Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  linux/kernel/time/timekeeping.c
   3 *
   4 *  Kernel timekeeping code and accessor functions
   5 *
   6 *  This code was moved from linux/kernel/timer.c.
   7 *  Please see that file for copyright and history logs.
   8 *
   9 */
  10
  11#include <linux/timekeeper_internal.h>
  12#include <linux/module.h>
  13#include <linux/interrupt.h>
  14#include <linux/percpu.h>
  15#include <linux/init.h>
  16#include <linux/mm.h>
 
  17#include <linux/sched.h>
 
 
  18#include <linux/syscore_ops.h>
  19#include <linux/clocksource.h>
  20#include <linux/jiffies.h>
  21#include <linux/time.h>
  22#include <linux/tick.h>
  23#include <linux/stop_machine.h>
  24#include <linux/pvclock_gtod.h>
  25#include <linux/compiler.h>
 
  26
  27#include "tick-internal.h"
  28#include "ntp_internal.h"
  29#include "timekeeping_internal.h"
  30
  31#define TK_CLEAR_NTP		(1 << 0)
  32#define TK_MIRROR		(1 << 1)
  33#define TK_CLOCK_WAS_SET	(1 << 2)
  34
 
 
 
 
 
 
 
 
 
 
  35/*
  36 * The most important data for readout fits into a single 64 byte
  37 * cache line.
  38 */
  39static struct {
  40	seqcount_t		seq;
  41	struct timekeeper	timekeeper;
  42} tk_core ____cacheline_aligned;
 
 
  43
  44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
  45static struct timekeeper shadow_timekeeper;
  46
  47/**
  48 * struct tk_fast - NMI safe timekeeper
  49 * @seq:	Sequence counter for protecting updates. The lowest bit
  50 *		is the index for the tk_read_base array
  51 * @base:	tk_read_base array. Access is indexed by the lowest bit of
  52 *		@seq.
  53 *
  54 * See @update_fast_timekeeper() below.
  55 */
  56struct tk_fast {
  57	seqcount_t		seq;
  58	struct tk_read_base	base[2];
  59};
  60
  61static struct tk_fast tk_fast_mono ____cacheline_aligned;
  62static struct tk_fast tk_fast_raw  ____cacheline_aligned;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64/* flag for if timekeeping is suspended */
  65int __read_mostly timekeeping_suspended;
  66
  67static inline void tk_normalize_xtime(struct timekeeper *tk)
  68{
  69	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
  70		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
  71		tk->xtime_sec++;
  72	}
 
 
 
 
  73}
  74
  75static inline struct timespec64 tk_xtime(struct timekeeper *tk)
  76{
  77	struct timespec64 ts;
  78
  79	ts.tv_sec = tk->xtime_sec;
  80	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
  81	return ts;
  82}
  83
  84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
  85{
  86	tk->xtime_sec = ts->tv_sec;
  87	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
  88}
  89
  90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
  91{
  92	tk->xtime_sec += ts->tv_sec;
  93	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
  94	tk_normalize_xtime(tk);
  95}
  96
  97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
  98{
  99	struct timespec64 tmp;
 100
 101	/*
 102	 * Verify consistency of: offset_real = -wall_to_monotonic
 103	 * before modifying anything
 104	 */
 105	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
 106					-tk->wall_to_monotonic.tv_nsec);
 107	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
 108	tk->wall_to_monotonic = wtm;
 109	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
 110	tk->offs_real = timespec64_to_ktime(tmp);
 111	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
 112}
 113
 114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
 115{
 116	tk->offs_boot = ktime_add(tk->offs_boot, delta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117}
 118
 119#ifdef CONFIG_DEBUG_TIMEKEEPING
 120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
 121
 122static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 123{
 124
 125	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
 126	const char *name = tk->tkr_mono.clock->name;
 127
 128	if (offset > max_cycles) {
 129		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
 130				offset, name, max_cycles);
 131		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
 132	} else {
 133		if (offset > (max_cycles >> 1)) {
 134			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
 135					offset, name, max_cycles >> 1);
 136			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
 137		}
 138	}
 139
 140	if (tk->underflow_seen) {
 141		if (jiffies - tk->last_warning > WARNING_FREQ) {
 142			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
 143			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 144			printk_deferred("         Your kernel is probably still fine.\n");
 145			tk->last_warning = jiffies;
 146		}
 147		tk->underflow_seen = 0;
 148	}
 149
 150	if (tk->overflow_seen) {
 151		if (jiffies - tk->last_warning > WARNING_FREQ) {
 152			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
 153			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 154			printk_deferred("         Your kernel is probably still fine.\n");
 155			tk->last_warning = jiffies;
 156		}
 157		tk->overflow_seen = 0;
 158	}
 159}
 160
 161static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
 162{
 163	struct timekeeper *tk = &tk_core.timekeeper;
 164	u64 now, last, mask, max, delta;
 165	unsigned int seq;
 166
 167	/*
 168	 * Since we're called holding a seqlock, the data may shift
 169	 * under us while we're doing the calculation. This can cause
 170	 * false positives, since we'd note a problem but throw the
 171	 * results away. So nest another seqlock here to atomically
 172	 * grab the points we are checking with.
 173	 */
 174	do {
 175		seq = read_seqcount_begin(&tk_core.seq);
 176		now = tkr->read(tkr->clock);
 177		last = tkr->cycle_last;
 178		mask = tkr->mask;
 179		max = tkr->clock->max_cycles;
 180	} while (read_seqcount_retry(&tk_core.seq, seq));
 181
 182	delta = clocksource_delta(now, last, mask);
 183
 184	/*
 185	 * Try to catch underflows by checking if we are seeing small
 186	 * mask-relative negative values.
 187	 */
 188	if (unlikely((~delta & mask) < (mask >> 3))) {
 189		tk->underflow_seen = 1;
 190		delta = 0;
 191	}
 192
 193	/* Cap delta value to the max_cycles values to avoid mult overflows */
 194	if (unlikely(delta > max)) {
 195		tk->overflow_seen = 1;
 196		delta = tkr->clock->max_cycles;
 197	}
 198
 199	return delta;
 200}
 201#else
 202static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 203{
 204}
 205static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
 206{
 207	u64 cycle_now, delta;
 208
 209	/* read clocksource */
 210	cycle_now = tkr->read(tkr->clock);
 211
 212	/* calculate the delta since the last update_wall_time */
 213	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
 214
 215	return delta;
 216}
 217#endif
 218
 219/**
 220 * tk_setup_internals - Set up internals to use clocksource clock.
 221 *
 222 * @tk:		The target timekeeper to setup.
 223 * @clock:		Pointer to clocksource.
 224 *
 225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 226 * pair and interval request.
 227 *
 228 * Unless you're the timekeeping code, you should not be using this!
 229 */
 230static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
 231{
 232	u64 interval;
 233	u64 tmp, ntpinterval;
 234	struct clocksource *old_clock;
 235
 236	++tk->cs_was_changed_seq;
 237	old_clock = tk->tkr_mono.clock;
 238	tk->tkr_mono.clock = clock;
 239	tk->tkr_mono.read = clock->read;
 240	tk->tkr_mono.mask = clock->mask;
 241	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
 242
 243	tk->tkr_raw.clock = clock;
 244	tk->tkr_raw.read = clock->read;
 245	tk->tkr_raw.mask = clock->mask;
 246	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
 247
 248	/* Do the ns -> cycle conversion first, using original mult */
 249	tmp = NTP_INTERVAL_LENGTH;
 250	tmp <<= clock->shift;
 251	ntpinterval = tmp;
 252	tmp += clock->mult/2;
 253	do_div(tmp, clock->mult);
 254	if (tmp == 0)
 255		tmp = 1;
 256
 257	interval = (u64) tmp;
 258	tk->cycle_interval = interval;
 259
 260	/* Go back from cycles -> shifted ns */
 261	tk->xtime_interval = interval * clock->mult;
 262	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
 263	tk->raw_interval = (interval * clock->mult) >> clock->shift;
 264
 265	 /* if changing clocks, convert xtime_nsec shift units */
 266	if (old_clock) {
 267		int shift_change = clock->shift - old_clock->shift;
 268		if (shift_change < 0)
 269			tk->tkr_mono.xtime_nsec >>= -shift_change;
 270		else
 
 271			tk->tkr_mono.xtime_nsec <<= shift_change;
 
 
 272	}
 273	tk->tkr_raw.xtime_nsec = 0;
 274
 275	tk->tkr_mono.shift = clock->shift;
 276	tk->tkr_raw.shift = clock->shift;
 277
 278	tk->ntp_error = 0;
 279	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
 280	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
 281
 282	/*
 283	 * The timekeeper keeps its own mult values for the currently
 284	 * active clocksource. These value will be adjusted via NTP
 285	 * to counteract clock drifting.
 286	 */
 287	tk->tkr_mono.mult = clock->mult;
 288	tk->tkr_raw.mult = clock->mult;
 289	tk->ntp_err_mult = 0;
 
 290}
 291
 292/* Timekeeper helper functions. */
 293
 294#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
 295static u32 default_arch_gettimeoffset(void) { return 0; }
 296u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
 297#else
 298static inline u32 arch_gettimeoffset(void) { return 0; }
 299#endif
 300
 301static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
 302{
 303	u64 nsec;
 304
 305	nsec = delta * tkr->mult + tkr->xtime_nsec;
 306	nsec >>= tkr->shift;
 307
 308	/* If arch requires, add in get_arch_timeoffset() */
 309	return nsec + arch_gettimeoffset();
 310}
 311
 312static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
 313{
 314	u64 delta;
 315
 316	delta = timekeeping_get_delta(tkr);
 317	return timekeeping_delta_to_ns(tkr, delta);
 318}
 319
 320static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
 321{
 322	u64 delta;
 323
 324	/* calculate the delta since the last update_wall_time */
 325	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
 326	return timekeeping_delta_to_ns(tkr, delta);
 327}
 328
 329/**
 330 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 331 * @tkr: Timekeeping readout base from which we take the update
 332 *
 333 * We want to use this from any context including NMI and tracing /
 334 * instrumenting the timekeeping code itself.
 335 *
 336 * Employ the latch technique; see @raw_write_seqcount_latch.
 337 *
 338 * So if a NMI hits the update of base[0] then it will use base[1]
 339 * which is still consistent. In the worst case this can result is a
 340 * slightly wrong timestamp (a few nanoseconds). See
 341 * @ktime_get_mono_fast_ns.
 342 */
 343static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
 
 344{
 345	struct tk_read_base *base = tkf->base;
 346
 347	/* Force readers off to base[1] */
 348	raw_write_seqcount_latch(&tkf->seq);
 349
 350	/* Update base[0] */
 351	memcpy(base, tkr, sizeof(*base));
 352
 353	/* Force readers back to base[0] */
 354	raw_write_seqcount_latch(&tkf->seq);
 355
 356	/* Update base[1] */
 357	memcpy(base + 1, base, sizeof(*base));
 358}
 359
 360/**
 361 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 362 *
 363 * This timestamp is not guaranteed to be monotonic across an update.
 364 * The timestamp is calculated by:
 365 *
 366 *	now = base_mono + clock_delta * slope
 367 *
 368 * So if the update lowers the slope, readers who are forced to the
 369 * not yet updated second array are still using the old steeper slope.
 370 *
 371 * tmono
 372 * ^
 373 * |    o  n
 374 * |   o n
 375 * |  u
 376 * | o
 377 * |o
 378 * |12345678---> reader order
 379 *
 380 * o = old slope
 381 * u = update
 382 * n = new slope
 383 *
 384 * So reader 6 will observe time going backwards versus reader 5.
 385 *
 386 * While other CPUs are likely to be able observe that, the only way
 387 * for a CPU local observation is when an NMI hits in the middle of
 388 * the update. Timestamps taken from that NMI context might be ahead
 389 * of the following timestamps. Callers need to be aware of that and
 390 * deal with it.
 391 */
 392static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
 393{
 394	struct tk_read_base *tkr;
 395	unsigned int seq;
 396	u64 now;
 397
 398	do {
 399		seq = raw_read_seqcount_latch(&tkf->seq);
 400		tkr = tkf->base + (seq & 0x01);
 401		now = ktime_to_ns(tkr->base);
 402
 403		now += timekeeping_delta_to_ns(tkr,
 404				clocksource_delta(
 405					tkr->read(tkr->clock),
 406					tkr->cycle_last,
 407					tkr->mask));
 408	} while (read_seqcount_retry(&tkf->seq, seq));
 409
 410	return now;
 411}
 412
 413u64 ktime_get_mono_fast_ns(void)
 414{
 415	return __ktime_get_fast_ns(&tk_fast_mono);
 416}
 417EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
 418
 419u64 ktime_get_raw_fast_ns(void)
 420{
 421	return __ktime_get_fast_ns(&tk_fast_raw);
 422}
 423EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
 424
 425/**
 426 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 427 *
 428 * To keep it NMI safe since we're accessing from tracing, we're not using a
 429 * separate timekeeper with updates to monotonic clock and boot offset
 430 * protected with seqlocks. This has the following minor side effects:
 431 *
 432 * (1) Its possible that a timestamp be taken after the boot offset is updated
 433 * but before the timekeeper is updated. If this happens, the new boot offset
 434 * is added to the old timekeeping making the clock appear to update slightly
 435 * earlier:
 436 *    CPU 0                                        CPU 1
 437 *    timekeeping_inject_sleeptime64()
 438 *    __timekeeping_inject_sleeptime(tk, delta);
 439 *                                                 timestamp();
 440 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 441 *
 442 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 443 * partially updated.  Since the tk->offs_boot update is a rare event, this
 444 * should be a rare occurrence which postprocessing should be able to handle.
 445 */
 446u64 notrace ktime_get_boot_fast_ns(void)
 447{
 448	struct timekeeper *tk = &tk_core.timekeeper;
 449
 450	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
 451}
 452EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
 453
 454/* Suspend-time cycles value for halted fast timekeeper. */
 455static u64 cycles_at_suspend;
 456
 457static u64 dummy_clock_read(struct clocksource *cs)
 
 
 
 458{
 459	return cycles_at_suspend;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460}
 461
 462/**
 
 
 
 
 
 
 
 
 
 463 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 464 * @tk: Timekeeper to snapshot.
 465 *
 466 * It generally is unsafe to access the clocksource after timekeeping has been
 467 * suspended, so take a snapshot of the readout base of @tk and use it as the
 468 * fast timekeeper's readout base while suspended.  It will return the same
 469 * number of cycles every time until timekeeping is resumed at which time the
 470 * proper readout base for the fast timekeeper will be restored automatically.
 471 */
 472static void halt_fast_timekeeper(struct timekeeper *tk)
 473{
 474	static struct tk_read_base tkr_dummy;
 475	struct tk_read_base *tkr = &tk->tkr_mono;
 476
 477	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 478	cycles_at_suspend = tkr->read(tkr->clock);
 479	tkr_dummy.read = dummy_clock_read;
 
 480	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
 481
 482	tkr = &tk->tkr_raw;
 483	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 484	tkr_dummy.read = dummy_clock_read;
 485	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
 486}
 487
 488#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
 489
 490static inline void update_vsyscall(struct timekeeper *tk)
 491{
 492	struct timespec xt, wm;
 493
 494	xt = timespec64_to_timespec(tk_xtime(tk));
 495	wm = timespec64_to_timespec(tk->wall_to_monotonic);
 496	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
 497			    tk->tkr_mono.cycle_last);
 498}
 499
 500static inline void old_vsyscall_fixup(struct timekeeper *tk)
 501{
 502	s64 remainder;
 503
 504	/*
 505	* Store only full nanoseconds into xtime_nsec after rounding
 506	* it up and add the remainder to the error difference.
 507	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
 508	* by truncating the remainder in vsyscalls. However, it causes
 509	* additional work to be done in timekeeping_adjust(). Once
 510	* the vsyscall implementations are converted to use xtime_nsec
 511	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
 512	* users are removed, this can be killed.
 513	*/
 514	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
 515	if (remainder != 0) {
 516		tk->tkr_mono.xtime_nsec -= remainder;
 517		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
 518		tk->ntp_error += remainder << tk->ntp_error_shift;
 519		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
 520	}
 521}
 522#else
 523#define old_vsyscall_fixup(tk)
 524#endif
 525
 526static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
 527
 528static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
 529{
 530	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
 531}
 532
 533/**
 534 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 535 */
 536int pvclock_gtod_register_notifier(struct notifier_block *nb)
 537{
 538	struct timekeeper *tk = &tk_core.timekeeper;
 539	unsigned long flags;
 540	int ret;
 541
 542	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 543	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
 544	update_pvclock_gtod(tk, true);
 545	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 546
 547	return ret;
 548}
 549EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
 550
 551/**
 552 * pvclock_gtod_unregister_notifier - unregister a pvclock
 553 * timedata update listener
 554 */
 555int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
 556{
 557	unsigned long flags;
 558	int ret;
 559
 560	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 561	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
 562	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 563
 564	return ret;
 565}
 566EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
 567
 568/*
 569 * tk_update_leap_state - helper to update the next_leap_ktime
 570 */
 571static inline void tk_update_leap_state(struct timekeeper *tk)
 572{
 573	tk->next_leap_ktime = ntp_get_next_leap();
 574	if (tk->next_leap_ktime != KTIME_MAX)
 575		/* Convert to monotonic time */
 576		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
 577}
 578
 579/*
 580 * Update the ktime_t based scalar nsec members of the timekeeper
 581 */
 582static inline void tk_update_ktime_data(struct timekeeper *tk)
 583{
 584	u64 seconds;
 585	u32 nsec;
 586
 587	/*
 588	 * The xtime based monotonic readout is:
 589	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
 590	 * The ktime based monotonic readout is:
 591	 *	nsec = base_mono + now();
 592	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
 593	 */
 594	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
 595	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
 596	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
 597
 598	/* Update the monotonic raw base */
 599	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
 600
 601	/*
 602	 * The sum of the nanoseconds portions of xtime and
 603	 * wall_to_monotonic can be greater/equal one second. Take
 604	 * this into account before updating tk->ktime_sec.
 605	 */
 606	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 607	if (nsec >= NSEC_PER_SEC)
 608		seconds++;
 609	tk->ktime_sec = seconds;
 
 
 
 610}
 611
 612/* must hold timekeeper_lock */
 613static void timekeeping_update(struct timekeeper *tk, unsigned int action)
 614{
 615	if (action & TK_CLEAR_NTP) {
 616		tk->ntp_error = 0;
 617		ntp_clear();
 618	}
 619
 620	tk_update_leap_state(tk);
 621	tk_update_ktime_data(tk);
 622
 623	update_vsyscall(tk);
 624	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
 625
 
