Loading...
1/*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/export.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <linux/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61/*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65#ifndef kprobe_lookup_name
66#define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68#endif
69
70static int kprobes_initialized;
71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74/* NOTE: change this value only with kprobe_mutex held */
75static bool kprobes_all_disarmed;
76
77/* This protects kprobe_table and optimizing_list */
78static DEFINE_MUTEX(kprobe_mutex);
79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80static struct {
81 raw_spinlock_t lock ____cacheline_aligned_in_smp;
82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85{
86 return &(kretprobe_table_locks[hash].lock);
87}
88
89/* Blacklist -- list of struct kprobe_blacklist_entry */
90static LIST_HEAD(kprobe_blacklist);
91
92#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
93/*
94 * kprobe->ainsn.insn points to the copy of the instruction to be
95 * single-stepped. x86_64, POWER4 and above have no-exec support and
96 * stepping on the instruction on a vmalloced/kmalloced/data page
97 * is a recipe for disaster
98 */
99struct kprobe_insn_page {
100 struct list_head list;
101 kprobe_opcode_t *insns; /* Page of instruction slots */
102 struct kprobe_insn_cache *cache;
103 int nused;
104 int ngarbage;
105 char slot_used[];
106};
107
108#define KPROBE_INSN_PAGE_SIZE(slots) \
109 (offsetof(struct kprobe_insn_page, slot_used) + \
110 (sizeof(char) * (slots)))
111
112static int slots_per_page(struct kprobe_insn_cache *c)
113{
114 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
115}
116
117enum kprobe_slot_state {
118 SLOT_CLEAN = 0,
119 SLOT_DIRTY = 1,
120 SLOT_USED = 2,
121};
122
123static void *alloc_insn_page(void)
124{
125 return module_alloc(PAGE_SIZE);
126}
127
128static void free_insn_page(void *page)
129{
130 module_memfree(page);
131}
132
133struct kprobe_insn_cache kprobe_insn_slots = {
134 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
135 .alloc = alloc_insn_page,
136 .free = free_insn_page,
137 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
138 .insn_size = MAX_INSN_SIZE,
139 .nr_garbage = 0,
140};
141static int collect_garbage_slots(struct kprobe_insn_cache *c);
142
143/**
144 * __get_insn_slot() - Find a slot on an executable page for an instruction.
145 * We allocate an executable page if there's no room on existing ones.
146 */
147kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
148{
149 struct kprobe_insn_page *kip;
150 kprobe_opcode_t *slot = NULL;
151
152 mutex_lock(&c->mutex);
153 retry:
154 list_for_each_entry(kip, &c->pages, list) {
155 if (kip->nused < slots_per_page(c)) {
156 int i;
157 for (i = 0; i < slots_per_page(c); i++) {
158 if (kip->slot_used[i] == SLOT_CLEAN) {
159 kip->slot_used[i] = SLOT_USED;
160 kip->nused++;
161 slot = kip->insns + (i * c->insn_size);
162 goto out;
163 }
164 }
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
168 }
169 }
170
171 /* If there are any garbage slots, collect it and try again. */
172 if (c->nr_garbage && collect_garbage_slots(c) == 0)
173 goto retry;
174
175 /* All out of space. Need to allocate a new page. */
176 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
177 if (!kip)
178 goto out;
179
180 /*
181 * Use module_alloc so this page is within +/- 2GB of where the
182 * kernel image and loaded module images reside. This is required
183 * so x86_64 can correctly handle the %rip-relative fixups.
184 */
185 kip->insns = c->alloc();
186 if (!kip->insns) {
187 kfree(kip);
188 goto out;
189 }
190 INIT_LIST_HEAD(&kip->list);
191 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
192 kip->slot_used[0] = SLOT_USED;
193 kip->nused = 1;
194 kip->ngarbage = 0;
195 kip->cache = c;
196 list_add(&kip->list, &c->pages);
197 slot = kip->insns;
198out:
199 mutex_unlock(&c->mutex);
200 return slot;
201}
202
203/* Return 1 if all garbages are collected, otherwise 0. */
204static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
205{
206 kip->slot_used[idx] = SLOT_CLEAN;
207 kip->nused--;
208 if (kip->nused == 0) {
209 /*
210 * Page is no longer in use. Free it unless
211 * it's the last one. We keep the last one
212 * so as not to have to set it up again the
213 * next time somebody inserts a probe.
214 */
215 if (!list_is_singular(&kip->list)) {
216 list_del(&kip->list);
217 kip->cache->free(kip->insns);
218 kfree(kip);
219 }
220 return 1;
221 }
222 return 0;
223}
224
225static int collect_garbage_slots(struct kprobe_insn_cache *c)
226{
227 struct kprobe_insn_page *kip, *next;
228
229 /* Ensure no-one is interrupted on the garbages */
230 synchronize_sched();
231
232 list_for_each_entry_safe(kip, next, &c->pages, list) {
233 int i;
234 if (kip->ngarbage == 0)
235 continue;
236 kip->ngarbage = 0; /* we will collect all garbages */
237 for (i = 0; i < slots_per_page(c); i++) {
238 if (kip->slot_used[i] == SLOT_DIRTY &&
239 collect_one_slot(kip, i))
240 break;
241 }
242 }
243 c->nr_garbage = 0;
244 return 0;
245}
246
247void __free_insn_slot(struct kprobe_insn_cache *c,
248 kprobe_opcode_t *slot, int dirty)
249{
250 struct kprobe_insn_page *kip;
251
252 mutex_lock(&c->mutex);
253 list_for_each_entry(kip, &c->pages, list) {
254 long idx = ((long)slot - (long)kip->insns) /
255 (c->insn_size * sizeof(kprobe_opcode_t));
256 if (idx >= 0 && idx < slots_per_page(c)) {
257 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 if (dirty) {
259 kip->slot_used[idx] = SLOT_DIRTY;
260 kip->ngarbage++;
261 if (++c->nr_garbage > slots_per_page(c))
262 collect_garbage_slots(c);
263 } else
264 collect_one_slot(kip, idx);
265 goto out;
266 }
267 }
268 /* Could not free this slot. */
269 WARN_ON(1);
270out:
271 mutex_unlock(&c->mutex);
272}
273
274#ifdef CONFIG_OPTPROBES
275/* For optimized_kprobe buffer */
276struct kprobe_insn_cache kprobe_optinsn_slots = {
277 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
278 .alloc = alloc_insn_page,
279 .free = free_insn_page,
280 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
281 /* .insn_size is initialized later */
282 .nr_garbage = 0,
283};
284#endif
285#endif
286
287/* We have preemption disabled.. so it is safe to use __ versions */
288static inline void set_kprobe_instance(struct kprobe *kp)
289{
290 __this_cpu_write(kprobe_instance, kp);
291}
292
293static inline void reset_kprobe_instance(void)
294{
295 __this_cpu_write(kprobe_instance, NULL);
296}
297
298/*
299 * This routine is called either:
300 * - under the kprobe_mutex - during kprobe_[un]register()
301 * OR
302 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
303 */
304struct kprobe *get_kprobe(void *addr)
305{
306 struct hlist_head *head;
307 struct kprobe *p;
308
309 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
310 hlist_for_each_entry_rcu(p, head, hlist) {
311 if (p->addr == addr)
312 return p;
313 }
314
315 return NULL;
316}
317NOKPROBE_SYMBOL(get_kprobe);
318
319static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
320
321/* Return true if the kprobe is an aggregator */
322static inline int kprobe_aggrprobe(struct kprobe *p)
323{
324 return p->pre_handler == aggr_pre_handler;
325}
326
327/* Return true(!0) if the kprobe is unused */
328static inline int kprobe_unused(struct kprobe *p)
329{
330 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
331 list_empty(&p->list);
332}
333
334/*
335 * Keep all fields in the kprobe consistent
336 */
337static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
338{
339 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
340 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
341}
342
343#ifdef CONFIG_OPTPROBES
344/* NOTE: change this value only with kprobe_mutex held */
345static bool kprobes_allow_optimization;
346
347/*
348 * Call all pre_handler on the list, but ignores its return value.
349 * This must be called from arch-dep optimized caller.
350 */
351void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
352{
353 struct kprobe *kp;
354
355 list_for_each_entry_rcu(kp, &p->list, list) {
356 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
357 set_kprobe_instance(kp);
358 kp->pre_handler(kp, regs);
359 }
360 reset_kprobe_instance();
361 }
362}
363NOKPROBE_SYMBOL(opt_pre_handler);
364
365/* Free optimized instructions and optimized_kprobe */
366static void free_aggr_kprobe(struct kprobe *p)
367{
368 struct optimized_kprobe *op;
369
370 op = container_of(p, struct optimized_kprobe, kp);
371 arch_remove_optimized_kprobe(op);
372 arch_remove_kprobe(p);
373 kfree(op);
374}
375
376/* Return true(!0) if the kprobe is ready for optimization. */
377static inline int kprobe_optready(struct kprobe *p)
378{
379 struct optimized_kprobe *op;
380
381 if (kprobe_aggrprobe(p)) {
382 op = container_of(p, struct optimized_kprobe, kp);
383 return arch_prepared_optinsn(&op->optinsn);
384 }
385
386 return 0;
387}
388
389/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
390static inline int kprobe_disarmed(struct kprobe *p)
391{
392 struct optimized_kprobe *op;
393
394 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
395 if (!kprobe_aggrprobe(p))
396 return kprobe_disabled(p);
397
398 op = container_of(p, struct optimized_kprobe, kp);
399
400 return kprobe_disabled(p) && list_empty(&op->list);
401}
402
403/* Return true(!0) if the probe is queued on (un)optimizing lists */
404static int kprobe_queued(struct kprobe *p)
405{
406 struct optimized_kprobe *op;
407
408 if (kprobe_aggrprobe(p)) {
409 op = container_of(p, struct optimized_kprobe, kp);
410 if (!list_empty(&op->list))
411 return 1;
412 }
413 return 0;
414}
415
416/*
417 * Return an optimized kprobe whose optimizing code replaces
418 * instructions including addr (exclude breakpoint).
419 */
420static struct kprobe *get_optimized_kprobe(unsigned long addr)
421{
422 int i;
423 struct kprobe *p = NULL;
424 struct optimized_kprobe *op;
425
426 /* Don't check i == 0, since that is a breakpoint case. */
427 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
428 p = get_kprobe((void *)(addr - i));
429
430 if (p && kprobe_optready(p)) {
431 op = container_of(p, struct optimized_kprobe, kp);
432 if (arch_within_optimized_kprobe(op, addr))
433 return p;
434 }
435
436 return NULL;
437}
438
439/* Optimization staging list, protected by kprobe_mutex */
440static LIST_HEAD(optimizing_list);
441static LIST_HEAD(unoptimizing_list);
442static LIST_HEAD(freeing_list);
443
444static void kprobe_optimizer(struct work_struct *work);
445static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
446#define OPTIMIZE_DELAY 5
447
448/*
449 * Optimize (replace a breakpoint with a jump) kprobes listed on
450 * optimizing_list.
451 */
452static void do_optimize_kprobes(void)
453{
454 /* Optimization never be done when disarmed */
455 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
456 list_empty(&optimizing_list))
457 return;
458
459 /*
460 * The optimization/unoptimization refers online_cpus via
461 * stop_machine() and cpu-hotplug modifies online_cpus.
462 * And same time, text_mutex will be held in cpu-hotplug and here.
463 * This combination can cause a deadlock (cpu-hotplug try to lock
464 * text_mutex but stop_machine can not be done because online_cpus
465 * has been changed)
466 * To avoid this deadlock, we need to call get_online_cpus()
467 * for preventing cpu-hotplug outside of text_mutex locking.
468 */
469 get_online_cpus();
470 mutex_lock(&text_mutex);
471 arch_optimize_kprobes(&optimizing_list);
472 mutex_unlock(&text_mutex);
473 put_online_cpus();
474}
475
476/*
477 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
478 * if need) kprobes listed on unoptimizing_list.
479 */
480static void do_unoptimize_kprobes(void)
481{
482 struct optimized_kprobe *op, *tmp;
483
484 /* Unoptimization must be done anytime */
485 if (list_empty(&unoptimizing_list))
486 return;
487
488 /* Ditto to do_optimize_kprobes */
489 get_online_cpus();
490 mutex_lock(&text_mutex);
491 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
492 /* Loop free_list for disarming */
493 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
494 /* Disarm probes if marked disabled */
495 if (kprobe_disabled(&op->kp))
496 arch_disarm_kprobe(&op->kp);
497 if (kprobe_unused(&op->kp)) {
498 /*
499 * Remove unused probes from hash list. After waiting
500 * for synchronization, these probes are reclaimed.
501 * (reclaiming is done by do_free_cleaned_kprobes.)
502 */
503 hlist_del_rcu(&op->kp.hlist);
504 } else
505 list_del_init(&op->list);
506 }
507 mutex_unlock(&text_mutex);
508 put_online_cpus();
509}
510
511/* Reclaim all kprobes on the free_list */
512static void do_free_cleaned_kprobes(void)
513{
514 struct optimized_kprobe *op, *tmp;
515
516 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
517 BUG_ON(!kprobe_unused(&op->kp));
518 list_del_init(&op->list);
519 free_aggr_kprobe(&op->kp);
520 }
521}
522
523/* Start optimizer after OPTIMIZE_DELAY passed */
524static void kick_kprobe_optimizer(void)
525{
526 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
527}
528
529/* Kprobe jump optimizer */
530static void kprobe_optimizer(struct work_struct *work)
531{
532 mutex_lock(&kprobe_mutex);
533 /* Lock modules while optimizing kprobes */
534 mutex_lock(&module_mutex);
535
536 /*
537 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
538 * kprobes before waiting for quiesence period.
539 */
540 do_unoptimize_kprobes();
541
542 /*
543 * Step 2: Wait for quiesence period to ensure all running interrupts
544 * are done. Because optprobe may modify multiple instructions
545 * there is a chance that Nth instruction is interrupted. In that
546 * case, running interrupt can return to 2nd-Nth byte of jump
547 * instruction. This wait is for avoiding it.
548 */
549 synchronize_sched();
550
551 /* Step 3: Optimize kprobes after quiesence period */
552 do_optimize_kprobes();
553
554 /* Step 4: Free cleaned kprobes after quiesence period */
555 do_free_cleaned_kprobes();
556
557 mutex_unlock(&module_mutex);
558 mutex_unlock(&kprobe_mutex);
559
560 /* Step 5: Kick optimizer again if needed */
561 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
562 kick_kprobe_optimizer();
563}
564
565/* Wait for completing optimization and unoptimization */
566static void wait_for_kprobe_optimizer(void)
567{
568 mutex_lock(&kprobe_mutex);
569
570 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
571 mutex_unlock(&kprobe_mutex);
572
573 /* this will also make optimizing_work execute immmediately */
574 flush_delayed_work(&optimizing_work);
575 /* @optimizing_work might not have been queued yet, relax */
576 cpu_relax();
577
578 mutex_lock(&kprobe_mutex);
579 }
580
581 mutex_unlock(&kprobe_mutex);
582}
583
584/* Optimize kprobe if p is ready to be optimized */
585static void optimize_kprobe(struct kprobe *p)
586{
587 struct optimized_kprobe *op;
588
589 /* Check if the kprobe is disabled or not ready for optimization. */
590 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
591 (kprobe_disabled(p) || kprobes_all_disarmed))
592 return;
593
594 /* Both of break_handler and post_handler are not supported. */
595 if (p->break_handler || p->post_handler)
596 return;
597
598 op = container_of(p, struct optimized_kprobe, kp);
599
600 /* Check there is no other kprobes at the optimized instructions */
601 if (arch_check_optimized_kprobe(op) < 0)
602 return;
603
604 /* Check if it is already optimized. */
605 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
606 return;
607 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
608
609 if (!list_empty(&op->list))
610 /* This is under unoptimizing. Just dequeue the probe */
611 list_del_init(&op->list);
612 else {
613 list_add(&op->list, &optimizing_list);
614 kick_kprobe_optimizer();
615 }
616}
617
618/* Short cut to direct unoptimizing */
619static void force_unoptimize_kprobe(struct optimized_kprobe *op)
620{
621 get_online_cpus();
622 arch_unoptimize_kprobe(op);
623 put_online_cpus();
624 if (kprobe_disabled(&op->kp))
625 arch_disarm_kprobe(&op->kp);
626}
627
628/* Unoptimize a kprobe if p is optimized */
629static void unoptimize_kprobe(struct kprobe *p, bool force)
630{
631 struct optimized_kprobe *op;
632
633 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
634 return; /* This is not an optprobe nor optimized */
635
636 op = container_of(p, struct optimized_kprobe, kp);
637 if (!kprobe_optimized(p)) {
638 /* Unoptimized or unoptimizing case */
639 if (force && !list_empty(&op->list)) {
640 /*
641 * Only if this is unoptimizing kprobe and forced,
642 * forcibly unoptimize it. (No need to unoptimize
643 * unoptimized kprobe again :)
644 */
645 list_del_init(&op->list);
646 force_unoptimize_kprobe(op);
647 }
648 return;
649 }
650
651 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
652 if (!list_empty(&op->list)) {
653 /* Dequeue from the optimization queue */
654 list_del_init(&op->list);
655 return;
656 }
657 /* Optimized kprobe case */
658 if (force)
659 /* Forcibly update the code: this is a special case */
660 force_unoptimize_kprobe(op);
661 else {
662 list_add(&op->list, &unoptimizing_list);
663 kick_kprobe_optimizer();
664 }
665}
666
667/* Cancel unoptimizing for reusing */
668static void reuse_unused_kprobe(struct kprobe *ap)
669{
670 struct optimized_kprobe *op;
671
672 BUG_ON(!kprobe_unused(ap));
673 /*
674 * Unused kprobe MUST be on the way of delayed unoptimizing (means
675 * there is still a relative jump) and disabled.
676 */
677 op = container_of(ap, struct optimized_kprobe, kp);
678 if (unlikely(list_empty(&op->list)))
679 printk(KERN_WARNING "Warning: found a stray unused "
680 "aggrprobe@%p\n", ap->addr);
681 /* Enable the probe again */
682 ap->flags &= ~KPROBE_FLAG_DISABLED;
683 /* Optimize it again (remove from op->list) */
684 BUG_ON(!kprobe_optready(ap));
685 optimize_kprobe(ap);
686}
687
688/* Remove optimized instructions */
689static void kill_optimized_kprobe(struct kprobe *p)
690{
691 struct optimized_kprobe *op;
692
693 op = container_of(p, struct optimized_kprobe, kp);
694 if (!list_empty(&op->list))
695 /* Dequeue from the (un)optimization queue */
696 list_del_init(&op->list);
697 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
698
699 if (kprobe_unused(p)) {
700 /* Enqueue if it is unused */
701 list_add(&op->list, &freeing_list);
702 /*
703 * Remove unused probes from the hash list. After waiting
704 * for synchronization, this probe is reclaimed.
705 * (reclaiming is done by do_free_cleaned_kprobes().)
