Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Scheduler topology setup/handling methods
   4 */
   5#include "sched.h"
   6
   7DEFINE_MUTEX(sched_domains_mutex);
   8
   9/* Protected by sched_domains_mutex: */
  10static cpumask_var_t sched_domains_tmpmask;
  11static cpumask_var_t sched_domains_tmpmask2;
  12
  13#ifdef CONFIG_SCHED_DEBUG
  14
  15static int __init sched_debug_setup(char *str)
  16{
  17	sched_debug_enabled = true;
  18
  19	return 0;
  20}
  21early_param("sched_debug", sched_debug_setup);
  22
  23static inline bool sched_debug(void)
  24{
  25	return sched_debug_enabled;
  26}
  27
  28static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  29				  struct cpumask *groupmask)
  30{
  31	struct sched_group *group = sd->groups;
  32
  33	cpumask_clear(groupmask);
  34
  35	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
  36	printk(KERN_CONT "span=%*pbl level=%s\n",
  37	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
  38
  39	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  40		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  41	}
  42	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
  43		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  44	}
  45
  46	printk(KERN_DEBUG "%*s groups:", level + 1, "");
  47	do {
  48		if (!group) {
  49			printk("\n");
  50			printk(KERN_ERR "ERROR: group is NULL\n");
  51			break;
  52		}
  53
  54		if (!cpumask_weight(sched_group_span(group))) {
  55			printk(KERN_CONT "\n");
  56			printk(KERN_ERR "ERROR: empty group\n");
  57			break;
  58		}
  59
  60		if (!(sd->flags & SD_OVERLAP) &&
  61		    cpumask_intersects(groupmask, sched_group_span(group))) {
  62			printk(KERN_CONT "\n");
  63			printk(KERN_ERR "ERROR: repeated CPUs\n");
  64			break;
  65		}
  66
  67		cpumask_or(groupmask, groupmask, sched_group_span(group));
  68
  69		printk(KERN_CONT " %d:{ span=%*pbl",
  70				group->sgc->id,
  71				cpumask_pr_args(sched_group_span(group)));
  72
  73		if ((sd->flags & SD_OVERLAP) &&
  74		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
  75			printk(KERN_CONT " mask=%*pbl",
  76				cpumask_pr_args(group_balance_mask(group)));
  77		}
  78
  79		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
  80			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
  81
  82		if (group == sd->groups && sd->child &&
  83		    !cpumask_equal(sched_domain_span(sd->child),
  84				   sched_group_span(group))) {
  85			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
  86		}
  87
  88		printk(KERN_CONT " }");
  89
  90		group = group->next;
  91
  92		if (group != sd->groups)
  93			printk(KERN_CONT ",");
  94
  95	} while (group != sd->groups);
  96	printk(KERN_CONT "\n");
  97
  98	if (!cpumask_equal(sched_domain_span(sd), groupmask))
  99		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 100
 101	if (sd->parent &&
 102	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
 103		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
 104	return 0;
 105}
 106
 107static void sched_domain_debug(struct sched_domain *sd, int cpu)
 108{
 109	int level = 0;
 110
 111	if (!sched_debug_enabled)
 112		return;
 113
 114	if (!sd) {
 115		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 116		return;
 117	}
 118
 119	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
 120
 121	for (;;) {
 122		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
 123			break;
 124		level++;
 125		sd = sd->parent;
 126		if (!sd)
 127			break;
 128	}
 129}
 130#else /* !CONFIG_SCHED_DEBUG */
 131
 132# define sched_debug_enabled 0
 133# define sched_domain_debug(sd, cpu) do { } while (0)
 134static inline bool sched_debug(void)
 135{
 136	return false;
 137}
 138#endif /* CONFIG_SCHED_DEBUG */
 139
 140static int sd_degenerate(struct sched_domain *sd)
 141{
 142	if (cpumask_weight(sched_domain_span(sd)) == 1)
 143		return 1;
 144
 145	/* Following flags need at least 2 groups */
 146	if (sd->flags & (SD_BALANCE_NEWIDLE |
 147			 SD_BALANCE_FORK |
 148			 SD_BALANCE_EXEC |
 149			 SD_SHARE_CPUCAPACITY |
 150			 SD_ASYM_CPUCAPACITY |
 151			 SD_SHARE_PKG_RESOURCES |
 152			 SD_SHARE_POWERDOMAIN)) {
 153		if (sd->groups != sd->groups->next)
 154			return 0;
 155	}
 156
 157	/* Following flags don't use groups */
 158	if (sd->flags & (SD_WAKE_AFFINE))
 159		return 0;
 160
 161	return 1;
 162}
 163
 164static int
 165sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 166{
 167	unsigned long cflags = sd->flags, pflags = parent->flags;
 168
 169	if (sd_degenerate(parent))
 170		return 1;
 171
 172	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
 173		return 0;
 174
 175	/* Flags needing groups don't count if only 1 group in parent */
 176	if (parent->groups == parent->groups->next) {
 177		pflags &= ~(SD_BALANCE_NEWIDLE |
 178			    SD_BALANCE_FORK |
 179			    SD_BALANCE_EXEC |
 180			    SD_ASYM_CPUCAPACITY |
 181			    SD_SHARE_CPUCAPACITY |
 182			    SD_SHARE_PKG_RESOURCES |
 183			    SD_PREFER_SIBLING |
 184			    SD_SHARE_POWERDOMAIN);
 185		if (nr_node_ids == 1)
 186			pflags &= ~SD_SERIALIZE;
 187	}
 188	if (~cflags & pflags)
 189		return 0;
 190
 191	return 1;
 192}
 193
 194#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
 195DEFINE_STATIC_KEY_FALSE(sched_energy_present);
 196unsigned int sysctl_sched_energy_aware = 1;
 197DEFINE_MUTEX(sched_energy_mutex);
 198bool sched_energy_update;
 199
 200#ifdef CONFIG_PROC_SYSCTL
 201int sched_energy_aware_handler(struct ctl_table *table, int write,
 202		void *buffer, size_t *lenp, loff_t *ppos)
 203{
 204	int ret, state;
 205
 206	if (write && !capable(CAP_SYS_ADMIN))
 207		return -EPERM;
 208
 209	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 210	if (!ret && write) {
 211		state = static_branch_unlikely(&sched_energy_present);
 212		if (state != sysctl_sched_energy_aware) {
 213			mutex_lock(&sched_energy_mutex);
 214			sched_energy_update = 1;
 215			rebuild_sched_domains();
 216			sched_energy_update = 0;
 217			mutex_unlock(&sched_energy_mutex);
 218		}
 219	}
 220
 221	return ret;
 222}
 223#endif
 224
 225static void free_pd(struct perf_domain *pd)
 226{
 227	struct perf_domain *tmp;
 228
 229	while (pd) {
 230		tmp = pd->next;
 231		kfree(pd);
 232		pd = tmp;
 233	}
 234}
 235
 236static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
 237{
 238	while (pd) {
 239		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
 240			return pd;
 241		pd = pd->next;
 242	}
 243
 244	return NULL;
 245}
 246
 247static struct perf_domain *pd_init(int cpu)
 248{
 249	struct em_perf_domain *obj = em_cpu_get(cpu);
 250	struct perf_domain *pd;
 251
 252	if (!obj) {
 253		if (sched_debug())
 254			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
 255		return NULL;
 256	}
 257
 258	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
 259	if (!pd)
 260		return NULL;
 261	pd->em_pd = obj;
 262
 263	return pd;
 264}
 265
 266static void perf_domain_debug(const struct cpumask *cpu_map,
 267						struct perf_domain *pd)
 268{
 269	if (!sched_debug() || !pd)
 270		return;
 271
 272	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
 273
 274	while (pd) {
 275		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
 276				cpumask_first(perf_domain_span(pd)),
 277				cpumask_pr_args(perf_domain_span(pd)),
 278				em_pd_nr_perf_states(pd->em_pd));
 279		pd = pd->next;
 280	}
 281
 282	printk(KERN_CONT "\n");
 283}
 284
 285static void destroy_perf_domain_rcu(struct rcu_head *rp)
 286{
 287	struct perf_domain *pd;
 288
 289	pd = container_of(rp, struct perf_domain, rcu);
 290	free_pd(pd);
 291}
 292
 293static void sched_energy_set(bool has_eas)
 294{
 295	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
 296		if (sched_debug())
 297			pr_info("%s: stopping EAS\n", __func__);
 298		static_branch_disable_cpuslocked(&sched_energy_present);
 299	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
 300		if (sched_debug())
 301			pr_info("%s: starting EAS\n", __func__);
 302		static_branch_enable_cpuslocked(&sched_energy_present);
 303	}
 304}
 305
 306/*
 307 * EAS can be used on a root domain if it meets all the following conditions:
 308 *    1. an Energy Model (EM) is available;
 309 *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
 310 *    3. no SMT is detected.