 626	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
 627	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
 628
 629	if (action & TK_CLOCK_WAS_SET)
 630		tk->clock_was_set_seq++;
 631	/*
 632	 * The mirroring of the data to the shadow-timekeeper needs
 633	 * to happen last here to ensure we don't over-write the
 634	 * timekeeper structure on the next update with stale data
 635	 */
 636	if (action & TK_MIRROR)
 637		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
 638		       sizeof(tk_core.timekeeper));
 639}
 640
 641/**
 642 * timekeeping_forward_now - update clock to the current time
 643 *
 644 * Forward the current clock to update its state since the last call to
 645 * update_wall_time(). This is useful before significant clock changes,
 646 * as it avoids having to deal with this time offset explicitly.
 647 */
 648static void timekeeping_forward_now(struct timekeeper *tk)
 649{
 650	struct clocksource *clock = tk->tkr_mono.clock;
 651	u64 cycle_now, delta;
 652	u64 nsec;
 653
 654	cycle_now = tk->tkr_mono.read(clock);
 655	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 656	tk->tkr_mono.cycle_last = cycle_now;
 657	tk->tkr_raw.cycle_last  = cycle_now;
 658
 659	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
 660
 661	/* If arch requires, add in get_arch_timeoffset() */
 662	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
 663
 664	tk_normalize_xtime(tk);
 665
 666	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
 667	timespec64_add_ns(&tk->raw_time, nsec);
 
 
 
 
 668}
 669
 670/**
 671 * __getnstimeofday64 - Returns the time of day in a timespec64.
 672 * @ts:		pointer to the timespec to be set
 673 *
 674 * Updates the time of day in the timespec.
 675 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
 676 */
 677int __getnstimeofday64(struct timespec64 *ts)
 678{
 679	struct timekeeper *tk = &tk_core.timekeeper;
 680	unsigned long seq;
 681	u64 nsecs;
 682
 
 
 683	do {
 684		seq = read_seqcount_begin(&tk_core.seq);
 685
 686		ts->tv_sec = tk->xtime_sec;
 687		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 688
 689	} while (read_seqcount_retry(&tk_core.seq, seq));
 690
 691	ts->tv_nsec = 0;
 692	timespec64_add_ns(ts, nsecs);
 693
 694	/*
 695	 * Do not bail out early, in case there were callers still using
 696	 * the value, even in the face of the WARN_ON.
 697	 */
 698	if (unlikely(timekeeping_suspended))
 699		return -EAGAIN;
 700	return 0;
 701}
 702EXPORT_SYMBOL(__getnstimeofday64);
 703
 704/**
 705 * getnstimeofday64 - Returns the time of day in a timespec64.
 706 * @ts:		pointer to the timespec64 to be set
 707 *
 708 * Returns the time of day in a timespec64 (WARN if suspended).
 709 */
 710void getnstimeofday64(struct timespec64 *ts)
 711{
 712	WARN_ON(__getnstimeofday64(ts));
 713}
 714EXPORT_SYMBOL(getnstimeofday64);
 715
 716ktime_t ktime_get(void)
 717{
 718	struct timekeeper *tk = &tk_core.timekeeper;
 719	unsigned int seq;
 720	ktime_t base;
 721	u64 nsecs;
 722
 723	WARN_ON(timekeeping_suspended);
 724
 725	do {
 726		seq = read_seqcount_begin(&tk_core.seq);
 727		base = tk->tkr_mono.base;
 728		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 729
 730	} while (read_seqcount_retry(&tk_core.seq, seq));
 731
 732	return ktime_add_ns(base, nsecs);
 733}
 734EXPORT_SYMBOL_GPL(ktime_get);
 735
 736u32 ktime_get_resolution_ns(void)
 737{
 738	struct timekeeper *tk = &tk_core.timekeeper;
 739	unsigned int seq;
 740	u32 nsecs;
 741
 742	WARN_ON(timekeeping_suspended);
 743
 744	do {
 745		seq = read_seqcount_begin(&tk_core.seq);
 746		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
 747	} while (read_seqcount_retry(&tk_core.seq, seq));
 748
 749	return nsecs;
 750}
 751EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
 752
 753static ktime_t *offsets[TK_OFFS_MAX] = {
 754	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
 755	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
 756	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
 757};
 758
 759ktime_t ktime_get_with_offset(enum tk_offsets offs)
 760{
 761	struct timekeeper *tk = &tk_core.timekeeper;
 762	unsigned int seq;
 763	ktime_t base, *offset = offsets[offs];
 764	u64 nsecs;
 765
 766	WARN_ON(timekeeping_suspended);
 767
 768	do {
 769		seq = read_seqcount_begin(&tk_core.seq);
 770		base = ktime_add(tk->tkr_mono.base, *offset);
 771		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 772
 773	} while (read_seqcount_retry(&tk_core.seq, seq));
 774
 775	return ktime_add_ns(base, nsecs);
 776
 777}
 778EXPORT_SYMBOL_GPL(ktime_get_with_offset);
 779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780/**
 781 * ktime_mono_to_any() - convert mononotic time to any other time
 782 * @tmono:	time to convert.
 783 * @offs:	which offset to use
 784 */
 785ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
 786{
 787	ktime_t *offset = offsets[offs];
 788	unsigned long seq;
 789	ktime_t tconv;
 790
 791	do {
 792		seq = read_seqcount_begin(&tk_core.seq);
 793		tconv = ktime_add(tmono, *offset);
 794	} while (read_seqcount_retry(&tk_core.seq, seq));
 795
 796	return tconv;
 797}
 798EXPORT_SYMBOL_GPL(ktime_mono_to_any);
 799
 800/**
 801 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 802 */
 803ktime_t ktime_get_raw(void)
 804{
 805	struct timekeeper *tk = &tk_core.timekeeper;
 806	unsigned int seq;
 807	ktime_t base;
 808	u64 nsecs;
 809
 810	do {
 811		seq = read_seqcount_begin(&tk_core.seq);
 812		base = tk->tkr_raw.base;
 813		nsecs = timekeeping_get_ns(&tk->tkr_raw);
 814
 815	} while (read_seqcount_retry(&tk_core.seq, seq));
 816
 817	return ktime_add_ns(base, nsecs);
 818}
 819EXPORT_SYMBOL_GPL(ktime_get_raw);
 820
 821/**
 822 * ktime_get_ts64 - get the monotonic clock in timespec64 format
 823 * @ts:		pointer to timespec variable
 824 *
 825 * The function calculates the monotonic clock from the realtime
 826 * clock and the wall_to_monotonic offset and stores the result
 827 * in normalized timespec64 format in the variable pointed to by @ts.
 828 */
 829void ktime_get_ts64(struct timespec64 *ts)
 830{
 831	struct timekeeper *tk = &tk_core.timekeeper;
 832	struct timespec64 tomono;
 833	unsigned int seq;
 834	u64 nsec;
 835
 836	WARN_ON(timekeeping_suspended);
 837
 838	do {
 839		seq = read_seqcount_begin(&tk_core.seq);
 840		ts->tv_sec = tk->xtime_sec;
 841		nsec = timekeeping_get_ns(&tk->tkr_mono);
 842		tomono = tk->wall_to_monotonic;
 843
 844	} while (read_seqcount_retry(&tk_core.seq, seq));
 845
 846	ts->tv_sec += tomono.tv_sec;
 847	ts->tv_nsec = 0;
 848	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
 849}
 850EXPORT_SYMBOL_GPL(ktime_get_ts64);
 851
 852/**
 853 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 854 *
 855 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 856 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 857 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 858 * covers ~136 years of uptime which should be enough to prevent
 859 * premature wrap arounds.
 860 */
 861time64_t ktime_get_seconds(void)
 862{
 863	struct timekeeper *tk = &tk_core.timekeeper;
 864
 865	WARN_ON(timekeeping_suspended);
 866	return tk->ktime_sec;
 867}
 868EXPORT_SYMBOL_GPL(ktime_get_seconds);
 869
 870/**
 871 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 872 *
 873 * Returns the wall clock seconds since 1970. This replaces the
 874 * get_seconds() interface which is not y2038 safe on 32bit systems.
 875 *
 876 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 877 * 32bit systems the access must be protected with the sequence
 878 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 879 * value.
 880 */
 881time64_t ktime_get_real_seconds(void)
 882{
 883	struct timekeeper *tk = &tk_core.timekeeper;
 884	time64_t seconds;
 885	unsigned int seq;
 886
 887	if (IS_ENABLED(CONFIG_64BIT))
 888		return tk->xtime_sec;
 889
 890	do {
 891		seq = read_seqcount_begin(&tk_core.seq);
 892		seconds = tk->xtime_sec;
 893
 894	} while (read_seqcount_retry(&tk_core.seq, seq));
 895
 896	return seconds;
 897}
 898EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
 899
 900/**
 901 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 902 * but without the sequence counter protect. This internal function
 903 * is called just when timekeeping lock is already held.
 904 */
 905time64_t __ktime_get_real_seconds(void)
 906{
 907	struct timekeeper *tk = &tk_core.timekeeper;
 908
 909	return tk->xtime_sec;
 910}
 911
 912/**
 913 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 914 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 915 */
 916void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
 917{
 918	struct timekeeper *tk = &tk_core.timekeeper;
 919	unsigned long seq;
 920	ktime_t base_raw;
 921	ktime_t base_real;
 922	u64 nsec_raw;
 923	u64 nsec_real;
 924	u64 now;
 925
 926	WARN_ON_ONCE(timekeeping_suspended);
 927
 928	do {
 929		seq = read_seqcount_begin(&tk_core.seq);
 930
 931		now = tk->tkr_mono.read(tk->tkr_mono.clock);
 932		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
 933		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
 934		base_real = ktime_add(tk->tkr_mono.base,
 935				      tk_core.timekeeper.offs_real);
 936		base_raw = tk->tkr_raw.base;
 937		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
 938		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
 939	} while (read_seqcount_retry(&tk_core.seq, seq));
 940
 941	systime_snapshot->cycles = now;
 942	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
 943	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
 944}
 945EXPORT_SYMBOL_GPL(ktime_get_snapshot);
 946
 947/* Scale base by mult/div checking for overflow */
 948static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
 949{
 950	u64 tmp, rem;
 951
 952	tmp = div64_u64_rem(*base, div, &rem);
 953
 954	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
 955	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
 956		return -EOVERFLOW;
 957	tmp *= mult;
 958	rem *= mult;
 959
 960	do_div(rem, div);
 961	*base = tmp + rem;
 962	return 0;
 963}
 964
 965/**
 966 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 967 * @history:			Snapshot representing start of history
 968 * @partial_history_cycles:	Cycle offset into history (fractional part)
 969 * @total_history_cycles:	Total history length in cycles
 970 * @discontinuity:		True indicates clock was set on history period
 971 * @ts:				Cross timestamp that should be adjusted using
 972 *	partial/total ratio
 973 *
 974 * Helper function used by get_device_system_crosststamp() to correct the
 975 * crosstimestamp corresponding to the start of the current interval to the
 976 * system counter value (timestamp point) provided by the driver. The
 977 * total_history_* quantities are the total history starting at the provided
 978 * reference point and ending at the start of the current interval. The cycle
 979 * count between the driver timestamp point and the start of the current
 980 * interval is partial_history_cycles.
 981 */
 982static int adjust_historical_crosststamp(struct system_time_snapshot *history,
 983					 u64 partial_history_cycles,
 984					 u64 total_history_cycles,
 985					 bool discontinuity,
 986					 struct system_device_crosststamp *ts)
 987{
 988	struct timekeeper *tk = &tk_core.timekeeper;
 989	u64 corr_raw, corr_real;
 990	bool interp_forward;
 991	int ret;
 992
 993	if (total_history_cycles == 0 || partial_history_cycles == 0)
 994		return 0;
 995
 996	/* Interpolate shortest distance from beginning or end of history */
 997	interp_forward = partial_history_cycles > total_history_cycles/2 ?
 998		true : false;
 999	partial_history_cycles = interp_forward ?
1000		total_history_cycles - partial_history_cycles :
1001		partial_history_cycles;
1002
1003	/*
1004	 * Scale the monotonic raw time delta by:
1005	 *	partial_history_cycles / total_history_cycles
1006	 */
1007	corr_raw = (u64)ktime_to_ns(
1008		ktime_sub(ts->sys_monoraw, history->raw));
1009	ret = scale64_check_overflow(partial_history_cycles,
1010				     total_history_cycles, &corr_raw);
1011	if (ret)
1012		return ret;
1013
1014	/*
1015	 * If there is a discontinuity in the history, scale monotonic raw
1016	 *	correction by:
1017	 *	mult(real)/mult(raw) yielding the realtime correction
1018	 * Otherwise, calculate the realtime correction similar to monotonic
1019	 *	raw calculation
1020	 */
1021	if (discontinuity) {
1022		corr_real = mul_u64_u32_div
1023			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1024	} else {
1025		corr_real = (u64)ktime_to_ns(
1026			ktime_sub(ts->sys_realtime, history->real));
1027		ret = scale64_check_overflow(partial_history_cycles,
1028					     total_history_cycles, &corr_real);
1029		if (ret)
1030			return ret;
1031	}
1032
1033	/* Fixup monotonic raw and real time time values */
1034	if (interp_forward) {
1035		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1036		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1037	} else {
1038		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1039		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1040	}
1041
1042	return 0;
1043}
1044
1045/*
1046 * cycle_between - true if test occurs chronologically between before and after
1047 */
1048static bool cycle_between(u64 before, u64 test, u64 after)
1049{
1050	if (test > before && test < after)
1051		return true;
1052	if (test < before && before > after)
1053		return true;
1054	return false;
1055}
1056
1057/**
1058 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1059 * @get_time_fn:	Callback to get simultaneous device time and
1060 *	system counter from the device driver
1061 * @ctx:		Context passed to get_time_fn()
1062 * @history_begin:	Historical reference point used to interpolate system
1063 *	time when counter provided by the driver is before the current interval
1064 * @xtstamp:		Receives simultaneously captured system and device time
1065 *
1066 * Reads a timestamp from a device and correlates it to system time
1067 */
1068int get_device_system_crosststamp(int (*get_time_fn)
1069				  (ktime_t *device_time,
1070				   struct system_counterval_t *sys_counterval,
1071				   void *ctx),
1072				  void *ctx,
1073				  struct system_time_snapshot *history_begin,
1074				  struct system_device_crosststamp *xtstamp)
1075{
1076	struct system_counterval_t system_counterval;
1077	struct timekeeper *tk = &tk_core.timekeeper;
1078	u64 cycles, now, interval_start;
1079	unsigned int clock_was_set_seq = 0;
1080	ktime_t base_real, base_raw;
1081	u64 nsec_real, nsec_raw;
1082	u8 cs_was_changed_seq;
1083	unsigned long seq;
1084	bool do_interp;
1085	int ret;
1086
1087	do {
1088		seq = read_seqcount_begin(&tk_core.seq);
1089		/*
1090		 * Try to synchronously capture device time and a system
1091		 * counter value calling back into the device driver
1092		 */
1093		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1094		if (ret)
1095			return ret;
1096
1097		/*
1098		 * Verify that the clocksource associated with the captured
1099		 * system counter value is the same as the currently installed
1100		 * timekeeper clocksource
1101		 */
1102		if (tk->tkr_mono.clock != system_counterval.cs)
1103			return -ENODEV;
1104		cycles = system_counterval.cycles;
1105
1106		/*
1107		 * Check whether the system counter value provided by the
1108		 * device driver is on the current timekeeping interval.
1109		 */
1110		now = tk->tkr_mono.read(tk->tkr_mono.clock);
1111		interval_start = tk->tkr_mono.cycle_last;
1112		if (!cycle_between(interval_start, cycles, now)) {
1113			clock_was_set_seq = tk->clock_was_set_seq;
1114			cs_was_changed_seq = tk->cs_was_changed_seq;
1115			cycles = interval_start;
1116			do_interp = true;
1117		} else {
1118			do_interp = false;
1119		}
1120
1121		base_real = ktime_add(tk->tkr_mono.base,
1122				      tk_core.timekeeper.offs_real);
1123		base_raw = tk->tkr_raw.base;
1124
1125		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1126						     system_counterval.cycles);
1127		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1128						    system_counterval.cycles);
1129	} while (read_seqcount_retry(&tk_core.seq, seq));
1130
1131	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1132	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1133
1134	/*
1135	 * Interpolate if necessary, adjusting back from the start of the
1136	 * current interval
1137	 */
1138	if (do_interp) {
1139		u64 partial_history_cycles, total_history_cycles;
1140		bool discontinuity;
1141
1142		/*
1143		 * Check that the counter value occurs after the provided
1144		 * history reference and that the history doesn't cross a
1145		 * clocksource change
1146		 */
1147		if (!history_begin ||
1148		    !cycle_between(history_begin->cycles,
1149				   system_counterval.cycles, cycles) ||
1150		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1151			return -EINVAL;
1152		partial_history_cycles = cycles - system_counterval.cycles;
1153		total_history_cycles = cycles - history_begin->cycles;
1154		discontinuity =
1155			history_begin->clock_was_set_seq != clock_was_set_seq;
1156
1157		ret = adjust_historical_crosststamp(history_begin,
1158						    partial_history_cycles,
1159						    total_history_cycles,
1160						    discontinuity, xtstamp);
1161		if (ret)
1162			return ret;
1163	}
1164
1165	return 0;
1166}
1167EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1168
1169/**
1170 * do_gettimeofday - Returns the time of day in a timeval
1171 * @tv:		pointer to the timeval to be set
1172 *
1173 * NOTE: Users should be converted to using getnstimeofday()
1174 */
1175void do_gettimeofday(struct timeval *tv)
1176{
1177	struct timespec64 now;
1178
1179	getnstimeofday64(&now);
1180	tv->tv_sec = now.tv_sec;
1181	tv->tv_usec = now.tv_nsec/1000;
1182}
1183EXPORT_SYMBOL(do_gettimeofday);
1184
1185/**
1186 * do_settimeofday64 - Sets the time of day.
1187 * @ts:     pointer to the timespec64 variable containing the new time
1188 *
1189 * Sets the time of day to the new time and update NTP and notify hrtimers
1190 */
1191int do_settimeofday64(const struct timespec64 *ts)
1192{
1193	struct timekeeper *tk = &tk_core.timekeeper;
1194	struct timespec64 ts_delta, xt;
1195	unsigned long flags;
1196	int ret = 0;
1197
1198	if (!timespec64_valid_strict(ts))
1199		return -EINVAL;
1200
1201	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1202	write_seqcount_begin(&tk_core.seq);
1203
1204	timekeeping_forward_now(tk);
1205
1206	xt = tk_xtime(tk);
1207	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1208	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1209
1210	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1211		ret = -EINVAL;
1212		goto out;
1213	}
1214
1215	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1216
1217	tk_set_xtime(tk, ts);
1218out:
1219	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1220
1221	write_seqcount_end(&tk_core.seq);
1222	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1223
1224	/* signal hrtimers about time change */
1225	clock_was_set();
1226
 