706 */
707 hlist_del_rcu(&op->kp.hlist);
708 }
709
710 /* Don't touch the code, because it is already freed. */
711 arch_remove_optimized_kprobe(op);
712}
713
714/* Try to prepare optimized instructions */
715static void prepare_optimized_kprobe(struct kprobe *p)
716{
717 struct optimized_kprobe *op;
718
719 op = container_of(p, struct optimized_kprobe, kp);
720 arch_prepare_optimized_kprobe(op, p);
721}
722
723/* Allocate new optimized_kprobe and try to prepare optimized instructions */
724static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
725{
726 struct optimized_kprobe *op;
727
728 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
729 if (!op)
730 return NULL;
731
732 INIT_LIST_HEAD(&op->list);
733 op->kp.addr = p->addr;
734 arch_prepare_optimized_kprobe(op, p);
735
736 return &op->kp;
737}
738
739static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
740
741/*
742 * Prepare an optimized_kprobe and optimize it
743 * NOTE: p must be a normal registered kprobe
744 */
745static void try_to_optimize_kprobe(struct kprobe *p)
746{
747 struct kprobe *ap;
748 struct optimized_kprobe *op;
749
750 /* Impossible to optimize ftrace-based kprobe */
751 if (kprobe_ftrace(p))
752 return;
753
754 /* For preparing optimization, jump_label_text_reserved() is called */
755 jump_label_lock();
756 mutex_lock(&text_mutex);
757
758 ap = alloc_aggr_kprobe(p);
759 if (!ap)
760 goto out;
761
762 op = container_of(ap, struct optimized_kprobe, kp);
763 if (!arch_prepared_optinsn(&op->optinsn)) {
764 /* If failed to setup optimizing, fallback to kprobe */
765 arch_remove_optimized_kprobe(op);
766 kfree(op);
767 goto out;
768 }
769
770 init_aggr_kprobe(ap, p);
771 optimize_kprobe(ap); /* This just kicks optimizer thread */
772
773out:
774 mutex_unlock(&text_mutex);
775 jump_label_unlock();
776}
777
778#ifdef CONFIG_SYSCTL
779static void optimize_all_kprobes(void)
780{
781 struct hlist_head *head;
782 struct kprobe *p;
783 unsigned int i;
784
785 mutex_lock(&kprobe_mutex);
786 /* If optimization is already allowed, just return */
787 if (kprobes_allow_optimization)
788 goto out;
789
790 kprobes_allow_optimization = true;
791 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
792 head = &kprobe_table[i];
793 hlist_for_each_entry_rcu(p, head, hlist)
794 if (!kprobe_disabled(p))
795 optimize_kprobe(p);
796 }
797 printk(KERN_INFO "Kprobes globally optimized\n");
798out:
799 mutex_unlock(&kprobe_mutex);
800}
801
802static void unoptimize_all_kprobes(void)
803{
804 struct hlist_head *head;
805 struct kprobe *p;
806 unsigned int i;
807
808 mutex_lock(&kprobe_mutex);
809 /* If optimization is already prohibited, just return */
810 if (!kprobes_allow_optimization) {
811 mutex_unlock(&kprobe_mutex);
812 return;
813 }
814
815 kprobes_allow_optimization = false;
816 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
817 head = &kprobe_table[i];
818 hlist_for_each_entry_rcu(p, head, hlist) {
819 if (!kprobe_disabled(p))
820 unoptimize_kprobe(p, false);
821 }
822 }
823 mutex_unlock(&kprobe_mutex);
824
825 /* Wait for unoptimizing completion */
826 wait_for_kprobe_optimizer();
827 printk(KERN_INFO "Kprobes globally unoptimized\n");
828}
829
830static DEFINE_MUTEX(kprobe_sysctl_mutex);
831int sysctl_kprobes_optimization;
832int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
833 void __user *buffer, size_t *length,
834 loff_t *ppos)
835{
836 int ret;
837
838 mutex_lock(&kprobe_sysctl_mutex);
839 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
840 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
841
842 if (sysctl_kprobes_optimization)
843 optimize_all_kprobes();
844 else
845 unoptimize_all_kprobes();
846 mutex_unlock(&kprobe_sysctl_mutex);
847
848 return ret;
849}
850#endif /* CONFIG_SYSCTL */
851
852/* Put a breakpoint for a probe. Must be called with text_mutex locked */
853static void __arm_kprobe(struct kprobe *p)
854{
855 struct kprobe *_p;
856
857 /* Check collision with other optimized kprobes */
858 _p = get_optimized_kprobe((unsigned long)p->addr);
859 if (unlikely(_p))
860 /* Fallback to unoptimized kprobe */
861 unoptimize_kprobe(_p, true);
862
863 arch_arm_kprobe(p);
864 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
865}
866
867/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
868static void __disarm_kprobe(struct kprobe *p, bool reopt)
869{
870 struct kprobe *_p;
871
872 /* Try to unoptimize */
873 unoptimize_kprobe(p, kprobes_all_disarmed);
874
875 if (!kprobe_queued(p)) {
876 arch_disarm_kprobe(p);
877 /* If another kprobe was blocked, optimize it. */
878 _p = get_optimized_kprobe((unsigned long)p->addr);
879 if (unlikely(_p) && reopt)
880 optimize_kprobe(_p);
881 }
882 /* TODO: reoptimize others after unoptimized this probe */
883}
884
885#else /* !CONFIG_OPTPROBES */
886
887#define optimize_kprobe(p) do {} while (0)
888#define unoptimize_kprobe(p, f) do {} while (0)
889#define kill_optimized_kprobe(p) do {} while (0)
890#define prepare_optimized_kprobe(p) do {} while (0)
891#define try_to_optimize_kprobe(p) do {} while (0)
892#define __arm_kprobe(p) arch_arm_kprobe(p)
893#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
894#define kprobe_disarmed(p) kprobe_disabled(p)
895#define wait_for_kprobe_optimizer() do {} while (0)
896
897/* There should be no unused kprobes can be reused without optimization */
898static void reuse_unused_kprobe(struct kprobe *ap)
899{
900 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
901 BUG_ON(kprobe_unused(ap));
902}
903
904static void free_aggr_kprobe(struct kprobe *p)
905{
906 arch_remove_kprobe(p);
907 kfree(p);
908}
909
910static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
911{
912 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
913}
914#endif /* CONFIG_OPTPROBES */
915
916#ifdef CONFIG_KPROBES_ON_FTRACE
917static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
918 .func = kprobe_ftrace_handler,
919 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
920};
921static int kprobe_ftrace_enabled;
922
923/* Must ensure p->addr is really on ftrace */
924static int prepare_kprobe(struct kprobe *p)
925{
926 if (!kprobe_ftrace(p))
927 return arch_prepare_kprobe(p);
928
929 return arch_prepare_kprobe_ftrace(p);
930}
931
932/* Caller must lock kprobe_mutex */
933static void arm_kprobe_ftrace(struct kprobe *p)
934{
935 int ret;
936
937 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
938 (unsigned long)p->addr, 0, 0);
939 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
940 kprobe_ftrace_enabled++;
941 if (kprobe_ftrace_enabled == 1) {
942 ret = register_ftrace_function(&kprobe_ftrace_ops);
943 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
944 }
945}
946
947/* Caller must lock kprobe_mutex */
948static void disarm_kprobe_ftrace(struct kprobe *p)
949{
950 int ret;
951
952 kprobe_ftrace_enabled--;
953 if (kprobe_ftrace_enabled == 0) {
954 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
955 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
956 }
957 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
958 (unsigned long)p->addr, 1, 0);
959 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
960}
961#else /* !CONFIG_KPROBES_ON_FTRACE */
962#define prepare_kprobe(p) arch_prepare_kprobe(p)
963#define arm_kprobe_ftrace(p) do {} while (0)
964#define disarm_kprobe_ftrace(p) do {} while (0)
965#endif
966
967/* Arm a kprobe with text_mutex */
968static void arm_kprobe(struct kprobe *kp)
969{
970 if (unlikely(kprobe_ftrace(kp))) {
971 arm_kprobe_ftrace(kp);
972 return;
973 }
974 /*
975 * Here, since __arm_kprobe() doesn't use stop_machine(),
976 * this doesn't cause deadlock on text_mutex. So, we don't
977 * need get_online_cpus().
978 */
979 mutex_lock(&text_mutex);
980 __arm_kprobe(kp);
981 mutex_unlock(&text_mutex);
982}
983
984/* Disarm a kprobe with text_mutex */
985static void disarm_kprobe(struct kprobe *kp, bool reopt)
986{
987 if (unlikely(kprobe_ftrace(kp))) {
988 disarm_kprobe_ftrace(kp);
989 return;
990 }
991 /* Ditto */
992 mutex_lock(&text_mutex);
993 __disarm_kprobe(kp, reopt);
994 mutex_unlock(&text_mutex);
995}
996
997/*
998 * Aggregate handlers for multiple kprobes support - these handlers
999 * take care of invoking the individual kprobe handlers on p->list
1000 */
1001static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1002{
1003 struct kprobe *kp;
1004
1005 list_for_each_entry_rcu(kp, &p->list, list) {
1006 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1007 set_kprobe_instance(kp);
1008 if (kp->pre_handler(kp, regs))
1009 return 1;
1010 }
1011 reset_kprobe_instance();
1012 }
1013 return 0;
1014}
1015NOKPROBE_SYMBOL(aggr_pre_handler);
1016
1017static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1018 unsigned long flags)
1019{
1020 struct kprobe *kp;
1021
1022 list_for_each_entry_rcu(kp, &p->list, list) {
1023 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1024 set_kprobe_instance(kp);
1025 kp->post_handler(kp, regs, flags);
1026 reset_kprobe_instance();
1027 }
1028 }
1029}
1030NOKPROBE_SYMBOL(aggr_post_handler);
1031
1032static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1033 int trapnr)
1034{
1035 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1036
1037 /*
1038 * if we faulted "during" the execution of a user specified
1039 * probe handler, invoke just that probe's fault handler
1040 */
1041 if (cur && cur->fault_handler) {
1042 if (cur->fault_handler(cur, regs, trapnr))
1043 return 1;
1044 }
1045 return 0;
1046}
1047NOKPROBE_SYMBOL(aggr_fault_handler);
1048
1049static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1050{
1051 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1052 int ret = 0;
1053
1054 if (cur && cur->break_handler) {
1055 if (cur->break_handler(cur, regs))
1056 ret = 1;
1057 }
1058 reset_kprobe_instance();
1059 return ret;
1060}
1061NOKPROBE_SYMBOL(aggr_break_handler);
1062
1063/* Walks the list and increments nmissed count for multiprobe case */
1064void kprobes_inc_nmissed_count(struct kprobe *p)
1065{
1066 struct kprobe *kp;
1067 if (!kprobe_aggrprobe(p)) {
1068 p->nmissed++;
1069 } else {
1070 list_for_each_entry_rcu(kp, &p->list, list)
1071 kp->nmissed++;
1072 }
1073 return;
1074}
1075NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1076
1077void recycle_rp_inst(struct kretprobe_instance *ri,
1078 struct hlist_head *head)
1079{
1080 struct kretprobe *rp = ri->rp;
1081
1082 /* remove rp inst off the rprobe_inst_table */
1083 hlist_del(&ri->hlist);
1084 INIT_HLIST_NODE(&ri->hlist);
1085 if (likely(rp)) {
1086 raw_spin_lock(&rp->lock);
1087 hlist_add_head(&ri->hlist, &rp->free_instances);
1088 raw_spin_unlock(&rp->lock);
1089 } else
1090 /* Unregistering */
1091 hlist_add_head(&ri->hlist, head);
1092}
1093NOKPROBE_SYMBOL(recycle_rp_inst);
1094
1095void kretprobe_hash_lock(struct task_struct *tsk,
1096 struct hlist_head **head, unsigned long *flags)
1097__acquires(hlist_lock)
1098{
1099 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1100 raw_spinlock_t *hlist_lock;
1101
1102 *head = &kretprobe_inst_table[hash];
1103 hlist_lock = kretprobe_table_lock_ptr(hash);
1104 raw_spin_lock_irqsave(hlist_lock, *flags);
1105}
1106NOKPROBE_SYMBOL(kretprobe_hash_lock);
1107
1108static void kretprobe_table_lock(unsigned long hash,
1109 unsigned long *flags)
1110__acquires(hlist_lock)
1111{
1112 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1113 raw_spin_lock_irqsave(hlist_lock, *flags);
1114}
1115NOKPROBE_SYMBOL(kretprobe_table_lock);
1116
1117void kretprobe_hash_unlock(struct task_struct *tsk,
1118 unsigned long *flags)
1119__releases(hlist_lock)
1120{
1121 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1122 raw_spinlock_t *hlist_lock;
1123
1124 hlist_lock = kretprobe_table_lock_ptr(hash);
1125 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1126}
1127NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1128
1129static void kretprobe_table_unlock(unsigned long hash,
1130 unsigned long *flags)
1131__releases(hlist_lock)
1132{
1133 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1134 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1135}
1136NOKPROBE_SYMBOL(kretprobe_table_unlock);
1137
1138/*
1139 * This function is called from finish_task_switch when task tk becomes dead,
1140 * so that we can recycle any function-return probe instances associated
1141 * with this task. These left over instances represent probed functions
1142 * that have been called but will never return.
1143 */
1144void kprobe_flush_task(struct task_struct *tk)
1145{
1146 struct kretprobe_instance *ri;
1147 struct hlist_head *head, empty_rp;
1148 struct hlist_node *tmp;
1149 unsigned long hash, flags = 0;
1150
1151 if (unlikely(!kprobes_initialized))
1152 /* Early boot. kretprobe_table_locks not yet initialized. */
1153 return;
1154
1155 INIT_HLIST_HEAD(&empty_rp);
1156 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1157 head = &kretprobe_inst_table[hash];
1158 kretprobe_table_lock(hash, &flags);
1159 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1160 if (ri->task == tk)
1161 recycle_rp_inst(ri, &empty_rp);
1162 }
1163 kretprobe_table_unlock(hash, &flags);
1164 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1165 hlist_del(&ri->hlist);
1166 kfree(ri);
1167 }
1168}
1169NOKPROBE_SYMBOL(kprobe_flush_task);
1170
1171static inline void free_rp_inst(struct kretprobe *rp)
1172{
1173 struct kretprobe_instance *ri;
1174 struct hlist_node *next;
1175
1176 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1177 hlist_del(&ri->hlist);
1178 kfree(ri);
1179 }
1180}
1181
1182static void cleanup_rp_inst(struct kretprobe *rp)
1183{
1184 unsigned long flags, hash;
1185 struct kretprobe_instance *ri;
1186 struct hlist_node *next;
1187 struct hlist_head *head;
1188
1189 /* No race here */
1190 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1191 kretprobe_table_lock(hash, &flags);
1192 head = &kretprobe_inst_table[hash];
1193 hlist_for_each_entry_safe(ri, next, head, hlist) {
1194 if (ri->rp == rp)
1195 ri->rp = NULL;
1196 }
1197 kretprobe_table_unlock(hash, &flags);
1198 }
1199 free_rp_inst(rp);
1200}
1201NOKPROBE_SYMBOL(cleanup_rp_inst);
1202
1203/*
1204* Add the new probe to ap->list. Fail if this is the
1205* second jprobe at the address - two jprobes can't coexist
1206*/
1207static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1208{
1209 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1210
1211 if (p->break_handler || p->post_handler)
1212 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1213
1214 if (p->break_handler) {
1215 if (ap->break_handler)
1216 return -EEXIST;
1217 list_add_tail_rcu(&p->list, &ap->list);
1218 ap->break_handler = aggr_break_handler;
1219 } else
1220 list_add_rcu(&p->list, &ap->list);
1221 if (p->post_handler && !ap->post_handler)
1222 ap->post_handler = aggr_post_handler;
1223
1224 return 0;
1225}
1226
1227/*
1228 * Fill in the required fields of the "manager kprobe". Replace the
1229 * earlier kprobe in the hlist with the manager kprobe
1230 */
1231static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1232{
1233 /* Copy p's insn slot to ap */
1234 copy_kprobe(p, ap);
1235 flush_insn_slot(ap);
1236 ap->addr = p->addr;
1237 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1238 ap->pre_handler = aggr_pre_handler;
1239 ap->fault_handler = aggr_fault_handler;
1240 /* We don't care the kprobe which has gone. */
1241 if (p->post_handler && !kprobe_gone(p))
1242 ap->post_handler = aggr_post_handler;
1243 if (p->break_handler && !kprobe_gone(p))
1244 ap->break_handler = aggr_break_handler;
1245
1246 INIT_LIST_HEAD(&ap->list);
1247 INIT_HLIST_NODE(&ap->hlist);
1248
1249 list_add_rcu(&p->list, &ap->list);
1250 hlist_replace_rcu(&p->hlist, &ap->hlist);
1251}
1252
1253/*
1254 * This is the second or subsequent kprobe at the address - handle
1255 * the intricacies
1256 */
1257static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1258{
1259 int ret = 0;
1260 struct kprobe *ap = orig_p;
1261
1262 /* For preparing optimization, jump_label_text_reserved() is called */
1263 jump_label_lock();
1264 /*
1265 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1266 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1267 */
1268 get_online_cpus();
1269 mutex_lock(&text_mutex);
1270
1271 if (!kprobe_aggrprobe(orig_p)) {
1272 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1273 ap = alloc_aggr_kprobe(orig_p);
1274 if (!ap) {
1275 ret = -ENOMEM;
1276 goto out;
1277 }
1278 init_aggr_kprobe(ap, orig_p);
1279 } else if (kprobe_unused(ap))
1280 /* This probe is going to die. Rescue it */
1281 reuse_unused_kprobe(ap);
1282
1283 if (kprobe_gone(ap)) {
1284 /*
1285 * Attempting to insert new probe at the same location that
1286 * had a probe in the module vaddr area which already
1287 * freed. So, the instruction slot has already been
1288 * released. We need a new slot for the new probe.
1289 */
1290 ret = arch_prepare_kprobe(ap);
1291 if (ret)
1292 /*
1293 * Even if fail to allocate new slot, don't need to
1294 * free aggr_probe. It will be used next time, or
1295 * freed by unregister_kprobe.
1296 */
1297 goto out;
1298
1299 /* Prepare optimized instructions if possible. */
1300 prepare_optimized_kprobe(ap);
1301
1302 /*
1303 * Clear gone flag to prevent allocating new slot again, and
1304 * set disabled flag because it is not armed yet.
1305 */
1306 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1307 | KPROBE_FLAG_DISABLED;
1308 }
1309
1310 /* Copy ap's insn slot to p */
1311 copy_kprobe(ap, p);
1312 ret = add_new_kprobe(ap, p);
1313
1314out:
1315 mutex_unlock(&text_mutex);
1316 put_online_cpus();
1317 jump_label_unlock();
1318
1319 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1320 ap->flags &= ~KPROBE_FLAG_DISABLED;
1321 if (!kprobes_all_disarmed)
1322 /* Arm the breakpoint again. */
1323 arm_kprobe(ap);
1324 }
1325 return ret;
1326}
1327
1328bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1329{
1330 /* The __kprobes marked functions and entry code must not be probed */
1331 return addr >= (unsigned long)__kprobes_text_start &&
1332 addr < (unsigned long)__kprobes_text_end;
1333}
1334
1335bool within_kprobe_blacklist(unsigned long addr)
1336{
1337 struct kprobe_blacklist_entry *ent;
1338
1339 if (arch_within_kprobe_blacklist(addr))
1340 return true;
1341 /*
1342 * If there exists a kprobe_blacklist, verify and
1343 * fail any probe registration in the prohibited area
1344 */
1345 list_for_each_entry(ent, &kprobe_blacklist, list) {
1346 if (addr >= ent->start_addr && addr < ent->end_addr)
1347 return true;
1348 }
1349
1350 return false;
1351}
1352
1353/*
1354 * If we have a symbol_name argument, look it up and add the offset field
1355 * to it. This way, we can specify a relative address to a symbol.
1356 * This returns encoded errors if it fails to look up symbol or invalid
1357 * combination of parameters.