 311 *    4. the EM complexity is low enough to keep scheduling overheads low;
 312 *    5. schedutil is driving the frequency of all CPUs of the rd;
 313 *
 314 * The complexity of the Energy Model is defined as:
 315 *
 316 *              C = nr_pd * (nr_cpus + nr_ps)
 317 *
 318 * with parameters defined as:
 319 *  - nr_pd:    the number of performance domains
 320 *  - nr_cpus:  the number of CPUs
 321 *  - nr_ps:    the sum of the number of performance states of all performance
 322 *              domains (for example, on a system with 2 performance domains,
 323 *              with 10 performance states each, nr_ps = 2 * 10 = 20).
 324 *
 325 * It is generally not a good idea to use such a model in the wake-up path on
 326 * very complex platforms because of the associated scheduling overheads. The
 327 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
 328 * with per-CPU DVFS and less than 8 performance states each, for example.
 329 */
 330#define EM_MAX_COMPLEXITY 2048
 331
 332extern struct cpufreq_governor schedutil_gov;
 333static bool build_perf_domains(const struct cpumask *cpu_map)
 334{
 335	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
 336	struct perf_domain *pd = NULL, *tmp;
 337	int cpu = cpumask_first(cpu_map);
 338	struct root_domain *rd = cpu_rq(cpu)->rd;
 339	struct cpufreq_policy *policy;
 340	struct cpufreq_governor *gov;
 341
 342	if (!sysctl_sched_energy_aware)
 343		goto free;
 344
 345	/* EAS is enabled for asymmetric CPU capacity topologies. */
 346	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
 347		if (sched_debug()) {
 348			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
 349					cpumask_pr_args(cpu_map));
 350		}
 351		goto free;
 352	}
 353
 354	/* EAS definitely does *not* handle SMT */
 355	if (sched_smt_active()) {
 356		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
 357			cpumask_pr_args(cpu_map));
 358		goto free;
 359	}
 360
 361	for_each_cpu(i, cpu_map) {
 362		/* Skip already covered CPUs. */
 363		if (find_pd(pd, i))
 364			continue;
 365
 366		/* Do not attempt EAS if schedutil is not being used. */
 367		policy = cpufreq_cpu_get(i);
 368		if (!policy)
 369			goto free;
 370		gov = policy->governor;
 371		cpufreq_cpu_put(policy);
 372		if (gov != &schedutil_gov) {
 373			if (rd->pd)
 374				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
 375						cpumask_pr_args(cpu_map));
 376			goto free;
 377		}
 378
 379		/* Create the new pd and add it to the local list. */
 380		tmp = pd_init(i);
 381		if (!tmp)
 382			goto free;
 383		tmp->next = pd;
 384		pd = tmp;
 385
 386		/*
 387		 * Count performance domains and performance states for the
 388		 * complexity check.
 389		 */
 390		nr_pd++;
 391		nr_ps += em_pd_nr_perf_states(pd->em_pd);
 392	}
 393
 394	/* Bail out if the Energy Model complexity is too high. */
 395	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
 396		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
 397						cpumask_pr_args(cpu_map));
 398		goto free;
 399	}
 400
 401	perf_domain_debug(cpu_map, pd);
 402
 403	/* Attach the new list of performance domains to the root domain. */
 404	tmp = rd->pd;
 405	rcu_assign_pointer(rd->pd, pd);
 406	if (tmp)
 407		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 408
 409	return !!pd;
 410
 411free:
 412	free_pd(pd);
 413	tmp = rd->pd;
 414	rcu_assign_pointer(rd->pd, NULL);
 415	if (tmp)
 416		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 417
 418	return false;
 419}
 420#else
 421static void free_pd(struct perf_domain *pd) { }
 422#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
 423
 424static void free_rootdomain(struct rcu_head *rcu)
 425{
 426	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
 427
 428	cpupri_cleanup(&rd->cpupri);
 429	cpudl_cleanup(&rd->cpudl);
 430	free_cpumask_var(rd->dlo_mask);
 431	free_cpumask_var(rd->rto_mask);
 432	free_cpumask_var(rd->online);
 433	free_cpumask_var(rd->span);
 434	free_pd(rd->pd);
 435	kfree(rd);
 436}
 437
 438void rq_attach_root(struct rq *rq, struct root_domain *rd)
 439{
 440	struct root_domain *old_rd = NULL;
 441	unsigned long flags;
 442
 443	raw_spin_lock_irqsave(&rq->lock, flags);
 444
 445	if (rq->rd) {
 446		old_rd = rq->rd;
 447
 448		if (cpumask_test_cpu(rq->cpu, old_rd->online))
 449			set_rq_offline(rq);
 450
 451		cpumask_clear_cpu(rq->cpu, old_rd->span);
 452
 453		/*
 454		 * If we dont want to free the old_rd yet then
 455		 * set old_rd to NULL to skip the freeing later
 456		 * in this function:
 457		 */
 458		if (!atomic_dec_and_test(&old_rd->refcount))
 459			old_rd = NULL;
 460	}
 461
 462	atomic_inc(&rd->refcount);
 463	rq->rd = rd;
 464
 465	cpumask_set_cpu(rq->cpu, rd->span);
 466	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
 467		set_rq_online(rq);
 468
 469	raw_spin_unlock_irqrestore(&rq->lock, flags);
 470
 471	if (old_rd)
 472		call_rcu(&old_rd->rcu, free_rootdomain);
 473}
 474
 475void sched_get_rd(struct root_domain *rd)
 476{
 477	atomic_inc(&rd->refcount);
 478}
 479
 480void sched_put_rd(struct root_domain *rd)
 481{
 482	if (!atomic_dec_and_test(&rd->refcount))
 483		return;
 484
 485	call_rcu(&rd->rcu, free_rootdomain);
 486}
 487
 488static int init_rootdomain(struct root_domain *rd)
 489{
 490	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
 491		goto out;
 492	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
 493		goto free_span;
 494	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
 495		goto free_online;
 496	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
 497		goto free_dlo_mask;
 498
 499#ifdef HAVE_RT_PUSH_IPI
 500	rd->rto_cpu = -1;
 501	raw_spin_lock_init(&rd->rto_lock);
 502	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
 503#endif
 504
 505	init_dl_bw(&rd->dl_bw);
 506	if (cpudl_init(&rd->cpudl) != 0)
 507		goto free_rto_mask;
 508
 509	if (cpupri_init(&rd->cpupri) != 0)
 510		goto free_cpudl;
 511	return 0;
 512
 513free_cpudl:
 514	cpudl_cleanup(&rd->cpudl);
 515free_rto_mask:
 516	free_cpumask_var(rd->rto_mask);
 517free_dlo_mask:
 518	free_cpumask_var(rd->dlo_mask);
 519free_online:
 520	free_cpumask_var(rd->online);
 521free_span:
 522	free_cpumask_var(rd->span);
 523out:
 524	return -ENOMEM;
 525}
 526
 527/*
 528 * By default the system creates a single root-domain with all CPUs as
 529 * members (mimicking the global state we have today).
 530 */
 531struct root_domain def_root_domain;
 532
 533void init_defrootdomain(void)
 534{
 535	init_rootdomain(&def_root_domain);
 536
 537	atomic_set(&def_root_domain.refcount, 1);
 538}
 539
 540static struct root_domain *alloc_rootdomain(void)
 541{
 542	struct root_domain *rd;
 543
 544	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
 545	if (!rd)
 546		return NULL;
 547
 548	if (init_rootdomain(rd) != 0) {
 549		kfree(rd);
 550		return NULL;
 551	}
 552
 553	return rd;
 554}
 555
 556static void free_sched_groups(struct sched_group *sg, int free_sgc)
 557{
 558	struct sched_group *tmp, *first;
 559
 560	if (!sg)
 561		return;
 562
 563	first = sg;
 564	do {
 565		tmp = sg->next;
 566
 567		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
 568			kfree(sg->sgc);
 569
 570		if (atomic_dec_and_test(&sg->ref))
 571			kfree(sg);
 572		sg = tmp;
 573	} while (sg != first);
 574}
 575
 576static void destroy_sched_domain(struct sched_domain *sd)
 577{
 578	/*
 579	 * A normal sched domain may have multiple group references, an
 580	 * overlapping domain, having private groups, only one.  Iterate,
 581	 * dropping group/capacity references, freeing where none remain.