 
 
1227	return ret;
1228}
1229EXPORT_SYMBOL(do_settimeofday64);
1230
1231/**
1232 * timekeeping_inject_offset - Adds or subtracts from the current time.
1233 * @tv:		pointer to the timespec variable containing the offset
1234 *
1235 * Adds or subtracts an offset value from the current time.
1236 */
1237int timekeeping_inject_offset(struct timespec *ts)
1238{
1239	struct timekeeper *tk = &tk_core.timekeeper;
1240	unsigned long flags;
1241	struct timespec64 ts64, tmp;
1242	int ret = 0;
1243
1244	if (!timespec_inject_offset_valid(ts))
1245		return -EINVAL;
1246
1247	ts64 = timespec_to_timespec64(*ts);
1248
1249	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1250	write_seqcount_begin(&tk_core.seq);
1251
1252	timekeeping_forward_now(tk);
1253
1254	/* Make sure the proposed value is valid */
1255	tmp = timespec64_add(tk_xtime(tk),  ts64);
1256	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1257	    !timespec64_valid_strict(&tmp)) {
1258		ret = -EINVAL;
1259		goto error;
1260	}
1261
1262	tk_xtime_add(tk, &ts64);
1263	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1264
1265error: /* even if we error out, we forwarded the time, so call update */
1266	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1267
1268	write_seqcount_end(&tk_core.seq);
1269	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1270
1271	/* signal hrtimers about time change */
1272	clock_was_set();
1273
1274	return ret;
1275}
1276EXPORT_SYMBOL(timekeeping_inject_offset);
1277
 
 
 
 
 
1278
1279/**
1280 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 
 
 
 
 
 
 
1281 *
 
 
 
 
 
1282 */
1283s32 timekeeping_get_tai_offset(void)
1284{
1285	struct timekeeper *tk = &tk_core.timekeeper;
1286	unsigned int seq;
1287	s32 ret;
1288
1289	do {
1290		seq = read_seqcount_begin(&tk_core.seq);
1291		ret = tk->tai_offset;
1292	} while (read_seqcount_retry(&tk_core.seq, seq));
1293
1294	return ret;
 
 
 
 
1295}
1296
1297/**
1298 * __timekeeping_set_tai_offset - Lock free worker function
1299 *
1300 */
1301static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1302{
1303	tk->tai_offset = tai_offset;
1304	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1305}
1306
1307/**
1308 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1309 *
1310 */
1311void timekeeping_set_tai_offset(s32 tai_offset)
1312{
1313	struct timekeeper *tk = &tk_core.timekeeper;
1314	unsigned long flags;
1315
1316	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1317	write_seqcount_begin(&tk_core.seq);
1318	__timekeeping_set_tai_offset(tk, tai_offset);
1319	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1320	write_seqcount_end(&tk_core.seq);
1321	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1322	clock_was_set();
1323}
1324
1325/**
1326 * change_clocksource - Swaps clocksources if a new one is available
1327 *
1328 * Accumulates current time interval and initializes new clocksource
1329 */
1330static int change_clocksource(void *data)
1331{
1332	struct timekeeper *tk = &tk_core.timekeeper;
1333	struct clocksource *new, *old;
1334	unsigned long flags;
1335
1336	new = (struct clocksource *) data;
1337
1338	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1339	write_seqcount_begin(&tk_core.seq);
1340
1341	timekeeping_forward_now(tk);
1342	/*
1343	 * If the cs is in module, get a module reference. Succeeds
1344	 * for built-in code (owner == NULL) as well.
1345	 */
1346	if (try_module_get(new->owner)) {
1347		if (!new->enable || new->enable(new) == 0) {
1348			old = tk->tkr_mono.clock;
1349			tk_setup_internals(tk, new);
1350			if (old->disable)
1351				old->disable(old);
1352			module_put(old->owner);
1353		} else {
1354			module_put(new->owner);
1355		}
1356	}
1357	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1358
1359	write_seqcount_end(&tk_core.seq);
1360	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1361
1362	return 0;
1363}
1364
1365/**
1366 * timekeeping_notify - Install a new clock source
1367 * @clock:		pointer to the clock source
1368 *
1369 * This function is called from clocksource.c after a new, better clock
1370 * source has been registered. The caller holds the clocksource_mutex.
1371 */
1372int timekeeping_notify(struct clocksource *clock)
1373{
1374	struct timekeeper *tk = &tk_core.timekeeper;
1375
1376	if (tk->tkr_mono.clock == clock)
1377		return 0;
1378	stop_machine(change_clocksource, clock, NULL);
1379	tick_clock_notify();
1380	return tk->tkr_mono.clock == clock ? 0 : -1;
1381}
1382
1383/**
1384 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1385 * @ts:		pointer to the timespec64 to be set
1386 *
1387 * Returns the raw monotonic time (completely un-modified by ntp)
1388 */
1389void getrawmonotonic64(struct timespec64 *ts)
1390{
1391	struct timekeeper *tk = &tk_core.timekeeper;
1392	struct timespec64 ts64;
1393	unsigned long seq;
1394	u64 nsecs;
1395
1396	do {
1397		seq = read_seqcount_begin(&tk_core.seq);
 
1398		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1399		ts64 = tk->raw_time;
1400
1401	} while (read_seqcount_retry(&tk_core.seq, seq));
1402
1403	timespec64_add_ns(&ts64, nsecs);
1404	*ts = ts64;
1405}
1406EXPORT_SYMBOL(getrawmonotonic64);
1407
1408
1409/**
1410 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1411 */
1412int timekeeping_valid_for_hres(void)
1413{
1414	struct timekeeper *tk = &tk_core.timekeeper;
1415	unsigned long seq;
1416	int ret;
1417
1418	do {
1419		seq = read_seqcount_begin(&tk_core.seq);
1420
1421		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1422
1423	} while (read_seqcount_retry(&tk_core.seq, seq));
1424
1425	return ret;
1426}
1427
1428/**
1429 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1430 */
1431u64 timekeeping_max_deferment(void)
1432{
1433	struct timekeeper *tk = &tk_core.timekeeper;
1434	unsigned long seq;
1435	u64 ret;
1436
1437	do {
1438		seq = read_seqcount_begin(&tk_core.seq);
1439
1440		ret = tk->tkr_mono.clock->max_idle_ns;
1441
1442	} while (read_seqcount_retry(&tk_core.seq, seq));
1443
1444	return ret;
1445}
1446
1447/**
1448 * read_persistent_clock -  Return time from the persistent clock.
1449 *
1450 * Weak dummy function for arches that do not yet support it.
1451 * Reads the time from the battery backed persistent clock.
1452 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1453 *
1454 *  XXX - Do be sure to remove it once all arches implement it.
1455 */
1456void __weak read_persistent_clock(struct timespec *ts)
1457{
1458	ts->tv_sec = 0;
1459	ts->tv_nsec = 0;
1460}
1461
1462void __weak read_persistent_clock64(struct timespec64 *ts64)
1463{
1464	struct timespec ts;
1465
1466	read_persistent_clock(&ts);
1467	*ts64 = timespec_to_timespec64(ts);
1468}
1469
1470/**
1471 * read_boot_clock64 -  Return time of the system start.
 
1472 *
1473 * Weak dummy function for arches that do not yet support it.
1474 * Function to read the exact time the system has been started.
1475 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1476 *
1477 *  XXX - Do be sure to remove it once all arches implement it.
1478 */
1479void __weak read_boot_clock64(struct timespec64 *ts)
 
 
 
 
1480{
1481	ts->tv_sec = 0;
1482	ts->tv_nsec = 0;
1483}
1484
1485/* Flag for if timekeeping_resume() has injected sleeptime */
1486static bool sleeptime_injected;
 
 
 
 
 
 
 
 
 
 
 
 
1487
1488/* Flag for if there is a persistent clock on this platform */
1489static bool persistent_clock_exists;
1490
1491/*
1492 * timekeeping_init - Initializes the clocksource and common timekeeping values
1493 */
1494void __init timekeeping_init(void)
1495{
 
1496	struct timekeeper *tk = &tk_core.timekeeper;
1497	struct clocksource *clock;
1498	unsigned long flags;
1499	struct timespec64 now, boot, tmp;
1500
1501	read_persistent_clock64(&now);
1502	if (!timespec64_valid_strict(&now)) {
1503		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1504			"         Check your CMOS/BIOS settings.\n");
1505		now.tv_sec = 0;
1506		now.tv_nsec = 0;
1507	} else if (now.tv_sec || now.tv_nsec)
1508		persistent_clock_exists = true;
1509
1510	read_boot_clock64(&boot);
1511	if (!timespec64_valid_strict(&boot)) {
1512		pr_warn("WARNING: Boot clock returned invalid value!\n"
1513			"         Check your CMOS/BIOS settings.\n");
1514		boot.tv_sec = 0;
1515		boot.tv_nsec = 0;
1516	}
1517
 
 
 
 
 
 
 
 
 
1518	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1519	write_seqcount_begin(&tk_core.seq);
1520	ntp_init();
1521
1522	clock = clocksource_default_clock();
1523	if (clock->enable)
1524		clock->enable(clock);
1525	tk_setup_internals(tk, clock);
1526
1527	tk_set_xtime(tk, &now);
1528	tk->raw_time.tv_sec = 0;
1529	tk->raw_time.tv_nsec = 0;
1530	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1531		boot = tk_xtime(tk);
1532
1533	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1534	tk_set_wall_to_mono(tk, tmp);
1535
1536	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1537
1538	write_seqcount_end(&tk_core.seq);
1539	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1540}
1541
1542/* time in seconds when suspend began for persistent clock */
1543static struct timespec64 timekeeping_suspend_time;
1544
1545/**
1546 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1547 * @delta: pointer to a timespec delta value
1548 *
1549 * Takes a timespec offset measuring a suspend interval and properly
1550 * adds the sleep offset to the timekeeping variables.
1551 */
1552static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1553					   struct timespec64 *delta)
1554{
1555	if (!timespec64_valid_strict(delta)) {
1556		printk_deferred(KERN_WARNING
1557				"__timekeeping_inject_sleeptime: Invalid "
1558				"sleep delta value!\n");
1559		return;
1560	}
1561	tk_xtime_add(tk, delta);
1562	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1563	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1564	tk_debug_account_sleep_time(delta);
1565}
1566
1567#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1568/**
1569 * We have three kinds of time sources to use for sleep time
1570 * injection, the preference order is:
1571 * 1) non-stop clocksource
1572 * 2) persistent clock (ie: RTC accessible when irqs are off)
1573 * 3) RTC
1574 *
1575 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1576 * If system has neither 1) nor 2), 3) will be used finally.
1577 *
1578 *
1579 * If timekeeping has injected sleeptime via either 1) or 2),
1580 * 3) becomes needless, so in this case we don't need to call
1581 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1582 * means.
1583 */
1584bool timekeeping_rtc_skipresume(void)
1585{
1586	return sleeptime_injected;
1587}
1588
1589/**
1590 * 1) can be determined whether to use or not only when doing
1591 * timekeeping_resume() which is invoked after rtc_suspend(),
1592 * so we can't skip rtc_suspend() surely if system has 1).
1593 *
1594 * But if system has 2), 2) will definitely be used, so in this
1595 * case we don't need to call rtc_suspend(), and this is what
1596 * timekeeping_rtc_skipsuspend() means.
1597 */
1598bool timekeeping_rtc_skipsuspend(void)
1599{
1600	return persistent_clock_exists;
1601}
1602
1603/**
1604 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1605 * @delta: pointer to a timespec64 delta value
1606 *
1607 * This hook is for architectures that cannot support read_persistent_clock64
1608 * because their RTC/persistent clock is only accessible when irqs are enabled.
1609 * and also don't have an effective nonstop clocksource.
1610 *
1611 * This function should only be called by rtc_resume(), and allows
1612 * a suspend offset to be injected into the timekeeping values.
1613 */
1614void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1615{
1616	struct timekeeper *tk = &tk_core.timekeeper;
1617	unsigned long flags;
1618
1619	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1620	write_seqcount_begin(&tk_core.seq);
1621
 
 
1622	timekeeping_forward_now(tk);
1623
1624	__timekeeping_inject_sleeptime(tk, delta);
1625
1626	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1627
1628	write_seqcount_end(&tk_core.seq);
1629	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1630
1631	/* signal hrtimers about time change */
1632	clock_was_set();
1633}
1634#endif
1635
1636/**
1637 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1638 */
1639void timekeeping_resume(void)
1640{
1641	struct timekeeper *tk = &tk_core.timekeeper;
1642	struct clocksource *clock = tk->tkr_mono.clock;
1643	unsigned long flags;
1644	struct timespec64 ts_new, ts_delta;
1645	u64 cycle_now;
 
1646
1647	sleeptime_injected = false;
1648	read_persistent_clock64(&ts_new);
1649
1650	clockevents_resume();
1651	clocksource_resume();
1652
1653	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1654	write_seqcount_begin(&tk_core.seq);
1655
1656	/*
1657	 * After system resumes, we need to calculate the suspended time and
1658	 * compensate it for the OS time. There are 3 sources that could be
1659	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1660	 * device.
1661	 *
1662	 * One specific platform may have 1 or 2 or all of them, and the
1663	 * preference will be:
1664	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1665	 * The less preferred source will only be tried if there is no better
1666	 * usable source. The rtc part is handled separately in rtc core code.
1667	 */
1668	cycle_now = tk->tkr_mono.read(clock);
1669	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1670		cycle_now > tk->tkr_mono.cycle_last) {
1671		u64 nsec, cyc_delta;
1672
1673		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1674					      tk->tkr_mono.mask);
1675		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1676		ts_delta = ns_to_timespec64(nsec);
1677		sleeptime_injected = true;
1678	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1679		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1680		sleeptime_injected = true;
1681	}
1682
1683	if (sleeptime_injected)
 
1684		__timekeeping_inject_sleeptime(tk, &ts_delta);
 
1685
1686	/* Re-base the last cycle value */
1687	tk->tkr_mono.cycle_last = cycle_now;
1688	tk->tkr_raw.cycle_last  = cycle_now;
1689
1690	tk->ntp_error = 0;
1691	timekeeping_suspended = 0;
1692	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1693	write_seqcount_end(&tk_core.seq);
1694	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1695
1696	touch_softlockup_watchdog();
1697
1698	tick_resume();
1699	hrtimers_resume();
1700}
1701
1702int timekeeping_suspend(void)
1703{
1704	struct timekeeper *tk = &tk_core.timekeeper;
1705	unsigned long flags;
1706	struct timespec64		delta, delta_delta;
1707	static struct timespec64	old_delta;
 
 
1708
1709	read_persistent_clock64(&timekeeping_suspend_time);
1710
1711	/*
1712	 * On some systems the persistent_clock can not be detected at
1713	 * timekeeping_init by its return value, so if we see a valid
1714	 * value returned, update the persistent_clock_exists flag.
1715	 */
1716	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1717		persistent_clock_exists = true;
1718
 
 
1719	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1720	write_seqcount_begin(&tk_core.seq);
1721	timekeeping_forward_now(tk);
1722	timekeeping_suspended = 1;
1723
 
 
 
 
 
 
 
 
 
1724	if (persistent_clock_exists) {
1725		/*
1726		 * To avoid drift caused by repeated suspend/resumes,
1727		 * which each can add ~1 second drift error,
1728		 * try to compensate so the difference in system time
1729		 * and persistent_clock time stays close to constant.
1730		 */
1731		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1732		delta_delta = timespec64_sub(delta, old_delta);
1733		if (abs(delta_delta.tv_sec) >= 2) {
1734			/*
1735			 * if delta_delta is too large, assume time correction
1736			 * has occurred and set old_delta to the current delta.
1737			 */
1738			old_delta = delta;
1739		} else {
1740			/* Otherwise try to adjust old_system to compensate */
1741			timekeeping_suspend_time =
1742				timespec64_add(timekeeping_suspend_time, delta_delta);
1743		}
1744	}
1745
1746	timekeeping_update(tk, TK_MIRROR);
1747	halt_fast_timekeeper(tk);
1748	write_seqcount_end(&tk_core.seq);
1749	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1750
1751	tick_suspend();
1752	clocksource_suspend();
1753	clockevents_suspend();
1754
1755	return 0;
1756}
1757
1758/* sysfs resume/suspend bits for timekeeping */
1759static struct syscore_ops timekeeping_syscore_ops = {
1760	.resume		= timekeeping_resume,
1761	.suspend	= timekeeping_suspend,
1762};
1763
1764static int __init timekeeping_init_ops(void)
1765{
1766	register_syscore_ops(&timekeeping_syscore_ops);
1767	return 0;
1768}
1769device_initcall(timekeeping_init_ops);
1770
1771/*
1772 * Apply a multiplier adjustment to the timekeeper
1773 */
1774static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1775							 s64 offset,
1776							 bool negative,
1777							 int adj_scale)
1778{
1779	s64 interval = tk->cycle_interval;
1780	s32 mult_adj = 1;
1781
1782	if (negative) {
1783		mult_adj = -mult_adj;
 
1784		interval = -interval;
1785		offset  = -offset;
 
 
 