1358 */
1359static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1360{
1361 kprobe_opcode_t *addr = p->addr;
1362
1363 if ((p->symbol_name && p->addr) ||
1364 (!p->symbol_name && !p->addr))
1365 goto invalid;
1366
1367 if (p->symbol_name) {
1368 kprobe_lookup_name(p->symbol_name, addr);
1369 if (!addr)
1370 return ERR_PTR(-ENOENT);
1371 }
1372
1373 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1374 if (addr)
1375 return addr;
1376
1377invalid:
1378 return ERR_PTR(-EINVAL);
1379}
1380
1381/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1382static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1383{
1384 struct kprobe *ap, *list_p;
1385
1386 ap = get_kprobe(p->addr);
1387 if (unlikely(!ap))
1388 return NULL;
1389
1390 if (p != ap) {
1391 list_for_each_entry_rcu(list_p, &ap->list, list)
1392 if (list_p == p)
1393 /* kprobe p is a valid probe */
1394 goto valid;
1395 return NULL;
1396 }
1397valid:
1398 return ap;
1399}
1400
1401/* Return error if the kprobe is being re-registered */
1402static inline int check_kprobe_rereg(struct kprobe *p)
1403{
1404 int ret = 0;
1405
1406 mutex_lock(&kprobe_mutex);
1407 if (__get_valid_kprobe(p))
1408 ret = -EINVAL;
1409 mutex_unlock(&kprobe_mutex);
1410
1411 return ret;
1412}
1413
1414int __weak arch_check_ftrace_location(struct kprobe *p)
1415{
1416 unsigned long ftrace_addr;
1417
1418 ftrace_addr = ftrace_location((unsigned long)p->addr);
1419 if (ftrace_addr) {
1420#ifdef CONFIG_KPROBES_ON_FTRACE
1421 /* Given address is not on the instruction boundary */
1422 if ((unsigned long)p->addr != ftrace_addr)
1423 return -EILSEQ;
1424 p->flags |= KPROBE_FLAG_FTRACE;
1425#else /* !CONFIG_KPROBES_ON_FTRACE */
1426 return -EINVAL;
1427#endif
1428 }
1429 return 0;
1430}
1431
1432static int check_kprobe_address_safe(struct kprobe *p,
1433 struct module **probed_mod)
1434{
1435 int ret;
1436
1437 ret = arch_check_ftrace_location(p);
1438 if (ret)
1439 return ret;
1440 jump_label_lock();
1441 preempt_disable();
1442
1443 /* Ensure it is not in reserved area nor out of text */
1444 if (!kernel_text_address((unsigned long) p->addr) ||
1445 within_kprobe_blacklist((unsigned long) p->addr) ||
1446 jump_label_text_reserved(p->addr, p->addr)) {
1447 ret = -EINVAL;
1448 goto out;
1449 }
1450
1451 /* Check if are we probing a module */
1452 *probed_mod = __module_text_address((unsigned long) p->addr);
1453 if (*probed_mod) {
1454 /*
1455 * We must hold a refcount of the probed module while updating
1456 * its code to prohibit unexpected unloading.
1457 */
1458 if (unlikely(!try_module_get(*probed_mod))) {
1459 ret = -ENOENT;
1460 goto out;
1461 }
1462
1463 /*
1464 * If the module freed .init.text, we couldn't insert
1465 * kprobes in there.
1466 */
1467 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1468 (*probed_mod)->state != MODULE_STATE_COMING) {
1469 module_put(*probed_mod);
1470 *probed_mod = NULL;
1471 ret = -ENOENT;
1472 }
1473 }
1474out:
1475 preempt_enable();
1476 jump_label_unlock();
1477
1478 return ret;
1479}
1480
1481int register_kprobe(struct kprobe *p)
1482{
1483 int ret;
1484 struct kprobe *old_p;
1485 struct module *probed_mod;
1486 kprobe_opcode_t *addr;
1487
1488 /* Adjust probe address from symbol */
1489 addr = kprobe_addr(p);
1490 if (IS_ERR(addr))
1491 return PTR_ERR(addr);
1492 p->addr = addr;
1493
1494 ret = check_kprobe_rereg(p);
1495 if (ret)
1496 return ret;
1497
1498 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1499 p->flags &= KPROBE_FLAG_DISABLED;
1500 p->nmissed = 0;
1501 INIT_LIST_HEAD(&p->list);
1502
1503 ret = check_kprobe_address_safe(p, &probed_mod);
1504 if (ret)
1505 return ret;
1506
1507 mutex_lock(&kprobe_mutex);
1508
1509 old_p = get_kprobe(p->addr);
1510 if (old_p) {
1511 /* Since this may unoptimize old_p, locking text_mutex. */
1512 ret = register_aggr_kprobe(old_p, p);
1513 goto out;
1514 }
1515
1516 mutex_lock(&text_mutex); /* Avoiding text modification */
1517 ret = prepare_kprobe(p);
1518 mutex_unlock(&text_mutex);
1519 if (ret)
1520 goto out;
1521
1522 INIT_HLIST_NODE(&p->hlist);
1523 hlist_add_head_rcu(&p->hlist,
1524 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1525
1526 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1527 arm_kprobe(p);
1528
1529 /* Try to optimize kprobe */
1530 try_to_optimize_kprobe(p);
1531
1532out:
1533 mutex_unlock(&kprobe_mutex);
1534
1535 if (probed_mod)
1536 module_put(probed_mod);
1537
1538 return ret;
1539}
1540EXPORT_SYMBOL_GPL(register_kprobe);
1541
1542/* Check if all probes on the aggrprobe are disabled */
1543static int aggr_kprobe_disabled(struct kprobe *ap)
1544{
1545 struct kprobe *kp;
1546
1547 list_for_each_entry_rcu(kp, &ap->list, list)
1548 if (!kprobe_disabled(kp))
1549 /*
1550 * There is an active probe on the list.
1551 * We can't disable this ap.
1552 */
1553 return 0;
1554
1555 return 1;
1556}
1557
1558/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1559static struct kprobe *__disable_kprobe(struct kprobe *p)
1560{
1561 struct kprobe *orig_p;
1562
1563 /* Get an original kprobe for return */
1564 orig_p = __get_valid_kprobe(p);
1565 if (unlikely(orig_p == NULL))
1566 return NULL;
1567
1568 if (!kprobe_disabled(p)) {
1569 /* Disable probe if it is a child probe */
1570 if (p != orig_p)
1571 p->flags |= KPROBE_FLAG_DISABLED;
1572
1573 /* Try to disarm and disable this/parent probe */
1574 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1575 /*
1576 * If kprobes_all_disarmed is set, orig_p
1577 * should have already been disarmed, so
1578 * skip unneed disarming process.
1579 */
1580 if (!kprobes_all_disarmed)
1581 disarm_kprobe(orig_p, true);
1582 orig_p->flags |= KPROBE_FLAG_DISABLED;
1583 }
1584 }
1585
1586 return orig_p;
1587}
1588
1589/*
1590 * Unregister a kprobe without a scheduler synchronization.
1591 */
1592static int __unregister_kprobe_top(struct kprobe *p)
1593{
1594 struct kprobe *ap, *list_p;
1595
1596 /* Disable kprobe. This will disarm it if needed. */
1597 ap = __disable_kprobe(p);
1598 if (ap == NULL)
1599 return -EINVAL;
1600
1601 if (ap == p)
1602 /*
1603 * This probe is an independent(and non-optimized) kprobe
1604 * (not an aggrprobe). Remove from the hash list.
1605 */
1606 goto disarmed;
1607
1608 /* Following process expects this probe is an aggrprobe */
1609 WARN_ON(!kprobe_aggrprobe(ap));
1610
1611 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1612 /*
1613 * !disarmed could be happen if the probe is under delayed
1614 * unoptimizing.
1615 */
1616 goto disarmed;
1617 else {
1618 /* If disabling probe has special handlers, update aggrprobe */
1619 if (p->break_handler && !kprobe_gone(p))
1620 ap->break_handler = NULL;
1621 if (p->post_handler && !kprobe_gone(p)) {
1622 list_for_each_entry_rcu(list_p, &ap->list, list) {
1623 if ((list_p != p) && (list_p->post_handler))
1624 goto noclean;
1625 }
1626 ap->post_handler = NULL;
1627 }
1628noclean:
1629 /*
1630 * Remove from the aggrprobe: this path will do nothing in
1631 * __unregister_kprobe_bottom().
1632 */
1633 list_del_rcu(&p->list);
1634 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1635 /*
1636 * Try to optimize this probe again, because post
1637 * handler may have been changed.
1638 */
1639 optimize_kprobe(ap);
1640 }
1641 return 0;
1642
1643disarmed:
1644 BUG_ON(!kprobe_disarmed(ap));
1645 hlist_del_rcu(&ap->hlist);
1646 return 0;
1647}
1648
1649static void __unregister_kprobe_bottom(struct kprobe *p)
1650{
1651 struct kprobe *ap;
1652
1653 if (list_empty(&p->list))
1654 /* This is an independent kprobe */
1655 arch_remove_kprobe(p);
1656 else if (list_is_singular(&p->list)) {
1657 /* This is the last child of an aggrprobe */
1658 ap = list_entry(p->list.next, struct kprobe, list);
1659 list_del(&p->list);
1660 free_aggr_kprobe(ap);
1661 }
1662 /* Otherwise, do nothing. */
1663}
1664
1665int register_kprobes(struct kprobe **kps, int num)
1666{
1667 int i, ret = 0;
1668
1669 if (num <= 0)
1670 return -EINVAL;
1671 for (i = 0; i < num; i++) {
1672 ret = register_kprobe(kps[i]);
1673 if (ret < 0) {
1674 if (i > 0)
1675 unregister_kprobes(kps, i);
1676 break;
1677 }
1678 }
1679 return ret;
1680}
1681EXPORT_SYMBOL_GPL(register_kprobes);
1682
1683void unregister_kprobe(struct kprobe *p)
1684{
1685 unregister_kprobes(&p, 1);
1686}
1687EXPORT_SYMBOL_GPL(unregister_kprobe);
1688
1689void unregister_kprobes(struct kprobe **kps, int num)
1690{
1691 int i;
1692
1693 if (num <= 0)
1694 return;
1695 mutex_lock(&kprobe_mutex);
1696 for (i = 0; i < num; i++)
1697 if (__unregister_kprobe_top(kps[i]) < 0)
1698 kps[i]->addr = NULL;
1699 mutex_unlock(&kprobe_mutex);
1700
1701 synchronize_sched();
1702 for (i = 0; i < num; i++)
1703 if (kps[i]->addr)
1704 __unregister_kprobe_bottom(kps[i]);
1705}
1706EXPORT_SYMBOL_GPL(unregister_kprobes);
1707
1708static struct notifier_block kprobe_exceptions_nb = {
1709 .notifier_call = kprobe_exceptions_notify,
1710 .priority = 0x7fffffff /* we need to be notified first */
1711};
1712
1713unsigned long __weak arch_deref_entry_point(void *entry)
1714{
1715 return (unsigned long)entry;
1716}
1717
1718int register_jprobes(struct jprobe **jps, int num)
1719{
1720 struct jprobe *jp;
1721 int ret = 0, i;
1722
1723 if (num <= 0)
1724 return -EINVAL;
1725 for (i = 0; i < num; i++) {
1726 unsigned long addr, offset;
1727 jp = jps[i];
1728 addr = arch_deref_entry_point(jp->entry);
1729
1730 /* Verify probepoint is a function entry point */
1731 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1732 offset == 0) {
1733 jp->kp.pre_handler = setjmp_pre_handler;
1734 jp->kp.break_handler = longjmp_break_handler;
1735 ret = register_kprobe(&jp->kp);
1736 } else
1737 ret = -EINVAL;
1738
1739 if (ret < 0) {
1740 if (i > 0)
1741 unregister_jprobes(jps, i);
1742 break;
1743 }
1744 }
1745 return ret;
1746}
1747EXPORT_SYMBOL_GPL(register_jprobes);
1748
1749int register_jprobe(struct jprobe *jp)
1750{
1751 return register_jprobes(&jp, 1);
1752}
1753EXPORT_SYMBOL_GPL(register_jprobe);
1754
1755void unregister_jprobe(struct jprobe *jp)
1756{
1757 unregister_jprobes(&jp, 1);
1758}
1759EXPORT_SYMBOL_GPL(unregister_jprobe);
1760
1761void unregister_jprobes(struct jprobe **jps, int num)
1762{
1763 int i;
1764
1765 if (num <= 0)
1766 return;
1767 mutex_lock(&kprobe_mutex);
1768 for (i = 0; i < num; i++)
1769 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1770 jps[i]->kp.addr = NULL;
1771 mutex_unlock(&kprobe_mutex);
1772
1773 synchronize_sched();
1774 for (i = 0; i < num; i++) {
1775 if (jps[i]->kp.addr)
1776 __unregister_kprobe_bottom(&jps[i]->kp);
1777 }
1778}
1779EXPORT_SYMBOL_GPL(unregister_jprobes);
1780
1781#ifdef CONFIG_KRETPROBES
1782/*
1783 * This kprobe pre_handler is registered with every kretprobe. When probe
1784 * hits it will set up the return probe.
1785 */
1786static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1787{
1788 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1789 unsigned long hash, flags = 0;
1790 struct kretprobe_instance *ri;
1791
1792 /*
1793 * To avoid deadlocks, prohibit return probing in NMI contexts,
1794 * just skip the probe and increase the (inexact) 'nmissed'
1795 * statistical counter, so that the user is informed that
1796 * something happened:
1797 */
1798 if (unlikely(in_nmi())) {
1799 rp->nmissed++;
1800 return 0;
1801 }
1802
1803 /* TODO: consider to only swap the RA after the last pre_handler fired */
1804 hash = hash_ptr(current, KPROBE_HASH_BITS);
1805 raw_spin_lock_irqsave(&rp->lock, flags);
1806 if (!hlist_empty(&rp->free_instances)) {
1807 ri = hlist_entry(rp->free_instances.first,
1808 struct kretprobe_instance, hlist);
1809 hlist_del(&ri->hlist);
1810 raw_spin_unlock_irqrestore(&rp->lock, flags);
1811
1812 ri->rp = rp;
1813 ri->task = current;
1814
1815 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1816 raw_spin_lock_irqsave(&rp->lock, flags);
1817 hlist_add_head(&ri->hlist, &rp->free_instances);
1818 raw_spin_unlock_irqrestore(&rp->lock, flags);
1819 return 0;
1820 }
1821
1822 arch_prepare_kretprobe(ri, regs);
1823
1824 /* XXX(hch): why is there no hlist_move_head? */
1825 INIT_HLIST_NODE(&ri->hlist);
1826 kretprobe_table_lock(hash, &flags);
1827 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1828 kretprobe_table_unlock(hash, &flags);
1829 } else {
1830 rp->nmissed++;
1831 raw_spin_unlock_irqrestore(&rp->lock, flags);
1832 }
1833 return 0;
1834}
1835NOKPROBE_SYMBOL(pre_handler_kretprobe);
1836
1837int register_kretprobe(struct kretprobe *rp)
1838{
1839 int ret = 0;
1840 struct kretprobe_instance *inst;
1841 int i;
1842 void *addr;
1843
1844 if (kretprobe_blacklist_size) {
1845 addr = kprobe_addr(&rp->kp);
1846 if (IS_ERR(addr))
1847 return PTR_ERR(addr);
1848
1849 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1850 if (kretprobe_blacklist[i].addr == addr)
1851 return -EINVAL;
1852 }
1853 }
1854
1855 rp->kp.pre_handler = pre_handler_kretprobe;
1856 rp->kp.post_handler = NULL;
1857 rp->kp.fault_handler = NULL;
1858 rp->kp.break_handler = NULL;
1859
1860 /* Pre-allocate memory for max kretprobe instances */
1861 if (rp->maxactive <= 0) {
1862#ifdef CONFIG_PREEMPT
1863 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1864#else
1865 rp->maxactive = num_possible_cpus();
1866#endif
1867 }
1868 raw_spin_lock_init(&rp->lock);
1869 INIT_HLIST_HEAD(&rp->free_instances);
1870 for (i = 0; i < rp->maxactive; i++) {
1871 inst = kmalloc(sizeof(struct kretprobe_instance) +
1872 rp->data_size, GFP_KERNEL);
1873 if (inst == NULL) {
1874 free_rp_inst(rp);
1875 return -ENOMEM;
1876 }
1877 INIT_HLIST_NODE(&inst->hlist);
1878 hlist_add_head(&inst->hlist, &rp->free_instances);
1879 }
1880
1881 rp->nmissed = 0;
1882 /* Establish function entry probe point */
1883 ret = register_kprobe(&rp->kp);
1884 if (ret != 0)
1885 free_rp_inst(rp);
1886 return ret;
1887}
1888EXPORT_SYMBOL_GPL(register_kretprobe);
1889
1890int register_kretprobes(struct kretprobe **rps, int num)
1891{
1892 int ret = 0, i;
1893
1894 if (num <= 0)
1895 return -EINVAL;
1896 for (i = 0; i < num; i++) {
1897 ret = register_kretprobe(rps[i]);
1898 if (ret < 0) {
1899 if (i > 0)
1900 unregister_kretprobes(rps, i);
1901 break;
1902 }
1903 }
1904 return ret;
1905}
1906EXPORT_SYMBOL_GPL(register_kretprobes);
1907
1908void unregister_kretprobe(struct kretprobe *rp)
1909{
1910 unregister_kretprobes(&rp, 1);
1911}
1912EXPORT_SYMBOL_GPL(unregister_kretprobe);
1913
1914void unregister_kretprobes(struct kretprobe **rps, int num)
1915{
1916 int i;
1917
1918 if (num <= 0)
1919 return;
1920 mutex_lock(&kprobe_mutex);
1921 for (i = 0; i < num; i++)
1922 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1923 rps[i]->kp.addr = NULL;
1924 mutex_unlock(&kprobe_mutex);
1925
1926 synchronize_sched();
1927 for (i = 0; i < num; i++) {
1928 if (rps[i]->kp.addr) {
1929 __unregister_kprobe_bottom(&rps[i]->kp);
1930 cleanup_rp_inst(rps[i]);
1931 }
1932 }
1933}
1934EXPORT_SYMBOL_GPL(unregister_kretprobes);
1935
1936#else /* CONFIG_KRETPROBES */
1937int register_kretprobe(struct kretprobe *rp)
1938{
1939 return -ENOSYS;
1940}
1941EXPORT_SYMBOL_GPL(register_kretprobe);
1942
1943int register_kretprobes(struct kretprobe **rps, int num)
1944{
1945 return -ENOSYS;
1946}
1947EXPORT_SYMBOL_GPL(register_kretprobes);
1948
1949void unregister_kretprobe(struct kretprobe *rp)
1950{
1951}
1952EXPORT_SYMBOL_GPL(unregister_kretprobe);
1953
1954void unregister_kretprobes(struct kretprobe **rps, int num)
1955{
1956}
1957EXPORT_SYMBOL_GPL(unregister_kretprobes);
1958
1959static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1960{
1961 return 0;
1962}
1963NOKPROBE_SYMBOL(pre_handler_kretprobe);
1964
1965#endif /* CONFIG_KRETPROBES */
1966
1967/* Set the kprobe gone and remove its instruction buffer. */
1968static void kill_kprobe(struct kprobe *p)
1969{
1970 struct kprobe *kp;
1971
1972 p->flags |= KPROBE_FLAG_GONE;
1973 if (kprobe_aggrprobe(p)) {
1974 /*
1975 * If this is an aggr_kprobe, we have to list all the
1976 * chained probes and mark them GONE.
1977 */
1978 list_for_each_entry_rcu(kp, &p->list, list)
1979 kp->flags |= KPROBE_FLAG_GONE;
1980 p->post_handler = NULL;
1981 p->break_handler = NULL;
1982 kill_optimized_kprobe(p);
1983 }
1984 /*
1985 * Here, we can remove insn_slot safely, because no thread calls
1986 * the original probed function (which will be freed soon) any more.