 582	 */
 583	free_sched_groups(sd->groups, 1);
 584
 585	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
 586		kfree(sd->shared);
 587	kfree(sd);
 588}
 589
 590static void destroy_sched_domains_rcu(struct rcu_head *rcu)
 591{
 592	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
 593
 594	while (sd) {
 595		struct sched_domain *parent = sd->parent;
 596		destroy_sched_domain(sd);
 597		sd = parent;
 598	}
 599}
 600
 601static void destroy_sched_domains(struct sched_domain *sd)
 602{
 603	if (sd)
 604		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
 605}
 606
 607/*
 608 * Keep a special pointer to the highest sched_domain that has
 609 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 610 * allows us to avoid some pointer chasing select_idle_sibling().
 611 *
 612 * Also keep a unique ID per domain (we use the first CPU number in
 613 * the cpumask of the domain), this allows us to quickly tell if
 614 * two CPUs are in the same cache domain, see cpus_share_cache().
 615 */
 616DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
 617DEFINE_PER_CPU(int, sd_llc_size);
 618DEFINE_PER_CPU(int, sd_llc_id);
 619DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
 620DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
 621DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
 622DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
 623DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
 624
 625static void update_top_cache_domain(int cpu)
 626{
 627	struct sched_domain_shared *sds = NULL;
 628	struct sched_domain *sd;
 629	int id = cpu;
 630	int size = 1;
 631
 632	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
 633	if (sd) {
 634		id = cpumask_first(sched_domain_span(sd));
 635		size = cpumask_weight(sched_domain_span(sd));
 636		sds = sd->shared;
 637	}
 638
 639	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
 640	per_cpu(sd_llc_size, cpu) = size;
 641	per_cpu(sd_llc_id, cpu) = id;
 642	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
 643
 644	sd = lowest_flag_domain(cpu, SD_NUMA);
 645	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
 646
 647	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
 648	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
 649
 650	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
 651	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
 652}
 653
 654/*
 655 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 656 * hold the hotplug lock.
 657 */
 658static void
 659cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
 660{
 661	struct rq *rq = cpu_rq(cpu);
 662	struct sched_domain *tmp;
 663
 664	/* Remove the sched domains which do not contribute to scheduling. */
 665	for (tmp = sd; tmp; ) {
 666		struct sched_domain *parent = tmp->parent;
 667		if (!parent)
 668			break;
 669
 670		if (sd_parent_degenerate(tmp, parent)) {
 671			tmp->parent = parent->parent;
 672			if (parent->parent)
 673				parent->parent->child = tmp;
 674			/*
 675			 * Transfer SD_PREFER_SIBLING down in case of a
 676			 * degenerate parent; the spans match for this
 677			 * so the property transfers.
 678			 */
 679			if (parent->flags & SD_PREFER_SIBLING)
 680				tmp->flags |= SD_PREFER_SIBLING;
 681			destroy_sched_domain(parent);
 682		} else
 683			tmp = tmp->parent;
 684	}
 685
 686	if (sd && sd_degenerate(sd)) {
 687		tmp = sd;
 688		sd = sd->parent;
 689		destroy_sched_domain(tmp);
 690		if (sd)
 691			sd->child = NULL;
 692	}
 693
 694	sched_domain_debug(sd, cpu);
 695
 696	rq_attach_root(rq, rd);
 697	tmp = rq->sd;
 698	rcu_assign_pointer(rq->sd, sd);
 699	dirty_sched_domain_sysctl(cpu);
 700	destroy_sched_domains(tmp);
 701
 702	update_top_cache_domain(cpu);
 703}
 704
 705struct s_data {
 706	struct sched_domain * __percpu *sd;
 707	struct root_domain	*rd;
 708};
 709
 710enum s_alloc {
 711	sa_rootdomain,
 712	sa_sd,
 713	sa_sd_storage,
 714	sa_none,
 715};
 716
 717/*
 718 * Return the canonical balance CPU for this group, this is the first CPU
 719 * of this group that's also in the balance mask.
 720 *
 721 * The balance mask are all those CPUs that could actually end up at this
 722 * group. See build_balance_mask().
 723 *
 724 * Also see should_we_balance().
 725 */
 726int group_balance_cpu(struct sched_group *sg)
 727{
 728	return cpumask_first(group_balance_mask(sg));
 729}
 730
 731
 732/*
 733 * NUMA topology (first read the regular topology blurb below)
 734 *
 735 * Given a node-distance table, for example:
 736 *
 737 *   node   0   1   2   3
 738 *     0:  10  20  30  20
 739 *     1:  20  10  20  30
 740 *     2:  30  20  10  20
 741 *     3:  20  30  20  10
 742 *
 743 * which represents a 4 node ring topology like:
 744 *
 745 *   0 ----- 1
 746 *   |       |
 747 *   |       |
 748 *   |       |
 749 *   3 ----- 2
 750 *
 751 * We want to construct domains and groups to represent this. The way we go
 752 * about doing this is to build the domains on 'hops'. For each NUMA level we
 753 * construct the mask of all nodes reachable in @level hops.
 754 *
 755 * For the above NUMA topology that gives 3 levels:
 756 *
 757 * NUMA-2	0-3		0-3		0-3		0-3
 758 *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
 759 *
 760 * NUMA-1	0-1,3		0-2		1-3		0,2-3
 761 *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
 762 *
 763 * NUMA-0	0		1		2		3
 764 *
 765 *
 766 * As can be seen; things don't nicely line up as with the regular topology.
 767 * When we iterate a domain in child domain chunks some nodes can be
 768 * represented multiple times -- hence the "overlap" naming for this part of
 769 * the topology.
 770 *
 771 * In order to minimize this overlap, we only build enough groups to cover the
 772 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
 773 *
 774 * Because:
 775 *
 776 *  - the first group of each domain is its child domain; this
 777 *    gets us the first 0-1,3
 778 *  - the only uncovered node is 2, who's child domain is 1-3.
 779 *
 780 * However, because of the overlap, computing a unique CPU for each group is
 781 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
 782 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
 783 * end up at those groups (they would end up in group: 0-1,3).
 784 *
 785 * To correct this we have to introduce the group balance mask. This mask
 786 * will contain those CPUs in the group that can reach this group given the
 787 * (child) domain tree.
 788 *
 789 * With this we can once again compute balance_cpu and sched_group_capacity
 790 * relations.
 791 *
 792 * XXX include words on how balance_cpu is unique and therefore can be
 793 * used for sched_group_capacity links.
 794 *
 795 *
 796 * Another 'interesting' topology is:
 797 *
 798 *   node   0   1   2   3
 799 *     0:  10  20  20  30
 800 *     1:  20  10  20  20
 801 *     2:  20  20  10  20
 802 *     3:  30  20  20  10
 803 *
 804 * Which looks a little like:
 805 *
 806 *   0 ----- 1
 807 *   |     / |
 808 *   |   /   |
 809 *   | /     |
 810 *   2 ----- 3
 811 *
 812 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
 813 * are not.
 814 *
 815 * This leads to a few particularly weird cases where the sched_domain's are
 816 * not of the same number for each CPU. Consider:
 817 *
 818 * NUMA-2	0-3						0-3
 819 *  groups:	{0-2},{1-3}					{1-3},{0-2}
 820 *
 821 * NUMA-1	0-2		0-3		0-3		1-3
 822 *
 823 * NUMA-0	0		1		2		3
 824 *
 825 */
 826
 827
 828/*
 829 * Build the balance mask; it contains only those CPUs that can arrive at this
 830 * group and should be considered to continue balancing.
 831 *
 832 * We do this during the group creation pass, therefore the group information
 833 * isn't complete yet, however since each group represents a (child) domain we
 834 * can fully construct this using the sched_domain bits (which are already
 835 * complete).
 836 */
 837static void
 838build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
 839{
 840	const struct cpumask *sg_span = sched_group_span(sg);
 841	struct sd_data *sdd = sd->private;
 842	struct sched_domain *sibling;
 843	int i;
 844
 845	cpumask_clear(mask);
 846
 847	for_each_cpu(i, sg_span) {
 848		sibling = *per_cpu_ptr(sdd->sd, i);
 849
 850		/*
 851		 * Can happen in the asymmetric case, where these siblings are
 852		 * unused. The mask will not be empty because those CPUs that
 853		 * do have the top domain _should_ span the domain.
 854		 */
 855		if (!sibling->child)
 856			continue;
 857
 858		/* If we would not end up here, we can't continue from here */
 859		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
 860			continue;
 861
 862		cpumask_set_cpu(i, mask);
 863	}
 864
 865	/* We must not have empty masks here */
 866	WARN_ON_ONCE(cpumask_empty(mask));
 867}
 868
 869/*
 870 * XXX: This creates per-node group entries; since the load-balancer will
 871 * immediately access remote memory to construct this group's load-balance
 872 * statistics having the groups node local is of dubious benefit.