1786	}
1787	mult_adj <<= adj_scale;
1788	interval <<= adj_scale;
1789	offset <<= adj_scale;
1790
1791	/*
1792	 * So the following can be confusing.
1793	 *
1794	 * To keep things simple, lets assume mult_adj == 1 for now.
1795	 *
1796	 * When mult_adj != 1, remember that the interval and offset values
1797	 * have been appropriately scaled so the math is the same.
1798	 *
1799	 * The basic idea here is that we're increasing the multiplier
1800	 * by one, this causes the xtime_interval to be incremented by
1801	 * one cycle_interval. This is because:
1802	 *	xtime_interval = cycle_interval * mult
1803	 * So if mult is being incremented by one:
1804	 *	xtime_interval = cycle_interval * (mult + 1)
1805	 * Its the same as:
1806	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1807	 * Which can be shortened to:
1808	 *	xtime_interval += cycle_interval
1809	 *
1810	 * So offset stores the non-accumulated cycles. Thus the current
1811	 * time (in shifted nanoseconds) is:
1812	 *	now = (offset * adj) + xtime_nsec
1813	 * Now, even though we're adjusting the clock frequency, we have
1814	 * to keep time consistent. In other words, we can't jump back
1815	 * in time, and we also want to avoid jumping forward in time.
1816	 *
1817	 * So given the same offset value, we need the time to be the same
1818	 * both before and after the freq adjustment.
1819	 *	now = (offset * adj_1) + xtime_nsec_1
1820	 *	now = (offset * adj_2) + xtime_nsec_2
1821	 * So:
1822	 *	(offset * adj_1) + xtime_nsec_1 =
1823	 *		(offset * adj_2) + xtime_nsec_2
1824	 * And we know:
1825	 *	adj_2 = adj_1 + 1
1826	 * So:
1827	 *	(offset * adj_1) + xtime_nsec_1 =
1828	 *		(offset * (adj_1+1)) + xtime_nsec_2
1829	 *	(offset * adj_1) + xtime_nsec_1 =
1830	 *		(offset * adj_1) + offset + xtime_nsec_2
1831	 * Canceling the sides:
1832	 *	xtime_nsec_1 = offset + xtime_nsec_2
1833	 * Which gives us:
1834	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1835	 * Which simplfies to:
1836	 *	xtime_nsec -= offset
1837	 *
1838	 * XXX - TODO: Doc ntp_error calculation.
1839	 */
1840	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1841		/* NTP adjustment caused clocksource mult overflow */
1842		WARN_ON_ONCE(1);
1843		return;
1844	}
1845
1846	tk->tkr_mono.mult += mult_adj;
1847	tk->xtime_interval += interval;
1848	tk->tkr_mono.xtime_nsec -= offset;
1849	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1850}
1851
1852/*
1853 * Calculate the multiplier adjustment needed to match the frequency
1854 * specified by NTP
1855 */
1856static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1857							s64 offset)
1858{
1859	s64 interval = tk->cycle_interval;
1860	s64 xinterval = tk->xtime_interval;
1861	u32 base = tk->tkr_mono.clock->mult;
1862	u32 max = tk->tkr_mono.clock->maxadj;
1863	u32 cur_adj = tk->tkr_mono.mult;
1864	s64 tick_error;
1865	bool negative;
1866	u32 adj_scale;
1867
1868	/* Remove any current error adj from freq calculation */
1869	if (tk->ntp_err_mult)
1870		xinterval -= tk->cycle_interval;
1871
1872	tk->ntp_tick = ntp_tick_length();
1873
1874	/* Calculate current error per tick */
1875	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1876	tick_error -= (xinterval + tk->xtime_remainder);
1877
1878	/* Don't worry about correcting it if its small */
1879	if (likely((tick_error >= 0) && (tick_error <= interval)))
1880		return;
1881
1882	/* preserve the direction of correction */
1883	negative = (tick_error < 0);
1884
1885	/* If any adjustment would pass the max, just return */
1886	if (negative && (cur_adj - 1) <= (base - max))
1887		return;
1888	if (!negative && (cur_adj + 1) >= (base + max))
1889		return;
1890	/*
1891	 * Sort out the magnitude of the correction, but
1892	 * avoid making so large a correction that we go
1893	 * over the max adjustment.
1894	 */
1895	adj_scale = 0;
1896	tick_error = abs(tick_error);
1897	while (tick_error > interval) {
1898		u32 adj = 1 << (adj_scale + 1);
1899
1900		/* Check if adjustment gets us within 1 unit from the max */
1901		if (negative && (cur_adj - adj) <= (base - max))
1902			break;
1903		if (!negative && (cur_adj + adj) >= (base + max))
1904			break;
1905
1906		adj_scale++;
1907		tick_error >>= 1;
1908	}
1909
1910	/* scale the corrections */
1911	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1912}
1913
1914/*
1915 * Adjust the timekeeper's multiplier to the correct frequency
1916 * and also to reduce the accumulated error value.
1917 */
1918static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1919{
1920	/* Correct for the current frequency error */
1921	timekeeping_freqadjust(tk, offset);
1922
1923	/* Next make a small adjustment to fix any cumulative error */
1924	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1925		tk->ntp_err_mult = 1;
1926		timekeeping_apply_adjustment(tk, offset, 0, 0);
1927	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1928		/* Undo any existing error adjustment */
1929		timekeeping_apply_adjustment(tk, offset, 1, 0);
1930		tk->ntp_err_mult = 0;
 
 
1931	}
1932
 
 
 
 
 
 
 
 
 
 
 
1933	if (unlikely(tk->tkr_mono.clock->maxadj &&
1934		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1935			> tk->tkr_mono.clock->maxadj))) {
1936		printk_once(KERN_WARNING
1937			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1938			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1939			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1940	}
1941
1942	/*
1943	 * It may be possible that when we entered this function, xtime_nsec
1944	 * was very small.  Further, if we're slightly speeding the clocksource
1945	 * in the code above, its possible the required corrective factor to
1946	 * xtime_nsec could cause it to underflow.
1947	 *
1948	 * Now, since we already accumulated the second, cannot simply roll
1949	 * the accumulated second back, since the NTP subsystem has been
1950	 * notified via second_overflow. So instead we push xtime_nsec forward
1951	 * by the amount we underflowed, and add that amount into the error.
1952	 *
1953	 * We'll correct this error next time through this function, when
1954	 * xtime_nsec is not as small.
1955	 */
1956	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1957		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1958		tk->tkr_mono.xtime_nsec = 0;
1959		tk->ntp_error += neg << tk->ntp_error_shift;
 
1960	}
1961}
1962
1963/**
1964 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1965 *
1966 * Helper function that accumulates the nsecs greater than a second
1967 * from the xtime_nsec field to the xtime_secs field.
1968 * It also calls into the NTP code to handle leapsecond processing.
1969 *
1970 */
1971static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1972{
1973	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1974	unsigned int clock_set = 0;
1975
1976	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1977		int leap;
1978
1979		tk->tkr_mono.xtime_nsec -= nsecps;
1980		tk->xtime_sec++;
1981
 
 
 
 
 
 
 
 
 
1982		/* Figure out if its a leap sec and apply if needed */
1983		leap = second_overflow(tk->xtime_sec);
1984		if (unlikely(leap)) {
1985			struct timespec64 ts;
1986
1987			tk->xtime_sec += leap;
1988
1989			ts.tv_sec = leap;
1990			ts.tv_nsec = 0;
1991			tk_set_wall_to_mono(tk,
1992				timespec64_sub(tk->wall_to_monotonic, ts));
1993
1994			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1995
1996			clock_set = TK_CLOCK_WAS_SET;
1997		}
1998	}
1999	return clock_set;
2000}
2001
2002/**
2003 * logarithmic_accumulation - shifted accumulation of cycles
2004 *
2005 * This functions accumulates a shifted interval of cycles into
2006 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2007 * loop.
2008 *
2009 * Returns the unconsumed cycles.
2010 */
2011static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2012				    u32 shift, unsigned int *clock_set)
2013{
2014	u64 interval = tk->cycle_interval << shift;
2015	u64 raw_nsecs;
2016
2017	/* If the offset is smaller than a shifted interval, do nothing */
2018	if (offset < interval)
2019		return offset;
2020
2021	/* Accumulate one shifted interval */
2022	offset -= interval;
2023	tk->tkr_mono.cycle_last += interval;
2024	tk->tkr_raw.cycle_last  += interval;
2025
2026	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2027	*clock_set |= accumulate_nsecs_to_secs(tk);
2028
2029	/* Accumulate raw time */
2030	raw_nsecs = (u64)tk->raw_interval << shift;
2031	raw_nsecs += tk->raw_time.tv_nsec;
2032	if (raw_nsecs >= NSEC_PER_SEC) {
2033		u64 raw_secs = raw_nsecs;
2034		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2035		tk->raw_time.tv_sec += raw_secs;
2036	}
2037	tk->raw_time.tv_nsec = raw_nsecs;
2038
2039	/* Accumulate error between NTP and clock interval */
2040	tk->ntp_error += tk->ntp_tick << shift;
2041	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2042						(tk->ntp_error_shift + shift);
2043
2044	return offset;
2045}
2046
2047/**
2048 * update_wall_time - Uses the current clocksource to increment the wall time
2049 *
2050 */
2051void update_wall_time(void)
2052{
2053	struct timekeeper *real_tk = &tk_core.timekeeper;
2054	struct timekeeper *tk = &shadow_timekeeper;
2055	u64 offset;
2056	int shift = 0, maxshift;
2057	unsigned int clock_set = 0;
2058	unsigned long flags;
2059
2060	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2061
2062	/* Make sure we're fully resumed: */
2063	if (unlikely(timekeeping_suspended))
2064		goto out;
2065
2066#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2067	offset = real_tk->cycle_interval;
 
 
 
2068#else
2069	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2070				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2071#endif
2072
2073	/* Check if there's really nothing to do */
2074	if (offset < real_tk->cycle_interval)
2075		goto out;
 
2076
2077	/* Do some additional sanity checking */
2078	timekeeping_check_update(real_tk, offset);
2079
2080	/*
2081	 * With NO_HZ we may have to accumulate many cycle_intervals
2082	 * (think "ticks") worth of time at once. To do this efficiently,
2083	 * we calculate the largest doubling multiple of cycle_intervals
2084	 * that is smaller than the offset.  We then accumulate that
2085	 * chunk in one go, and then try to consume the next smaller
2086	 * doubled multiple.
2087	 */
2088	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2089	shift = max(0, shift);
2090	/* Bound shift to one less than what overflows tick_length */
2091	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2092	shift = min(shift, maxshift);
2093	while (offset >= tk->cycle_interval) {
2094		offset = logarithmic_accumulation(tk, offset, shift,
2095							&clock_set);
2096		if (offset < tk->cycle_interval<<shift)
2097			shift--;
2098	}
2099
2100	/* correct the clock when NTP error is too big */
2101	timekeeping_adjust(tk, offset);
2102
2103	/*
2104	 * XXX This can be killed once everyone converts
2105	 * to the new update_vsyscall.
2106	 */
2107	old_vsyscall_fixup(tk);
2108
2109	/*
2110	 * Finally, make sure that after the rounding
2111	 * xtime_nsec isn't larger than NSEC_PER_SEC
2112	 */
2113	clock_set |= accumulate_nsecs_to_secs(tk);
2114
2115	write_seqcount_begin(&tk_core.seq);
2116	/*
2117	 * Update the real timekeeper.
2118	 *
2119	 * We could avoid this memcpy by switching pointers, but that
2120	 * requires changes to all other timekeeper usage sites as
2121	 * well, i.e. move the timekeeper pointer getter into the
2122	 * spinlocked/seqcount protected sections. And we trade this
2123	 * memcpy under the tk_core.seq against one before we start
2124	 * updating.
2125	 */
2126	timekeeping_update(tk, clock_set);
2127	memcpy(real_tk, tk, sizeof(*tk));
2128	/* The memcpy must come last. Do not put anything here! */
2129	write_seqcount_end(&tk_core.seq);
2130out:
2131	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2132	if (clock_set)
2133		/* Have to call _delayed version, since in irq context*/
2134		clock_was_set_delayed();
2135}
2136
2137/**
 
 
 
 
 
 
 
 
 
2138 * getboottime64 - Return the real time of system boot.
2139 * @ts:		pointer to the timespec64 to be set
2140 *
2141 * Returns the wall-time of boot in a timespec64.
2142 *
2143 * This is based on the wall_to_monotonic offset and the total suspend
2144 * time. Calls to settimeofday will affect the value returned (which
2145 * basically means that however wrong your real time clock is at boot time,
2146 * you get the right time here).
2147 */
2148void getboottime64(struct timespec64 *ts)
2149{
2150	struct timekeeper *tk = &tk_core.timekeeper;
2151	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2152
2153	*ts = ktime_to_timespec64(t);
2154}
2155EXPORT_SYMBOL_GPL(getboottime64);
2156
2157unsigned long get_seconds(void)
2158{
2159	struct timekeeper *tk = &tk_core.timekeeper;
2160
2161	return tk->xtime_sec;
2162}
2163EXPORT_SYMBOL(get_seconds);
2164
2165struct timespec __current_kernel_time(void)
2166{
2167	struct timekeeper *tk = &tk_core.timekeeper;
2168
2169	return timespec64_to_timespec(tk_xtime(tk));
2170}
2171
2172struct timespec64 current_kernel_time64(void)
2173{
2174	struct timekeeper *tk = &tk_core.timekeeper;
2175	struct timespec64 now;
2176	unsigned long seq;
2177
2178	do {
2179		seq = read_seqcount_begin(&tk_core.seq);
2180
2181		now = tk_xtime(tk);
2182	} while (read_seqcount_retry(&tk_core.seq, seq));
2183
2184	return now;
2185}
2186EXPORT_SYMBOL(current_kernel_time64);
2187
2188struct timespec64 get_monotonic_coarse64(void)
2189{
2190	struct timekeeper *tk = &tk_core.timekeeper;
2191	struct timespec64 now, mono;
2192	unsigned long seq;
2193
2194	do {
2195		seq = read_seqcount_begin(&tk_core.seq);
2196
2197		now = tk_xtime(tk);
2198		mono = tk->wall_to_monotonic;
2199	} while (read_seqcount_retry(&tk_core.seq, seq));
2200
2201	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2202				now.tv_nsec + mono.tv_nsec);
2203
2204	return now;
2205}
2206EXPORT_SYMBOL(get_monotonic_coarse64);
2207
2208/*
2209 * Must hold jiffies_lock
2210 */
2211void do_timer(unsigned long ticks)
2212{
2213	jiffies_64 += ticks;
2214	calc_global_load(ticks);
2215}
2216
2217/**
2218 * ktime_get_update_offsets_now - hrtimer helper
2219 * @cwsseq:	pointer to check and store the clock was set sequence number
2220 * @offs_real:	pointer to storage for monotonic -> realtime offset
2221 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2222 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2223 *
2224 * Returns current monotonic time and updates the offsets if the
2225 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2226 * different.
2227 *
2228 * Called from hrtimer_interrupt() or retrigger_next_event()
2229 */
2230ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2231				     ktime_t *offs_boot, ktime_t *offs_tai)
2232{
2233	struct timekeeper *tk = &tk_core.timekeeper;
2234	unsigned int seq;
2235	ktime_t base;
2236	u64 nsecs;
2237
2238	do {
2239		seq = read_seqcount_begin(&tk_core.seq);
2240
2241		base = tk->tkr_mono.base;
2242		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2243		base = ktime_add_ns(base, nsecs);
2244
2245		if (*cwsseq != tk->clock_was_set_seq) {
2246			*cwsseq = tk->clock_was_set_seq;
2247			*offs_real = tk->offs_real;
2248			*offs_boot = tk->offs_boot;
2249			*offs_tai = tk->offs_tai;
2250		}
2251
2252		/* Handle leapsecond insertion adjustments */
2253		if (unlikely(base >= tk->next_leap_ktime))
2254			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2255
2256	} while (read_seqcount_retry(&tk_core.seq, seq));
2257
2258	return base;
2259}
2260
2261/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2262 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2263 */
2264int do_adjtimex(struct timex *txc)
2265{
2266	struct timekeeper *tk = &tk_core.timekeeper;
 
2267	unsigned long flags;
2268	struct timespec64 ts;
2269	s32 orig_tai, tai;
2270	int ret;
2271
2272	/* Validate the data before disabling interrupts */
2273	ret = ntp_validate_timex(txc);
2274	if (ret)
2275		return ret;
2276
2277	if (txc->modes & ADJ_SETOFFSET) {
2278		struct timespec delta;
2279		delta.tv_sec  = txc->time.tv_sec;
2280		delta.tv_nsec = txc->time.tv_usec;
2281		if (!(txc->modes & ADJ_NANO))
2282			delta.tv_nsec *= 1000;
2283		ret = timekeeping_inject_offset(&delta);
2284		if (ret)
2285			return ret;
 
 
2286	}
2287
2288	getnstimeofday64(&ts);
 
 
2289
2290	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2291	write_seqcount_begin(&tk_core.seq);
2292
2293	orig_tai = tai = tk->tai_offset;
2294	ret = __do_adjtimex(txc, &ts, &tai);
2295
2296	if (tai != orig_tai) {
2297		__timekeeping_set_tai_offset(tk, tai);
2298		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2299	}
2300	tk_update_leap_state(tk);
2301
2302	write_seqcount_end(&tk_core.seq);
2303	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2304
 
 
 
 
 
 
2305	if (tai != orig_tai)
2306		clock_was_set();
2307
2308	ntp_notify_cmos_timer();
2309
2310	return ret;
2311}
2312
2313#ifdef CONFIG_NTP_PPS
2314/**
2315 * hardpps() - Accessor function to NTP __hardpps function
2316 */
2317void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2318{
2319	unsigned long flags;
2320
2321	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2322	write_seqcount_begin(&tk_core.seq);
2323
2324	__hardpps(phase_ts, raw_ts);
2325
2326	write_seqcount_end(&tk_core.seq);
2327	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2328}
2329EXPORT_SYMBOL(hardpps);
2330#endif
2331
2332/**
2333 * xtime_update() - advances the timekeeping infrastructure
2334 * @ticks:	number of ticks, that have elapsed since the last call.
2335 *
2336 * Must be called with interrupts disabled.
2337 */
2338void xtime_update(unsigned long ticks)
2339{
2340	write_seqlock(&jiffies_lock);
 
2341	do_timer(ticks);
2342	write_sequnlock(&jiffies_lock);
 
2343	update_wall_time();
2344}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Kernel timekeeping code and accessor functions. Based on code from
   4 *  timer.c, moved in commit 8524070b7982.
 
