Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
  4 *
  5 * membarrier system call
  6 */
  7#include "sched.h"
  8
  9/*
 10 * Bitmask made from a "or" of all commands within enum membarrier_cmd,
 11 * except MEMBARRIER_CMD_QUERY.
 12 */
 13#ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE
 14#define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK			\
 15	(MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE			\
 16	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE)
 17#else
 18#define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK	0
 19#endif
 20
 21#define MEMBARRIER_CMD_BITMASK						\
 22	(MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED	\
 23	| MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED			\
 24	| MEMBARRIER_CMD_PRIVATE_EXPEDITED				\
 25	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED			\
 26	| MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK)
 27
 28static void ipi_mb(void *info)
 29{
 30	smp_mb();	/* IPIs should be serializing but paranoid. */
 31}
 32
 33static void ipi_sync_rq_state(void *info)
 34{
 35	struct mm_struct *mm = (struct mm_struct *) info;
 36
 37	if (current->mm != mm)
 38		return;
 39	this_cpu_write(runqueues.membarrier_state,
 40		       atomic_read(&mm->membarrier_state));
 41	/*
 42	 * Issue a memory barrier after setting
 43	 * MEMBARRIER_STATE_GLOBAL_EXPEDITED in the current runqueue to
 44	 * guarantee that no memory access following registration is reordered
 45	 * before registration.
 46	 */
 47	smp_mb();
 48}
 49
 50void membarrier_exec_mmap(struct mm_struct *mm)
 51{
 52	/*
 53	 * Issue a memory barrier before clearing membarrier_state to
 54	 * guarantee that no memory access prior to exec is reordered after
 55	 * clearing this state.
 56	 */
 57	smp_mb();
 58	atomic_set(&mm->membarrier_state, 0);
 59	/*
 60	 * Keep the runqueue membarrier_state in sync with this mm
 61	 * membarrier_state.
 62	 */
 63	this_cpu_write(runqueues.membarrier_state, 0);
 64}
 65
 66static int membarrier_global_expedited(void)
 67{
 68	int cpu;
 69	cpumask_var_t tmpmask;
 70
 71	if (num_online_cpus() == 1)
 72		return 0;
 73
 74	/*
 75	 * Matches memory barriers around rq->curr modification in
 76	 * scheduler.
 77	 */
 78	smp_mb();	/* system call entry is not a mb. */
 79
 80	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
 81		return -ENOMEM;
 82
 83	cpus_read_lock();
 84	rcu_read_lock();
 85	for_each_online_cpu(cpu) {
 86		struct task_struct *p;
 87
 88		/*
 89		 * Skipping the current CPU is OK even through we can be
 90		 * migrated at any point. The current CPU, at the point
 91		 * where we read raw_smp_processor_id(), is ensured to
 92		 * be in program order with respect to the caller
 93		 * thread. Therefore, we can skip this CPU from the
 94		 * iteration.
 95		 */
 96		if (cpu == raw_smp_processor_id())
 97			continue;
 98
 99		if (!(READ_ONCE(cpu_rq(cpu)->membarrier_state) &
100		    MEMBARRIER_STATE_GLOBAL_EXPEDITED))
101			continue;
102
103		/*
104		 * Skip the CPU if it runs a kernel thread. The scheduler
105		 * leaves the prior task mm in place as an optimization when
106		 * scheduling a kthread.
107		 */
108		p = rcu_dereference(cpu_rq(cpu)->curr);
109		if (p->flags & PF_KTHREAD)
110			continue;
111
112		__cpumask_set_cpu(cpu, tmpmask);
113	}
114	rcu_read_unlock();
115
116	preempt_disable();
117	smp_call_function_many(tmpmask, ipi_mb, NULL, 1);
118	preempt_enable();
119
120	free_cpumask_var(tmpmask);
121	cpus_read_unlock();
122
123	/*
124	 * Memory barrier on the caller thread _after_ we finished
125	 * waiting for the last IPI. Matches memory barriers around
126	 * rq->curr modification in scheduler.