 873 */
 874static struct sched_group *
 875build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
 876{
 877	struct sched_group *sg;
 878	struct cpumask *sg_span;
 879
 880	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 881			GFP_KERNEL, cpu_to_node(cpu));
 882
 883	if (!sg)
 884		return NULL;
 885
 886	sg_span = sched_group_span(sg);
 887	if (sd->child)
 888		cpumask_copy(sg_span, sched_domain_span(sd->child));
 889	else
 890		cpumask_copy(sg_span, sched_domain_span(sd));
 891
 892	atomic_inc(&sg->ref);
 893	return sg;
 894}
 895
 896static void init_overlap_sched_group(struct sched_domain *sd,
 897				     struct sched_group *sg)
 898{
 899	struct cpumask *mask = sched_domains_tmpmask2;
 900	struct sd_data *sdd = sd->private;
 901	struct cpumask *sg_span;
 902	int cpu;
 903
 904	build_balance_mask(sd, sg, mask);
 905	cpu = cpumask_first_and(sched_group_span(sg), mask);
 906
 907	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 908	if (atomic_inc_return(&sg->sgc->ref) == 1)
 909		cpumask_copy(group_balance_mask(sg), mask);
 910	else
 911		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
 912
 913	/*
 914	 * Initialize sgc->capacity such that even if we mess up the
 915	 * domains and no possible iteration will get us here, we won't
 916	 * die on a /0 trap.
 917	 */
 918	sg_span = sched_group_span(sg);
 919	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
 920	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
 921	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
 922}
 923
 924static int
 925build_overlap_sched_groups(struct sched_domain *sd, int cpu)
 926{
 927	struct sched_group *first = NULL, *last = NULL, *sg;
 928	const struct cpumask *span = sched_domain_span(sd);
 929	struct cpumask *covered = sched_domains_tmpmask;
 930	struct sd_data *sdd = sd->private;
 931	struct sched_domain *sibling;
 932	int i;
 933
 934	cpumask_clear(covered);
 935
 936	for_each_cpu_wrap(i, span, cpu) {
 937		struct cpumask *sg_span;
 938
 939		if (cpumask_test_cpu(i, covered))
 940			continue;
 941
 942		sibling = *per_cpu_ptr(sdd->sd, i);
 943
 944		/*
 945		 * Asymmetric node setups can result in situations where the
 946		 * domain tree is of unequal depth, make sure to skip domains
 947		 * that already cover the entire range.
 948		 *
 949		 * In that case build_sched_domains() will have terminated the
 950		 * iteration early and our sibling sd spans will be empty.
 951		 * Domains should always include the CPU they're built on, so
 952		 * check that.
 953		 */
 954		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
 955			continue;
 956
 957		sg = build_group_from_child_sched_domain(sibling, cpu);
 958		if (!sg)
 959			goto fail;
 960
 961		sg_span = sched_group_span(sg);
 962		cpumask_or(covered, covered, sg_span);
 963
 964		init_overlap_sched_group(sd, sg);
 965
 966		if (!first)
 967			first = sg;
 968		if (last)
 969			last->next = sg;
 970		last = sg;
 971		last->next = first;
 972	}
 973	sd->groups = first;
 974
 975	return 0;
 976
 977fail:
 978	free_sched_groups(first, 0);
 979
 980	return -ENOMEM;
 981}
 982
 983
 984/*
 985 * Package topology (also see the load-balance blurb in fair.c)
 986 *
 987 * The scheduler builds a tree structure to represent a number of important
 988 * topology features. By default (default_topology[]) these include:
 989 *
 990 *  - Simultaneous multithreading (SMT)
 991 *  - Multi-Core Cache (MC)
 992 *  - Package (DIE)
 993 *
 994 * Where the last one more or less denotes everything up to a NUMA node.
 995 *
 996 * The tree consists of 3 primary data structures:
 997 *
 998 *	sched_domain -> sched_group -> sched_group_capacity
 999 *	    ^ ^             ^ ^
1000 *          `-'             `-'
1001 *
1002 * The sched_domains are per-CPU and have a two way link (parent & child) and
1003 * denote the ever growing mask of CPUs belonging to that level of topology.
1004 *
1005 * Each sched_domain has a circular (double) linked list of sched_group's, each
1006 * denoting the domains of the level below (or individual CPUs in case of the
1007 * first domain level). The sched_group linked by a sched_domain includes the
1008 * CPU of that sched_domain [*].
1009 *
1010 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1011 *
1012 * CPU   0   1   2   3   4   5   6   7
1013 *
1014 * DIE  [                             ]
1015 * MC   [             ] [             ]
1016 * SMT  [     ] [     ] [     ] [     ]
1017 *
1018 *  - or -
1019 *
1020 * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1021 * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1022 * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1023 *
1024 * CPU   0   1   2   3   4   5   6   7
1025 *
1026 * One way to think about it is: sched_domain moves you up and down among these
1027 * topology levels, while sched_group moves you sideways through it, at child
1028 * domain granularity.
1029 *
1030 * sched_group_capacity ensures each unique sched_group has shared storage.
1031 *
1032 * There are two related construction problems, both require a CPU that
1033 * uniquely identify each group (for a given domain):
1034 *
1035 *  - The first is the balance_cpu (see should_we_balance() and the
1036 *    load-balance blub in fair.c); for each group we only want 1 CPU to
1037 *    continue balancing at a higher domain.
1038 *
1039 *  - The second is the sched_group_capacity; we want all identical groups
1040 *    to share a single sched_group_capacity.
1041 *
1042 * Since these topologies are exclusive by construction. That is, its
1043 * impossible for an SMT thread to belong to multiple cores, and cores to
1044 * be part of multiple caches. There is a very clear and unique location
1045 * for each CPU in the hierarchy.
1046 *
1047 * Therefore computing a unique CPU for each group is trivial (the iteration
1048 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1049 * group), we can simply pick the first CPU in each group.
1050 *
1051 *
1052 * [*] in other words, the first group of each domain is its child domain.
1053 */
1054
1055static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1056{
1057	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1058	struct sched_domain *child = sd->child;
1059	struct sched_group *sg;
1060	bool already_visited;
1061
1062	if (child)
1063		cpu = cpumask_first(sched_domain_span(child));
1064
1065	sg = *per_cpu_ptr(sdd->sg, cpu);
1066	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1067
1068	/* Increase refcounts for claim_allocations: */
1069	already_visited = atomic_inc_return(&sg->ref) > 1;
1070	/* sgc visits should follow a similar trend as sg */
1071	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1072
1073	/* If we have already visited that group, it's already initialized. */
1074	if (already_visited)
1075		return sg;
1076
1077	if (child) {
1078		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1079		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1080	} else {
1081		cpumask_set_cpu(cpu, sched_group_span(sg));
1082		cpumask_set_cpu(cpu, group_balance_mask(sg));
1083	}
1084
1085	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1086	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1087	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1088
1089	return sg;
1090}
1091
1092/*
1093 * build_sched_groups will build a circular linked list of the groups
1094 * covered by the given span, will set each group's ->cpumask correctly,
1095 * and will initialize their ->sgc.
1096 *
1097 * Assumes the sched_domain tree is fully constructed
1098 */
1099static int
1100build_sched_groups(struct sched_domain *sd, int cpu)
1101{
1102	struct sched_group *first = NULL, *last = NULL;
1103	struct sd_data *sdd = sd->private;
1104	const struct cpumask *span = sched_domain_span(sd);
1105	struct cpumask *covered;
1106	int i;
1107
1108	lockdep_assert_held(&sched_domains_mutex);
1109	covered = sched_domains_tmpmask;
1110
1111	cpumask_clear(covered);
1112
1113	for_each_cpu_wrap(i, span, cpu) {
1114		struct sched_group *sg;
1115
1116		if (cpumask_test_cpu(i, covered))
1117			continue;
1118
1119		sg = get_group(i, sdd);
1120
1121		cpumask_or(covered, covered, sched_group_span(sg));
1122
1123		if (!first)
1124			first = sg;
1125		if (last)
1126			last->next = sg;
1127		last = sg;
1128	}
1129	last->next = first;
1130	sd->groups = first;
1131
1132	return 0;
1133}
1134
1135/*
1136 * Initialize sched groups cpu_capacity.
1137 *
1138 * cpu_capacity indicates the capacity of sched group, which is used while
1139 * distributing the load between different sched groups in a sched domain.
1140 * Typically cpu_capacity for all the groups in a sched domain will be same
1141 * unless there are asymmetries in the topology. If there are asymmetries,
1142 * group having more cpu_capacity will pickup more load compared to the
1143 * group having less cpu_capacity.