 
 
 
 
   5 */
 
   6#include <linux/timekeeper_internal.h>
   7#include <linux/module.h>
   8#include <linux/interrupt.h>
   9#include <linux/percpu.h>
  10#include <linux/init.h>
  11#include <linux/mm.h>
  12#include <linux/nmi.h>
  13#include <linux/sched.h>
  14#include <linux/sched/loadavg.h>
  15#include <linux/sched/clock.h>
  16#include <linux/syscore_ops.h>
  17#include <linux/clocksource.h>
  18#include <linux/jiffies.h>
  19#include <linux/time.h>
  20#include <linux/tick.h>
  21#include <linux/stop_machine.h>
  22#include <linux/pvclock_gtod.h>
  23#include <linux/compiler.h>
  24#include <linux/audit.h>
  25
  26#include "tick-internal.h"
  27#include "ntp_internal.h"
  28#include "timekeeping_internal.h"
  29
  30#define TK_CLEAR_NTP		(1 << 0)
  31#define TK_MIRROR		(1 << 1)
  32#define TK_CLOCK_WAS_SET	(1 << 2)
  33
  34enum timekeeping_adv_mode {
  35	/* Update timekeeper when a tick has passed */
  36	TK_ADV_TICK,
  37
  38	/* Update timekeeper on a direct frequency change */
  39	TK_ADV_FREQ
  40};
  41
  42DEFINE_RAW_SPINLOCK(timekeeper_lock);
  43
  44/*
  45 * The most important data for readout fits into a single 64 byte
  46 * cache line.
  47 */
  48static struct {
  49	seqcount_raw_spinlock_t	seq;
  50	struct timekeeper	timekeeper;
  51} tk_core ____cacheline_aligned = {
  52	.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
  53};
  54
 
  55static struct timekeeper shadow_timekeeper;
  56
  57/**
  58 * struct tk_fast - NMI safe timekeeper
  59 * @seq:	Sequence counter for protecting updates. The lowest bit
  60 *		is the index for the tk_read_base array
  61 * @base:	tk_read_base array. Access is indexed by the lowest bit of
  62 *		@seq.
  63 *
  64 * See @update_fast_timekeeper() below.
  65 */
  66struct tk_fast {
  67	seqcount_raw_spinlock_t	seq;
  68	struct tk_read_base	base[2];
  69};
  70
  71/* Suspend-time cycles value for halted fast timekeeper. */
  72static u64 cycles_at_suspend;
  73
  74static u64 dummy_clock_read(struct clocksource *cs)
  75{
  76	return cycles_at_suspend;
  77}
  78
  79static struct clocksource dummy_clock = {
  80	.read = dummy_clock_read,
  81};
  82
  83static struct tk_fast tk_fast_mono ____cacheline_aligned = {
  84	.seq     = SEQCNT_RAW_SPINLOCK_ZERO(tk_fast_mono.seq, &timekeeper_lock),
  85	.base[0] = { .clock = &dummy_clock, },
  86	.base[1] = { .clock = &dummy_clock, },
  87};
  88
  89static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
  90	.seq     = SEQCNT_RAW_SPINLOCK_ZERO(tk_fast_raw.seq, &timekeeper_lock),
  91	.base[0] = { .clock = &dummy_clock, },
  92	.base[1] = { .clock = &dummy_clock, },
  93};
  94
  95/* flag for if timekeeping is suspended */
  96int __read_mostly timekeeping_suspended;
  97
  98static inline void tk_normalize_xtime(struct timekeeper *tk)
  99{
 100	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
 101		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
 102		tk->xtime_sec++;
 103	}
 104	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
 105		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
 106		tk->raw_sec++;
 107	}
 108}
 109
 110static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
 111{
 112	struct timespec64 ts;
 113
 114	ts.tv_sec = tk->xtime_sec;
 115	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 116	return ts;
 117}
 118
 119static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
 120{
 121	tk->xtime_sec = ts->tv_sec;
 122	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
 123}
 124
 125static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
 126{
 127	tk->xtime_sec += ts->tv_sec;
 128	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
 129	tk_normalize_xtime(tk);
 130}
 131
 132static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
 133{
 134	struct timespec64 tmp;
 135
 136	/*
 137	 * Verify consistency of: offset_real = -wall_to_monotonic
 138	 * before modifying anything
 139	 */
 140	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
 141					-tk->wall_to_monotonic.tv_nsec);
 142	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
 143	tk->wall_to_monotonic = wtm;
 144	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
 145	tk->offs_real = timespec64_to_ktime(tmp);
 146	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
 147}
 148
 149static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
 150{
 151	tk->offs_boot = ktime_add(tk->offs_boot, delta);
 152	/*
 153	 * Timespec representation for VDSO update to avoid 64bit division
 154	 * on every update.
 155	 */
 156	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
 157}
 158
 159/*
 160 * tk_clock_read - atomic clocksource read() helper
 161 *
 162 * This helper is necessary to use in the read paths because, while the
 163 * seqcount ensures we don't return a bad value while structures are updated,
 164 * it doesn't protect from potential crashes. There is the possibility that
 165 * the tkr's clocksource may change between the read reference, and the
 166 * clock reference passed to the read function.  This can cause crashes if
 167 * the wrong clocksource is passed to the wrong read function.
 168 * This isn't necessary to use when holding the timekeeper_lock or doing
 169 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 170 * and update logic).
 171 */
 172static inline u64 tk_clock_read(const struct tk_read_base *tkr)
 173{
 174	struct clocksource *clock = READ_ONCE(tkr->clock);
 175
 176	return clock->read(clock);
 177}
 178
 179#ifdef CONFIG_DEBUG_TIMEKEEPING
 180#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
 181
 182static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 183{
 184
 185	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
 186	const char *name = tk->tkr_mono.clock->name;
 187
 188	if (offset > max_cycles) {
 189		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
 190				offset, name, max_cycles);
 191		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
 192	} else {
 193		if (offset > (max_cycles >> 1)) {
 194			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
 195					offset, name, max_cycles >> 1);
 196			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
 197		}
 198	}
 199
 200	if (tk->underflow_seen) {
 201		if (jiffies - tk->last_warning > WARNING_FREQ) {
 202			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
 203			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 204			printk_deferred("         Your kernel is probably still fine.\n");
 205			tk->last_warning = jiffies;
 206		}
 207		tk->underflow_seen = 0;
 208	}
 209
 210	if (tk->overflow_seen) {
 211		if (jiffies - tk->last_warning > WARNING_FREQ) {
 212			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
 213			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 214			printk_deferred("         Your kernel is probably still fine.\n");
 215			tk->last_warning = jiffies;
 216		}
 217		tk->overflow_seen = 0;
 218	}
 219}
 220
 221static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
 222{
 223	struct timekeeper *tk = &tk_core.timekeeper;
 224	u64 now, last, mask, max, delta;
 225	unsigned int seq;
 226
 227	/*
 228	 * Since we're called holding a seqcount, the data may shift
 229	 * under us while we're doing the calculation. This can cause
 230	 * false positives, since we'd note a problem but throw the
 231	 * results away. So nest another seqcount here to atomically
 232	 * grab the points we are checking with.
 233	 */
 234	do {
 235		seq = read_seqcount_begin(&tk_core.seq);
 236		now = tk_clock_read(tkr);
 237		last = tkr->cycle_last;
 238		mask = tkr->mask;
 239		max = tkr->clock->max_cycles;
 240	} while (read_seqcount_retry(&tk_core.seq, seq));
 241
 242	delta = clocksource_delta(now, last, mask);
 243
 244	/*
 245	 * Try to catch underflows by checking if we are seeing small
 246	 * mask-relative negative values.
 247	 */
 248	if (unlikely((~delta & mask) < (mask >> 3))) {
 249		tk->underflow_seen = 1;
 250		delta = 0;
 251	}
 252
 253	/* Cap delta value to the max_cycles values to avoid mult overflows */
 254	if (unlikely(delta > max)) {
 255		tk->overflow_seen = 1;
 256		delta = tkr->clock->max_cycles;
 257	}
 258
 259	return delta;
 260}
 261#else
 262static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 263{
 264}
 265static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
 266{
 267	u64 cycle_now, delta;
 268
 269	/* read clocksource */
 270	cycle_now = tk_clock_read(tkr);
 271
 272	/* calculate the delta since the last update_wall_time */
 273	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
 274
 275	return delta;
 276}
 277#endif
 278
 279/**
 280 * tk_setup_internals - Set up internals to use clocksource clock.
 281 *
 282 * @tk:		The target timekeeper to setup.
 283 * @clock:		Pointer to clocksource.
 284 *
 285 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 286 * pair and interval request.
 287 *
 288 * Unless you're the timekeeping code, you should not be using this!
 289 */
 290static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
 291{
 292	u64 interval;
 293	u64 tmp, ntpinterval;
 294	struct clocksource *old_clock;
 295
 296	++tk->cs_was_changed_seq;
 297	old_clock = tk->tkr_mono.clock;
 298	tk->tkr_mono.clock = clock;
 
 299	tk->tkr_mono.mask = clock->mask;
 300	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
 301
 302	tk->tkr_raw.clock = clock;
 
 303	tk->tkr_raw.mask = clock->mask;
 304	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
 305
 306	/* Do the ns -> cycle conversion first, using original mult */
 307	tmp = NTP_INTERVAL_LENGTH;
 308	tmp <<= clock->shift;
 309	ntpinterval = tmp;
 310	tmp += clock->mult/2;
 311	do_div(tmp, clock->mult);
 312	if (tmp == 0)
 313		tmp = 1;
 314
 315	interval = (u64) tmp;
 316	tk->cycle_interval = interval;
 317
 318	/* Go back from cycles -> shifted ns */
 319	tk->xtime_interval = interval * clock->mult;
 320	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
 321	tk->raw_interval = interval * clock->mult;
 322
 323	 /* if changing clocks, convert xtime_nsec shift units */
 324	if (old_clock) {
 325		int shift_change = clock->shift - old_clock->shift;
 326		if (shift_change < 0) {
 327			tk->tkr_mono.xtime_nsec >>= -shift_change;
 328			tk->tkr_raw.xtime_nsec >>= -shift_change;
 329		} else {
 330			tk->tkr_mono.xtime_nsec <<= shift_change;
 331			tk->tkr_raw.xtime_nsec <<= shift_change;
 332		}
 333	}
 
 334
 335	tk->tkr_mono.shift = clock->shift;
 336	tk->tkr_raw.shift = clock->shift;
 337
 338	tk->ntp_error = 0;
 339	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
 340	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
 341
 342	/*
 343	 * The timekeeper keeps its own mult values for the currently
 344	 * active clocksource. These value will be adjusted via NTP
 345	 * to counteract clock drifting.
 346	 */
 347	tk->tkr_mono.mult = clock->mult;
 348	tk->tkr_raw.mult = clock->mult;
 349	tk->ntp_err_mult = 0;
 350	tk->skip_second_overflow = 0;
 351}
 352
 353/* Timekeeper helper functions. */
 354
 355#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
 356static u32 default_arch_gettimeoffset(void) { return 0; }
 357u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
 358#else
 359static inline u32 arch_gettimeoffset(void) { return 0; }
 360#endif
 361
 362static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
 363{
 364	u64 nsec;
 365
 366	nsec = delta * tkr->mult + tkr->xtime_nsec;
 367	nsec >>= tkr->shift;
 368
 369	/* If arch requires, add in get_arch_timeoffset() */
 370	return nsec + arch_gettimeoffset();
 371}
 372
 373static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
 374{
 375	u64 delta;
 376
 377	delta = timekeeping_get_delta(tkr);
 378	return timekeeping_delta_to_ns(tkr, delta);
 379}
 380
 381static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
 382{
 383	u64 delta;
 384
 385	/* calculate the delta since the last update_wall_time */
 386	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
 387	return timekeeping_delta_to_ns(tkr, delta);
 388}
 389
 390/**
 391 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 392 * @tkr: Timekeeping readout base from which we take the update
 393 *
 394 * We want to use this from any context including NMI and tracing /
 395 * instrumenting the timekeeping code itself.
 396 *
 397 * Employ the latch technique; see @raw_write_seqcount_latch.
 398 *
 399 * So if a NMI hits the update of base[0] then it will use base[1]
 400 * which is still consistent. In the worst case this can result is a
 401 * slightly wrong timestamp (a few nanoseconds). See
 402 * @ktime_get_mono_fast_ns.
 403 */
 404static void update_fast_timekeeper(const struct tk_read_base *tkr,
 405				   struct tk_fast *tkf)
 406{
 407	struct tk_read_base *base = tkf->base;
 408
 409	/* Force readers off to base[1] */
 410	raw_write_seqcount_latch(&tkf->seq);
 411
 412	/* Update base[0] */
 413	memcpy(base, tkr, sizeof(*base));
 414
 415	/* Force readers back to base[0] */
 416	raw_write_seqcount_latch(&tkf->seq);
 417
 418	/* Update base[1] */
 419	memcpy(base + 1, base, sizeof(*base));
 420}
 421
 422/**
 423 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 424 *
 425 * This timestamp is not guaranteed to be monotonic across an update.
 426 * The timestamp is calculated by:
 427 *
 428 *	now = base_mono + clock_delta * slope
 429 *
 430 * So if the update lowers the slope, readers who are forced to the
 431 * not yet updated second array are still using the old steeper slope.
 432 *
 433 * tmono
 434 * ^
 435 * |    o  n
 436 * |   o n
 437 * |  u
 438 * | o
 439 * |o
 440 * |12345678---> reader order
 441 *
 442 * o = old slope
 443 * u = update
 444 * n = new slope
 445 *
 446 * So reader 6 will observe time going backwards versus reader 5.
 447 *
 448 * While other CPUs are likely to be able observe that, the only way
 449 * for a CPU local observation is when an NMI hits in the middle of
 450 * the update. Timestamps taken from that NMI context might be ahead
 451 * of the following timestamps. Callers need to be aware of that and
 452 * deal with it.
 453 */
 454static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
 455{
 456	struct tk_read_base *tkr;
 457	unsigned int seq;
 458	u64 now;
 459
 460	do {
 461		seq = raw_read_seqcount_latch(&tkf->seq);
 462		tkr = tkf->base + (seq & 0x01);
 463		now = ktime_to_ns(tkr->base);
 464
 465		now += timekeeping_delta_to_ns(tkr,
 466				clocksource_delta(
 467					tk_clock_read(tkr),
 468					tkr->cycle_last,
 469					tkr->mask));
 470	} while (read_seqcount_retry(&tkf->seq, seq));
 471
 472	return now;
 473}
 474
 475u64 ktime_get_mono_fast_ns(void)
 476{
 477	return __ktime_get_fast_ns(&tk_fast_mono);
 478}
 479EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
 480
 481u64 ktime_get_raw_fast_ns(void)
 482{
 483	return __ktime_get_fast_ns(&tk_fast_raw);
 484}
 485EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
 486
 487/**
 488 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 489 *
 490 * To keep it NMI safe since we're accessing from tracing, we're not using a
 491 * separate timekeeper with updates to monotonic clock and boot offset
 492 * protected with seqcounts. This has the following minor side effects:
 493 *
 494 * (1) Its possible that a timestamp be taken after the boot offset is updated
 495 * but before the timekeeper is updated. If this happens, the new boot offset
 496 * is added to the old timekeeping making the clock appear to update slightly
 497 * earlier:
 498 *    CPU 0                                        CPU 1
 499 *    timekeeping_inject_sleeptime64()
 500 *    __timekeeping_inject_sleeptime(tk, delta);
 501 *                                                 timestamp();
 502 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 503 *
 504 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 505 * partially updated.  Since the tk->offs_boot update is a rare event, this
 506 * should be a rare occurrence which postprocessing should be able to handle.
 507 */
 508u64 notrace ktime_get_boot_fast_ns(void)
 509{
 510	struct timekeeper *tk = &tk_core.timekeeper;
 511
 512	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
 513}
 514EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
 515
 
 
 516
 517/*
 518 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 519 */
 520static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
 521{
 522	struct tk_read_base *tkr;
 523	unsigned int seq;
 524	u64 now;
 525
 526	do {
 527		seq = raw_read_seqcount_latch(&tkf->seq);
 528		tkr = tkf->base + (seq & 0x01);
 529		now = ktime_to_ns(tkr->base_real);
 530
 531		now += timekeeping_delta_to_ns(tkr,
 532				clocksource_delta(
 533					tk_clock_read(tkr),
 534					tkr->cycle_last,
 535					tkr->mask));
 536	} while (read_seqcount_retry(&tkf->seq, seq));
 537
 538	return now;
 539}
 540
 541/**
 542 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 543 */
 544u64 ktime_get_real_fast_ns(void)
 545{
 546	return __ktime_get_real_fast_ns(&tk_fast_mono);
 547}
 548EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
 549
 550/**
 551 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 552 * @tk: Timekeeper to snapshot.
 553 *
 554 * It generally is unsafe to access the clocksource after timekeeping has been
 555 * suspended, so take a snapshot of the readout base of @tk and use it as the
 556 * fast timekeeper's readout base while suspended.  It will return the same
 557 * number of cycles every time until timekeeping is resumed at which time the
 558 * proper readout base for the fast timekeeper will be restored automatically.
 559 */
 560static void halt_fast_timekeeper(const struct timekeeper *tk)
 561{
 562	static struct tk_read_base tkr_dummy;
 563	const struct tk_read_base *tkr = &tk->tkr_mono;
 564
 565	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 566	cycles_at_suspend = tk_clock_read(tkr);
 567	tkr_dummy.clock = &dummy_clock;
 568	tkr_dummy.base_real = tkr->base + tk->offs_real;
 569	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
 570
 571	tkr = &tk->tkr_raw;
 572	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 573	tkr_dummy.clock = &dummy_clock;
 574	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
 575}
 576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 577static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
 578
 579static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
 580{
 581	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
 582}
 583
 584/**
 585 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 586 */
 587int pvclock_gtod_register_notifier(struct notifier_block *nb)
 588{
 589	struct timekeeper *tk = &tk_core.timekeeper;
 590	unsigned long flags;
 591	int ret;
 592
 593	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 594	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
 595	update_pvclock_gtod(tk, true);
 596	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 597
 598	return ret;
 599}
 600EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
 601
 602/**
 603 * pvclock_gtod_unregister_notifier - unregister a pvclock
 604 * timedata update listener
 605 */
 606int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
 607{
 608	unsigned long flags;
 609	int ret;
 610
 611	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 612	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
 613	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 614
 615	return ret;
 616}
 617EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
 618
 619/*
 620 * tk_update_leap_state - helper to update the next_leap_ktime
 621 */
 622static inline void tk_update_leap_state(struct timekeeper *tk)
 623{
 624	tk->next_leap_ktime = ntp_get_next_leap();
 625	if (tk->next_leap_ktime != KTIME_MAX)
 626		/* Convert to monotonic time */
 627		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
 628}
 629
 630/*
 631 * Update the ktime_t based scalar nsec members of the timekeeper
 632 */
 633static inline void tk_update_ktime_data(struct timekeeper *tk)
 634{
 635	u64 seconds;
 636	u32 nsec;
 637
 638	/*
 639	 * The xtime based monotonic readout is:
 640	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
 641	 * The ktime based monotonic readout is:
 642	 *	nsec = base_mono + now();
 643	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
 644	 */
 645	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
 646	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
 647	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
 648
 
 
 
 649	/*
 650	 * The sum of the nanoseconds portions of xtime and
 651	 * wall_to_monotonic can be greater/equal one second. Take
 652	 * this into account before updating tk->ktime_sec.
 653	 */
 654	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 655	if (nsec >= NSEC_PER_SEC)
 656		seconds++;
 657	tk->ktime_sec = seconds;
 658
 659	/* Update the monotonic raw base */
 660	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
 661}
 662
 663/* must hold timekeeper_lock */
 664static void timekeeping_update(struct timekeeper *tk, unsigned int action)
 665{
 666	if (action & TK_CLEAR_NTP) {
 667		tk->ntp_error = 0;
 668		ntp_clear();
 669	}
 670
 671	tk_update_leap_state(tk);
 672	tk_update_ktime_data(tk);
 673
 674	update_vsyscall(tk);
 675	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
 676
 677	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
 678	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
 679	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
 680
 681	if (action & TK_CLOCK_WAS_SET)
 682		tk->clock_was_set_seq++;
 683	/*
 684	 * The mirroring of the data to the shadow-timekeeper needs
 685	 * to happen last here to ensure we don't over-write the
 686	 * timekeeper structure on the next update with stale data
 687	 */
 688	if (action & TK_MIRROR)
 689		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
 690		       sizeof(tk_core.timekeeper));
 691}
 692
 693/**
 694 * timekeeping_forward_now - update clock to the current time
 695 *
 696 * Forward the current clock to update its state since the last call to
 697 * update_wall_time(). This is useful before significant clock changes,
 698 * as it avoids having to deal with this time offset explicitly.
 699 */
 700static void timekeeping_forward_now(struct timekeeper *tk)
 701{
 
 702	u64 cycle_now, delta;
 
 703
 704	cycle_now = tk_clock_read(&tk->tkr_mono);
 705	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 706	tk->tkr_mono.cycle_last = cycle_now;
 707	tk->tkr_raw.cycle_last  = cycle_now;
 708
 709	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
 710
 711	/* If arch requires, add in get_arch_timeoffset() */
 712	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
 713
 
 714
 715	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
 716
 717	/* If arch requires, add in get_arch_timeoffset() */
 718	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
 719
 720	tk_normalize_xtime(tk);
 721}
 722
 723/**
 724 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
 725 * @ts:		pointer to the timespec to be set
 726 *
 727 * Returns the time of day in a timespec64 (WARN if suspended).
 
