data_len = len;
1548
1549 cp.handle = instance;
1550 cp.length = len;
1551 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1552 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1553
1554 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
1555 &cp);
1556 } else {
1557 struct hci_cp_le_set_scan_rsp_data cp;
1558
1559 memset(&cp, 0, sizeof(cp));
1560
1561 if (instance)
1562 len = create_instance_scan_rsp_data(hdev, instance,
1563 cp.data);
1564 else
1565 len = create_default_scan_rsp_data(hdev, cp.data);
1566
1567 if (hdev->scan_rsp_data_len == len &&
1568 !memcmp(cp.data, hdev->scan_rsp_data, len))
1569 return;
1570
1571 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1572 hdev->scan_rsp_data_len = len;
1573
1574 cp.length = len;
1575
1576 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1577 }
1578}
1579
1580static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1581{
1582 struct adv_info *adv_instance = NULL;
1583 u8 ad_len = 0, flags = 0;
1584 u32 instance_flags;
1585
1586 /* Return 0 when the current instance identifier is invalid. */
1587 if (instance) {
1588 adv_instance = hci_find_adv_instance(hdev, instance);
1589 if (!adv_instance)
1590 return 0;
1591 }
1592
1593 instance_flags = get_adv_instance_flags(hdev, instance);
1594
1595 /* If instance already has the flags set skip adding it once
1596 * again.
1597 */
1598 if (adv_instance && eir_get_data(adv_instance->adv_data,
1599 adv_instance->adv_data_len, EIR_FLAGS,
1600 NULL))
1601 goto skip_flags;
1602
1603 /* The Add Advertising command allows userspace to set both the general
1604 * and limited discoverable flags.
1605 */
1606 if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1607 flags |= LE_AD_GENERAL;
1608
1609 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1610 flags |= LE_AD_LIMITED;
1611
1612 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1613 flags |= LE_AD_NO_BREDR;
1614
1615 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1616 /* If a discovery flag wasn't provided, simply use the global
1617 * settings.
1618 */
1619 if (!flags)
1620 flags |= mgmt_get_adv_discov_flags(hdev);
1621
1622 /* If flags would still be empty, then there is no need to
1623 * include the "Flags" AD field".
1624 */
1625 if (flags) {
1626 ptr[0] = 0x02;
1627 ptr[1] = EIR_FLAGS;
1628 ptr[2] = flags;
1629
1630 ad_len += 3;
1631 ptr += 3;
1632 }
1633 }
1634
1635skip_flags:
1636 if (adv_instance) {
1637 memcpy(ptr, adv_instance->adv_data,
1638 adv_instance->adv_data_len);
1639 ad_len += adv_instance->adv_data_len;
1640 ptr += adv_instance->adv_data_len;
1641 }
1642
1643 if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
1644 s8 adv_tx_power;
1645
1646 if (ext_adv_capable(hdev)) {
1647 if (adv_instance)
1648 adv_tx_power = adv_instance->tx_power;
1649 else
1650 adv_tx_power = hdev->adv_tx_power;
1651 } else {
1652 adv_tx_power = hdev->adv_tx_power;
1653 }
1654
1655 /* Provide Tx Power only if we can provide a valid value for it */
1656 if (adv_tx_power != HCI_TX_POWER_INVALID) {
1657 ptr[0] = 0x02;
1658 ptr[1] = EIR_TX_POWER;
1659 ptr[2] = (u8)adv_tx_power;
1660
1661 ad_len += 3;
1662 ptr += 3;
1663 }
1664 }
1665
1666 return ad_len;
1667}
1668
1669void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1670{
1671 struct hci_dev *hdev = req->hdev;
1672 u8 len;
1673
1674 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1675 return;
1676
1677 if (ext_adv_capable(hdev)) {
1678 struct hci_cp_le_set_ext_adv_data cp;
1679
1680 memset(&cp, 0, sizeof(cp));
1681
1682 len = create_instance_adv_data(hdev, instance, cp.data);
1683
1684 /* There's nothing to do if the data hasn't changed */
1685 if (hdev->adv_data_len == len &&
1686 memcmp(cp.data, hdev->adv_data, len) == 0)
1687 return;
1688
1689 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1690 hdev->adv_data_len = len;
1691
1692 cp.length = len;
1693 cp.handle = instance;
1694 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1695 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1696
1697 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
1698 } else {
1699 struct hci_cp_le_set_adv_data cp;
1700
1701 memset(&cp, 0, sizeof(cp));
1702
1703 len = create_instance_adv_data(hdev, instance, cp.data);
1704
1705 /* There's nothing to do if the data hasn't changed */
1706 if (hdev->adv_data_len == len &&
1707 memcmp(cp.data, hdev->adv_data, len) == 0)
1708 return;
1709
1710 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1711 hdev->adv_data_len = len;
1712
1713 cp.length = len;
1714
1715 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1716 }
1717}
1718
1719int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1720{
1721 struct hci_request req;
1722
1723 hci_req_init(&req, hdev);
1724 __hci_req_update_adv_data(&req, instance);
1725
1726 return hci_req_run(&req, NULL);
1727}
1728
1729static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status,
1730 u16 opcode)
1731{
1732 BT_DBG("%s status %u", hdev->name, status);
1733}
1734
1735void hci_req_disable_address_resolution(struct hci_dev *hdev)
1736{
1737 struct hci_request req;
1738 __u8 enable = 0x00;
1739
1740 if (!use_ll_privacy(hdev) &&
1741 !hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1742 return;
1743
1744 hci_req_init(&req, hdev);
1745
1746 hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
1747
1748 hci_req_run(&req, enable_addr_resolution_complete);
1749}
1750
1751static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1752{
1753 BT_DBG("%s status %u", hdev->name, status);
1754}
1755
1756void hci_req_reenable_advertising(struct hci_dev *hdev)
1757{
1758 struct hci_request req;
1759
1760 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1761 list_empty(&hdev->adv_instances))
1762 return;
1763
1764 hci_req_init(&req, hdev);
1765
1766 if (hdev->cur_adv_instance) {
1767 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1768 true);
1769 } else {
1770 if (ext_adv_capable(hdev)) {
1771 __hci_req_start_ext_adv(&req, 0x00);
1772 } else {
1773 __hci_req_update_adv_data(&req, 0x00);
1774 __hci_req_update_scan_rsp_data(&req, 0x00);
1775 __hci_req_enable_advertising(&req);
1776 }
1777 }
1778
1779 hci_req_run(&req, adv_enable_complete);
1780}
1781
1782static void adv_timeout_expire(struct work_struct *work)
1783{
1784 struct hci_dev *hdev = container_of(work, struct hci_dev,
1785 adv_instance_expire.work);
1786
1787 struct hci_request req;
1788 u8 instance;
1789
1790 BT_DBG("%s", hdev->name);
1791
1792 hci_dev_lock(hdev);
1793
1794 hdev->adv_instance_timeout = 0;
1795
1796 instance = hdev->cur_adv_instance;
1797 if (instance == 0x00)
1798 goto unlock;
1799
1800 hci_req_init(&req, hdev);
1801
1802 hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1803
1804 if (list_empty(&hdev->adv_instances))
1805 __hci_req_disable_advertising(&req);
1806
1807 hci_req_run(&req, NULL);
1808
1809unlock:
1810 hci_dev_unlock(hdev);
1811}
1812
1813int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
1814 bool use_rpa, struct adv_info *adv_instance,
1815 u8 *own_addr_type, bdaddr_t *rand_addr)
1816{
1817 int err;
1818
1819 bacpy(rand_addr, BDADDR_ANY);
1820
1821 /* If privacy is enabled use a resolvable private address. If
1822 * current RPA has expired then generate a new one.