1144 */
1145static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1146{
1147	struct sched_group *sg = sd->groups;
1148
1149	WARN_ON(!sg);
1150
1151	do {
1152		int cpu, max_cpu = -1;
1153
1154		sg->group_weight = cpumask_weight(sched_group_span(sg));
1155
1156		if (!(sd->flags & SD_ASYM_PACKING))
1157			goto next;
1158
1159		for_each_cpu(cpu, sched_group_span(sg)) {
1160			if (max_cpu < 0)
1161				max_cpu = cpu;
1162			else if (sched_asym_prefer(cpu, max_cpu))
1163				max_cpu = cpu;
1164		}
1165		sg->asym_prefer_cpu = max_cpu;
1166
1167next:
1168		sg = sg->next;
1169	} while (sg != sd->groups);
1170
1171	if (cpu != group_balance_cpu(sg))
1172		return;
1173
1174	update_group_capacity(sd, cpu);
1175}
1176
1177/*
1178 * Initializers for schedule domains
1179 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1180 */
1181
1182static int default_relax_domain_level = -1;
1183int sched_domain_level_max;
1184
1185static int __init setup_relax_domain_level(char *str)
1186{
1187	if (kstrtoint(str, 0, &default_relax_domain_level))
1188		pr_warn("Unable to set relax_domain_level\n");
1189
1190	return 1;
1191}
1192__setup("relax_domain_level=", setup_relax_domain_level);
1193
1194static void set_domain_attribute(struct sched_domain *sd,
1195				 struct sched_domain_attr *attr)
1196{
1197	int request;
1198
1199	if (!attr || attr->relax_domain_level < 0) {
1200		if (default_relax_domain_level < 0)
1201			return;
1202		request = default_relax_domain_level;
1203	} else
1204		request = attr->relax_domain_level;
1205
1206	if (sd->level > request) {
1207		/* Turn off idle balance on this domain: */
1208		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1209	}
1210}
1211
1212static void __sdt_free(const struct cpumask *cpu_map);
1213static int __sdt_alloc(const struct cpumask *cpu_map);
1214
1215static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1216				 const struct cpumask *cpu_map)
1217{
1218	switch (what) {
1219	case sa_rootdomain:
1220		if (!atomic_read(&d->rd->refcount))
1221			free_rootdomain(&d->rd->rcu);
1222		fallthrough;
1223	case sa_sd:
1224		free_percpu(d->sd);
1225		fallthrough;
1226	case sa_sd_storage:
1227		__sdt_free(cpu_map);
1228		fallthrough;
1229	case sa_none:
1230		break;
1231	}
1232}
1233
1234static enum s_alloc
1235__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1236{
1237	memset(d, 0, sizeof(*d));
1238
1239	if (__sdt_alloc(cpu_map))
1240		return sa_sd_storage;
1241	d->sd = alloc_percpu(struct sched_domain *);
1242	if (!d->sd)
1243		return sa_sd_storage;
1244	d->rd = alloc_rootdomain();
1245	if (!d->rd)
1246		return sa_sd;
1247
1248	return sa_rootdomain;
1249}
1250
1251/*
1252 * NULL the sd_data elements we've used to build the sched_domain and
1253 * sched_group structure so that the subsequent __free_domain_allocs()
1254 * will not free the data we're using.
1255 */
1256static void claim_allocations(int cpu, struct sched_domain *sd)
1257{
1258	struct sd_data *sdd = sd->private;
1259
1260	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1261	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1262
1263	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1264		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1265
1266	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1267		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1268
1269	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1270		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1271}
1272
1273#ifdef CONFIG_NUMA
1274enum numa_topology_type sched_numa_topology_type;
1275
1276static int			sched_domains_numa_levels;
1277static int			sched_domains_curr_level;
1278
1279int				sched_max_numa_distance;
1280static int			*sched_domains_numa_distance;
1281static struct cpumask		***sched_domains_numa_masks;
1282int __read_mostly		node_reclaim_distance = RECLAIM_DISTANCE;
1283#endif
1284
1285/*
1286 * SD_flags allowed in topology descriptions.
1287 *
1288 * These flags are purely descriptive of the topology and do not prescribe
1289 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1290 * function:
1291 *
1292 *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1293 *   SD_SHARE_PKG_RESOURCES - describes shared caches
1294 *   SD_NUMA                - describes NUMA topologies
1295 *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1296 *
1297 * Odd one out, which beside describing the topology has a quirk also
1298 * prescribes the desired behaviour that goes along with it:
1299 *
1300 *   SD_ASYM_PACKING        - describes SMT quirks
1301 */
1302#define TOPOLOGY_SD_FLAGS		\
1303	(SD_SHARE_CPUCAPACITY	|	\
1304	 SD_SHARE_PKG_RESOURCES |	\
1305	 SD_NUMA		|	\
1306	 SD_ASYM_PACKING	|	\
1307	 SD_SHARE_POWERDOMAIN)
1308
1309static struct sched_domain *
1310sd_init(struct sched_domain_topology_level *tl,
1311	const struct cpumask *cpu_map,
1312	struct sched_domain *child, int dflags, int cpu)
1313{
1314	struct sd_data *sdd = &tl->data;
1315	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1316	int sd_id, sd_weight, sd_flags = 0;
1317
1318#ifdef CONFIG_NUMA
1319	/*
1320	 * Ugly hack to pass state to sd_numa_mask()...
1321	 */
1322	sched_domains_curr_level = tl->numa_level;
1323#endif
1324
1325	sd_weight = cpumask_weight(tl->mask(cpu));
1326
1327	if (tl->sd_flags)
1328		sd_flags = (*tl->sd_flags)();
1329	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1330			"wrong sd_flags in topology description\n"))
1331		sd_flags &= TOPOLOGY_SD_FLAGS;
1332
1333	/* Apply detected topology flags */
1334	sd_flags |= dflags;
1335
1336	*sd = (struct sched_domain){
1337		.min_interval		= sd_weight,
1338		.max_interval		= 2*sd_weight,
1339		.busy_factor		= 32,
1340		.imbalance_pct		= 125,
1341
1342		.cache_nice_tries	= 0,
1343
1344		.flags			= 1*SD_BALANCE_NEWIDLE
1345					| 1*SD_BALANCE_EXEC
1346					| 1*SD_BALANCE_FORK
1347					| 0*SD_BALANCE_WAKE
1348					| 1*SD_WAKE_AFFINE
1349					| 0*SD_SHARE_CPUCAPACITY
1350					| 0*SD_SHARE_PKG_RESOURCES
1351					| 0*SD_SERIALIZE
1352					| 1*SD_PREFER_SIBLING
1353					| 0*SD_NUMA
1354					| sd_flags
1355					,
1356
1357		.last_balance		= jiffies,
1358		.balance_interval	= sd_weight,
1359		.max_newidle_lb_cost	= 0,
1360		.next_decay_max_lb_cost	= jiffies,
1361		.child			= child,
1362#ifdef CONFIG_SCHED_DEBUG
1363		.name			= tl->name,
1364#endif
1365	};
1366
1367	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1368	sd_id = cpumask_first(sched_domain_span(sd));
1369
1370	/*
1371	 * Convert topological properties into behaviour.
1372	 */
1373
1374	/* Don't attempt to spread across CPUs of different capacities. */
1375	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1376		sd->child->flags &= ~SD_PREFER_SIBLING;
1377
1378	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1379		sd->imbalance_pct = 110;
1380
1381	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1382		sd->imbalance_pct = 117;
1383		sd->cache_nice_tries = 1;
1384
1385#ifdef CONFIG_NUMA
1386	} else if (sd->flags & SD_NUMA) {
1387		sd->cache_nice_tries = 2;
1388
1389		sd->flags &= ~SD_PREFER_SIBLING;
1390		sd->flags |= SD_SERIALIZE;
1391		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1392			sd->flags &= ~(SD_BALANCE_EXEC |
1393				       SD_BALANCE_FORK |
1394				       SD_WAKE_AFFINE);
1395		}
1396
1397#endif
1398	} else {
1399		sd->cache_nice_tries = 1;
1400	}
1401
1402	/*
1403	 * For all levels sharing cache; connect a sched_domain_shared
1404	 * instance.
1405	 */
1406	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1407		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1408		atomic_inc(&sd->shared->ref);
1409		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1410	}
1411
1412	sd->private = sdd;
1413
1414	return sd;
1415}
1416
1417/*
1418 * Topology list, bottom-up.