 728 */
 729void ktime_get_real_ts64(struct timespec64 *ts)
 730{
 731	struct timekeeper *tk = &tk_core.timekeeper;
 732	unsigned int seq;
 733	u64 nsecs;
 734
 735	WARN_ON(timekeeping_suspended);
 736
 737	do {
 738		seq = read_seqcount_begin(&tk_core.seq);
 739
 740		ts->tv_sec = tk->xtime_sec;
 741		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 742
 743	} while (read_seqcount_retry(&tk_core.seq, seq));
 744
 745	ts->tv_nsec = 0;
 746	timespec64_add_ns(ts, nsecs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747}
 748EXPORT_SYMBOL(ktime_get_real_ts64);
 749
 750ktime_t ktime_get(void)
 751{
 752	struct timekeeper *tk = &tk_core.timekeeper;
 753	unsigned int seq;
 754	ktime_t base;
 755	u64 nsecs;
 756
 757	WARN_ON(timekeeping_suspended);
 758
 759	do {
 760		seq = read_seqcount_begin(&tk_core.seq);
 761		base = tk->tkr_mono.base;
 762		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 763
 764	} while (read_seqcount_retry(&tk_core.seq, seq));
 765
 766	return ktime_add_ns(base, nsecs);
 767}
 768EXPORT_SYMBOL_GPL(ktime_get);
 769
 770u32 ktime_get_resolution_ns(void)
 771{
 772	struct timekeeper *tk = &tk_core.timekeeper;
 773	unsigned int seq;
 774	u32 nsecs;
 775
 776	WARN_ON(timekeeping_suspended);
 777
 778	do {
 779		seq = read_seqcount_begin(&tk_core.seq);
 780		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
 781	} while (read_seqcount_retry(&tk_core.seq, seq));
 782
 783	return nsecs;
 784}
 785EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
 786
 787static ktime_t *offsets[TK_OFFS_MAX] = {
 788	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
 789	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
 790	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
 791};
 792
 793ktime_t ktime_get_with_offset(enum tk_offsets offs)
 794{
 795	struct timekeeper *tk = &tk_core.timekeeper;
 796	unsigned int seq;
 797	ktime_t base, *offset = offsets[offs];
 798	u64 nsecs;
 799
 800	WARN_ON(timekeeping_suspended);
 801
 802	do {
 803		seq = read_seqcount_begin(&tk_core.seq);
 804		base = ktime_add(tk->tkr_mono.base, *offset);
 805		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 806
 807	} while (read_seqcount_retry(&tk_core.seq, seq));
 808
 809	return ktime_add_ns(base, nsecs);
 810
 811}
 812EXPORT_SYMBOL_GPL(ktime_get_with_offset);
 813
 814ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
 815{
 816	struct timekeeper *tk = &tk_core.timekeeper;
 817	unsigned int seq;
 818	ktime_t base, *offset = offsets[offs];
 819	u64 nsecs;
 820
 821	WARN_ON(timekeeping_suspended);
 822
 823	do {
 824		seq = read_seqcount_begin(&tk_core.seq);
 825		base = ktime_add(tk->tkr_mono.base, *offset);
 826		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
 827
 828	} while (read_seqcount_retry(&tk_core.seq, seq));
 829
 830	return ktime_add_ns(base, nsecs);
 831}
 832EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
 833
 834/**
 835 * ktime_mono_to_any() - convert mononotic time to any other time
 836 * @tmono:	time to convert.
 837 * @offs:	which offset to use
 838 */
 839ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
 840{
 841	ktime_t *offset = offsets[offs];
 842	unsigned int seq;
 843	ktime_t tconv;
 844
 845	do {
 846		seq = read_seqcount_begin(&tk_core.seq);
 847		tconv = ktime_add(tmono, *offset);
 848	} while (read_seqcount_retry(&tk_core.seq, seq));
 849
 850	return tconv;
 851}
 852EXPORT_SYMBOL_GPL(ktime_mono_to_any);
 853
 854/**
 855 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 856 */
 857ktime_t ktime_get_raw(void)
 858{
 859	struct timekeeper *tk = &tk_core.timekeeper;
 860	unsigned int seq;
 861	ktime_t base;
 862	u64 nsecs;
 863
 864	do {
 865		seq = read_seqcount_begin(&tk_core.seq);
 866		base = tk->tkr_raw.base;
 867		nsecs = timekeeping_get_ns(&tk->tkr_raw);
 868
 869	} while (read_seqcount_retry(&tk_core.seq, seq));
 870
 871	return ktime_add_ns(base, nsecs);
 872}
 873EXPORT_SYMBOL_GPL(ktime_get_raw);
 874
 875/**
 876 * ktime_get_ts64 - get the monotonic clock in timespec64 format
 877 * @ts:		pointer to timespec variable
 878 *
 879 * The function calculates the monotonic clock from the realtime
 880 * clock and the wall_to_monotonic offset and stores the result
 881 * in normalized timespec64 format in the variable pointed to by @ts.
 882 */
 883void ktime_get_ts64(struct timespec64 *ts)
 884{
 885	struct timekeeper *tk = &tk_core.timekeeper;
 886	struct timespec64 tomono;
 887	unsigned int seq;
 888	u64 nsec;
 889
 890	WARN_ON(timekeeping_suspended);
 891
 892	do {
 893		seq = read_seqcount_begin(&tk_core.seq);
 894		ts->tv_sec = tk->xtime_sec;
 895		nsec = timekeeping_get_ns(&tk->tkr_mono);
 896		tomono = tk->wall_to_monotonic;
 897
 898	} while (read_seqcount_retry(&tk_core.seq, seq));
 899
 900	ts->tv_sec += tomono.tv_sec;
 901	ts->tv_nsec = 0;
 902	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
 903}
 904EXPORT_SYMBOL_GPL(ktime_get_ts64);
 905
 906/**
 907 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 908 *
 909 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 910 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 911 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 912 * covers ~136 years of uptime which should be enough to prevent
 913 * premature wrap arounds.
 914 */
 915time64_t ktime_get_seconds(void)
 916{
 917	struct timekeeper *tk = &tk_core.timekeeper;
 918
 919	WARN_ON(timekeeping_suspended);
 920	return tk->ktime_sec;
 921}
 922EXPORT_SYMBOL_GPL(ktime_get_seconds);
 923
 924/**
 925 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 926 *
 927 * Returns the wall clock seconds since 1970. This replaces the
 928 * get_seconds() interface which is not y2038 safe on 32bit systems.
 929 *
 930 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 931 * 32bit systems the access must be protected with the sequence
 932 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 933 * value.
 934 */
 935time64_t ktime_get_real_seconds(void)
 936{
 937	struct timekeeper *tk = &tk_core.timekeeper;
 938	time64_t seconds;
 939	unsigned int seq;
 940
 941	if (IS_ENABLED(CONFIG_64BIT))
 942		return tk->xtime_sec;
 943
 944	do {
 945		seq = read_seqcount_begin(&tk_core.seq);
 946		seconds = tk->xtime_sec;
 947
 948	} while (read_seqcount_retry(&tk_core.seq, seq));
 949
 950	return seconds;
 951}
 952EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
 953
 954/**
 955 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 956 * but without the sequence counter protect. This internal function
 957 * is called just when timekeeping lock is already held.
 958 */
 959noinstr time64_t __ktime_get_real_seconds(void)
 960{
 961	struct timekeeper *tk = &tk_core.timekeeper;
 962
 963	return tk->xtime_sec;
 964}
 965
 966/**
 967 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 968 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 969 */
 970void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
 971{
 972	struct timekeeper *tk = &tk_core.timekeeper;
 973	unsigned int seq;
 974	ktime_t base_raw;
 975	ktime_t base_real;
 976	u64 nsec_raw;
 977	u64 nsec_real;
 978	u64 now;
 979
 980	WARN_ON_ONCE(timekeeping_suspended);
 981
 982	do {
 983		seq = read_seqcount_begin(&tk_core.seq);
 984		now = tk_clock_read(&tk->tkr_mono);
 
 985		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
 986		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
 987		base_real = ktime_add(tk->tkr_mono.base,
 988				      tk_core.timekeeper.offs_real);
 989		base_raw = tk->tkr_raw.base;
 990		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
 991		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
 992	} while (read_seqcount_retry(&tk_core.seq, seq));
 993
 994	systime_snapshot->cycles = now;
 995	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
 996	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
 997}
 998EXPORT_SYMBOL_GPL(ktime_get_snapshot);
 999
1000/* Scale base by mult/div checking for overflow */
1001static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1002{
1003	u64 tmp, rem;
1004
1005	tmp = div64_u64_rem(*base, div, &rem);
1006
1007	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1008	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1009		return -EOVERFLOW;
1010	tmp *= mult;
 
1011
1012	rem = div64_u64(rem * mult, div);
1013	*base = tmp + rem;
1014	return 0;
1015}
1016
1017/**
1018 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1019 * @history:			Snapshot representing start of history
1020 * @partial_history_cycles:	Cycle offset into history (fractional part)
1021 * @total_history_cycles:	Total history length in cycles
1022 * @discontinuity:		True indicates clock was set on history period
1023 * @ts:				Cross timestamp that should be adjusted using
1024 *	partial/total ratio
1025 *
1026 * Helper function used by get_device_system_crosststamp() to correct the
1027 * crosstimestamp corresponding to the start of the current interval to the
1028 * system counter value (timestamp point) provided by the driver. The
1029 * total_history_* quantities are the total history starting at the provided
1030 * reference point and ending at the start of the current interval. The cycle
1031 * count between the driver timestamp point and the start of the current
1032 * interval is partial_history_cycles.
1033 */
1034static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1035					 u64 partial_history_cycles,
1036					 u64 total_history_cycles,
1037					 bool discontinuity,
1038					 struct system_device_crosststamp *ts)
1039{
1040	struct timekeeper *tk = &tk_core.timekeeper;
1041	u64 corr_raw, corr_real;
1042	bool interp_forward;
1043	int ret;
1044
1045	if (total_history_cycles == 0 || partial_history_cycles == 0)
1046		return 0;
1047
1048	/* Interpolate shortest distance from beginning or end of history */
1049	interp_forward = partial_history_cycles > total_history_cycles / 2;
 
1050	partial_history_cycles = interp_forward ?
1051		total_history_cycles - partial_history_cycles :
1052		partial_history_cycles;
1053
1054	/*
1055	 * Scale the monotonic raw time delta by:
1056	 *	partial_history_cycles / total_history_cycles
1057	 */
1058	corr_raw = (u64)ktime_to_ns(
1059		ktime_sub(ts->sys_monoraw, history->raw));
1060	ret = scale64_check_overflow(partial_history_cycles,
1061				     total_history_cycles, &corr_raw);
1062	if (ret)
1063		return ret;
1064
1065	/*
1066	 * If there is a discontinuity in the history, scale monotonic raw
1067	 *	correction by:
1068	 *	mult(real)/mult(raw) yielding the realtime correction
1069	 * Otherwise, calculate the realtime correction similar to monotonic
1070	 *	raw calculation
1071	 */
1072	if (discontinuity) {
1073		corr_real = mul_u64_u32_div
1074			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1075	} else {
1076		corr_real = (u64)ktime_to_ns(
1077			ktime_sub(ts->sys_realtime, history->real));
1078		ret = scale64_check_overflow(partial_history_cycles,
1079					     total_history_cycles, &corr_real);
1080		if (ret)
1081			return ret;
1082	}
1083
1084	/* Fixup monotonic raw and real time time values */
1085	if (interp_forward) {
1086		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1087		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1088	} else {
1089		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1090		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1091	}
1092
1093	return 0;
1094}
1095
1096/*
1097 * cycle_between - true if test occurs chronologically between before and after
1098 */
1099static bool cycle_between(u64 before, u64 test, u64 after)
1100{
1101	if (test > before && test < after)
1102		return true;
1103	if (test < before && before > after)
1104		return true;
1105	return false;
1106}
1107
1108/**
1109 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1110 * @get_time_fn:	Callback to get simultaneous device time and
1111 *	system counter from the device driver
1112 * @ctx:		Context passed to get_time_fn()
1113 * @history_begin:	Historical reference point used to interpolate system
1114 *	time when counter provided by the driver is before the current interval
1115 * @xtstamp:		Receives simultaneously captured system and device time
1116 *
1117 * Reads a timestamp from a device and correlates it to system time
1118 */
1119int get_device_system_crosststamp(int (*get_time_fn)
1120				  (ktime_t *device_time,
1121				   struct system_counterval_t *sys_counterval,
1122				   void *ctx),
1123				  void *ctx,
1124				  struct system_time_snapshot *history_begin,
1125				  struct system_device_crosststamp *xtstamp)
1126{
1127	struct system_counterval_t system_counterval;
1128	struct timekeeper *tk = &tk_core.timekeeper;
1129	u64 cycles, now, interval_start;
1130	unsigned int clock_was_set_seq = 0;
1131	ktime_t base_real, base_raw;
1132	u64 nsec_real, nsec_raw;
1133	u8 cs_was_changed_seq;
1134	unsigned int seq;
1135	bool do_interp;
1136	int ret;
1137
1138	do {
1139		seq = read_seqcount_begin(&tk_core.seq);
1140		/*
1141		 * Try to synchronously capture device time and a system
1142		 * counter value calling back into the device driver
1143		 */
1144		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1145		if (ret)
1146			return ret;
1147
1148		/*
1149		 * Verify that the clocksource associated with the captured
1150		 * system counter value is the same as the currently installed
1151		 * timekeeper clocksource
1152		 */
1153		if (tk->tkr_mono.clock != system_counterval.cs)
1154			return -ENODEV;
1155		cycles = system_counterval.cycles;
1156
1157		/*
1158		 * Check whether the system counter value provided by the
1159		 * device driver is on the current timekeeping interval.
1160		 */
1161		now = tk_clock_read(&tk->tkr_mono);
1162		interval_start = tk->tkr_mono.cycle_last;
1163		if (!cycle_between(interval_start, cycles, now)) {
1164			clock_was_set_seq = tk->clock_was_set_seq;
1165			cs_was_changed_seq = tk->cs_was_changed_seq;
1166			cycles = interval_start;
1167			do_interp = true;
1168		} else {
1169			do_interp = false;
1170		}
1171
1172		base_real = ktime_add(tk->tkr_mono.base,
1173				      tk_core.timekeeper.offs_real);
1174		base_raw = tk->tkr_raw.base;
1175
1176		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1177						     system_counterval.cycles);
1178		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1179						    system_counterval.cycles);
1180	} while (read_seqcount_retry(&tk_core.seq, seq));
1181
1182	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1183	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1184
1185	/*
1186	 * Interpolate if necessary, adjusting back from the start of the
1187	 * current interval
1188	 */
1189	if (do_interp) {
1190		u64 partial_history_cycles, total_history_cycles;
1191		bool discontinuity;
1192
1193		/*
1194		 * Check that the counter value occurs after the provided
1195		 * history reference and that the history doesn't cross a
1196		 * clocksource change
1197		 */
1198		if (!history_begin ||
1199		    !cycle_between(history_begin->cycles,
1200				   system_counterval.cycles, cycles) ||
1201		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1202			return -EINVAL;
1203		partial_history_cycles = cycles - system_counterval.cycles;
1204		total_history_cycles = cycles - history_begin->cycles;
1205		discontinuity =
1206			history_begin->clock_was_set_seq != clock_was_set_seq;
1207
1208		ret = adjust_historical_crosststamp(history_begin,
1209						    partial_history_cycles,
1210						    total_history_cycles,
1211						    discontinuity, xtstamp);
1212		if (ret)
1213			return ret;
1214	}
1215
1216	return 0;
1217}
1218EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1219
1220/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1221 * do_settimeofday64 - Sets the time of day.
1222 * @ts:     pointer to the timespec64 variable containing the new time
1223 *
1224 * Sets the time of day to the new time and update NTP and notify hrtimers
1225 */
1226int do_settimeofday64(const struct timespec64 *ts)
1227{
1228	struct timekeeper *tk = &tk_core.timekeeper;
1229	struct timespec64 ts_delta, xt;
1230	unsigned long flags;
1231	int ret = 0;
1232
1233	if (!timespec64_valid_settod(ts))
1234		return -EINVAL;
1235
1236	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1237	write_seqcount_begin(&tk_core.seq);
1238
1239	timekeeping_forward_now(tk);
1240
1241	xt = tk_xtime(tk);
1242	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1243	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1244
1245	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1246		ret = -EINVAL;
1247		goto out;
1248	}
1249
1250	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1251
1252	tk_set_xtime(tk, ts);
1253out:
1254	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1255
1256	write_seqcount_end(&tk_core.seq);
1257	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1258
1259	/* signal hrtimers about time change */
1260	clock_was_set();
1261
1262	if (!ret)
1263		audit_tk_injoffset(ts_delta);
1264
1265	return ret;
1266}
1267EXPORT_SYMBOL(do_settimeofday64);
1268
1269/**
1270 * timekeeping_inject_offset - Adds or subtracts from the current time.
1271 * @tv:		pointer to the timespec variable containing the offset
1272 *
1273 * Adds or subtracts an offset value from the current time.
1274 */
1275static int timekeeping_inject_offset(const struct timespec64 *ts)
1276{
1277	struct timekeeper *tk = &tk_core.timekeeper;
1278	unsigned long flags;
1279	struct timespec64 tmp;
1280	int ret = 0;
1281
1282	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1283		return -EINVAL;
1284
 