1823 */
1824 if (use_rpa) {
1825 int to;
1826
1827 *own_addr_type = ADDR_LE_DEV_RANDOM;
1828
1829 if (adv_instance) {
1830 if (!adv_instance->rpa_expired &&
1831 !bacmp(&adv_instance->random_addr, &hdev->rpa))
1832 return 0;
1833
1834 adv_instance->rpa_expired = false;
1835 } else {
1836 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1837 !bacmp(&hdev->random_addr, &hdev->rpa))
1838 return 0;
1839 }
1840
1841 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1842 if (err < 0) {
1843 bt_dev_err(hdev, "failed to generate new RPA");
1844 return err;
1845 }
1846
1847 bacpy(rand_addr, &hdev->rpa);
1848
1849 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1850 if (adv_instance)
1851 queue_delayed_work(hdev->workqueue,
1852 &adv_instance->rpa_expired_cb, to);
1853 else
1854 queue_delayed_work(hdev->workqueue,
1855 &hdev->rpa_expired, to);
1856
1857 return 0;
1858 }
1859
1860 /* In case of required privacy without resolvable private address,
1861 * use an non-resolvable private address. This is useful for
1862 * non-connectable advertising.
1863 */
1864 if (require_privacy) {
1865 bdaddr_t nrpa;
1866
1867 while (true) {
1868 /* The non-resolvable private address is generated
1869 * from random six bytes with the two most significant
1870 * bits cleared.
1871 */
1872 get_random_bytes(&nrpa, 6);
1873 nrpa.b[5] &= 0x3f;
1874
1875 /* The non-resolvable private address shall not be
1876 * equal to the public address.
1877 */
1878 if (bacmp(&hdev->bdaddr, &nrpa))
1879 break;
1880 }
1881
1882 *own_addr_type = ADDR_LE_DEV_RANDOM;
1883 bacpy(rand_addr, &nrpa);
1884
1885 return 0;
1886 }
1887
1888 /* No privacy so use a public address. */
1889 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1890
1891 return 0;
1892}
1893
1894void __hci_req_clear_ext_adv_sets(struct hci_request *req)
1895{
1896 hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
1897}
1898
1899int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1900{
1901 struct hci_cp_le_set_ext_adv_params cp;
1902 struct hci_dev *hdev = req->hdev;
1903 bool connectable;
1904 u32 flags;
1905 bdaddr_t random_addr;
1906 u8 own_addr_type;
1907 int err;
1908 struct adv_info *adv_instance;
1909 bool secondary_adv;
1910
1911 if (instance > 0) {
1912 adv_instance = hci_find_adv_instance(hdev, instance);
1913 if (!adv_instance)
1914 return -EINVAL;
1915 } else {
1916 adv_instance = NULL;
1917 }
1918
1919 flags = get_adv_instance_flags(hdev, instance);
1920
1921 /* If the "connectable" instance flag was not set, then choose between
1922 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1923 */
1924 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1925 mgmt_get_connectable(hdev);
1926
1927 if (!is_advertising_allowed(hdev, connectable))
1928 return -EPERM;
1929
1930 /* Set require_privacy to true only when non-connectable
1931 * advertising is used. In that case it is fine to use a
1932 * non-resolvable private address.