1419 */
1420static struct sched_domain_topology_level default_topology[] = {
1421#ifdef CONFIG_SCHED_SMT
1422	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1423#endif
1424#ifdef CONFIG_SCHED_MC
1425	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1426#endif
1427	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1428	{ NULL, },
1429};
1430
1431static struct sched_domain_topology_level *sched_domain_topology =
1432	default_topology;
1433
1434#define for_each_sd_topology(tl)			\
1435	for (tl = sched_domain_topology; tl->mask; tl++)
1436
1437void set_sched_topology(struct sched_domain_topology_level *tl)
1438{
1439	if (WARN_ON_ONCE(sched_smp_initialized))
1440		return;
1441
1442	sched_domain_topology = tl;
1443}
1444
1445#ifdef CONFIG_NUMA
1446
1447static const struct cpumask *sd_numa_mask(int cpu)
1448{
1449	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1450}
1451
1452static void sched_numa_warn(const char *str)
1453{
1454	static int done = false;
1455	int i,j;
1456
1457	if (done)
1458		return;
1459
1460	done = true;
1461
1462	printk(KERN_WARNING "ERROR: %s\n\n", str);
1463
1464	for (i = 0; i < nr_node_ids; i++) {
1465		printk(KERN_WARNING "  ");
1466		for (j = 0; j < nr_node_ids; j++)
1467			printk(KERN_CONT "%02d ", node_distance(i,j));
1468		printk(KERN_CONT "\n");
1469	}
1470	printk(KERN_WARNING "\n");
1471}
1472
1473bool find_numa_distance(int distance)
1474{
1475	int i;
1476
1477	if (distance == node_distance(0, 0))
1478		return true;
1479
1480	for (i = 0; i < sched_domains_numa_levels; i++) {
1481		if (sched_domains_numa_distance[i] == distance)
1482			return true;
1483	}
1484
1485	return false;
1486}
1487
1488/*
1489 * A system can have three types of NUMA topology:
1490 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1491 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1492 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1493 *
1494 * The difference between a glueless mesh topology and a backplane
1495 * topology lies in whether communication between not directly
1496 * connected nodes goes through intermediary nodes (where programs
1497 * could run), or through backplane controllers. This affects
1498 * placement of programs.
1499 *
1500 * The type of topology can be discerned with the following tests:
1501 * - If the maximum distance between any nodes is 1 hop, the system
1502 *   is directly connected.
1503 * - If for two nodes A and B, located N > 1 hops away from each other,
1504 *   there is an intermediary node C, which is < N hops away from both
1505 *   nodes A and B, the system is a glueless mesh.
1506 */
1507static void init_numa_topology_type(void)
1508{
1509	int a, b, c, n;
1510
1511	n = sched_max_numa_distance;
1512
1513	if (sched_domains_numa_levels <= 2) {
1514		sched_numa_topology_type = NUMA_DIRECT;
1515		return;
1516	}
1517
1518	for_each_online_node(a) {
1519		for_each_online_node(b) {
1520			/* Find two nodes furthest removed from each other. */
1521			if (node_distance(a, b) < n)
1522				continue;
1523
1524			/* Is there an intermediary node between a and b? */
1525			for_each_online_node(c) {
1526				if (node_distance(a, c) < n &&
1527				    node_distance(b, c) < n) {
1528					sched_numa_topology_type =
1529							NUMA_GLUELESS_MESH;
1530					return;
1531				}
1532			}
1533
1534			sched_numa_topology_type = NUMA_BACKPLANE;
1535			return;
1536		}
1537	}
1538}
1539
1540void sched_init_numa(void)
1541{
1542	int next_distance, curr_distance = node_distance(0, 0);
1543	struct sched_domain_topology_level *tl;
1544	int level = 0;
1545	int i, j, k;
1546
1547	sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1548	if (!sched_domains_numa_distance)
1549		return;
1550
1551	/* Includes NUMA identity node at level 0. */
1552	sched_domains_numa_distance[level++] = curr_distance;
1553	sched_domains_numa_levels = level;
1554
1555	/*
1556	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1557	 * unique distances in the node_distance() table.
1558	 *
1559	 * Assumes node_distance(0,j) includes all distances in
1560	 * node_distance(i,j) in order to avoid cubic time.
1561	 */
1562	next_distance = curr_distance;
1563	for (i = 0; i < nr_node_ids; i++) {
1564		for (j = 0; j < nr_node_ids; j++) {
1565			for (k = 0; k < nr_node_ids; k++) {
1566				int distance = node_distance(i, k);
1567
1568				if (distance > curr_distance &&
1569				    (distance < next_distance ||
1570				     next_distance == curr_distance))
1571					next_distance = distance;
1572
1573				/*
1574				 * While not a strong assumption it would be nice to know
1575				 * about cases where if node A is connected to B, B is not
1576				 * equally connected to A.
1577				 */
1578				if (sched_debug() && node_distance(k, i) != distance)
1579					sched_numa_warn("Node-distance not symmetric");
1580
1581				if (sched_debug() && i && !find_numa_distance(distance))
1582					sched_numa_warn("Node-0 not representative");
1583			}
1584			if (next_distance != curr_distance) {
1585				sched_domains_numa_distance[level++] = next_distance;
1586				sched_domains_numa_levels = level;
1587				curr_distance = next_distance;
1588			} else break;
1589		}
1590
1591		/*
1592		 * In case of sched_debug() we verify the above assumption.
1593		 */
1594		if (!sched_debug())
1595			break;
1596	}
1597
1598	/*
1599	 * 'level' contains the number of unique distances
1600	 *
1601	 * The sched_domains_numa_distance[] array includes the actual distance
1602	 * numbers.
1603	 */
1604
1605	/*
1606	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1607	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1608	 * the array will contain less then 'level' members. This could be
1609	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1610	 * in other functions.
1611	 *
1612	 * We reset it to 'level' at the end of this function.
1613	 */
1614	sched_domains_numa_levels = 0;
1615
1616	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1617	if (!sched_domains_numa_masks)
1618		return;
1619
1620	/*
1621	 * Now for each level, construct a mask per node which contains all
1622	 * CPUs of nodes that are that many hops away from us.
1623	 */
1624	for (i = 0; i < level; i++) {
1625		sched_domains_numa_masks[i] =
1626			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1627		if (!sched_domains_numa_masks[i])
1628			return;
1629
1630		for (j = 0; j < nr_node_ids; j++) {
1631			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1632			if (!mask)
1633				return;
1634
1635			sched_domains_numa_masks[i][j] = mask;
1636
1637			for_each_node(k) {
1638				if (node_distance(j, k) > sched_domains_numa_distance[i])
1639					continue;
1640
1641				cpumask_or(mask, mask, cpumask_of_node(k));
1642			}
1643		}
1644	}
1645
1646	/* Compute default topology size */
1647	for (i = 0; sched_domain_topology[i].mask; i++);
1648
1649	tl = kzalloc((i + level + 1) *
1650			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1651	if (!tl)
1652		return;
1653
1654	/*
1655	 * Copy the default topology bits..
1656	 */
1657	for (i = 0; sched_domain_topology[i].mask; i++)
1658		tl[i] = sched_domain_topology[i];
1659
1660	/*
1661	 * Add the NUMA identity distance, aka single NODE.
1662	 */
1663	tl[i++] = (struct sched_domain_topology_level){
1664		.mask = sd_numa_mask,
1665		.numa_level = 0,
1666		SD_INIT_NAME(NODE)
1667	};
1668
1669	/*
1670	 * .. and append 'j' levels of NUMA goodness.
1671	 */
1672	for (j = 1; j < level; i++, j++) {
1673		tl[i] = (struct sched_domain_topology_level){
1674			.mask = sd_numa_mask,
1675			.sd_flags = cpu_numa_flags,
1676			.flags = SDTL_OVERLAP,
1677			.numa_level = j,
1678			SD_INIT_NAME(NUMA)
1679		};
1680	}
1681
1682	sched_domain_topology = tl;
1683
1684	sched_domains_numa_levels = level;
1685	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1686
1687	init_numa_topology_type();
1688}
1689
1690void sched_domains_numa_masks_set(unsigned int cpu)
1691{
1692	int node = cpu_to_node(cpu);
1693	int i, j;
1694
1695	for (i = 0; i < sched_domains_numa_levels; i++) {
1696		for (j = 0; j < nr_node_ids; j++) {
1697			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1698				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1699		}
1700	}
1701}
1702
1703void sched_domains_numa_masks_clear(unsigned int cpu)
1704{
1705	int i, j;
1706
1707	for (i = 0; i < sched_domains_numa_levels; i++) {
1708		for (j = 0; j < nr_node_ids; j++)
1709			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1710	}
1711}
1712
1713/*
1714 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1715 *                             closest to @cpu from @cpumask.
1716 * cpumask: cpumask to find a cpu from
1717 * cpu: cpu to be close to
1718 *
1719 * returns: cpu, or nr_cpu_ids when nothing found.