 
1285	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1286	write_seqcount_begin(&tk_core.seq);
1287
1288	timekeeping_forward_now(tk);
1289
1290	/* Make sure the proposed value is valid */
1291	tmp = timespec64_add(tk_xtime(tk), *ts);
1292	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1293	    !timespec64_valid_settod(&tmp)) {
1294		ret = -EINVAL;
1295		goto error;
1296	}
1297
1298	tk_xtime_add(tk, ts);
1299	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1300
1301error: /* even if we error out, we forwarded the time, so call update */
1302	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1303
1304	write_seqcount_end(&tk_core.seq);
1305	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1306
1307	/* signal hrtimers about time change */
1308	clock_was_set();
1309
1310	return ret;
1311}
 
1312
1313/*
1314 * Indicates if there is an offset between the system clock and the hardware
1315 * clock/persistent clock/rtc.
1316 */
1317int persistent_clock_is_local;
1318
1319/*
1320 * Adjust the time obtained from the CMOS to be UTC time instead of
1321 * local time.
1322 *
1323 * This is ugly, but preferable to the alternatives.  Otherwise we
1324 * would either need to write a program to do it in /etc/rc (and risk
1325 * confusion if the program gets run more than once; it would also be
1326 * hard to make the program warp the clock precisely n hours)  or
1327 * compile in the timezone information into the kernel.  Bad, bad....
1328 *
1329 *						- TYT, 1992-01-01
1330 *
1331 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1332 * as real UNIX machines always do it. This avoids all headaches about
1333 * daylight saving times and warping kernel clocks.
1334 */
1335void timekeeping_warp_clock(void)
1336{
1337	if (sys_tz.tz_minuteswest != 0) {
1338		struct timespec64 adjust;
 
 
 
 
 
 
1339
1340		persistent_clock_is_local = 1;
1341		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1342		adjust.tv_nsec = 0;
1343		timekeeping_inject_offset(&adjust);
1344	}
1345}
1346
1347/**
1348 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1349 *
1350 */
1351static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1352{
1353	tk->tai_offset = tai_offset;
1354	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1355}
1356
1357/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1358 * change_clocksource - Swaps clocksources if a new one is available
1359 *
1360 * Accumulates current time interval and initializes new clocksource
1361 */
1362static int change_clocksource(void *data)
1363{
1364	struct timekeeper *tk = &tk_core.timekeeper;
1365	struct clocksource *new, *old;
1366	unsigned long flags;
1367
1368	new = (struct clocksource *) data;
1369
1370	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1371	write_seqcount_begin(&tk_core.seq);
1372
1373	timekeeping_forward_now(tk);
1374	/*
1375	 * If the cs is in module, get a module reference. Succeeds
1376	 * for built-in code (owner == NULL) as well.
1377	 */
1378	if (try_module_get(new->owner)) {
1379		if (!new->enable || new->enable(new) == 0) {
1380			old = tk->tkr_mono.clock;
1381			tk_setup_internals(tk, new);
1382			if (old->disable)
1383				old->disable(old);
1384			module_put(old->owner);
1385		} else {
1386			module_put(new->owner);
1387		}
1388	}
1389	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1390
1391	write_seqcount_end(&tk_core.seq);
1392	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1393
1394	return 0;
1395}
1396
1397/**
1398 * timekeeping_notify - Install a new clock source
1399 * @clock:		pointer to the clock source
1400 *
1401 * This function is called from clocksource.c after a new, better clock
1402 * source has been registered. The caller holds the clocksource_mutex.
1403 */
1404int timekeeping_notify(struct clocksource *clock)
1405{
1406	struct timekeeper *tk = &tk_core.timekeeper;
1407
1408	if (tk->tkr_mono.clock == clock)
1409		return 0;
1410	stop_machine(change_clocksource, clock, NULL);
1411	tick_clock_notify();
1412	return tk->tkr_mono.clock == clock ? 0 : -1;
1413}
1414
1415/**
1416 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1417 * @ts:		pointer to the timespec64 to be set
1418 *
1419 * Returns the raw monotonic time (completely un-modified by ntp)
1420 */
1421void ktime_get_raw_ts64(struct timespec64 *ts)
1422{
1423	struct timekeeper *tk = &tk_core.timekeeper;
1424	unsigned int seq;
 
1425	u64 nsecs;
1426
1427	do {
1428		seq = read_seqcount_begin(&tk_core.seq);
1429		ts->tv_sec = tk->raw_sec;
1430		nsecs = timekeeping_get_ns(&tk->tkr_raw);
 
1431
1432	} while (read_seqcount_retry(&tk_core.seq, seq));
1433
1434	ts->tv_nsec = 0;
1435	timespec64_add_ns(ts, nsecs);
1436}
1437EXPORT_SYMBOL(ktime_get_raw_ts64);
1438
1439
1440/**
1441 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1442 */
1443int timekeeping_valid_for_hres(void)
1444{
1445	struct timekeeper *tk = &tk_core.timekeeper;
1446	unsigned int seq;
1447	int ret;
1448
1449	do {
1450		seq = read_seqcount_begin(&tk_core.seq);
1451
1452		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1453
1454	} while (read_seqcount_retry(&tk_core.seq, seq));
1455
1456	return ret;
1457}
1458
1459/**
1460 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1461 */
1462u64 timekeeping_max_deferment(void)
1463{
1464	struct timekeeper *tk = &tk_core.timekeeper;
1465	unsigned int seq;
1466	u64 ret;
1467
1468	do {
1469		seq = read_seqcount_begin(&tk_core.seq);
1470
1471		ret = tk->tkr_mono.clock->max_idle_ns;
1472
1473	} while (read_seqcount_retry(&tk_core.seq, seq));
1474
1475	return ret;
1476}
1477
1478/**
1479 * read_persistent_clock64 -  Return time from the persistent clock.
1480 *
1481 * Weak dummy function for arches that do not yet support it.
1482 * Reads the time from the battery backed persistent clock.
1483 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1484 *
1485 *  XXX - Do be sure to remove it once all arches implement it.
1486 */
1487void __weak read_persistent_clock64(struct timespec64 *ts)
1488{
1489	ts->tv_sec = 0;
1490	ts->tv_nsec = 0;
1491}
1492
 
 
 
 
 
 
 
 
1493/**
1494 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1495 *                                        from the boot.
1496 *
1497 * Weak dummy function for arches that do not yet support it.
1498 * wall_time	- current time as returned by persistent clock
1499 * boot_offset	- offset that is defined as wall_time - boot_time
1500 * The default function calculates offset based on the current value of
1501 * local_clock(). This way architectures that support sched_clock() but don't
1502 * support dedicated boot time clock will provide the best estimate of the
1503 * boot time.
1504 */
1505void __weak __init
1506read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1507				     struct timespec64 *boot_offset)
1508{
1509	read_persistent_clock64(wall_time);
1510	*boot_offset = ns_to_timespec64(local_clock());
1511}
1512
1513/*
1514 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1515 *
1516 * The flag starts of false and is only set when a suspend reaches
1517 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1518 * timekeeper clocksource is not stopping across suspend and has been
1519 * used to update sleep time. If the timekeeper clocksource has stopped
1520 * then the flag stays true and is used by the RTC resume code to decide
1521 * whether sleeptime must be injected and if so the flag gets false then.
1522 *
1523 * If a suspend fails before reaching timekeeping_resume() then the flag
1524 * stays false and prevents erroneous sleeptime injection.
1525 */
1526static bool suspend_timing_needed;
1527
1528/* Flag for if there is a persistent clock on this platform */
1529static bool persistent_clock_exists;
1530
1531/*
1532 * timekeeping_init - Initializes the clocksource and common timekeeping values
1533 */
1534void __init timekeeping_init(void)
1535{
1536	struct timespec64 wall_time, boot_offset, wall_to_mono;
1537	struct timekeeper *tk = &tk_core.timekeeper;
1538	struct clocksource *clock;
1539	unsigned long flags;
 
1540
1541	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1542	if (timespec64_valid_settod(&wall_time) &&
1543	    timespec64_to_ns(&wall_time) > 0) {
 
 
 
 
1544		persistent_clock_exists = true;
1545	} else if (timespec64_to_ns(&wall_time) != 0) {
1546		pr_warn("Persistent clock returned invalid value");
1547		wall_time = (struct timespec64){0};
 
 
 
 
1548	}
1549
1550	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1551		boot_offset = (struct timespec64){0};
1552
1553	/*
1554	 * We want set wall_to_mono, so the following is true:
1555	 * wall time + wall_to_mono = boot time
1556	 */
1557	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1558
1559	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1560	write_seqcount_begin(&tk_core.seq);
1561	ntp_init();
1562
1563	clock = clocksource_default_clock();
1564	if (clock->enable)
1565		clock->enable(clock);
1566	tk_setup_internals(tk, clock);
1567
1568	tk_set_xtime(tk, &wall_time);
1569	tk->raw_sec = 0;
 
 
 
1570
1571	tk_set_wall_to_mono(tk, wall_to_mono);
 
1572
1573	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1574
1575	write_seqcount_end(&tk_core.seq);
1576	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1577}
1578
1579/* time in seconds when suspend began for persistent clock */
1580static struct timespec64 timekeeping_suspend_time;
1581
1582/**
1583 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1584 * @delta: pointer to a timespec delta value
1585 *
1586 * Takes a timespec offset measuring a suspend interval and properly
1587 * adds the sleep offset to the timekeeping variables.
1588 */
1589static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1590					   const struct timespec64 *delta)
1591{
1592	if (!timespec64_valid_strict(delta)) {
1593		printk_deferred(KERN_WARNING
1594				"__timekeeping_inject_sleeptime: Invalid "
1595				"sleep delta value!\n");
1596		return;
1597	}
1598	tk_xtime_add(tk, delta);
1599	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1600	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1601	tk_debug_account_sleep_time(delta);
1602}
1603
1604#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1605/**
1606 * We have three kinds of time sources to use for sleep time
1607 * injection, the preference order is:
1608 * 1) non-stop clocksource
1609 * 2) persistent clock (ie: RTC accessible when irqs are off)
1610 * 3) RTC
1611 *
1612 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1613 * If system has neither 1) nor 2), 3) will be used finally.
1614 *
1615 *
1616 * If timekeeping has injected sleeptime via either 1) or 2),
1617 * 3) becomes needless, so in this case we don't need to call
1618 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1619 * means.
1620 */
1621bool timekeeping_rtc_skipresume(void)
1622{
1623	return !suspend_timing_needed;
1624}
1625
1626/**
1627 * 1) can be determined whether to use or not only when doing
1628 * timekeeping_resume() which is invoked after rtc_suspend(),
1629 * so we can't skip rtc_suspend() surely if system has 1).
1630 *
1631 * But if system has 2), 2) will definitely be used, so in this
1632 * case we don't need to call rtc_suspend(), and this is what
1633 * timekeeping_rtc_skipsuspend() means.
1634 */
1635bool timekeeping_rtc_skipsuspend(void)
1636{
1637	return persistent_clock_exists;
1638}
1639
1640/**
1641 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1642 * @delta: pointer to a timespec64 delta value
1643 *
1644 * This hook is for architectures that cannot support read_persistent_clock64
1645 * because their RTC/persistent clock is only accessible when irqs are enabled.
1646 * and also don't have an effective nonstop clocksource.
1647 *
1648 * This function should only be called by rtc_resume(), and allows
1649 * a suspend offset to be injected into the timekeeping values.
1650 */
1651void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1652{
1653	struct timekeeper *tk = &tk_core.timekeeper;
1654	unsigned long flags;
1655
1656	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1657	write_seqcount_begin(&tk_core.seq);
1658
1659	suspend_timing_needed = false;
1660
1661	timekeeping_forward_now(tk);
1662
1663	__timekeeping_inject_sleeptime(tk, delta);
1664
1665	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1666
1667	write_seqcount_end(&tk_core.seq);
1668	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1669
1670	/* signal hrtimers about time change */
1671	clock_was_set();
1672}
1673#endif
1674
1675/**
1676 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1677 */
1678void timekeeping_resume(void)
1679{
1680	struct timekeeper *tk = &tk_core.timekeeper;
1681	struct clocksource *clock = tk->tkr_mono.clock;
1682	unsigned long flags;
1683	struct timespec64 ts_new, ts_delta;
1684	u64 cycle_now, nsec;
1685	bool inject_sleeptime = false;
1686
 
1687	read_persistent_clock64(&ts_new);
1688
1689	clockevents_resume();
1690	clocksource_resume();
1691
1692	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1693	write_seqcount_begin(&tk_core.seq);
1694
1695	/*
1696	 * After system resumes, we need to calculate the suspended time and
1697	 * compensate it for the OS time. There are 3 sources that could be
1698	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1699	 * device.
1700	 *
1701	 * One specific platform may have 1 or 2 or all of them, and the
1702	 * preference will be:
1703	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1704	 * The less preferred source will only be tried if there is no better
1705	 * usable source. The rtc part is handled separately in rtc core code.
1706	 */
1707	cycle_now = tk_clock_read(&tk->tkr_mono);
1708	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1709	if (nsec > 0) {
 
 
 
 
 
1710		ts_delta = ns_to_timespec64(nsec);
1711		inject_sleeptime = true;
1712	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1713		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1714		inject_sleeptime = true;
1715	}
1716
1717	if (inject_sleeptime) {
1718		suspend_timing_needed = false;
1719		__timekeeping_inject_sleeptime(tk, &ts_delta);
1720	}
1721
1722	/* Re-base the last cycle value */
1723	tk->tkr_mono.cycle_last = cycle_now;
1724	tk->tkr_raw.cycle_last  = cycle_now;
1725
1726	tk->ntp_error = 0;
1727	timekeeping_suspended = 0;
1728	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1729	write_seqcount_end(&tk_core.seq);
1730	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1731
1732	touch_softlockup_watchdog();
1733
1734	tick_resume();
1735	hrtimers_resume();
1736}
1737
1738int timekeeping_suspend(void)
1739{
1740	struct timekeeper *tk = &tk_core.timekeeper;
1741	unsigned long flags;
1742	struct timespec64		delta, delta_delta;
1743	static struct timespec64	old_delta;
1744	struct clocksource *curr_clock;
1745	u64 cycle_now;
1746
1747	read_persistent_clock64(&timekeeping_suspend_time);
1748
1749	/*
1750	 * On some systems the persistent_clock can not be detected at
1751	 * timekeeping_init by its return value, so if we see a valid
1752	 * value returned, update the persistent_clock_exists flag.
1753	 */
1754	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1755		persistent_clock_exists = true;
1756
1757	suspend_timing_needed = true;
1758
1759	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1760	write_seqcount_begin(&tk_core.seq);
1761	timekeeping_forward_now(tk);
1762	timekeeping_suspended = 1;
1763
1764	/*
1765	 * Since we've called forward_now, cycle_last stores the value
1766	 * just read from the current clocksource. Save this to potentially
1767	 * use in suspend timing.
1768	 */
1769	curr_clock = tk->tkr_mono.clock;
1770	cycle_now = tk->tkr_mono.cycle_last;
1771	clocksource_start_suspend_timing(curr_clock, cycle_now);
1772
1773	if (persistent_clock_exists) {
1774		/*
1775		 * To avoid drift caused by repeated suspend/resumes,
1776		 * which each can add ~1 second drift error,
1777		 * try to compensate so the difference in system time
1778		 * and persistent_clock time stays close to constant.
1779		 */
1780		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1781		delta_delta = timespec64_sub(delta, old_delta);
1782		if (abs(delta_delta.tv_sec) >= 2) {
1783			/*
1784			 * if delta_delta is too large, assume time correction
1785			 * has occurred and set old_delta to the current delta.
1786			 */
1787			old_delta = delta;
1788		} else {
1789			/* Otherwise try to adjust old_system to compensate */
1790			timekeeping_suspend_time =
1791				timespec64_add(timekeeping_suspend_time, delta_delta);
1792		}
1793	}
1794
1795	timekeeping_update(tk, TK_MIRROR);
1796	halt_fast_timekeeper(tk);
1797	write_seqcount_end(&tk_core.seq);
1798	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1799
1800	tick_suspend();
1801	clocksource_suspend();
1802	clockevents_suspend();
1803
1804	return 0;
1805}
1806
1807/* sysfs resume/suspend bits for timekeeping */
1808static struct syscore_ops timekeeping_syscore_ops = {
1809	.resume		= timekeeping_resume,
1810	.suspend	= timekeeping_suspend,
1811};
1812
1813static int __init timekeeping_init_ops(void)
1814{
1815	register_syscore_ops(&timekeeping_syscore_ops);
1816	return 0;
1817}
1818device_initcall(timekeeping_init_ops);
1819
1820/*
1821 * Apply a multiplier adjustment to the timekeeper
1822 */
1823static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1824							 s64 offset,
1825							 s32 mult_adj)
 
1826{
1827	s64 interval = tk->cycle_interval;
 
1828
1829	if (mult_adj == 0) {
1830		return;
1831	} else if (mult_adj == -1) {
1832		interval = -interval;
1833		offset = -offset;
1834	} else if (mult_adj != 1) {
1835		interval *= mult_adj;
1836		offset *= mult_adj;
1837	}
 
 
 