127	 */
128	smp_mb();	/* exit from system call is not a mb */
129	return 0;
130}
131
132static int membarrier_private_expedited(int flags)
133{
134	int cpu;
135	cpumask_var_t tmpmask;
136	struct mm_struct *mm = current->mm;
137
138	if (flags & MEMBARRIER_FLAG_SYNC_CORE) {
139		if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
140			return -EINVAL;
141		if (!(atomic_read(&mm->membarrier_state) &
142		      MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY))
143			return -EPERM;
144	} else {
145		if (!(atomic_read(&mm->membarrier_state) &
146		      MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY))
147			return -EPERM;
148	}
149
150	if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1)
151		return 0;
152
153	/*
154	 * Matches memory barriers around rq->curr modification in
155	 * scheduler.
156	 */
157	smp_mb();	/* system call entry is not a mb. */
158
159	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
160		return -ENOMEM;
161
162	cpus_read_lock();
163	rcu_read_lock();
164	for_each_online_cpu(cpu) {
165		struct task_struct *p;
166
167		/*
168		 * Skipping the current CPU is OK even through we can be
169		 * migrated at any point. The current CPU, at the point
170		 * where we read raw_smp_processor_id(), is ensured to
171		 * be in program order with respect to the caller
172		 * thread. Therefore, we can skip this CPU from the
173		 * iteration.
174		 */
175		if (cpu == raw_smp_processor_id())
176			continue;
177		p = rcu_dereference(cpu_rq(cpu)->curr);
178		if (p && p->mm == mm)
179			__cpumask_set_cpu(cpu, tmpmask);
180	}
181	rcu_read_unlock();
182
183	preempt_disable();
184	smp_call_function_many(tmpmask, ipi_mb, NULL, 1);
185	preempt_enable();
186
187	free_cpumask_var(tmpmask);
188	cpus_read_unlock();
189
190	/*
191	 * Memory barrier on the caller thread _after_ we finished
192	 * waiting for the last IPI. Matches memory barriers around
193	 * rq->curr modification in scheduler.
194	 */
195	smp_mb();	/* exit from system call is not a mb */
196
197	return 0;
198}
199
200static int sync_runqueues_membarrier_state(struct mm_struct *mm)
201{
202	int membarrier_state = atomic_read(&mm->membarrier_state);
203	cpumask_var_t tmpmask;
204	int cpu;
205
206	if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1) {
207		this_cpu_write(runqueues.membarrier_state, membarrier_state);
208
209		/*
210		 * For single mm user, we can simply issue a memory barrier
211		 * after setting MEMBARRIER_STATE_GLOBAL_EXPEDITED in the
212		 * mm and in the current runqueue to guarantee that no memory
213		 * access following registration is reordered before
214		 * registration.
215		 */
216		smp_mb();
217		return 0;
218	}
219
220	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
221		return -ENOMEM;
222
223	/*
224	 * For mm with multiple users, we need to ensure all future
225	 * scheduler executions will observe @mm's new membarrier
226	 * state.
227	 */
228	synchronize_rcu();
229
230	/*
231	 * For each cpu runqueue, if the task's mm match @mm, ensure that all
232	 * @mm's membarrier state set bits are also set in in the runqueue's
233	 * membarrier state. This ensures that a runqueue scheduling
234	 * between threads which are users of @mm has its membarrier state
235	 * updated.
236	 */
237	cpus_read_lock();
238	rcu_read_lock();
239	for_each_online_cpu(cpu) {
240		struct rq *rq = cpu_rq(cpu);
241		struct task_struct *p;
242
243		p = rcu_dereference(rq->curr);
244		if (p && p->mm == mm)
245			__cpumask_set_cpu(cpu, tmpmask);
246	}
247	rcu_read_unlock();
248
249	preempt_disable();
250	smp_call_function_many(tmpmask, ipi_sync_rq_state, mm, 1);
251	preempt_enable();
252
253	free_cpumask_var(tmpmask);
254	cpus_read_unlock();
255
256	return 0;
257}
258
259static int membarrier_register_global_expedited(void)
260{
261	struct task_struct *p = current;
262	struct mm_struct *mm = p->mm;
263	int ret;
264
265	if (atomic_read(&mm->membarrier_state) &
266	    MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY)
267		return 0;
268	atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED, &mm->membarrier_state);
269	ret = sync_runqueues_membarrier_state(mm);
270	if (ret)
271		return ret;
272	atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY,
273		  &mm->membarrier_state);
274
275	return 0;
276}
277
278static int membarrier_register_private_expedited(int flags)
279{
280	struct task_struct *p = current;
281	struct mm_struct *mm = p->mm;
282	int ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY,
283	    set_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED,
284	    ret;
285
286	if (flags & MEMBARRIER_FLAG_SYNC_CORE) {
287		if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
288			return -EINVAL;
289		ready_state =
290			MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY;
291	}
292
293	/*
294	 * We need to consider threads belonging to different thread
295	 * groups, which use the same mm. (CLONE_VM but not
296	 * CLONE_THREAD).