1987 */
1988 arch_remove_kprobe(p);
1989}
1990
1991/* Disable one kprobe */
1992int disable_kprobe(struct kprobe *kp)
1993{
1994 int ret = 0;
1995
1996 mutex_lock(&kprobe_mutex);
1997
1998 /* Disable this kprobe */
1999 if (__disable_kprobe(kp) == NULL)
2000 ret = -EINVAL;
2001
2002 mutex_unlock(&kprobe_mutex);
2003 return ret;
2004}
2005EXPORT_SYMBOL_GPL(disable_kprobe);
2006
2007/* Enable one kprobe */
2008int enable_kprobe(struct kprobe *kp)
2009{
2010 int ret = 0;
2011 struct kprobe *p;
2012
2013 mutex_lock(&kprobe_mutex);
2014
2015 /* Check whether specified probe is valid. */
2016 p = __get_valid_kprobe(kp);
2017 if (unlikely(p == NULL)) {
2018 ret = -EINVAL;
2019 goto out;
2020 }
2021
2022 if (kprobe_gone(kp)) {
2023 /* This kprobe has gone, we couldn't enable it. */
2024 ret = -EINVAL;
2025 goto out;
2026 }
2027
2028 if (p != kp)
2029 kp->flags &= ~KPROBE_FLAG_DISABLED;
2030
2031 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2032 p->flags &= ~KPROBE_FLAG_DISABLED;
2033 arm_kprobe(p);
2034 }
2035out:
2036 mutex_unlock(&kprobe_mutex);
2037 return ret;
2038}
2039EXPORT_SYMBOL_GPL(enable_kprobe);
2040
2041void dump_kprobe(struct kprobe *kp)
2042{
2043 printk(KERN_WARNING "Dumping kprobe:\n");
2044 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2045 kp->symbol_name, kp->addr, kp->offset);
2046}
2047NOKPROBE_SYMBOL(dump_kprobe);
2048
2049/*
2050 * Lookup and populate the kprobe_blacklist.
2051 *
2052 * Unlike the kretprobe blacklist, we'll need to determine
2053 * the range of addresses that belong to the said functions,
2054 * since a kprobe need not necessarily be at the beginning
2055 * of a function.
2056 */
2057static int __init populate_kprobe_blacklist(unsigned long *start,
2058 unsigned long *end)
2059{
2060 unsigned long *iter;
2061 struct kprobe_blacklist_entry *ent;
2062 unsigned long entry, offset = 0, size = 0;
2063
2064 for (iter = start; iter < end; iter++) {
2065 entry = arch_deref_entry_point((void *)*iter);
2066
2067 if (!kernel_text_address(entry) ||
2068 !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2069 pr_err("Failed to find blacklist at %p\n",
2070 (void *)entry);
2071 continue;
2072 }
2073
2074 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2075 if (!ent)
2076 return -ENOMEM;
2077 ent->start_addr = entry;
2078 ent->end_addr = entry + size;
2079 INIT_LIST_HEAD(&ent->list);
2080 list_add_tail(&ent->list, &kprobe_blacklist);
2081 }
2082 return 0;
2083}
2084
2085/* Module notifier call back, checking kprobes on the module */
2086static int kprobes_module_callback(struct notifier_block *nb,
2087 unsigned long val, void *data)
2088{
2089 struct module *mod = data;
2090 struct hlist_head *head;
2091 struct kprobe *p;
2092 unsigned int i;
2093 int checkcore = (val == MODULE_STATE_GOING);
2094
2095 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2096 return NOTIFY_DONE;
2097
2098 /*
2099 * When MODULE_STATE_GOING was notified, both of module .text and
2100 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2101 * notified, only .init.text section would be freed. We need to
2102 * disable kprobes which have been inserted in the sections.
2103 */
2104 mutex_lock(&kprobe_mutex);
2105 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2106 head = &kprobe_table[i];
2107 hlist_for_each_entry_rcu(p, head, hlist)
2108 if (within_module_init((unsigned long)p->addr, mod) ||
2109 (checkcore &&
2110 within_module_core((unsigned long)p->addr, mod))) {
2111 /*
2112 * The vaddr this probe is installed will soon
2113 * be vfreed buy not synced to disk. Hence,
2114 * disarming the breakpoint isn't needed.
2115 */
2116 kill_kprobe(p);
2117 }
2118 }
2119 mutex_unlock(&kprobe_mutex);
2120 return NOTIFY_DONE;
2121}
2122
2123static struct notifier_block kprobe_module_nb = {
2124 .notifier_call = kprobes_module_callback,
2125 .priority = 0
2126};
2127
2128/* Markers of _kprobe_blacklist section */
2129extern unsigned long __start_kprobe_blacklist[];
2130extern unsigned long __stop_kprobe_blacklist[];
2131
2132static int __init init_kprobes(void)
2133{
2134 int i, err = 0;
2135
2136 /* FIXME allocate the probe table, currently defined statically */
2137 /* initialize all list heads */
2138 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2139 INIT_HLIST_HEAD(&kprobe_table[i]);
2140 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2141 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2142 }
2143
2144 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2145 __stop_kprobe_blacklist);
2146 if (err) {
2147 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2148 pr_err("Please take care of using kprobes.\n");
2149 }
2150
2151 if (kretprobe_blacklist_size) {
2152 /* lookup the function address from its name */
2153 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2154 kprobe_lookup_name(kretprobe_blacklist[i].name,
2155 kretprobe_blacklist[i].addr);
2156 if (!kretprobe_blacklist[i].addr)
2157 printk("kretprobe: lookup failed: %s\n",
2158 kretprobe_blacklist[i].name);
2159 }
2160 }
2161
2162#if defined(CONFIG_OPTPROBES)
2163#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2164 /* Init kprobe_optinsn_slots */
2165 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2166#endif
2167 /* By default, kprobes can be optimized */
2168 kprobes_allow_optimization = true;
2169#endif
2170
2171 /* By default, kprobes are armed */
2172 kprobes_all_disarmed = false;
2173
2174 err = arch_init_kprobes();
2175 if (!err)
2176 err = register_die_notifier(&kprobe_exceptions_nb);
2177 if (!err)
2178 err = register_module_notifier(&kprobe_module_nb);
2179
2180 kprobes_initialized = (err == 0);
2181
2182 if (!err)
2183 init_test_probes();
2184 return err;
2185}
2186
2187#ifdef CONFIG_DEBUG_FS
2188static void report_probe(struct seq_file *pi, struct kprobe *p,
2189 const char *sym, int offset, char *modname, struct kprobe *pp)
2190{
2191 char *kprobe_type;
2192
2193 if (p->pre_handler == pre_handler_kretprobe)
2194 kprobe_type = "r";
2195 else if (p->pre_handler == setjmp_pre_handler)
2196 kprobe_type = "j";
2197 else
2198 kprobe_type = "k";
2199
2200 if (sym)
2201 seq_printf(pi, "%p %s %s+0x%x %s ",
2202 p->addr, kprobe_type, sym, offset,
2203 (modname ? modname : " "));
2204 else
2205 seq_printf(pi, "%p %s %p ",
2206 p->addr, kprobe_type, p->addr);
2207
2208 if (!pp)
2209 pp = p;
2210 seq_printf(pi, "%s%s%s%s\n",
2211 (kprobe_gone(p) ? "[GONE]" : ""),
2212 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2213 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2214 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2215}
2216
2217static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2218{
2219 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2220}
2221
2222static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2223{
2224 (*pos)++;
2225 if (*pos >= KPROBE_TABLE_SIZE)
2226 return NULL;
2227 return pos;
2228}
2229
2230static void kprobe_seq_stop(struct seq_file *f, void *v)
2231{
2232 /* Nothing to do */
2233}
2234
2235static int show_kprobe_addr(struct seq_file *pi, void *v)
2236{
2237 struct hlist_head *head;
2238 struct kprobe *p, *kp;
2239 const char *sym = NULL;
2240 unsigned int i = *(loff_t *) v;
2241 unsigned long offset = 0;
2242 char *modname, namebuf[KSYM_NAME_LEN];
2243
2244 head = &kprobe_table[i];
2245 preempt_disable();
2246 hlist_for_each_entry_rcu(p, head, hlist) {
2247 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2248 &offset, &modname, namebuf);
2249 if (kprobe_aggrprobe(p)) {
2250 list_for_each_entry_rcu(kp, &p->list, list)
2251 report_probe(pi, kp, sym, offset, modname, p);
2252 } else
2253 report_probe(pi, p, sym, offset, modname, NULL);
2254 }
2255 preempt_enable();
2256 return 0;
2257}
2258
2259static const struct seq_operations kprobes_seq_ops = {
2260 .start = kprobe_seq_start,
2261 .next = kprobe_seq_next,
2262 .stop = kprobe_seq_stop,
2263 .show = show_kprobe_addr
2264};
2265
2266static int kprobes_open(struct inode *inode, struct file *filp)
2267{
2268 return seq_open(filp, &kprobes_seq_ops);
2269}
2270
2271static const struct file_operations debugfs_kprobes_operations = {
2272 .open = kprobes_open,
2273 .read = seq_read,
2274 .llseek = seq_lseek,
2275 .release = seq_release,
2276};
2277
2278/* kprobes/blacklist -- shows which functions can not be probed */
2279static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2280{
2281 return seq_list_start(&kprobe_blacklist, *pos);
2282}
2283
2284static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2285{
2286 return seq_list_next(v, &kprobe_blacklist, pos);
2287}
2288
2289static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2290{
2291 struct kprobe_blacklist_entry *ent =
2292 list_entry(v, struct kprobe_blacklist_entry, list);
2293
2294 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2295 (void *)ent->end_addr, (void *)ent->start_addr);
2296 return 0;
2297}
2298
2299static const struct seq_operations kprobe_blacklist_seq_ops = {
2300 .start = kprobe_blacklist_seq_start,
2301 .next = kprobe_blacklist_seq_next,
2302 .stop = kprobe_seq_stop, /* Reuse void function */
2303 .show = kprobe_blacklist_seq_show,
2304};
2305
2306static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2307{
2308 return seq_open(filp, &kprobe_blacklist_seq_ops);
2309}
2310
2311static const struct file_operations debugfs_kprobe_blacklist_ops = {
2312 .open = kprobe_blacklist_open,
2313 .read = seq_read,
2314 .llseek = seq_lseek,
2315 .release = seq_release,
2316};
2317
2318static void arm_all_kprobes(void)
2319{
2320 struct hlist_head *head;
2321 struct kprobe *p;
2322 unsigned int i;
2323
2324 mutex_lock(&kprobe_mutex);
2325
2326 /* If kprobes are armed, just return */
2327 if (!kprobes_all_disarmed)
2328 goto already_enabled;
2329
2330 /*
2331 * optimize_kprobe() called by arm_kprobe() checks
2332 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2333 * arm_kprobe.
2334 */
2335 kprobes_all_disarmed = false;
2336 /* Arming kprobes doesn't optimize kprobe itself */
2337 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2338 head = &kprobe_table[i];
2339 hlist_for_each_entry_rcu(p, head, hlist)
2340 if (!kprobe_disabled(p))
2341 arm_kprobe(p);
2342 }
2343
2344 printk(KERN_INFO "Kprobes globally enabled\n");
2345
2346already_enabled:
2347 mutex_unlock(&kprobe_mutex);
2348 return;
2349}
2350
2351static void disarm_all_kprobes(void)
2352{
2353 struct hlist_head *head;
2354 struct kprobe *p;
2355 unsigned int i;
2356
2357 mutex_lock(&kprobe_mutex);
2358
2359 /* If kprobes are already disarmed, just return */
2360 if (kprobes_all_disarmed) {
2361 mutex_unlock(&kprobe_mutex);
2362 return;
2363 }
2364
2365 kprobes_all_disarmed = true;
2366 printk(KERN_INFO "Kprobes globally disabled\n");
2367
2368 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2369 head = &kprobe_table[i];
2370 hlist_for_each_entry_rcu(p, head, hlist) {
2371 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2372 disarm_kprobe(p, false);
2373 }
2374 }
2375 mutex_unlock(&kprobe_mutex);
2376
2377 /* Wait for disarming all kprobes by optimizer */
2378 wait_for_kprobe_optimizer();
2379}
2380
2381/*
2382 * XXX: The debugfs bool file interface doesn't allow for callbacks
2383 * when the bool state is switched. We can reuse that facility when
2384 * available
2385 */
2386static ssize_t read_enabled_file_bool(struct file *file,
2387 char __user *user_buf, size_t count, loff_t *ppos)
2388{
2389 char buf[3];
2390
2391 if (!kprobes_all_disarmed)
2392 buf[0] = '1';
2393 else
2394 buf[0] = '0';
2395 buf[1] = '\n';
2396 buf[2] = 0x00;
2397 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2398}
2399
2400static ssize_t write_enabled_file_bool(struct file *file,
2401 const char __user *user_buf, size_t count, loff_t *ppos)
2402{
2403 char buf[32];
2404 size_t buf_size;
2405
2406 buf_size = min(count, (sizeof(buf)-1));
2407 if (copy_from_user(buf, user_buf, buf_size))
2408 return -EFAULT;
2409
2410 buf[buf_size] = '\0';
2411 switch (buf[0]) {
2412 case 'y':
2413 case 'Y':
2414 case '1':
2415 arm_all_kprobes();
2416 break;
2417 case 'n':
2418 case 'N':
2419 case '0':
2420 disarm_all_kprobes();
2421 break;
2422 default:
2423 return -EINVAL;
2424 }
2425
2426 return count;
2427}
2428
2429static const struct file_operations fops_kp = {
2430 .read = read_enabled_file_bool,
2431 .write = write_enabled_file_bool,
2432 .llseek = default_llseek,
2433};
2434
2435static int __init debugfs_kprobe_init(void)
2436{
2437 struct dentry *dir, *file;
2438 unsigned int value = 1;
2439
2440 dir = debugfs_create_dir("kprobes", NULL);
2441 if (!dir)
2442 return -ENOMEM;
2443
2444 file = debugfs_create_file("list", 0444, dir, NULL,
2445 &debugfs_kprobes_operations);
2446 if (!file)
2447 goto error;
2448
2449 file = debugfs_create_file("enabled", 0600, dir,
2450 &value, &fops_kp);
2451 if (!file)
2452 goto error;
2453
2454 file = debugfs_create_file("blacklist", 0444, dir, NULL,
2455 &debugfs_kprobe_blacklist_ops);
2456 if (!file)
2457 goto error;
2458
2459 return 0;
2460
2461error:
2462 debugfs_remove(dir);
2463 return -ENOMEM;
2464}
2465
2466late_initcall(debugfs_kprobe_init);
2467#endif /* CONFIG_DEBUG_FS */
2468
2469module_init(init_kprobes);
2470
2471/* defined in arch/.../kernel/kprobes.c */
2472EXPORT_SYMBOL_GPL(jprobe_return);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
5 *
6 * Copyright (C) IBM Corporation, 2002, 2004
7 *
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
20 */
21#include <linux/kprobes.h>
22#include <linux/hash.h>
23#include <linux/init.h>
24#include <linux/slab.h>
25#include <linux/stddef.h>
26#include <linux/export.h>
27#include <linux/moduleloader.h>
28#include <linux/kallsyms.h>
29#include <linux/freezer.h>
30#include <linux/seq_file.h>
31#include <linux/debugfs.h>
32#include <linux/sysctl.h>
33#include <linux/kdebug.h>
34#include <linux/memory.h>
35#include <linux/ftrace.h>
36#include <linux/cpu.h>
37#include <linux/jump_label.h>
38#include <linux/perf_event.h>
39
40#include <asm/sections.h>
41#include <asm/cacheflush.h>
42#include <asm/errno.h>
43#include <linux/uaccess.h>
44
45#define KPROBE_HASH_BITS 6
46#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
47
48
49static int kprobes_initialized;
50/* kprobe_table can be accessed by
51 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
52 * Or
53 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
54 */
55static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
56static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
57
58/* NOTE: change this value only with kprobe_mutex held */
59static bool kprobes_all_disarmed;
60
61/* This protects kprobe_table and optimizing_list */
62static DEFINE_MUTEX(kprobe_mutex);
63static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
64static struct {
65 raw_spinlock_t lock ____cacheline_aligned_in_smp;
66} kretprobe_table_locks[KPROBE_TABLE_SIZE];
67
68kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
69 unsigned int __unused)
70{
71 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
72}
73
74static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
75{
76 return &(kretprobe_table_locks[hash].lock);
77}
78
79/* Blacklist -- list of struct kprobe_blacklist_entry */
80static LIST_HEAD(kprobe_blacklist);
81
82#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83/*
84 * kprobe->ainsn.insn points to the copy of the instruction to be
85 * single-stepped. x86_64, POWER4 and above have no-exec support and
86 * stepping on the instruction on a vmalloced/kmalloced/data page
87 * is a recipe for disaster
88 */
89struct kprobe_insn_page {
90 struct list_head list;
91 kprobe_opcode_t *insns; /* Page of instruction slots */
92 struct kprobe_insn_cache *cache;
93 int nused;
94 int ngarbage;
95 char slot_used[];
96};
97
98#define KPROBE_INSN_PAGE_SIZE(slots) \
99 (offsetof(struct kprobe_insn_page, slot_used) + \
100 (sizeof(char) * (slots)))
101
102static int slots_per_page(struct kprobe_insn_cache *c)
103{
104 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105}
106
107enum kprobe_slot_state {
108 SLOT_CLEAN = 0,
109 SLOT_DIRTY = 1,
110 SLOT_USED = 2,
111};
112
113void __weak *alloc_insn_page(void)
114{
115 return module_alloc(PAGE_SIZE);
116}
117
118void __weak free_insn_page(void *page)
119{
120 module_memfree(page);
121}
122
123struct kprobe_insn_cache kprobe_insn_slots = {
124 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
125 .alloc = alloc_insn_page,
126 .free = free_insn_page,
127 .sym = KPROBE_INSN_PAGE_SYM,
128 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
129 .insn_size = MAX_INSN_SIZE,
130 .nr_garbage = 0,
131};
132static int collect_garbage_slots(struct kprobe_insn_cache *c);
133
134/**
135 * __get_insn_slot() - Find a slot on an executable page for an instruction.
136 * We allocate an executable page if there's no room on existing ones.
137 */
138kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
139{
140 struct kprobe_insn_page *kip;
141 kprobe_opcode_t *slot = NULL;
142
143 /* Since the slot array is not protected by rcu, we need a mutex */
144 mutex_lock(&c->mutex);
145 retry:
146 rcu_read_lock();
147 list_for_each_entry_rcu(kip, &c->pages, list) {
148 if (kip->nused < slots_per_page(c)) {
149 int i;
150 for (i = 0; i < slots_per_page(c); i++) {
151 if (kip->slot_used[i] == SLOT_CLEAN) {
152 kip->slot_used[i] = SLOT_USED;
153 kip->nused++;
154 slot = kip->insns + (i * c->insn_size);
155 rcu_read_unlock();
156 goto out;
157 }
158 }
159 /* kip->nused is broken. Fix it. */
160 kip->nused = slots_per_page(c);
161 WARN_ON(1);
162 }
163 }
164 rcu_read_unlock();
165
166 /* If there are any garbage slots, collect it and try again. */
167 if (c->nr_garbage && collect_garbage_slots(c) == 0)
168 goto retry;
169
170 /* All out of space. Need to allocate a new page. */
171 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
172 if (!kip)
173 goto out;
174
175 /*
176 * Use module_alloc so this page is within +/- 2GB of where the
177 * kernel image and loaded module images reside. This is required
178 * so x86_64 can correctly handle the %rip-relative fixups.