1933 */
1934 err = hci_get_random_address(hdev, !connectable,
1935 adv_use_rpa(hdev, flags), adv_instance,
1936 &own_addr_type, &random_addr);
1937 if (err < 0)
1938 return err;
1939
1940 memset(&cp, 0, sizeof(cp));
1941
1942 /* In ext adv set param interval is 3 octets */
1943 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1944 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1945
1946 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1947
1948 if (connectable) {
1949 if (secondary_adv)
1950 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1951 else
1952 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1953 } else if (get_adv_instance_scan_rsp_len(hdev, instance)) {
1954 if (secondary_adv)
1955 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1956 else
1957 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1958 } else {
1959 if (secondary_adv)
1960 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1961 else
1962 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1963 }
1964
1965 cp.own_addr_type = own_addr_type;
1966 cp.channel_map = hdev->le_adv_channel_map;
1967 cp.tx_power = 127;
1968 cp.handle = instance;
1969
1970 if (flags & MGMT_ADV_FLAG_SEC_2M) {
1971 cp.primary_phy = HCI_ADV_PHY_1M;
1972 cp.secondary_phy = HCI_ADV_PHY_2M;
1973 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1974 cp.primary_phy = HCI_ADV_PHY_CODED;
1975 cp.secondary_phy = HCI_ADV_PHY_CODED;
1976 } else {
1977 /* In all other cases use 1M */
1978 cp.primary_phy = HCI_ADV_PHY_1M;
1979 cp.secondary_phy = HCI_ADV_PHY_1M;
1980 }
1981
1982 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
1983
1984 if (own_addr_type == ADDR_LE_DEV_RANDOM &&
1985 bacmp(&random_addr, BDADDR_ANY)) {
1986 struct hci_cp_le_set_adv_set_rand_addr cp;
1987
1988 /* Check if random address need to be updated */
1989 if (adv_instance) {
1990 if (!bacmp(&random_addr, &adv_instance->random_addr))
1991 return 0;
1992 } else {
1993 if (!bacmp(&random_addr, &hdev->random_addr))
1994 return 0;
1995 }
1996
1997 memset(&cp, 0, sizeof(cp));
1998
1999 cp.handle = instance;
2000 bacpy(&cp.bdaddr, &random_addr);
2001
2002 hci_req_add(req,
2003 HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
2004 sizeof(cp), &cp);
2005 }
2006
2007 return 0;
2008}
2009
2010int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
2011{
2012 struct hci_dev *hdev = req->hdev;
2013 struct hci_cp_le_set_ext_adv_enable *cp;
2014 struct hci_cp_ext_adv_set *adv_set;
2015 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
2016 struct adv_info *adv_instance;
2017
2018 if (instance > 0) {
2019 adv_instance = hci_find_adv_instance(hdev, instance);
2020 if (!adv_instance)
2021 return -EINVAL;
2022 } else {
2023 adv_instance = NULL;
2024 }
2025
2026 cp = (void *) data;
2027 adv_set = (void *) cp->data;
2028
2029 memset(cp, 0, sizeof(*cp));
2030
2031 cp->enable = 0x01;
2032 cp->num_of_sets = 0x01;
2033
2034 memset(adv_set, 0, sizeof(*adv_set));
2035
2036 adv_set->handle = instance;
2037
2038 /* Set duration per instance since controller is responsible for
2039 * scheduling it.
2040 */
2041 if (adv_instance && adv_instance->duration) {
2042 u16 duration = adv_instance->timeout * MSEC_PER_SEC;
2043
2044 /* Time = N * 10 ms */
2045 adv_set->duration = cpu_to_le16(duration / 10);
2046 }
2047
2048 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
2049 sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
2050 data);
2051
2052 return 0;
2053}
2054
2055int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance)
2056{
2057 struct hci_dev *hdev = req->hdev;
2058 struct hci_cp_le_set_ext_adv_enable *cp;
2059 struct hci_cp_ext_adv_set *adv_set;
2060 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
2061 u8 req_size;
2062
2063 /* If request specifies an instance that doesn't exist, fail */
2064 if (instance > 0 && !hci_find_adv_instance(hdev, instance))
2065 return -EINVAL;
2066
2067 memset(data, 0, sizeof(data));
2068
2069 cp = (void *)data;
2070 adv_set = (void *)cp->data;
2071
2072 /* Instance 0x00 indicates all advertising instances will be disabled */
2073 cp->num_of_sets = !!instance;
2074 cp->enable = 0x00;
2075
2076 adv_set->handle = instance;
2077
2078 req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets;
2079 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data);
2080
2081 return 0;
2082}
2083
2084int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance)
2085{
2086 struct hci_dev *hdev = req->hdev;
2087
2088 /* If request specifies an instance that doesn't exist, fail */
2089 if (instance > 0 && !hci_find_adv_instance(hdev, instance))
2090 return -EINVAL;
2091
2092 hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance);
2093
2094 return 0;
2095}
2096
2097int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
2098{
2099 struct hci_dev *hdev = req->hdev;
2100 struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance);
2101 int err;
2102
2103 /* If instance isn't pending, the chip knows about it, and it's safe to
2104 * disable
2105 */
2106 if (adv_instance && !adv_instance->pending)
2107 __hci_req_disable_ext_adv_instance(req, instance);
2108
2109 err = __hci_req_setup_ext_adv_instance(req, instance);
2110 if (err < 0)
2111 return err;
2112
2113 __hci_req_update_scan_rsp_data(req, instance);
2114 __hci_req_enable_ext_advertising(req, instance);
2115
2116 return 0;
2117}
2118
2119int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
2120 bool force)
2121{
2122 struct hci_dev *hdev = req->hdev;
2123 struct adv_info *adv_instance = NULL;
2124 u16 timeout;
2125
2126 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2127 list_empty(&hdev->adv_instances))
2128 return -EPERM;
2129
2130 if (hdev->adv_instance_timeout)
2131 return -EBUSY;
2132
2133 adv_instance = hci_find_adv_instance(hdev, instance);
2134 if (!adv_instance)
2135 return -ENOENT;
2136
2137 /* A zero timeout means unlimited advertising. As long as there is
2138 * only one instance, duration should be ignored. We still set a timeout
2139 * in case further instances are being added later on.
2140 *
2141 * If the remaining lifetime of the instance is more than the duration
2142 * then the timeout corresponds to the duration, otherwise it will be
2143 * reduced to the remaining instance lifetime.
2144 */
2145 if (adv_instance->timeout == 0 ||
2146 adv_instance->duration <= adv_instance->remaining_time)
2147 timeout = adv_instance->duration;
2148 else
2149 timeout = adv_instance->remaining_time;
2150
2151 /* The remaining time is being reduced unless the instance is being
2152 * advertised without time limit.
2153 */
2154 if (adv_instance->timeout)
2155 adv_instance->remaining_time =
2156 adv_instance->remaining_time - timeout;
2157
2158 /* Only use work for scheduling instances with legacy advertising */
2159 if (!ext_adv_capable(hdev)) {
2160 hdev->adv_instance_timeout = timeout;
2161 queue_delayed_work(hdev->req_workqueue,
2162 &hdev->adv_instance_expire,
2163 msecs_to_jiffies(timeout * 1000));
2164 }
2165
2166 /* If we're just re-scheduling the same instance again then do not
2167 * execute any HCI commands. This happens when a single instance is
2168 * being advertised.
2169 */
2170 if (!force && hdev->cur_adv_instance == instance &&
2171 hci_dev_test_flag(hdev, HCI_LE_ADV))
2172 return 0;
2173
2174 hdev->cur_adv_instance = instance;
2175 if (ext_adv_capable(hdev)) {
2176 __hci_req_start_ext_adv(req, instance);
2177 } else {
2178 __hci_req_update_adv_data(req, instance);
2179 __hci_req_update_scan_rsp_data(req, instance);
2180 __hci_req_enable_advertising(req);
2181 }
2182
2183 return 0;
2184}
2185
2186static void cancel_adv_timeout(struct hci_dev *hdev)
2187{
2188 if (hdev->adv_instance_timeout) {
2189 hdev->adv_instance_timeout = 0;
2190 cancel_delayed_work(&hdev->adv_instance_expire);
2191 }
2192}
2193
2194/* For a single instance:
2195 * - force == true: The instance will be removed even when its remaining
2196 * lifetime is not zero.