297	 */
298	if ((atomic_read(&mm->membarrier_state) & ready_state) == ready_state)
299		return 0;
300	if (flags & MEMBARRIER_FLAG_SYNC_CORE)
301		set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE;
302	atomic_or(set_state, &mm->membarrier_state);
303	ret = sync_runqueues_membarrier_state(mm);
304	if (ret)
305		return ret;
306	atomic_or(ready_state, &mm->membarrier_state);
307
308	return 0;
309}
310
311/**
312 * sys_membarrier - issue memory barriers on a set of threads
313 * @cmd:   Takes command values defined in enum membarrier_cmd.
314 * @flags: Currently needs to be 0. For future extensions.
315 *
316 * If this system call is not implemented, -ENOSYS is returned. If the
317 * command specified does not exist, not available on the running
318 * kernel, or if the command argument is invalid, this system call
319 * returns -EINVAL. For a given command, with flags argument set to 0,
320 * if this system call returns -ENOSYS or -EINVAL, it is guaranteed to
321 * always return the same value until reboot. In addition, it can return
322 * -ENOMEM if there is not enough memory available to perform the system
323 * call.
324 *
325 * All memory accesses performed in program order from each targeted thread
326 * is guaranteed to be ordered with respect to sys_membarrier(). If we use
327 * the semantic "barrier()" to represent a compiler barrier forcing memory
328 * accesses to be performed in program order across the barrier, and
329 * smp_mb() to represent explicit memory barriers forcing full memory
330 * ordering across the barrier, we have the following ordering table for
331 * each pair of barrier(), sys_membarrier() and smp_mb():
332 *
333 * The pair ordering is detailed as (O: ordered, X: not ordered):
334 *
335 *                        barrier()   smp_mb() sys_membarrier()
336 *        barrier()          X           X            O
337 *        smp_mb()           X           O            O
338 *        sys_membarrier()   O           O            O
339 */
340SYSCALL_DEFINE2(membarrier, int, cmd, int, flags)
341{
342	if (unlikely(flags))
343		return -EINVAL;
344	switch (cmd) {
345	case MEMBARRIER_CMD_QUERY:
346	{
347		int cmd_mask = MEMBARRIER_CMD_BITMASK;
348
349		if (tick_nohz_full_enabled())
350			cmd_mask &= ~MEMBARRIER_CMD_GLOBAL;
351		return cmd_mask;
352	}
353	case MEMBARRIER_CMD_GLOBAL:
354		/* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */
355		if (tick_nohz_full_enabled())
356			return -EINVAL;
357		if (num_online_cpus() > 1)
358			synchronize_rcu();
359		return 0;
360	case MEMBARRIER_CMD_GLOBAL_EXPEDITED:
361		return membarrier_global_expedited();
362	case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED:
363		return membarrier_register_global_expedited();
364	case MEMBARRIER_CMD_PRIVATE_EXPEDITED:
365		return membarrier_private_expedited(0);
366	case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED:
367		return membarrier_register_private_expedited(0);
368	case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE:
369		return membarrier_private_expedited(MEMBARRIER_FLAG_SYNC_CORE);
370	case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE:
371		return membarrier_register_private_expedited(MEMBARRIER_FLAG_SYNC_CORE);
372	default:
373		return -EINVAL;
374	}
375}