179 */
180 kip->insns = c->alloc();
181 if (!kip->insns) {
182 kfree(kip);
183 goto out;
184 }
185 INIT_LIST_HEAD(&kip->list);
186 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
187 kip->slot_used[0] = SLOT_USED;
188 kip->nused = 1;
189 kip->ngarbage = 0;
190 kip->cache = c;
191 list_add_rcu(&kip->list, &c->pages);
192 slot = kip->insns;
193
194 /* Record the perf ksymbol register event after adding the page */
195 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
196 PAGE_SIZE, false, c->sym);
197out:
198 mutex_unlock(&c->mutex);
199 return slot;
200}
201
202/* Return 1 if all garbages are collected, otherwise 0. */
203static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
204{
205 kip->slot_used[idx] = SLOT_CLEAN;
206 kip->nused--;
207 if (kip->nused == 0) {
208 /*
209 * Page is no longer in use. Free it unless
210 * it's the last one. We keep the last one
211 * so as not to have to set it up again the
212 * next time somebody inserts a probe.
213 */
214 if (!list_is_singular(&kip->list)) {
215 /*
216 * Record perf ksymbol unregister event before removing
217 * the page.
218 */
219 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
220 (unsigned long)kip->insns, PAGE_SIZE, true,
221 kip->cache->sym);
222 list_del_rcu(&kip->list);
223 synchronize_rcu();
224 kip->cache->free(kip->insns);
225 kfree(kip);
226 }
227 return 1;
228 }
229 return 0;
230}
231
232static int collect_garbage_slots(struct kprobe_insn_cache *c)
233{
234 struct kprobe_insn_page *kip, *next;
235
236 /* Ensure no-one is interrupted on the garbages */
237 synchronize_rcu();
238
239 list_for_each_entry_safe(kip, next, &c->pages, list) {
240 int i;
241 if (kip->ngarbage == 0)
242 continue;
243 kip->ngarbage = 0; /* we will collect all garbages */
244 for (i = 0; i < slots_per_page(c); i++) {
245 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
246 break;
247 }
248 }
249 c->nr_garbage = 0;
250 return 0;
251}
252
253void __free_insn_slot(struct kprobe_insn_cache *c,
254 kprobe_opcode_t *slot, int dirty)
255{
256 struct kprobe_insn_page *kip;
257 long idx;
258
259 mutex_lock(&c->mutex);
260 rcu_read_lock();
261 list_for_each_entry_rcu(kip, &c->pages, list) {
262 idx = ((long)slot - (long)kip->insns) /
263 (c->insn_size * sizeof(kprobe_opcode_t));
264 if (idx >= 0 && idx < slots_per_page(c))
265 goto out;
266 }
267 /* Could not find this slot. */
268 WARN_ON(1);
269 kip = NULL;
270out:
271 rcu_read_unlock();
272 /* Mark and sweep: this may sleep */
273 if (kip) {
274 /* Check double free */
275 WARN_ON(kip->slot_used[idx] != SLOT_USED);
276 if (dirty) {
277 kip->slot_used[idx] = SLOT_DIRTY;
278 kip->ngarbage++;
279 if (++c->nr_garbage > slots_per_page(c))
280 collect_garbage_slots(c);
281 } else {
282 collect_one_slot(kip, idx);
283 }
284 }
285 mutex_unlock(&c->mutex);
286}
287
288/*
289 * Check given address is on the page of kprobe instruction slots.
290 * This will be used for checking whether the address on a stack
291 * is on a text area or not.
292 */
293bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
294{
295 struct kprobe_insn_page *kip;
296 bool ret = false;
297
298 rcu_read_lock();
299 list_for_each_entry_rcu(kip, &c->pages, list) {
300 if (addr >= (unsigned long)kip->insns &&
301 addr < (unsigned long)kip->insns + PAGE_SIZE) {
302 ret = true;
303 break;
304 }
305 }
306 rcu_read_unlock();
307
308 return ret;
309}
310
311int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
312 unsigned long *value, char *type, char *sym)
313{
314 struct kprobe_insn_page *kip;
315 int ret = -ERANGE;
316
317 rcu_read_lock();
318 list_for_each_entry_rcu(kip, &c->pages, list) {
319 if ((*symnum)--)
320 continue;
321 strlcpy(sym, c->sym, KSYM_NAME_LEN);
322 *type = 't';
323 *value = (unsigned long)kip->insns;
324 ret = 0;
325 break;
326 }
327 rcu_read_unlock();
328
329 return ret;
330}
331
332#ifdef CONFIG_OPTPROBES
333/* For optimized_kprobe buffer */
334struct kprobe_insn_cache kprobe_optinsn_slots = {
335 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
336 .alloc = alloc_insn_page,
337 .free = free_insn_page,
338 .sym = KPROBE_OPTINSN_PAGE_SYM,
339 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
340 /* .insn_size is initialized later */
341 .nr_garbage = 0,
342};
343#endif
344#endif
345
346/* We have preemption disabled.. so it is safe to use __ versions */
347static inline void set_kprobe_instance(struct kprobe *kp)
348{
349 __this_cpu_write(kprobe_instance, kp);
350}
351
352static inline void reset_kprobe_instance(void)
353{
354 __this_cpu_write(kprobe_instance, NULL);
355}
356
357/*
358 * This routine is called either:
359 * - under the kprobe_mutex - during kprobe_[un]register()
360 * OR
361 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
362 */
363struct kprobe *get_kprobe(void *addr)
364{
365 struct hlist_head *head;
366 struct kprobe *p;
367
368 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
369 hlist_for_each_entry_rcu(p, head, hlist,
370 lockdep_is_held(&kprobe_mutex)) {
371 if (p->addr == addr)
372 return p;
373 }
374
375 return NULL;
376}
377NOKPROBE_SYMBOL(get_kprobe);
378
379static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
380
381/* Return true if the kprobe is an aggregator */
382static inline int kprobe_aggrprobe(struct kprobe *p)
383{
384 return p->pre_handler == aggr_pre_handler;
385}
386
387/* Return true(!0) if the kprobe is unused */
388static inline int kprobe_unused(struct kprobe *p)
389{
390 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
391 list_empty(&p->list);
392}
393
394/*
395 * Keep all fields in the kprobe consistent
396 */
397static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
398{
399 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
400 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
401}
402
403#ifdef CONFIG_OPTPROBES
404/* NOTE: change this value only with kprobe_mutex held */
405static bool kprobes_allow_optimization;
406
407/*
408 * Call all pre_handler on the list, but ignores its return value.
409 * This must be called from arch-dep optimized caller.
410 */
411void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
412{
413 struct kprobe *kp;
414
415 list_for_each_entry_rcu(kp, &p->list, list) {
416 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
417 set_kprobe_instance(kp);
418 kp->pre_handler(kp, regs);
419 }
420 reset_kprobe_instance();
421 }
422}
423NOKPROBE_SYMBOL(opt_pre_handler);
424
425/* Free optimized instructions and optimized_kprobe */
426static void free_aggr_kprobe(struct kprobe *p)
427{
428 struct optimized_kprobe *op;
429
430 op = container_of(p, struct optimized_kprobe, kp);
431 arch_remove_optimized_kprobe(op);
432 arch_remove_kprobe(p);
433 kfree(op);
434}
435
436/* Return true(!0) if the kprobe is ready for optimization. */
437static inline int kprobe_optready(struct kprobe *p)
438{
439 struct optimized_kprobe *op;
440
441 if (kprobe_aggrprobe(p)) {
442 op = container_of(p, struct optimized_kprobe, kp);
443 return arch_prepared_optinsn(&op->optinsn);
444 }
445
446 return 0;
447}
448
449/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
450static inline int kprobe_disarmed(struct kprobe *p)
451{
452 struct optimized_kprobe *op;
453
454 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
455 if (!kprobe_aggrprobe(p))
456 return kprobe_disabled(p);
457
458 op = container_of(p, struct optimized_kprobe, kp);
459
460 return kprobe_disabled(p) && list_empty(&op->list);
461}
462
463/* Return true(!0) if the probe is queued on (un)optimizing lists */
464static int kprobe_queued(struct kprobe *p)
465{
466 struct optimized_kprobe *op;
467
468 if (kprobe_aggrprobe(p)) {
469 op = container_of(p, struct optimized_kprobe, kp);
470 if (!list_empty(&op->list))
471 return 1;
472 }
473 return 0;
474}
475
476/*
477 * Return an optimized kprobe whose optimizing code replaces
478 * instructions including addr (exclude breakpoint).
479 */
480static struct kprobe *get_optimized_kprobe(unsigned long addr)
481{
482 int i;
483 struct kprobe *p = NULL;
484 struct optimized_kprobe *op;
485
486 /* Don't check i == 0, since that is a breakpoint case. */
487 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
488 p = get_kprobe((void *)(addr - i));
489
490 if (p && kprobe_optready(p)) {
491 op = container_of(p, struct optimized_kprobe, kp);
492 if (arch_within_optimized_kprobe(op, addr))
493 return p;
494 }
495
496 return NULL;
497}
498
499/* Optimization staging list, protected by kprobe_mutex */
500static LIST_HEAD(optimizing_list);
501static LIST_HEAD(unoptimizing_list);
502static LIST_HEAD(freeing_list);
503
504static void kprobe_optimizer(struct work_struct *work);
505static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
506#define OPTIMIZE_DELAY 5
507
508/*
509 * Optimize (replace a breakpoint with a jump) kprobes listed on
510 * optimizing_list.
511 */
512static void do_optimize_kprobes(void)
513{
514 lockdep_assert_held(&text_mutex);
515 /*
516 * The optimization/unoptimization refers online_cpus via
517 * stop_machine() and cpu-hotplug modifies online_cpus.
518 * And same time, text_mutex will be held in cpu-hotplug and here.
519 * This combination can cause a deadlock (cpu-hotplug try to lock
520 * text_mutex but stop_machine can not be done because online_cpus
521 * has been changed)
522 * To avoid this deadlock, caller must have locked cpu hotplug
523 * for preventing cpu-hotplug outside of text_mutex locking.
524 */
525 lockdep_assert_cpus_held();
526
527 /* Optimization never be done when disarmed */
528 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
529 list_empty(&optimizing_list))
530 return;
531
532 arch_optimize_kprobes(&optimizing_list);
533}
534
535/*
536 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
537 * if need) kprobes listed on unoptimizing_list.
538 */
539static void do_unoptimize_kprobes(void)
540{
541 struct optimized_kprobe *op, *tmp;
542
543 lockdep_assert_held(&text_mutex);
544 /* See comment in do_optimize_kprobes() */
545 lockdep_assert_cpus_held();
546
547 /* Unoptimization must be done anytime */
548 if (list_empty(&unoptimizing_list))
549 return;
550
551 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
552 /* Loop free_list for disarming */
553 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
554 /* Switching from detour code to origin */
555 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
556 /* Disarm probes if marked disabled */
557 if (kprobe_disabled(&op->kp))
558 arch_disarm_kprobe(&op->kp);
559 if (kprobe_unused(&op->kp)) {
560 /*
561 * Remove unused probes from hash list. After waiting
562 * for synchronization, these probes are reclaimed.
563 * (reclaiming is done by do_free_cleaned_kprobes.)
564 */
565 hlist_del_rcu(&op->kp.hlist);
566 } else
567 list_del_init(&op->list);
568 }
569}
570
571/* Reclaim all kprobes on the free_list */
572static void do_free_cleaned_kprobes(void)
573{
574 struct optimized_kprobe *op, *tmp;
575
576 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
577 list_del_init(&op->list);
578 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
579 /*
580 * This must not happen, but if there is a kprobe
581 * still in use, keep it on kprobes hash list.
582 */
583 continue;
584 }
585 free_aggr_kprobe(&op->kp);
586 }
587}
588
589/* Start optimizer after OPTIMIZE_DELAY passed */
590static void kick_kprobe_optimizer(void)
591{
592 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
593}
594
595/* Kprobe jump optimizer */
596static void kprobe_optimizer(struct work_struct *work)
597{
598 mutex_lock(&kprobe_mutex);
599 cpus_read_lock();
600 mutex_lock(&text_mutex);
601
602 /*
603 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
604 * kprobes before waiting for quiesence period.
605 */
606 do_unoptimize_kprobes();
607
608 /*
609 * Step 2: Wait for quiesence period to ensure all potentially
610 * preempted tasks to have normally scheduled. Because optprobe
611 * may modify multiple instructions, there is a chance that Nth
612 * instruction is preempted. In that case, such tasks can return
613 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
614 * Note that on non-preemptive kernel, this is transparently converted
615 * to synchronoze_sched() to wait for all interrupts to have completed.
616 */
617 synchronize_rcu_tasks();
618
619 /* Step 3: Optimize kprobes after quiesence period */
620 do_optimize_kprobes();
621
622 /* Step 4: Free cleaned kprobes after quiesence period */
623 do_free_cleaned_kprobes();
624
625 mutex_unlock(&text_mutex);
626 cpus_read_unlock();
627
628 /* Step 5: Kick optimizer again if needed */
629 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
630 kick_kprobe_optimizer();
631
632 mutex_unlock(&kprobe_mutex);
633}
634
635/* Wait for completing optimization and unoptimization */
636void wait_for_kprobe_optimizer(void)
637{
638 mutex_lock(&kprobe_mutex);
639
640 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
641 mutex_unlock(&kprobe_mutex);
642
643 /* this will also make optimizing_work execute immmediately */
644 flush_delayed_work(&optimizing_work);
645 /* @optimizing_work might not have been queued yet, relax */
646 cpu_relax();
647
648 mutex_lock(&kprobe_mutex);
649 }
650
651 mutex_unlock(&kprobe_mutex);
652}
653
654static bool optprobe_queued_unopt(struct optimized_kprobe *op)
655{
656 struct optimized_kprobe *_op;
657
658 list_for_each_entry(_op, &unoptimizing_list, list) {
659 if (op == _op)
660 return true;
661 }
662
663 return false;
664}
665
666/* Optimize kprobe if p is ready to be optimized */
667static void optimize_kprobe(struct kprobe *p)
668{
669 struct optimized_kprobe *op;
670
671 /* Check if the kprobe is disabled or not ready for optimization. */
672 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
673 (kprobe_disabled(p) || kprobes_all_disarmed))
674 return;
675
676 /* kprobes with post_handler can not be optimized */
677 if (p->post_handler)
678 return;
679
680 op = container_of(p, struct optimized_kprobe, kp);
681
682 /* Check there is no other kprobes at the optimized instructions */
683 if (arch_check_optimized_kprobe(op) < 0)
684 return;
685
686 /* Check if it is already optimized. */
687 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
688 if (optprobe_queued_unopt(op)) {
689 /* This is under unoptimizing. Just dequeue the probe */
690 list_del_init(&op->list);
691 }
692 return;
693 }
694 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
695
696 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
697 if (WARN_ON_ONCE(!list_empty(&op->list)))
698 return;
699
700 list_add(&op->list, &optimizing_list);
701 kick_kprobe_optimizer();
702}
703
704/* Short cut to direct unoptimizing */
705static void force_unoptimize_kprobe(struct optimized_kprobe *op)
706{
707 lockdep_assert_cpus_held();
708 arch_unoptimize_kprobe(op);
709 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
710}
711
712/* Unoptimize a kprobe if p is optimized */
713static void unoptimize_kprobe(struct kprobe *p, bool force)
714{
715 struct optimized_kprobe *op;
716
717 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
718 return; /* This is not an optprobe nor optimized */
719
720 op = container_of(p, struct optimized_kprobe, kp);
721 if (!kprobe_optimized(p))
722 return;
723
724 if (!list_empty(&op->list)) {
725 if (optprobe_queued_unopt(op)) {
726 /* Queued in unoptimizing queue */
727 if (force) {
728 /*
729 * Forcibly unoptimize the kprobe here, and queue it
730 * in the freeing list for release afterwards.
731 */
732 force_unoptimize_kprobe(op);
733 list_move(&op->list, &freeing_list);
734 }
735 } else {
736 /* Dequeue from the optimizing queue */
737 list_del_init(&op->list);
738 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
739 }
740 return;
741 }
742
743 /* Optimized kprobe case */
744 if (force) {
745 /* Forcibly update the code: this is a special case */
746 force_unoptimize_kprobe(op);
747 } else {
748 list_add(&op->list, &unoptimizing_list);
749 kick_kprobe_optimizer();
750 }
751}
752
753/* Cancel unoptimizing for reusing */
754static int reuse_unused_kprobe(struct kprobe *ap)
755{
756 struct optimized_kprobe *op;
757
758 /*
759 * Unused kprobe MUST be on the way of delayed unoptimizing (means
760 * there is still a relative jump) and disabled.
761 */
762 op = container_of(ap, struct optimized_kprobe, kp);
763 WARN_ON_ONCE(list_empty(&op->list));
764 /* Enable the probe again */
765 ap->flags &= ~KPROBE_FLAG_DISABLED;
766 /* Optimize it again (remove from op->list) */
767 if (!kprobe_optready(ap))
768 return -EINVAL;
769
770 optimize_kprobe(ap);
771 return 0;
772}
773
774/* Remove optimized instructions */
775static void kill_optimized_kprobe(struct kprobe *p)
776{
777 struct optimized_kprobe *op;
778
779 op = container_of(p, struct optimized_kprobe, kp);
780 if (!list_empty(&op->list))
781 /* Dequeue from the (un)optimization queue */
782 list_del_init(&op->list);
783 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
784
785 if (kprobe_unused(p)) {
786 /* Enqueue if it is unused */
787 list_add(&op->list, &freeing_list);
788 /*
789 * Remove unused probes from the hash list. After waiting
790 * for synchronization, this probe is reclaimed.
791 * (reclaiming is done by do_free_cleaned_kprobes().)