1838
1839	/*
1840	 * So the following can be confusing.
1841	 *
1842	 * To keep things simple, lets assume mult_adj == 1 for now.
1843	 *
1844	 * When mult_adj != 1, remember that the interval and offset values
1845	 * have been appropriately scaled so the math is the same.
1846	 *
1847	 * The basic idea here is that we're increasing the multiplier
1848	 * by one, this causes the xtime_interval to be incremented by
1849	 * one cycle_interval. This is because:
1850	 *	xtime_interval = cycle_interval * mult
1851	 * So if mult is being incremented by one:
1852	 *	xtime_interval = cycle_interval * (mult + 1)
1853	 * Its the same as:
1854	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1855	 * Which can be shortened to:
1856	 *	xtime_interval += cycle_interval
1857	 *
1858	 * So offset stores the non-accumulated cycles. Thus the current
1859	 * time (in shifted nanoseconds) is:
1860	 *	now = (offset * adj) + xtime_nsec
1861	 * Now, even though we're adjusting the clock frequency, we have
1862	 * to keep time consistent. In other words, we can't jump back
1863	 * in time, and we also want to avoid jumping forward in time.
1864	 *
1865	 * So given the same offset value, we need the time to be the same
1866	 * both before and after the freq adjustment.
1867	 *	now = (offset * adj_1) + xtime_nsec_1
1868	 *	now = (offset * adj_2) + xtime_nsec_2
1869	 * So:
1870	 *	(offset * adj_1) + xtime_nsec_1 =
1871	 *		(offset * adj_2) + xtime_nsec_2
1872	 * And we know:
1873	 *	adj_2 = adj_1 + 1
1874	 * So:
1875	 *	(offset * adj_1) + xtime_nsec_1 =
1876	 *		(offset * (adj_1+1)) + xtime_nsec_2
1877	 *	(offset * adj_1) + xtime_nsec_1 =
1878	 *		(offset * adj_1) + offset + xtime_nsec_2
1879	 * Canceling the sides:
1880	 *	xtime_nsec_1 = offset + xtime_nsec_2
1881	 * Which gives us:
1882	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1883	 * Which simplfies to:
1884	 *	xtime_nsec -= offset
 
 
1885	 */
1886	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1887		/* NTP adjustment caused clocksource mult overflow */
1888		WARN_ON_ONCE(1);
1889		return;
1890	}
1891
1892	tk->tkr_mono.mult += mult_adj;
1893	tk->xtime_interval += interval;
1894	tk->tkr_mono.xtime_nsec -= offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895}
1896
1897/*
1898 * Adjust the timekeeper's multiplier to the correct frequency
1899 * and also to reduce the accumulated error value.
1900 */
1901static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1902{
1903	u32 mult;
 
1904
1905	/*
1906	 * Determine the multiplier from the current NTP tick length.
1907	 * Avoid expensive division when the tick length doesn't change.
1908	 */
1909	if (likely(tk->ntp_tick == ntp_tick_length())) {
1910		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1911	} else {
1912		tk->ntp_tick = ntp_tick_length();
1913		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1914				 tk->xtime_remainder, tk->cycle_interval);
1915	}
1916
1917	/*
1918	 * If the clock is behind the NTP time, increase the multiplier by 1
1919	 * to catch up with it. If it's ahead and there was a remainder in the
1920	 * tick division, the clock will slow down. Otherwise it will stay
1921	 * ahead until the tick length changes to a non-divisible value.
1922	 */
1923	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1924	mult += tk->ntp_err_mult;
1925
1926	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1927
1928	if (unlikely(tk->tkr_mono.clock->maxadj &&
1929		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1930			> tk->tkr_mono.clock->maxadj))) {
1931		printk_once(KERN_WARNING
1932			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1933			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1934			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1935	}
1936
1937	/*
1938	 * It may be possible that when we entered this function, xtime_nsec
1939	 * was very small.  Further, if we're slightly speeding the clocksource
1940	 * in the code above, its possible the required corrective factor to
1941	 * xtime_nsec could cause it to underflow.
1942	 *
1943	 * Now, since we have already accumulated the second and the NTP
1944	 * subsystem has been notified via second_overflow(), we need to skip
1945	 * the next update.
 
 
 
 
1946	 */
1947	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1948		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1949							tk->tkr_mono.shift;
1950		tk->xtime_sec--;
1951		tk->skip_second_overflow = 1;
1952	}
1953}
1954
1955/**
1956 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1957 *
1958 * Helper function that accumulates the nsecs greater than a second
1959 * from the xtime_nsec field to the xtime_secs field.
1960 * It also calls into the NTP code to handle leapsecond processing.
1961 *
1962 */
1963static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1964{
1965	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1966	unsigned int clock_set = 0;
1967
1968	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1969		int leap;
1970
1971		tk->tkr_mono.xtime_nsec -= nsecps;
1972		tk->xtime_sec++;
1973
1974		/*
1975		 * Skip NTP update if this second was accumulated before,
1976		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1977		 */
1978		if (unlikely(tk->skip_second_overflow)) {
1979			tk->skip_second_overflow = 0;
1980			continue;
1981		}
1982
1983		/* Figure out if its a leap sec and apply if needed */
1984		leap = second_overflow(tk->xtime_sec);
1985		if (unlikely(leap)) {
1986			struct timespec64 ts;
1987
1988			tk->xtime_sec += leap;
1989
1990			ts.tv_sec = leap;
1991			ts.tv_nsec = 0;
1992			tk_set_wall_to_mono(tk,
1993				timespec64_sub(tk->wall_to_monotonic, ts));
1994
1995			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1996
1997			clock_set = TK_CLOCK_WAS_SET;
1998		}
1999	}
2000	return clock_set;
2001}
2002
2003/**
2004 * logarithmic_accumulation - shifted accumulation of cycles
2005 *
2006 * This functions accumulates a shifted interval of cycles into
2007 * a shifted interval nanoseconds. Allows for O(log) accumulation
2008 * loop.
2009 *
2010 * Returns the unconsumed cycles.
2011 */
2012static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2013				    u32 shift, unsigned int *clock_set)
2014{
2015	u64 interval = tk->cycle_interval << shift;
2016	u64 snsec_per_sec;
2017
2018	/* If the offset is smaller than a shifted interval, do nothing */
2019	if (offset < interval)
2020		return offset;
2021
2022	/* Accumulate one shifted interval */
2023	offset -= interval;
2024	tk->tkr_mono.cycle_last += interval;
2025	tk->tkr_raw.cycle_last  += interval;
2026
2027	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2028	*clock_set |= accumulate_nsecs_to_secs(tk);
2029
2030	/* Accumulate raw time */
2031	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2032	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2033	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2034		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2035		tk->raw_sec++;
 
2036	}
 
2037
2038	/* Accumulate error between NTP and clock interval */
2039	tk->ntp_error += tk->ntp_tick << shift;
2040	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2041						(tk->ntp_error_shift + shift);
2042
2043	return offset;
2044}
2045
2046/*
2047 * timekeeping_advance - Updates the timekeeper to the current time and
2048 * current NTP tick length
2049 */
2050static void timekeeping_advance(enum timekeeping_adv_mode mode)
2051{
2052	struct timekeeper *real_tk = &tk_core.timekeeper;
2053	struct timekeeper *tk = &shadow_timekeeper;
2054	u64 offset;
2055	int shift = 0, maxshift;
2056	unsigned int clock_set = 0;
2057	unsigned long flags;
2058
2059	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2060
2061	/* Make sure we're fully resumed: */
2062	if (unlikely(timekeeping_suspended))
2063		goto out;
2064
2065#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2066	offset = real_tk->cycle_interval;
2067
2068	if (mode != TK_ADV_TICK)
2069		goto out;
2070#else
2071	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2072				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 
2073
2074	/* Check if there's really nothing to do */
2075	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2076		goto out;
2077#endif
2078
2079	/* Do some additional sanity checking */
2080	timekeeping_check_update(tk, offset);
2081
2082	/*
2083	 * With NO_HZ we may have to accumulate many cycle_intervals
2084	 * (think "ticks") worth of time at once. To do this efficiently,
2085	 * we calculate the largest doubling multiple of cycle_intervals
2086	 * that is smaller than the offset.  We then accumulate that
2087	 * chunk in one go, and then try to consume the next smaller
2088	 * doubled multiple.
2089	 */
2090	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2091	shift = max(0, shift);
2092	/* Bound shift to one less than what overflows tick_length */
2093	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2094	shift = min(shift, maxshift);
2095	while (offset >= tk->cycle_interval) {
2096		offset = logarithmic_accumulation(tk, offset, shift,
2097							&clock_set);
2098		if (offset < tk->cycle_interval<<shift)
2099			shift--;
2100	}
2101
2102	/* Adjust the multiplier to correct NTP error */
2103	timekeeping_adjust(tk, offset);
2104
2105	/*
 
 
 
 
 
 
2106	 * Finally, make sure that after the rounding
2107	 * xtime_nsec isn't larger than NSEC_PER_SEC
2108	 */
2109	clock_set |= accumulate_nsecs_to_secs(tk);
2110
2111	write_seqcount_begin(&tk_core.seq);
2112	/*
2113	 * Update the real timekeeper.
2114	 *
2115	 * We could avoid this memcpy by switching pointers, but that
2116	 * requires changes to all other timekeeper usage sites as
2117	 * well, i.e. move the timekeeper pointer getter into the
2118	 * spinlocked/seqcount protected sections. And we trade this
2119	 * memcpy under the tk_core.seq against one before we start
2120	 * updating.
2121	 */
2122	timekeeping_update(tk, clock_set);
2123	memcpy(real_tk, tk, sizeof(*tk));
2124	/* The memcpy must come last. Do not put anything here! */
2125	write_seqcount_end(&tk_core.seq);
2126out:
2127	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2128	if (clock_set)
2129		/* Have to call _delayed version, since in irq context*/
2130		clock_was_set_delayed();
2131}
2132
2133/**
2134 * update_wall_time - Uses the current clocksource to increment the wall time
2135 *
2136 */
2137void update_wall_time(void)
2138{
2139	timekeeping_advance(TK_ADV_TICK);
2140}
2141
2142/**
2143 * getboottime64 - Return the real time of system boot.
2144 * @ts:		pointer to the timespec64 to be set
2145 *
2146 * Returns the wall-time of boot in a timespec64.
2147 *
2148 * This is based on the wall_to_monotonic offset and the total suspend
2149 * time. Calls to settimeofday will affect the value returned (which
2150 * basically means that however wrong your real time clock is at boot time,
2151 * you get the right time here).
2152 */
2153void getboottime64(struct timespec64 *ts)
2154{
2155	struct timekeeper *tk = &tk_core.timekeeper;
2156	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2157
2158	*ts = ktime_to_timespec64(t);
2159}
2160EXPORT_SYMBOL_GPL(getboottime64);
2161
2162void ktime_get_coarse_real_ts64(struct timespec64 *ts)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2163{
2164	struct timekeeper *tk = &tk_core.timekeeper;
2165	unsigned int seq;
 
2166
2167	do {
2168		seq = read_seqcount_begin(&tk_core.seq);
2169
2170		*ts = tk_xtime(tk);
2171	} while (read_seqcount_retry(&tk_core.seq, seq));
 
 
2172}
2173EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2174
2175void ktime_get_coarse_ts64(struct timespec64 *ts)
2176{
2177	struct timekeeper *tk = &tk_core.timekeeper;
2178	struct timespec64 now, mono;
2179	unsigned int seq;
2180
2181	do {
2182		seq = read_seqcount_begin(&tk_core.seq);
2183
2184		now = tk_xtime(tk);
2185		mono = tk->wall_to_monotonic;
2186	} while (read_seqcount_retry(&tk_core.seq, seq));
2187
2188	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2189				now.tv_nsec + mono.tv_nsec);
 
 
2190}
2191EXPORT_SYMBOL(ktime_get_coarse_ts64);
2192
2193/*
2194 * Must hold jiffies_lock
2195 */
2196void do_timer(unsigned long ticks)
2197{
2198	jiffies_64 += ticks;
2199	calc_global_load();
2200}
2201
2202/**
2203 * ktime_get_update_offsets_now - hrtimer helper
2204 * @cwsseq:	pointer to check and store the clock was set sequence number
2205 * @offs_real:	pointer to storage for monotonic -> realtime offset
2206 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2207 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2208 *
2209 * Returns current monotonic time and updates the offsets if the
2210 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2211 * different.
2212 *
2213 * Called from hrtimer_interrupt() or retrigger_next_event()
2214 */
2215ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2216				     ktime_t *offs_boot, ktime_t *offs_tai)
2217{
2218	struct timekeeper *tk = &tk_core.timekeeper;
2219	unsigned int seq;
2220	ktime_t base;
2221	u64 nsecs;
2222
2223	do {
2224		seq = read_seqcount_begin(&tk_core.seq);
2225
2226		base = tk->tkr_mono.base;
2227		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2228		base = ktime_add_ns(base, nsecs);
2229
2230		if (*cwsseq != tk->clock_was_set_seq) {
2231			*cwsseq = tk->clock_was_set_seq;
2232			*offs_real = tk->offs_real;
2233			*offs_boot = tk->offs_boot;
2234			*offs_tai = tk->offs_tai;
2235		}
2236
2237		/* Handle leapsecond insertion adjustments */
2238		if (unlikely(base >= tk->next_leap_ktime))
2239			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2240
2241	} while (read_seqcount_retry(&tk_core.seq, seq));
2242
2243	return base;
2244}
2245
2246/**
2247 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2248 */
2249static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2250{
2251	if (txc->modes & ADJ_ADJTIME) {
2252		/* singleshot must not be used with any other mode bits */
2253		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2254			return -EINVAL;
2255		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2256		    !capable(CAP_SYS_TIME))
2257			return -EPERM;
2258	} else {
2259		/* In order to modify anything, you gotta be super-user! */
2260		if (txc->modes && !capable(CAP_SYS_TIME))
2261			return -EPERM;
2262		/*
2263		 * if the quartz is off by more than 10% then
2264		 * something is VERY wrong!
2265		 */
2266		if (txc->modes & ADJ_TICK &&
2267		    (txc->tick <  900000/USER_HZ ||
2268		     txc->tick > 1100000/USER_HZ))
2269			return -EINVAL;
2270	}
2271
2272	if (txc->modes & ADJ_SETOFFSET) {
2273		/* In order to inject time, you gotta be super-user! */
2274		if (!capable(CAP_SYS_TIME))
2275			return -EPERM;
2276
2277		/*
2278		 * Validate if a timespec/timeval used to inject a time
2279		 * offset is valid.  Offsets can be postive or negative, so
2280		 * we don't check tv_sec. The value of the timeval/timespec
2281		 * is the sum of its fields,but *NOTE*:
2282		 * The field tv_usec/tv_nsec must always be non-negative and
2283		 * we can't have more nanoseconds/microseconds than a second.
2284		 */
2285		if (txc->time.tv_usec < 0)
2286			return -EINVAL;
2287
2288		if (txc->modes & ADJ_NANO) {
2289			if (txc->time.tv_usec >= NSEC_PER_SEC)
2290				return -EINVAL;
2291		} else {
2292			if (txc->time.tv_usec >= USEC_PER_SEC)
2293				return -EINVAL;
2294		}
2295	}
2296
2297	/*
2298	 * Check for potential multiplication overflows that can
2299	 * only happen on 64-bit systems:
2300	 */
2301	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2302		if (LLONG_MIN / PPM_SCALE > txc->freq)
2303			return -EINVAL;
2304		if (LLONG_MAX / PPM_SCALE < txc->freq)
2305			return -EINVAL;
2306	}
2307
2308	return 0;
2309}
2310
2311
2312/**
2313 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2314 */
2315int do_adjtimex(struct __kernel_timex *txc)
2316{
2317	struct timekeeper *tk = &tk_core.timekeeper;
2318	struct audit_ntp_data ad;
2319	unsigned long flags;
2320	struct timespec64 ts;
2321	s32 orig_tai, tai;
2322	int ret;
2323
2324	/* Validate the data before disabling interrupts */
2325	ret = timekeeping_validate_timex(txc);
2326	if (ret)
2327		return ret;
2328
2329	if (txc->modes & ADJ_SETOFFSET) {
2330		struct timespec64 delta;
2331		delta.tv_sec  = txc->time.tv_sec;
2332		delta.tv_nsec = txc->time.tv_usec;
2333		if (!(txc->modes & ADJ_NANO))
2334			delta.tv_nsec *= 1000;
2335		ret = timekeeping_inject_offset(&delta);
2336		if (ret)
2337			return ret;
2338
2339		audit_tk_injoffset(delta);
2340	}
2341
2342	audit_ntp_init(&ad);
2343
2344	ktime_get_real_ts64(&ts);
2345
2346	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2347	write_seqcount_begin(&tk_core.seq);
2348
2349	orig_tai = tai = tk->tai_offset;
2350	ret = __do_adjtimex(txc, &ts, &tai, &ad);
2351
2352	if (tai != orig_tai) {
2353		__timekeeping_set_tai_offset(tk, tai);
2354		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2355	}
2356	tk_update_leap_state(tk);
2357
2358	write_seqcount_end(&tk_core.seq);
2359	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2360
2361	audit_ntp_log(&ad);
2362
2363	/* Update the multiplier immediately if frequency was set directly */
2364	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2365		timekeeping_advance(TK_ADV_FREQ);
2366
2367	if (tai != orig_tai)
2368		clock_was_set();
2369
2370	ntp_notify_cmos_timer();
2371
2372	return ret;
2373}
2374
2375#ifdef CONFIG_NTP_PPS
2376/**
2377 * hardpps() - Accessor function to NTP __hardpps function
2378 */
2379void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2380{
2381	unsigned long flags;
2382
2383	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2384	write_seqcount_begin(&tk_core.seq);
2385
2386	__hardpps(phase_ts, raw_ts);
2387
2388	write_seqcount_end(&tk_core.seq);
2389	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2390}
2391EXPORT_SYMBOL(hardpps);
2392#endif /* CONFIG_NTP_PPS */
2393
2394/**
2395 * xtime_update() - advances the timekeeping infrastructure
2396 * @ticks:	number of ticks, that have elapsed since the last call.
2397 *
2398 * Must be called with interrupts disabled.
2399 */
2400void xtime_update(unsigned long ticks)
2401{
2402	raw_spin_lock(&jiffies_lock);
2403	write_seqcount_begin(&jiffies_seq);
2404	do_timer(ticks);
2405	write_seqcount_end(&jiffies_seq);
2406	raw_spin_unlock(&jiffies_lock);
2407	update_wall_time();
2408}