2197 * - force == false: the instance will be deactivated but kept stored unless
2198 * the remaining lifetime is zero.
2199 *
2200 * For instance == 0x00:
2201 * - force == true: All instances will be removed regardless of their timeout
2202 * setting.
2203 * - force == false: Only instances that have a timeout will be removed.
2204 */
2205void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
2206 struct hci_request *req, u8 instance,
2207 bool force)
2208{
2209 struct adv_info *adv_instance, *n, *next_instance = NULL;
2210 int err;
2211 u8 rem_inst;
2212
2213 /* Cancel any timeout concerning the removed instance(s). */
2214 if (!instance || hdev->cur_adv_instance == instance)
2215 cancel_adv_timeout(hdev);
2216
2217 /* Get the next instance to advertise BEFORE we remove
2218 * the current one. This can be the same instance again
2219 * if there is only one instance.
2220 */
2221 if (instance && hdev->cur_adv_instance == instance)
2222 next_instance = hci_get_next_instance(hdev, instance);
2223
2224 if (instance == 0x00) {
2225 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
2226 list) {
2227 if (!(force || adv_instance->timeout))
2228 continue;
2229
2230 rem_inst = adv_instance->instance;
2231 err = hci_remove_adv_instance(hdev, rem_inst);
2232 if (!err)
2233 mgmt_advertising_removed(sk, hdev, rem_inst);
2234 }
2235 } else {
2236 adv_instance = hci_find_adv_instance(hdev, instance);
2237
2238 if (force || (adv_instance && adv_instance->timeout &&
2239 !adv_instance->remaining_time)) {
2240 /* Don't advertise a removed instance. */
2241 if (next_instance &&
2242 next_instance->instance == instance)
2243 next_instance = NULL;
2244
2245 err = hci_remove_adv_instance(hdev, instance);
2246 if (!err)
2247 mgmt_advertising_removed(sk, hdev, instance);
2248 }
2249 }
2250
2251 if (!req || !hdev_is_powered(hdev) ||
2252 hci_dev_test_flag(hdev, HCI_ADVERTISING))
2253 return;
2254
2255 if (next_instance && !ext_adv_capable(hdev))
2256 __hci_req_schedule_adv_instance(req, next_instance->instance,
2257 false);
2258}
2259
2260static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
2261{
2262 struct hci_dev *hdev = req->hdev;
2263
2264 /* If we're advertising or initiating an LE connection we can't
2265 * go ahead and change the random address at this time. This is
2266 * because the eventual initiator address used for the
2267 * subsequently created connection will be undefined (some
2268 * controllers use the new address and others the one we had
2269 * when the operation started).
2270 *
2271 * In this kind of scenario skip the update and let the random
2272 * address be updated at the next cycle.
2273 */
2274 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
2275 hci_lookup_le_connect(hdev)) {
2276 BT_DBG("Deferring random address update");
2277 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
2278 return;
2279 }
2280
2281 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
2282}
2283
2284int hci_update_random_address(struct hci_request *req, bool require_privacy,
2285 bool use_rpa, u8 *own_addr_type)
2286{
2287 struct hci_dev *hdev = req->hdev;
2288 int err;
2289
2290 /* If privacy is enabled use a resolvable private address. If
2291 * current RPA has expired or there is something else than
2292 * the current RPA in use, then generate a new one.
2293 */
2294 if (use_rpa) {
2295 int to;
2296
2297 /* If Controller supports LL Privacy use own address type is
2298 * 0x03
2299 */
2300 if (use_ll_privacy(hdev))
2301 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
2302 else
2303 *own_addr_type = ADDR_LE_DEV_RANDOM;
2304
2305 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
2306 !bacmp(&hdev->random_addr, &hdev->rpa))
2307 return 0;
2308
2309 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
2310 if (err < 0) {
2311 bt_dev_err(hdev, "failed to generate new RPA");
2312 return err;
2313 }
2314
2315 set_random_addr(req, &hdev->rpa);
2316
2317 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
2318 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
2319
2320 return 0;
2321 }
2322
2323 /* In case of required privacy without resolvable private address,
2324 * use an non-resolvable private address. This is useful for active
2325 * scanning and non-connectable advertising.
2326 */
2327 if (require_privacy) {
2328 bdaddr_t nrpa;
2329
2330 while (true) {
2331 /* The non-resolvable private address is generated
2332 * from random six bytes with the two most significant
2333 * bits cleared.
2334 */
2335 get_random_bytes(&nrpa, 6);
2336 nrpa.b[5] &= 0x3f;
2337
2338 /* The non-resolvable private address shall not be
2339 * equal to the public address.
2340 */
2341 if (bacmp(&hdev->bdaddr, &nrpa))
2342 break;
2343 }
2344
2345 *own_addr_type = ADDR_LE_DEV_RANDOM;
2346 set_random_addr(req, &nrpa);
2347 return 0;
2348 }
2349
2350 /* If forcing static address is in use or there is no public
2351 * address use the static address as random address (but skip
2352 * the HCI command if the current random address is already the
2353 * static one.
2354 *
2355 * In case BR/EDR has been disabled on a dual-mode controller
2356 * and a static address has been configured, then use that
2357 * address instead of the public BR/EDR address.
2358 */
2359 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2360 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2361 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2362 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2363 *own_addr_type = ADDR_LE_DEV_RANDOM;
2364 if (bacmp(&hdev->static_addr, &hdev->random_addr))
2365 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
2366 &hdev->static_addr);
2367 return 0;
2368 }
2369
2370 /* Neither privacy nor static address is being used so use a
2371 * public address.