1720 */
1721int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1722{
1723	int i, j = cpu_to_node(cpu);
1724
1725	for (i = 0; i < sched_domains_numa_levels; i++) {
1726		cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1727		if (cpu < nr_cpu_ids)
1728			return cpu;
1729	}
1730	return nr_cpu_ids;
1731}
1732
1733#endif /* CONFIG_NUMA */
1734
1735static int __sdt_alloc(const struct cpumask *cpu_map)
1736{
1737	struct sched_domain_topology_level *tl;
1738	int j;
1739
1740	for_each_sd_topology(tl) {
1741		struct sd_data *sdd = &tl->data;
1742
1743		sdd->sd = alloc_percpu(struct sched_domain *);
1744		if (!sdd->sd)
1745			return -ENOMEM;
1746
1747		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1748		if (!sdd->sds)
1749			return -ENOMEM;
1750
1751		sdd->sg = alloc_percpu(struct sched_group *);
1752		if (!sdd->sg)
1753			return -ENOMEM;
1754
1755		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1756		if (!sdd->sgc)
1757			return -ENOMEM;
1758
1759		for_each_cpu(j, cpu_map) {
1760			struct sched_domain *sd;
1761			struct sched_domain_shared *sds;
1762			struct sched_group *sg;
1763			struct sched_group_capacity *sgc;
1764
1765			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1766					GFP_KERNEL, cpu_to_node(j));
1767			if (!sd)
1768				return -ENOMEM;
1769
1770			*per_cpu_ptr(sdd->sd, j) = sd;
1771
1772			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1773					GFP_KERNEL, cpu_to_node(j));
1774			if (!sds)
1775				return -ENOMEM;
1776
1777			*per_cpu_ptr(sdd->sds, j) = sds;
1778
1779			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1780					GFP_KERNEL, cpu_to_node(j));
1781			if (!sg)
1782				return -ENOMEM;
1783
1784			sg->next = sg;
1785
1786			*per_cpu_ptr(sdd->sg, j) = sg;
1787
1788			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1789					GFP_KERNEL, cpu_to_node(j));
1790			if (!sgc)
1791				return -ENOMEM;
1792
1793#ifdef CONFIG_SCHED_DEBUG
1794			sgc->id = j;
1795#endif
1796
1797			*per_cpu_ptr(sdd->sgc, j) = sgc;
1798		}
1799	}
1800
1801	return 0;
1802}
1803
1804static void __sdt_free(const struct cpumask *cpu_map)
1805{
1806	struct sched_domain_topology_level *tl;
1807	int j;
1808
1809	for_each_sd_topology(tl) {
1810		struct sd_data *sdd = &tl->data;
1811
1812		for_each_cpu(j, cpu_map) {
1813			struct sched_domain *sd;
1814
1815			if (sdd->sd) {
1816				sd = *per_cpu_ptr(sdd->sd, j);
1817				if (sd && (sd->flags & SD_OVERLAP))
1818					free_sched_groups(sd->groups, 0);
1819				kfree(*per_cpu_ptr(sdd->sd, j));
1820			}
1821
1822			if (sdd->sds)
1823				kfree(*per_cpu_ptr(sdd->sds, j));
1824			if (sdd->sg)
1825				kfree(*per_cpu_ptr(sdd->sg, j));
1826			if (sdd->sgc)
1827				kfree(*per_cpu_ptr(sdd->sgc, j));
1828		}
1829		free_percpu(sdd->sd);
1830		sdd->sd = NULL;
1831		free_percpu(sdd->sds);
1832		sdd->sds = NULL;
1833		free_percpu(sdd->sg);
1834		sdd->sg = NULL;
1835		free_percpu(sdd->sgc);
1836		sdd->sgc = NULL;
1837	}
1838}
1839
1840static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1841		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1842		struct sched_domain *child, int dflags, int cpu)
1843{
1844	struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1845
1846	if (child) {
1847		sd->level = child->level + 1;
1848		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1849		child->parent = sd;
1850
1851		if (!cpumask_subset(sched_domain_span(child),
1852				    sched_domain_span(sd))) {
1853			pr_err("BUG: arch topology borken\n");
1854#ifdef CONFIG_SCHED_DEBUG
1855			pr_err("     the %s domain not a subset of the %s domain\n",
1856					child->name, sd->name);
1857#endif
1858			/* Fixup, ensure @sd has at least @child CPUs. */
1859			cpumask_or(sched_domain_span(sd),
1860				   sched_domain_span(sd),
1861				   sched_domain_span(child));
1862		}
1863
1864	}
1865	set_domain_attribute(sd, attr);
1866
1867	return sd;
1868}
1869
1870/*
1871 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1872 * any two given CPUs at this (non-NUMA) topology level.
1873 */
1874static bool topology_span_sane(struct sched_domain_topology_level *tl,
1875			      const struct cpumask *cpu_map, int cpu)
1876{
1877	int i;
1878
1879	/* NUMA levels are allowed to overlap */
1880	if (tl->flags & SDTL_OVERLAP)
1881		return true;
1882
1883	/*
1884	 * Non-NUMA levels cannot partially overlap - they must be either
1885	 * completely equal or completely disjoint. Otherwise we can end up
1886	 * breaking the sched_group lists - i.e. a later get_group() pass
1887	 * breaks the linking done for an earlier span.
1888	 */
1889	for_each_cpu(i, cpu_map) {
1890		if (i == cpu)
1891			continue;
1892		/*
1893		 * We should 'and' all those masks with 'cpu_map' to exactly
1894		 * match the topology we're about to build, but that can only
1895		 * remove CPUs, which only lessens our ability to detect
1896		 * overlaps
1897		 */
1898		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
1899		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
1900			return false;
1901	}
1902
1903	return true;
1904}
1905
1906/*
1907 * Find the sched_domain_topology_level where all CPU capacities are visible
1908 * for all CPUs.
1909 */
1910static struct sched_domain_topology_level
1911*asym_cpu_capacity_level(const struct cpumask *cpu_map)
1912{
1913	int i, j, asym_level = 0;
1914	bool asym = false;
1915	struct sched_domain_topology_level *tl, *asym_tl = NULL;
1916	unsigned long cap;
1917
1918	/* Is there any asymmetry? */
1919	cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
1920
1921	for_each_cpu(i, cpu_map) {
1922		if (arch_scale_cpu_capacity(i) != cap) {
1923			asym = true;
1924			break;
1925		}
1926	}
1927
1928	if (!asym)
1929		return NULL;
1930
1931	/*
1932	 * Examine topology from all CPU's point of views to detect the lowest
1933	 * sched_domain_topology_level where a highest capacity CPU is visible
1934	 * to everyone.
1935	 */
1936	for_each_cpu(i, cpu_map) {
1937		unsigned long max_capacity = arch_scale_cpu_capacity(i);
1938		int tl_id = 0;
1939
1940		for_each_sd_topology(tl) {
1941			if (tl_id < asym_level)
1942				goto next_level;
1943
1944			for_each_cpu_and(j, tl->mask(i), cpu_map) {
1945				unsigned long capacity;
1946
1947				capacity = arch_scale_cpu_capacity(j);
1948
1949				if (capacity <= max_capacity)
1950					continue;
1951
1952				max_capacity = capacity;
1953				asym_level = tl_id;
1954				asym_tl = tl;
1955			}
1956next_level:
1957			tl_id++;
1958		}
1959	}
1960
1961	return asym_tl;
1962}
1963
1964
1965/*
1966 * Build sched domains for a given set of CPUs and attach the sched domains
1967 * to the individual CPUs
1968 */
1969static int
1970build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1971{
1972	enum s_alloc alloc_state = sa_none;
1973	struct sched_domain *sd;
1974	struct s_data d;
1975	struct rq *rq = NULL;
1976	int i, ret = -ENOMEM;
1977	struct sched_domain_topology_level *tl_asym;
1978	bool has_asym = false;
1979
1980	if (WARN_ON(cpumask_empty(cpu_map)))
1981		goto error;
1982
1983	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1984	if (alloc_state != sa_rootdomain)
1985		goto error;
1986
1987	tl_asym = asym_cpu_capacity_level(cpu_map);
1988
1989	/* Set up domains for CPUs specified by the cpu_map: */
1990	for_each_cpu(i, cpu_map) {
1991		struct sched_domain_topology_level *tl;
1992
1993		sd = NULL;
1994		for_each_sd_topology(tl) {
1995			int dflags = 0;
1996
1997			if (tl == tl_asym) {
1998				dflags |= SD_ASYM_CPUCAPACITY;
1999				has_asym = true;
2000			}
2001
2002			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2003				goto error;
2004
2005			sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
2006
2007			if (tl == sched_domain_topology)
2008				*per_cpu_ptr(d.sd, i) = sd;
2009			if (tl->flags & SDTL_OVERLAP)
2010				sd->flags |= SD_OVERLAP;
2011			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2012				break;
2013		}
2014	}
2015
2016	/* Build the groups for the domains */
2017	for_each_cpu(i, cpu_map) {
2018		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2019			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2020			if (sd->flags & SD_OVERLAP) {
2021				if (build_overlap_sched_groups(sd, i))
2022					goto error;
2023			} else {
2024				if (build_sched_groups(sd, i))
2025					goto error;
2026			}
2027		}
2028	}
2029
2030	/* Calculate CPU capacity for physical packages and nodes */
2031	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2032		if (!cpumask_test_cpu(i, cpu_map))
2033			continue;
2034
2035		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2036			claim_allocations(i, sd);
2037			init_sched_groups_capacity(i, sd);
2038		}
2039	}
2040
2041	/* Attach the domains */
2042	rcu_read_lock();
2043	for_each_cpu(i, cpu_map) {
2044		rq = cpu_rq(i);
2045		sd = *per_cpu_ptr(d.sd, i);
2046
2047		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2048		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2049			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2050
2051		cpu_attach_domain(sd, d.rd, i);
2052	}
2053	rcu_read_unlock();
2054
2055	if (has_asym)
2056		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2057
2058	if (rq && sched_debug_enabled) {
2059		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2060			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2061	}
2062
2063	ret = 0;
2064error:
2065	__free_domain_allocs(&d, alloc_state, cpu_map);
2066
2067	return ret;
2068}
2069
2070/* Current sched domains: */
2071static cpumask_var_t			*doms_cur;
2072
2073/* Number of sched domains in 'doms_cur': */
2074static int				ndoms_cur;
2075
2076/* Attribues of custom domains in 'doms_cur' */
2077static struct sched_domain_attr		*dattr_cur;
2078
2079/*
2080 * Special case: If a kmalloc() of a doms_cur partition (array of
2081 * cpumask) fails, then fallback to a single sched domain,
2082 * as determined by the single cpumask fallback_doms.