792 */
793 hlist_del_rcu(&op->kp.hlist);
794 }
795
796 /* Don't touch the code, because it is already freed. */
797 arch_remove_optimized_kprobe(op);
798}
799
800static inline
801void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
802{
803 if (!kprobe_ftrace(p))
804 arch_prepare_optimized_kprobe(op, p);
805}
806
807/* Try to prepare optimized instructions */
808static void prepare_optimized_kprobe(struct kprobe *p)
809{
810 struct optimized_kprobe *op;
811
812 op = container_of(p, struct optimized_kprobe, kp);
813 __prepare_optimized_kprobe(op, p);
814}
815
816/* Allocate new optimized_kprobe and try to prepare optimized instructions */
817static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
818{
819 struct optimized_kprobe *op;
820
821 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
822 if (!op)
823 return NULL;
824
825 INIT_LIST_HEAD(&op->list);
826 op->kp.addr = p->addr;
827 __prepare_optimized_kprobe(op, p);
828
829 return &op->kp;
830}
831
832static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
833
834/*
835 * Prepare an optimized_kprobe and optimize it
836 * NOTE: p must be a normal registered kprobe
837 */
838static void try_to_optimize_kprobe(struct kprobe *p)
839{
840 struct kprobe *ap;
841 struct optimized_kprobe *op;
842
843 /* Impossible to optimize ftrace-based kprobe */
844 if (kprobe_ftrace(p))
845 return;
846
847 /* For preparing optimization, jump_label_text_reserved() is called */
848 cpus_read_lock();
849 jump_label_lock();
850 mutex_lock(&text_mutex);
851
852 ap = alloc_aggr_kprobe(p);
853 if (!ap)
854 goto out;
855
856 op = container_of(ap, struct optimized_kprobe, kp);
857 if (!arch_prepared_optinsn(&op->optinsn)) {
858 /* If failed to setup optimizing, fallback to kprobe */
859 arch_remove_optimized_kprobe(op);
860 kfree(op);
861 goto out;
862 }
863
864 init_aggr_kprobe(ap, p);
865 optimize_kprobe(ap); /* This just kicks optimizer thread */
866
867out:
868 mutex_unlock(&text_mutex);
869 jump_label_unlock();
870 cpus_read_unlock();
871}
872
873#ifdef CONFIG_SYSCTL
874static void optimize_all_kprobes(void)
875{
876 struct hlist_head *head;
877 struct kprobe *p;
878 unsigned int i;
879
880 mutex_lock(&kprobe_mutex);
881 /* If optimization is already allowed, just return */
882 if (kprobes_allow_optimization)
883 goto out;
884
885 cpus_read_lock();
886 kprobes_allow_optimization = true;
887 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
888 head = &kprobe_table[i];
889 hlist_for_each_entry(p, head, hlist)
890 if (!kprobe_disabled(p))
891 optimize_kprobe(p);
892 }
893 cpus_read_unlock();
894 printk(KERN_INFO "Kprobes globally optimized\n");
895out:
896 mutex_unlock(&kprobe_mutex);
897}
898
899static void unoptimize_all_kprobes(void)
900{
901 struct hlist_head *head;
902 struct kprobe *p;
903 unsigned int i;
904
905 mutex_lock(&kprobe_mutex);
906 /* If optimization is already prohibited, just return */
907 if (!kprobes_allow_optimization) {
908 mutex_unlock(&kprobe_mutex);
909 return;
910 }
911
912 cpus_read_lock();
913 kprobes_allow_optimization = false;
914 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
915 head = &kprobe_table[i];
916 hlist_for_each_entry(p, head, hlist) {
917 if (!kprobe_disabled(p))
918 unoptimize_kprobe(p, false);
919 }
920 }
921 cpus_read_unlock();
922 mutex_unlock(&kprobe_mutex);
923
924 /* Wait for unoptimizing completion */
925 wait_for_kprobe_optimizer();
926 printk(KERN_INFO "Kprobes globally unoptimized\n");
927}
928
929static DEFINE_MUTEX(kprobe_sysctl_mutex);
930int sysctl_kprobes_optimization;
931int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
932 void *buffer, size_t *length,
933 loff_t *ppos)
934{
935 int ret;
936
937 mutex_lock(&kprobe_sysctl_mutex);
938 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
939 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
940
941 if (sysctl_kprobes_optimization)
942 optimize_all_kprobes();
943 else
944 unoptimize_all_kprobes();
945 mutex_unlock(&kprobe_sysctl_mutex);
946
947 return ret;
948}
949#endif /* CONFIG_SYSCTL */
950
951/* Put a breakpoint for a probe. Must be called with text_mutex locked */
952static void __arm_kprobe(struct kprobe *p)
953{
954 struct kprobe *_p;
955
956 /* Check collision with other optimized kprobes */
957 _p = get_optimized_kprobe((unsigned long)p->addr);
958 if (unlikely(_p))
959 /* Fallback to unoptimized kprobe */
960 unoptimize_kprobe(_p, true);
961
962 arch_arm_kprobe(p);
963 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
964}
965
966/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
967static void __disarm_kprobe(struct kprobe *p, bool reopt)
968{
969 struct kprobe *_p;
970
971 /* Try to unoptimize */
972 unoptimize_kprobe(p, kprobes_all_disarmed);
973
974 if (!kprobe_queued(p)) {
975 arch_disarm_kprobe(p);
976 /* If another kprobe was blocked, optimize it. */
977 _p = get_optimized_kprobe((unsigned long)p->addr);
978 if (unlikely(_p) && reopt)
979 optimize_kprobe(_p);
980 }
981 /* TODO: reoptimize others after unoptimized this probe */
982}
983
984#else /* !CONFIG_OPTPROBES */
985
986#define optimize_kprobe(p) do {} while (0)
987#define unoptimize_kprobe(p, f) do {} while (0)
988#define kill_optimized_kprobe(p) do {} while (0)
989#define prepare_optimized_kprobe(p) do {} while (0)
990#define try_to_optimize_kprobe(p) do {} while (0)
991#define __arm_kprobe(p) arch_arm_kprobe(p)
992#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
993#define kprobe_disarmed(p) kprobe_disabled(p)
994#define wait_for_kprobe_optimizer() do {} while (0)
995
996static int reuse_unused_kprobe(struct kprobe *ap)
997{
998 /*
999 * If the optimized kprobe is NOT supported, the aggr kprobe is
1000 * released at the same time that the last aggregated kprobe is
1001 * unregistered.
1002 * Thus there should be no chance to reuse unused kprobe.
1003 */
1004 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1005 return -EINVAL;
1006}
1007
1008static void free_aggr_kprobe(struct kprobe *p)
1009{
1010 arch_remove_kprobe(p);
1011 kfree(p);
1012}
1013
1014static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1015{
1016 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1017}
1018#endif /* CONFIG_OPTPROBES */
1019
1020#ifdef CONFIG_KPROBES_ON_FTRACE
1021static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1022 .func = kprobe_ftrace_handler,
1023 .flags = FTRACE_OPS_FL_SAVE_REGS,
1024};
1025
1026static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1027 .func = kprobe_ftrace_handler,
1028 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1029};
1030
1031static int kprobe_ipmodify_enabled;
1032static int kprobe_ftrace_enabled;
1033
1034/* Must ensure p->addr is really on ftrace */
1035static int prepare_kprobe(struct kprobe *p)
1036{
1037 if (!kprobe_ftrace(p))
1038 return arch_prepare_kprobe(p);
1039
1040 return arch_prepare_kprobe_ftrace(p);
1041}
1042
1043/* Caller must lock kprobe_mutex */
1044static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1045 int *cnt)
1046{
1047 int ret = 0;
1048
1049 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1050 if (ret) {
1051 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1052 p->addr, ret);
1053 return ret;
1054 }
1055
1056 if (*cnt == 0) {
1057 ret = register_ftrace_function(ops);
1058 if (ret) {
1059 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1060 goto err_ftrace;
1061 }
1062 }
1063
1064 (*cnt)++;
1065 return ret;
1066
1067err_ftrace:
1068 /*
1069 * At this point, sinec ops is not registered, we should be sefe from
1070 * registering empty filter.
1071 */
1072 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1073 return ret;
1074}
1075
1076static int arm_kprobe_ftrace(struct kprobe *p)
1077{
1078 bool ipmodify = (p->post_handler != NULL);
1079
1080 return __arm_kprobe_ftrace(p,
1081 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1082 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1083}
1084
1085/* Caller must lock kprobe_mutex */
1086static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1087 int *cnt)
1088{
1089 int ret = 0;
1090
1091 if (*cnt == 1) {
1092 ret = unregister_ftrace_function(ops);
1093 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1094 return ret;
1095 }
1096
1097 (*cnt)--;
1098
1099 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1100 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1101 p->addr, ret);
1102 return ret;
1103}
1104
1105static int disarm_kprobe_ftrace(struct kprobe *p)
1106{
1107 bool ipmodify = (p->post_handler != NULL);
1108
1109 return __disarm_kprobe_ftrace(p,
1110 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1111 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1112}
1113#else /* !CONFIG_KPROBES_ON_FTRACE */
1114static inline int prepare_kprobe(struct kprobe *p)
1115{
1116 return arch_prepare_kprobe(p);
1117}
1118
1119static inline int arm_kprobe_ftrace(struct kprobe *p)
1120{
1121 return -ENODEV;
1122}
1123
1124static inline int disarm_kprobe_ftrace(struct kprobe *p)
1125{
1126 return -ENODEV;
1127}
1128#endif
1129
1130/* Arm a kprobe with text_mutex */
1131static int arm_kprobe(struct kprobe *kp)
1132{
1133 if (unlikely(kprobe_ftrace(kp)))
1134 return arm_kprobe_ftrace(kp);
1135
1136 cpus_read_lock();
1137 mutex_lock(&text_mutex);
1138 __arm_kprobe(kp);
1139 mutex_unlock(&text_mutex);
1140 cpus_read_unlock();
1141
1142 return 0;
1143}
1144
1145/* Disarm a kprobe with text_mutex */
1146static int disarm_kprobe(struct kprobe *kp, bool reopt)
1147{
1148 if (unlikely(kprobe_ftrace(kp)))
1149 return disarm_kprobe_ftrace(kp);
1150
1151 cpus_read_lock();
1152 mutex_lock(&text_mutex);
1153 __disarm_kprobe(kp, reopt);
1154 mutex_unlock(&text_mutex);
1155 cpus_read_unlock();
1156
1157 return 0;
1158}
1159
1160/*
1161 * Aggregate handlers for multiple kprobes support - these handlers
1162 * take care of invoking the individual kprobe handlers on p->list
1163 */
1164static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1165{
1166 struct kprobe *kp;
1167
1168 list_for_each_entry_rcu(kp, &p->list, list) {
1169 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1170 set_kprobe_instance(kp);
1171 if (kp->pre_handler(kp, regs))
1172 return 1;
1173 }
1174 reset_kprobe_instance();
1175 }
1176 return 0;
1177}
1178NOKPROBE_SYMBOL(aggr_pre_handler);
1179
1180static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1181 unsigned long flags)
1182{
1183 struct kprobe *kp;
1184
1185 list_for_each_entry_rcu(kp, &p->list, list) {
1186 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1187 set_kprobe_instance(kp);
1188 kp->post_handler(kp, regs, flags);
1189 reset_kprobe_instance();
1190 }
1191 }
1192}
1193NOKPROBE_SYMBOL(aggr_post_handler);
1194
1195static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1196 int trapnr)
1197{
1198 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1199
1200 /*
1201 * if we faulted "during" the execution of a user specified
1202 * probe handler, invoke just that probe's fault handler
1203 */
1204 if (cur && cur->fault_handler) {
1205 if (cur->fault_handler(cur, regs, trapnr))
1206 return 1;
1207 }
1208 return 0;
1209}
1210NOKPROBE_SYMBOL(aggr_fault_handler);
1211
1212/* Walks the list and increments nmissed count for multiprobe case */
1213void kprobes_inc_nmissed_count(struct kprobe *p)
1214{
1215 struct kprobe *kp;
1216 if (!kprobe_aggrprobe(p)) {
1217 p->nmissed++;
1218 } else {
1219 list_for_each_entry_rcu(kp, &p->list, list)
1220 kp->nmissed++;
1221 }
1222 return;
1223}
1224NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1225
1226void recycle_rp_inst(struct kretprobe_instance *ri,
1227 struct hlist_head *head)
1228{
1229 struct kretprobe *rp = ri->rp;
1230
1231 /* remove rp inst off the rprobe_inst_table */
1232 hlist_del(&ri->hlist);
1233 INIT_HLIST_NODE(&ri->hlist);
1234 if (likely(rp)) {
1235 raw_spin_lock(&rp->lock);
1236 hlist_add_head(&ri->hlist, &rp->free_instances);
1237 raw_spin_unlock(&rp->lock);
1238 } else
1239 /* Unregistering */
1240 hlist_add_head(&ri->hlist, head);
1241}
1242NOKPROBE_SYMBOL(recycle_rp_inst);
1243
1244void kretprobe_hash_lock(struct task_struct *tsk,
1245 struct hlist_head **head, unsigned long *flags)
1246__acquires(hlist_lock)
1247{
1248 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1249 raw_spinlock_t *hlist_lock;
1250
1251 *head = &kretprobe_inst_table[hash];
1252 hlist_lock = kretprobe_table_lock_ptr(hash);
1253 raw_spin_lock_irqsave(hlist_lock, *flags);
1254}
1255NOKPROBE_SYMBOL(kretprobe_hash_lock);
1256
1257static void kretprobe_table_lock(unsigned long hash,
1258 unsigned long *flags)
1259__acquires(hlist_lock)
1260{
1261 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1262 raw_spin_lock_irqsave(hlist_lock, *flags);
1263}
1264NOKPROBE_SYMBOL(kretprobe_table_lock);
1265
1266void kretprobe_hash_unlock(struct task_struct *tsk,
1267 unsigned long *flags)
1268__releases(hlist_lock)
1269{
1270 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1271 raw_spinlock_t *hlist_lock;
1272
1273 hlist_lock = kretprobe_table_lock_ptr(hash);
1274 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1275}
1276NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1277
1278static void kretprobe_table_unlock(unsigned long hash,
1279 unsigned long *flags)
1280__releases(hlist_lock)
1281{
1282 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1283 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1284}
1285NOKPROBE_SYMBOL(kretprobe_table_unlock);
1286
1287struct kprobe kprobe_busy = {
1288 .addr = (void *) get_kprobe,
1289};
1290
1291void kprobe_busy_begin(void)
1292{
1293 struct kprobe_ctlblk *kcb;
1294
1295 preempt_disable();
1296 __this_cpu_write(current_kprobe, &kprobe_busy);
1297 kcb = get_kprobe_ctlblk();
1298 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1299}
1300
1301void kprobe_busy_end(void)
1302{
1303 __this_cpu_write(current_kprobe, NULL);
1304 preempt_enable();
1305}
1306
1307/*
1308 * This function is called from finish_task_switch when task tk becomes dead,
1309 * so that we can recycle any function-return probe instances associated
1310 * with this task. These left over instances represent probed functions
1311 * that have been called but will never return.
1312 */
1313void kprobe_flush_task(struct task_struct *tk)
1314{
1315 struct kretprobe_instance *ri;
1316 struct hlist_head *head, empty_rp;
1317 struct hlist_node *tmp;
1318 unsigned long hash, flags = 0;
1319
1320 if (unlikely(!kprobes_initialized))
1321 /* Early boot. kretprobe_table_locks not yet initialized. */
1322 return;
1323
1324 kprobe_busy_begin();
1325
1326 INIT_HLIST_HEAD(&empty_rp);
1327 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1328 head = &kretprobe_inst_table[hash];
1329 kretprobe_table_lock(hash, &flags);
1330 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1331 if (ri->task == tk)
1332 recycle_rp_inst(ri, &empty_rp);
1333 }
1334 kretprobe_table_unlock(hash, &flags);
1335 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1336 hlist_del(&ri->hlist);
1337 kfree(ri);
1338 }
1339
1340 kprobe_busy_end();
1341}
1342NOKPROBE_SYMBOL(kprobe_flush_task);
1343
1344static inline void free_rp_inst(struct kretprobe *rp)
1345{
1346 struct kretprobe_instance *ri;
1347 struct hlist_node *next;
1348
1349 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1350 hlist_del(&ri->hlist);
1351 kfree(ri);
1352 }
1353}
1354
1355static void cleanup_rp_inst(struct kretprobe *rp)
1356{
1357 unsigned long flags, hash;
1358 struct kretprobe_instance *ri;
1359 struct hlist_node *next;
1360 struct hlist_head *head;
1361
1362 /* No race here */
1363 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1364 kretprobe_table_lock(hash, &flags);
1365 head = &kretprobe_inst_table[hash];
1366 hlist_for_each_entry_safe(ri, next, head, hlist) {
1367 if (ri->rp == rp)
1368 ri->rp = NULL;
1369 }
1370 kretprobe_table_unlock(hash, &flags);
1371 }
1372 free_rp_inst(rp);
1373}
1374NOKPROBE_SYMBOL(cleanup_rp_inst);
1375
1376/* Add the new probe to ap->list */
1377static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1378{
1379 if (p->post_handler)
1380 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1381
1382 list_add_rcu(&p->list, &ap->list);
1383 if (p->post_handler && !ap->post_handler)
1384 ap->post_handler = aggr_post_handler;
1385
1386 return 0;
1387}
1388
1389/*
1390 * Fill in the required fields of the "manager kprobe". Replace the
1391 * earlier kprobe in the hlist with the manager kprobe
1392 */
1393static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1394{
1395 /* Copy p's insn slot to ap */
1396 copy_kprobe(p, ap);
1397 flush_insn_slot(ap);
1398 ap->addr = p->addr;
1399 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1400 ap->pre_handler = aggr_pre_handler;
1401 ap->fault_handler = aggr_fault_handler;
1402 /* We don't care the kprobe which has gone. */
1403 if (p->post_handler && !kprobe_gone(p))
1404 ap->post_handler = aggr_post_handler;
1405
1406 INIT_LIST_HEAD(&ap->list);
1407 INIT_HLIST_NODE(&ap->hlist);
1408
1409 list_add_rcu(&p->list, &ap->list);
1410 hlist_replace_rcu(&p->hlist, &ap->hlist);
1411}
1412
1413/*
1414 * This is the second or subsequent kprobe at the address - handle
1415 * the intricacies
1416 */
1417static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1418{
1419 int ret = 0;
1420 struct kprobe *ap = orig_p;
1421
1422 cpus_read_lock();
1423
1424 /* For preparing optimization, jump_label_text_reserved() is called */
1425 jump_label_lock();
1426 mutex_lock(&text_mutex);
1427
1428 if (!kprobe_aggrprobe(orig_p)) {
1429 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1430 ap = alloc_aggr_kprobe(orig_p);
1431 if (!ap) {
1432 ret = -ENOMEM;
1433 goto out;
1434 }
1435 init_aggr_kprobe(ap, orig_p);
1436 } else if (kprobe_unused(ap)) {
1437 /* This probe is going to die. Rescue it */
1438 ret = reuse_unused_kprobe(ap);
1439 if (ret)
1440 goto out;
1441 }
1442
1443 if (kprobe_gone(ap)) {
1444 /*
1445 * Attempting to insert new probe at the same location that
1446 * had a probe in the module vaddr area which already
1447 * freed. So, the instruction slot has already been
1448 * released. We need a new slot for the new probe.
1449 */
1450 ret = arch_prepare_kprobe(ap);
1451 if (ret)
1452 /*
1453 * Even if fail to allocate new slot, don't need to
1454 * free aggr_probe. It will be used next time, or
1455 * freed by unregister_kprobe.
1456 */
1457 goto out;
1458
1459 /* Prepare optimized instructions if possible. */
1460 prepare_optimized_kprobe(ap);
1461
1462 /*
1463 * Clear gone flag to prevent allocating new slot again, and
1464 * set disabled flag because it is not armed yet.
1465 */
1466 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1467 | KPROBE_FLAG_DISABLED;
1468 }
1469
1470 /* Copy ap's insn slot to p */
1471 copy_kprobe(ap, p);
1472 ret = add_new_kprobe(ap, p);
1473
1474out:
1475 mutex_unlock(&text_mutex);
1476 jump_label_unlock();
1477 cpus_read_unlock();
1478
1479 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1480 ap->flags &= ~KPROBE_FLAG_DISABLED;
1481 if (!kprobes_all_disarmed) {
1482 /* Arm the breakpoint again. */
1483 ret = arm_kprobe(ap);
1484 if (ret) {
1485 ap->flags |= KPROBE_FLAG_DISABLED;
1486 list_del_rcu(&p->list);
1487 synchronize_rcu();
1488 }
1489 }
1490 }
1491 return ret;
1492}
1493
1494bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1495{
1496 /* The __kprobes marked functions and entry code must not be probed */
1497 return addr >= (unsigned long)__kprobes_text_start &&
1498 addr < (unsigned long)__kprobes_text_end;
1499}
1500
1501static bool __within_kprobe_blacklist(unsigned long addr)
1502{
1503 struct kprobe_blacklist_entry *ent;
1504
1505 if (arch_within_kprobe_blacklist(addr))
1506 return true;
1507 /*
1508 * If there exists a kprobe_blacklist, verify and
1509 * fail any probe registration in the prohibited area
1510 */
1511 list_for_each_entry(ent, &kprobe_blacklist, list) {
1512 if (addr >= ent->start_addr && addr < ent->end_addr)
1513 return true;
1514 }
1515 return false;
1516}
1517
1518bool within_kprobe_blacklist(unsigned long addr)
1519{
1520 char symname[KSYM_NAME_LEN], *p;
1521
1522 if (__within_kprobe_blacklist(addr))
1523 return true;
1524
1525 /* Check if the address is on a suffixed-symbol */
1526 if (!lookup_symbol_name(addr, symname)) {
1527 p = strchr(symname, '.');
1528 if (!p)
1529 return false;
1530 *p = '\0';
1531 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1532 if (addr)
1533 return __within_kprobe_blacklist(addr);
1534 }
1535 return false;
1536}
1537
1538/*
1539 * If we have a symbol_name argument, look it up and add the offset field
1540 * to it. This way, we can specify a relative address to a symbol.