2372 */
2373 *own_addr_type = ADDR_LE_DEV_PUBLIC;
2374
2375 return 0;
2376}
2377
2378static bool disconnected_whitelist_entries(struct hci_dev *hdev)
2379{
2380 struct bdaddr_list *b;
2381
2382 list_for_each_entry(b, &hdev->whitelist, list) {
2383 struct hci_conn *conn;
2384
2385 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
2386 if (!conn)
2387 return true;
2388
2389 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2390 return true;
2391 }
2392
2393 return false;
2394}
2395
2396void __hci_req_update_scan(struct hci_request *req)
2397{
2398 struct hci_dev *hdev = req->hdev;
2399 u8 scan;
2400
2401 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2402 return;
2403
2404 if (!hdev_is_powered(hdev))
2405 return;
2406
2407 if (mgmt_powering_down(hdev))
2408 return;
2409
2410 if (hdev->scanning_paused)
2411 return;
2412
2413 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2414 disconnected_whitelist_entries(hdev))
2415 scan = SCAN_PAGE;
2416 else
2417 scan = SCAN_DISABLED;
2418
2419 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2420 scan |= SCAN_INQUIRY;
2421
2422 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2423 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2424 return;
2425
2426 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
2427}
2428
2429static int update_scan(struct hci_request *req, unsigned long opt)
2430{
2431 hci_dev_lock(req->hdev);
2432 __hci_req_update_scan(req);
2433 hci_dev_unlock(req->hdev);
2434 return 0;
2435}
2436
2437static void scan_update_work(struct work_struct *work)
2438{
2439 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
2440
2441 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2442}
2443
2444static int connectable_update(struct hci_request *req, unsigned long opt)
2445{
2446 struct hci_dev *hdev = req->hdev;
2447
2448 hci_dev_lock(hdev);
2449
2450 __hci_req_update_scan(req);
2451
2452 /* If BR/EDR is not enabled and we disable advertising as a
2453 * by-product of disabling connectable, we need to update the
2454 * advertising flags.
2455 */
2456 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2457 __hci_req_update_adv_data(req, hdev->cur_adv_instance);
2458
2459 /* Update the advertising parameters if necessary */
2460 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2461 !list_empty(&hdev->adv_instances)) {
2462 if (ext_adv_capable(hdev))
2463 __hci_req_start_ext_adv(req, hdev->cur_adv_instance);
2464 else
2465 __hci_req_enable_advertising(req);
2466 }
2467
2468 __hci_update_background_scan(req);
2469
2470 hci_dev_unlock(hdev);
2471
2472 return 0;
2473}
2474
2475static void connectable_update_work(struct work_struct *work)
2476{
2477 struct hci_dev *hdev = container_of(work, struct hci_dev,
2478 connectable_update);
2479 u8 status;
2480
2481 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
2482 mgmt_set_connectable_complete(hdev, status);
2483}
2484
2485static u8 get_service_classes(struct hci_dev *hdev)
2486{
2487 struct bt_uuid *uuid;
2488 u8 val = 0;
2489
2490 list_for_each_entry(uuid, &hdev->uuids, list)
2491 val |= uuid->svc_hint;
2492
2493 return val;
2494}
2495
2496void __hci_req_update_class(struct hci_request *req)
2497{
2498 struct hci_dev *hdev = req->hdev;
2499 u8 cod[3];
2500
2501 BT_DBG("%s", hdev->name);
2502
2503 if (!hdev_is_powered(hdev))
2504 return;
2505
2506 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2507 return;
2508
2509 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
2510 return;
2511
2512 cod[0] = hdev->minor_class;
2513 cod[1] = hdev->major_class;
2514 cod[2] = get_service_classes(hdev);
2515
2516 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
2517 cod[1] |= 0x20;
2518
2519 if (memcmp(cod, hdev->dev_class, 3) == 0)
2520 return;
2521
2522 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
2523}
2524
2525static void write_iac(struct hci_request *req)
2526{
2527 struct hci_dev *hdev = req->hdev;
2528 struct hci_cp_write_current_iac_lap cp;
2529
2530 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2531 return;
2532
2533 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
2534 /* Limited discoverable mode */
2535 cp.num_iac = min_t(u8, hdev->num_iac, 2);
2536 cp.iac_lap[0] = 0x00; /* LIAC */
2537 cp.iac_lap[1] = 0x8b;
2538 cp.iac_lap[2] = 0x9e;
2539 cp.iac_lap[3] = 0x33; /* GIAC */
2540 cp.iac_lap[4] = 0x8b;
2541 cp.iac_lap[5] = 0x9e;
2542 } else {
2543 /* General discoverable mode */
2544 cp.num_iac = 1;
2545 cp.iac_lap[0] = 0x33; /* GIAC */
2546 cp.iac_lap[1] = 0x8b;
2547 cp.iac_lap[2] = 0x9e;
2548 }
2549
2550 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
2551 (cp.num_iac * 3) + 1, &cp);
2552}
2553
2554static int discoverable_update(struct hci_request *req, unsigned long opt)
2555{
2556 struct hci_dev *hdev = req->hdev;
2557
2558 hci_dev_lock(hdev);
2559
2560 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2561 write_iac(req);
2562 __hci_req_update_scan(req);
2563 __hci_req_update_class(req);
2564 }
2565
2566 /* Advertising instances don't use the global discoverable setting, so
2567 * only update AD if advertising was enabled using Set Advertising.
2568 */
2569 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2570 __hci_req_update_adv_data(req, 0x00);
2571
2572 /* Discoverable mode affects the local advertising
2573 * address in limited privacy mode.