2083 */
2084static cpumask_var_t			fallback_doms;
2085
2086/*
2087 * arch_update_cpu_topology lets virtualized architectures update the
2088 * CPU core maps. It is supposed to return 1 if the topology changed
2089 * or 0 if it stayed the same.
2090 */
2091int __weak arch_update_cpu_topology(void)
2092{
2093	return 0;
2094}
2095
2096cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2097{
2098	int i;
2099	cpumask_var_t *doms;
2100
2101	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2102	if (!doms)
2103		return NULL;
2104	for (i = 0; i < ndoms; i++) {
2105		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2106			free_sched_domains(doms, i);
2107			return NULL;
2108		}
2109	}
2110	return doms;
2111}
2112
2113void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2114{
2115	unsigned int i;
2116	for (i = 0; i < ndoms; i++)
2117		free_cpumask_var(doms[i]);
2118	kfree(doms);
2119}
2120
2121/*
2122 * Set up scheduler domains and groups.  For now this just excludes isolated
2123 * CPUs, but could be used to exclude other special cases in the future.
2124 */
2125int sched_init_domains(const struct cpumask *cpu_map)
2126{
2127	int err;
2128
2129	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2130	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2131	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2132
2133	arch_update_cpu_topology();
2134	ndoms_cur = 1;
2135	doms_cur = alloc_sched_domains(ndoms_cur);
2136	if (!doms_cur)
2137		doms_cur = &fallback_doms;
2138	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2139	err = build_sched_domains(doms_cur[0], NULL);
2140	register_sched_domain_sysctl();
2141
2142	return err;
2143}
2144
2145/*
2146 * Detach sched domains from a group of CPUs specified in cpu_map
2147 * These CPUs will now be attached to the NULL domain
2148 */
2149static void detach_destroy_domains(const struct cpumask *cpu_map)
2150{
2151	unsigned int cpu = cpumask_any(cpu_map);
2152	int i;
2153
2154	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2155		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2156
2157	rcu_read_lock();
2158	for_each_cpu(i, cpu_map)
2159		cpu_attach_domain(NULL, &def_root_domain, i);
2160	rcu_read_unlock();
2161}
2162
2163/* handle null as "default" */
2164static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2165			struct sched_domain_attr *new, int idx_new)
2166{
2167	struct sched_domain_attr tmp;
2168
2169	/* Fast path: */
2170	if (!new && !cur)
2171		return 1;
2172
2173	tmp = SD_ATTR_INIT;
2174
2175	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2176			new ? (new + idx_new) : &tmp,
2177			sizeof(struct sched_domain_attr));
2178}
2179
2180/*
2181 * Partition sched domains as specified by the 'ndoms_new'
2182 * cpumasks in the array doms_new[] of cpumasks. This compares
2183 * doms_new[] to the current sched domain partitioning, doms_cur[].
2184 * It destroys each deleted domain and builds each new domain.
2185 *
2186 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2187 * The masks don't intersect (don't overlap.) We should setup one
2188 * sched domain for each mask. CPUs not in any of the cpumasks will
2189 * not be load balanced. If the same cpumask appears both in the
2190 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2191 * it as it is.
2192 *
2193 * The passed in 'doms_new' should be allocated using
2194 * alloc_sched_domains.  This routine takes ownership of it and will
2195 * free_sched_domains it when done with it. If the caller failed the
2196 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2197 * and partition_sched_domains() will fallback to the single partition
2198 * 'fallback_doms', it also forces the domains to be rebuilt.
2199 *
2200 * If doms_new == NULL it will be replaced with cpu_online_mask.
2201 * ndoms_new == 0 is a special case for destroying existing domains,
2202 * and it will not create the default domain.
2203 *
2204 * Call with hotplug lock and sched_domains_mutex held
2205 */
2206void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2207				    struct sched_domain_attr *dattr_new)
2208{
2209	bool __maybe_unused has_eas = false;
2210	int i, j, n;
2211	int new_topology;
2212
2213	lockdep_assert_held(&sched_domains_mutex);
2214
2215	/* Always unregister in case we don't destroy any domains: */
2216	unregister_sched_domain_sysctl();
2217
2218	/* Let the architecture update CPU core mappings: */
2219	new_topology = arch_update_cpu_topology();
2220
2221	if (!doms_new) {
2222		WARN_ON_ONCE(dattr_new);
2223		n = 0;
2224		doms_new = alloc_sched_domains(1);
2225		if (doms_new) {
2226			n = 1;
2227			cpumask_and(doms_new[0], cpu_active_mask,
2228				    housekeeping_cpumask(HK_FLAG_DOMAIN));
2229		}
2230	} else {
2231		n = ndoms_new;
2232	}
2233
2234	/* Destroy deleted domains: */
2235	for (i = 0; i < ndoms_cur; i++) {
2236		for (j = 0; j < n && !new_topology; j++) {
2237			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2238			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2239				struct root_domain *rd;
2240
2241				/*
2242				 * This domain won't be destroyed and as such
2243				 * its dl_bw->total_bw needs to be cleared.  It
2244				 * will be recomputed in function
2245				 * update_tasks_root_domain().
2246				 */
2247				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2248				dl_clear_root_domain(rd);
2249				goto match1;
2250			}
2251		}
2252		/* No match - a current sched domain not in new doms_new[] */
2253		detach_destroy_domains(doms_cur[i]);
2254match1:
2255		;
2256	}
2257
2258	n = ndoms_cur;
2259	if (!doms_new) {
2260		n = 0;
2261		doms_new = &fallback_doms;
2262		cpumask_and(doms_new[0], cpu_active_mask,
2263			    housekeeping_cpumask(HK_FLAG_DOMAIN));
2264	}
2265
2266	/* Build new domains: */
2267	for (i = 0; i < ndoms_new; i++) {
2268		for (j = 0; j < n && !new_topology; j++) {
2269			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2270			    dattrs_equal(dattr_new, i, dattr_cur, j))
2271				goto match2;
2272		}
2273		/* No match - add a new doms_new */
2274		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2275match2:
2276		;
2277	}
2278
2279#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2280	/* Build perf. domains: */
2281	for (i = 0; i < ndoms_new; i++) {
2282		for (j = 0; j < n && !sched_energy_update; j++) {
2283			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2284			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2285				has_eas = true;
2286				goto match3;
2287			}
2288		}
2289		/* No match - add perf. domains for a new rd */
2290		has_eas |= build_perf_domains(doms_new[i]);
2291match3:
2292		;
2293	}
2294	sched_energy_set(has_eas);
2295#endif
2296
2297	/* Remember the new sched domains: */
2298	if (doms_cur != &fallback_doms)
2299		free_sched_domains(doms_cur, ndoms_cur);
2300
2301	kfree(dattr_cur);
2302	doms_cur = doms_new;
2303	dattr_cur = dattr_new;
2304	ndoms_cur = ndoms_new;
2305
2306	register_sched_domain_sysctl();
2307}
2308
2309/*
2310 * Call with hotplug lock held
2311 */
2312void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2313			     struct sched_domain_attr *dattr_new)
2314{
2315	mutex_lock(&sched_domains_mutex);
2316	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2317	mutex_unlock(&sched_domains_mutex);
2318}