1541 * This returns encoded errors if it fails to look up symbol or invalid
1542 * combination of parameters.
1543 */
1544static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1545 const char *symbol_name, unsigned int offset)
1546{
1547 if ((symbol_name && addr) || (!symbol_name && !addr))
1548 goto invalid;
1549
1550 if (symbol_name) {
1551 addr = kprobe_lookup_name(symbol_name, offset);
1552 if (!addr)
1553 return ERR_PTR(-ENOENT);
1554 }
1555
1556 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1557 if (addr)
1558 return addr;
1559
1560invalid:
1561 return ERR_PTR(-EINVAL);
1562}
1563
1564static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1565{
1566 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1567}
1568
1569/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1570static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1571{
1572 struct kprobe *ap, *list_p;
1573
1574 lockdep_assert_held(&kprobe_mutex);
1575
1576 ap = get_kprobe(p->addr);
1577 if (unlikely(!ap))
1578 return NULL;
1579
1580 if (p != ap) {
1581 list_for_each_entry(list_p, &ap->list, list)
1582 if (list_p == p)
1583 /* kprobe p is a valid probe */
1584 goto valid;
1585 return NULL;
1586 }
1587valid:
1588 return ap;
1589}
1590
1591/* Return error if the kprobe is being re-registered */
1592static inline int check_kprobe_rereg(struct kprobe *p)
1593{
1594 int ret = 0;
1595
1596 mutex_lock(&kprobe_mutex);
1597 if (__get_valid_kprobe(p))
1598 ret = -EINVAL;
1599 mutex_unlock(&kprobe_mutex);
1600
1601 return ret;
1602}
1603
1604int __weak arch_check_ftrace_location(struct kprobe *p)
1605{
1606 unsigned long ftrace_addr;
1607
1608 ftrace_addr = ftrace_location((unsigned long)p->addr);
1609 if (ftrace_addr) {
1610#ifdef CONFIG_KPROBES_ON_FTRACE
1611 /* Given address is not on the instruction boundary */
1612 if ((unsigned long)p->addr != ftrace_addr)
1613 return -EILSEQ;
1614 p->flags |= KPROBE_FLAG_FTRACE;
1615#else /* !CONFIG_KPROBES_ON_FTRACE */
1616 return -EINVAL;
1617#endif
1618 }
1619 return 0;
1620}
1621
1622static int check_kprobe_address_safe(struct kprobe *p,
1623 struct module **probed_mod)
1624{
1625 int ret;
1626
1627 ret = arch_check_ftrace_location(p);
1628 if (ret)
1629 return ret;
1630 jump_label_lock();
1631 preempt_disable();
1632
1633 /* Ensure it is not in reserved area nor out of text */
1634 if (!kernel_text_address((unsigned long) p->addr) ||
1635 within_kprobe_blacklist((unsigned long) p->addr) ||
1636 jump_label_text_reserved(p->addr, p->addr) ||
1637 find_bug((unsigned long)p->addr)) {
1638 ret = -EINVAL;
1639 goto out;
1640 }
1641
1642 /* Check if are we probing a module */
1643 *probed_mod = __module_text_address((unsigned long) p->addr);
1644 if (*probed_mod) {
1645 /*
1646 * We must hold a refcount of the probed module while updating
1647 * its code to prohibit unexpected unloading.
1648 */
1649 if (unlikely(!try_module_get(*probed_mod))) {
1650 ret = -ENOENT;
1651 goto out;
1652 }
1653
1654 /*
1655 * If the module freed .init.text, we couldn't insert
1656 * kprobes in there.
1657 */
1658 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1659 (*probed_mod)->state != MODULE_STATE_COMING) {
1660 module_put(*probed_mod);
1661 *probed_mod = NULL;
1662 ret = -ENOENT;
1663 }
1664 }
1665out:
1666 preempt_enable();
1667 jump_label_unlock();
1668
1669 return ret;
1670}
1671
1672int register_kprobe(struct kprobe *p)
1673{
1674 int ret;
1675 struct kprobe *old_p;
1676 struct module *probed_mod;
1677 kprobe_opcode_t *addr;
1678
1679 /* Adjust probe address from symbol */
1680 addr = kprobe_addr(p);
1681 if (IS_ERR(addr))
1682 return PTR_ERR(addr);
1683 p->addr = addr;
1684
1685 ret = check_kprobe_rereg(p);
1686 if (ret)
1687 return ret;
1688
1689 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1690 p->flags &= KPROBE_FLAG_DISABLED;
1691 p->nmissed = 0;
1692 INIT_LIST_HEAD(&p->list);
1693
1694 ret = check_kprobe_address_safe(p, &probed_mod);
1695 if (ret)
1696 return ret;
1697
1698 mutex_lock(&kprobe_mutex);
1699
1700 old_p = get_kprobe(p->addr);
1701 if (old_p) {
1702 /* Since this may unoptimize old_p, locking text_mutex. */
1703 ret = register_aggr_kprobe(old_p, p);
1704 goto out;
1705 }
1706
1707 cpus_read_lock();
1708 /* Prevent text modification */
1709 mutex_lock(&text_mutex);
1710 ret = prepare_kprobe(p);
1711 mutex_unlock(&text_mutex);
1712 cpus_read_unlock();
1713 if (ret)
1714 goto out;
1715
1716 INIT_HLIST_NODE(&p->hlist);
1717 hlist_add_head_rcu(&p->hlist,
1718 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1719
1720 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1721 ret = arm_kprobe(p);
1722 if (ret) {
1723 hlist_del_rcu(&p->hlist);
1724 synchronize_rcu();
1725 goto out;
1726 }
1727 }
1728
1729 /* Try to optimize kprobe */
1730 try_to_optimize_kprobe(p);
1731out:
1732 mutex_unlock(&kprobe_mutex);
1733
1734 if (probed_mod)
1735 module_put(probed_mod);
1736
1737 return ret;
1738}
1739EXPORT_SYMBOL_GPL(register_kprobe);
1740
1741/* Check if all probes on the aggrprobe are disabled */
1742static int aggr_kprobe_disabled(struct kprobe *ap)
1743{
1744 struct kprobe *kp;
1745
1746 lockdep_assert_held(&kprobe_mutex);
1747
1748 list_for_each_entry(kp, &ap->list, list)
1749 if (!kprobe_disabled(kp))
1750 /*
1751 * There is an active probe on the list.
1752 * We can't disable this ap.
1753 */
1754 return 0;
1755
1756 return 1;
1757}
1758
1759/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1760static struct kprobe *__disable_kprobe(struct kprobe *p)
1761{
1762 struct kprobe *orig_p;
1763 int ret;
1764
1765 /* Get an original kprobe for return */
1766 orig_p = __get_valid_kprobe(p);
1767 if (unlikely(orig_p == NULL))
1768 return ERR_PTR(-EINVAL);
1769
1770 if (!kprobe_disabled(p)) {
1771 /* Disable probe if it is a child probe */
1772 if (p != orig_p)
1773 p->flags |= KPROBE_FLAG_DISABLED;
1774
1775 /* Try to disarm and disable this/parent probe */
1776 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1777 /*
1778 * If kprobes_all_disarmed is set, orig_p
1779 * should have already been disarmed, so
1780 * skip unneed disarming process.
1781 */
1782 if (!kprobes_all_disarmed) {
1783 ret = disarm_kprobe(orig_p, true);
1784 if (ret) {
1785 p->flags &= ~KPROBE_FLAG_DISABLED;
1786 return ERR_PTR(ret);
1787 }
1788 }
1789 orig_p->flags |= KPROBE_FLAG_DISABLED;
1790 }
1791 }
1792
1793 return orig_p;
1794}
1795
1796/*
1797 * Unregister a kprobe without a scheduler synchronization.
1798 */
1799static int __unregister_kprobe_top(struct kprobe *p)
1800{
1801 struct kprobe *ap, *list_p;
1802
1803 /* Disable kprobe. This will disarm it if needed. */
1804 ap = __disable_kprobe(p);
1805 if (IS_ERR(ap))
1806 return PTR_ERR(ap);
1807
1808 if (ap == p)
1809 /*
1810 * This probe is an independent(and non-optimized) kprobe
1811 * (not an aggrprobe). Remove from the hash list.
1812 */
1813 goto disarmed;
1814
1815 /* Following process expects this probe is an aggrprobe */
1816 WARN_ON(!kprobe_aggrprobe(ap));
1817
1818 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1819 /*
1820 * !disarmed could be happen if the probe is under delayed
1821 * unoptimizing.
1822 */
1823 goto disarmed;
1824 else {
1825 /* If disabling probe has special handlers, update aggrprobe */
1826 if (p->post_handler && !kprobe_gone(p)) {
1827 list_for_each_entry(list_p, &ap->list, list) {
1828 if ((list_p != p) && (list_p->post_handler))
1829 goto noclean;
1830 }
1831 ap->post_handler = NULL;
1832 }
1833noclean:
1834 /*
1835 * Remove from the aggrprobe: this path will do nothing in
1836 * __unregister_kprobe_bottom().
1837 */
1838 list_del_rcu(&p->list);
1839 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1840 /*
1841 * Try to optimize this probe again, because post
1842 * handler may have been changed.
1843 */
1844 optimize_kprobe(ap);
1845 }
1846 return 0;
1847
1848disarmed:
1849 hlist_del_rcu(&ap->hlist);
1850 return 0;
1851}
1852
1853static void __unregister_kprobe_bottom(struct kprobe *p)
1854{
1855 struct kprobe *ap;
1856
1857 if (list_empty(&p->list))
1858 /* This is an independent kprobe */
1859 arch_remove_kprobe(p);
1860 else if (list_is_singular(&p->list)) {
1861 /* This is the last child of an aggrprobe */
1862 ap = list_entry(p->list.next, struct kprobe, list);
1863 list_del(&p->list);
1864 free_aggr_kprobe(ap);
1865 }
1866 /* Otherwise, do nothing. */
1867}
1868
1869int register_kprobes(struct kprobe **kps, int num)
1870{
1871 int i, ret = 0;
1872
1873 if (num <= 0)
1874 return -EINVAL;
1875 for (i = 0; i < num; i++) {
1876 ret = register_kprobe(kps[i]);
1877 if (ret < 0) {
1878 if (i > 0)
1879 unregister_kprobes(kps, i);
1880 break;
1881 }
1882 }
1883 return ret;
1884}
1885EXPORT_SYMBOL_GPL(register_kprobes);
1886
1887void unregister_kprobe(struct kprobe *p)
1888{
1889 unregister_kprobes(&p, 1);
1890}
1891EXPORT_SYMBOL_GPL(unregister_kprobe);
1892
1893void unregister_kprobes(struct kprobe **kps, int num)
1894{
1895 int i;
1896
1897 if (num <= 0)
1898 return;
1899 mutex_lock(&kprobe_mutex);
1900 for (i = 0; i < num; i++)
1901 if (__unregister_kprobe_top(kps[i]) < 0)
1902 kps[i]->addr = NULL;
1903 mutex_unlock(&kprobe_mutex);
1904
1905 synchronize_rcu();
1906 for (i = 0; i < num; i++)
1907 if (kps[i]->addr)
1908 __unregister_kprobe_bottom(kps[i]);
1909}
1910EXPORT_SYMBOL_GPL(unregister_kprobes);
1911
1912int __weak kprobe_exceptions_notify(struct notifier_block *self,
1913 unsigned long val, void *data)
1914{
1915 return NOTIFY_DONE;
1916}
1917NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1918
1919static struct notifier_block kprobe_exceptions_nb = {
1920 .notifier_call = kprobe_exceptions_notify,
1921 .priority = 0x7fffffff /* we need to be notified first */
1922};
1923
1924unsigned long __weak arch_deref_entry_point(void *entry)
1925{
1926 return (unsigned long)entry;
1927}
1928
1929#ifdef CONFIG_KRETPROBES
1930/*
1931 * This kprobe pre_handler is registered with every kretprobe. When probe
1932 * hits it will set up the return probe.
1933 */
1934static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1935{
1936 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1937 unsigned long hash, flags = 0;
1938 struct kretprobe_instance *ri;
1939
1940 /*
1941 * To avoid deadlocks, prohibit return probing in NMI contexts,
1942 * just skip the probe and increase the (inexact) 'nmissed'
1943 * statistical counter, so that the user is informed that
1944 * something happened:
1945 */
1946 if (unlikely(in_nmi())) {
1947 rp->nmissed++;
1948 return 0;
1949 }
1950
1951 /* TODO: consider to only swap the RA after the last pre_handler fired */
1952 hash = hash_ptr(current, KPROBE_HASH_BITS);
1953 raw_spin_lock_irqsave(&rp->lock, flags);
1954 if (!hlist_empty(&rp->free_instances)) {
1955 ri = hlist_entry(rp->free_instances.first,
1956 struct kretprobe_instance, hlist);
1957 hlist_del(&ri->hlist);
1958 raw_spin_unlock_irqrestore(&rp->lock, flags);
1959
1960 ri->rp = rp;
1961 ri->task = current;
1962
1963 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1964 raw_spin_lock_irqsave(&rp->lock, flags);
1965 hlist_add_head(&ri->hlist, &rp->free_instances);
1966 raw_spin_unlock_irqrestore(&rp->lock, flags);
1967 return 0;
1968 }
1969
1970 arch_prepare_kretprobe(ri, regs);
1971
1972 /* XXX(hch): why is there no hlist_move_head? */
1973 INIT_HLIST_NODE(&ri->hlist);
1974 kretprobe_table_lock(hash, &flags);
1975 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1976 kretprobe_table_unlock(hash, &flags);
1977 } else {
1978 rp->nmissed++;
1979 raw_spin_unlock_irqrestore(&rp->lock, flags);
1980 }
1981 return 0;
1982}
1983NOKPROBE_SYMBOL(pre_handler_kretprobe);
1984
1985bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1986{
1987 return !offset;
1988}
1989
1990bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1991{
1992 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1993
1994 if (IS_ERR(kp_addr))
1995 return false;
1996
1997 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1998 !arch_kprobe_on_func_entry(offset))
1999 return false;
2000
2001 return true;
2002}
2003
2004int register_kretprobe(struct kretprobe *rp)
2005{
2006 int ret = 0;
2007 struct kretprobe_instance *inst;
2008 int i;
2009 void *addr;
2010
2011 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
2012 return -EINVAL;
2013
2014 if (kretprobe_blacklist_size) {
2015 addr = kprobe_addr(&rp->kp);
2016 if (IS_ERR(addr))
2017 return PTR_ERR(addr);
2018
2019 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2020 if (kretprobe_blacklist[i].addr == addr)
2021 return -EINVAL;
2022 }
2023 }
2024
2025 rp->kp.pre_handler = pre_handler_kretprobe;
2026 rp->kp.post_handler = NULL;
2027 rp->kp.fault_handler = NULL;
2028
2029 /* Pre-allocate memory for max kretprobe instances */
2030 if (rp->maxactive <= 0) {
2031#ifdef CONFIG_PREEMPTION
2032 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2033#else
2034 rp->maxactive = num_possible_cpus();
2035#endif
2036 }
2037 raw_spin_lock_init(&rp->lock);
2038 INIT_HLIST_HEAD(&rp->free_instances);
2039 for (i = 0; i < rp->maxactive; i++) {
2040 inst = kmalloc(sizeof(struct kretprobe_instance) +
2041 rp->data_size, GFP_KERNEL);
2042 if (inst == NULL) {
2043 free_rp_inst(rp);
2044 return -ENOMEM;
2045 }
2046 INIT_HLIST_NODE(&inst->hlist);
2047 hlist_add_head(&inst->hlist, &rp->free_instances);
2048 }
2049
2050 rp->nmissed = 0;
2051 /* Establish function entry probe point */
2052 ret = register_kprobe(&rp->kp);
2053 if (ret != 0)
2054 free_rp_inst(rp);
2055 return ret;
2056}
2057EXPORT_SYMBOL_GPL(register_kretprobe);
2058
2059int register_kretprobes(struct kretprobe **rps, int num)
2060{
2061 int ret = 0, i;
2062
2063 if (num <= 0)
2064 return -EINVAL;
2065 for (i = 0; i < num; i++) {
2066 ret = register_kretprobe(rps[i]);
2067 if (ret < 0) {
2068 if (i > 0)
2069 unregister_kretprobes(rps, i);
2070 break;
2071 }
2072 }
2073 return ret;
2074}
2075EXPORT_SYMBOL_GPL(register_kretprobes);
2076
2077void unregister_kretprobe(struct kretprobe *rp)
2078{
2079 unregister_kretprobes(&rp, 1);
2080}
2081EXPORT_SYMBOL_GPL(unregister_kretprobe);
2082
2083void unregister_kretprobes(struct kretprobe **rps, int num)
2084{
2085 int i;
2086
2087 if (num <= 0)
2088 return;
2089 mutex_lock(&kprobe_mutex);
2090 for (i = 0; i < num; i++)
2091 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2092 rps[i]->kp.addr = NULL;
2093 mutex_unlock(&kprobe_mutex);
2094
2095 synchronize_rcu();
2096 for (i = 0; i < num; i++) {
2097 if (rps[i]->kp.addr) {
2098 __unregister_kprobe_bottom(&rps[i]->kp);
2099 cleanup_rp_inst(rps[i]);
2100 }
2101 }
2102}
2103EXPORT_SYMBOL_GPL(unregister_kretprobes);
2104
2105#else /* CONFIG_KRETPROBES */
2106int register_kretprobe(struct kretprobe *rp)
2107{
2108 return -ENOSYS;
2109}
2110EXPORT_SYMBOL_GPL(register_kretprobe);
2111
2112int register_kretprobes(struct kretprobe **rps, int num)
2113{
2114 return -ENOSYS;
2115}
2116EXPORT_SYMBOL_GPL(register_kretprobes);
2117
2118void unregister_kretprobe(struct kretprobe *rp)
2119{
2120}
2121EXPORT_SYMBOL_GPL(unregister_kretprobe);
2122
2123void unregister_kretprobes(struct kretprobe **rps, int num)
2124{
2125}
2126EXPORT_SYMBOL_GPL(unregister_kretprobes);
2127
2128static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2129{
2130 return 0;
2131}
2132NOKPROBE_SYMBOL(pre_handler_kretprobe);
2133
2134#endif /* CONFIG_KRETPROBES */
2135
2136/* Set the kprobe gone and remove its instruction buffer. */
2137static void kill_kprobe(struct kprobe *p)
2138{
2139 struct kprobe *kp;
2140
2141 lockdep_assert_held(&kprobe_mutex);
2142
2143 if (WARN_ON_ONCE(kprobe_gone(p)))
2144 return;
2145
2146 p->flags |= KPROBE_FLAG_GONE;
2147 if (kprobe_aggrprobe(p)) {
2148 /*
2149 * If this is an aggr_kprobe, we have to list all the
2150 * chained probes and mark them GONE.
2151 */
2152 list_for_each_entry(kp, &p->list, list)
2153 kp->flags |= KPROBE_FLAG_GONE;
2154 p->post_handler = NULL;
2155 kill_optimized_kprobe(p);
2156 }
2157 /*
2158 * Here, we can remove insn_slot safely, because no thread calls
2159 * the original probed function (which will be freed soon) any more.