2574 */
2575 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
2576 if (ext_adv_capable(hdev))
2577 __hci_req_start_ext_adv(req, 0x00);
2578 else
2579 __hci_req_enable_advertising(req);
2580 }
2581 }
2582
2583 hci_dev_unlock(hdev);
2584
2585 return 0;
2586}
2587
2588static void discoverable_update_work(struct work_struct *work)
2589{
2590 struct hci_dev *hdev = container_of(work, struct hci_dev,
2591 discoverable_update);
2592 u8 status;
2593
2594 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
2595 mgmt_set_discoverable_complete(hdev, status);
2596}
2597
2598void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
2599 u8 reason)
2600{
2601 switch (conn->state) {
2602 case BT_CONNECTED:
2603 case BT_CONFIG:
2604 if (conn->type == AMP_LINK) {
2605 struct hci_cp_disconn_phy_link cp;
2606
2607 cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
2608 cp.reason = reason;
2609 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
2610 &cp);
2611 } else {
2612 struct hci_cp_disconnect dc;
2613
2614 dc.handle = cpu_to_le16(conn->handle);
2615 dc.reason = reason;
2616 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
2617 }
2618
2619 conn->state = BT_DISCONN;
2620
2621 break;
2622 case BT_CONNECT:
2623 if (conn->type == LE_LINK) {
2624 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
2625 break;
2626 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
2627 0, NULL);
2628 } else if (conn->type == ACL_LINK) {
2629 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
2630 break;
2631 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
2632 6, &conn->dst);
2633 }
2634 break;
2635 case BT_CONNECT2:
2636 if (conn->type == ACL_LINK) {
2637 struct hci_cp_reject_conn_req rej;
2638
2639 bacpy(&rej.bdaddr, &conn->dst);
2640 rej.reason = reason;
2641
2642 hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
2643 sizeof(rej), &rej);
2644 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
2645 struct hci_cp_reject_sync_conn_req rej;
2646
2647 bacpy(&rej.bdaddr, &conn->dst);
2648
2649 /* SCO rejection has its own limited set of
2650 * allowed error values (0x0D-0x0F) which isn't
2651 * compatible with most values passed to this
2652 * function. To be safe hard-code one of the
2653 * values that's suitable for SCO.
2654 */
2655 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2656
2657 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
2658 sizeof(rej), &rej);
2659 }
2660 break;
2661 default:
2662 conn->state = BT_CLOSED;
2663 break;
2664 }
2665}
2666
2667static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2668{
2669 if (status)
2670 BT_DBG("Failed to abort connection: status 0x%2.2x", status);
2671}
2672
2673int hci_abort_conn(struct hci_conn *conn, u8 reason)
2674{
2675 struct hci_request req;
2676 int err;
2677
2678 hci_req_init(&req, conn->hdev);
2679
2680 __hci_abort_conn(&req, conn, reason);
2681
2682 err = hci_req_run(&req, abort_conn_complete);
2683 if (err && err != -ENODATA) {
2684 bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2685 return err;
2686 }
2687
2688 return 0;
2689}
2690
2691static int update_bg_scan(struct hci_request *req, unsigned long opt)
2692{
2693 hci_dev_lock(req->hdev);
2694 __hci_update_background_scan(req);
2695 hci_dev_unlock(req->hdev);
2696 return 0;
2697}
2698
2699static void bg_scan_update(struct work_struct *work)
2700{
2701 struct hci_dev *hdev = container_of(work, struct hci_dev,
2702 bg_scan_update);
2703 struct hci_conn *conn;
2704 u8 status;
2705 int err;
2706
2707 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
2708 if (!err)
2709 return;
2710
2711 hci_dev_lock(hdev);
2712
2713 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
2714 if (conn)
2715 hci_le_conn_failed(conn, status);
2716
2717 hci_dev_unlock(hdev);
2718}
2719
2720static int le_scan_disable(struct hci_request *req, unsigned long opt)
2721{
2722 hci_req_add_le_scan_disable(req, false);
2723 return 0;
2724}
2725
2726static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2727{
2728 u8 length = opt;
2729 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
2730 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2731 struct hci_cp_inquiry cp;
2732
2733 BT_DBG("%s", req->hdev->name);
2734
2735 hci_dev_lock(req->hdev);
2736 hci_inquiry_cache_flush(req->hdev);
2737 hci_dev_unlock(req->hdev);
2738
2739 memset(&cp, 0, sizeof(cp));
2740
2741 if (req->hdev->discovery.limited)
2742 memcpy(&cp.lap, liac, sizeof(cp.lap));
2743 else
2744 memcpy(&cp.lap, giac, sizeof(cp.lap));
2745
2746 cp.length = length;
2747
2748 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2749
2750 return 0;
2751}
2752
2753static void le_scan_disable_work(struct work_struct *work)
2754{
2755 struct hci_dev *hdev = container_of(work, struct hci_dev,
2756 le_scan_disable.work);
2757 u8 status;
2758
2759 BT_DBG("%s", hdev->name);
2760
2761 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2762 return;
2763
2764 cancel_delayed_work(&hdev->le_scan_restart);
2765
2766 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
2767 if (status) {
2768 bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
2769 status);
2770 return;
2771 }
2772
2773 hdev->discovery.scan_start = 0;
2774
2775 /* If we were running LE only scan, change discovery state. If
2776 * we were running both LE and BR/EDR inquiry simultaneously,
2777 * and BR/EDR inquiry is already finished, stop discovery,
2778 * otherwise BR/EDR inquiry will stop discovery when finished.
2779 * If we will resolve remote device name, do not change
2780 * discovery state.
2781 */
2782
2783 if (hdev->discovery.type == DISCOV_TYPE_LE)
2784 goto discov_stopped;
2785
2786 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2787 return;
2788
2789 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
2790 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
2791 hdev->discovery.state != DISCOVERY_RESOLVING)
2792 goto discov_stopped;
2793
2794 return;
2795 }
2796
2797 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
2798 HCI_CMD_TIMEOUT, &status);
2799 if (status) {
2800 bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2801 goto discov_stopped;
2802 }
2803
2804 return;
2805
2806discov_stopped:
2807 hci_dev_lock(hdev);
2808 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2809 hci_dev_unlock(hdev);
2810}
2811
2812static int le_scan_restart(struct hci_request *req, unsigned long opt)
2813{
2814 struct hci_dev *hdev = req->hdev;
2815
2816 /* If controller is not scanning we are done. */
2817 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2818 return 0;
2819
2820 if (hdev->scanning_paused) {
2821 bt_dev_dbg(hdev, "Scanning is paused for suspend");
2822 return 0;
2823 }
2824
2825 hci_req_add_le_scan_disable(req, false);
2826
2827 if (use_ext_scan(hdev)) {
2828 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
2829
2830 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
2831 ext_enable_cp.enable = LE_SCAN_ENABLE;
2832 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2833
2834 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2835 sizeof(ext_enable_cp), &ext_enable_cp);
2836 } else {
2837 struct hci_cp_le_set_scan_enable cp;
2838
2839 memset(&cp, 0, sizeof(cp));
2840 cp.enable = LE_SCAN_ENABLE;
2841 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2842 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2843 }
2844
2845 return 0;
2846}
2847
2848static void le_scan_restart_work(struct work_struct *work)
2849{
2850 struct hci_dev *hdev = container_of(work, struct hci_dev,
2851 le_scan_restart.work);
2852 unsigned long timeout, duration, scan_start, now;
2853 u8 status;
2854
2855 BT_DBG("%s", hdev->name);
2856
2857 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2858 if (status) {
2859 bt_dev_err(hdev, "failed to restart LE scan: status %d",
2860 status);
2861 return;
2862 }
2863
2864 hci_dev_lock(hdev);
2865
2866 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
2867 !hdev->discovery.scan_start)
2868 goto unlock;
2869
2870 /* When the scan was started, hdev->le_scan_disable has been queued
2871 * after duration from scan_start. During scan restart this job
2872 * has been canceled, and we need to queue it again after proper
2873 * timeout, to make sure that scan does not run indefinitely.