2160 */
2161 arch_remove_kprobe(p);
2162
2163 /*
2164 * The module is going away. We should disarm the kprobe which
2165 * is using ftrace, because ftrace framework is still available at
2166 * MODULE_STATE_GOING notification.
2167 */
2168 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2169 disarm_kprobe_ftrace(p);
2170}
2171
2172/* Disable one kprobe */
2173int disable_kprobe(struct kprobe *kp)
2174{
2175 int ret = 0;
2176 struct kprobe *p;
2177
2178 mutex_lock(&kprobe_mutex);
2179
2180 /* Disable this kprobe */
2181 p = __disable_kprobe(kp);
2182 if (IS_ERR(p))
2183 ret = PTR_ERR(p);
2184
2185 mutex_unlock(&kprobe_mutex);
2186 return ret;
2187}
2188EXPORT_SYMBOL_GPL(disable_kprobe);
2189
2190/* Enable one kprobe */
2191int enable_kprobe(struct kprobe *kp)
2192{
2193 int ret = 0;
2194 struct kprobe *p;
2195
2196 mutex_lock(&kprobe_mutex);
2197
2198 /* Check whether specified probe is valid. */
2199 p = __get_valid_kprobe(kp);
2200 if (unlikely(p == NULL)) {
2201 ret = -EINVAL;
2202 goto out;
2203 }
2204
2205 if (kprobe_gone(kp)) {
2206 /* This kprobe has gone, we couldn't enable it. */
2207 ret = -EINVAL;
2208 goto out;
2209 }
2210
2211 if (p != kp)
2212 kp->flags &= ~KPROBE_FLAG_DISABLED;
2213
2214 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2215 p->flags &= ~KPROBE_FLAG_DISABLED;
2216 ret = arm_kprobe(p);
2217 if (ret)
2218 p->flags |= KPROBE_FLAG_DISABLED;
2219 }
2220out:
2221 mutex_unlock(&kprobe_mutex);
2222 return ret;
2223}
2224EXPORT_SYMBOL_GPL(enable_kprobe);
2225
2226/* Caller must NOT call this in usual path. This is only for critical case */
2227void dump_kprobe(struct kprobe *kp)
2228{
2229 pr_err("Dumping kprobe:\n");
2230 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2231 kp->symbol_name, kp->offset, kp->addr);
2232}
2233NOKPROBE_SYMBOL(dump_kprobe);
2234
2235int kprobe_add_ksym_blacklist(unsigned long entry)
2236{
2237 struct kprobe_blacklist_entry *ent;
2238 unsigned long offset = 0, size = 0;
2239
2240 if (!kernel_text_address(entry) ||
2241 !kallsyms_lookup_size_offset(entry, &size, &offset))
2242 return -EINVAL;
2243
2244 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2245 if (!ent)
2246 return -ENOMEM;
2247 ent->start_addr = entry;
2248 ent->end_addr = entry + size;
2249 INIT_LIST_HEAD(&ent->list);
2250 list_add_tail(&ent->list, &kprobe_blacklist);
2251
2252 return (int)size;
2253}
2254
2255/* Add all symbols in given area into kprobe blacklist */
2256int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2257{
2258 unsigned long entry;
2259 int ret = 0;
2260
2261 for (entry = start; entry < end; entry += ret) {
2262 ret = kprobe_add_ksym_blacklist(entry);
2263 if (ret < 0)
2264 return ret;
2265 if (ret == 0) /* In case of alias symbol */
2266 ret = 1;
2267 }
2268 return 0;
2269}
2270
2271/* Remove all symbols in given area from kprobe blacklist */
2272static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2273{
2274 struct kprobe_blacklist_entry *ent, *n;
2275
2276 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2277 if (ent->start_addr < start || ent->start_addr >= end)
2278 continue;
2279 list_del(&ent->list);
2280 kfree(ent);
2281 }
2282}
2283
2284static void kprobe_remove_ksym_blacklist(unsigned long entry)
2285{
2286 kprobe_remove_area_blacklist(entry, entry + 1);
2287}
2288
2289int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2290 char *type, char *sym)
2291{
2292 return -ERANGE;
2293}
2294
2295int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2296 char *sym)
2297{
2298#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2299 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2300 return 0;
2301#ifdef CONFIG_OPTPROBES
2302 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2303 return 0;
2304#endif
2305#endif
2306 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2307 return 0;
2308 return -ERANGE;
2309}
2310
2311int __init __weak arch_populate_kprobe_blacklist(void)
2312{
2313 return 0;
2314}
2315
2316/*
2317 * Lookup and populate the kprobe_blacklist.
2318 *
2319 * Unlike the kretprobe blacklist, we'll need to determine
2320 * the range of addresses that belong to the said functions,
2321 * since a kprobe need not necessarily be at the beginning
2322 * of a function.
2323 */
2324static int __init populate_kprobe_blacklist(unsigned long *start,
2325 unsigned long *end)
2326{
2327 unsigned long entry;
2328 unsigned long *iter;
2329 int ret;
2330
2331 for (iter = start; iter < end; iter++) {
2332 entry = arch_deref_entry_point((void *)*iter);
2333 ret = kprobe_add_ksym_blacklist(entry);
2334 if (ret == -EINVAL)
2335 continue;
2336 if (ret < 0)
2337 return ret;
2338 }
2339
2340 /* Symbols in __kprobes_text are blacklisted */
2341 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2342 (unsigned long)__kprobes_text_end);
2343 if (ret)
2344 return ret;
2345
2346 /* Symbols in noinstr section are blacklisted */
2347 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2348 (unsigned long)__noinstr_text_end);
2349
2350 return ret ? : arch_populate_kprobe_blacklist();
2351}
2352
2353static void add_module_kprobe_blacklist(struct module *mod)
2354{
2355 unsigned long start, end;
2356 int i;
2357
2358 if (mod->kprobe_blacklist) {
2359 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2360 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2361 }
2362
2363 start = (unsigned long)mod->kprobes_text_start;
2364 if (start) {
2365 end = start + mod->kprobes_text_size;
2366 kprobe_add_area_blacklist(start, end);
2367 }
2368
2369 start = (unsigned long)mod->noinstr_text_start;
2370 if (start) {
2371 end = start + mod->noinstr_text_size;
2372 kprobe_add_area_blacklist(start, end);
2373 }
2374}
2375
2376static void remove_module_kprobe_blacklist(struct module *mod)
2377{
2378 unsigned long start, end;
2379 int i;
2380
2381 if (mod->kprobe_blacklist) {
2382 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2383 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2384 }
2385
2386 start = (unsigned long)mod->kprobes_text_start;
2387 if (start) {
2388 end = start + mod->kprobes_text_size;
2389 kprobe_remove_area_blacklist(start, end);
2390 }
2391
2392 start = (unsigned long)mod->noinstr_text_start;
2393 if (start) {
2394 end = start + mod->noinstr_text_size;
2395 kprobe_remove_area_blacklist(start, end);
2396 }
2397}
2398
2399/* Module notifier call back, checking kprobes on the module */
2400static int kprobes_module_callback(struct notifier_block *nb,
2401 unsigned long val, void *data)
2402{
2403 struct module *mod = data;
2404 struct hlist_head *head;
2405 struct kprobe *p;
2406 unsigned int i;
2407 int checkcore = (val == MODULE_STATE_GOING);
2408
2409 if (val == MODULE_STATE_COMING) {
2410 mutex_lock(&kprobe_mutex);
2411 add_module_kprobe_blacklist(mod);
2412 mutex_unlock(&kprobe_mutex);
2413 }
2414 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2415 return NOTIFY_DONE;
2416
2417 /*
2418 * When MODULE_STATE_GOING was notified, both of module .text and
2419 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2420 * notified, only .init.text section would be freed. We need to
2421 * disable kprobes which have been inserted in the sections.
2422 */
2423 mutex_lock(&kprobe_mutex);
2424 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2425 head = &kprobe_table[i];
2426 hlist_for_each_entry(p, head, hlist) {
2427 if (kprobe_gone(p))
2428 continue;
2429
2430 if (within_module_init((unsigned long)p->addr, mod) ||
2431 (checkcore &&
2432 within_module_core((unsigned long)p->addr, mod))) {
2433 /*
2434 * The vaddr this probe is installed will soon
2435 * be vfreed buy not synced to disk. Hence,
2436 * disarming the breakpoint isn't needed.
2437 *
2438 * Note, this will also move any optimized probes
2439 * that are pending to be removed from their
2440 * corresponding lists to the freeing_list and
2441 * will not be touched by the delayed
2442 * kprobe_optimizer work handler.
2443 */
2444 kill_kprobe(p);
2445 }
2446 }
2447 }
2448 if (val == MODULE_STATE_GOING)
2449 remove_module_kprobe_blacklist(mod);
2450 mutex_unlock(&kprobe_mutex);
2451 return NOTIFY_DONE;
2452}
2453
2454static struct notifier_block kprobe_module_nb = {
2455 .notifier_call = kprobes_module_callback,
2456 .priority = 0
2457};
2458
2459/* Markers of _kprobe_blacklist section */
2460extern unsigned long __start_kprobe_blacklist[];
2461extern unsigned long __stop_kprobe_blacklist[];
2462
2463void kprobe_free_init_mem(void)
2464{
2465 void *start = (void *)(&__init_begin);
2466 void *end = (void *)(&__init_end);
2467 struct hlist_head *head;
2468 struct kprobe *p;
2469 int i;
2470
2471 mutex_lock(&kprobe_mutex);
2472
2473 /* Kill all kprobes on initmem */
2474 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2475 head = &kprobe_table[i];
2476 hlist_for_each_entry(p, head, hlist) {
2477 if (start <= (void *)p->addr && (void *)p->addr < end)
2478 kill_kprobe(p);
2479 }
2480 }
2481
2482 mutex_unlock(&kprobe_mutex);
2483}
2484
2485static int __init init_kprobes(void)
2486{
2487 int i, err = 0;
2488
2489 /* FIXME allocate the probe table, currently defined statically */
2490 /* initialize all list heads */
2491 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2492 INIT_HLIST_HEAD(&kprobe_table[i]);
2493 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2494 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2495 }
2496
2497 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2498 __stop_kprobe_blacklist);
2499 if (err) {
2500 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2501 pr_err("Please take care of using kprobes.\n");
2502 }
2503
2504 if (kretprobe_blacklist_size) {
2505 /* lookup the function address from its name */
2506 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2507 kretprobe_blacklist[i].addr =
2508 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2509 if (!kretprobe_blacklist[i].addr)
2510 printk("kretprobe: lookup failed: %s\n",
2511 kretprobe_blacklist[i].name);
2512 }
2513 }
2514
2515#if defined(CONFIG_OPTPROBES)
2516#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2517 /* Init kprobe_optinsn_slots */
2518 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2519#endif
2520 /* By default, kprobes can be optimized */
2521 kprobes_allow_optimization = true;
2522#endif
2523
2524 /* By default, kprobes are armed */
2525 kprobes_all_disarmed = false;
2526
2527 err = arch_init_kprobes();
2528 if (!err)
2529 err = register_die_notifier(&kprobe_exceptions_nb);
2530 if (!err)
2531 err = register_module_notifier(&kprobe_module_nb);
2532
2533 kprobes_initialized = (err == 0);
2534
2535 if (!err)
2536 init_test_probes();
2537 return err;
2538}
2539subsys_initcall(init_kprobes);
2540
2541#ifdef CONFIG_DEBUG_FS
2542static void report_probe(struct seq_file *pi, struct kprobe *p,
2543 const char *sym, int offset, char *modname, struct kprobe *pp)
2544{
2545 char *kprobe_type;
2546 void *addr = p->addr;
2547
2548 if (p->pre_handler == pre_handler_kretprobe)
2549 kprobe_type = "r";
2550 else
2551 kprobe_type = "k";
2552
2553 if (!kallsyms_show_value(pi->file->f_cred))
2554 addr = NULL;
2555
2556 if (sym)
2557 seq_printf(pi, "%px %s %s+0x%x %s ",
2558 addr, kprobe_type, sym, offset,
2559 (modname ? modname : " "));
2560 else /* try to use %pS */
2561 seq_printf(pi, "%px %s %pS ",
2562 addr, kprobe_type, p->addr);
2563
2564 if (!pp)
2565 pp = p;
2566 seq_printf(pi, "%s%s%s%s\n",
2567 (kprobe_gone(p) ? "[GONE]" : ""),
2568 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2569 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2570 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2571}
2572
2573static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2574{
2575 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2576}
2577
2578static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2579{
2580 (*pos)++;
2581 if (*pos >= KPROBE_TABLE_SIZE)
2582 return NULL;
2583 return pos;
2584}
2585
2586static void kprobe_seq_stop(struct seq_file *f, void *v)
2587{
2588 /* Nothing to do */
2589}
2590
2591static int show_kprobe_addr(struct seq_file *pi, void *v)
2592{
2593 struct hlist_head *head;
2594 struct kprobe *p, *kp;
2595 const char *sym = NULL;
2596 unsigned int i = *(loff_t *) v;
2597 unsigned long offset = 0;
2598 char *modname, namebuf[KSYM_NAME_LEN];
2599
2600 head = &kprobe_table[i];
2601 preempt_disable();
2602 hlist_for_each_entry_rcu(p, head, hlist) {
2603 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2604 &offset, &modname, namebuf);
2605 if (kprobe_aggrprobe(p)) {
2606 list_for_each_entry_rcu(kp, &p->list, list)
2607 report_probe(pi, kp, sym, offset, modname, p);
2608 } else
2609 report_probe(pi, p, sym, offset, modname, NULL);
2610 }
2611 preempt_enable();
2612 return 0;
2613}
2614
2615static const struct seq_operations kprobes_sops = {
2616 .start = kprobe_seq_start,
2617 .next = kprobe_seq_next,
2618 .stop = kprobe_seq_stop,
2619 .show = show_kprobe_addr
2620};
2621
2622DEFINE_SEQ_ATTRIBUTE(kprobes);
2623
2624/* kprobes/blacklist -- shows which functions can not be probed */
2625static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2626{
2627 mutex_lock(&kprobe_mutex);
2628 return seq_list_start(&kprobe_blacklist, *pos);
2629}
2630
2631static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2632{
2633 return seq_list_next(v, &kprobe_blacklist, pos);
2634}
2635
2636static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2637{
2638 struct kprobe_blacklist_entry *ent =
2639 list_entry(v, struct kprobe_blacklist_entry, list);
2640
2641 /*
2642 * If /proc/kallsyms is not showing kernel address, we won't
2643 * show them here either.
2644 */
2645 if (!kallsyms_show_value(m->file->f_cred))
2646 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2647 (void *)ent->start_addr);
2648 else
2649 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2650 (void *)ent->end_addr, (void *)ent->start_addr);
2651 return 0;
2652}
2653
2654static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2655{
2656 mutex_unlock(&kprobe_mutex);
2657}
2658
2659static const struct seq_operations kprobe_blacklist_sops = {
2660 .start = kprobe_blacklist_seq_start,
2661 .next = kprobe_blacklist_seq_next,
2662 .stop = kprobe_blacklist_seq_stop,
2663 .show = kprobe_blacklist_seq_show,
2664};
2665DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2666
2667static int arm_all_kprobes(void)
2668{
2669 struct hlist_head *head;
2670 struct kprobe *p;
2671 unsigned int i, total = 0, errors = 0;
2672 int err, ret = 0;
2673
2674 mutex_lock(&kprobe_mutex);
2675
2676 /* If kprobes are armed, just return */
2677 if (!kprobes_all_disarmed)
2678 goto already_enabled;
2679
2680 /*
2681 * optimize_kprobe() called by arm_kprobe() checks
2682 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2683 * arm_kprobe.
2684 */
2685 kprobes_all_disarmed = false;
2686 /* Arming kprobes doesn't optimize kprobe itself */
2687 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2688 head = &kprobe_table[i];
2689 /* Arm all kprobes on a best-effort basis */
2690 hlist_for_each_entry(p, head, hlist) {
2691 if (!kprobe_disabled(p)) {
2692 err = arm_kprobe(p);
2693 if (err) {
2694 errors++;
2695 ret = err;
2696 }
2697 total++;
2698 }
2699 }
2700 }
2701
2702 if (errors)
2703 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2704 errors, total);
2705 else
2706 pr_info("Kprobes globally enabled\n");
2707
2708already_enabled:
2709 mutex_unlock(&kprobe_mutex);
2710 return ret;
2711}
2712
2713static int disarm_all_kprobes(void)
2714{
2715 struct hlist_head *head;
2716 struct kprobe *p;
2717 unsigned int i, total = 0, errors = 0;
2718 int err, ret = 0;
2719
2720 mutex_lock(&kprobe_mutex);
2721
2722 /* If kprobes are already disarmed, just return */
2723 if (kprobes_all_disarmed) {
2724 mutex_unlock(&kprobe_mutex);
2725 return 0;
2726 }
2727
2728 kprobes_all_disarmed = true;
2729
2730 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2731 head = &kprobe_table[i];
2732 /* Disarm all kprobes on a best-effort basis */
2733 hlist_for_each_entry(p, head, hlist) {
2734 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2735 err = disarm_kprobe(p, false);
2736 if (err) {
2737 errors++;
2738 ret = err;
2739 }
2740 total++;
2741 }
2742 }
2743 }
2744
2745 if (errors)
2746 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2747 errors, total);
2748 else
2749 pr_info("Kprobes globally disabled\n");
2750
2751 mutex_unlock(&kprobe_mutex);
2752
2753 /* Wait for disarming all kprobes by optimizer */
2754 wait_for_kprobe_optimizer();
2755
2756 return ret;
2757}
2758
2759/*
2760 * XXX: The debugfs bool file interface doesn't allow for callbacks
2761 * when the bool state is switched. We can reuse that facility when
2762 * available
2763 */
2764static ssize_t read_enabled_file_bool(struct file *file,
2765 char __user *user_buf, size_t count, loff_t *ppos)
2766{
2767 char buf[3];
2768
2769 if (!kprobes_all_disarmed)
2770 buf[0] = '1';
2771 else
2772 buf[0] = '0';
2773 buf[1] = '\n';
2774 buf[2] = 0x00;
2775 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2776}
2777
2778static ssize_t write_enabled_file_bool(struct file *file,
2779 const char __user *user_buf, size_t count, loff_t *ppos)
2780{
2781 char buf[32];
2782 size_t buf_size;
2783 int ret = 0;
2784
2785 buf_size = min(count, (sizeof(buf)-1));
2786 if (copy_from_user(buf, user_buf, buf_size))
2787 return -EFAULT;
2788
2789 buf[buf_size] = '\0';
2790 switch (buf[0]) {
2791 case 'y':
2792 case 'Y':
2793 case '1':
2794 ret = arm_all_kprobes();
2795 break;
2796 case 'n':
2797 case 'N':
2798 case '0':
2799 ret = disarm_all_kprobes();
2800 break;
2801 default:
2802 return -EINVAL;
2803 }
2804
2805 if (ret)
2806 return ret;
2807
2808 return count;
2809}
2810
2811static const struct file_operations fops_kp = {
2812 .read = read_enabled_file_bool,
2813 .write = write_enabled_file_bool,
2814 .llseek = default_llseek,
2815};
2816
2817static int __init debugfs_kprobe_init(void)
2818{
2819 struct dentry *dir;
2820 unsigned int value = 1;
2821
2822 dir = debugfs_create_dir("kprobes", NULL);
2823
2824 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2825
2826 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2827
2828 debugfs_create_file("blacklist", 0400, dir, NULL,
2829 &kprobe_blacklist_fops);
2830
2831 return 0;
2832}
2833
2834late_initcall(debugfs_kprobe_init);
2835#endif /* CONFIG_DEBUG_FS */