2874 */
2875 duration = hdev->discovery.scan_duration;
2876 scan_start = hdev->discovery.scan_start;
2877 now = jiffies;
2878 if (now - scan_start <= duration) {
2879 int elapsed;
2880
2881 if (now >= scan_start)
2882 elapsed = now - scan_start;
2883 else
2884 elapsed = ULONG_MAX - scan_start + now;
2885
2886 timeout = duration - elapsed;
2887 } else {
2888 timeout = 0;
2889 }
2890
2891 queue_delayed_work(hdev->req_workqueue,
2892 &hdev->le_scan_disable, timeout);
2893
2894unlock:
2895 hci_dev_unlock(hdev);
2896}
2897
2898static int active_scan(struct hci_request *req, unsigned long opt)
2899{
2900 uint16_t interval = opt;
2901 struct hci_dev *hdev = req->hdev;
2902 u8 own_addr_type;
2903 /* White list is not used for discovery */
2904 u8 filter_policy = 0x00;
2905 /* Discovery doesn't require controller address resolution */
2906 bool addr_resolv = false;
2907 int err;
2908
2909 BT_DBG("%s", hdev->name);
2910
2911 /* If controller is scanning, it means the background scanning is
2912 * running. Thus, we should temporarily stop it in order to set the
2913 * discovery scanning parameters.
2914 */
2915 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2916 hci_req_add_le_scan_disable(req, false);
2917
2918 /* All active scans will be done with either a resolvable private
2919 * address (when privacy feature has been enabled) or non-resolvable
2920 * private address.
2921 */
2922 err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2923 &own_addr_type);
2924 if (err < 0)
2925 own_addr_type = ADDR_LE_DEV_PUBLIC;
2926
2927 hci_req_start_scan(req, LE_SCAN_ACTIVE, interval,
2928 hdev->le_scan_window_discovery, own_addr_type,
2929 filter_policy, addr_resolv);
2930 return 0;
2931}
2932
2933static int interleaved_discov(struct hci_request *req, unsigned long opt)
2934{
2935 int err;
2936
2937 BT_DBG("%s", req->hdev->name);
2938
2939 err = active_scan(req, opt);
2940 if (err)
2941 return err;
2942
2943 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2944}
2945
2946static void start_discovery(struct hci_dev *hdev, u8 *status)
2947{
2948 unsigned long timeout;
2949
2950 BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2951
2952 switch (hdev->discovery.type) {
2953 case DISCOV_TYPE_BREDR:
2954 if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2955 hci_req_sync(hdev, bredr_inquiry,
2956 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2957 status);
2958 return;
2959 case DISCOV_TYPE_INTERLEAVED:
2960 /* When running simultaneous discovery, the LE scanning time
2961 * should occupy the whole discovery time sine BR/EDR inquiry
2962 * and LE scanning are scheduled by the controller.
2963 *
2964 * For interleaving discovery in comparison, BR/EDR inquiry
2965 * and LE scanning are done sequentially with separate
2966 * timeouts.
2967 */
2968 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2969 &hdev->quirks)) {
2970 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2971 /* During simultaneous discovery, we double LE scan
2972 * interval. We must leave some time for the controller
2973 * to do BR/EDR inquiry.
2974 */
2975 hci_req_sync(hdev, interleaved_discov,
2976 hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT,
2977 status);
2978 break;
2979 }
2980
2981 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2982 hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2983 HCI_CMD_TIMEOUT, status);
2984 break;
2985 case DISCOV_TYPE_LE:
2986 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2987 hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2988 HCI_CMD_TIMEOUT, status);
2989 break;
2990 default:
2991 *status = HCI_ERROR_UNSPECIFIED;
2992 return;
2993 }
2994
2995 if (*status)
2996 return;
2997
2998 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2999
3000 /* When service discovery is used and the controller has a
3001 * strict duplicate filter, it is important to remember the
3002 * start and duration of the scan. This is required for
3003 * restarting scanning during the discovery phase.
3004 */
3005 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
3006 hdev->discovery.result_filtering) {
3007 hdev->discovery.scan_start = jiffies;
3008 hdev->discovery.scan_duration = timeout;
3009 }
3010
3011 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
3012 timeout);
3013}
3014
3015bool hci_req_stop_discovery(struct hci_request *req)
3016{
3017 struct hci_dev *hdev = req->hdev;
3018 struct discovery_state *d = &hdev->discovery;
3019 struct hci_cp_remote_name_req_cancel cp;
3020 struct inquiry_entry *e;
3021 bool ret = false;
3022
3023 BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
3024
3025 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
3026 if (test_bit(HCI_INQUIRY, &hdev->flags))
3027 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
3028
3029 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
3030 cancel_delayed_work(&hdev->le_scan_disable);
3031 hci_req_add_le_scan_disable(req, false);
3032 }
3033
3034 ret = true;
3035 } else {
3036 /* Passive scanning */
3037 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
3038 hci_req_add_le_scan_disable(req, false);
3039 ret = true;
3040 }
3041 }
3042
3043 /* No further actions needed for LE-only discovery */
3044 if (d->type == DISCOV_TYPE_LE)
3045 return ret;
3046
3047 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
3048 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
3049 NAME_PENDING);
3050 if (!e)
3051 return ret;
3052
3053 bacpy(&cp.bdaddr, &e->data.bdaddr);
3054 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
3055 &cp);
3056 ret = true;
3057 }
3058
3059 return ret;
3060}
3061
3062static int stop_discovery(struct hci_request *req, unsigned long opt)
3063{
3064 hci_dev_lock(req->hdev);
3065 hci_req_stop_discovery(req);
3066 hci_dev_unlock(req->hdev);
3067
3068 return 0;
3069}
3070
3071static void discov_update(struct work_struct *work)
3072{
3073 struct hci_dev *hdev = container_of(work, struct hci_dev,
3074 discov_update);
3075 u8 status = 0;
3076
3077 switch (hdev->discovery.state) {
3078 case DISCOVERY_STARTING:
3079 start_discovery(hdev, &status);
3080 mgmt_start_discovery_complete(hdev, status);
3081 if (status)
3082 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3083 else
3084 hci_discovery_set_state(hdev, DISCOVERY_FINDING);
3085 break;
3086 case DISCOVERY_STOPPING:
3087 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
3088 mgmt_stop_discovery_complete(hdev, status);
3089 if (!status)
3090 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3091 break;
3092 case DISCOVERY_STOPPED:
3093 default:
3094 return;
3095 }
3096}
3097
3098static void discov_off(struct work_struct *work)
3099{
3100 struct hci_dev *hdev = container_of(work, struct hci_dev,
3101 discov_off.work);
3102
3103 BT_DBG("%s", hdev->name);
3104
3105 hci_dev_lock(hdev);
3106
3107 /* When discoverable timeout triggers, then just make sure
3108 * the limited discoverable flag is cleared. Even in the case
3109 * of a timeout triggered from general discoverable, it is
3110 * safe to unconditionally clear the flag.
3111 */
3112 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
3113 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
3114 hdev->discov_timeout = 0;
3115
3116 hci_dev_unlock(hdev);
3117
3118 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
3119 mgmt_new_settings(hdev);
3120}
3121
3122static int powered_update_hci(struct hci_request *req, unsigned long opt)
3123{
3124 struct hci_dev *hdev = req->hdev;
3125 u8 link_sec;
3126
3127 hci_dev_lock(hdev);
3128
3129 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
3130 !lmp_host_ssp_capable(hdev)) {
3131 u8 mode = 0x01;
3132
3133 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
3134
3135 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
3136 u8 support = 0x01;
3137
3138 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
3139 sizeof(support), &support);
3140 }
3141 }
3142
3143 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
3144 lmp_bredr_capable(hdev)) {
3145 struct hci_cp_write_le_host_supported cp;
3146
3147 cp.le = 0x01;
3148 cp.simul = 0x00;
3149
3150 /* Check first if we already have the right
3151 * host state (host features set)
3152 */
3153 if (cp.le != lmp_host_le_capable(hdev) ||
3154 cp.simul != lmp_host_le_br_capable(hdev))
3155 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3156 sizeof(cp), &cp);
3157 }
3158
3159 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3160 /* Make sure the controller has a good default for
3161 * advertising data. This also applies to the case
3162 * where BR/EDR was toggled during the AUTO_OFF phase.
3163 */
3164 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
3165 list_empty(&hdev->adv_instances)) {
3166 int err;
3167
3168 if (ext_adv_capable(hdev)) {
3169 err = __hci_req_setup_ext_adv_instance(req,
3170 0x00);
3171 if (!err)
3172 __hci_req_update_scan_rsp_data(req,
3173 0x00);
3174 } else {
3175 err = 0;
3176 __hci_req_update_adv_data(req, 0x00);
3177 __hci_req_update_scan_rsp_data(req, 0x00);
3178 }
3179
3180 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
3181 if (!ext_adv_capable(hdev))
3182 __hci_req_enable_advertising(req);
3183 else if (!err)
3184 __hci_req_enable_ext_advertising(req,
3185 0x00);
3186 }
3187 } else if (!list_empty(&hdev->adv_instances)) {
3188 struct adv_info *adv_instance;
3189
3190 adv_instance = list_first_entry(&hdev->adv_instances,
3191 struct adv_info, list);
3192 __hci_req_schedule_adv_instance(req,
3193 adv_instance->instance,
3194 true);
3195 }
3196 }
3197
3198 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
3199 if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
3200 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
3201 sizeof(link_sec), &link_sec);
3202
3203 if (lmp_bredr_capable(hdev)) {
3204 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3205 __hci_req_write_fast_connectable(req, true);
3206 else
3207 __hci_req_write_fast_connectable(req, false);
3208 __hci_req_update_scan(req);
3209 __hci_req_update_class(req);
3210 __hci_req_update_name(req);
3211 __hci_req_update_eir(req);
3212 }
3213
3214 hci_dev_unlock(hdev);
3215 return 0;
3216}
3217
3218int __hci_req_hci_power_on(struct hci_dev *hdev)
3219{
3220 /* Register the available SMP channels (BR/EDR and LE) only when
3221 * successfully powering on the controller. This late
3222 * registration is required so that LE SMP can clearly decide if
3223 * the public address or static address is used.
3224 */
3225 smp_register(hdev);
3226
3227 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
3228 NULL);
3229}
3230
3231void hci_request_setup(struct hci_dev *hdev)
3232{
3233 INIT_WORK(&hdev->discov_update, discov_update);
3234 INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
3235 INIT_WORK(&hdev->scan_update, scan_update_work);
3236 INIT_WORK(&hdev->connectable_update, connectable_update_work);
3237 INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
3238 INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
3239 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
3240 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3241 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
3242}
3243
3244void hci_request_cancel_all(struct hci_dev *hdev)
3245{
3246 hci_req_sync_cancel(hdev, ENODEV);
3247
3248 cancel_work_sync(&hdev->discov_update);
3249 cancel_work_sync(&hdev->bg_scan_update);
3250 cancel_work_sync(&hdev->scan_update);
3251 cancel_work_sync(&hdev->connectable_update);
3252 cancel_work_sync(&hdev->discoverable_update);
3253 cancel_delayed_work_sync(&hdev->discov_off);
3254 cancel_delayed_work_sync(&hdev->le_scan_disable);
3255 cancel_delayed_work_sync(&hdev->le_scan_restart);
3256
3257 if (hdev->adv_instance_timeout) {
3258 cancel_delayed_work_sync(&hdev->adv_instance_expire);
3259 hdev->adv_instance_timeout = 0;
3260 }
3261}